WorldWideScience

Sample records for axis regulates prostate

  1. Mechanism of Prostate Cancer Prevention by Down-Regulation of the GH/IGF Axis

    Science.gov (United States)

    2013-09-01

    androgen ablation can reverse the course of the prostate cancer and this has formed the foundation of therapy for decades. Invariably, however, castrate...to be independent of GH. The serum used in laboratories around the world is non-primate serum (e.g., bovine, equine or porcine). The GHs derived

  2. Expression of the IGF Axis Is Decreased in Local Prostate Cancer but Enhanced after Benign Prostate Epithelial Differentiation and TGF-β Treatment

    Science.gov (United States)

    Massoner, Petra; Ladurner Rennau, Michael; Heidegger, Isabel; Kloss-Brandstätter, Anita; Summerer, Monika; Reichhart, Eva; Schäfer, Georg; Klocker, Helmut

    2011-01-01

    The insulin-like growth factor (IGF) axis is a molecular pathway intensively investigated in cancer research. Clinical trials targeting the IGF1 receptor (IGF1R) in different tumors, including prostate cancer, are under way. Although studies on the IGF axis in prostate cancer have already entered into clinical trials, the expression and functional role of the IGF axis in benign prostate and in prostate cancer needs to be better defined. We determined mRNA expression levels of the IGF axis in microdissected tissue specimens of local prostate cancer using quantitative PCR. All members of the IGF axis, including IGF1, IGF2, IGF binding proteins 1 through 6, and insulin receptor, were measured in both the stromal and epithelial compartments of the prostate. IGF1, IGF2, IGF1R, and insulin receptor were down-regulated in local prostate cancer tissue compared with matched benign tissue, suggesting that the IGF axis is not induced during prostate cancer development. Using a new prostate epithelial differentiation model, we demonstrate that the expression of the IGF axis is enhanced during normal prostate epithelial differentiation and regulated by tumor growth factor (TGF)-β. Our data reveal a functional role of the IGF axis in prostate differentiation, underscoring the importance of the IGF axis in normal development and emphasizing the importance of accurate target validation before moving to advanced clinical trials. PMID:21983635

  3. SYSTEMS MODELING OF PROSTATE REGULATION AND ...

    Science.gov (United States)

    The prostate is an androgen-dependent tissue that is an important site of disease in human males as well as an important indicator of androgen status in animals. The rat prostate is used for studying antiandrogenic drugs as well as for evaluation of endocrine disruption (e.g., Hershberger Assay). Pubertal changes in the prostate have been observed to be as sensitive to environmental antiandrogens as in utero effects. The goal of this research is to model the biology of prostate androgen function on a systems level to determine the factors responsible for the dose-response observable with androgens and antiandrogens in the male rat. This includes investigation of the roles of positive and negative feedback loops in prostatic response following castration and dosing with testosterone and/or antiandrogens. A biologically-based, systems-level model will be developed describing the regulation of the prostate by androgens. The model will extend an existing model for the male rat central axis, which describes feedback between luteinizing hormone and testosterone production in the testes, to include the prostate and conversion of testosterone to dihydrotestosterone (DHT). The prostate model will describe binding of androgens to the androgen receptor, 5α-reductase catalyzed production of DHT, and gene regulation affecting cell proliferation, apoptosis, and prostatic fluid production. The model will combine pharmacokinetic models for endogenous hormones (i.e., testost

  4. Angiogenesis Regulates Prostate Cancer Metastasis

    National Research Council Canada - National Science Library

    Pettaway, Curtis

    1999-01-01

    .... We are evaluating the relationship of the expression of the angiogenesis factors bFGF, VEGF, and IL-8 with prostate cancer growth and metastasis, using our orthotopic model of metastatic prostate cancer in nude mice...

  5. Regulating Cancer Associated Fibroblast Biology in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    SUPPLEMENTARY NOTES 14. ABSTRACT There is an urgent need to develop both new approaches to the treatment of prostate cancer. Analysis of human prostate...AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM ELEMENT NUMBER 6

  6. Targeting Met and VEGFR Axis in Metastatic Castration-Resistant Prostate Cancer: 'Game Over'?

    Science.gov (United States)

    Modena, Alessandra; Massari, Francesco; Ciccarese, Chiara; Brunelli, Matteo; Santoni, Matteo; Montironi, Rodolfo; Martignoni, Guido; Tortora, Giampaolo

    2016-08-01

    Despite recent advances that have been made in the therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC), effective management of bone metastases remains a key goal not yet reached. The receptor tyrosine kinase MET and the vascular endothelial growth factor receptor (VEGFR) seem to play an important role in prostate cancer progression and pathological bone turnover, representing potential targets for improving clinical outcomes in mCRPC. Studies evaluating agents that target one or both these pathways have demonstrated modest activity but no improvement in overall survival. Nevertheless, this therapeutic strategy seems to still be a promising and engaging area of prostate cancer research and the interest in better understanding the MET/VEGFR axis and the mechanism of action of these inhibitors is growing. This review describes the rationale for targeting MET and VEGFR pathway in mCRPC and provides the clinical data available to date and an update on ongoing trials.

  7. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    Directory of Open Access Journals (Sweden)

    Uygur Berna

    2011-11-01

    Full Text Available Abstract Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  8. Microbiota regulation of the Mammalian gut-brain axis.

    Science.gov (United States)

    Burokas, Aurelijus; Moloney, Rachel D; Dinan, Timothy G; Cryan, John F

    2015-01-01

    The realization that the microbiota-gut-brain axis plays a critical role in health and disease has emerged over the past decade. The brain-gut axis is a bidirectional communication system between the central nervous system (CNS) and the gastrointestinal tract. Regulation of the microbiota-brain-gut axis is essential for maintaining homeostasis, including that of the CNS. The routes of this communication are not fully elucidated but include neural, humoral, immune, and metabolic pathways. A number of approaches have been used to interrogate this axis including the use of germ-free animals, probiotic agents, antibiotics, or animals exposed to pathogenic bacterial infections. Together, it is clear that the gut microbiota can be a key regulator of mood, cognition, pain, and obesity. Understanding microbiota-brain interactions is an exciting area of research which may contribute new insights into individual variations in cognition, personality, mood, sleep, and eating behavior, and how they contribute to a range of neuropsychiatric diseases ranging from affective disorders to autism and schizophrenia. Finally, the concept of psychobiotics, bacterial-based interventions with mental health benefit, is also emerging. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The insulin-like growth factor (IGF) axis as an anticancer target in prostate cancer.

    Science.gov (United States)

    Heidegger, Isabel; Massoner, Petra; Sampson, Natalie; Klocker, Helmut

    2015-10-28

    Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer death in males. In recent years, several new targeting agents have been introduced for the treatment of advanced stages of the disease. However, development of resistance limits the efficacy of new drugs and there is a further need to develop additional novel treatment approaches. One of the most investigated targets in cancer research is the insulin-like growth factor (IGF) axis, whose receptors are overexpressed in several cancer entities including PCa. In preclinical studies in PCa, targeting of the IGF axis receptors showed promising anti-tumor effects. Currently available data on clinical studies do not meet the expectations for this new treatment approach. In this review we provide a summary of preclinical and clinical studies on the IGF axis in PCa including treatment with monoclonal antibodies and tyrosine kinase inhibitors. Moreover, we summarize preliminary results from ongoing studies and discuss limitations and side effects of the substances used. We also address the role of the IGF axis in the biomarkers setting including IGF-binding proteins and genetic variants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    DEFF Research Database (Denmark)

    Lokody, Isabel B; Francis, Jeffrey C; Gardiner, Jennifer R

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic...

  11. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer.

    Directory of Open Access Journals (Sweden)

    Harold D Love

    2009-12-01

    Full Text Available Benign prostatic hyperplasia (BPH and prostate carcinoma (CaP are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1 highly expressed in prostate, 2 had significant expression changes in response to androgens, and, 3 encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues.

  12. Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0314 TITLE: Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance PRINCIPAL INVESTIGATOR...Sep 2015 4. TITLE AND SUBTITLE Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate 5a. CONTRACT NUMBER W81XWH-13-1-0314 Cancer Chemoresistance 5b...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT OXCT1 is a key enzyme in ketone body metabolism

  13. Stress & the gut-brain axis: Regulation by the microbiome

    Directory of Open Access Journals (Sweden)

    Jane A. Foster

    2017-12-01

    Full Text Available The importance of the gut–brain axis in regulating stress-related responses has long been appreciated. More recently, the microbiota has emerged as a key player in the control of this axis, especially during conditions of stress provoked by real or perceived homeostatic challenge. Diet is one of the most important modifying factors of the microbiota-gut-brain axis. The routes of communication between the microbiota and brain are slowly being unravelled, and include the vagus nerve, gut hormone signaling, the immune system, tryptophan metabolism, and microbial metabolites such as short chain fatty acids. The importance of the early life gut microbiota in shaping later health outcomes also is emerging. Results from preclinical studies indicate that alterations of the early microbial composition by way of antibiotic exposure, lack of breastfeeding, birth by Caesarean section, infection, stress exposure, and other environmental influences - coupled with the influence of host genetics - can result in long-term modulation of stress-related physiology and behaviour. The gut microbiota has been implicated in a variety of stress-related conditions including anxiety, depression and irritable bowel syndrome, although this is largely based on animal studies or correlative analysis in patient populations. Additional research in humans is sorely needed to reveal the relative impact and causal contribution of the microbiome to stress-related disorders. In this regard, the concept of psychobiotics is being developed and refined to encompass methods of targeting the microbiota in order to positively impact mental health outcomes. At the 2016 Neurobiology of Stress Workshop in Newport Beach, CA, a group of experts presented the symposium “The Microbiome: Development, Stress, and Disease”. This report summarizes and builds upon some of the key concepts in that symposium within the context of how microbiota might influence the neurobiology of stress.

  14. Prostate cancer characteristics associated with response to pre-receptor targeting of the androgen axis.

    Directory of Open Access Journals (Sweden)

    Elahe A Mostaghel

    Full Text Available Factors influencing differential responses of prostate tumors to androgen receptor (AR axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth.We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy.In LuCaP35 tumors (intra-tumoral T:DHT ratio 2:1 dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015. In LuCaP96 tumors (T:DHT 10:1, survival was not improved despite similar DHT reduction (0.02 ng/gm. LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both, reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors, and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively, persistent suppression of intra-tumoral DHT, and 6-8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts.Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and

  15. Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Mingzhe Liu

    2016-01-01

    Full Text Available Hydrogen sulfide (H2S was originally considered toxic at elevated levels; however just in the past decade H2S has been proposed to be an important gasotransmitter with various physiological and pathophysiological roles in the body. H2S can be generated endogenously from L-cysteine by multiple enzymes, including cystathionine gamma-lyase, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase. Prostate cancer is a major health concern and no effective treatment for prostate cancers is available. H2S has been shown to inhibit cell survival of androgen-independent, androgen-dependent, and antiandrogen-resistant prostate cancer cells through different mechanisms. Various H2S-releasing compounds, including sulfide salts, diallyl disulfide, diallyl trisulfide, sulforaphane, and other polysulfides, also have been shown to inhibit prostate cancer growth and metastasis. The expression of H2S-producing enzyme was reduced in both human prostate cancer tissues and prostate cancer cells. Androgen receptor (AR signaling is indispensable for the development of castration resistant prostate cancer, and H2S was shown to inhibit AR transactivation and contributes to antiandrogen-resistant status. In this review, we summarized the current knowledge of H2S signaling in prostate cancer and described the molecular alterations, which may bring this gasotransmitter into the clinic in the near future for developing novel pharmacological and therapeutic interventions for prostate cancer.

  16. Endocannabinoid Signaling, Glucocorticoid-Mediated Negative Feedback and Regulation of the HPA Axis

    Science.gov (United States)

    Hill, M. N.; Tasker, J. G.

    2012-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signalling plays in phases of HPA axis regulation, or the neural sites of action mediating this regulation, was not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Ultimately, the current level of information indicates that endocannabinoid signalling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala and hypothalamus. PMID:22214537

  17. Androgen regulation of prostate cancer: where are we now?

    Science.gov (United States)

    Corona, G; Baldi, E; Maggi, M

    2011-03-01

    Androgens play an essential role in the development and differentiation of the prostate gland; their contribution to pathological conditions, such as benign prostatic hyperplasia and prostate cancer (PC), remains unclear. We reviewed relationships between androgens and the prostate both in physiological and pathological conditions. A systematic search of published evidence was performed using Medline (1969 to September 2010). Androgen-dependency of prostate growth is evident only in the hypogonadal condition, but not in the eugonadal state (the "saturation hypothesis"). There is unequivocal evidence that reducing androgen signaling to the hypogonadal range can reduce PC growth and patient symptoms. At physiological testosterone concentration there is no link between androgen levels and PC risk. In addition, different strategies of androgen deprivation (ADT) for advanced PC are only palliative and rarely cure patients. Preliminary evidence indicates that a low androgen milieu is associated with tumor aggressiveness. Transition to androgen-independence is complex and involves both selection and outgrowth of preexisting androgen resistant clones, as well as adaptative upregulation of genes that help the cancer cells to survive and grow after ADT. Because androgens are essential for the regulation of fat distribution, insulin sensitivity, and lipid and bone metabolism, recent publications have highlighted the concept that ADT may also be involved with an increase in overall, as well as cardiovascular, morbidity and mortality. While ADT still represents a cornerstone for the palliative therapy of a small fraction of aggressive PC, a "misuse and/or abuse" of ADT should be avoided.

  18. Central regulation of the hypothalamo-pituitary-thyroid (HPT) axis: focus on clinical aspects

    NARCIS (Netherlands)

    Fliers, E.; Boelen, A.; van Trotsenburg, A. S. P.

    2014-01-01

    The hypothalamus is the most prominent brain region involved in setpoint regulation of the thyroid axis. It generates the diurnal thyroid-stimulating hormone (TSH) rhythm, and it plays a central role in the adaptation of the thyroid axis to environmental factors such as caloric deprivation or

  19. The Lin28/let-7 Axis Regulates Glucose Metabolism

    NARCIS (Netherlands)

    Zhu, Hao; Shyh-Chang, Ng; Segre, Ayellet V.; Shinoda, Gen; Shah, Samar P.; Einhorn, William S.; Takeuchi, Ayumu; Engreitz, Jesse M.; Hagan, John P.; Kharas, Michael G.; Urbach, Achia; Thornton, James E.; Triboulet, Robinson; Gregory, Richard I.; Altshuler, David; Daley, George Q.

    2011-01-01

    The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating-metabolism. When overexpressed in mice, both

  20. Gut-brain axis: regulation of glucose metabolism

    NARCIS (Netherlands)

    Heijboer, A. C.; Pijl, H.; van den Hoek, A. M.; Havekes, L. M.; Romijn, J. A.; Corssmit, E. P. M.

    2006-01-01

    Obesity and type II diabetes mellitus have reached epidemic proportions. From this perspective, knowledge about the regulation of satiety and food intake is more important than ever. The gut releases several peptides upon feeding, which affect hypothalamic pathways involved in the regulation of

  1. TET1-mediated different transcriptional regulation in prostate cancer.

    Science.gov (United States)

    Feng, Jianhua; Wang, Qiang; Li, Guangwei; Zeng, Xiangjian; Kuang, Shihang; Li, Xiaohua; Yue, Youwei

    2015-01-01

    The recent studies demonstrated that the global 5-hydroxymethylcytosine (5 hmC) level decreased in prostate cancer (PCa) involved the 5-methylcytosine (5 mC) hydroxymethylase, Ten-eleven translocation (TET)1 reduction. 5 hmC and TET1 were both revealed a dual function in bivalent domain associated with developmental regulators in embryonic stem cell model. However, the mechanism underlying the DNA methylation and hydroxymethylation change mediated by TET1 downregulation in PCa remains unclear. Herein, using BSP to assess the 5 mC level in promoters of ten specific marker gene in PCa, our results present that Cdh1, Gstp1, Pten, Apc, Runx3 and Mgmt are observed to be hypermethylated in promoters and lower expression while Cyr61, Sema3c and Ptgs2 are reversed patterns compared to the normal prostate tissues. Furthermore, using ChIP methods to investigate the H3K4me3 and H3K27me3 patterns in promoters, these four markers are all demonstrated to be associated with Polycomb-repressed characterization and upregulated in response to TET1/PRC2 reduction in PCa. Thus, our findings reveal a distinct activating and repressive function of TET1-mediated transcriptional regulation in prostate cancer.

  2. Regulation of DU145 prostate cancer cell growth by Scm-like with ...

    Indian Academy of Sciences (India)

    2012-12-08

    Dec 8, 2012 ... Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells. [Lee K, Na W , Maeng J-H, Wu H and Ju B-G 2013 Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2. J.

  3. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin

    Science.gov (United States)

    2013-01-01

    . The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function. PMID:23879975

  4. Gut–Brain Axis in Regulation of Blood Pressure

    Directory of Open Access Journals (Sweden)

    Tao Yang

    2017-10-01

    Full Text Available Hypertension (HTN is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS and the immune system (IS play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP.

  5. Gut–Brain Axis in Regulation of Blood Pressure

    Science.gov (United States)

    Yang, Tao; Zubcevic, Jasenka

    2017-01-01

    Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS) and the immune system (IS) play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP. PMID:29118721

  6. RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis.

    Science.gov (United States)

    Leclère, Lucas; Rentzsch, Fabian

    2014-12-11

    Patterning of the metazoan dorsoventral axis is mediated by a complex interplay of BMP signaling regulators. Repulsive guidance molecule (RGM) is a conserved BMP coreceptor that has not been implicated in axis specification. We show that NvRGM is a key positive regulator of BMP signaling during secondary axis establishment in the cnidarian Nematostella vectensis. NvRGM regulates first the generation and later the shape of a BMP-dependent Smad1/5/8 gradient with peak activity on the side opposite the NvBMP/NvRGM/NvChordin expression domain. Full knockdown of Smad1/5/8 signaling blocks the formation of endodermal structures, the mesenteries, and the establishment of bilateral symmetry, while altering the gradient through partial NvRGM or NvBMP knockdown shifts the boundaries of asymmetric gene expression and the positioning of the mesenteries along the secondary axis. These findings provide insight into the diversification of axis specification mechanisms and identify a previously unrecognized role for RGM in BMP-mediated axial patterning. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Lxrα regulates the androgen response in prostate epithelium.

    Science.gov (United States)

    Viennois, Emilie; Esposito, Teresa; Dufour, Julie; Pommier, Aurélien; Fabre, Stephane; Kemeny, Jean-Louis; Guy, Laurent; Morel, Laurent; Lobaccaro, Jean-Marc; Baron, Silvère

    2012-07-01

    Benign prostatic hyperplasia is a nonmalignant enlargement of the prostate that commonly occurs in older men. We show that liver X receptor (Lxr)-α knockout mice (lxrα(-/-)) develop ventral prostate hypertrophy, correlating with an overaccumulation of secreted proteins in prostatic ducts and an alteration of vesicular trafficking in epithelial cells. In the fluid of the lxrα(-/-) prostates, spermine binding protein is highly accumulated and shows a 3000-fold increase of its mRNA. This overexpression is mediated by androgen hypersensitivity in lxrα(-/-) mice, restricted to the ventral prostate. Generation of chimeric recombinant prostates demonstrates that Lxrα is involved in the establishment of the epithelial-mesenchymal interactions in the mouse prostate. Altogether these results point out the crucial role of Lxrα in the homeostasis of the ventral prostate and suggest lxrα(-/-) mice may be a good model to investigate the molecular mechanisms of benign prostatic hyperplasia.

  8. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Setya Hemani

    2008-07-01

    Full Text Available Abstract Background Prostate cancer progression to androgen independence is the primary cause of mortality by this tumor type. The IGF-1/IGF-1R axis is well known to contribute to prostate cancer initiation, but its contribution to invasiveness and the downstream signalling mechanisms that are involved are unclear at present. Results We examined the invasive response of androgen independent DU145 prostate carcinoma cells to IGF-1 stimulation using Matrigel assays. We then examined the signaling mechanisms and protease activities that are associated with this response. IGF-1 significantly increased the invasive capacity of DU145 cells in vitro, and this increase was inhibited by blocking IGF-1R. We further demonstrated that specific inhibitors of the MAPK and PI3-K pathways decrease IGF-1-mediated invasion. To determine potential molecular mechanisms for this change in invasive capacity, we examined changes in expression and activity of matrix metalloproteinases. We observed that IGF-1 increases the enzymatic activity of MMP-2 and MMP-9 in DU145 cells. These changes in activity are due to differences in expression in the case of MMP-9 but not in the case of MMP-2. This observation is corroborated by the fact that correlated changes of expression in a regulator of MMP-2, TIMP-2, were also seen. Conclusion This work identifies a specific effect of IGF-1 on the invasive capacity of DU145 prostate cancer cells, and furthermore delineates mechanisms that contribute to this effect.

  9. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    National Research Council Canada - National Science Library

    Kwabi-Addo, Bernard

    2006-01-01

    .... I have demonstrated that Sprouty1 is down-regulated in human prostate cancer (PCa). The purpose of the present study is to characterize the molecular mechanisms regulating Sprouty1 expression in the human PCa. Results...

  10. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice

    DEFF Research Database (Denmark)

    Wainwright, Elanor N.; Svingen, Terje; Ting Ng, Ee

    2014-01-01

    The issues of whether and how some organs coordinate their size and shape with the blueprint of the embryo axis, while others appear to regulate their morphogenesis autonomously, remain poorly understood. Mutations in Ift144, encoding a component of the trafficking machinery of primary cilia asse...

  11. Stress and serial adult metamorphosis: Multiple roles for the stress axis in socially regulated sex change

    Directory of Open Access Journals (Sweden)

    Tessa K Solomon-Lane

    2013-11-01

    Full Text Available Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis. Through actions of both corticotropin-releasing factor and glucocorticoids (GCs, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli, a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  12. Calcium regulation of androgen receptor expression in the human prostate cancer cell line LNCaP

    NARCIS (Netherlands)

    L.J. Blok (Leen); J.E. Perry; J.K. Lindzey; D.J. Tindall; Y. Gong (Yuewen)

    1995-01-01

    textabstractElevation of intracellular calcium levels in the presence of normal androgen levels has been implicated in apoptotic prostate cell death. Since the androgen receptor (AR) plays a critical role in the regulation of growth and differentiation of the prostate, it was of

  13. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Directory of Open Access Journals (Sweden)

    Naitao Wang

    2016-05-01

    Full Text Available Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3 was upregulated in a large subset of benign prostatic hyperplasia (BPH tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH.

  14. The Akt-mTOR axis is a pivotal regulator of eccentric hypertrophy during volume overload

    OpenAIRE

    Ikeda, Masataka; Ide, Tomomi; Fujino, Takeo; Matsuo, Yuka; Arai, Shinobu; Saku, Keita; Kakino, Takamori; Oga, Yasuhiro; Nishizaki, Akiko; Sunagawa, Kenji

    2015-01-01

    The heart has two major modalities of hypertrophy in response to hemodynamic loads: concentric and eccentric hypertrophy caused by pressure and volume overload (VO), respectively. However, the molecular mechanism of eccentric hypertrophy remains poorly understood. Here we demonstrate that the Akt-mammalian target of rapamycin (mTOR) axis is a pivotal regulator of eccentric hypertrophy during VO. While mTOR in the heart was activated in a left ventricular end-diastolic pressure (LVEDP)-depende...

  15. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  16. Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy.

    Science.gov (United States)

    Cackowski, Frank C; Eber, Matthew R; Rhee, James; Decker, Ann M; Yumoto, Kenji; Berry, Janice E; Lee, Eunsohl; Shiozawa, Yusuke; Jung, Younghun; Aguirre-Ghiso, Julio A; Taichman, Russell S

    2017-04-01

    Many prostate cancer (PCa) recurrences are thought to be due to reactivation of disseminated tumor cells (DTCs). We previously found a role of the TAM family of receptor tyrosine kinases TYRO3, AXL, and MERTK in PCa dormancy regulation. However, the mechanism and contributions of the individual TAM receptors is largely unknown. Knockdown of MERTK, but not AXL or TYRO3 by shRNA in PCa cells induced a decreased ratio of P-Erk1/2 to P-p38, increased expression of p27, NR2F1, SOX2, and NANOG, induced higher levels of histone H3K9me3 and H3K27me3, and induced a G1/G0 arrest, all of which are associated with dormancy. Similar effects were also observed with siRNA. Most importantly, knockdown of MERTK in PCa cells increased metastasis free survival in an intra-cardiac injection mouse xenograft model. MERTK knockdown also failed to inhibit PCa growth in vitro and subcutaneous growth in vivo, which suggests that MERTK has specificity for dormancy regulation or requires a signal from the PCa microenvironment. The effects of MERTK on the cell cycle and histone methylation were reversed by p38 inhibitor SB203580, which indicates the importance of MAP kinases for MERTK dormancy regulation. Overall, this study shows that MERTK stimulates PCa dormancy escape through a MAP kinase dependent mechanism, also involving p27, pluripotency transcription factors, and histone methylation. J. Cell. Biochem. 118: 891-902, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions

    Science.gov (United States)

    Uchoa, Ernane Torres; Aguilera, Greti; Herman, James P.; Fiedler, Jenny L.; Deak, Terrence; Cordeiro de Sousa, Maria Bernardete

    2014-01-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to rhythmic and episodic release of adrenal glucocorticoids is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, glucocorticoids regulate behavior, metabolic, cardiovascular, immune, and neuroendocrine activities. In contrast to chronic elevated levels, circadian and acute stress-induced increases in glucocorticoids are necessary for hippocampal neuronal survival and memory acquisition and consolidation, through inhibiting apoptosis, facilitating glutamate transmission and inducing immediate early genes and spine formation. In addition to its metabolic actions leading to increasing energy availability, glucocorticoids have profound effects on feeding behavior, mainly through modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that in addition to the recognized immune suppressive actions of glucocorticoids by counteracting adrenergic proinflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative feedback by glucocorticoids involves multiple mechanisms leading to limiting HPA axis activation and preventing deleterious effects of excessive glucocorticoid production. Adequate glucocorticoid secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin releasing hormone (CRH) and vasopressin secretion, the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving non-genomic actions of glucocorticoids, mediate immediate inhibition of hypothalamic CRH and ACTH secretion, while intermediate and delayed mechanisms mediated by genomic actions involve modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily

  18. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation.

    Science.gov (United States)

    Cuykendall, Tawny N; Houston, Douglas W

    2009-09-01

    Specification of the dorsoventral axis in Xenopus depends on rearrangements of the egg vegetal cortex following fertilization, concomitant with activation of Wnt/beta-catenin signaling. How these processes are tied together is not clear, but RNAs localized to the vegetal cortex during oogenesis are known to be essential. Despite their importance, few vegetally localized RNAs have been examined in detail. In this study, we describe the identification of a novel localized mRNA, trim36, and characterize its function through maternal loss-of-function experiments. We find that trim36 is expressed in the germ plasm and encodes a ubiquitin ligase of the Tripartite motif-containing (Trim) family. Depletion of maternal trim36 using antisense oligonucleotides results in ventralized embryos and reduced organizer gene expression. We show that injection of wnt11 mRNA rescues this effect, suggesting that Trim36 functions upstream of Wnt/beta-catenin activation. We further find that vegetal microtubule polymerization and cortical rotation are disrupted in trim36-depleted embryos, in a manner dependent on Trim36 ubiquitin ligase activity. Additionally, these embryos can be rescued by tipping the eggs 90 degrees relative to the animal-vegetal axis. Taken together, our results suggest a role for Trim36 in controlling the stability of proteins regulating microtubule polymerization during cortical rotation, and subsequently axis formation.

  19. Heterogeneity of d-glucuronyl C5-epimerase expression and epigenetic regulation in prostate cancer

    International Nuclear Information System (INIS)

    Prudnikova, Tatiana Y; Soulitzis, Nikolaos; Kutsenko, Olesya S; Mostovich, Lyudmila A; Haraldson, Klas; Ernberg, Ingemar; Kashuba, Vladimir I; Spandidos, Demetrios A; Zabarovsky, Eugene R; Grigorieva, Elvira V

    2013-01-01

    Heparansulfate proteoglycans (HSPG) play an important role in cell–cell and cell–matrix interactions and signaling, and one of the key enzymes in heparansulfate biosynthesis is d-glucuronyl C5-epimerase (GLCE). A tumor suppressor function has been demonstrated for GLCE in breast and lung carcinogenesis; however, no data are available as to the expression and regulation of the gene in prostate cancer. In this study, decreased GLCE expression was observed in 10% of benign prostate hyperplasia (BPH) tissues and 53% of prostate tumors, and increased GLCE mRNA levels were detected in 49% of BPH tissues and 21% of tumors. Statistical analysis showed a positive correlation between increased GLCE expression and Gleason score, TNM staging, and prostate-specific antigen (PSA) level in the prostate tumors (Pearson correlation coefficients GLCE/Gleason = 0.56, P < 0.05; GLCE/TNM = 0.62, P < 0.05; and GLCE/PSA = 0.88, P < 0.01), suggesting GLCE as a candidate molecular marker for advanced prostate cancer. Immunohistochemical analysis revealed an intratumoral heterogeneity of GLCE protein levels both in BPH and prostate cancer cells, resulting in a mixed population of GLCE-expressing and nonexpressing epithelial cells in vivo. A model experiment on normal (PNT2) and prostate cancer (LNCaP, PC3, DU145) cell lines in vitro showed a 1.5- to 2.5-fold difference in GLCE expression levels between the cancer cell lines and an overall decrease in GLCE expression in cancer cells. Methyl-specific polymerase chain reaction (PCR), bisulfite sequencing, and deoxy-azacytidin (aza-dC) treatment identified differential GLCE promoter methylation (LNCaP 70–72%, PC3 32–35%, DU145, and PNT2 no methylation), which seems to contribute to heterogeneous GLCE expression in prostate tumors. The obtained results reveal the complex deregulation of GLCE expression in prostatic diseases compared with normal prostate tissue and suggest that GLCE may be used as a potential model to study the functional

  20. Androgen Depletion Induces Senescence in Prostate Cancer Cells through Down-regulation of Skp2

    Directory of Open Access Journals (Sweden)

    Zuzana Pernicová

    2011-06-01

    Full Text Available Although the induction of senescence in cancer cells is a potent mechanism of tumor suppression, senescent cells remain metabolically active and may secrete a broad spectrum of factors that promote tumorigenicity in neighboring malignant cells. Here we show that androgen deprivation therapy (ADT, a widely used treatment for advanced prostate cancer, induces a senescence-associated secretory phenotype in prostate cancer epithelial cells, indicated by increases in senescence-associated β-galactosidase activity, heterochromatin protein 1β foci, and expression of cathepsin B and insulin-like growth factor binding protein 3. Interestingly, ADT also induced high levels of vimentin expression in prostate cancer cell lines in vitro and in human prostate tumors in vivo. The induction of the senescence-associated secretory phenotype by androgen depletion was mediated, at least in part, by down-regulation of S-phase kinase-associated protein 2, whereas the neuroendocrine differentiation of prostate cancer cells was under separate control. These data demonstrate a previously unrecognized link between inhibition of androgen receptor signaling, down-regulation of S-phase kinase-associated protein 2, and the appearance of secretory, tumor-promoting senescent cells in prostate tumors. We propose that ADT may contribute to the development of androgen-independent prostate cancer through modulation of the tissue microenvironment by senescent cells.

  1. Regulation of Androgen Responses in Prostate Cancer by BAG-1

    National Research Council Canada - National Science Library

    Reed, John

    2001-01-01

    .... However, nearly all tumors eventually relapse as hormone-refractory disease. A need therefore exists for better understanding of the mechanisms that allow prostate cancer cells to grow in an androgen - independent manner...

  2. Regulation of Androgen Responses in Prostate Cancer by BAG-1

    National Research Council Canada - National Science Library

    Reed, John

    1999-01-01

    .... However, nearly all tumors eventually relapse as hormone- refractory disease. A need therefore exists for better understanding of the mechanisms that allow prostate cancer cells to grow in an androgen - independent manner...

  3. Perinatal hypothalamic-pituitary-adrenal axis regulation among women with eating disorders and their infants.

    Science.gov (United States)

    Easter, A; Taborelli, E; Bye, A; Zunszain, P A; Pariante, C M; Treasure, J; Schmidt, U; Micali, N

    2017-02-01

    Psychiatric illness is associated with heightened hypothalamic-pituitary-adrenal (HPA) axis activity during pregnancy which may have long term effects on infant stress regulation. HPA axis regulation has not previously been investigated in women with eating disorders (ED) or their infants during the perinatal period. Women were recruited to a prospective longitudinal study in three groups: 1) current or active ED (C-ED=31), 2) past ED (P-ED=29) and healthy control (HC=57). Maternal psychopathology, diurnal cortisol levels, corticotropin-releasing hormone (CRH) and CRH binding protein (CRH-BP) were measured during the third trimester of pregnancy. At eight weeks postpartum infant cortisol was obtained before and after routine immunisations to determine infant hormonal response to a stressful situation. Women with current ED had a significantly lower cortisol decline throughout the day compared to HC, in both adjusted and unadjusted analyses. Lower cortisol decline among women with a current ED were associated with higher levels of psychopathology during pregnancy. Women's cortisol awakening response, CRH and CRH-BP levels did not differ across the three groups. Infants' stress response was also significantly higher among those in the C-ED group, although this effect was attenuated after controlling for confounders. During pregnancy women with ED have lower cortisol declines, suggestive of blunted diurnal cortisol rhythms. Postnatally, their infants also have a heightened response to stress. This is the first study to identify HPA axis dysfunction in pregnancy in women with ED, and to show an intergenerational effect. Since dysfunctions in HPA activity during childhood may represent a risk factor for psychological and physical health problems later in life, further investigation of the potential long-term implications of these findings is crucial. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.

    Science.gov (United States)

    McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin

    2017-07-07

    The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Akt-mTOR axis is a pivotal regulator of eccentric hypertrophy during volume overload.

    Science.gov (United States)

    Ikeda, Masataka; Ide, Tomomi; Fujino, Takeo; Matsuo, Yuka; Arai, Shinobu; Saku, Keita; Kakino, Takamori; Oga, Yasuhiro; Nishizaki, Akiko; Sunagawa, Kenji

    2015-10-30

    The heart has two major modalities of hypertrophy in response to hemodynamic loads: concentric and eccentric hypertrophy caused by pressure and volume overload (VO), respectively. However, the molecular mechanism of eccentric hypertrophy remains poorly understood. Here we demonstrate that the Akt-mammalian target of rapamycin (mTOR) axis is a pivotal regulator of eccentric hypertrophy during VO. While mTOR in the heart was activated in a left ventricular end-diastolic pressure (LVEDP)-dependent manner, mTOR inhibition suppressed eccentric hypertrophy and induced cardiac atrophy even under VO. Notably, Akt was ubiquitinated and phosphorylated in response to VO, and blocking the recruitment of Akt to the membrane completely abolished mTOR activation. Various growth factors were upregulated during VO, suggesting that these might be involved in Akt-mTOR activation. Furthermore, the rate of eccentric hypertrophy progression was proportional to mTOR activity, which allowed accurate estimation of eccentric hypertrophy by time-integration of mTOR activity. These results suggested that the Akt-mTOR axis plays a pivotal role in eccentric hypertrophy, and mTOR activity quantitatively determines the rate of eccentric hypertrophy progression. As eccentric hypertrophy is an inherent system of the heart for regulating cardiac output and LVEDP, our findings provide a new mechanistic insight into the adaptive mechanism of the heart.

  6. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    Science.gov (United States)

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.

  7. Loss of PDEF, a prostate-derived Ets factor is associated with aggressive phenotype of prostate cancer: Regulation of MMP 9 by PDEF

    Directory of Open Access Journals (Sweden)

    Meacham Randall B

    2010-06-01

    and increased MMP9 expression during the transition to aggressive prostate cancer. Conclusions These studies demonstrate for the first time negative regulation of MMP9 expression by PDEF, and that PDEF expression was lost in aggressive prostate cancer and was inversely associated with MMP9 expression in clinical samples of prostate cancer. Based on these exciting results, we propose that loss of PDEF along with increased MMP9 expression should serve as novel markers for early detection of aggressive prostate cancer.

  8. MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer

    Science.gov (United States)

    Wang, Leiming; Xu, Mafei; Qin, Jun; Lin, Shih-Chieh; Lee, Hui-Ju; Tsai, Sophia Y.; Tsai, Ming-Jer

    2016-01-01

    Mitochondrial pyruvate carrier 1 (MPC1) and MPC 2 form a transporter complex in cells to control pyruvate transportation into mitochondria. Reduced expression of MPC1 disrupts the transporter function, induces metabolic shift to increase glycolysis, and thus plays important roles in several diseases, including cancer. However, the role of MPC1 in prostate cancer and the underlying mechanism causing the down-regulation of MPC1 in tumor cells remain to be defined. Here, we show that MPC1 serves as a critical regulator of glycolysis in prostate cancer cells, which in turn controls cancer cell growth, invasion, and the tumorigenic capability. More importantly, we identified that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), a steroid receptor superfamily member, transcriptionally regulates the expression of MPC1. We further demonstrate that COUP-TFII, which is upregulated in the prostate cancer patient, regulates MPC1 and glycolysis to promote tumor growth and metastasis. Our findings reveal that COUP-TFII represses MPC1 expression in prostate cancer cells to facilitate a metabolism switch to increase glycolysis and promote cancer progression. This observation raises an intriguing possibility of targeting COUP-TFII to modulate cancer cell metabolism for prostate cancer intervention. PMID:26895100

  9. The Rab27a-binding protein, JFC1, regulates androgen-dependent secretion of prostate-specific antigen and prostatic-specific acid phosphatase1

    OpenAIRE

    Johnson, Jennifer L.; Ellis, Beverly A.; Noack, Deborah; Seabra, Miguel C.; Catz, Sergio D.

    2005-01-01

    Two of the major proteins secreted by the prostate epithelium secretory cells are PSA (prostate-specific antigen) and PSAP (prostatic-specific acid phosphatase). The molecules involved in the secretory machinery of PSA and PSAP, and the regulation of this machinery, remain unknown. In the present paper, we provide evidence that JFC1 [synaptotagmin-like protein (slp1)], a Rab27a- and PtdIns(3,4,5)P3-binding protein, regulates the androgen-dependent secretion of PSAP and PSA in human LNCaP pros...

  10. The LXR–Idol axis differentially regulates plasma LDL levels in primates and mice

    Science.gov (United States)

    Hong, Cynthia; Marshall, Stephanie M.; McDaniel, Allison L.; Graham, Mark; Layne, Joseph D.; Cai, Lei; Scotti, Elena; Boyadjian, Rima; Kim, Jason; Chamberlain, Brian T.; Tangirala, Rajendra K.; Jung, Michael E.; Fong, Loren; Lee, Richard; Young, Stephen G.; Temel, Ryan E.; Tontonoz, Peter

    2014-01-01

    Summary The LXR-regulated E3 ubiquitin ligase IDOL controls LDLR receptor stability independent of SREBP and PCSK9, but its relevance to plasma lipid levels is unknown. Here we demonstrate that the effects of the LXR–IDOL axis are both tissue- and species-specific. In mice, LXR agonist induces Idol transcript levels in peripheral tissues but not in liver, and does not change plasma LDL levels. Accordingly, Idol-deficient mice exhibit elevated LDLR protein levels in peripheral tissues but not in the liver. By contrast, LXR activation in cynomolgus monkeys induces hepatic IDOL expression, reduces LDLR protein levels, and raises plasma LDL levels. Knockdown of IDOL in monkeys with an antisense oligonucleotide blunts the effect of LXR agonist on LDL levels. These results implicate IDOL as a modulator of plasma lipid levels in primates and support further investigation into IDOL inhibition as a potential strategy for LDL lowering in humans. PMID:25440061

  11. The LXR-Idol axis differentially regulates plasma LDL levels in primates and mice.

    Science.gov (United States)

    Hong, Cynthia; Marshall, Stephanie M; McDaniel, Allison L; Graham, Mark; Layne, Joseph D; Cai, Lei; Scotti, Elena; Boyadjian, Rima; Kim, Jason; Chamberlain, Brian T; Tangirala, Rajendra K; Jung, Michael E; Fong, Loren; Lee, Richard; Young, Stephen G; Temel, Ryan E; Tontonoz, Peter

    2014-11-04

    The LXR-regulated E3 ubiquitin ligase IDOL controls LDLR receptor stability independent of SREBP and PCSK9, but its relevance to plasma lipid levels is unknown. Here we demonstrate that the effects of the LXR-IDOL axis are both tissue and species specific. In mice, LXR agonist induces Idol transcript levels in peripheral tissues but not in liver, and does not change plasma LDL levels. Accordingly, Idol-deficient mice exhibit elevated LDLR protein levels in peripheral tissues, but not in the liver. By contrast, LXR activation in cynomolgus monkeys induces hepatic IDOL expression, reduces LDLR protein levels, and raises plasma LDL levels. Knockdown of IDOL in monkeys with an antisense oligonucleotide blunts the effect of LXR agonist on LDL levels. These results implicate IDOL as a modulator of plasma lipid levels in primates and support further investigation into IDOL inhibition as a potential strategy for LDL lowering in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Androgen receptor differentially regulates the proliferation of prostatic epithelial cells in vitro and in vivo

    Science.gov (United States)

    Grabowska, Magdalena M.; Li, Jiahe; Connelly, Zachary M.; Zhang, Jianghong; Hayward, Simon W.; Cates, Justin M.; Han, Guichun; Yu, Xiuping

    2016-01-01

    Androgens regulate the proliferation and differentiation of prostatic epithelial cells, including prostate cancer (PCa) cells in a context-dependent manner. Androgens and androgen receptor (AR) do not invariably promote cell proliferation; in the normal adult, endogenous stromal and epithelial AR activation maintains differentiation and inhibits organ growth. In the current study, we report that activation of AR differentially regulates the proliferation of human prostate epithelial progenitor cells, NHPrE1, in vitro and in vivo. Inducing AR signaling in NHPrE1 cells suppressed cell proliferation in vitro, concomitant with a reduction in MYC expression. However, ectopic expression of AR in vivo stimulated cell proliferation and induced development of invasive PCa in tissue recombinants consisting of NHPrE1/AR cells and rat urogenital mesenchymal (UGM) cells, engrafted under renal capsule of adult male athymic mice. Expression of MYC increased in the NHPrE1/AR recombinant tissues, in contrast to the reduction seen in vitro. The inhibitory effect of AR signaling on cell proliferation in vitro were reduced by co-culturing NHPrE1/AR epithelial cells with prostatic stromal cells. In conclusion, these studies revealed that AR signaling differentially regulates proliferation of human prostatic epithelia cells in vitro and in vivo through mechanisms involving stromal/epithelial interactions. PMID:27611945

  13. LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis.

    Science.gov (United States)

    Yu, Eun-Jeong; Hooker, Erika; Johnson, Daniel T; Kwak, Mi Kyung; Zou, Kang; Luong, Richard; He, Yongfeng; Sun, Zijie

    2017-01-01

    The leucine zipper tumor suppressor 2 (LZTS2) was identified as a tumor susceptibility gene within the 10q24.3 chromosomal region, and is approximately 15Mb from the PTEN locus. This region containing the both loci is frequently deleted in a variety of human malignancies, including prostate cancer. LZTS2 is a ß-catenin-binding protein and a negative regulator of Wnt signaling. Overexpression of PTEN in prostate cancer cell lines reduces ß-catenin-mediated transcriptional activity. In this study, we examined the collaborative effect of PTEN and LZTS2 using multiple in vitro and in vivo approaches. Co-expression of PTEN and LZTS2 in prostate cancer cells shows stronger repressive effect on ß-catenin mediated transcription. Using a newly generated mouse model, we further assessed the effect of simultaneous deletion of Pten and Lzts2 in the murine prostate. We observed that mice with both Lzts2 and Pten deletion have an earlier onset of prostate carcinomas as well as an accelerated tumor progression compared to mice with Pten or Lzts2 deletion alone. Immunohistochemical analyses show that atypical and tumor cells from compound mice with both Pten and Lzts2 deletion are mainly composed of prostate luminal epithelial cells and possess higher levels of cytoplasmic and nuclear β-catenin. These cells also exhibit a higher proliferative capacity than cells isolated from single deletion mice. These data demonstrate the significance of simultaneous Pten and Lzts2 deletion in oncogenic transformation in prostate cells and implicates a new mechanism for the dysregulation of Wnt/β-catenin signaling in prostate tumorigenesis.

  14. Influence of Simultaneous Targeting of the Bone Morphogenetic Protein Pathway and RANK-RANKL Axis in Osteolytic Prostate Cancer Lesion in Bone

    Science.gov (United States)

    Virk, Mandeep S.; Petrigliano, Frank A.; Liu, Nancy Q.; Chatziioannou, Arion F.; Stout, David; Kang, Christine O.; Dougall, William C.; Lieberman, Jay R.

    2009-01-01

    Metastasis to bone is the leading cause of morbidity and mortality in advanced prostate cancer patients. Considering the complex reciprocal interactions between the tumor cells and the bone microenvironment, there is increasing interest in developing combination therapies targeting both the tumor growth and the bone microenvironment. In this study, we investigated the effect of simultaneous blockade of BMP pathway and RANK-RANKL axis in an osteolytic prostate cancer lesion in bone. We used a retroviral vector encoding noggin (Retronoggin) to antagonize the effect of BMPs and RANK: Fc, which is a recombinant RANKL antagonist was used to inhibit RANK-RANKL axis. The tumor growth and bone loss were evaluated using plain radiographs, hind limb tumor measurements, micro PET-CT (18F- fluorodeoxyglucose [FDG] and 18F-fluoride tracer), and histology. Tibias implanted with PC-3 cells developed pure osteolytic lesions at 2 weeks with progressive increase in cortical bone destruction at successive time points. Tibias implanted with PC-3 cells over expressing noggin (Retronoggin) resulted in reduced tumor size and decreased bone loss compared to the implanted tibias in untreated control animals. RANK: Fc administration inhibited the formation of osteoclasts, delayed the development of osteolytic lesions, decreased bone loss and reduced tumor size in tibias implanted with PC-3 cells. The combination therapy with RANK: Fc and noggin over expression effectively delayed the radiographic development of osteolytic lesions, and decreased the bone loss and tumor burden compared to implanted tibias treated with noggin over expression alone. Furthermore, the animals treated with the combination strategy exhibited decreased bone loss (micro CT) and lower tumor burden (FDG micro PET) compared to animals treated with RANK: Fc alone. Combined blockade of RANK-RANKL axis and BMP pathway resulted in reduced tumor burden and decreased bone loss compared to inhibition of either individual

  15. Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Neal Corey L

    2012-08-01

    Full Text Available Abstract Background Maspin, a putative tumor suppressor that is down-regulated in breast and prostate cancer, has been associated with decreased cell motility. Snail transcription factor is a zinc finger protein that is increased in breast cancer and is associated with increased tumor motility and invasion by induction of epithelial-mesenchymal transition (EMT. We investigated the molecular mechanisms by which Snail increases tumor motility and invasion utilizing prostate cancer cells. Methods Expression levels were analyzed by RT-PCR and western blot analyses. Cell motility and invasion assays were performed, while Snail regulation and binding to maspin promoter was analyzed by luciferase reporter and chromatin immunoprecipitation (ChIP assays. Results Snail protein expression was higher in different prostate cancer cells lines as compared to normal prostate epithelial cells, which correlated inversely with maspin expression. Snail overexpression in 22Rv1 prostate cancer cells inhibited maspin expression and led to increased migration and invasion. Knockdown of Snail in DU145 and C4-2 cancer cells resulted in up-regulation of maspin expression, concomitant with decreased migration. Transfection of Snail into 22Rv1 or LNCaP cells inhibited maspin promoter activity, while stable knockdown of Snail in C4-2 cells increased promoter activity. ChIP analysis showed that Snail is recruited to the maspin promoter in 22Rv1 cells. Conclusions Overall, this is the first report showing that Snail can negatively regulate maspin expression by directly repressing maspin promoter activity, leading to increased cell migration and invasion. Therefore, therapeutic targeting of Snail may be useful to re-induce expression of maspin tumor suppressor and prevent prostate cancer tumor progression.

  16. The transcription factor Pitx2 positions the embryonic axis and regulates twinning

    Science.gov (United States)

    Torlopp, Angela; Khan, Mohsin A F; Oliveira, Nidia M M; Lekk, Ingrid; Soto-Jiménez, Luz Mayela; Sosinsky, Alona; Stern, Claudio D

    2014-01-01

    Embryonic polarity of invertebrates, amphibians and fish is specified largely by maternal determinants, which fixes cell fates early in development. In contrast, amniote embryos remain plastic and can form multiple individuals until gastrulation. How is their polarity determined? In the chick embryo, the earliest known factor is cVg1 (homologous to mammalian growth differentiation factor 1, GDF1), a transforming growth factor beta (TGFβ) signal expressed posteriorly before gastrulation. A molecular screen to find upstream regulators of cVg1 in normal embryos and in embryos manipulated to form twins now uncovers the transcription factor Pitx2 as a candidate. We show that Pitx2 is essential for axis formation, and that it acts as a direct regulator of cVg1 expression by binding to enhancers within neighbouring genes. Pitx2, Vg1/GDF1 and Nodal are also key actors in left–right asymmetry, suggesting that the same ancient polarity determination mechanism has been co-opted to different functions during evolution. DOI: http://dx.doi.org/10.7554/eLife.03743.001 PMID:25496870

  17. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer

    Science.gov (United States)

    Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.

    2010-01-01

    Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525

  18. Regulation of Prostate Cancer Bone Metastasis by DKK1

    Science.gov (United States)

    2012-09-01

    blocks the formation of osteoblastic bone lesions in animal models of bone metastasis. We have now shown that human prostate cancer cell lines...that produce osteolytic, but not osteoblastic, bone lesions in animal models of bone metastasis express significant amounts of DKK1 and this expression...cancer bone metastasis typically results in massive osteolysis from the secretion of osteoclast-activating factors, such as parathyroid hormone-related

  19. Epithelial Na, K-ATPase expression is down-regulated in canine prostate cancer; a possible consequence of metabolic transformation in the process of prostate malignancy

    Directory of Open Access Journals (Sweden)

    Martín-Vasallo Pablo

    2003-06-01

    Full Text Available Abstract Background An important physiological function of the normal prostate gland is the synthesis and secretion of a citrate rich prostatic fluid. In prostate cancer, citrate production levels are reduced as a result of altered cellular metabolism and bioenergetics. Na, K-ATPase is essential for citrate production since the inward Na+ gradients it generates are utilized for the Na+ dependent uptake of aspartate, a major substrate for citrate synthesis. The objective of this study was to compare the expression of previously identified Na, K-ATPase isoforms in normal canine prostate, benign prostatic hyperplasia (BPH and prostatic adenocarcinoma (PCa using immunohistochemistry in order to determine whether reduced citrate levels in PCa are also accompanied by changes in Na, K-ATPase expression. Results Expression of Na, K-ATPase α1 and β1 isoforms was observed in the lateral and basolateral plasma membrane domains of prostatic epithelial cells in normal and BPH prostates. Canine kidney was used as positive control for expression of Na, K-ATPase α1 and γ isoforms. The α1 isoform was detected in abundance in prostatic epithelial cells but there was no evidence of α2, α3 or γ subunit expression. In advanced PCa, Na, K-ATPase α1 isoform expression was significantly lower compared to normal and BPH glands. The abundant basolateral immunostaining observed in normal and BPH tissue was significantly attenuated in PCa. Conclusion The loss of epithelial structure and function and the transformation of normal epithelial cells to malignant cells in the canine prostate have important implications for cellular metabolism and are accompanied by a down regulation of Na, K-ATPase.

  20. Prostate-Specific Membrane Antigen Regulation of Prostate Tumor Growth, Angiogenesis,and Integrin Signal Transduction

    Science.gov (United States)

    2012-07-01

    Cruz sc-1506 1:300, rabbit anti-Cleaved Caspase 3 Cell Signal 9661 1:200). Slides were washed 3 times in TBS/0.1%Tween- 20 (Ki67, CA9) or PBS (CD31...8217. Prostate, 2009. 69(5): p. 471-9. 52. Rojas , C., et al., Kinetics and inhibition of glutamate carboxypeptidase II using a microplate assay. Anal Biochem...Guzman- Rojas L, Ozawa MG, Sun J, et al. (2007) Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci U S A 104: 4588–4593. 35. Stupack

  1. Histamine-HisCl1 Receptor Axis Regulates Wake-Promoting Signals in Drosophila melanogaster

    Science.gov (United States)

    Oh, Yangkyun; Jang, Donghoon; Sonn, Jun Young; Choe, Joonho

    2013-01-01

    Histamine and its two receptors, histamine-gated chloride channel subunit 1 (HisCl1) and ora transientless (Ort), are known to control photoreception and temperature sensing in Drosophila. However, histamine signaling in the context of neural circuitry for sleep-wake behaviors has not yet been examined in detail. Here, we obtained mutant flies with compromised or enhanced histamine signaling and tested their baseline sleep. Hypomorphic mutations in histidine decarboxylase (HDC), an enzyme catalyzing the conversion from histidine to histamine, caused an increase in sleep duration. Interestingly, hisCl1 mutants but not ort mutants showed long-sleep phenotypes similar to those in hdc mutants. Increased sleep duration in hisCl1 mutants was rescued by overexpressing hisCl1 in circadian pacemaker neurons expressing a neuropeptide pigment dispersing factor (PDF). Consistently, RNA interference (RNAi)-mediated depletion of hisCl1 in PDF neurons was sufficient to mimic hisCl1 mutant phenotypes, suggesting that PDF neurons are crucial for sleep regulation by the histamine-HisCl1 signaling. Finally, either hisCl1 mutation or genetic ablation of PDF neurons dampened wake-promoting effects of elevated histamine signaling via direct histamine administration. Taken together, these data clearly demonstrate that the histamine-HisCl1 receptor axis can activate and maintain the wake state in Drosophila and that wake-activating signals may travel via the PDF neurons. PMID:23844178

  2. The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer

    Directory of Open Access Journals (Sweden)

    Zhixiong Fang

    2017-02-01

    Full Text Available Objective(s: To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC. Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate production assay to explore the function of miR-383 in cell proliferation, invasion and glycolysis in HCC cell lines. Luciferase reporter assay was used to explore whether LDHA was a target gene of miR-383. Western blot and qRT-PCR were used to further confirm LDHA was targeted by miR-383. Then the above functional experiments were repeated to see whether the function of LDHA could be inhibited by miR-383. Results: The results of qRT-PCR showed that miR-383 was down-regulated in HCC tissues compared with their matched adjacent normal tissues. Functional experiments showed that overexpression of miR-383 significantly suppressed cell proliferation, invasion and glycolysis. Luciferase reporter assay showed LDHA was a target gene of miR-383 and expression of LDHA was inversely correlated with that of miR-383 in HCC. Besides, increased cell proliferation, invasion and glycolysis triggered by LDHA could be inhibited by overexpression of miR-383 in HCC cell lines. Conclusion: Our study proved that miR-383 is down-regulated in HCC and acts as a tumor suppressor through targeting LDHA. Targeting the miR-383-LDHA axis might be a promising strategy in HCC treatment.

  3. Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation

    Directory of Open Access Journals (Sweden)

    Nadezhda Dmitrievna Goncharova

    2013-03-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis plays a key role in adaptation to environmental stresses. Parvicellular neurons of the hypothalamic paraventricular nucleus secrete corticotrophin releasing hormone (CRH and arginine vasopressin (AVP into pituitary portal system; CRH and AVP stimulate ACTH release through specific G protein-coupled membrane receptors on pituitary corticotrophs, CRH1 for CRH and V1b for AVP; the adrenal gland cortex secretes glucocorticoids in response ACTH. The glucocorticoids activate specific receptors in brain and peripheral tissues thereby triggering the necessary metabolic, immune, neuromodulatory and behavioral changes to resist stress. While importance of CRH, as a key hypothalamic factor of HPA axis regulation in basal and stress conditions in most species, is generally recognized, role of AVP remains to be clarified. This review focuses on the role of AVP in the regulation of stress responsiveness of the HPA axis with emphasis on the effects of aging on vasopressinergic regulation of HPA axis stress responsiveness. Under most of the known stressors, AVP is necessary for acute ACTH secretion but in a context-specific manner. The current data on the AVP role in regulation of HPA responsiveness to chronic stress in adulthood are rather contradictory. The importance of the vasopressinergic regulation of the HPA stress responsiveness is greatest during fetal development, in neonatal period, and in the lactating adult. Aging associated with increased variability in several parameters of HPA function including basal state, responsiveness to stressors, and special testing. Reports on the possible role of the AVP/V1b receptor system in the increase of HPA axis hyperactivity with aging are contradictory and requires further research. Many contradictory results may be due to age and species differences in the HPA function of rodents and primates.

  4. DNA damage response and prostate cancer: defects, regulation and therapeutic implications

    Science.gov (United States)

    Karanika, Styliani; Karantanos, Theodoros; Li, Likun; Corn, Paul G.; Thompson, Timothy C.

    2014-01-01

    DNA damage response (DDR) includes the activation of numerous cellular activities that prevent duplication of DNA lesions and maintain genomic integrity, which is critical for the survival of normal and cancer cells. Specific genes involved in the DDR such as BRCA1/2 and P53 are mutated during prostate cancer progression, while various oncogenic signaling such as Akt and c-Myc are activated, enhancing the replication stress and increasing the genomic instability of cancer cells. These events may render prostate cancer cells particularly sensitive to inhibition of specific DDR pathways, such as PARP in homologous recombination (HR) DNA repair and Chk1 in cell cycle checkpoint and DNA repair, creating opportunities for synthetic lethality or synergistic cytotoxicity. Recent reports highlight the critical role of androgen receptor (AR) as a regulator of DDR genes, providing a rationale for combining DNA-damaging agents or targeted DDR inhibitors with hormonal manipulation or AR inhibition as treatment for aggressive disease. The aims of this review are to discuss specific DDR defects in prostate cancer that occur during disease progression, to summarize recent advances in understanding the regulation of DDR in prostate cancer, and to present potential therapeutic opportunities through combinational targeting of the intact components of DDR signaling pathways. PMID:25132269

  5. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    International Nuclear Information System (INIS)

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong; Kim, Euiyong; Kim, Byung Joo; Ha, Kotdaji; Cho, Nam-Hyuk; Kim, In-Gyu; Jeon, Ju-Hong; So, Insuk

    2014-01-01

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex

  6. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Euiyong [Department of Physiology, College of Medicine, Inje University, Busan 614-735 (Korea, Republic of); Kim, Byung Joo [Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870 (Korea, Republic of); Ha, Kotdaji [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Cho, Nam-Hyuk; Kim, In-Gyu [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Jeon, Ju-Hong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); So, Insuk, E-mail: insuk@snu.ac.kr [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  7. FSH and TSH in the Regulation of Bone Mass: The Pituitary/Immune/Bone Axis

    Directory of Open Access Journals (Sweden)

    Graziana Colaianni

    2013-01-01

    Full Text Available Recent evidences have highlighted that the pituitary hormones have profound effects on bone, so that the pituitary-bone axis is now becoming an important issue in the skeletal biology. Here, we discuss the topical evidence about the dysfunction of the pituitary-bone axis that leads to osteoporotic bone loss. We will explore the context of FSH and TSH hormones arguing their direct or indirect role in bone loss. In addition, we will focus on the knowledge that both FSH and TSH have influence on proinflammatory and proosteoclastogenic cytokine expression, such as TNFα and IL-1, underlining the correlation of pituitary-bone axis to the immune system.

  8. GLUT1 regulates cell glycolysis and proliferation in prostate cancer.

    Science.gov (United States)

    Xiao, Hengjun; Wang, Jun; Yan, Weixin; Cui, Yubin; Chen, Zheng; Gao, Xin; Wen, Xingqiao; Chen, Jun

    2018-02-01

    Glucose transporter 1 (GLUT1) plays a critical role in tumorigenesis and tumor progression in multiple cancer types. However, the specific function and clinical significance of GLUT1 in prostate cancer (PCa) are still unclear. Therefore, in this study, we investigated the role of GLUT1 in PCa. GLUT1 protein levels in prostate cancer tissue and tumor-adjacent normal tissues were measured and compared. Furthermore, real-time PCR and Western blot analysis were both used to detect GLUT1 expression levels in different PCa cell lines. Flow cytometry and cell-based assays, such as a glucose uptake and lactate secretion assay, CCK-8 assay, and transwell migration and wound healing assay, were used to monitor cancer cell cycle distribution, glycolysis, proliferation, and motility, respectively. Moreover, a mouse tumor xenograft model was used to investigate the role of GLUT1 in tumor progression in vivo. GLUT1 expression levels are higher in PCa tissues than in tumor-adjacent normal tissues. The results from real-time PCR and Western blot analysis revealed a similar increase in the GLUT1 expression levels in PCa cell lines. Moreover, knockdown of GLUT1 inhibits cell glycolysis and proliferation and leads to cell cycle arrest at G2/M phase in the 22RV1 cell line but not in the PC3 cell line. In vivo experiments further confirmed that GLUT1 knockdown inhibits the growth of tumors derived from the 22RV1 cell line. In addition, we also showed that GLUT1 knockdown has no effect on cell migration in vitro. GLUT1 may play an important role in PCa progression via mediating glycolysis and proliferation. Our study also indicated a potential crosstalk between GLUT1-mediated glycolysis and androgen sensitivity in PCa. © 2017 Wiley Periodicals, Inc.

  9. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tomomi; Shimada, Keiji [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Tatsumi, Yoshihiro [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Fujimoto, Kiyohide [Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Konishi, Noboru, E-mail: nkonishi@naramed-u.ac.jp [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan)

    2015-01-02

    Highlights: • Syndecan-1 is highly expressed in androgen independent prostate cancer cells, PC3. • Syndecan-1 regulates the expression of miR-126 and -149 in prostate cancer cells. • MiR-126 and 149 control cell growth via p21 induction and senescence mechanism. • MiR-126 and 149 promote cell proliferation by suppressing SOX2, NANOG, and Oct4. - Abstract: MicroRNAs (miRNAs) are short (19–24 nt), low molecular weight RNAs that play important roles in the regulation of target genes associated with cell proliferation, differentiation, and development, by binding to the 3′-untranslated region of the target mRNAs. In this study, we examined the expression of miRNA-126 (miR-126) and miR-149 in prostate cancer, and investigated the molecular mechanisms by which they affect syndecan-1 in prostate cancer. Functional analysis of miR-126 and miR-149 was conducted in the prostate cancer cell lines, PC3, Du145, and LNCaP. The expression levels of SOX2, NANOG, Oct4, miR-126 and miR-149 were evaluated by quantitative RT-PCR. After silencing syndecan-1, miR-126, and/or miR-149 in the PC3 cells, cell proliferation, senescence, and p21 induction were assessed using the MTS assay, senescence-associated β-galactosidase (SA-β-Gal) assay, and immunocytochemistry, respectively. Compared to the Du145 and LNCaP cells, PC3 cells exhibited higher expression of syndecan-1. When syndecan-1 was silenced, the PC3 cells showed reduced expression of miR-126 and miR-149 most effectively. Suppression of miR-126 and/or miR-149 significantly inhibited cell growth via p21 induction and subsequently, induced senescence. The mRNA expression levels of SOX2, NANOG, and Oct4 were significantly increased in response to the silencing of miR-126 and/or miR-149. Our results suggest that miR-126 and miR-149 are associated with the expression of syndecan-1 in prostate cancer cells. These miRNAs promote cell proliferation by suppressing SOX2, NANOG, and Oct4. The regulation of these factors by mi

  10. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Science.gov (United States)

    Altintas, Dogus Murat; Allioli, Nathalie; Decaussin, Myriam; de Bernard, Simon; Ruffion, Alain; Samarut, Jacques; Vlaeminck-Guillem, Virginie

    2013-01-01

    Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa) among androgen-regulated genes (ARG) and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely) give rise to cancer. ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens) using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1). By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91) and DLX1 (0.94). We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could be complementary to known genes overexpressed in PCa and included along

  11. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells.

    Science.gov (United States)

    Gwak, Jungsug; Shin, Jee Yoon; Lee, Kwanghyun; Hong, Soon Ki; Oh, Sangtaek; Goh, Sung-Ho; Kim, Won Sun; Ju, Bong Gun

    2016-07-26

    Metastatic prostate cancer is the leading cause of morbidity and mortality in men. In this study, we found that expression level of SFMBT2 is altered during prostate cancer progression and has been associated with the migration and invasion of prostate cancer cells. The expression level of SFMBT2 is high in poorly metastatic prostate cancer cells compared to highly metastatic prostate cancer cells. We also found that SFMBT2 knockdown elevates MMP-2, MMP-3, MMP-9, and MMP-26 expression, leading to increased cell migration and invasion in LNCaP and VCaP cells. SFMBT2 interacts with YY1, RNF2, N-CoR and HDAC1/3, as well as repressive histone marks such as H3K9me2, H4K20me2, and H2AK119Ub which are associated with transcriptional repression. In addition, SFMBT2 knockdown decreased KAI1 gene expression through up-regulation of N-CoR gene expression. Expression of SFMBT2 in prostate cancer was strongly associated with clinicopathological features. Patients having higher Gleason score (≥ 8) had substantially lower SFMBT2 expression than patients with lower Gleason score. Moreover, tail vein or intraprostatic injection of SFMBT2 knockdown LNCaP cells induced metastasis. Taken together, our findings suggest that regulation of SFMBT2 may provide a new therapeutic strategy to control prostate cancer metastasis as well as being a potential biomarker of metastatic prostate cancer.

  12. Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate Cancer

    Science.gov (United States)

    2011-04-01

    androgens through de novo steroidogenesis (41–43). Xeno - graft studies have shown that knocking down AR expres- sion by shRNA could delay the progression...AD_________________ Award Number: W81XWH-08-1-0291 TITLE: Telomerase as an Androgen Receptor...March 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Telomerase as an Androgen Receptor-Regulated Target in Selenium Chemoprevention of Prostate

  13. TRPM8 channel as a novel molecular target in androgen-regulated prostate cancer cells.

    Science.gov (United States)

    Asuthkar, Swapna; Velpula, Kiran Kumar; Elustondo, Pia A; Demirkhanyan, Lusine; Zakharian, Eleonora

    2015-07-10

    The cold and menthol receptor TRPM8 is highly expressed in prostate and prostate cancer (PC). Recently, we identified that TRPM8 is as an ionotropic testosterone receptor. The TRPM8 mRNA is expressed in early prostate tumors with high androgen levels, while anti-androgen therapy greatly reduces its expression. Here, from the chromatin-immunoprecipitation (ChIP) analysis, we found that an androgen response element (ARE) mediates androgen regulation of trpm8. Furthermore, using immunofluorescence, calcium-imaging and planar lipid bilayers, we identified that TRPM8 channel is functionally regulated by androgens in the prostate. Although TRPM8 mRNA is expressed at high levels, we found that the TRPM8 protein undergoes ubiquitination and degradation in PC cells. The mass-spectrometry analysis of TRPM8, immunoprecipitated from LNCaP cells identified ubiquitin-like modifier-activating enzyme 1 (UBA1). PYR-41, a potent inhibitor of initial enzyme in the ubiquitination cascade, UBA1, increased TRPM8 activity on the plasma membrane (PM) of LNCaP cells. Furthermore, PYR-41-mediated PMTRPM8 activity was accompanied by enhanced activation of p53 and Caspase-9. Interestingly, we found that the trpm8 promoter possesses putative binding sites for p53 and that the overexpression of p53 increased the TRPM8 mRNA levels. In addition to the genomic regulation of TRPM8 by AR and p53, our findings indicate that the testosterone-induced PMTRPM8 activity elicits Ca2+ uptake, subsequently causing apoptotic cell death. These findings support the strategy of rescuing PMTRPM8 expression as a new therapeutic application through the regulation of PC cell growth and proliferation.

  14. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Rasmussen, Izabela Zorawska; Sawada, Makoto

    2008-01-01

    proteins in the formyl-methionyl-leucyl-phenylalanine-induced activation of endogenous PAK1. In contrast, PAK1 mutants had no effect on superoxide generation downstream of FcgammaR signaling during phagocytosis of IgG-immune complexes. We further present evidence that the effect of PAK1 on the respiratory...... on NADPH oxidase activation. Collectively, our findings define a VAV1-Rac1-PAK1 signaling axis in mononuclear phagocytes regulating superoxide production in a stimulus-dependent manner....

  15. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells*

    Science.gov (United States)

    Fan, Lingling; Peng, Guihong; Hussain, Arif; Fazli, Ladan; Guns, Emma; Gleave, Martin; Qi, Jianfei

    2015-01-01

    Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells. PMID:26160177

  16. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration.

    Science.gov (United States)

    Lourenço, Cátia F; Ledo, Ana; Barbosa, Rui M; Laranjinha, João

    2017-07-01

    The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O 2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide ( • NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which • NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of • NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which • NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in

  17. Lysophosphatidic Acid Regulation and Roles in Human Prostate Cancer

    National Research Council Canada - National Science Library

    Spiegel, Sarah

    2004-01-01

    ..., stimulating motility and inducing tumor cell invasion, and regulating neovascularization. Progress in understanding LPA actions has accelerated with the discovery that it is a ligand of several G protein coupled cell surface receptors (GPCRs...

  18. A potential kidney-bone axis involved in the rapid minute-to-minute regulation of plasma Ca2+

    DEFF Research Database (Denmark)

    Nordholm, Anders; Mace, Maria L; Gravesen, Eva

    2015-01-01

    .41 ± 0.02 mM (p regulation of p-Ca(2+) independent of PTH, C-PTH and CT. CONCLUSIONS: P-Ca(2......-point' of p-Ca(2+) on bone surface, independently of PTH and calcitonin. Our results point toward existence of an as yet unknown factor/mechanism, which mediates the axis between kidney and bone, and which is involved in the very rapid regulation of p-Ca(2+).......BACKGROUND: Understanding the regulation of mineral homeostasis and function of the skeleton as buffer for Calcium and Phosphate has regained new interest with introduction of the syndrome "Chronic Kidney Disease-Mineral and Bone Disorder"(CKD-MBD). The very rapid minute-to-minute regulation...

  19. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer.

    Science.gov (United States)

    Schecher, Sabrina; Walter, Britta; Falkenstein, Michael; Macher-Goeppinger, Stephan; Stenzel, Philipp; Krümpelmann, Kristina; Hadaschik, Boris; Perner, Sven; Kristiansen, Glen; Duensing, Stefan; Roth, Wilfried; Tagscherer, Katrin E

    2017-10-15

    Cyclin K plays a critical role in transcriptional regulation as well as cell development. However, the role of Cyclin K in prostate cancer is unknown. Here, we describe the impact of Cyclin K on prostate cancer cells and examine the clinical relevance of Cyclin K as a biomarker for patients with prostate cancer. We show that Cyclin K depletion in prostate cancer cells induces apoptosis and inhibits proliferation accompanied by an accumulation of cells in the G2/M phase. Moreover, knockdown of Cyclin K causes mitotic catastrophe displayed by multinucleation and spindle multipolarity. Furthermore, we demonstrate a Cyclin K dependent regulation of the mitotic kinase Aurora B and provide evidence for an Aurora B dependent induction of mitotic catastrophe. In addition, we show that Cyclin K expression is associated with poor biochemical recurrence-free survival in patients with prostate cancer treated with an adjuvant therapy. In conclusion, targeting Cyclin K represents a novel, promising anti-cancer strategy to induce cell cycle arrest and apoptotic cell death through induction of mitotic catastrophe in prostate cancer cells. Moreover, our results indicate that Cyclin K is a putative predictive biomarker for clinical outcome and therapy response for patients with prostate cancer. © 2017 UICC.

  20. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival.

    Directory of Open Access Journals (Sweden)

    Audrey Dayon

    Full Text Available BACKGROUND: Sphingosine kinase-1 (SphK1 is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. METHODOLOGY/PRINCIPAL FINDINGS: Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway--by negatively impacting SphK1 activity--could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. CONCLUSIONS/SIGNIFICANCE: We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a

  1. Investigative clinical study on prostate cancer part IX and X: estradiol and the pituitary-testicular-prostate axis at the time of initial diagnosis and subsequent cluster selection of the patient population after radical prostatectomy.

    Science.gov (United States)

    Porcaro, Antonio B; Ghimenton, Claudio; Petrozziello, Aldo; Sava, Teodoro; Migliorini, Filippo; Romano, Mario; Caruso, Beatrice; Cocco, Claudio; Antoniolli, Stefano Zecchinini; Lacola, Vincenzo; Rubilotta, Emanuele; Monaco, Carmelo

    2012-10-01

    To evaluate estradiol (E(2)) physiopathology along the pituitary-testicular-prostate axis at the time of initial diagnosis of prostate cancer (PC) and subsequent cluster selection of the patient population. Records of the diagnosed (n=105) and operated (n=91) patients were retrospectively reviewed. Age, percentage of positive cores at-biopsy (P+), biopsy Gleason score (bGS), E(2), prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), total testosterone (TT), free-testosterone (FT), prostate-specific antigen (PSA), pathology Gleason score (pGS), estimated tumor volume in relation to percentage of prostate volume (V+), overall prostate weight (Wi), clinical stage (cT), biopsy Gleason pattern (bGP) and pathology stage (pT), were the investigated variables. None of the patients had previously undergone hormonal manipulations. E(2) correlation and prediction by multiple linear regression analysis (MLRA) was performed. At diagnosis, the log E(2)/log bGS ratio clustered the population into groups A (log E(2)/log bGS ≤ 2.25), B (2.25bGS ≤ 2.48) and C (2.48bGS ≤ 2.59). The operated population was clustered according to the log E(2)/log pGS ratio into groups A (log E(2)/log pGS ≤ 2.25), B (2.25bGS and pGS predicting E(2) was computed; differences between the clusters were assessed by analysis of variance (ANOVA) and by contingency tables. At diagnosis, E(2) was correlated to TT (r=0.32, p=0.0006) and FT (r=0.25, p=0.0009); moreover, E(2) was independently-predicted by TT (p=0.009) and bGS (p=0.04) on MLRA. The bGS significantly predicted E(2) in all groups. Groups A, B and C differed in mean values for E(2) (pbGS (p=0.003); moreover, the frequencies of the different bGPs were significantly different in the three groups (p=0.004). Interestingly, groups A, B, and C were associated with high-, intermediate- and low-bGS tumor grade, as well as with low-, intermediate- and high-serum levels of E(2), TT and FT, respectively. In the operated

  2. shot regulates the microtubule reorganization required for localization of axis-determining mRNAs during oogenesis.

    Science.gov (United States)

    Lee, Jiyeon; Lee, Sujung; Chen, Cheng; Shim, Hyeran; Kim-Ha, Jeongsil

    2016-02-01

    The Drosophila mid-oogenesis stages are notable as the time when most maternal mRNAs become localized at discrete regions of the oocyte. Microtubule rearrangement occurs during this period and is critical for the localization of axis-determining maternal mRNAs. We have identified shot as a key player in establishing the cytoskeletal arrangement required for the spatial localization of axis-determining maternal mRNAs. We also found that the spatial distribution of the Shot protein is regulated by its mRNA localization. Our results suggest that the RNA localization mechanism is used not only for restricted accumulation of patterning molecules but also for the microtubule organization that leads to the initial development of oocyte polarity. © 2016 Federation of European Biochemical Societies.

  3. Oligoadenylate synthetase 1 (OAS1 expression in human breast and prostate cancer cases, and its regulation by sex steroid hormones

    Directory of Open Access Journals (Sweden)

    Cláudio Jorge Maia

    2016-06-01

    Full Text Available Oligoadenylate synthetase 1 (OAS1 is an interferon-induced protein characterised by its capacity to catalyse the synthesis of 2ʹ-5ʹ-linked oligomers of adenosine from adenosine triphosphate (2-5A. The 2-5A binds to a latent Ribonuclease L (RNase L, which subsequently dimerises into its active form and may play an important role in the control of cell growth, differentiation and apoptosis. Previously, our research group identified OAS1 as a differentially-expressed gene in breast and prostate cancer cell lines when compared to normal cells. This study evaluates: i the expression of OAS1 in human breast and prostate cancer specimens; and ii the effect of sex steroid hormones in regulating the expression of OAS1 in breast (MCF-7 and prostate (LNCaP cancer cell lines. The obtained results showed that OAS1 expression was down-regulated in human infiltrative ductal carcinoma of breast, adenocarcinoma of prostate, and benign prostate hyperplasia, both at mRNA and protein level. In addition, OAS1 expression was negatively correlated with the progression of breast and prostate cancer. With regards to the regulation of OAS1 gene, it was demonstrated that 17β-estradiol (E2 down-regulates OAS1 gene in MCF-7 cell lines, an effect that seems to be dependent on the activation of oestrogen receptor (ER. On the other hand, 5α-dihydrotestosterone (DHT treatment showed no effect on the expression of OAS1 in LNCaP cell lines. The lower levels of OAS1 in breast and prostate cancer cases indicated that the OAS1/RNaseL apoptotic pathway may be compromised in breast and prostate tumours. Moreover, the present findings suggested that this effect may be enhanced by oestrogen in ER-positive breast cancers.

  4. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    Energy Technology Data Exchange (ETDEWEB)

    Vališ, Karel, E-mail: karel.valis@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Talacko, Pavel; Grobárová, Valéria [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Černý, Jan [Faculty of Science, Charles University, Prague (Czech Republic); Novák, Petr, E-mail: pnovak@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic)

    2016-12-10

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complex with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. - Highlights: • Shikonin inhibits C-MYC and GLUT1 expression in MST1 and YAP1 dependent manner. • YAP1-TEAD1 interaction activates C-MYC and GLUT1 expression. • MST1 in cooperation with YAP1 inhibits C-MYC and GLUT1 expression. • MST1-YAP1-TEAD1 axis regulates lactate production by leukemic cells. • MST1 and YAP1 proteins block proliferation of leukemic cells.

  5. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    International Nuclear Information System (INIS)

    Vališ, Karel; Talacko, Pavel; Grobárová, Valéria; Černý, Jan; Novák, Petr

    2016-01-01

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complex with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. - Highlights: • Shikonin inhibits C-MYC and GLUT1 expression in MST1 and YAP1 dependent manner. • YAP1-TEAD1 interaction activates C-MYC and GLUT1 expression. • MST1 in cooperation with YAP1 inhibits C-MYC and GLUT1 expression. • MST1-YAP1-TEAD1 axis regulates lactate production by leukemic cells. • MST1 and YAP1 proteins block proliferation of leukemic cells.

  6. Weight loss by calorie restriction versus bariatric surgery differentially regulates the HPA axis in male rats

    OpenAIRE

    Grayson, Bernadette E.; Hakala-Finch, Andrew P.; Kekulawala, Melani; Laub, Holly; Egan, Ann E.; Ressler, Ilana B.; Woods, Stephen C.; Herman, James P.; Seeley, Randy J.; Benoit, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    Behavioral modifications for the treatment of obesity, including caloric restriction, have notoriously low long-term success rates relative to bariatric weight-loss surgery. The reasons for the difference in sustained weight loss are not clear. One possibility is that caloric restriction alone activates the stress-responsive hypothalamo-pituitary-adrenocortical (HPA) axis, undermining the long-term maintenance of weight loss, and that this is abrogated after bariatric surgery. Accordingly, we...

  7. Vegetally localized Xenopus trim36 regulates cortical rotation and dorsal axis formation

    OpenAIRE

    Cuykendall, Tawny N.; Houston, Douglas W.

    2009-01-01

    Specification of the dorsoventral axis in Xenopus depends on rearrangements of the egg vegetal cortex following fertilization, concomitant with activation of Wnt/β-catenin signaling. How these processes are tied together is not clear, but RNAs localized to the vegetal cortex during oogenesis are known to be essential. Despite their importance, few vegetally localized RNAs have been examined in detail. In this study, we describe the identification of a novel localized m...

  8. Expression of apoptosis-regulating genes in the rat prostate following botulinum toxin type a injection

    Directory of Open Access Journals (Sweden)

    Gorgal Tiago

    2012-01-01

    Full Text Available Abstract Background Onabotulinumtoxin A (OnabotA injection has been investigated as a novel treatment for benign prostatic enlargement caused by benign prostatic hyperplasia. An OnabotA - induced volume reduction caused by sympathetic fibers impairment has been proposed as a potential mechanism of action. Our aim was to investigate the expression of apoptosis-regulating proteins in the rat prostate following OnabotA intraprostatic injection. Methods Adult Wistar rats were injected in the ventral lobes of the prostate with 10 U of OnabotA or saline. A set of OnabotA-injected animals was further treated with 0.5 mg/kg of phenylephrine (PHE subcutaneously daily. All animals were sacrificed after 1 week and had their prostates harvested. Immunohistochemical staining was performed for Bax, Bcl-xL and caspase-3 proteins and visualized by the avidin-biotin method. The optical density of the glandular cells was also determined, with measurement of differences between average optical densities for each group. Results Saline-treated animals showed intense epithelial staining for Bcl-xL and a faint labelling for both Bax and Caspase-3. OnabotA-treated rats showed a reduced epithelial staining of Bcl-xL and a consistently increased Bax and Caspase-3 staining when compared with saline-treated animals. PHE-treated animals showed a stronger Bcl-xL staining and reduced staining of both Bax and Caspase-3 when compared to the OnabotA group. Mean signal intensity measurements for each immunoreaction confirmed a significant decrease of the signal intensity for Bcl-xL and a significant increase of the signal intensity for Bax and Caspase 3 in OnabotA-injected animals when compared with the control group. In OnabotA+PHE treated animals mean signal intensity for Bcl-xL, Bax and Caspase 3 immunoreactions was identical to that of the control animals. Conclusions These results support the hypothesis that OnabotA activates apoptotic pathways in the rat prostate through a

  9. Anterior gradient protein-2 is a regulator of cellular adhesion in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Diptiman Chanda

    Full Text Available Anterior Gradient Protein (AGR-2 is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis.

  10. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis.

    Science.gov (United States)

    Stilling, R M; Dinan, T G; Cryan, J F

    2014-01-01

    To date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system. As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition has significantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept. Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism. There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour. However, the role of epigenetics in informing host-microbe interactions has received little attention to date. This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue. From this new perspective we put forward novel, yet testable, hypotheses. Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour. Secondly, we argue that the microbiota is an important mediator of gene-environment interactions. Finally, we reason that the microbiota itself may be viewed as an epigenetic entity. In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Gut-brain axis: Role of lipids in the regulation of inflammation, pain and CNS diseases.

    Science.gov (United States)

    Russo, Roberto; Cristiano, Claudia; Avagliano, Carmen; De Caro, Carmen; La Rana, Giovanna; Raso, Giuseppina Mattace; Canani, Roberto Berni; Meli, Rosaria; Calignano, Antonio

    2017-02-16

    The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitary-adrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer Disease etc. Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes. It is well established their effective role in inflammation, acute and chronic pain, obesity and central nervous system diseases. It has been shown a possible correlation between these lipids and gut microbiota through different mechanisms. Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel

  12. The Role of c-FLIP(L) in Regulating Apoptotic Pathways in Prostate Cancer

    Science.gov (United States)

    2008-12-01

    resistant prostate cancer cells in both androgen dependent and independent states by increasing AP-1 gene activity. % C el l V ia bi lit y 0 20 40 60 80... Y , et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95 -mediated apoptosis. EMBO J 2002;21: 3704–14. 45. Zaichuk TA, Shroff...enhancer-binding protein homologous protein. Cancer Res 2005;65:5662–7. 8. He Q, Huang Y , Sheikh MS. Proteasome inhibitor MG132 upregulates death receptor 5

  13. Angiogenic Capacity of Dental Pulp Stem Cell Regulated by SDF-1α-CXCR4 Axis

    Science.gov (United States)

    Nam, Hyun; Kim, Gee-Hye; Bae, Yoon-Kyung; Jeong, Da-Eun

    2017-01-01

    Previously, the perivascular characteristics of dental pulp stem cells (DPSCs) were reported, which suggested the potential application of DPSCs as perivascular cell source. In this study, we investigated whether DPSCs had angiogenic capacity by coinjection with human umbilical vein endothelial cells (HUVECs) in vivo; in addition, we determined the role of stromal cell-derived factor 1-α (SDF-1α) and C-X-C chemokine receptor type 4 (CXCR4) axis in the mutual interaction between DPSCs and HUVECs. Primarily isolated DPSCs showed mesenchymal stem cell- (MSC-) like characteristics. Moreover, DPSCs expressed perivascular markers such as NG2, α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor β (PDGFRβ), and CD146. In vivo angiogenic capacity of DPSCs was demonstrated by in vivo Matrigel plug assay. We could observe microvessel-like structures in the coinjection of DPSCs and HUVECs at 7 days postinjection. To block SDF-1α and CXCR4 axis between DPSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into Matrigel plug. No significant microvessel-like structures were observed at 7 days postinjection. In conclusion, DPSCs have perivascular characteristics that contribute to in vivo angiogenesis. The findings of this study have potential applications in neovascularization of engineered tissues and vascular diseases. PMID:28588623

  14. The Zfhx3-Mediated Axis Regulates Sleep and Interval Timing in Mice

    Directory of Open Access Journals (Sweden)

    Edoardo Balzani

    2016-07-01

    Full Text Available An AT motif-dependent axis, modulated by the transcription factor Zfhx3, influences the circadian clock in mice. In particular, gain of function of Zfhx3 significantly shortens circadian rhythms and alters the transcriptional activity of an important class of neuropeptides that controls intercellular signaling in the suprachiasmatic nucleus (SCN of the hypothalamus. The ZFHX3/AT axis revealed an important, largely cell-nonautonomous control of the circadian clock. Here, by studying the recently identified circadian mouse mutant Zfhx3Sci/+, we identify significant effects on sleep homeostasis, a phenomenon that is outside the canonical circadian clock system and that is modulated by the activity of those neuropeptides at a circuit level. We show that the Zfhx3Sci/+ mutation accelerates the circadian clock at both the hourly scale (i.e., advancing circadian rhythms and the seconds-to-minutes scale (i.e., anticipating behavioral responses in mice. The in vivo results are accompanied by a significant presence of sleep targets among protein-protein interactions of the Zfhx3Sci/+-dependent network.

  15. The Zfhx3-Mediated Axis Regulates Sleep and Interval Timing in Mice.

    Science.gov (United States)

    Balzani, Edoardo; Lassi, Glenda; Maggi, Silvia; Sethi, Siddharth; Parsons, Michael J; Simon, Michelle; Nolan, Patrick M; Tucci, Valter

    2016-07-19

    An AT motif-dependent axis, modulated by the transcription factor Zfhx3, influences the circadian clock in mice. In particular, gain of function of Zfhx3 significantly shortens circadian rhythms and alters the transcriptional activity of an important class of neuropeptides that controls intercellular signaling in the suprachiasmatic nucleus (SCN) of the hypothalamus. The ZFHX3/AT axis revealed an important, largely cell-nonautonomous control of the circadian clock. Here, by studying the recently identified circadian mouse mutant Zfhx3(Sci/+), we identify significant effects on sleep homeostasis, a phenomenon that is outside the canonical circadian clock system and that is modulated by the activity of those neuropeptides at a circuit level. We show that the Zfhx3(Sci/+) mutation accelerates the circadian clock at both the hourly scale (i.e., advancing circadian rhythms) and the seconds-to-minutes scale (i.e., anticipating behavioral responses) in mice. The in vivo results are accompanied by a significant presence of sleep targets among protein-protein interactions of the Zfhx3(Sci/+)-dependent network. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Angiogenic Capacity of Dental Pulp Stem Cell Regulated by SDF-1α-CXCR4 Axis

    Directory of Open Access Journals (Sweden)

    Hyun Nam

    2017-01-01

    Full Text Available Previously, the perivascular characteristics of dental pulp stem cells (DPSCs were reported, which suggested the potential application of DPSCs as perivascular cell source. In this study, we investigated whether DPSCs had angiogenic capacity by coinjection with human umbilical vein endothelial cells (HUVECs in vivo; in addition, we determined the role of stromal cell-derived factor 1-α (SDF-1α and C-X-C chemokine receptor type 4 (CXCR4 axis in the mutual interaction between DPSCs and HUVECs. Primarily isolated DPSCs showed mesenchymal stem cell- (MSC- like characteristics. Moreover, DPSCs expressed perivascular markers such as NG2, α-smooth muscle actin (α-SMA, platelet-derived growth factor receptor β (PDGFRβ, and CD146. In vivo angiogenic capacity of DPSCs was demonstrated by in vivo Matrigel plug assay. We could observe microvessel-like structures in the coinjection of DPSCs and HUVECs at 7 days postinjection. To block SDF-1α and CXCR4 axis between DPSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into Matrigel plug. No significant microvessel-like structures were observed at 7 days postinjection. In conclusion, DPSCs have perivascular characteristics that contribute to in vivo angiogenesis. The findings of this study have potential applications in neovascularization of engineered tissues and vascular diseases.

  17. Maternal co-ordinate gene regulation and axis polarity in the scuttle fly Megaselia abdita.

    Science.gov (United States)

    Wotton, Karl R; Jiménez-Guri, Eva; Jaeger, Johannes

    2015-03-01

    Axis specification and segment determination in dipteran insects are an excellent model system for comparative analyses of gene network evolution. Antero-posterior polarity of the embryo is established through systems of maternal morphogen gradients. In Drosophila melanogaster, the anterior system acts through opposing gradients of Bicoid (Bcd) and Caudal (Cad), while the posterior system involves Nanos (Nos) and Hunchback (Hb) protein. These systems act redundantly. Both Bcd and Hb need to be eliminated to cause a complete loss of polarity resulting in mirror-duplicated abdomens, so-called bicaudal phenotypes. In contrast, knock-down of bcd alone is sufficient to induce double abdomens in non-drosophilid cyclorrhaphan dipterans such as the hoverfly Episyrphus balteatus or the scuttle fly Megaselia abdita. We investigate conserved and divergent aspects of axis specification in the cyclorrhaphan lineage through a detailed study of the establishment and regulatory effect of maternal gradients in M. abdita. Our results show that the function of the anterior maternal system is highly conserved in this species, despite the loss of maternal cad expression. In contrast, hb does not activate gap genes in this species. The absence of this activatory role provides a precise genetic explanation for the loss of polarity upon bcd knock-down in M. abdita, and suggests a general scenario in which the posterior maternal system is increasingly replaced by the anterior one during the evolution of the cyclorrhaphan dipteran lineage.

  18. Regulation mechanisms of pituitary-thyroid axis in normal subjects and patients with Graves' disease

    International Nuclear Information System (INIS)

    Takagi, Shinko; Yamauchi, Kazuyuki; Mori, Yuichi

    1986-01-01

    The regulatory mechanism of the pituitary-thyroid axis in normal subjects and patients with Graves' disease was investigated using a highly sensitive TSH assay based on the immunoradiometric assay. All of the normal subjects had detectable TSH values within the range 0.35 to 6.0 μU/ml. No negative correlations between TSH and free thyroid hormones existed in normal subjects. Patients with thyroid carcinoma who seemed to have normal pituitary-thyroid function showed a rapid increase of TSH after total thyroidectomy. On the other hand, while untreated patients with Graves' disease all had undetectable TSH values, these patients took 1 to 3.5 months longer to normalize their TSH values than to normalize free thyroid hormones on antithyroid drug therapy. During the recovery phase by the treatment with decrease of antithyroid drug or supplement of T 4 from iatrogenic hypothyroid state after treatment for Graves' disease and thyroid carcinoma, normalization of TSH levels was delayed than that of free thyroid hormones. Patients with Graves' disease in remission showed an extremely positive correlation between basal and peak TSH levels in TRH test, and a negative correlation between basal TSH and FT 4 . In conclusion, an individual patient may have a different set point concerning the regulatory mechanism of the pituitary-thyroid axis, and the persistence of the hyperthyroid state would seem to have caused some reversible dysfunction of the pituitary gland. (author)

  19. Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer.

    Science.gov (United States)

    Ebot, Ericka M; Gerke, Travis; Labbé, David P; Sinnott, Jennifer A; Zadra, Giorgia; Rider, Jennifer R; Tyekucheva, Svitlana; Wilson, Kathryn M; Kelly, Rachel S; Shui, Irene M; Loda, Massimo; Kantoff, Philip W; Finn, Stephen; Vander Heiden, Matthew G; Brown, Myles; Giovannucci, Edward L; Mucci, Lorelei A

    2017-11-01

    Obese men are at higher risk of advanced prostate cancer and cancer-specific mortality; however, the biology underlying this association remains unclear. This study examined gene expression profiles of prostate tissue to identify biological processes differentially expressed by obesity status and lethal prostate cancer. Gene expression profiling was performed on tumor (n = 402) and adjacent normal (n = 200) prostate tissue from participants in 2 prospective cohorts who had been diagnosed with prostate cancer from 1982 to 2005. Body mass index (BMI) was calculated from the questionnaire immediately preceding cancer diagnosis. Men were followed for metastases or prostate cancer-specific death (lethal disease) through 2011. Gene Ontology biological processes differentially expressed by BMI were identified using gene set enrichment analysis. Pathway scores were computed by averaging the signal intensities of member genes. Odds ratios (ORs) for lethal prostate cancer were estimated with logistic regression. Among 402 men, 48% were healthy weight, 31% were overweight, and 21% were very overweight/obese. Fifteen gene sets were enriched in tumor tissue, but not normal tissue, of very overweight/obese men versus healthy-weight men; 5 of these were related to chromatin modification and remodeling (false-discovery rate 7, 41% vs 17%; P = 2 × 10 -4 ) and an increased risk of lethal disease that was independent of grade and stage (OR, 5.26; 95% confidence interval, 2.37-12.25). This study improves our understanding of the biology of aggressive prostate cancer and identifies a potential mechanistic link between obesity and prostate cancer death that warrants further study. Cancer 2017;123:4130-4138. © 2017 American Cancer Society. © 2017 American Cancer Society.

  20. SDF-1/CXCR4 Axis Regulates Cell Cycle Progression and Epithelial-Mesenchymal Transition via Up-regulation of Survivin in Glioblastoma.

    Science.gov (United States)

    Liao, Anyan; Shi, Ranran; Jiang, Yuliang; Tian, Suqing; Li, Panpan; Song, Fuxi; Qu, Yalan; Li, Jinna; Yun, Haiqin; Yang, Xiangshan

    2016-01-01

    Stromal cell-derived factor 1 (SDF-1)/CXCR4 ligand-receptor axis is widely recommended as an attractive target for cancer therapy. Meanwhile, epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. As one of inhibitors of apoptosis proteins, survivin is implicated in the onset and development of cancer. In the present study, we tried to determine the cause-effect associations between SDF-1/CXCR4 axis and survivin expression in glioblastoma U-251 cell line. Survivin activation and inhibition were induced with exogenous SDF-1 and survivin small interfering RNA (survivin siRNA), respectively. Western blot was used to detect relevant proteins in SDF-1/CXCR4 axis. Western blot analysis revealed that survivin expression in U-251 increased in a dose- and time-dependent manner in response to SDF-1 treatment. However, the interference with MEK/ERK and PI3K/AKT pathway prohibited SDF-1-induced survivin up-regulation. Importantly, survivin knockdown abrogated cell cycle progression and the expression of snail and N-cadherin, compared with non-transfectants. In conclusion, the present study shows that SDF-1 up-regulates survivin via MEK/ERK and PI3K/AKT pathway, leading to cell cycle progression and EMT occurrence dependent on survivin. The blockade of survivin will allow for the treatment of glioblastoma.

  1. The PPARα - FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Garcia-Haro, Luisa; Sabio, Guadalupe; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Xu, Jia; Shulha, Hennady P.; Garber, Manuel; Gao, Guangping; Davis, Roger J.

    2014-01-01

    The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). JNK therefore causes decreased expression of PPARα target genes that increase fatty acid oxidation / ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα - FGF21 hormone axis suppresses the metabolic effects of JNK-deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver. PMID:25043817

  2. Regulation of T-type calcium channel expression by sodium butyrate in prostate cancer cells.

    Science.gov (United States)

    Weaver, Erika M; Zamora, Francis J; Puplampu-Dove, Yvonne A; Kiessu, Ezechielle; Hearne, Jennifer L; Martin-Caraballo, Miguel

    2015-02-15

    Several cellular mechanisms contribute to the neuroendocrine differentiation of prostate cancer cells, including exposure to sodium butyrate (NaBu), a naturally occurring salt of the short chain fatty acid n-butyric acid. NaBu belongs to a class of histone deacetylase inhibitors with potential anticancer function. T-type calcium channel expression constitutes an important route for calcium influx in tumor cells that may trigger changes in cell proliferation and differentiation. In this work we investigated the role NaBu on the differentiation of lymph node carcinoma of the prostate (LNCaP) cells and its effect on T-type Ca(2+) channel expression. NaBu stimulates the morphological and molecular differentiation of LNCaP cells. Stimulation of LNCaP cells with NaBu evokes a significant increase in the expression of the Cav3.2 T-type channel subunits. Furthermore, the increased Cav3.2 expression promotes membrane insertion of T-type Ca(2+) channels capable of generating fast inactivating Ca(2+) currents, sensitive to 100μM Ni(2+) ions. Inhibition of T-type Ca(2+) channel function reduces the outgrowth of neurite-like processes in LNCaP cells. NaBu-evoked expression of T-type Ca(2+) channels is also involved in the regulation of cell viability. Inhibition of T-type Ca(2+) channels causes a significant reduction in the viability of LNCaP cells treated with 1mM NaBu, suggesting that Ca(2+) influx via T-type channels can promote cell proliferation. However, increased expression of T-type Ca(2+) channels enhanced the cytotoxic effect of thapsigargin and paclitaxel on cell proliferation. These findings demonstrate that NaBu stimulates T-type Ca(2+) channel expression, thereby regulating both the morphological differentiation and growth of prostate cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow.

    Science.gov (United States)

    Jung, Younghun; Decker, Ann M; Wang, Jingcheng; Lee, Eunsohl; Kana, Lulia A; Yumoto, Kenji; Cackowski, Frank C; Rhee, James; Carmeliet, Peter; Buttitta, Laura; Morgan, Todd M; Taichman, Russell S

    2016-05-03

    GAS6 and its receptors (Tryo 3, Axl, Mer or "TAM") are known to play a role in regulating tumor progression in a number of settings. Previously we have demonstrated that GAS6 signaling regulates invasion, proliferation, chemotherapy-induced apoptosis of prostate cancer (PCa) cells. We have also demonstrated that GAS6 secreted from osteoblasts in the bone marrow environment plays a critical role in establishing prostate tumor cell dormancy. Here we investigated the role that endogenous GAS6 and Mer receptor signaling plays in establishing prostate cancer stem cells in the bone marrow microenvironment.We first observed that high levels of endogenous GAS6 are expressed by disseminated tumor cells (DTCs) in the bone marrow, whereas relatively low levels of endogenous GAS6 are expressed in PCa tumors grown in a s.c. Interestingly, elevated levels of endogenous GAS6 were identified in putative cancer stem cells (CSCs, CD133+/CD44+) compared to non-CSCs (CD133-/CD44-) isolated from PCa/osteoblast cocultures in vitro and in DTCs isolated from the bone marrow 24 hours after intracardiac injection. Moreover, we found that endogenous GAS6 expression is associated with Mer receptor expression in growth arrested (G1) PCa cells, which correlates with the increase of the CSC populations. Importantly, we found that overexpression of GAS6 activates phosphorylation of Mer receptor signaling and subsequent induction of the CSC phenotype in vitro and in vivo.Together these data suggest that endogenous GAS6 and Mer receptor signaling contribute to the establishment of PCa CSCs in the bone marrow microenvironment, which may have important implications for targeting metastatic disease.

  4. Weight loss by calorie restriction versus bariatric surgery differentially regulates the HPA axis in male rats

    Science.gov (United States)

    Grayson, Bernadette E.; Hakala-Finch, Andrew P.; Kekulawala, Melani; Laub, Holly; Egan, Ann E.; Ressler, Ilana B.; Woods, Stephen C.; Herman, James P.; Seeley, Randy J.; Benoit, Stephen C.; Ulrich-Lai, Yvonne M.

    2015-01-01

    Behavioral modifications for the treatment of obesity, including caloric restriction, have notoriously low long-term success rates relative to bariatric weight-loss surgery. The reasons for the difference in sustained weight loss are not clear. One possibility is that caloric restriction alone activates the stress-responsive hypothalamo-pituitary-adrenocortical (HPA) axis, undermining the long-term maintenance of weight loss, and that this is abrogated after bariatric surgery. Accordingly, we compared the HPA response to weight loss in 5 groups of male rats: (1) high-fat diet-induced obese (DIO) rats treated with Roux-en-Y gastric bypass surgery (RYGB, n=7), (2) DIO rats treated with vertical sleeve gastrectomy (VSG, n=11), (3) DIO rats given sham surgery and subsequently restricted to the food intake of the VSG/RYGB groups (Pair-fed, n=11), (4) ad libitum-fed DIO rats given sham surgery (Obese, n=11) and (5) ad libitum chow-fed rats given sham surgery (Lean, n=12). Compared to Lean controls, food-restricted rats exhibited elevated morning (nadir) non-stress plasma corticosterone concentrations and increased hypothalamic corticotropin releasing hormone and vasopressin mRNA expression, indicative of basal HPA activation. This was largely prevented when weight loss was achieved by bariatric surgery. DIO increased HPA activation by acute (novel environment) stress and this was diminished by bariatric surgery-, but not pair-feeding-, induced weight loss. These results suggest that the HPA axis is differentially affected by weight loss from caloric restriction versus bariatric surgery, and this may contribute to the differing long-term effectiveness of these two weight-loss approaches. PMID:25238021

  5. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  6. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells.

    Science.gov (United States)

    Fan, Lingling; Peng, Guihong; Hussain, Arif; Fazli, Ladan; Guns, Emma; Gleave, Martin; Qi, Jianfei

    2015-08-21

    Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Slug regulates Cyclin D1 expression by ubiquitin-proteasome pathway in prostate cancer cells.

    Science.gov (United States)

    Ding, G X; Liu, J; Feng, C C; Jiang, H W; Xu, J F; Ding, Q

    2012-09-01

    Cyclin D1 is an important cell cycle regulatory proteins, which is a functional target of Slug in the regulation of cell growth of prostate cancer cells. But the pathway of these two factors interacting with each other is unclear. The infectde PCa Cells were treated with proteasome inhibitor MG-132. Expression level of Slug, HA-cyclin D1 and other protein was examined by Western blot. Increasing doses of adenovirus expressing human Slug were added to DU-145 cells separately, but there were no significantly difference on expressions of Slug and cyclin D1. We found that the protein expressions of HA-Cyclin D1 (wide-type) were all reduced through high expression of Slug, which is dose-dependent. However, there is no change for HA-Cyclin D1 (mutant) expression in PC-3 with pMIGW-Cyclin D1-HA T286A. The protein expression of HA-Cyclin D1 were all reduced three days after infection by adding adenovirus expressing human Slug to PC-3 carrying pMIGW-Cyclin D1-HA vector compared to negative control, which is dose-dependent. However, there is no change for HA-Cyclin D1 expression in PC-3 with pMIGW-Cyclin D1-HA treated by MG-132. We found that forced expression of Slug inhibited proliferation of prostate cancer cells through downregulation of cyclin D1 expression. And Slug regulates cyclin D1 expression by ubiquitin-proteasome pathway in PCa cells.

  8. Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization.

    Science.gov (United States)

    Benslimane-Ahmim, Zahia; Pereira, Jessica; Lokajczyk, Anna; Dizier, Blandine; Galy-Fauroux, Isabelle; Fischer, Anne-Marie; Heymann, Dominique; Boisson-Vidal, Catherine

    2017-06-01

    We previously reported that OPG is involved in ischemic tissue neovascularization through the secretion of SDF-1 by pretreated-OPG endothelial colony-forming cells (ECFCs). As the vascularization is one of the key factor influencing the tumour growth and cancer cell dissemination, we investigated whether OPG was able to modulate the invasion of human MNNG-HOS osteosarcoma and DU145 prostate cancer cell lines in vitro and in vivo. Cell motility was analysed in vitro by using Boyden chambers. Human GFP-labelled MMNG-HOS cells were inoculated in immunodeficient mice and the tumour nodules formed were then injected with OPG and/or FGF-2, AMD3100 or 0.9% NaCl (control group). Tumour growth was manually followed and angiogenesis was assessed by immunohistochemistry. In vitro, SDF-1 released by OPG-pretreated ECFCs markedly attracted both MNNG-HOS and DU145 cells and induced spontaneous migration of cancer cells. In vivo, tumour volumes were significantly increased in OPG-treated group compared to the control group and OPG potentiated the effect of FGF-2. Concomitantly, OPG alone or combined with FGF-2 increased the number of new vasculature compared to the control group. Interestingly AMD3100, an inhibitor of SDF-1, prevented the in vivo effects of OPG induced by SDF-1 This study provides experimental evidence that OPG promotes tumour development trough SDF-1/CXCR4 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis

    Directory of Open Access Journals (Sweden)

    Gupta Aditi

    2012-09-01

    Full Text Available Abstract Background Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL, a protein essential for osteoclast differentiation and activation. However, the mechanism(s by which RANKL is produced remains to be determined. The objective of this study is to gain insight into the molecular mechanisms controlling RANKL expression in metastatic prostate cancer cells. Results We show here that phosphorylation of Smad 5 by integrin αvβ3 and RUNX2 by CD44 signaling, respectively, regulates RANKL expression in human-derived PC3 prostate cancer cells isolated from bone metastasis. We found that RUNX2 intranuclear targeting is mediated by phosphorylation of Smad 5. Indeed, Smad5 knock-down via RNA interference and inhibition of Smad 5 phosphorylation by an αv inhibitor reduced RUNX2 nuclear localization and RANKL expression. Similarly, knockdown of CD44 or RUNX2 attenuated the expression of RANKL. As a result, conditioned media from these cells failed to support osteoclast differentiation in vitro. Immunohistochemistry analysis of tissue microarray sections containing primary prostatic tumor (grade2-4 detected predominant localization of RUNX2 and phosphorylated Smad 5 in the nuclei. Immunoblotting analyses of nuclear lysates from prostate tumor tissue corroborate these observations. Conclusions Collectively, we show that CD44 signaling regulates phosphorylation of RUNX2. Localization of RUNX2 in the nucleus requires phosphorylation of Smad-5 by integrin αvβ3 signaling. Our results suggest possible integration of two different pathways in the expression of RANKL. These observations imply a novel mechanistic insight into the role of these proteins in bone loss associated with bone metastases in patients with prostate cancer.

  10. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    International Nuclear Information System (INIS)

    Yao, Jingjing; Xu, Chen; Fang, Ziyu; Li, Yaoming; Liu, Houqi; Wang, Yue; Xu, Chuanliang; Sun, Yinghao

    2016-01-01

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  11. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingjing [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Xu, Chen [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003 (China); Fang, Ziyu; Li, Yaoming [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Liu, Houqi; Wang, Yue [Research Center of Developmental Biology, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Translational Medicine Center, Second Military Medical University, 800th Xiangyin Road, Shanghai, 200433 (China); Xu, Chuanliang [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China); Sun, Yinghao, E-mail: sunyh@medmail.com.cn [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433 (China)

    2016-05-20

    Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibit apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.

  12. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  13. DksA-HapR-RpoS axis regulates haemagglutinin protease production in Vibrio cholerae.

    Science.gov (United States)

    Basu, Pallabi; Pal, Ritesh Ranjan; Dasgupta, Shreya; Bhadra, Rupak K

    2017-06-01

    DksA acts as a co-factor for the intracellular small signalling molecule ppGpp during the stringent response. We recently reported that the expression of the haemagglutinin protease (HAP), which is needed for shedding of the cholera pathogen Vibrio cholerae during the late phase of infection, is significantly downregulated in V. cholerae ∆dksA mutant (∆dksAVc) cells. So far, it has been shown that HAP production by V. cholerae cells is critically regulated by HapR and also by RpoS. Here, we provide evidence that V. cholerae DksA (DksAVc) positively regulates HapR at both the transcriptional and post-transcriptional levels. We show that in ∆dksAVc cells the CsrB/C/D sRNAs, required for the maintenance of intracellular levels of hapR transcripts during the stationary growth, are distinctly downregulated. Moreover, the expression of exponential phase regulatory protein Fis, a known negative regulator of HapR, was found to continue even during the stationary phase in ∆dksAVc cells compared to that of wild-type strain, suggesting another layer of complex regulation of HapR by DksAVc. Extensive reporter construct-based and quantitative reverse-transcriptase PCR (qRT-PCR) analyses supported that RpoS is distinctly downregulated at the post-transcriptional/translational levels in stationary phase-grown ∆dksAVc cells. Since HAP expression through HapR and RpoS is stationary phase-specific in V. cholerae, it appears that DksAVc is also a critical stationary phase regulator for fine tuning of the expression of HAP. Moreover, experimental evidence provided in this study clearly supports that DksAVc is sitting at the top of the hierarchy of regulation of expression of HAP in V. cholerae.

  14. A progesterone-brown fat axis is involved in regulating fetal growth.

    NARCIS (Netherlands)

    McIlvride, Saraid; Mushtaq, Aleena; Papacleovoulou, Georgia; Hurling, Chloe; Steel, Jennifer; Jansen, Eugène; Abu-Hayyeh, Shadi; Williamson, Catherine

    2017-01-01

    Pregnancy is associated with profound maternal metabolic changes, necessary for the growth and development of the fetus, mediated by reproductive signals acting on metabolic organs. However, the role of brown adipose tissue (BAT) in regulating gestational metabolism is unknown. We show that BAT

  15. Inhibin : its role in the regulation of the pituitary-testis axis.

    NARCIS (Netherlands)

    A.M. Ultee-van Gessel (Annemarie)

    1988-01-01

    textabstractThe endocrine and exocrine functions of the male gonads, the testes, are regulated by gonadotrophic hormones which are secreted by the pituitary gland. Two separate gonadotrophic hormones have been recognized: luteinizing hormone (LH) which influences Leydig cell function, and

  16. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer

    NARCIS (Netherlands)

    L.J. Blok (Leen); G.T.G. Chang; M. Steenbeek-Slotboom (M.); W.M. van Weerden (Wytske); H.G. Swarts; J.J.H.H.M. de Pont (J. J H H M); G.J. van Steenbrugge (Gert Jan); A.O. Brinkmann (Albert)

    1999-01-01

    textabstractThe β1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of

  17. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation.

    Science.gov (United States)

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken

    2016-03-23

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.

  18. miRNA Regulation Network Analysis in Qianliening Capsule Treatment of Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Liya Liu

    2015-01-01

    Full Text Available Objective. The objective of this study was to evaluate the molecular mechanism by which Qianliening capsule (QC treats benign prostatic hyperplasia (BPH. Methods. Benign prostatic hyperplasia epithelial cell line BPH-1 was treated with 0, 1.25, 2.5, and 5 mg/mL QC for 48 h, respectively. Evaluation of cell viability and observation of morphologic changes of BPH-1 cell gene expression and miRNA expression profiles were analyzed. Real-time quantitative PCR was used to confirm changes in miRNA and gene expression. GO and KEGG pathway-based approaches were used to investigate biological functions and signaling pathways affected by differentially expressed mRNAs. Results. QC inhibited BPH-1 cell proliferation. Differential expression of 19 upregulated and 2 downregulated miRNAs was observed in QC-treated BPH-1 cells compared to untreated control cells. 107 upregulated and 71 downregulated genes were identified between the two groups. Significantly enriched signaling pathways based on deregulated mRNAs were mainly involved in regulation of cell proliferation, apoptosis, and so on. Additionally, miRNA-mRNA network analysis integrated these miRNAs and genes by outlining interactions of miRNA and related genes. Conclusion. The study was the first report of differentially expressed miRNA and mRNA in QC-treated BPH-1 cells.

  19. Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells

    Science.gov (United States)

    Baek, Sung Hee; Ohgi, Kenneth A.; Nelson, Charles A.; Welsbie, Derek; Chen, Charlie; Sawyers, Charles L.; Rose, David W.; Rosenfeld, Michael G.

    2006-01-01

    The androgen receptor not only mediates prostate development but also serves as a key regulator of primary prostatic cancer growth. Although initially responsive to selective androgen receptor modulators (SARMs), which cause recruitment of the nuclear receptor–corepressor (N-CoR) complex, resistance invariably occurs, perhaps in response to inflammatory signals. Here we report that dismissal of nuclear receptor–corepressor complexes by specific signals or androgen receptor overexpression results in recruitment of many of the cohorts of coactivator complexes that permits SARMs and natural ligands to function as agonists. SARM-bound androgen receptors appear to exhibit failure to recruit specific components of the coactivators generally bound by liganded nuclear receptors, including cAMP response element-binding protein (CBP)/p300 or coactivator-associated arginine methyltransferase 1 (CARM1) to the SARM-bound androgen receptor, although still causing transcriptional activation of androgen receptor target genes. SARM-bound androgen receptors use distinct LXXLL (L, leucine; X, any amino acid) helices in the p160 nuclear receptor interaction domains that may impose selective allosteric effects, providing a component of the molecular basis of differential responses to different classes of ligands by androgen receptor. PMID:16492776

  20. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation

    Science.gov (United States)

    Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.

    2015-01-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470

  1. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells.

    Science.gov (United States)

    Wang, Dan; Nguyen, Minh M; Masoodi, Khalid Z; Singh, Prabhpreet; Jing, Yifeng; O'Malley, Katherine; Dar, Javid A; Dhir, Rajiv; Wang, Zhou

    2015-12-01

    Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.

  2. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  3. MiR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence.

    Science.gov (United States)

    Nam, Robert K; Benatar, Tania; Wallis, Christopher J D; Amemiya, Yutaka; Yang, Wenyi; Garbens, Alaina; Naeim, Magda; Sherman, Christopher; Sugar, Linda; Seth, Arun

    2016-07-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression post-transcriptionally. Dysregulation of miRNA has been implicated in the development and progression of prostate cancer. Through next generation miRNA sequencing, we recently identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. Of the five miRNAs, miR-301a had the strongest association with prostate cancer recurrence. Overexpression of miR-301a in prostate cancer cells, PC3, and LNCaP resulted in increased growth both in vitro and in xenografted tumors. We therefore sought to examine its role in prostate carcinogenesis in greater detail. We examined the effect of miR-301a expression on biochemical recurrence and metastasis among 585 men treated with radical prostatectomy for prostate cancer. We examined the mechanism of growth deregulation by miR-301a in prostate cancer cells using analysis of the miRome of prostate cancer cell lines, quantitative PCR, and Western blotting. High levels of miR-301a (above the median) were associated with an increased risk of biochemical recurrence (adjusted hazard ratio [aHR] 1.42, 95% confidence interval (CI) 1.06-1.90, P = 0.002) but not of metastasis (aHR 0.84, 95%CI 0.41-1.70, P = 0.6) after adjustment for known prognostic factors. RNA transcriptome sequencing analysis of miR-301a overexpressing prostate cancer cell lines identified the tumor suppressor p63 as a potential direct miR-301a target. Transcriptome sequencing, qPCR and Western blotting showed that miR-301a induced epithelial-mesenchymal transition (EMT) in prostate cancer cells through a pathway initiated by p63 inhibition. Luciferase assay verified p63 as a direct target of miR-301a. Loss of p63 resulted in miR-205 downregulation, releasing Zeb1 and Zeb2 from inhibition, culminating in Zeb1/Zeb2 suppression of E-cadherin. This pathway of growth alteration mediated by miR-301a upregulation was shown to be valid in prostate cancer cell lines and

  4. Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells.

    Science.gov (United States)

    Fadri-Moskwik, Maria; Weiderhold, Kimberly N; Deeraksa, Arpaporn; Chuang, Carol; Pan, Jing; Lin, Sue-Hwa; Yu-Lee, Li-Yuan

    2012-10-01

    Protein acetylation has been implicated in playing an important role during mitotic progression. Aurora B kinase is known to play a critical role in mitosis. However, whether Aurora B is regulated by acetylation is not known. Using IP with an anti-acetyl lysine antibody, we identified Aurora B as an acetylated protein in PC3 prostate cancer cells. Knockdown of HDAC3 or inhibiting HDAC3 deacetylase activity led to a significant increase (Pmitosis. Together, these results indicate that Aurora B is more active in its deacetylated state and further suggest a new mechanism by which dynamic acetylation/deacetylation acts as a rheostat to fine-tune Aurora B activity during mitotic progression.

  5. Sex-specific regulation of weight and puberty by the Lin28/let-7 axis

    Science.gov (United States)

    Corre, Christina; Shinoda, Gen; Zhu, Hao; Cousminer, Diana L; Crossman, Christine; Bellissimo, Christian; Goldenberg, Anna; Daley, George Q; Palmert, Mark R

    2016-01-01

    Growth and pubertal timing differ in boys and girls. Variants in/near LIN28B associate with age at menarche (AAM) in genome-wide association studies and some AAM-related variants associate with growth in a sex-specific manner. Sex-specific growth patterns in response to Lin28b perturbation have been detected in mice, and overexpression of Lin28a has been shown to alter pubertal timing in female mice. To investigate further how Lin28a and Lin28b affect growth and puberty in both males and females, we evaluated Lin28b loss-of-function (LOF) mice and Lin28a gain-of-function (GOF) mice. Because both Lin28a and Lin28b can act via the conserved microRNA let-7, we also examined let-7 GOF mice. As reported previously, Lin28b LOF led to lighter body weights only in male mice while Lin28a GOF yielded heavier mice of both sexes. Let-7 GOF mice weighed less than controls, and males were more affected than females. Timing of puberty was assessed by vaginal opening (VO) and preputial separation (PS). Male Lin28b LOF and male let-7 GOF, but not female, mice displayed alteration of pubertal timing, with later PS than controls. In contrast, both male and female Lin28a GOF mice displayed late onset of puberty. Together, these data point toward a complex system of regulation by Lin28a, Lin28b, and let-7, in which Lin28b and let-7 can impact both puberty and growth in a sex-specific manner, raising the possibility that this pathway may contribute to differential regulation of male and female growth and puberty in humans. PMID:26698568

  6. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  7. Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification

    Directory of Open Access Journals (Sweden)

    Suzanne M. McDermott

    2012-04-01

    In the Drosophila oocyte, mRNA transport and localised translation play a fundamental role in axis determination and germline formation of the future embryo. gurken mRNA encodes a secreted TGF-α signal that specifies dorsal structures, and is localised to the dorso-anterior corner of the oocyte via a cis-acting 64 nucleotide gurken localisation signal. Using GRNA chromatography, we characterised the biochemical composition of the ribonucleoprotein complexes that form around the gurken mRNA localisation signal in the oocyte. We identified a number of the factors already known to be involved in gurken localisation and translational regulation, such as Squid and Imp, in addition to a number of factors with known links to mRNA localisation, such as Me31B and Exu. We also identified previously uncharacterised Drosophila proteins, including the fly homologue of mammalian SYNCRIP/hnRNPQ, a component of RNA transport granules in the dendrites of mammalian hippocampal neurons. We show that Drosophila Syncrip binds specifically to gurken and oskar, but not bicoid transcripts. The loss-of-function and overexpression phenotypes of syncrip in Drosophila egg chambers show that the protein is required for correct grk and osk mRNA localisation and translational regulation. We conclude that Drosophila Syncrip is a new factor required for localisation and translational regulation of oskar and gurken mRNA in the oocyte. We propose that Syncrip/SYNCRIP is part of a conserved complex associated with localised transcripts and required for their correct translational regulation in flies and mammals.

  8. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Takeshi Chiyomaru

    Full Text Available Genistein has been shown to inhibit cancers both in vitro and in vivo, by altering the expression of several microRNAs (miRNAs. In this study, we focused on tumor suppressor miRNAs regulated by genistein and investigated their function in prostate cancer (PCa and target pathways. Using miRNA microarray analysis and real-time RT-PCR we observed that miR-574-3p was significantly up-regulated in PCa cells treated with genistein compared with vehicle control. The expression of miR-574-3p was significantly lower in PCa cell lines and clinical PCa tissues compared with normal prostate cells (RWPE-1 and adjacent normal tissues. Low expression level of miR-574-3p was correlated with advanced tumor stage and higher Gleason score in PCa specimens. Re-expression of miR-574-3p in PCa cells significantly inhibited cell proliferation, migration and invasion in vitro and in vivo. miR-574-3p restoration induced apoptosis through reducing Bcl-xL and activating caspase-9 and caspase-3. Using GeneCodis software analysis, several pathways affected by miR-574-3p were identified, such as 'Pathways in cancer', 'Jak-STAT signaling pathway', and 'Wnt signaling pathway'. Luciferase reporter assays demonstrated that miR-574-3p directly binds to the 3' UTR of several target genes (such as RAC1, EGFR and EP300 that are components of 'Pathways in cancer'. Quantitative real-time PCR and Western analysis showed that the mRNA and protein expression levels of the three target genes in PCa cells were markedly down-regulated with miR-574-3p. Loss-of-function studies demonstrated that the three target genes significantly affect cell proliferation, migration and invasion in PCa cell lines. Our results show that genistein up-regulates tumor suppressor miR-574-3p expression targeting several cell signaling pathways. These findings enhance understanding of how genistein regulates with miRNA in PCa.

  9. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yue [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Du, Chengli [Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Wang, Bo; Zhang, Yanling; Liu, Xiaoyan [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Ren, Guoping, E-mail: renguoping12345@163.com [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China)

    2014-07-18

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.

  10. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands

    Directory of Open Access Journals (Sweden)

    Franklin Renty B

    2007-06-01

    Full Text Available Abstract Background The normal human prostate glandular epithelium has the unique function of accumulating high levels of zinc. In prostate cancer this capability is lost as an early event in the development of the malignant cells. The mechanism and factors responsible for the ability of the normal epithelial cells to accumulate zinc and the loss of this capability in the malignant cells need to be identified. We previously reported that Zip1 is an important zinc uptake transporter in prostate cells and is down regulated in the malignant cells in situ along with the depletion of zinc levels. In this report we investigated the expression of two other Zip family zinc transporters, Zip2 and Zip3 in malignant versus nonmalignant (normal and BPH glands. Zip2 and Zip3 relative protein levels were determined by immunohistochemistry analysis of human prostate tissue sections. Results Normal and BPH glandular epithelium consistently exhibited the strong presence of both Zip 2 and Zip3; whereas both transporters consistently were essentially non-detectable in the malignant glands. This represents the first report of the expression of Zip3 in human prostate tissue; and more importantly, reveals that ZiP2 and Zip3 are down regulated in malignant cells in situ as we also had demonstrated for Zip1. Zip2 and Zip3 transporter proteins were localized predominantly at the apical cell membrane, which is in contrast to the Zip1 localization at the basolateral membrane. Zip2 and Zip3 seemingly are associated with the re-uptake of zinc from prostatic fluid. Conclusion These results coupled with previous reports implicate Zip2 and Zip3 along with Zip1 as important zinc uptake transporters involved in the unique ability of prostate cells to accumulate high cellular zinc levels. Zip1 is important for the extraction of zinc from circulation as the primary source of cellular zinc. Zip 2 and Zip3 appear to be important for retention of the zinc in the cellular compartment

  11. Antioxidants Abrogate Alpha-Tocopherylquinone-Mediated Down-Regulation of the Androgen Receptor in Androgen-Responsive Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Alexandra M Fajardo

    Full Text Available Tocopherylquinone (TQ, the oxidation product of alpha-tocopherol (AT, is a bioactive molecule with distinct properties from AT. In this study, AT and TQ are investigated for their comparative effects on growth and androgenic activity in prostate cancer cells. TQ potently inhibited the growth of androgen-responsive prostate cancer cell lines (e.g., LAPC4 and LNCaP cells, whereas the growth of androgen-independent prostate cancer cells (e.g., DU145 cells was not affected by TQ. Due to the growth inhibitory effects induced by TQ on androgen-responsive cells, the anti-androgenic properties of TQ were examined. TQ inhibited the androgen-induced activation of an androgen-responsive reporter and inhibited the release of prostate specific antigen from LNCaP cells. TQ pretreatment was also found to inhibit AR activation as measured using the Multifunctional Androgen Receptor Screening assay. Furthermore, TQ decreased androgen-responsive gene expression, including TM4SF1, KLK2, and PSA over 5-fold, whereas AT did not affect the expression of androgen-responsive genes. Of importance, the antiandrogenic effects of TQ on prostate cancer cells were found to result from androgen receptor protein down-regulation produced by TQ that was not observed with AT treatment. Moreover, none of the androgenic endpoints assessed were affected by AT. The down-regulation of androgen receptor protein by TQ was abrogated by co-treatment with antioxidants. Overall, the biological actions of TQ were found to be distinct from AT, where TQ was found to be a potent inhibitor of cell growth and androgenic activity in androgen-responsive prostate cancer cells.

  12. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    Science.gov (United States)

    Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.

    2013-01-01

    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169

  13. DIPEPTIDYL PEPTIDASE-4 REGULATION OF SDF-1/CXCR4 AXIS: IMPLICATIONS FOR CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Jixin eZhong

    2015-09-01

    Full Text Available Dipeptidyl peptidase-4 (DPP4 is a ubiquitously expressed protease that regulates a diverse number of physiologic functions. As a dipeptidase it exerts its catalytic effects on proteins/peptides with proline, alanine or serine in the penultimate (P1 amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which such as stromal-cell-derived factor-1 (SDF-1, also known as CXCL12 is perhaps an increasingly recognized target, given its importance in processes such as hematopoiesis, angiogenesis and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease.

  14. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  15. Annotating STEAP1 regulation in prostate cancer with 89Zr immuno-PET.

    Science.gov (United States)

    Doran, Michael G; Watson, Philip A; Cheal, Sarah M; Spratt, Daniel E; Wongvipat, John; Steckler, Jeffrey M; Carrasquillo, Jorge A; Evans, Michael J; Lewis, Jason S

    2014-12-01

    Antibodies and antibody-drug conjugates targeting the cell surface protein 6 transmembrane epithelial antigen of prostate 1 (STEAP1) are in early clinical development for the treatment of castration-resistant prostate cancer (PCa). In general, antigen expression directly affects the bioactivity of therapeutic antibodies, and the biologic regulation of STEAP1 is unusually complicated in PCa. Paradoxically, STEAP1 can be induced or repressed by the androgen receptor (AR) in different human PCa models, while also expressed in AR-null PCa. Consequently, there is an urgent need to translate diagnostic strategies to establish which regulatory mechanism predominates in patients to situate the appropriate therapy within standard of care therapies inhibiting AR. To this end, we prepared and evaluated (89)Zr-labeled MSTP2109A ((89)Zr-2109A), a radiotracer for PET derived from a fully humanized monoclonal antibody to STEAP1 in preclinical PCa models. (89)Zr-2109A specifically localized to the STEAP1-positive human PCa models CWR22Pc, 22Rv1, and PC3. Moreover, (89)Zr-2109A sensitively measured treatment-induced changes (∼66% decline) in STEAP1 expression in CWR22PC in vitro and in vivo, a model we showed to express STEAP1 in an AR-dependent manner. These findings highlight the ability of immuno-PET with (89)Zr-2109A to detect acute changes in STEAP1 expression and argue for an expansion of ongoing efforts to image PCa patients with (89)Zr-2109A to maximize the clinical benefit associated with antibodies or antibody-drug conjugates to STEAP1. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. The Role of the Pituitary-Adrenocortical Axis System in the Regulation of Secretion of Digestive Glands of Wrestlers during Sports and Postsports Ontogenesis

    Science.gov (United States)

    Panov, Sergei F.; Panova, Irina P.; Volunskaya, Elena V.; Chebotarev, Andrei V.

    2016-01-01

    According to many researchers its necessary to research a hormonal profile in order to determine mechanisms of regulation of functions of the digestive conveyor during sports activities. In the paper the results of the carried out research on studying of a role of pituitary-adrenocortical axis system of adaptive reactions in activities of the…

  17. Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2.

    Science.gov (United States)

    Lee, Kwanghyun; Na, Wonho; Maeng, Je-Heon; Wu, Hongjin; Ju, Bong-Gun

    2013-03-01

    Mammalian SFMBTs have been considered to be polycomb group repressors. However, molecular mechanisms underlying mammalian SFMBTs-mediated gene regulation and their biological function have not been characterized. In the present study, we identified YY1 and methylated histones as interacting proteins of human SFMBT2. We also found that human SFMBT2 binds preferentially to methylated histone H3 and H4 that are associated with transcriptional repression. Using DU145 prostate cancer cells as a model, we showed that SFMBT2 has a transcriptional repression activity on HOXB13 gene expression. In addition, occupancy of SFMBT2 coincided with enrichment of diand tri-methylated H3K9 and H4K20 as well as tri-methylated H3K27 at the HOXB13 gene promoter. When SFMBT2 was depleted by siRNA in DU145 prostate cancer cells, significant up-regulation of HOXB13 gene expression and decreased cell growth were observed. Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells.

  18. The prostate-derived sterile 20-like kinase (PSK) regulates microtubule organization and stability.

    Science.gov (United States)

    Mitsopoulos, Costas; Zihni, Ceniz; Garg, Ritu; Ridley, Anne J; Morris, Jonathan D H

    2003-05-16

    Sterile 20 (STE20) protein kinases, which include germinal center kinases and p21-activated protein kinases, are known to activate mitogen-activated protein kinase pathways (c-Jun NH(2)-terminal kinase, p38, or extracellular signal-regulated kinase), leading to changes in gene transcription. Some STE20s can also regulate the cytoskeleton, and we have shown that the germinal center kinase-like kinase prostate-derived STE20-like kinase (PSK) affects actin cytoskeletal organization. Here, we demonstrate that PSK colocalizes with microtubules; and that this localization is disrupted by the microtubule depolymerizing agent nocodazole. The association of PSK with microtubules results in the production of stabilized perinuclear microtubule cables that are nocodazole-resistant and contain increased levels of acetylated alpha-tubulin. Kinase-defective PSK (K57A) or the C terminus of PSK (amino acids 745-1235) lacking the kinase domain are sufficient for microtubule binding and stabilization, demonstrating that the catalytic activity of the protein is not required. The localization of PSK to microtubules occurs via its C terminus, and PSK binds and phosphorylates alpha- and beta-tubulin in vitro. The N terminus of PSK (1-940) is unable to bind or stabilize microtubules, demonstrating that PSK must associate with microtubules for their reorganization to occur. These results demonstrate that PSK interacts with microtubules and affects their organization and stability independently of PSK kinase activity.

  19. TBK1 Regulates Prostate Cancer Dormancy through mTOR Inhibition

    Directory of Open Access Journals (Sweden)

    Jin Koo Kim

    2013-09-01

    Full Text Available The mechanisms that regulate hematopoietic stem cell (HSC dormancy and self-renewal are well established and are largely dependent on signals emanating from the HSC niche. Recently, we found that prostate cancer (PCa cells target the HSC niche in mouse bone marrow (BM during metastasis. Little is known, however, as to how the HSC niche may regulate dormancy in cancer cells. In this study, we investigated the effects of TANK binding kinase 1 (TBK1 on PCa dormancy in the BM niche. We found that binding with niche osteoblasts induces the expression of TBK1 in PCa cells PC3 and C4-2B. Interestingly, TBK1 interacts with mammalian target of rapamycin (mTOR and inhibits its function. Rapamycin, an mTOR inhibitor, induces cell cycle arrest of PCa cells and enhances chemotherapeutic resistance of PCa cells. As a result, the knockdown of TBK1 decreases PCa stem-like cells and drug resistance in vitro and in vivo. Taken together, these results strongly indicate that TBK1 plays an important role in the dormancy and drug resistance of PCa.

  20. The Integrin-Regulated Kinase PYK-2: A Therapeutic Target for Prostate Cancer

    National Research Council Canada - National Science Library

    Edlund, Magnus

    2001-01-01

    ...) . A number of promising therapeutic targets for androgen-independent and metastatic prostate cancers are contained within the signaling cascades downstream of the ECM-binding Integrin molecules...

  1. Gut-brain axis

    NARCIS (Netherlands)

    Romijn, Johannes A.; Corssmit, Eleonora P.; Havekes, Louis M.; Pijl, Hanno

    2008-01-01

    To summarize recent studies on the regulation and the functions of the gut-brain axis. Visual cues of food and food intake interact with the gut-brain axis at the level of the hypothalamus. However, the hypothalamic response to glucose intake is considerably altered in patients with type 2 diabetes

  2. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    Science.gov (United States)

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  3. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin

    International Nuclear Information System (INIS)

    Das, Dibash K.; Naidoo, Michelle; Ilboudo, Adeodat; Park, Jong Y.; Ali, Thahmina; Krampis, Konstantinos; Robinson, Brian D.; Osborne, Joseph R.; Ogunwobi, Olorunseun O.

    2016-01-01

    Prostate cancer (PCa) is frequently diagnosed in men, and dysregulation of microRNAs is characteristic of many cancers. MicroRNA-1207-3p is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, the role of microRNA-1207-3p in PCa is unclear. We discovered that microRNA-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells. Increased expression of microRNA-1207-3p in PCa cells significantly inhibits proliferation, migration, and induces apoptosis via direct molecular targeting of FNDC1, a protein which contains a conserved protein domain of fibronectin (FN1). FNDC1, FN1, and the androgen receptor (AR) are significantly overexpressed in PCa cell lines and human PCa, and positively correlate with aggressive PCa. Prostate tumor FN1 expression in patients that experienced PCa-specific death is significantly higher than in patients that remained alive. Furthermore, FNDC1, FN1 and AR are concomitantly overexpressed in metastatic PCa. Consequently, these studies have revealed a novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in PCa. - Graphical abstract: miR-1207-3p/FNDC1/FN1/AR is a novel regulatory pathway in prostate cancer. - Highlights: • Expression of microRNA-1207-3p is significantly lost in prostate cancer (PCa) cells. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • FNDC1, FN1, and AR are concurrently overexpressed in metastatic PCa.

  4. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Das, Dibash K. [Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065 (United States); The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016 (United States); Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065 (United States); Naidoo, Michelle; Ilboudo, Adeodat [Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065 (United States); Park, Jong Y. [Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612 (United States); Ali, Thahmina [Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065 (United States); Krampis, Konstantinos [Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065 (United States); Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY 10065 (United States); Robinson, Brian D. [Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065 (United States); Department of Urology, Weill Cornell Medicine, Cornell University, New York, NY 10065 (United States); Osborne, Joseph R. [Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 (United States); Ogunwobi, Olorunseun O., E-mail: ogunwobi@genectr.hunter.cuny.edu [Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065 (United States); The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016 (United States); Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065 (United States)

    2016-11-01

    Prostate cancer (PCa) is frequently diagnosed in men, and dysregulation of microRNAs is characteristic of many cancers. MicroRNA-1207-3p is encoded at the non-protein coding gene locus PVT1 on the 8q24 human chromosomal region, an established PCa susceptibility locus. However, the role of microRNA-1207-3p in PCa is unclear. We discovered that microRNA-1207-3p is significantly underexpressed in PCa cell lines in comparison to normal prostate epithelial cells. Increased expression of microRNA-1207-3p in PCa cells significantly inhibits proliferation, migration, and induces apoptosis via direct molecular targeting of FNDC1, a protein which contains a conserved protein domain of fibronectin (FN1). FNDC1, FN1, and the androgen receptor (AR) are significantly overexpressed in PCa cell lines and human PCa, and positively correlate with aggressive PCa. Prostate tumor FN1 expression in patients that experienced PCa-specific death is significantly higher than in patients that remained alive. Furthermore, FNDC1, FN1 and AR are concomitantly overexpressed in metastatic PCa. Consequently, these studies have revealed a novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in PCa. - Graphical abstract: miR-1207-3p/FNDC1/FN1/AR is a novel regulatory pathway in prostate cancer. - Highlights: • Expression of microRNA-1207-3p is significantly lost in prostate cancer (PCa) cells. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • MicroRNA-1207-3p regulates proliferation, apoptosis, and migration via direct molecular targeting of the 3′UTR of FNDC1. • FNDC1, FN1, and AR are concurrently overexpressed in metastatic PCa.

  5. Selenoprotein-P is down-regulated in prostate cancer, which results in lack of protection against oxidative damage.

    Science.gov (United States)

    Gonzalez-Moreno, Oscar; Boque, Noemi; Redrado, Miriam; Milagro, Fermin; Campion, Javier; Endermann, Tobias; Takahashi, Kazuhiko; Saito, Yoshiro; Catena, Raul; Schomburg, Lutz; Calvo, Alfonso

    2011-06-01

    Oxidative stress plays a role in prostate cancer (PrCa) initiation and development. Selenoprotein-P (SepP; a protein involved in antioxidant defence) mRNA levels are down-regulated in PrCa. The main goal of our study was to assess whether SepP protects prostate cells from reactive oxygen species (ROS) in prostate carcinogenesis. Modification of SepP levels and ROS conditions in C3(1)/Tag-derived cell lines representing prostate epithelial neoplasia (PIN) lesions (Pr-111, with high SepP expression); and invasive tumors (Pr-14, with very low SepP expression). Both Pr-111 and Pr-14 cells express ApoER2 (SepP receptor), which suggests that they may uptake SepP. Pr-14 cells had much higher ROS levels than Pr-111 cells and were highly sensitive to H(2)O(2)-mediated cytotoxicity. When SepP mRNA levels were knocked down with siRNAs in Pr-111 cells, a significant increase in ROS and cell growth inhibition upon H(2)O(2) exposure was found. Subsequent administration of purified SepP in the culture medium of these cells was able to rescue the original phenotype. Similarly, administration of SepP to Pr-14 cells was able to reduce ROS concentrations. Administration of flutamide decreased SepP mRNA levels whereas dihydrotestosterone or synthetic androgens induced SepP expression, indicating the importance of androgens for SepP expression. Immunohistochemical analysis using a PrCa tissue microarray further revealed that SepP protein was reduced in 60.8% prostate tumors compared to benign prostates. Levels of SepP in prostate cells determine basal ROS levels and sensitivity to H(2)O(2)-induced cytotoxicity. Deregulation of SepP during prostate carcinogenesis may increase free radicals, thus promoting tumor development and de-differentiation. Copyright © 2010 Wiley-Liss, Inc.

  6. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  7. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  8. Skip Regulates TGF-β1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Victor Villar

    2013-01-01

    Full Text Available Purpose. To determine whether Ski-interacting protein (SKIP regulates TGF-β1-stimulated expression of urokinase-type plasminogen activator (uPA, matrix metalloproteinase-9 (MMP-9, and uPA Inhibitor (PAI-1 in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF-β1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF-β1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF-β1. The ectopic expression of SKIP inhibited both TGF-β1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF-β1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment.

  9. Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chellaiah Meenakshi A

    2010-09-01

    Full Text Available Abstract Background Osteopontin (OPN has been shown to play many roles in the progression of cancer. We have recently demonstrated the activation of Akt by OPN. Integrin-linked kinase and PI3-kinase are integral proteins in OPN/AKT pathway in PC3 cells. To investigate the role of the extracellular receptors in OPN signaling, we have examined the spatio-temporal regulation of CD44 and integrin αvβ3 receptor in OPN-induced Akt activation in PC3 cells. Results Here, our studies demonstrate that OPN can activate Akt either through the αVβ3 integrin or the CD44 cell surface receptor. Members of the Mitogen Activated Protein Kinase (MAPK family have been shown to be up-regulated in a variety of human cancers and have been implicated in the metastatic behavior. Our studies have demonstrated an increase in the phosphorylation of c-Raf at Ser259 and Ser338 in PC3 cells over-expressing OPN. This increase matches up with the Erk1/2 phosphorylation at Thr202/204 and activation. However, the inhibition of Akt activity augments the phosphorylation state of ERK1/2 to two to three fold with a concomitant reduction in the phosphorylation state of c-Raf at Ser259. Conclusions Regulation c-Raf phosphorylation at Ser259 has a role in the anti-apoptotic pathways mediated by Akt or Raf/MEK/ERK proteins. OPN may have dual effects in the activation of Erk1/2. We propose this based on the observations that while OPN activates c-Raf and Erk1/2; it also acts to inhibit c-Raf and Erk1/2 activation through Akt pathway. Our observations suggest that the activation of c-Raf-ERK cascade may promote cell cycle arrest in prostate cancer cells and OPN signaling has a role in the anti-apoptotic mechanism.

  10. CYP3A5 regulates prostate cancer cell growth by facilitating nuclear translocation of AR.

    Science.gov (United States)

    Mitra, Ranjana; Goodman, Oscar B

    2015-04-01

    The central role of androgen receptor (AR) signaling is established in prostate cancer growth and progression. We propose CYP3A5 is part of a feedback loop that modulates the sensitivity of AR to androgen exposure. The purpose of this study is to elucidate the mechanism of regulation of AR expression by CYP3A5. To identify the role of CYP3A5 in regulating AR signaling, CYP3A5 protein expression was inhibited using CYP3A5 siRNA and azamulin. Both cell fractionation and immunocytochemical approaches in combination with dihydrotestosterone (DHT) and R1881 treatment were used to evaluate changes in AR nuclear translocation. CYP3A5 siRNA blocked growth of LNCaP and C4-2 cells by 30-60% (P ≤ 0.005). Azamulin, a CYP3A pharmacologic inhibitor, reduced the growth of LNCaP, C4-2 and 22RV1 lines by ∼ 40% (P ≤ 0.005). CYP3A5 siRNA inhibited growth in response to DHT and R1881 treatment in LNCaP and C4-2 by decreasing nuclear AR localization and resulting in diminished PSA and TMPRSS2 expression. Decreased AR nuclear localization resulting from CYP3A5 inhibition resulted in growth inhibition comparable to IC60 and IC40 of bicalutamide in LNCaP and C4-2 cell lines. Conversely, the CYP3A inducer rifampicin enhanced AR nuclear localization. As CYP3A5 regulates the nuclear translocation of AR; co-targeting CYP3A5 may provide a novel strategy for enhancing the efficacy of androgen deprivation therapy. Consequentially, these data suggest that concomitant medications may impact androgen deprivation therapy's efficacy. © 2015 Wiley Periodicals, Inc.

  11. Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase

    NARCIS (Netherlands)

    H.J. Dubbink (Erik Jan); N.S. Verkaik (Nicole); P.W. Faber; J. Trapman (Jan); F.H. Schröder (Fritz); J.C. Romijn (Johannes)

    1996-01-01

    textabstractTransglutaminases (TGases) are calcium-dependent enzymes catalysing the post-translational cross-linking of proteins. In the prostate at least two TGases are present, the ubiquitously expressed tissue-type TGase (TGC), and a prostate-restricted TGase (TGP).

  12. The PAM-1 aminopeptidase regulates centrosome positioning to ensure anterior-posterior axis specification in one-cell C. elegans embryos.

    Science.gov (United States)

    Fortin, Samantha M; Marshall, Sara L; Jaeger, Eva C; Greene, Pauline E; Brady, Lauren K; Isaac, R Elwyn; Schrandt, Jennifer C; Brooks, Darren R; Lyczak, Rebecca

    2010-08-15

    In the one-cell Caenorhabditis elegans embryo, the anterior-posterior (A-P) axis is established when the sperm donated centrosome contacts the posterior cortex. While this contact appears to be essential for axis polarization, little is known about the mechanisms governing centrosome positioning during this process. pam-1 encodes a puromycin sensitive aminopeptidase that regulates centrosome positioning in the early embryo. Previously we showed that pam-1 mutants fail to polarize the A-P axis. Here we show that PAM-1 can be found in mature sperm and in cytoplasm throughout early embryogenesis where it concentrates around mitotic centrosomes and chromosomes. We provide further evidence that PAM-1 acts early in the polarization process by showing that PAR-1 and PAR-6 do not localize appropriately in pam-1 mutants. Additionally, we tested the hypothesis that PAM-1's role in polarity establishment is to ensure centrosome contact with the posterior cortex. We inactivated the microtubule motor dynein, DHC-1, in pam-1 mutants, in an attempt to prevent centrosome movement from the cortex and restore anterior-posterior polarity. When this was done, the aberrant centrosome movements of pam-1 mutants were not observed and anterior-posterior polarity was properly established, with proper localization of cortical and cytoplasmic determinants. We conclude that PAM-1's role in axis polarization is to prevent premature movement of the centrosome from the posterior cortex, ensuring proper axis establishment in the embryo. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Combined Inhibition of the BMP pathway and the RANK-RANKL axis in a Mixed Lytic/blastic Prostate Cancer Lesion

    Science.gov (United States)

    Virk, Mandeep S.; Alaee, Farhang; Petrigliano, Frank A.; Sugiyama, Osamu; Chatziioannou, Arion F.; Stout, David; Dougall, William C.; Lieberman, Jay R.

    2010-01-01

    The purpose of this study was to investigate the influence of combined inhibition of RANKL (receptor activator of nuclear factor kappa-B ligand) and bone morphogenetic protein (BMP) activity in a mixed lytic/blastic prostate cancer lesion in bone. Human prostate cancer cells (C4 2b) were injected into immunocompromised mice using an intratibial injection model to create mixed lytic/blastic lesions. RANK-Fc, a recombinant RANKL antagonist, was injected subcutaneously three times a week (10mg/kg) to inhibit RANKL and subsequent formation, function and survival of osteoclasts. Inhibition of BMP activity was achieved by transducing prostate cancer cells ex vivo with a retroviral vector expressing noggin (retronoggin; RN). There were three treatment groups (RANK-Fc treatment, RN treatment and combined RN and RANK-Fc treatment) and two control groups (untreated control and empty vector control for the RN treatment group). The progression of bone lesion and tumor growth was evaluated using plain radiographs, hind limb tumor size, 18F-Fluorodeoxyglucose and 18F-fluoride micro PET-CT, histology and histomorphometry. Treatment with RANK-Fc alone inhibited osteolysis and transformed a mixed lytic/blastic lesion into an osteoblastic phenotype. Treatment with RN alone inhibited the osteoblastic component in a mixed lytic/blastic lesion and resulted in formation of smaller osteolytic bone lesion with smaller soft tissue size. The animals treated with both RN and RANK-Fc demonstrated delayed development of bone lesions, inhibition of osteolysis, small soft tissue tumors and preservation of bone architecture with less tumor induced new bone formation. This study suggests that combined inhibition of the RANKL and the BMP pathway may be an effective biologic therapy to inhibit the progression of established mixed lytic/blastic prostate cancer lesions in bone. PMID:21073986

  14. The HGF/c-MET Axis as a Critical Driver of Resistance to Androgen Suppression in Metastatic Castrate-Resistant Prostate Cancer

    Science.gov (United States)

    2016-10-01

    aspirates, allowing us to perform these aspirates on the same day as their clinic visit rather than necessitating a separate return visit for patients to...expression was then expressed by qPCR to assess whether the expression pattern matched that of what was expected for PC3, LNCaP, and VCaP cells. Figure... Diagnostics World Conference - Faculty at 2016 Future Directions in Urology conference - Attended 2016 DOD IMPaCT meeting - Attended 2016 SPORE prostate

  15. A Role for the Androgen Metabolite, 5alpha androstane, 3beta, 17beta Diol (3b-DIol in the regulation of the hypothalamo-pituitary-adrenal axis.

    Directory of Open Access Journals (Sweden)

    Robert James Handa

    2011-11-01

    Full Text Available Activation of the hypothalamo-pituitary-adrenal (HPA axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus of the hypothalamus (PVN. Within the PVN, corticotropin-releasing hormone (CRH, vasopressin (AVP and oxytocin (OT expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2 and testosterone (T are well known reproductive hormones, however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated ACTH and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen, dihydrotestosterone, whereas E2 effects were thought to be mediated by both estrogen receptors alpha (ERα and beta (ERβ. However, DHT has been shown to be metabolized to the ERβ agonist, 5alpha- androstane 3beta,17beta diol (3b-Diol. The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta knockout mice. The neurobiological mechanisms underlying the actions of ERbeta to alter HPA reactivity are not currently known. CRH, AVP and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters have been shown by 3β-Diol binding to ERbeta and this is thought to be through alternate pathways of gene regulation. Based on available data, a novel and important role for 3beta Diol in the regulation of the HPA axis is suggested.

  16. A Critical Role of the PTEN/PDGF Signaling Network for the Regulation of Radiosensitivity in Adenocarcinoma of the Prostate

    International Nuclear Information System (INIS)

    Christensen, Michael; Najy, Abdo J.; Snyder, Michael; Movilla, Lisa S.; Kim, Hyeong-Reh Choi

    2014-01-01

    Purpose: Loss or mutation of the phosphate and tensin homologue (PTEN) is a common genetic abnormality in prostate cancer (PCa) and induces platelet-derived growth factor D (PDGF D) signaling. We examined the role of the PTEN/PDGF axis on radioresponse using a murine PTEN null prostate epithelial cell model. Methods and Materials: PTEN wild-type (PTEN +/+ ) and PTEN knockout (PTEN −/− ) murine prostate epithelial cell lines were used to examine the relationship between the PTEN status and radiosensitivity and also to modulate the PDGF D expression levels. PTEN −/− cells were transduced with a small hairpin RNA (shRNA) lentiviral vector containing either scrambled nucleotides (SCRM) or sequences targeted to PDGF D (shPDGF D). Tumorigenesis and morphogenesis of these cell lines were evaluated in vivo via subcutaneous injection of male nude mice and in vitro using Matrigel 3-dimensional (3D) culture. Effects of irradiation on clonogenic survival, cell migration, and invasion were measured with respect to the PTEN status and the PDGF D expression level. In addition, apoptosis and cell cycle redistribution were examined as potential mechanisms for differences seen. Results: PTEN −/− cells were highly tumorigenic in animals and effectively formed foci in 3D culture. Importantly, loss of PDGF D in these cell lines drastically diminished these phenotypes. Furthermore, PTEN −/− cells demonstrated increased clonogenic survival in vitro compared to PTEN +/+ , and attenuation of PDGF D significantly reversed this radioresistant phenotype. PTEN −/− cells displayed greater migratory and invasive potential at baseline as well as after irradiation. Both the basal and radiation-induced migratory and invasive phenotypes in PTEN −/− cells required PDGF D expression. Interestingly, these differences were independent of apoptosis and cell cycle redistribution, as they showed no significant difference. Conclusions: We propose that PDGF D represents a potentially

  17. Association of PITX2 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis.

    Science.gov (United States)

    Vinarskaja, Anna; Schulz, Wolfgang A; Ingenwerth, Marc; Hader, Christiane; Arsov, Christian

    2013-07-01

    Hypermethylation of the PITX2 (paired-like homeodomain transcription factor 2) gene promoter is strongly associated with recurrence after radical prostatectomy. We hypothesized that PITX2 hypermethylation leads to PITX2 silencing and that decreased PITX2 expression is likewise associated with poor prognosis in prostate cancers. Moreover, it is unknown so far how PITX2 hypermethylation relates to other molecular changes in prostate cancer, such as ERG oncogenic activation in about half of all cases. To investigate how PITX2 expression and methylation are related, whether biochemical recurrence after radical prostatectomy can be predicted by PITX2 mRNA levels, and how changes in PITX2 relate to ERG overexpression. We measured PITX2 and ERG expression in 45 cancerous and 13 benign tissues from patients undergoing radical prostatectomy (age range: 59-74 years). Methylation of the PITX2 gene was analyzed in an extended series of 93 cancers. Follow-up was performed for all patients for a 98-month median period. Additionally, expression and methylation changes of PITX2 were investigated in prostate carcinoma cell lines. Gene expression and methylation were determined by quantitative RT-PCR and methylation-specific PCR, respectively. Biochemical recurrence defined as a total PSA of >0.2 ng/ml on 2 consecutive tests was considered as the surrogate endpoint for survival analysis. PITX2 expression was significantly and strongly decreased in prostate cancer compared to benign tissues. Cases with decreased PITX2 experienced significantly earlier biochemical recurrences. PITX2 down-regulation was associated with PITX2 promoter hypermethylation in tumor samples and cell lines. PITX2 hypermethylation was more pronounced in cases with ERG overexpression. PITX2 down-regulation is associated with promoter hypermethylation and is a good predictor of clinical outcomes after radical prostatectomy. PITX2 methylation might be influenced by oncogenic ERG. Copyright © 2013 Elsevier Inc

  18. DRF as a Cholesterol Dependent Regulator of Src in Prostate Cancer

    National Research Council Canada - National Science Library

    Freeman, Michael R

    2008-01-01

    ... with the sine kinase Src in prostate cancer cells. Formins are effectors of small Rho-family GTPases like and provide a direct link between activated membrane receptors and the actin cytoskeleton...

  19. Regulation of human CYP27A1 by estrogens and androgens in HepG2 and prostate cells.

    Science.gov (United States)

    Tang, Wanjin; Norlin, Maria; Wikvall, Kjell

    2007-06-01

    The regulation of the human CYP27A1 gene by estrogens and androgens was studied in human liver-derived HepG2 and prostate cells. Our results show that the promoter activity, enzymatic activity and mRNA levels of CYP27A1 in HepG2 cells are downregulated by estrogen in presence of ERalpha or ERbeta. Similar effects by estrogen were found in RWPE-1 prostate cells. In contrast, estrogen markedly upregulated the transcriptional activity of CYP27A1 in LNCaP prostate cancer cells. 5alpha-Dihydrotestosterone and androgen receptor upregulated the transcriptional activity of CYP27A1 in HepG2 cells. Progressive deletion experiments indicate that the ERbeta-mediated effects in HepG2 and LNCaP cells are conferred to the same region (-451/+42) whereas ERalpha-mediated effects on this promoter are more complex. The results indicate that the stimulating effect of androgen in HepG2 cells is conferred to a region upstream from -792 in the CYP27A1 promoter. In summary, we have identified the human CYP27A1 gene as a target for estrogens and androgens. The results imply that expression of CYP27A1 may be affected by endogenous sex hormones and pharmacological compounds with estrogenic or androgenic effects.

  20. Cadmium down-regulates expression of XIAP at the post-transcriptional level in prostate cancer cells through an NF-κB-independent, proteasome-mediated mechanism

    Directory of Open Access Journals (Sweden)

    Fox Eric

    2010-07-01

    Full Text Available Abstract Background Cadmium has been classified as a human carcinogen, affecting health through occupational and environmental exposure. Cadmium has a long biological half-life (>25 years, due to the flat kinetics of its excretion. The prostate is one of the organs with highest levels of cadmium accumulation. Importantly, patients with prostate cancer appear to have higher levels of cadmium both in the circulation and in prostatic tissues. Results In the current report, we demonstrate for the first time that cadmium down-regulates expression of the X-linked inhibitor of apoptosis protein (XIAP in prostate cancer cells. Cadmium-mediated XIAP depletion occurs at the post-transcriptional level via an NF-κB-independent, proteasome-mediated mechanism and coincides with an increased sensitivity of prostate cancer cells to TNF-α-mediated apoptosis. Prolonged treatment with cadmium results in selection of prostate cancer cells with apoptosis-resistant phenotype. Development of apoptosis-resistance coincides with restoration of XIAP expression in cadmium-selected PC-3 cells. Conclusions Selection of cadmium-resistant cells could represent an adaptive survival mechanism that may contribute to progression of prostatic malignancies.

  1. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation

    Czech Academy of Sciences Publication Activity Database

    Wang, X.; Shaw, D.K.; Hammond, H.L.; Sutterwala, F.S.; Rayamajhi, M.; Shirey, K.A.; Perkins, D.J.; Bonventre, J.V.; Velayutham, T.S.; Evans, S.M.; Rodino, K.G.; VieBrock, L.; Scanlon, K.M.; Carbonetti, N.H.; Carlyon, J.A.; Miao, E.A.; McBride, J.W.; Kotsyfakis, Michalis; Pedra, J. H. F.

    2016-01-01

    Roč. 12, č. 8 (2016), č. článku e1005803. E-ISSN 1553-7374 Institutional support: RVO:60077344 Keywords : Rickettsial agents * Anaplasma phagocytophilum * prostaglandin E2-EP3 Receptor Axis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.003, year: 2015

  2. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  3. NKX3.1 contributes to S phase entry and regulates DNA damage response (DDR) in prostate cancer cell lines.

    Science.gov (United States)

    Erbaykent-Tepedelen, Burcu; Ozmen, Besra; Varisli, Lokman; Gonen-Korkmaz, Ceren; Debelec-Butuner, Bilge; Muhammed Syed, Hamid; Yilmazer-Cakmak, Ozgur; Korkmaz, Kemal Sami

    2011-10-14

    NKX3.1 is an androgen-regulated homeobox gene that encodes a tissue-restricted transcription factor, which plays an important role in the differentiation of the prostate epithelium. Thus, the role of NKX3.1 as a functional topoisomerase I activity enhancer in cell cycle regulation and the DNA damage response (DDR) was explored in prostate cancer cell lines. As an early response to DNA damage following CPT-11 treatment, we found that there was an increase in the γH2AX(S139) foci number and that total phosphorylation levels were reduced in PC-3 cells following ectopic NKX3.1 expression as well as in LNCaP cells following androgen administration. Furthermore, upon drug treatment, the increase in ATM(S1981) phosphorylation was reduced in the presence of NKX3.1 expression, whereas DNA-PKcs expression was increased. Additionally, phosphorylation of CHK2(T68) and NBS1(S343) was abrogated by ectopic NKX3.1 expression, compared with the increasing levels in control PC-3 cells in a time-course experiment. Finally, NKX3.1 expression maintained a high cyclin D1 expression level regardless of drug treatment, while total γH2AX(S139) phosphorylation remained depleted in PC-3, as well as in LNCaP, cells. Thus, we suggest that androgen regulated NKX3.1 maintains an active DDR at the intra S progression and contributes to the chemotherapeutic resistance of prostate cancer cells to DNA damaging compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Superoxide Dismutase 1 Regulation of CXCR4-Mediated Signaling in Prostate Cancer Cells is Dependent on Cellular Oxidative State

    Directory of Open Access Journals (Sweden)

    Brent Young

    2015-11-01

    Full Text Available Background/Aims: CXCL12, acting via one of its G protein-coupled receptors, CXCR4, is a chemoattractant for a broad range of cell types, including several types of cancer cells. Elevated expression of CXCR4, and its ligand CXCL12, play important roles in promoting cancer metastasis. Cancer cells have the potential for rapid and unlimited growth in an area that may have restricted blood supply, as oxidative stress is a common feature of solid tumors. Recent studies have reported that enhanced expression of cytosolic superoxide dismutase (SOD1, a critical enzyme responsible for regulation of superoxide radicals, may increase the aggressive and invasive potential of malignant cells in some cancers. Methods: We used a variety of biochemical approaches and a prostate cancer cell line to study the effects of SOD1 on CXCR4 signaling. Results: Here, we report a direct interaction between SOD1 and CXCR4. We showed that SOD1 interacts directly with the first intracellular loop (ICL1 of CXCR4 and that the CXCL12/CXCR4-mediated regulation of AKT activation, apoptosis and cell migration in prostate cancer (PCa cells is differentially modulated under normal versus hypoxic conditions when SOD1 is present. Conclusions: This study highlights a potential new regulatory mechanism by which a sensor of the oxidative environment could directly regulate signal transduction of a receptor involved in cancer cell survival and migration.

  5. Wnt signaling promotes androgen-independent prostate cancer cell proliferation through up-regulation of the hippo pathway effector YAP.

    Science.gov (United States)

    Seo, Won Ik; Park, Seoyoung; Gwak, Jungsug; Ju, Bong Gun; Chung, Jae Il; Kang, Pil Moon; Oh, Sangtaek

    2017-05-13

    Aberrant up-regulation of Wnt/β-catenin signaling is associated with the development and progression of prostate cancer, but the underlying mechanism is unclear. Here we show that in the absence of androgens, the Wnt/β-catenin pathway activates AR-mediated transcription through up-regulation of the Hippo pathway effector Yes-associated protein (YAP). Wnt3a-conditioned medium (Wnt3a-CM) promotes the growth of LNCaP cells and increases AR and YAP protein levels. Moreover, Wnt3a-CM induces the nuclear translocation of YAP and the AR, but not β-catenin, thereby activating the expression of AR- and YAP-dependent genes, in an androgen-independent manner. In addition, depletion of YAP with small interfering RNA (siRNA) prevented Wnt3a-CM-mediated up-regulation of AR-dependent gene expression. Thus, our findings provide mechanistic insight into the proposed cross-talk between the Wnt/β-catenin and Hippo pathways in androgen-independent prostate cancer development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Survival Signaling in Prostate Cancer: Role of Androgen Receptor and Integrins in Regulating Survival

    Science.gov (United States)

    2011-01-01

    Prostate Cancer Predoctoral Training Award (W81XWH- 08-1-0058) to L.L., and the American Cancer Society (RSG-05-245- 01- CSM ) to C.K.M. Additional support...Prostate Cancer Predoctoral Training Award (W81XWH-08-1-0058) (L.E.L.), and the American Cancer Society (RSG-05-245-01- CSM ) (C.K.M). Additional...Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Methods 2001; 25: 402-8. 26. Sun

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the prostate is enlarged, also known as benign prostatic hyperplasia (BPH) , with measurements acquired as needed for any ... size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) Prostate Cancer Ultrasound- ...

  8. Posttranscriptional regulation of T-type Ca(2+) channel expression by interleukin-6 in prostate cancer cells.

    Science.gov (United States)

    Weaver, Erika M; Zamora, Francis J; Hearne, Jennifer L; Martin-Caraballo, Miguel

    2015-12-01

    At early stages, the growth of prostate cancers is androgen dependent. At later stages, however, the growth of prostate cancers becomes androgen independent, which leads to an increase in mortality. The switch to an androgen-refractory state is associated with neuroendocrine differentiation (NED) of prostate cancer cells. Several factors including interleukin-6 (IL-6) and increased cAMP production promote NED of prostate cancer cells. In this work we investigated whether IL-6 evoked NED of LNCaP cells results in a significant change in T-type Ca(2+) channel expression in comparison to non-stimulated LNCaP cells. T-type Ca(2+) channel subunit Cav3.2 expression was studied using PCR analysis, western blot and whole cell recordings. Tubulin IIIβ expression and neurite-like morphology was assessed to investigate the role of T-type Ca(2+) channels in the differentiation of prostate cancer cells. Treatment of LNCaP cells with IL-6 for 4days evokes considerable morphological and biochemical changes consistent with NED. Transcripts of the T-type Ca(2+) channel subunit Cav3.2 but not Cav3.1 or Cav3.3 are detected in IL-6 stimulated cells. Real time PCR analysis of IL-6 stimulated cells indicates no significant change in Cav3.2 mRNA expression in comparison to non-stimulated cells. LNCaP cells stimulated with IL-6 show a threefold increase in T-type Ca(2+) channel subunit Cav3.2 protein expression, suggesting that channel expression is upregulated by a posttranscriptional mechanism. Electrophysiological recordings reveal that increased Cav3.2 protein expression following IL-6 stimulation of LNCaP cells does not result in increased expression of functional channels in the membrane. Functional expression of Cav3.2 channels in LNCaP cells is facilitated by co-stimulation with IL-6 and the cAMP-stimulating agent, forskolin (FSK). Inhibition of T-type Ca(2+) channel activity in IL-6 stimulated LNCaP cells prevents the development of morphological characteristics consistent with

  9. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.

    Science.gov (United States)

    Itkonen, Harri M; Minner, Sarah; Guldvik, Ingrid J; Sandmann, Mareike Julia; Tsourlakis, Maria Christina; Berge, Viktor; Svindland, Aud; Schlomm, Thorsten; Mills, Ian G

    2013-08-15

    Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.

  10. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-01-01

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  11. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    Science.gov (United States)

    2008-10-01

    differences in genetic susceptibility to methylation, lifestyle or exposure factors (including diet ), and the random nature of the methylation event. The... Miracle -McMahill HL, et al. Family history and risk of fatal prostate cancer. Epide- miology1997;8:653^7. 2. Depinho RA. The age of cancer. Nature 2000;408

  12. Regulation of DU145 prostate cancer cell growth by Scm-like with ...

    Indian Academy of Sciences (India)

    Using DU145 prostate cancer cells as a model, we showed that SFMBT2 has a transcriptional repression activity on HOXB13 gene expression. In addition, occupancy of SFMBT2 coincided with enrichment of diand tri-methylated H3K9 and H4K20 as well as tri-methylated H3K27 at the HOXB13 gene promoter.

  13. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth

    DEFF Research Database (Denmark)

    Jiang, Ning; Ke, Binghu; Hjort-Jensen, Kim

    2017-01-01

    Castration resistant prostate cancer (CRPC) is a stage of relapse that arises after various forms of androgen ablation therapy (ADT) and causes significant morbidity and mortality. However, the mechanism underlying progression to CRPC remains poorly understood. Here, we report that YAP1, which...

  14. The up-stream regulation of polymerase-1 and transcript release factor(PTRF/Cavin-1 in prostate cancer: an epigenetic analysis

    Directory of Open Access Journals (Sweden)

    Helen D. Nicholson

    2016-09-01

    Full Text Available The expression of PTRF is down-regulated in prostate cell lines and tissues. Restorationof PTRF expression leads to a reduction in aggressive phenotypes of prostate cancer cells both in vitro and in vivo. Epigenetics examines the changes in gene expression that occur without changing DNA sequences. Two main epigenetic mechanisms include hypermethylation of the gene’s promoter region and changes to the chromatin structure through histone modification. We investigated the involvement of possible epigenetic up-stream regulatory mechanisms that may down-regulate PTRF in prostate cancer cells. Normal (RWPE-1 and prostate cancer (LNCaP and PC3 cell lines were treated with DNA methylation inhibitor, 5-aza-2Ꞌ-deoxycytidine (5AZA and histone deacetylase inhibitor, Trichostatin-A (TSA either independently or in combination. A bioinformatics approach was also used to investigate the changes of epigenetic driver genes in silico. In normal prostate cells(RWPE-1, and androgen independent prostate cancer cells (PC3, treatment with 5AZA and/or TSA did not affect PTRF expression. However, TSA and TSA + 5AZA treatments, but not 5AZA alone,up-regulated the expression of PTRF in LNCaP cells. Bioinformatic analysis of the potential histone deacetylase (HDAC genes involved showed that HDAC2, HDAC6 and HDAC10 may be potential candidate genes for the regulation of PTRF. This corroborative study describes the possible role of an epigenetic mechanism onPTRF, further studies are required to allow a better understanding of theup-stream mechanisms that regulate PTRF expression.

  15. MicroRNA Regulation of CD44+ Prostate Tumor Stem/Progenitor Cells and Prostate Cancer Development/Metastasis

    Science.gov (United States)

    2013-05-01

    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131: 1109–23...sensitivity of human hepatocarcinoma cells. Cancer Res 2010;70: 5184–93. 32. Yin G, Chen R, Alvero AB, Fu HH, Holmberg J, Glackin C, et al. TWISTing...essential for mouse development. Nat Genet 2003;35:215–7. 5. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenu- wein T, et al. Dicer

  16. The prevalence of impaired glucose regulation in psychiatric patients with sleep disorders and its relationship with altered hypothalamopituitary-adrenal and hypothalamopituitary-thyroid axis activity.

    Science.gov (United States)

    Li, Jiaqi; Sun, Xueli; Yu, Yerong

    2013-07-01

    Sleep restriction, an important symptom of psychiatric diseases, is associated with adverse effects on glucose regulation, but few studies have examined its association with impaired glucose regulation and altered hypothalamic activity. Our study was designed to evaluate the sleep duration, fasting glucose, tolerance glucose, and concentration of plasma insulin; to assess the function of both the hypothalamopituitary-thyroid (HPT) and hypothalamopituitary-adrenal (HPA) axis; and to investigate the relationship of altered hypothalamic function with glucose metabolism in psychiatric patients with a sleep disorders. From January 2010 to December 2011, 324 women (64.7%) and 177 men (35.32%) with a diagnosis of a sleep disorder participated in our cross-sectional study in the psychiatric outpatient department of the West China Hospital of Sichuan University. Results from 75-g glucose tolerance tests, insulin-releasing tests, morning (8:00 am) serum cortisol, and thyroid-stimulating hormone (TSH) (TT3, TT4, FT3, FT4) were collected, as well as body mass index and waist-hip ratio to assess the prevalence of impaired glucose regulation and function of the HPA and HPT axis. Sleep quality was assessed through self-reported questionnaires. There were 301 patients previously diagnosed with an anxiety disorder (78%), and 200 patients previously diagnosed with depression and other psychiatric diseases (22%). Crude prevalence rates were 15.0% for diabetes mellitus (DM), 11.6% for impaired glucose tolerance, 15.8% for impaired fasting glucose, and 11.6% for impaired glucose regulation (impaired glucose tolerance [IGT]+impaired fasting glucose [IFG]). Total prevalence of impaired glucose regulation in patients with a sleep disorder was 48.8%. Mean cortisol level was 463.5±178.8 nmol/L, and the cortisol concentration at 8:00 am was significantly associated with a higher prevalence of impaired glucose regulation and insulin resistance. TSH values above 2.5 mU/L accounted for over 58

  17. A Critical Role of the PTEN/PDGF Signaling Network for the Regulation of Radiosensitivity in Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Michael, E-mail: mechristense@uwalumni.com [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Najy, Abdo J. [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Snyder, Michael; Movilla, Lisa S. [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Kim, Hyeong-Reh Choi [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States)

    2014-01-01

    Purpose: Loss or mutation of the phosphate and tensin homologue (PTEN) is a common genetic abnormality in prostate cancer (PCa) and induces platelet-derived growth factor D (PDGF D) signaling. We examined the role of the PTEN/PDGF axis on radioresponse using a murine PTEN null prostate epithelial cell model. Methods and Materials: PTEN wild-type (PTEN{sup +/+}) and PTEN knockout (PTEN{sup −/−}) murine prostate epithelial cell lines were used to examine the relationship between the PTEN status and radiosensitivity and also to modulate the PDGF D expression levels. PTEN{sup −/−} cells were transduced with a small hairpin RNA (shRNA) lentiviral vector containing either scrambled nucleotides (SCRM) or sequences targeted to PDGF D (shPDGF D). Tumorigenesis and morphogenesis of these cell lines were evaluated in vivo via subcutaneous injection of male nude mice and in vitro using Matrigel 3-dimensional (3D) culture. Effects of irradiation on clonogenic survival, cell migration, and invasion were measured with respect to the PTEN status and the PDGF D expression level. In addition, apoptosis and cell cycle redistribution were examined as potential mechanisms for differences seen. Results: PTEN{sup −/−} cells were highly tumorigenic in animals and effectively formed foci in 3D culture. Importantly, loss of PDGF D in these cell lines drastically diminished these phenotypes. Furthermore, PTEN{sup −/−} cells demonstrated increased clonogenic survival in vitro compared to PTEN{sup +/+}, and attenuation of PDGF D significantly reversed this radioresistant phenotype. PTEN{sup −/−} cells displayed greater migratory and invasive potential at baseline as well as after irradiation. Both the basal and radiation-induced migratory and invasive phenotypes in PTEN{sup −/−} cells required PDGF D expression. Interestingly, these differences were independent of apoptosis and cell cycle redistribution, as they showed no significant difference. Conclusions: We propose

  18. The FUSE binding proteins FBP1 and FBP3 are potential c-myc regulators in renal, but not in prostate and bladder cancer

    Directory of Open Access Journals (Sweden)

    Meyer Hellmuth-Alexander

    2008-12-01

    Full Text Available Abstract Background The three far-upstream element (FUSE binding proteins (FBP1, FBP2, and FBP3 belong to an ancient family of single-stranded DNA binding proteins which are required for proper regulation of the c-myc proto-oncogene. Whereas it is known that c-myc alterations play a completely different role in various carcinomas of the urogenital tract, the relevance of FBPs is unclear. Methods FBP1, FBP3 and c-myc expression was studied in 105 renal cell, 95 prostate and 112 urinary bladder carcinomas by immunohistochemistry using tissue microarrays. Results High rates of FBP1 and FBP3 expression were observed in all cancer types. There was a concomitant up-regulation of FBP1 and FBP3 in renal cell and prostate carcinomas (p C-myc expression was detectable in 21% of prostate, 30% of renal and 34% of urothelial carcinomas. Interestingly, strong FBP1 and FBP3 expression was associated with c-myc up-regulation in clear cell renal cell carcinomas (p Conclusion The correlation between FBP1/FBP3, c-myc and high proliferation rate in renal cell carcinoma provides strong in vivo support for the suggested role of FBP1 and FBP3 as activators of c-myc. The frequent up-regulation of FBP1 and FBP3 in urothelial and prostate carcinoma suggests that FBPs also have an important function in gene regulation of these tumors.

  19. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression

    International Nuclear Information System (INIS)

    Fan, Xinlan; Chen, Xu; Deng, Weixi; Zhong, Guangzheng; Cai, Qingqing; Lin, Tianxin

    2013-01-01

    Metastatic prostate cancer is a leading cause of cancer-related death in men. Cancer stem cells (CSCs) are involved in tumor progression and metastasis, including in prostate cancer. There is an obvious and urgent need for effective cancer stem cells specific therapies in metastatic prostate cancer. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, especially in cancer. The goal of this study was to identify miRNAs involved in prostate cancer metastasis and cancer stem cells. A microarray and qRT-PCR were performed to investigate the miRNA expression profiles in PC-3 sphere cells and adherent cells. A transwell assay was used to evaluate the migration of PC-3 sphere cells and adherent cells. MiR-143 was silenced with antisense oligonucleotides in PC-3, PC-3-M and LNCaP cells. The role of miR-143 in prostate cancer metastasis was measured by wound-healing and transwell assays in vitro and bioluminescence imaging in vivo. Bioinformatics and luciferase report assays were used to identify the target of miR-143. The expression of miR-143 and the migration capability were reduced in PC-3 sphere cells and progressively increased during sphere re-adherent culture. Moreover, the down-regulation of miR-143 suppressed prostate cancer cells migration and invasion in vitro and systemically inhibited metastasis in vivo. Fibronectin type III domain containing 3B (FNDC3B), which regulates cell motility, was identified as a target of miR-143. The inhibition of miR-143 increased the expression of FNDC3B protein but not FNDC3B mRNA in vitro and vivo. These data demonstrate for the first time that miR-143 was up-regulated during the differentiation of prostate cancer stem cells and promoted prostate cancer metastasis by repressing FNDC3B expression. This sheds a new insight into the post-transcriptional regulation of cancer stem cells differentiation by miRNAs, a potential approach for the treatment of prostate cancer

  20. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway.

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    Full Text Available Many prostate cancers relapse due to the generation of chemoresistance rendering first-line treatment drugs like paclitaxel (PTX ineffective. The present study aims to determine the role of miRNAs and Hedgehog (Hh pathway in chemoresistant prostate cancer and to evaluate the combination therapy using Hh inhibitor cyclopamine (CYA. Studies were conducted on PTX resistant DU145-TXR and PC3-TXR cell lines and clinical prostate tissues. Drug sensitivity and apoptosis assays showed significantly improved cytotoxicity with combination of PTX and CYA. To distinguish the presence of cancer stem cell like side populations (SP, Hoechst 33342 flow cytometry method was used. PTX resistant DU145 and PC3 cells, as well as human prostate cancer tissue possess a distinct SP fraction. Nearly 75% of the SP cells are in the G0/G1 phase compared to 62% for non-SP cells and have higher expression of stem cell markers as well. SP cell fraction was increased following PTX monotherapy and treatment with CYA or CYA plus PTX effectively reduced their numbers suggesting the effectiveness of combination therapy. SP fraction cells were allowed to differentiate and reanalyzed by Hoechst staining and gene expression analysis. Post differentiation, SP cells constitute 15.8% of total viable cells which decreases to 0.6% on treatment with CYA. The expression levels of P-gp efflux protein were also significantly decreased on treatment with PTX and CYA combination. MicroRNA profiling of DU145-TXR and PC3-TXR cells and prostate cancer tissue from the patients showed decreased expression of tumor suppressor miRNAs such as miR34a and miR200c. Treatment with PTX and CYA combination restored the expression of miR200c and 34a, confirming their role in modulating chemoresistance. We have shown that supplementing mitotic stabilizer drugs such as PTX with Hh-inhibitor CYA can reverse PTX chemoresistance and eliminate SP fraction in androgen independent, metastatic prostate cancer cell

  1. Evidence for Feedback Regulation Following Cholesterol Lowering Therapy in a Prostate Cancer Xenograft Model.

    Science.gov (United States)

    Masko, Elizabeth M; Alfaqih, Mahmoud A; Solomon, Keith R; Barry, William T; Newgard, Christopher B; Muehlbauer, Michael J; Valilis, Nikolaos A; Phillips, Tameika E; Poulton, Susan H; Freedland, Alexis R; Sun, Stephanie; Dambal, Shweta K; Sanders, Sergio E; Macias, Everardo; Freeman, Michael R; Dewhirst, Mark W; Pizzo, Salvatore V; Freedland, Stephen J

    2017-04-01

    Epidemiologic data suggest cholesterol-lowering drugs may prevent the progression of prostate cancer, but not the incidence of the disease. However, the association of combination therapy in cholesterol reduction on prostate or any cancer is unclear. In this study, we compared the effects of the cholesterol lowering drugs simvastatin and ezetimibe alone or in combination on the growth of LAPC-4 prostate cancer in vivo xenografts. Proliferation assays were conducted by MTS solution and assessed by Student's t-test. 90 male nude mice were placed on a high-cholesterol Western-diet for 7 days then injected subcutaneously with 1 × 10 5 LAPC-4 cells. Two weeks post-injection, mice were randomized to control, 11 mg/kg/day simvastatin, 30 mg/kg ezetimibe, or the combination and sacrificed 42 days post-randomization. We used a generalized linear model with the predictor variables of treatment, time, and treatment by time (i.e., interaction term) with tumor volume as the outcome variable. Total serum and tumor cholesterol were measured. Tumoral RNA was extracted and cDNA synthesized from 1 ug of total RNA for quantitative real-time PCR. Simvastatin directly reduced in vitro prostate cell proliferation in a dose-dependent, cell line-specific manner, but ezetimibe had no effect. In vivo, low continuous dosing of ezetimibe, delivered by food, or simvastatin, delivered via an osmotic pump had no effect on tumor growth compared to control mice. In contrast, dual treatment of simvastatin and ezetimibe accelerated tumor growth. Ezetimibe significantly lowered serum cholesterol by 15%, while simvastatin had no effect. Ezetimibe treatment resulted in higher tumor cholesterol. A sixfold induction of low density lipoprotein receptor mRNA was observed in ezetimibe and the combination with simvastatin versus control tumors. Systemic cholesterol lowering by ezetimibe did not slow tumor growth, nor did the cholesterol independent effects of simvastatin and the combined treatment

  2. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth

    DEFF Research Database (Denmark)

    Jiang, Nan; Hjorth-Jensen, Kim; Hekmat, Omid

    2015-01-01

    timing. Interestingly, these phenotypic changes occur in the absence of obvious alterations in the activity of AKT, MAPK or mTORC1 pathways, suggesting that PAK2 and YAP1 may represent novel targets for the treatment of castration-resistant prostate cancer. Pharmacologic inhibitors of PAK2 (PF-3758309......Prostate cancer remains a leading cause of cancer-related mortality worldwide owing to our inability to treat effectively castration-resistant tumors. To understand the signaling mechanisms sustaining castration-resistant growth, we implemented a mass spectrometry-based quantitative proteomic...... approach and use it to compare protein phosphorylation in orthotopic xenograft tumors grown in either intact or castrated mice. This investigation identified changes in phosphorylation of signaling proteins such as MEK, LYN, PRAS40, YAP1 and PAK2, indicating the concomitant activation of several oncogenic...

  3. Identification of genes regulating migration and invasion using a new model of metastatic prostate cancer

    International Nuclear Information System (INIS)

    Banyard, Jacqueline; Chung, Ivy; Migliozzi, Matthew; Phan, Derek T; Wilson, Arianne M; Zetter, Bruce R; Bielenberg, Diane R

    2014-01-01

    Understanding the complex, multistep process of metastasis remains a major challenge in cancer research. Metastasis models can reveal insights in tumor development and progression and provide tools to test new intervention strategies. To develop a new cancer metastasis model, we used DU145 human prostate cancer cells and performed repeated rounds of orthotopic prostate injection and selection of subsequent lymph node metastases. Tumor growth, metastasis, cell migration and invasion were analyzed. Microarray analysis was used to identify cell migration- and cancer-related genes correlating with metastasis. Selected genes were silenced using siRNA, and their roles in cell migration and invasion were determined in transwell migration and Matrigel invasion assays. Our in vivo cycling strategy created cell lines with dramatically increased tumorigenesis and increased ability to colonize lymph nodes (DU145LN1-LN4). Prostate tumor xenografts displayed increased vascularization, enlarged podoplanin-positive lymphatic vessels and invasive margins. Microarray analysis revealed gene expression profiles that correlated with metastatic potential. Using gene network analysis we selected 3 significantly upregulated cell movement and cancer related genes for further analysis: EPCAM (epithelial cell adhesion molecule), ITGB4 (integrin β4) and PLAU (urokinase-type plasminogen activator (uPA)). These genes all showed increased protein expression in the more metastatic DU145-LN4 cells compared to the parental DU145. SiRNA knockdown of EpCAM, integrin-β4 or uPA all significantly reduced cell migration in DU145-LN4 cells. In contrast, only uPA siRNA inhibited cell invasion into Matrigel. This role of uPA in cell invasion was confirmed using the uPA inhibitors, amiloride and UK122. Our approach has identified genes required for the migration and invasion of metastatic tumor cells, and we propose that our new in vivo model system will be a powerful tool to interrogate the metastatic

  4. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2

    Czech Academy of Sciences Publication Activity Database

    Pernicová, Zuzana; Slabáková, Eva; Kharaishvili, G.; Bouchal, J.; Král, M.; Kunická, Z.; Machala, M.; Kozubík, Alois; Souček, Karel

    2011-01-01

    Roč. 13, č. 6 (2011), s. 526-536 ISSN 1522-8002 R&D Projects: GA ČR(CZ) GA310/07/0961; GA MZd NS9600; GA MZd NS9956 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : prostate cancer * senescence * Skp2 Subject RIV: BO - Biophysics Impact factor: 5.946, year: 2011

  5. miR-24-3p/FGFR3 Signaling as a Novel Axis Is Involved in Epithelial-Mesenchymal Transition and Regulates Lung Adenocarcinoma Progression

    Directory of Open Access Journals (Sweden)

    Pengyu Jing

    2018-01-01

    Full Text Available Our previous studies showed that Fibroblast growth factor receptor 3 (FGFR3 contributed to cell growth in lung cancer. However, the correlation between FGFR3 and tumor progression, coupled with the underlying mechanisms, are not fully understood. The clinical significance of FGFR3 was determined in two cohorts of clinical samples (n=22, n=78. A panel of biochemical assays and functional experiments was utilized to elucidate the underlying mechanisms and effects of FGFR3 and miR-24-3p on lung adenocarcinoma progression. Upregulated FGFR3 expression indicated an adverse prognosis for lung adenocarcinoma individuals and promoted metastatic potential of lung adenocarcinoma cells. Owing to the direct regulation towards FGFR3, miR-24-3p could interfere with the potential of proliferation, migration, and invasion in lung adenocarcinoma, following variations of EMT-related protein expression. As a significant marker of EMT, E-cadherin was negatively correlated with FGFR3, of which ectopic overexpression could neutralize the antitumour effects of miR-24-3p and reverse its regulatory effects on EMT markers. Taken together, these findings define a novel insight into the miR-24-3p/FGFR3 signaling axis in regulating lung adenocarcinoma progression and suggest that targeting the miR-24-3p/FGFR3 axis could be an effective and efficient way to prevent tumor progression.

  6. Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression.

    Science.gov (United States)

    Chang, Yu-Chan; Chan, Yung-Chieh; Chang, Wei-Ming; Lin, Yuan-Feng; Yang, Chih-Jen; Su, Chia-Yi; Huang, Ming-Shyan; Wu, Alexander T H; Hsiao, Michael

    2017-09-10

    Distant metastasis and recurrence are the greatest challenges in the clinical management of lung cancer. Despite advances in targeted therapies, high mortality rates persist. Therefore, alternative therapeutic interventions are urgently required. Accumulating evidence indicates that normalizing tumor metabolism may be a way to increase therapeutic efficacy and to reduce tumor malignancy. Here, we analyzed integrated transcriptomics data and an shRNA library against glycolytic enzymes and found that elevated Aldolase A expression is highly correlated with metastatic potential and a poor prognosis in patients with non-small cell lung cancer (NSCLC). We validated our in silico findings with an immunohistochemical analysis of clinical samples. Aldolase A silencing significantly suppressed metastatic potential both in vitro and in vivo, whereas the ectopic overexpression of Aldolase A resulted in the opposite phenotype. Furthermore, our microarray and Ingenuity Pathway Analyses (IPA) revealed that Aldolase A-driven lung cancer metastasis was closely linked to hypoxia inducible factor 1 alpha (HIF-1α)-downstream signaling. Importantly, Aldolase A overexpression may promote the release of lactate to block PHD activities and further induce HIF-1α stabilization. Aldolase A and nuclear HIF-1α overexpression levels were positively correlated and were significantly associated with a poorer survival rate in lung cancer patients (P = 0.008 for Overall Survival, P = 0.021 for Disease-free Survival). Furthermore, MMP9, a downstream target of HIF-1α, was significantly upregulated after ALDOA overexpression. A MMP9 inhibitor significantly inhibited cell invasion and migration in ALDOA-HIF-1α axis-induced lung cancer. In summary, our results reveal the molecular mechanism of Aldolase A in promoting lung cancer metastasis via PHD-mediated stabilization of HIF-1α and the subsequent activation of MMP9. The ALDOA-HIF-1α axis may provide a new therapeutic target for

  7. Ketamine and Etomidate Down-regulate the Hypothalamic-Pituitary-Adrenal Axis in an Endotoxemic Mouse Model.

    Science.gov (United States)

    Besnier, Emmanuel; Clavier, Thomas; Tonon, Marie-Christine; Selim, Jean; Lefevre-Scelles, Antoine; Morin, Fabrice; Tamion, Fabienne; Dureuil, Bertrand; Castel, Hélène; Compere, Vincent

    2017-08-01

    We compared the effects of etomidate and ketamine on the hypothalamic-pituitary-adrenal axis during sepsis. Mice (n = 5/group) were injected intraperitoneally with lipopolysaccharide (10 mg/kg) and 6 h later randomized to receive ketamine (100 mg/kg), etomidate (30 mg/kg), or saline. At two time points (12 and 48 h), messenger RNA levels of hypothalamic corticotropin-releasing hormone, pituitary proopiomelanocortin, and four adrenal enzymes (P450 side-chain cleavage, 3β-hydroxysteroid deshydrogenase, 21-hydroxylase, and 11β-hydroxylase) were measured by in situ hybridization (results are presented as optical density), and plasma levels of corticosterone and adrenocorticotropin hormones were measured by enzyme-linked immunosorbent assay (mean ± SD). At 12 h, lipopolysaccharide induced an overexpression of corticotropin-releasing hormone (32 ± 5 vs. 18 ± 6, P ketamine reduced P450 side-chain cleavage (19 ± 7 and 19 ± 3 vs. 32 ± 4, P Ketamine also inhibited adrenocorticotropin hormone production (2.5 ± 3.6 vs. 36 ± 15 pg/ml, P Ketamine and etomidate did not modify corticosterone plasma levels. Our endotoxemic model induces an initial activation of the hypothalamic-pituitary-adrenal axis, followed by a secondary inhibition of adrenal steroidogenesis processes. Ketamine and etomidate inhibit the enzyme expression and activity of the adrenal gland at the early stage.

  8. Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo-pituitary-adrenocortical axis in male rats.

    Science.gov (United States)

    Grayson, Bernadette E; Hakala-Finch, Andrew P; Kekulawala, Melani; Laub, Holly; Egan, Ann E; Ressler, Ilana B; Woods, Stephen C; Herman, James P; Seeley, Randy J; Benoit, Stephen C; Ulrich-Lai, Yvonne M

    2014-12-01

    Behavioral modifications for the treatment of obesity, including caloric restriction, have notoriously low long-term success rates relative to bariatric weight-loss surgery. The reasons for the difference in sustained weight loss are not clear. One possibility is that caloric restriction alone activates the stress-responsive hypothalamo-pituitary-adrenocortical (HPA) axis, undermining the long-term maintenance of weight loss, and that this is abrogated after bariatric surgery. Accordingly, we compared the HPA response to weight loss in five groups of male rats: (1) high-fat diet-induced obese (DIO) rats treated with Roux-en-Y gastric bypass surgery (RYGB, n = 7), (2) DIO rats treated with vertical sleeve gastrectomy (VSG, n = 11), (3) DIO rats given sham surgery and subsequently restricted to the food intake of the VSG/RYGB groups (Pair-fed, n = 11), (4) ad libitum-fed DIO rats given sham surgery (Obese, n = 11) and (5) ad libitum chow-fed rats given sham surgery (Lean, n = 12). Compared with Lean controls, food-restricted rats exhibited elevated morning (nadir) non-stress plasma corticosterone concentration and increased hypothalamic corticotropin-releasing hormone and vasopressin mRNA expression, indicative of basal HPA activation. This was largely prevented when weight loss was achieved by bariatric surgery. DIO increased HPA activation by acute (novel environment) stress and this was diminished by bariatric surgery-, but not pair-feeding-, induced weight loss. These results indicate that the HPA axis is differentially affected by weight loss from caloric restriction versus bariatric surgery, and this may contribute to the differing long-term effectiveness of these two weight-loss approaches.

  9. Co-regulation analysis of closely linked genes identifies a highly recurrent gain on chromosome 17q25.3 in prostate cancer

    International Nuclear Information System (INIS)

    Bermudo, Raquel; Martínez-A, Carlos; Ortiz, Ángel R; Fernández, Pedro L; Thomson, Timothy M; Abia, David; Ferrer, Berta; Nayach, Iracema; Benguria, Alberto; Zaballos, Ángel; Rey, Javier del; Miró, Rosa; Campo, Elías

    2008-01-01

    Transcriptional profiling of prostate cancer (PC) has unveiled new markers of neoplasia and allowed insights into mechanisms underlying this disease. Genomewide analyses have also identified new chromosomal abnormalities associated with PC. The combination of both classes of data for the same sample cohort might provide better criteria for identifying relevant factors involved in neoplasia. Here we describe transcriptional signatures identifying distinct normal and tumoral prostate tissue compartments, and the inference and demonstration of a new, highly recurrent copy number gain on chromosome 17q25.3. We have applied transcriptional profiling to tumoral and non-tumoral prostate samples with relatively homogeneous epithelial representations as well as pure stromal tissue from peripheral prostate and cultured cell lines, followed by quantitative RT-PCR validations and immunohistochemical analysis. In addition, we have performed in silico colocalization analysis of co-regulated genes and validation by fluorescent in situ hybridization (FISH). The transcriptomic analysis has allowed us to identify signatures corresponding to non-tumoral luminal and tumoral epithelium, basal epithelial cells, and prostate stromal tissue. In addition, in silico analysis of co-regulated expression of physically linked genes has allowed us to predict the occurrence of a copy number gain at chromosomal region 17q25.3. This computational inference was validated by fluorescent in situ hybridization, which showed gains in this region in over 65% of primary and metastatic tumoral samples. Our approach permits to directly link gene copy number variations with transcript co-regulation in association with neoplastic states. Therefore, transcriptomic studies of carefully selected samples can unveil new diagnostic markers and transcriptional signatures highly specific of PC, and lead to the discovery of novel genomic abnormalities that may provide additional insights into the causes and mechanisms

  10. Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression

    Directory of Open Access Journals (Sweden)

    Po-Chun Chen

    2017-01-01

    Full Text Available Abstract Background Thrombospondin-2 (TSP-2 is a secreted matricellular glycoprotein that is found to mediate cell-to-extracellular matrix attachment and participates in many physiological and pathological processes. The expression profile of TSP-2 on tumors is controversial, and it up-regulates in some cancers, whereas it down-regulates in others, suggesting that the functional role of TSP-2 on tumors is still uncertain. Methods The expression of TSP-2 on prostate cancer progression was determined in the tissue array by the immunohistochemistry. The molecular mechanism of TSP-2 on prostate cancer (PCa metastasis was investigated through pharmaceutical inhibitors, siRNAs, and miRNAs analyses. The role of TSP-2 on PCa metastasis in vivo was verified through xenograft in vivo imaging system. Results Based on the gene expression omnibus database and immunohistochemistry, we found that TSP-2 increased with the progression of PCa, especially in metastatic PCa and is correlated with the matrix metalloproteinase-2 (MMP-2 expression. Additionally, through binding to CD36 and integrin ανβ3, TSP-2 increased cell migration and MMP-2 expression. With inhibition of p38, ERK, and JNK, the TSP-2-induced cell migration and MMP-2 expression were abolished, indicating that the TSP-2’s effect on PCa is MAPK dependent. Moreover, the microRNA-376c (miR-376c was significantly decreased by the TSP-2 treatment. Furthermore, the TSP-2-induced MMP-2 expression and the subsequent cell motility were suppressed upon miR-376c mimic stimulation. On the other hand, the animal studies revealed that the bone metastasis was abolished when TSP-2 was stably knocked down in PCa cells. Conclusions Taken together, our results indicate that TSP-2 enhances the migration of PCa cells by increasing MMP-2 expression through down-regulation of miR-376c expression. Therefore, TSP-2 may represent a promising new target for treating PCa.

  11. The FUSE binding proteins FBP1 and FBP3 are potential c-myc regulators in renal, but not in prostate and bladder cancer

    International Nuclear Information System (INIS)

    Weber, Achim; Moch, Holger; Kristiansen, Glen; Kristiansen, Ilka; Johannsen, Manfred; Oelrich, Beibei; Scholmann, Katharina; Gunia, Sven; May, Matthias; Meyer, Hellmuth-Alexander; Behnke, Silvia

    2008-01-01

    The three far-upstream element (FUSE) binding proteins (FBP1, FBP2, and FBP3) belong to an ancient family of single-stranded DNA binding proteins which are required for proper regulation of the c-myc proto-oncogene. Whereas it is known that c-myc alterations play a completely different role in various carcinomas of the urogenital tract, the relevance of FBPs is unclear. FBP1, FBP3 and c-myc expression was studied in 105 renal cell, 95 prostate and 112 urinary bladder carcinomas by immunohistochemistry using tissue microarrays. High rates of FBP1 and FBP3 expression were observed in all cancer types. There was a concomitant up-regulation of FBP1 and FBP3 in renal cell and prostate carcinomas (p < 0.001 both). C-myc expression was detectable in 21% of prostate, 30% of renal and 34% of urothelial carcinomas. Interestingly, strong FBP1 and FBP3 expression was associated with c-myc up-regulation in clear cell renal cell carcinomas (p < 0.001 and 0.09 resp.), but not in bladder or prostate cancer. The correlation between FBP1/FBP3, c-myc and high proliferation rate in renal cell carcinoma provides strong in vivo support for the suggested role of FBP1 and FBP3 as activators of c-myc. The frequent up-regulation of FBP1 and FBP3 in urothelial and prostate carcinoma suggests that FBPs also have an important function in gene regulation of these tumors

  12. Regulation of hypothalamic-pituitary-interrenal axis function in male smallmouth bass (Micropterus dolomieu) during parental care.

    Science.gov (United States)

    Jeffrey, J D; Cooke, S J; Gilmour, K M

    2014-08-01

    Male smallmouth bass (Micropterus dolomieu) provide sole parental care until offspring reach independence, a period of several weeks. During the early parental care period when males are guarding fresh eggs (MG-FE), cortisol responsiveness is attenuated; the response is re-established when males reach the end of the parental care period and are guarding free-swimming fry (MG-FSF). It was hypothesized that attenuation of the cortisol response in male smallmouth bass during early parental care reflected modulation of hypothalamic-pituitary-interrenal (HPI) axis function. Male smallmouth bass were sampled at the beginning (MG-FE) and end of the parental care period (MG-FSF), before and/or 25 min after exposure to a standardized stressor consisting of 3 min of air exposure. Repeated sampling of stressed fish for analysis of plasma cortisol and adrenocorticotropic hormone (ACTH) levels was carried out. Males significantly elevated both plasma cortisol and ACTH levels when guarding free-swimming fry but not during early parental care. Control and stressed fish were terminally sampled for tissue mRNA abundance of preoptic area (POA) and hypothalamic corticotropin-releasing factor (CRF) as well as head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc). No significant differences in either hypothalamus CRF or head kidney P450scc mRNA abundance were found across parental care stages or in response to stress. However, POA CRF mRNA abundance and interrenal cell MC2R and StAR mRNA abundances failed to increase in response to stress in MG-FE. Thus, the attenuated cortisol response in males guarding fresh eggs may be explained by hypoactive HPI axis function in response to stress. The present is one of few studies, and the first teleost study, to address the mechanisms underlying resistance to stress during the reproductive/parental care period. Copyright © 2014 Elsevier Inc. All rights

  13. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    cyproterone acetate-induced CHOP and DR5 up-regulation. More importantly, siRNA silencing of CHOP significantly reduced cyproterone acetate-induced DR5 up-regulation and TRAIL sensitivity in prostate cancer cells. Our study shows a novel effect of cyproterone acetate on apoptosis pathways in prostate cancer cells and raises the possibility that a combination of TRAIL with cyproterone acetate could be a promising strategy for treating castration-resistant prostate cancer.

  14. Up-regulation of α1a and α1d-adrenoceptors in the prostate by administration of subtype selective α1-adrenoceptor antagonist tamsulosin in patients with benign prostatic hyperplasia.

    Science.gov (United States)

    Kojima, Yoshiyuki; Sasaki, Shoichi; Kubota, Yasue; Imura, Makoto; Oda, Nobuyuki; Kiniwa, Mamoru; Hayashi, Yutaro; Kohri, Kenjiro

    2011-10-01

    We examined the change in α(1)-adrenoceptor subtype expression in the prostate due to chronic tamsulosin administration in a benign prostatic hyperplasia rat model and in patients. We measured α(1)-adrenoceptor subtype expression after tamsulosin administration in the prostate of the benign prostatic hyperplasia rat model using TaqMan® reverse transcriptase-polymerase chain reaction. We also measured expression before and after 12-week tamsulosin treatment in the prostate of patients with benign prostatic hyperplasia. We examined the correlation between the change in α(1)-adrenoceptor expression due to tamsulosin treatment and acute urinary retention during long-term followup. The expression of α(1a) and α(1d)-adrenoceptors was significantly increased in dose dependent fashion by tamsulosin in the benign prostatic hyperplasia rat model. Median mRNA expression of subtypes α(1a) and α(1d)-adrenoceptors was 1.4 (IQR 0.6, 3.0) and 1.7 × 1,000 copies per 1 ng β-actin (IQR 0.9, 2.4) before treatment, and 6.0 (IQR 2.0, 8.0) and 2.2 × 1,000 copies per 1 ng β-actin (IQR 1.7, 3.6), respectively, after treatment. The expression of α(1a) and α(1d)-adrenoceptors significantly increased after tamsulosin treatment (p <0.01 and <0.05, respectively). This increase was observed in 10 patients in whom acute urinary retention did not develop during long-term followup but not in 4 in whom acute urinary tract retention developed. Tamsulosin up-regulated α(1a) and α(1d)-adrenoceptors, suggesting that it has clinical selectivity for α(1a) and α(1d)-adrenoceptors. Up-regulation of α(1)-adrenoceptors subtype expression is considered an adaptive response to chronic tamsulosin administration. The difference in the response to α(1)-adrenoceptors antagonists among patients may contribute to the diversity in the long-term efficiency of α(1)-adrenoceptor antagonists. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All

  15. Asymmetric distribution of hypoxia-inducible factor α regulates dorsoventral axis establishment in the early sea urchin embryo.

    Science.gov (United States)

    Chang, Wei-Lun; Chang, Yi-Cheng; Lin, Kuan-Ting; Li, Han-Ru; Pai, Chih-Yu; Chen, Jen-Hao; Su, Yi-Hsien

    2017-08-15

    Hypoxia signaling is an ancient pathway by which animals can respond to low oxygen. Malfunction of this pathway disturbs hypoxic acclimation and can result in various diseases, including cancers. The role of hypoxia signaling in early embryogenesis remains unclear. Here, we show that in the blastula of the sea urchin Strongylocentrotus purpuratus , hypoxia-inducible factor α (HIFα), the downstream transcription factor of the hypoxia pathway, is localized and transcriptionally active on the future dorsal side. This asymmetric distribution is attributable to its oxygen-sensing ability. Manipulations of the HIFα level entrained the dorsoventral axis, as the side with the higher level of HIFα tends to develop into the dorsal side. Gene expression analyses revealed that HIFα restricts the expression of nodal to the ventral side and activates several genes encoding transcription factors on the dorsal side. We also observed that intrinsic hypoxic signals in the early embryos formed a gradient, which was disrupted under hypoxic conditions. Our results reveal an unprecedented role of the hypoxia pathway in animal development. © 2017. Published by The Company of Biologists Ltd.

  16. Evaluation of Roles of Interferon Gamma Regulated Genes in Inhibition of Androgen-Independent Prostate Cancer

    Science.gov (United States)

    2006-08-01

    glucose phosphate isomerase AI124792 2821 -1.8 RPN1 ribophorin I CD644128 6184 -1.8 AR SORD sorbitol dehydrogenase BC025295 6652 -1.6 AR GRHPR...identification of active principles. J Natl Cancer Inst 2002; 94: 1275-81. [151] Thomson JO, Dzubak P, Hajduch M. Prostate cancer and the food ...METABOLISM METABOLISM - CARBOHYDRATE UGDH UDP- glucose dehydrogenase BC022781 7358 -2.0 GALNT7 UDP-N-acetyl-alpha-D-galactosamine BM976847 51809 -1.8 GPI

  17. Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

    International Nuclear Information System (INIS)

    Erdmann, Kati; Kaulke, Knut; Thomae, Cathleen; Huebner, Doreen; Sergon, Mildred; Froehner, Michael; Wirth, Manfred P; Fuessel, Susanne

    2014-01-01

    Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... as detailed as with the transrectal probe. An MRI of the pelvis may be obtained as an ... Enlargement of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... ultrasound or with a rectal examination, an ultrasound-guided biopsy can be performed. This procedure involves advancing ... of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate Sponsored ...

  20. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium.

    Science.gov (United States)

    Ginsburg, G T; Kimmel, A R

    1997-08-15

    Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.

  1. Regulation of cholesterol 25-hydroxylase expression by vitamin D3 metabolites in human prostate stromal cells

    International Nuclear Information System (INIS)

    Wang, J.-H.; Tuohimaa, Pentti

    2006-01-01

    Vitamin D 3 plays an important role in the control of cell proliferation and differentiation. Cholesterol 25-hydroxylase (CH25H) is an enzyme converting cholesterol into 25-hydroxycholesterol. Vitamin D 3 as well as 25-hydroxycholesterol has been shown to inhibit cell growth and induce cell apoptosis. Here we show that 10 nM 1α,25(OH) 2 D 3 and 500 nM 25OHD 3 upregulate CH25H mRNA expression in human primary prostate stromal cells (P29SN). Protein synthesis inhibitor cycloheximide does not block 1α,25(OH) 2 D 3 mediated upregulation of CH25H mRNA. Transcription inhibitor actinomycin D blocks basal level as well as 1α,25(OH) 2 D 3 induced CH25H mRNA expression. 1α,25(OH) 2 D 3 has no effect on CH25H mRNA stability. 25-Hydroxycholesterol significantly decreased the P29SN cell number. A CH25H enzyme inhibitor, desmosterol, increases basal cell number but has no significant effect on vitamin D 3 treated cells. Our data suggest that ch25h could be a vitamin D 3 target gene and may partly mediate anti-proliferative action of vitamin D 3 in human primary prostate stromal cells

  2. Bee venom suppresses testosterone-induced benign prostatic hyperplasia by regulating the inflammatory response and apoptosis.

    Science.gov (United States)

    Chung, Kyung-Sook; An, Hyo-Jin; Cheon, Se-Yun; Kwon, Ki-Rok; Lee, Kwang-Ho

    2015-12-01

    Benign prostatic hyperplasia (BPH), which is a common disorder in aging men, involves inflammation that is associated with an imbalance between cell proliferation and cell death. Because current BPH drug treatments have undesirable side effects, the development of well-tolerated and effective alternative medicines to treat BPH is of interest. Bee venom (BV) has been used in traditional medicine to treat conditions, such as arthritis and rheumatism, and pain. Although inflammation has been associated with BPH and BV has strong anti-inflammatory effects, the effects of BV on BPH are not fully understood. Therefore, in this study, we evaluated the efficacy of BV against testosterone-induced BPH in rats. BV decreased prostate weight compared to the untreated group. In addition, BV suppressed serum dihydrotestosterone concentration levels and the levels of proliferating cell nuclear antigen in the histological analysis. Furthermore, BV significantly decreased the levels of the apoptotic suppressors, Bcl-2 and Bcl-xL, and increased the levels of the proapoptotic factors, Bax and caspase-3 activation. These results suggested that BV suppressed the development of BPH and has good potential as a treatment for BPH. © 2015 by the Society for Experimental Biology and Medicine.

  3. Roles of silent information regulator 1-serine/arginine-rich splicing factor 10-lipin 1 axis in the pathogenesis of alcohol fatty liver disease.

    Science.gov (United States)

    Li, Yuanyuan; Zhou, Junying

    2017-06-01

    Alcohol exposure is a major reason of morbidity and mortality all over the world, with much of detrimental consequences attributing to alcoholic liver disease (ALD). With the continued ethanol consumption, alcoholic fatty liver disease (AFLD, the earliest and reversible form of ALD) can further develop to more serious forms of alcoholic liver damage, including alcoholic steatohepatitis, fibrosis/cirrhosis, and even eventually progress to hepatocellular carcinoma and liver failure. Furthermore, cell trauma, inflammation, oxidative stress, regeneration, and bacterial translocation are crucial promoters of ethanol-mediated liver lesions. AFLD is characterized by excessive fat deposition in liver induced by excessive drinking, which is related closely to the raised synthesis of fatty acids and triglyceride, reduction of mitochondrial fatty acid β-oxidation, and the aggregation of very-low-density lipoprotein (VLDL). Although little is known about the cellular and molecular mechanisms of AFLD, it seems to be correlated to diverse signal channels. Massive studies have suggested that liver steatosis is closely associated with the inhibition of silent information regulator 1 (SIRT1) and the augment of lipin1 β/α ratio mediated by ethanol. Recently, serine/arginine-rich splicing factor 10 (SFRS10), a specific molecule functioning in alternative splicing of lipin 1 (LPIN1) pre-mRNAs, has emerged as the central connection between SIRT1 and lipin1 signaling. It seems a new signaling axis, SIRT1-SFRS10-LPIN1 axis, acting in the pathogenesis of AFLD exists. This article aims to further explore the interactions among the above three molecules and their influences on the development of AFLD. Impact statement ALD is a major health burden in industrialized countries as well as China. AFLD, the earliest and reversible form of ALD, can progress to hepatitis, fibrosis/cirrhosis, even hepatoma. While the mechanisms, by which ethanol consumption leads to AFLD, are complicated and

  4. Neuroplasticity of the Hypothalamic–Pituitary–Adrenal Axis Early in Life Requires Recurrent Recruitment of Stress-Regulating Brain Regions

    OpenAIRE

    Fenoglio, Kristina A.; Chen, Yuncai; Baram, Tallie Z.

    2006-01-01

    An eloquent example of experience-induced neuroplasticity involves the enduring effects of daily “handling” of rat pups on the expression of genes regulating hormonal and behavioral responses to stress. Handling-evoked augmentation of maternal care of pups induces long-lasting reduction of hypothalamic corticotropin releasing hormone (CRH) expression and upregulates hippocampal glucocorticoid receptor levels. These changes promote a lifelong attenuation of hormonal stress responses. We have f...

  5. Salvianolic Acid A Protects the Peripheral Nerve Function in Diabetic Rats through Regulation of the AMPK-PGC1α-Sirt3 Axis

    Directory of Open Access Journals (Sweden)

    Guanhua Du

    2012-09-01

    Full Text Available Salvianolic acid A (SalA is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig was started from the 5th week after strepotozotocin (STZ60 mg/kg intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT and motor nerve conduction velocity (MNCV were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1, AMP-activated protein kinase (AMPK, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α, silent information regulator protein3 (sirtuin 3/Sirt3 and neuronal nitric oxide synthase (nNOS in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.

  6. Overexpression of Exportin-5 Overrides the Inhibitory Effect of miRNAs Regulation Control and Stabilize Proteins via Posttranslation Modifications in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Naseruddin Höti

    2017-10-01

    Full Text Available Although XPO5 has been characterized to have tumor-suppressor features in the miRNA biogenesis pathway, the impact of altered expression of XPO5 in cancers is unexplored. Here we report a novel “oncogenic” role of XPO5 in advanced prostate cancer. Using prostate cancer models, we found that excess levels of XPO5 override the inhibitory effect of the canoncial miRNA-mRNA regulation, resulting in a global increase in proteins expression. Importantly, we found that decreased expression of XPO5 could promote an increase in proteasome degradation, whereas overexpression of XPO5 leads to altered protein posttranslational modification via hyperglycosylation, resulting in cellular protein stability. We evaluated the therapeutic advantage of targeting XPO5 in prostate cancer and found that knocking down XPO5 in prostate cancer cells suppressed cellular proliferation and tumor development without significantly impacting normal fibroblast cells survival. To our knowledge, this is the first report describing the oncogenic role of XPO5 in overriding the miRNAs regulation control. Furthermore, we believe that these findings will provide an explanation as to why, in some cancers that express higher abundance of mature miRNAs, fail to suppress their potential protein targets.

  7. p38MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion

    International Nuclear Information System (INIS)

    Shida, Yohei; Igawa, Tsukasa; Hakariya, Tomoaki; Sakai, Hideki; Kanetake, Hiroshi

    2007-01-01

    Increased levels of serum interleukin-6 (IL-6) are frequently observed in patients with advanced, hormone-refractory prostate cancer. However, the precise mechanism of IL-6 regulation is still largely unknown. Since prostate cancer gradually progresses to an androgen-independent state despite the stress caused by various therapeutic agents, we hypothesized the stress-activated protein kinases (SAPKs) involvement in androgen-independent growth or IL-6 secretion of prostate cancer cells. Using PC-3 and DU145 human prostate cancer cells, we analyzed the role of SAPKs in IL-6 mediated cell growth and found that the p38MAPK and JNK are involved in androgen-independent cancer cell growth. Furthermore, IL-6 secretion by PC-3 and DU145 cells was significantly suppressed by SAPKs inhibitor, especially by p38MAPK inhibitor SB203580, but not by JNK inhibitor SP600125 nor by MEK inhibitor, PD98059. These results raised the possibility that the IL-6 mediated androgen-independent proliferation of PC-3 and DU145 cells is regulated at least partly via SAPKs signaling pathway especially through p38MAPK activation

  8. PSCA promotes prostate cancer proliferation and cell-cycle progression by up-regulating c-Myc.

    Science.gov (United States)

    Li, Ermao; Liu, Luhao; Li, Futian; Luo, Lianmin; Zhao, Shankun; Wang, Jiamin; Kang, Ran; Luo, Jintai; Zhao, Zhigang

    2017-12-01

    The Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI)-anchored protein. Increasing evidence has indicated PSCA plays an important role in tumorigenesis. However, its function and the underlying molecular mechanisms in prostate cancer (PCa) are still not fully elucidated. In this study, we aimed to explore the effect of PSCA on cell cycle of PCa cells and its mechanism research. Immunohistochemistry, quantitative reverse transcription-PCR (qRT-PCR) and Western blotting were used to quantify PSCA expression pattern in PCa tissues and cell lines. The association of PSCA expression with the biochemical recurrence (BCR)-free survival and overall survival (OS) of PCa patients were analyzed using Kaplan-Meier method. The roles of PSCA in PCa were confirmed based on both in vitro and in vivo systems. Immunohistochemistry results showed that PSCA was upregulated in PCa tissue. PSCA overexpression were significantly associated with high Gleason score (GS) (P = 0.028), positive BCR (P = 0.002), and poor OS (P = 0.032) and high c-Myc expression (P = 0.019). PSCA promoted PCa cell cycle progression and tumor growth via increased c-Myc expression. Additional, PI3K/AKT signaling pathways was involved in PSCA-mediated c-Myc expression and cell proliferation. PSCA is a novel cell cycle regulator with a key role in mediating c-Myc-induced proliferation. PSCA may be a potential diagnostic marker and therapeutic target for patients with PCa. © 2017 Wiley Periodicals, Inc.

  9. Epigallocatechin-3-gallate reduces the proliferation of benign prostatic hyperplasia cells via regulation of focal adhesions.

    Science.gov (United States)

    Tepedelen, Burcu Erbaykent; Soya, Elif; Korkmaz, Mehmet

    2017-12-15

    Benign prostatic hyperplasia (BPH) is the most common urological disease that is characterized by the excessive growth of prostatic epithelial and stromal cells. Pharmacological therapy for BPH has limited use due to the many side effects so there is a need for new agents including natural compounds such as epigallocatechin-3-gallate (EGCG). This study was undertaken to assess the role of EGCG, suppressing the formation of BPH by reducing inflammation and oxidative stress, in cytoskeleton organization and ECM interactions via focal adhesions. We performed MTT assay to investigate cell viability of BPH-1 cells, wound healing assay to examine cell migration, immunofluorescence assay for F-actin organization and paxillin distribution and finally immunoblotting to investigate focal adhesion protein levels in the presence and absence of EGCG. We found that EGCG inhibits cell proliferation at the concentration of 89.12μM, 21.2μM and 2.39μM for 24, 48 and 72h, respectively as well as inhibitory effects of EGCG on BPH-1 cell migration were observed in a wound healing assay. Furthermore, it was determined by immunofluorescence labeling that EGCG disrupts F-actin organization and reduces paxillin distribution. Additionally, EGCG decreases the activation of FAK (Focal Adhesion Kinase) and the levels of paxillin, RhoA (Ras homolog gene family, member A), Cdc42 (cell division cycle 42) and PAK1 (p21 protein-activated kinase 1) in a dose-dependent manner. For the first time, by this study, we found evidence that BPH-1 cell proliferation could be inhibited with EGCG through the disruption of cytoskeleton organization and ECM interactions. Consequently, EGCG might be useful in the prevention and treatment of diseases characterized by excessive cell proliferation such as BPH. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guangye, E-mail: guangyehan@126.com; Fan, Maochuan, E-mail: maochunfan@outlook.com; Zhang, Xinjun, E-mail: xinjunzhang11@163.com

    2015-01-16

    Highlights: • miR-218 expression is downregulated in prostate cancer. • miR-218 inhibits prostate tumor cells proliferation partially through promoting apoptosis. • miR-218 targets TPD52 by binding to its 3′-UTR. • miR-218 suppresses prostate cancer cell growth through inhibiting TPD52 expression. - Abstract: The tumor protein D52 (TPD52) is an oncogene overexpressed in prostate cancer (PC) due to gene amplification. Although the oncogenic effect of TPD52 is well recognized, how its expression is regulated is still not clear. This study tried to explore the regulative role of miR-218, a tumor suppressing miRNA on TPD52 expression and prostate cancer cell proliferation. We found the expression of miR-218 was significantly lower in PC specimens. Based on gain and loss of function analysis, we found miR-218 significantly inhibit cancer cell proliferation by inducing apoptosis. These results strongly suggest that miR-218 plays a tumor suppressor role in PC cells. In addition, our data firstly demonstrated that miR-218 directly regulates oncogenic TPD52 in PC3 cells and the miR-218-TPD52 axis can regulate growth of this prostate cancer cell line. Knockdown of TPD52 resulted in significantly increased cancer cell apoptosis. Clearly understanding of oncogenic TPD52 pathways regulated by miR-218 might be helpful to reveal new therapeutic targets for PC.

  11. Hedgehog Signaling in Prostate Development, Regeneration and Cancer

    Directory of Open Access Journals (Sweden)

    Wade Bushman

    2016-10-01

    Full Text Available The prostate is a developmental model system study of prostate growth regulation. Historically the research focus was on androgen regulation of development and growth and instructive interactions between the mesenchyme and epithelium. The study of Hh signaling in prostate development revealed important roles in ductal morphogenesis and in epithelial growth regulation that appear to be recapitulated in prostate cancer. This overview of Hh signaling in the prostate will address the well-described role of paracrine signaling prostate development as well as new evidence suggesting a role for autocrine signaling, the role of Hh signaling in prostate regeneration and reiterative activities in prostate cancer.

  12. Cholecalciferol (vitamin D3) inhibits growth and invasion by up-regulating nuclear receptors and 25-hydroxylase (CYP27A1) in human prostate cancer cells.

    Science.gov (United States)

    Tokar, Erik J; Webber, Mukta M

    2005-01-01

    Epidemiological evidence suggests an inverse relationship between prostate cancer and serum vitamin D levels. We examined the ability of cholecalciferol (vitamin D(3)), a calcitriol precursor, to inhibit or reverse cellular changes associated with malignant transformation and invasion and explored its mechanisms of action. The RWPE2-W99 human prostate epithelial cell line, which forms slow-growing tumors in nude mice, was used because it mimics the behavior of the majority of primary human prostate cancers. Cholecalciferol, at physiological levels: (i) inhibited anchorage-dependent and -independent growth; (ii) induced differentiation by decreasing vimentin expression with a concomitant decrease in motility/chemotaxis; (iii) decreased MMP-9 and MMP-2 activity with concomitant decrease in invasion; and (iv) exerted its effects by up-regulating vitamin D receptor (VDR), retinoid-X receptor-alpha (RXR-alpha), and androgen receptor (AR) in a dose-dependent manner. Furthermore, we found that RWPE2-W99 prostate cancer cells, similar to RWPE-1 cells (Tokar and Webber. Clin Exp Metast 2005; 22: 265-73), constitutively express the enzyme 25-hydroxylase CYP27A1 which is markedly up-regulated by cholecalciferol. Cholecalciferol has effects similar to those of calcitriol on growth, MMP activity, and VDR. The ability of CYP27A1 to catalyze the conversion of cholecalciferol to 25(OH)D(3) and of 25(OH)D(3) to calcitriol has been reported. RWPE2-W99 cells, similar to RWPE-1 cells, appear to have the rare ability to locally convert cholecalciferol to the active hormone calcitriol. Because it can inhibit cellular changes associated with malignant transformation and invasion, we propose that cholecalciferol may be an effective agent for the treatment of prostate cancer.

  13. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation.

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2016-08-01

    Full Text Available Rickettsial agents are sensed by pattern recognition receptors but lack pathogen-associated molecular patterns commonly observed in facultative intracellular bacteria. Due to these molecular features, the order Rickettsiales can be used to uncover broader principles of bacterial immunity. Here, we used the bacterium Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, to reveal a novel microbial surveillance system. Mechanistically, we discovered that upon A. phagocytophilum infection, cytosolic phospholipase A2 cleaves arachidonic acid from phospholipids, which is converted to the eicosanoid prostaglandin E2 (PGE2 via cyclooxygenase 2 (COX2 and the membrane associated prostaglandin E synthase-1 (mPGES-1. PGE2-EP3 receptor signaling leads to activation of the NLRC4 inflammasome and secretion of interleukin (IL-1β and IL-18. Importantly, the receptor-interacting serine/threonine-protein kinase 2 (RIPK2 was identified as a major regulator of the immune response against A. phagocytophilum. Accordingly, mice lacking COX2 were more susceptible to A. phagocytophilum, had a defect in IL-18 secretion and exhibited splenomegaly and damage to the splenic architecture. Remarkably, Salmonella-induced NLRC4 inflammasome activation was not affected by either chemical inhibition or genetic ablation of genes associated with PGE2 biosynthesis and signaling. This divergence in immune circuitry was due to reduced levels of the PGE2-EP3 receptor during Salmonella infection when compared to A. phagocytophilum. Collectively, we reveal the existence of a functionally distinct NLRC4 inflammasome illustrated by the rickettsial agent A. phagocytophilum.

  14. Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis.

    Science.gov (United States)

    Bai, Zhongbin; Cai, Linjun; Umemoto, Eiji; Takeda, Akira; Tohya, Kazuo; Komai, Yutaka; Veeraveedu, Punniyakoti Thanikachalam; Hata, Erina; Sugiura, Yuki; Kubo, Akiko; Suematsu, Makoto; Hayasaka, Haruko; Okudaira, Shinichi; Aoki, Junken; Tanaka, Toshiyuki; Albers, Harald M H G; Ovaa, Huib; Miyasaka, Masayuki

    2013-03-01

    Lymphocyte extravasation from the high endothelial venules (HEVs) of lymph nodes is crucial for the maintenance of immune homeostasis, but its molecular mechanism remains largely unknown. In this article, we report that lymphocyte transmigration across the basal lamina of the HEVs is regulated, at least in part, by autotaxin (ATX) and its end-product, lysophosphatidic acid (LPA). ATX is an HEV-associated ectoenzyme that produces LPA from lysophosphatidylcholine (LPC), which is abundant in the systemic circulation. In agreement with selective expression of ATX in HEVs, LPA was constitutively and specifically detected on HEVs. In vivo, inhibition of ATX impaired the lymphocyte extravasation from HEVs, inducing lymphocyte accumulation within the endothelial cells (ECs) and sub-EC compartment; this impairment was abrogated by LPA. In vitro, both LPA and LPC induced a marked increase in the motility of HEV ECs; LPC's effect was abrogated by ATX inhibition, whereas LPA's effect was abrogated by ATX/LPA receptor inhibition. In an in vitro transmigration assay, ATX inhibition impaired the release of lymphocytes that had migrated underneath HEV ECs, and these defects were abrogated by LPA. This effect of LPA was dependent on myosin II activity in the HEV ECs. Collectively, these results strongly suggest that HEV-associated ATX generates LPA locally; LPA, in turn, acts on HEV ECs to increase their motility, promoting dynamic lymphocyte-HEV interactions and subsequent lymphocyte transmigration across the basal lamina of HEVs at steady state.

  15. Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakatsumi

    2017-11-01

    Full Text Available C-C chemokine ligand 2 (CCL2 plays pivotal roles in tumor formation, progression, and metastasis. Although CCL2 expression has been found to be dependent on the nuclear factor (NF-κB signaling pathway, the regulation of CCL2 production in tumor cells has remained unclear. We have identified a noncanonical pathway for regulation of CCL2 production that is mediated by mammalian target of rapamycin complex 1 (mTORC1 but independent of NF-κB. Multiple phosphoproteomics approaches identified the transcription factor forkhead box K1 (FOXK1 as a downstream target of mTORC1. Activation of mTORC1 induces dephosphorylation of FOXK1, resulting in transactivation of the CCL2 gene. Inhibition of the mTORC1-FOXK1 axis attenuated insulin-induced CCL2 production as well as the accumulation of tumor-associated monocytes-macrophages and tumor progression in mice. Our results suggest that FOXK1 directly links mTORC1 signaling and CCL2 expression in a manner independent of NF-κB and that CCL2 produced by this pathway contributes to tumor progression.

  16. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model.

    Science.gov (United States)

    Roth, Michael D; Harui, Airi

    2015-01-01

    The complex interactions that occur between human tumors, tumor infiltrating lymphocytes (TIL) and the systemic immune system are likely to define critical factors in the host response to cancer. While conventional animal models have identified an array of potential anti-tumor therapies, mouse models often fail to translate into effective human treatments. Our goal is to establish a humanized tumor model as a more effective pre-clinical platform for understanding and manipulating TIL. The immune system in NOD/SCID/IL-2Rγnull (NSG) mice was reconstituted by the co-administration of human peripheral blood lymphocytes (PBL) or subsets (CD4+ or CD8+) and autologous human dendritic cells (DC), and animals simultaneously challenged by implanting human prostate cancer cells (PC3 line). Tumor growth was evaluated over time and the phenotype of recovered splenocytes and TIL characterized by flow cytometry and immunohistochemistry (IHC). Serum levels of circulating cytokines and chemokines were also assessed. A tumor-bearing huPBL-NSG model was established in which human leukocytes reconstituted secondary lymphoid organs and promoted the accumulation of TIL. These TIL exhibited a unique phenotype when compared to splenocytes with a predominance of CD8+ T cells that exhibited increased expression of CD69, CD56, and an effector memory phenotype. TIL from huPBL-NSG animals closely matched the features of TIL recovered from primary human prostate cancers. Human cytokines were readily detectible in the serum and exhibited a different profile in animals implanted with PBL alone, tumor alone, and those reconstituted with both. Immune reconstitution slowed but could not eliminate tumor growth and this effect required the presence of CD4+ T cell help. Simultaneous implantation of human PBL, DC and tumor results in a huPBL-NSG model that recapitulates the development of human TIL and allows an assessment of tumor and immune system interaction that cannot be carried out in humans

  17. Seasonal regulation of the growth hormone-insulin-like growth factor-I axis in the American black bear (Ursus americanus).

    Science.gov (United States)

    Blumenthal, Stanley; Morgan-Boyd, Rebecca; Nelson, Ralph; Garshelis, David L; Turyk, Mary E; Unterman, Terry

    2011-10-01

    The American black bear maintains lean body mass for months without food during winter denning. We asked whether changes in the growth hormone/insulin-like growth factor-I (GH-IGF-I) axis may contribute to this remarkable adaptation to starvation. Serum IGF-I levels were measured by radioimmunoassay, and IGF-binding proteins (IGFBPs) were analyzed by ligand blotting. Initial studies in bears living in the wild showed that IGF-I levels are highest in summer and lowest in early winter denning. Detailed studies in captive bears showed that IGF-I levels decline in autumn when bears are hyperphagic, continue to decline in early denning, and later rise above predenning levels despite continued starvation in the den. IGFBP-2 increased and IGFBP-3 decreased in early denning, and these changes were also reversed in later denning. Treatment with GH (0.1 mg·kg(-1)·day(-1) × 6 days) during early denning increased serum levels of IGF-I and IGFBP-3 and lowered levels of IGFBP-2, indicating that denning bears remain responsive to GH. GH treatment lowered blood urea nitrogen levels, reflecting effects on protein metabolism. GH also accelerated weight loss and markedly increased serum levels of free fatty acids and β-hydroxybutyrate, resulting in a ketoacidosis (bicarbonate decreased to 15 meq/l), which was reversed when GH was withdrawn. These results demonstrate seasonal regulation of GH/IGF-I axis activity in black bears. Diminished GH activity may promote fat storage in autumn in preparation for denning and prevent excessive mobilization and premature exhaustion of fat stores in early denning, whereas restoration of GH/IGF activity in later denning may prepare the bear for normal activity outside the den.

  18. Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Directory of Open Access Journals (Sweden)

    Hwai-Jeng Lin

    2017-06-01

    Full Text Available Cytolethal distending toxin (CDT produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa. However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR. In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1 expression and the inhibition of acidic vesicular organelle (AVO formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa.

  19. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  20. The GAS5/miR-222 Axis Regulates Proliferation of Gastric Cancer Cells Through the PTEN/Akt/mTOR Pathway.

    Science.gov (United States)

    Li, Yanhua; Gu, Junjiao; Lu, Hong

    2017-12-01

    Several lines of evidence have indicated that growth arrest-specific transcript 5 (GAS5) functions as a tumor suppressor and is aberrantly expressed in multiple cancers. GAS5 was found to be downregulated in gastric cancer (GC) tissues, and ectopic expression of GAS5 inhibited GC cell proliferation. The present study aimed to explore the underlying mechanisms of GAS5 involved in GC cell proliferation. GAS5 and miR-222 expressions in GC cell lines were estimated by quantitative real-time polymerase chain reaction. The effects of GAS5 and miR-222 on GC cell proliferation were assessed by MTT assay and 5-bromo-2-deoxyuridine (BrdU) incorporation assays. The interaction between GAS5 and miR-222 was confirmed by luciferase reporter assay and RNA immunoprecipitation assay. The protein levels of the phosphatase and tensin homolog (PTEN), phosphorylated protein kinase B (Akt) (p-Akt), Akt, phosphorylated mammalian target of rapamycin (mTOR) (p-mTOR), and mTOR were determined by western blot. GAS5 was downregulated and miR-222 was upregulated in GC cells. GAS5 directly targeted and suppressed miR-222 expression. GAS5 overexpression and miR-222 inhibition suppressed cell proliferation, increased PTEN protein level and decreased p-Akt and p-mTOR protein levels in GC cells while GAS5 knockdown and miR-222 overexpression exhibited the opposite effects. Moreover, mechanistic analyses revealed that GAS5 regulated GC cell proliferation through the PTEN/Akt/mTOR pathway by negatively regulating miR-222. GAS5/miR-222 axis regulated proliferation of GC cells through the PTEN/Akt/mTOR pathway, which facilitated the development of lncRNA-directed therapy against this deadly disease.

  1. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.

    Science.gov (United States)

    Jiao, Wanju; Chen, Yajun; Song, Huajie; Li, Dan; Mei, Hong; Yang, Feng; Fang, Erhu; Wang, Xiaojing; Huang, Kai; Zheng, Liduan; Tong, Qiangsong

    2018-03-07

    Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-D-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.

  2. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression.

    Science.gov (United States)

    Alaña, Lide; Sesé, Marta; Cánovas, Verónica; Punyal, Yolanda; Fernández, Yolanda; Abasolo, Ibane; de Torres, Inés; Ruiz, Cristina; Espinosa, Lluís; Bigas, Anna; Y Cajal, Santiago Ramón; Fernández, Pedro L; Serras, Florenci; Corominas, Montserrat; Thomson, Timothy M; Paciucci, Rosanna

    2014-03-31

    PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this

  3. Axis Spectrometer

    International Nuclear Information System (INIS)

    Park, Sungil

    2006-01-01

    The Cold Neutron Research Facility (CNRF) project carried out by Korea Atomic Energy Research Institute (KAERI) is an effort to bring cold neutron instrumentation to Korea's only large scale research reactor, HANARO, located in Daejeon. As part of the CNRF project, a cold neutron triple-axis spectrometer (Cold-TAS) is being developed along with other five: 40 m long and 12 m long small angle neutron scattering instruments (40m-SANS and 12m-SANS), disk-chopper time-of-flight spectrometer (DC-ToF), Bio- Reflectometer (Bio-REF) and the reflectometer with vertical sample geometry (REF-V). For those cold neutron instruments, the performance of an individual instrument depends not only on its design but also on the guide that feeds cold neutrons to the instrument. Therefore, the quality of the neutron flux at an instrument position has to be checked with the specification of the instrument. As for the Cold-TAS, since the instrument requires a tall beam and a high flux of short wavelength neutrons, it was tentatively decided that it would use the cold guide 4 (CG4). The detailed specification of the guide is listed. Checking the neutron flux of the guide at the instrument position is the obvious next step

  4. The Mechanosensory Ca2+ Channel as a Central Regulator of Prostate Tumor Cell Migration and Invasiveness

    Science.gov (United States)

    2008-01-01

    Dembo , M. (2004). Regulation of mechanical interactions between fibroblasts and the substratum by stretch‐activated Ca2þ entry. J. Cell Sci. 117, 85–92...J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhardt‐ King, C. A., Margulies, S. S., Dembo , M., Boettiger, D...Pflügers Archiv. 421 : 606-612. Munevar, S., Wang, Y.L. and Dembo , M. 2004. Regulation of mechanical interactions between fibroblasts and the

  5. Soy milk digestion extract inhibits progression of prostate cancer cell growth via regulation of prostate cancer‑specific antigen and cell cycle-regulatory genes in human LNCaP cancer cells.

    Science.gov (United States)

    Kang, Nam-Hee; Shin, Hee-Chang; Oh, Seunghyun; Lee, Kyun-Hee; Lee, Yoon-Bok; Choi, Kyung-Chul

    2016-08-01

    Soy milk, which is produced from whole soybeans, contains a variety of biologically active components. Isoflavones are a class of soy-derived phytoestrogens with beneficial effects, among which genistein (GEN) has been previously indicated to reduce the risk of prostate cancer. The present study evaluated the effects of soy milk digestion extract (SMD) on the progression of prostate cancer via the estrogen receptor (ER)β in human LNCaP prostate cancer cells. To evaluate the effects of SMD (daizein, 1.988 mg/100g, glycitein, 23.537 mg/100 g and GEN, 0.685 mg/100g) on cell proliferation, LNCaP cells were cultured in media containing vehicle (0.1% dimethyl sulfoxide), 17β‑estradiol (E2; 2.7x10‑7 mg/ml), GEN (2.7x10-2 mg/ml) of SMD (total aglycon concentration, 0.79 mg/ml), after which the cell viability was examined using an MTT assay. The cell viability was significantly elevated by E2 (by 45±0.18%), while it was markedly reduced by GEN (73.2±0.03%) or SMD (74.8±0.09%). Semi‑quantitative reverse transcription polymerase chain reaction analysis was performed to assess the mRNA expression levels of target genes, including ERβ, prostate cancer‑specific antigen (PSA) and cell cycle regulators p21, Cyclin D1 and cyclin-dependent kinase (CDK)4. The expression of ERβ was almost completely diminished by E2, whereas it was significantly elevated by SMD. In addition, the expression levels of PSA were considerably reduced by SMD. The expression of p21 was significantly elevated by SMD, while it was markedly reduced by E2. Of note, the expression levels of Cyclin D1 and CDK4 were considerably elevated by E2, while being significantly reduced by GEN and SMD. All of these results indicated that SMD may inhibit the proliferation of human prostate cancer cells via regulating the expression of ERβ, PSA, p21, Cyclin D1 and CDK4 in an ER-dependent manner.

  6. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  7. Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer.

    Science.gov (United States)

    Zhao, Yu; Wang, Liguo; Ren, Shancheng; Wang, Lan; Blackburn, Patrick R; McNulty, Melissa S; Gao, Xu; Qiao, Meng; Vessella, Robert L; Kohli, Manish; Zhang, Jun; Karnes, R Jeffrey; Tindall, Donald J; Kim, Youngsoo; MacLeod, Robert; Ekker, Stephen C; Kang, Tiebang; Sun, Yinghao; Huang, Haojie

    2016-04-19

    The androgen receptor (AR) is required for castration-resistant prostate cancer (CRPC) progression, but the function and disease relevance of AR-bound enhancers remain unclear. Here, we identify a group of AR-regulated enhancer RNAs (e.g., PSA eRNA) that are upregulated in CRPC cells, patient-derived xenografts (PDXs), and patient tissues. PSA eRNA binds to CYCLIN T1, activates P-TEFb, and promotes cis and trans target gene transcription by increasing serine-2 phosphorylation of RNA polymerase II (Pol II-Ser2p). We define an HIV-1 TAR RNA-like (TAR-L) motif in PSA eRNA that is required for CYCLIN T1 binding. Using TALEN-mediated gene editing we further demonstrate that this motif is essential for increased Pol II-Ser2p occupancy levels and CRPC cell growth. We have uncovered a P-TEFb activation mechanism and reveal altered eRNA expression that is related to abnormal AR function and may potentially be a therapeutic target in CRPC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-04-01

    Full Text Available The androgen receptor (AR is required for castration-resistant prostate cancer (CRPC progression, but the function and disease relevance of AR-bound enhancers remain unclear. Here, we identify a group of AR-regulated enhancer RNAs (e.g., PSA eRNA that are upregulated in CRPC cells, patient-derived xenografts (PDXs, and patient tissues. PSA eRNA binds to CYCLIN T1, activates P-TEFb, and promotes cis and trans target gene transcription by increasing serine-2 phosphorylation of RNA polymerase II (Pol II-Ser2p. We define an HIV-1 TAR RNA-like (TAR-L motif in PSA eRNA that is required for CYCLIN T1 binding. Using TALEN-mediated gene editing we further demonstrate that this motif is essential for increased Pol II-Ser2p occupancy levels and CRPC cell growth. We have uncovered a P-TEFb activation mechanism and reveal altered eRNA expression that is related to abnormal AR function and may potentially be a therapeutic target in CRPC.

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves to produce pictures of a man’s prostate ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces ... of page What are some common uses of the procedure? A transrectal ultrasound of the prostate gland ...

  11. A miR-590/Acvr2a/Rad51b Axis Regulates DNA Damage Repair during mESC Proliferation

    Directory of Open Access Journals (Sweden)

    Qidong Liu

    2014-12-01

    Full Text Available Embryonic stem cells (ESCs enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF, which maintains the self-renewal capability of mouse ESCs (mESCs, significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB and double-strand break (DSB damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal.

  12. Taurine and pioglitazone attenuate diabetes-induced testicular damage by abrogation of oxidative stress and up-regulation of the pituitary-gonadal axis.

    Science.gov (United States)

    Abd El-Twab, Sanaa M; Mohamed, Hanaa M; Mahmoud, Ayman M

    2016-06-01

    Chronic hyperglycemia is associated with impairment of testicular function. The current study aimed to investigate the protective effects and the possible mechanisms of taurine and pioglitazone against diabetes-induced testicular dysfunction in rats. Diabetes was induced by streptozotocin injection. Both normal and diabetic rats received taurine (100 mg/kg) or pioglitazone (10 mg/kg) orally and daily for 6 weeks. Diabetic rats showed a significant (P Taurine and pioglitazone alleviated hyperglycemia, decreased pro-inflammatory cytokines, and increased circulating levels of insulin, testosterone, LH, and FSH. Gene and protein expression of LH and FSH receptors and cytochrome P450 17α-hydroxylase (CYP17) was significantly (P taurine and pioglitazone. In addition, taurine and pioglitazone significantly decreased lipid peroxidation and DNA damage, and enhanced activity of the antioxidant enzymes in testes of diabetic rats. In conclusion, taurine and pioglitazone exerted protective effects against diabetes-induced testicular damage through attenuation of hyperglycemia, inflammation, oxidative stress and DNA damage, and up-regulation of the pituitary/gonadal axis.

  13. Essential Function for PDLIM2 in Cell Polarization in Three-Dimensional Cultures by Feedback Regulation of the β1-Integrin–RhoA Signaling Axis

    Directory of Open Access Journals (Sweden)

    Ravi Kiran Deevi

    2014-05-01

    Full Text Available PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT. PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1 integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R and Receptor of activated protein kinase C 1 (RACK1, which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium.

  14. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ming-De Yan

    2015-09-01

    Full Text Available Accumulating evidence has revealed that fucoidan exhibits anti-tumor activities by arresting cell cycle and inducing apoptosis in many types of cancer cells including hepatocellular carcinoma (HCC. Exploring its effect on microRNA expression, we found that fucoidan markedly upregulated miR-29b of human HCC cells. The induction of miR-29b was accompanied with suppression of its downstream target DNMT3B in a dose-dependent manner. The reduction of luciferase activity of DNMT3B 3′-UTR reporter by fucoidan was as markedly as that by miR-29b mimic, indicating that fucoidan induced miR-29b to suppress DNMT3B. Accordingly, the mRNA and protein levels of MTSS1 (metastasis suppressor 1, a target silenced by DNMT3B, were increased after fucoidan treatment. Furthermore, fucoidan also down-regulated TGF-β receptor and Smad signaling of HCC cells. All these effects leaded to the inhibition of EMT (increased E-cadherin and decreased N-cadherin and prevention of extracellular matrix degradation (increased TIMP-1 and decreased MMP2, 9, by which the invasion activity of HCC cells was diminished. Our results demonstrate the profound effect of fucoidan not only on the regulation of miR-29b-DNMT3B-MTSS1 axis but also on the inhibition of TGF-β signaling in HCC cells, suggesting the potential of using fucoidan as integrative therapeutics against invasion and metastasis of HCC.

  15. Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis

    Science.gov (United States)

    Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang

    2017-07-01

    The effects of stocking density on the growth and metabolism of Amur sturgeon were assessed. Amur sturgeon were grown for 70 days at three different stocking densities (low stocking density, LSD: 5.5 kg/m3; medium stocking density, MSD: 8.0 kg/m3; and high stocking density, HSD: 11.0 kg/m3), and the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days of growth, the fish maintained at HSD had significantly lower final body weight and specific growth rate, and a higher feed conversion ratio than those of the fish in the MSD and LSD groups. The HSD group had the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased significantly in the HSD group, indicating that the stress-response system was activated in these fish. There was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The full-length cDNAs of GH and IGF-2 genes (995-bp and 1 207-bp long, respectively), were cloned and analyzed. In the HSD group, the expressions of GH in the pituitary and growth hormone receptor (GHR) and IGF-1 in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the transcript level of IGF-2 significantly decreased in the liver, but did not change in muscle. Overall, our results indicated that a HSD negatively affects the growth performance and leads to changes in lipid and protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis may be responsible for the poor growth performance of Amur sturgeon under crowding stress.

  16. Down-regulation of DcR2 sensitizes androgen-dependent prostate cancer LNCaP cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Vindrieux David

    2011-12-01

    Full Text Available Abstract Background Dysregulation of many apoptotic related genes and androgens are critical in the development, progression, and treatment of prostate cancer. The differential sensitivity of tumour cells to TRAIL-induced apoptosis can be mediated by the modulation of surface TRAIL receptor expression related to androgen concentration. Our previous results led to the hypothesis that downregulation of TRAIL-decoy receptor DcR2 expression following androgen deprivation would leave hormone sensitive normal prostate cells vulnerable to the cell death signal generated by TRAIL via its pro-apoptotic receptors. We tested this hypothesis under pathological conditions by exploring the regulation of TRAIL-induced apoptosis related to their death and decoy receptor expression, as also to hormonal concentrations in androgen-sensitive human prostate cancer, LNCaP, cells. Results In contrast to androgen-insensitive PC3 cells, decoy (DcR2 and death (DR5 receptor protein expression was correlated with hormone concentrations and TRAIL-induced apoptosis in LNCaP cells. Silencing of androgen-sensitive DcR2 protein expression by siRNA led to a significant increase in TRAIL-mediated apoptosis related to androgen concentration in LNCaP cells. Conclusions The data support the hypothesis that hormone modulation of DcR2 expression regulates TRAIL-induced apoptosis in LNCaP cells, giving insight into cell death induction in apoptosis-resistant hormone-sensitive tumour cells from prostate cancer. TRAIL action and DcR2 expression modulation are potentially of clinical value in advanced tumour treatment.

  17. Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism

    Science.gov (United States)

    2016-10-01

    nodes in the androgen metabolism network. 2) Characterization of the involvement of SAFB1 regulation of the UGT2B gene family, androgen metabolism, and...independent datasets derived from luminal and basal cell models provides evidence that PCS1 and PCS2 tumors reflect luminal subtypes, while PCS3 represents a... basal subtype. We show that PCS1 tumors progress more rapidly to metastatic disease in comparison with PCS2 or PCS3, including PSC1 tumors of low

  18. Regulating Prostate Cancer Sensitivity to Chemotherapy through Translational Control of CCAAT/Enhancer Binding Proteins

    Science.gov (United States)

    2016-10-01

    from a single transcript and has been suggested to regulate mTOR activity. The longer LAP isoforms promote cell survival, growth arrest and...contexts and are more functionally linked with survival, cell cycle arrest and terminal differentiation. [10, 12, 13]. In contrast, truncated isoforms...Pritts TA, Hershko DD, Hasselgren PO. Proteasome inhibitors activate the transcription factors C/EBP-beta and delta in human intestinal epithelial cells

  19. TMPRSS2-ERG fusion protein regulates insulin-like growth factor-1 receptor (IGF1R) gene expression in prostate cancer: involvement of transcription factor Sp1.

    Science.gov (United States)

    Meisel Sharon, Shilhav; Pozniak, Yair; Geiger, Tamar; Werner, Haim

    2016-08-09

    Prostate cancer is a major health issue in the Western world. The most common gene rearrangement in prostate cancer is the TMPRSS2-ERG fusion, which results in aberrant expression of the transcription factor ERG. The insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and tumorigenesis, and is overexpressed in most malignancies, including prostate cancer. In this study we show that TMPRSS2-ERG mediates its tumorigenic effects through regulation of IGF1R gene expression. Silencing of T-ERG in VCaP cells resulted in downregulation of both IGF1R and Sp1, a critical IGF1R regulator. Co-immunoprecipitation assays revealed a physical interaction between transcription factors ERG and Sp1, with potential relevance in IGF1R gene regulation. In addition, transactivation of the IGF1R gene by ERG was mediated at the level of transcription, as indicated by results of promoter assays. To identify new co-activators of the TMPRSS2-ERG fusion protein we performed mass spectrometry-based proteomic analyses. Among other interactors, we identified AP-2 complex subunit mu (AP2M1) and caveolin-1 (CAV1) in association with ERG in cell nuclei. These proteins play a mechanistic role in IGF1R internalization. Our analyses are consistent with a potential novel function of TMPRSS2-ERG as a major regulator of IGF1R gene expression. Results may impinge upon ongoing efforts to target the IGF1R in the clinics.

  20. Gut Microbiota-brain Axis.

    Science.gov (United States)

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-10-05

    To systematically review the updated information about the gut microbiota-brain axis. All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of "gut microbiota", "gut-brain axis", and "neuroscience". All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future.

  1. PI3K-Akt-mTORC1-S6K1/2 Axis Controls Th17 Differentiation by Regulating Gfi1 Expression and Nuclear Translocation of RORγ

    Directory of Open Access Journals (Sweden)

    Yutaka Kurebayashi

    2012-04-01

    Full Text Available The PI3K-Akt-mTORC1 axis contributes to the activation, survival, and proliferation of CD4+ T cells upon stimulation through TCR and CD28. Here, we demonstrate that the suppression of this axis by deletion of p85α or PI3K/mTORC1 inhibitors as well as T cell-specific deletion of raptor, an essential component of mTORC1, impairs Th17 differentiation in vitro and in vivo in a S6K1/2-dependent fashion. Inhibition of PI3K-Akt-mTORC1-S6K1 axis impairs the downregulation of Gfi1, a negative regulator of Th17 differentiation. Furthermore, we demonstrate that S6K2, a nuclear counterpart of S6K1, is induced by the PI3K-Akt-mTORC1 axis, binds RORγ, and carries RORγ to the nucleus. These results point toward a pivotal role of PI3K-Akt-mTORC1-S6K1/2 axis in Th17 differentiation.

  2. EphA receptors regulate prostate cancer cell dissemination through Vav2–RhoA mediated cell–cell repulsion

    Directory of Open Access Journals (Sweden)

    Jennifer Batson

    2014-05-01

    Full Text Available Metastatic prostate cancer cells display EphB receptor-mediated attraction when they contact stromal fibroblasts but EphA-driven repulsion when they contact one another. The impact of these ‘social’ interactions between cells during cancer cell invasion and the signalling mechanisms downstream of Eph receptors are unclear. Here we show that EphA receptors regulate prostate cancer cell dissemination in a 2D dispersal assay and in a 3D cancer cell spheroid assay. We show that EphA receptors signal via the exchange factor Vav2 to activate RhoA and that both Vav2 and RhoA are required for prostate cancer cell–cell repulsion. Furthermore, we find that in EphA2/EphA4, Vav2 or RhoA siRNA-treated cells, contact repulsion can be restored by partial microtubule destabilisation. We propose that EphA–Vav2–RhoA-mediated repulsion between contacting cancer cells at the tumour edge could enhance their local invasion away from the primary tumour.

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... No Please type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: Thank you! Please help us improve RadiologyInfo.org by taking our brief survey: Survey Do ... Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) Prostate Cancer Ultrasound- and MRI-Guided Prostate ...

  4. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract.

    Science.gov (United States)

    Li, Guoxing; Song, Huiyang; Chen, Lei; Yang, Weihua; Nan, Kaihui; Lu, Peirong

    2017-07-01

    Age-related cataract is among the most common chronic disorders of ageing and the apoptosis of lens epithelial cells contributes to non-congenital cataract development. We amid to explore the role of TUG1 and miR-421 in the age-related cataract. The expression level of TUG1, miR-421 and caspase-3 were detected by RT-qPCR. The apoptotic-related protein, caspase-3, Bax and blc-2 were analyzed by western blot. We performed ultraviolet (UV) irradiation to induce SAR01/04 cell apoptosis which was analyzed by flow cytometry. RIP pull-down and luciferase reporter assay were used to verified the combination and regulating among TUG1, miR-421 and caspase-3. Here, we observed that the expression level of TUG1 and caspase-3 in the anterior lens capsules of age-related cataract were significantly higher and miR-421 was significantly lower than that in the normal anterior lens capsules. The apoptosis-related protein, caspase-3, Bax and blc-2 were abnormal expression in the anterior lens capsules of age-related cataract tissue. Our data showed that the expression level of TUG1 and caspase-3 and cell apoptosis rate in SAR01/04 cells treated with UV irradiation was remarkably higher than that in the control. TUG1 negatively regulated miR-421 expression and promoted UV irradiation-induced SAR01/04 cell apoptosis. However, miR-421 inhibitor and pcDNA-caspase-3 could reverse the action of the SRA01/04 cell apoptosis by si-TUG1, which suggested TUG1 promoted UV irradiation-induced apoptosis through downregulating miR-421 expression. Furthermore, this study confirmed TUG1 could been in combination with miR-421, and TUG1 and caspase-3 were both a directly target of miR-421. TUG1 modulated lens epithelial cell apoptosis through miR-421/caspase-3 axis. These findings will offer a novel insight into the pathogenesis of cataract. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. CYP27A1 Loss Dysregulates Cholesterol Homeostasis in Prostate Cancer.

    Science.gov (United States)

    Alfaqih, Mahmoud A; Nelson, Erik R; Liu, Wen; Safi, Rachid; Jasper, Jeffery S; Macias, Everardo; Geradts, Joseph; Thompson, J Will; Dubois, Laura G; Freeman, Michael R; Chang, Ching-Yi; Chi, Jen-Tsan; McDonnell, Donald P; Freedland, Stephen J

    2017-04-01

    In this study, we used a bioinformatic approach to identify genes whose expression is dysregulated in human prostate cancers. One of the most dramatically downregulated genes identified encodes CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis. Importantly, lower CYP27A1 transcript levels were associated with shorter disease-free survival and higher tumor grade. Loss of CYP27A1 in prostate cancer was confirmed at the protein level by immunostaining for CYP27A1 in annotated tissue microarrays. Restoration of CYP27A1 expression in cells where its gene was silenced attenuated their growth in vitro and in tumor xenografts. Studies performed in vitro revealed that treatment of prostate cancer cells with 27-hydroxycholesterol (27HC), an enzymatic product of CYP27A1, reduced cellular cholesterol content in prostate cancer cell lines by inhibiting the activation of sterol regulatory-element binding protein 2 and downregulating low-density lipoprotein receptor expression. Our findings suggest that CYP27A1 is a critical cellular cholesterol sensor in prostate cells and that dysregulation of the CYP27A1/27HC axis contributes significantly to prostate cancer pathogenesis. Cancer Res; 77(7); 1662-73. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Bisphenol A Modifies the Regulation Exerted by Testosterone on 5α-Reductase Isozymes in Ventral Prostate of Adult Rats

    Directory of Open Access Journals (Sweden)

    Pilar Sánchez

    2013-01-01

    Full Text Available The development, growth, and function of the prostate gland depend on androgen stimulation. The primary androgen in prostate is 5-dihydrotestosterone (DHT which is synthesized from circulating testosterone (T through the action of 5-reductase (5-R. Although 5-R occurs as five isozymes, only 5-R1 and 5-R2 are physiologically involved in steroidogenesis. The endocrine disruptor bisphenol A (BPA alters sexual organs, including the prostate. Our previous findings indicated that BPA decreased the expression of 5-R1 and 5-R2 in rat prostate but also circulating T. Thus, it is unclear whether BPA exerts this effect on 5-R isozymes by reducing circulating T or by any other mechanism. In this study, we examine the effects of short-term exposure to BPA at doses below 25 g/Kg/d and above 300 g/Kg/d of the TDI on mRNA levels of 5-R1 and 5-R2 in prostate of adult castrated rats supplemented with T to achieve constant circulating T levels. mRNA levels were measured by absolute quantitative RT-PCR, T levels by RIA, and DHT levels by ELISA. Our results indicated that in castrated rats treated with T BPA at the two doses studied significantly decreased the mRNA levels of both 5-R isozymes in a dose-dependent manner without modifications in circulating T.

  7. Prostate cancer

    International Nuclear Information System (INIS)

    Murphy, G.P.; Kuss, R.; Khoury, S.; Chatelain, C.; Denis, L.

    1987-01-01

    This book contains over 70 selections. Some of the titles are: Place of the Computed Tomography in the Staging of Prostatic Cancer; Magnetic Resonance Imaging (MRI) in Staging of the Prostatic Cancer; Magnetic Resonance Imaging of the Prostate; Long-Term Results in Radiotherapy of Prostatic Cancer; Interstitial Irradiation Using I-125 Seeds; and Treatment of Cancer of the Prostate by Use of Physiotherapy: Long-Term Results

  8. Prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, G.P.; Kuss, R., Khoury, S.; Chatelain, C.; Denis, L.

    1987-01-01

    This book contains over 70 selections. Some of the titles are: Place of the Computed Tomography in the Staging of Prostatic Cancer; Magnetic Resonance Imaging (MRI) in Staging of the Prostatic Cancer; Magnetic Resonance Imaging of the Prostate; Long-Term Results in Radiotherapy of Prostatic Cancer; Interstitial Irradiation Using I-125 Seeds; and Treatment of Cancer of the Prostate by Use of Physiotherapy: Long-Term Results.

  9. Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation

    DEFF Research Database (Denmark)

    Gusev, Alexander; Shi, Huwenbo; Kichaev, Gleb

    2016-01-01

    with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell...... lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic...

  10. p38 MAPK as an essential regulator of dorsal-ventral axis specification and skeletogenesis during sea urchin development: a re-evaluation.

    Science.gov (United States)

    Molina, Maria Dolores; Quirin, Magali; Haillot, Emmanuel; Jimenez, Felipe; Chessel, Aline; Lepage, Thierry

    2017-06-15

    Dorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of nodal expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis. Instead, we discovered that p38 inhibitors strongly disrupt specification of all germ layers by blocking signalling from the Nodal receptor and by interfering with the ERK pathway. Strikingly, while expression of a mutant p38 that is resistant to SB203580 did not rescue dorsal-ventral axis formation or skeletogenesis in embryos treated with this inhibitor, expression of mutant Nodal receptors that are resistant to SB203580 fully restored nodal expression in SB203580-treated embryos. Taken together, these results establish that p38 activity is not required for dorsal-ventral axis formation through nodal expression nor for skeletogenesis. Our results prompt a re-evaluation of the conclusions of several recent studies that linked p38 activity to dorsal-ventral axis formation and to patterning of the skeleton. © 2017. Published by The Company of Biologists Ltd.

  11. Vitamin A Deficiency Induces Autistic-Like Behaviors in Rats by Regulating the RARβ-CD38-Oxytocin Axis in the Hypothalamus.

    Science.gov (United States)

    Lai, Xi; Wu, Xiaofeng; Hou, Nali; Liu, Shu; Li, Qing; Yang, Ting; Miao, Jingkun; Dong, Zhifang; Chen, Jie; Li, Tingyu

    2018-03-01

    Vitamin A (VA) is an essential nutrient for the development of the brain. We previously found that children with autism spectrum disorder (ASD) have a significant rate of VA deficiency (VAD). In the current study, we aim to determine whether VAD is a risk factor for the generation of autistic-like behaviors via the transcription factor retinoic acid receptor beta (RARβ)-regulated cluster of differentiation 38 (CD38)-oxytocin (OXT) axis. Gestational VAD or VA supplementation (VAS) rat models are established, and the autistic-like behaviors in the offspring rats are investigated. The different expression levels of RARβ and CD38 in hypothalamic tissue and serum retinol and OXT concentration are tested. Primary cultured rat hypothalamic neurons are treated with all-trans retinoic acid (atRA), and recombinant adenoviruses carrying the rat RARβ (AdRARβ) or RNA interference virus RARβ-siRNA (siRARβ) are used to infect neurons to change RARβ signal. Western blotting, chromatin immunoprecipitation (ChIP), and intracellular Ca 2+ detections are used to investigate the primary regulatory mechanism of RARβ in the CD38-OXT signaling pathway. We found that gestational VAD increases autistic-like behaviors and decreases the expression levels of hypothalamic RARβ and CD38 and serum OXT levels in the offspring. VAS ameliorates these autistic-like behaviors and increases the expression levels of RARβ, CD38, and OXT in the gestational VAD pups. In vitro, atRA increases the Ca 2+ excitability of neurons, which might further promote the release of OXT. Different CD38 levels are induced in the neurons by infection with different RARβ adenoviruses. Furthermore, atRA enhances the binding of RARβ to the proximal promoter of CD38, indicating a potential upregulation of CD38 transcriptional activity by RARβ. Gestational VAD might be a risk factor for autistic-like behaviors due to the RARβ signal suppression of CD38 expression in the hypothalamus of the offspring, which

  12. Regulation of Microtubule, Apoptosis, and Cell Cycle-Related Genes by Taxotere in Prostate Cancer Cells Analyzed by Microarray

    Directory of Open Access Journals (Sweden)

    Yiwei Li

    2004-03-01

    Full Text Available Taxotere showed antitumor activity against solid tumors including prostate cancer. However, the molecular mechanism(s of action of Taxotere has not been fully elucidated. In order to establish such molecular mechanism(s in both hormone-insensitive (PC3 and hormone-sensitive (LNCaP prostate cancer cells, comprehensive gene expression profiles were obtained by Affymetrix Human Genome U133A Array. The RNA from the cells treated with 2 nM Taxotere was subjected to microarray analysis. We found that a total of 166, 365, and 1785 genes showed greater than twofold change in PC3 cells after 6, 36, and 72 hours of treatment, respectively compared to 57, 823, and 964 genes in LNCaP cells. The expression of tubulin was decreased, whereas the expression of microtubuleassociated proteins was increased in Taxotere-treated prostate cancer cells, confirming the microtubuletargeting effect of Taxotere. Clustering analysis showed downregulation of some genes for cell proliferation and cell cycle. In contrast, Taxotere upregulated some genes that are related to induction of apoptosis and cell cycle arrest. From these results, we conclude that Taxotere caused alterations of a large number of genes, many of which may contribute to the molecular mechanism(s by which Taxotere affects prostate cancer cells. Further molecular studies are needed in order to determine the cause and effect relationships between these genes altered by Taxotere. Nevertheless, our results could be further exploited for devising strategies to optimize therapeutic effects of Taxotere for the treatment of prostate cancer.

  13. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM.

    Directory of Open Access Journals (Sweden)

    Dejuan Kong

    Full Text Available The emergence of castrate-resistant prostate cancer (CRPC contributes to the high mortality of patients diagnosed with prostate cancer (PCa, which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs. Recent studies have shown that deregulated expression of microRNAs (miRNAs contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2, a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3'UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3'-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... a physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty ... Information and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page This page was reviewed on ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... uses sound waves to produce pictures of a man’s prostate gland and to help diagnose symptoms such ... also called transrectal ultrasound, provides images of a man's prostate gland and surrounding tissue. The exam typically ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate ... ultrasound images are captured in real-time, they can show the structure and movement of the body's ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... View full size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) ... or your insurance provider to get a better understanding of the possible charges you will incur. Web ...

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... What are the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is ... in front of the rectum. top of page What are some common uses of the procedure? A ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... about radiology? Share your patient story here Images × Image Gallery Radiologist and patient consultation. View full size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of the Prostate) ...

  20. Prostate Cancer

    Science.gov (United States)

    ... man's bladder that produces fluid for semen. Prostate cancer is common among older men. It is rare ... younger than 40. Risk factors for developing prostate cancer include being over 65 years of age, family ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... is used to guide the biopsy to specific regions of the prostate gland. When the examination is ... is relatively insensitive to the pain in the region of the prostate. A biopsy will add time ...

  2. Principles of the prolactin/vasoinhibin axis.

    Science.gov (United States)

    Triebel, Jakob; Bertsch, Thomas; Bollheimer, Cornelius; Rios-Barrera, Daniel; Pearce, Christy F; Hüfner, Michael; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2015-11-15

    The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed. Copyright © 2015 the American Physiological Society.

  3. Naringenin modulates the metastasis of human prostate cancer cells by down regulating the matrix metalloproteinases -2/-9 via ROS/ERK1/2 pathways

    Directory of Open Access Journals (Sweden)

    Er-Jiang Lin

    2014-08-01

    Full Text Available Metastasis is a multifactorial condition that complicates cancer treatment options and widens the target of treatment. Matrix mettalopriteinases (MMPs of the extracellular matrix (ECM are involved in metastasis, thus they present as potential targets in halting cancer metastasis. The study was undertaken to investigate the influence of naringenin, a naturally occurring flavonoid on the metastasis of human prostate cancer cells (PC-3 and DU145. Naringenin was observed to be effective in reducing the viability and migratory percentage of PC-3 and DU145 cells. Naringenin significantly reduced the expression and activities of the chief MMPs (MMP-2 and MMP-9 as assessed by western blotting, real-time PCR and gelatin zymography analysis. The influence of naringenin on extracellular signal-regulated kinase (ERK -ERK1/2 was analysed by western blotting. The results indicated that naringenin was able to effectively inhibit ERK1/2. Naringenin exposure also significantly suppressed the levels of reactive oxygen species (ROS. Naringenin thus stands as an effective chemotherapeutic agent for prostate cancer treatment that could be further explored.

  4. Activation of estrogen receptor beta (ERβ) regulates the expression of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Silva, Rafael de Souza; Lombardi, Ana Paola G; de Souza, Deborah Simão; Vicente, Carolina M; Porto, Catarina S

    2018-03-01

    The aim of the present study was to investigate the impact of the activation of estrogen receptors on expression and localization of N-cadherin, E-cadherin and non-phosphorylated β-catenin in androgen-independent prostate cancer cells (PC-3 and DU-145) and in human post pubertal prostate epithelial cells (PNT1A). Expression of N-cadherin was detected in PNT1A and PC-3 cells, but not in DU-145 cells. E-cadherin was detected only in DU-145 cells and β-catenin was detected in all cells studied. N-cadherin and β-catenin were located preferentially in the cellular membrane of PNT1A cells and in the cytoplasm of PC-3 cells. E-cadherin and β-catenin were located preferentially in the cellular membrane of DU-145 cells. 17β-estradiol (E2) or the ERα-selective agonist PPT did not affect the content and localization of N-cadherin in PC-3 and PNT1A cells or E-cadherin in DU-145 cells. In PC-3 cells, ERβ-selective agonist DPN decreased the expression of N-cadherin. DPN-induced downregulation of N-cadherin was blocked by pretreatment with the ERβ-selective antagonist (PHTPP), indicating that ERβ1 is the upstream receptor regulating the expression of N-cadherin. In DU-145 cells, the activation of ERβ1 by DPN increased the expression of E-cadherin. Taken together, these results suggest that activation of ERβ1 is required to maintain an epithelial phenotype in PC-3 and DU-145 cells. The activation of ERβ1 also increased the expression of β-catenin in cytoplasm of PC-3 and in the cellular membrane of DU-145 cells. In conclusion, our results indicate differential expression and localization of N-cadherin, E-cadherin and β-catenin in androgen-independent prostate cancer cells. The reduction of N-cadherin content by activation of ERβ, exclusively observed in androgen-independent prostate cancer cells (PC-3), may be related to the activation of signaling pathways, such as the release of β-catenin into the cytoplasm, translocation of β-catenin to the nucleus and

  5. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

    Science.gov (United States)

    Krause, William C; Shafi, Ayesha A; Nakka, Manjula; Weigel, Nancy L

    2014-09-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Physical activity, but not environmental complexity, facilitates HPA axis response habituation to repeated audiogenic stress despite neurotrophin mRNA regulation in both conditions.

    Science.gov (United States)

    Nyhuis, Tara J; Masini, Cher V; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2010-11-29

    Stress exacerbates several physical and psychological disorders. Voluntary exercise can reduce susceptibility to many of these stress-associated disorders. In rodents, voluntary exercise can reduce hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to various stressors as well as upregulate several brain neurotrophins. An important issue regarding voluntary exercise is whether its effect on the reduction of HPA axis activation in response to stress is due to the physical activity itself or simply the enhanced environmental complexity provided by the running wheels. The present study compared the effects of physical activity and environmental complexity (that did not increase physical activity) on HPA axis habituation to repeated stress and modulation of brain neurotrophin mRNA expression. For six weeks, male rats were given free access to running wheels (exercise group), given 4 objects that were repeatedly exchanged (increased environmental complexity group), or housed in standard cages. On week 7, animals were exposed to 11 consecutive daily 30-min sessions of 98-dBA noise. Plasma corticosterone and adrenocorticotropic hormone were measured from blood collected directly after noise exposures. Tissue, including brains, thymi, and adrenal glands was collected on Day 11. Although rats in both the exercise and enhanced environmental complexity groups expressed higher levels of BDNF and NGF mRNA in several brain regions, only exercise animals showed quicker glucocorticoid habituation to repeated audiogenic stress. These results suggest that voluntary exercise, independent from other environmental manipulations, accounts for the reduction in susceptibility to stress. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Proto-oncogene PML and Tumor Evasion in Prostate Cancer

    National Research Council Canada - National Science Library

    Zheng, Pan

    2000-01-01

    ... determined. We have proposed to identify the antigen presentation defects in prostate cancer, to examine the role of proto-oncogene PML in HLA class I down regulation in prostate cancer, and to study the immune...

  8. Proto-oncogene PML and Tumor Evasion in Prostate Cancer

    National Research Council Canada - National Science Library

    Zheng, Pan

    2001-01-01

    ...) to study the immune regulation and immune tolerance in prostate cancer. In the past funding period, we have shown that thymic clonal deletion is a major mechanism for immune tolerance to tumor antigens that previously regarded as prostate specific...

  9. Bisphenol A Disrupts HNF4α-Regulated Gene Networks Linking to Prostate Preneoplasia and Immune Disruption in Noble Rats

    Science.gov (United States)

    Lam, Hung-Ming; Chen, Jing; Medvedovic, Mario; Tam, Neville Ngai Chung

    2016-01-01

    Exposure of humans to bisphenol A (BPA) is widespread and continuous. The effects of protracted exposure to BPA on the adult prostate have not been studied. We subjected Noble rats to 32 weeks of BPA (low or high dose) or 17β-estradiol (E2) in conjunction with T replenishment. T treatment alone or untreated groups were used as controls. Circulating T levels were maintained within the physiological range in all treatment groups, whereas the levels of free BPA were elevated in the groups treated with T+low BPA (1.06 ± 0.05 ng/mL, P BPA (10.37 ± 0.43 ng/mL, P BPA-treated rats. In contrast, only hyperplasia and high-grade PIN, but no aberrant immune responses, were found in the T+E2-treated LPs. Genome-wide transcriptome analysis in LPs identified differential changes between T+BPA vs T+E2 treatment. Expression of multiple genes in the regulatory network controlled by hepatocyte nuclear factor 4α was perturbed by the T+BPA but not by the T+E2 exposure. Collectively these findings suggest that the adult rat prostate, under a physiologically relevant T environment, is susceptible to BPA-induced transcriptomic reprogramming, immune disruption, and aberrant growth dysregulation in a manner distinct from those caused by E2. They are more relevant to our recent report of higher urinary levels BPA found in patients with prostate cancer than those with benign disease. PMID:26496021

  10. Down-regulation of protein kinase, DNA-activated, catalytic polypeptide attenuates tumor progression and is an independent prognostic predictor of survival in prostate cancer.

    Science.gov (United States)

    Zhang, Xiang; Wang, Yanlin; Ning, Yuan

    2017-03-01

    Protein kinase, DNA-activated, catalytic polypeptide (PRKDC) is a critical component of DNA repair machinery and its dysregulated expression has been observed in various cancer types or premalignant cells. However, its role in prostate cancer (PCa) development and its prognostic significance in PCa is unknown. The mRNA and protein levels of PRKDC were analyzed in 15 pairs of PCa and benign prostatic hyperplasia tissues as well as PCa cell lines by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA and short hairpin RNA-mediated knockdown of PRKDC, followed by cell proliferation, colony formation, and soft agar assays were performed. Xenograft mouse model was used to evaluate in vivo effects of PRKDC knockdown. The association between PRKDC expression and clinicopathologic features was assessed by χ 2 tests. Kaplan-Meier analysis was performed to investigate the association between PRKDC expression and overall survival. Cox proportional hazards regression models were used to examine the prognostic significance of PRKDC. Expression of PRKDC mRNA and protein was notably higher in PCa tissues and PCa cell lines. Knockdown of PRKDC markedly reduced cell proliferation, colony formation efficiency, and soft agar growth in DU145 cells. Down-regulation of PRKDC inhibited tumor growth of DU145 xenografts and enhance mice survival. In addition, PRKDC expression in PCa was significantly associated with Gleason score (P = 0.01), tumor stage (P = 0.028), and distant metastasis (P = 0.025). Patients with PCa having higher PRKDC expression had substantially shorter survival than patients with lower PRKDC expression. Down-regulation of PRKDC attenuates tumor progression in PCa. PRKDC may potentially be a prognostic biomarker in PCa. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1.

    Directory of Open Access Journals (Sweden)

    Dawei Mu

    Full Text Available BACKGROUND: Sodium butyrate, a histone deacetylase inhibitor, has emerged as a promising anticancer drug for multiple cancers. Recent studies have indicated that sodium butyrate could inhibit the progression of prostate cancer; however, the exact mechanism is still unclear. The aim of this study was to investigate the mechanism of sodium butyrate action in prostate cancer DU145 cells. METHODS: The inhibitory effects of NaB on cell growth were detected by the 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrrazolium bromide assay. Cell apoptosis was determined by flow cytometric analysis of DU145 cells stained with annexin V and PI. Hoechst 33258 and fluorescence microscopes were used to observe the nuclear morphology of DU145 cells after treatment with NaB. ANXA1 knockdown cells were established through transfection with ANXA1 siRNA. ANXA1 mRNA levels were measured by qRT-PCR. Bcl-2, Bax, ANXA1, ERK1/2 and pERK1/2 were detected by western blot. RESULTS: NaB significantly inhibited the growth and induction apoptosis of DU145 and PC3 cells in a dose-dependent manner. Expression of the anti-apoptosis gene Bcl-xl and Bcl-2 in DU145 cells are decreased and expression of the pro-apoptosis gene Bax and Bak increased after NaB treatment. Further studies have demonstrated that NaB up-regulated the expression of ANXA1 and that the tumor inhibition action of NaB was reduced markedly through knockdown of the ANXA1 gene in DU145 cells. Moreover, the siANXA1 cells showed that cell proliferation increased and cell apoptosis was induced by the inactivation of extracellular regulated kinase (ERK. CONCLUSION: Our results support a significant correlation between NaB functions and ANXA1 expression in prostate cancer, and pave the way for further studying the molecular mechanism of NaB actions in cancers.

  12. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available DNA methyltransferase (DNMT is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs. This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP. The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy.We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer.Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for Ca

  13. Prostate cancer

    International Nuclear Information System (INIS)

    Bey, P.; Beckendorf, V.; Stines, J.

    2001-01-01

    Radiation therapy of prostate carcinoma with a curative intent implies to treat the whole prostate at high dose (at least 66 Gy). According to clinical stage, PSA level, Gleason's score, the clinical target volume may include seminal vesicles and less often pelvic lymph nodes. Microscopic extra-capsular extension is found in 15 to 60% of T1-T2 operated on, specially in apex tumors. On contrary, cancers developing from the transitional zone may stay limited to the prostate even with a big volume and with a high PSA level. Zonal anatomy of the prostate identifies internal prostate, including the transitional zone (5% of the prostate in young people). External prostate includes central and peripheral zones. The inferior limit of the prostate is not lower than the inferior border of the pubic symphysis. Clinical and radiological examination: ultrasonography, nuclear magnetic resonance (NMR), CT-scan identify prognostic factors as tumor volume, capsule effraction, seminal vesicles invasion and lymph node extension. The identification of the clinical target volume is now done mainly by CT-Scan which identifies prostate and seminal vesicles. NMR could be helpful to identify more precisely prostate apex. The definition of margins around the clinical target volume has to take in account daily reproducibility and organ motion and of course the maximum tolerable dose for organs at risk. (authors)

  14. Gut Microbiota-brain Axis

    Science.gov (United States)

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  15. AR Alternative Splicing and Prostate Cancer Progression

    Science.gov (United States)

    2013-07-01

    patients with castration-resistant prostate cancer. Cancer Res 2009;69:2912–8. 15. Culig Z, Bartsch G. Androgen axis in prostate cancer. J Cell Biochem...such as MLPA are useful for identifying deletions or duplications that involve probe-binding sites, this study has illustrated that unbiased...the AR locus is illustrated at the top. Paired-end sequence reads were mapped to the hg19 build of the human genome using Burrows --Wheeler Alignment

  16. Characterizing and Targeting Androgen Receptor Pathway-Independent Prostate Cancer

    Science.gov (United States)

    2013-11-01

    chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res 57: 524–531. 21. Bernard D, Pourtier-Manzanedo A...of prostate cancer metastasis. Red depicts chromosomal regions with copy number gain and Blue depicts regions with copy number loss. X-axis (columns...of figure the full human genome ordered by chromosome (1-X,Y). The Y-Axis (Rows) are individual patients with multiple tumors per patient. Note

  17. Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B

    International Nuclear Information System (INIS)

    Sharma, Pankaj; Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    As transcriptional regulators of basic helix–oop–helix (bHLH) transcription and non-bHLH factors, the inhibitor of differentiation (Id1, Id2, Id3, and Id4) proteins play a critical role in coordinated regulation of cell growth, differentiation, tumorigenesis, and angiogenesis. Id1 regulates prostate cancer (PCa) cell proliferation, apoptosis, and androgen independence, but its clinical significance in PCa remains controversial. Moreover, there is lack of evidence on the expression of Id2 and Id3 in PCa progression. In this study we investigated the expression of Id2 and Id3 and reevaluated the expression of Id1 in PCa. We show that increased Id1 and Id3 protein expression is strongly associated with increasing grade of PCa. At the molecular level, we report that silencing either Id1 or Id3 attenuates cell cycle. Although structurally and mechanistically similar, our results show that both these proteins are noncompensatory at least in PCa progression. Moreover, through gene silencing approaches we show that Id1 and Id3 primarily attenuates CDKN1A (p21) and CDKN1B (p27), respectively. We also demonstrate that silencing Id3 alone significantly attenuates proliferation of PCa cells as compared with Id1. We propose that increased Id1 and Id3 expression attenuates all three cyclin-dependent kinase inhibitors (CDKN2B, -1A, and -1B) resulting in a more aggressive PCa phenotype

  18. Prostate-derived sterile 20-like kinase 2 (PSK2) regulates apoptotic morphology via C-Jun N-terminal kinase and Rho kinase-1.

    Science.gov (United States)

    Zihni, Ceniz; Mitsopoulos, Costas; Tavares, Ignatius A; Ridley, Anne J; Morris, Jonathan D H

    2006-03-17

    We have reported previously that human prostate-derived sterile 20-like kinase (PSK) 1 alters actin cytoskeletal organization and binds to microtubules, regulating their organization and stability. We have shown a structurally related protein kinase PSK2, which lacks a microtubule-binding site, activated c-Jun N-terminal kinase (JNK), and induced apoptotic morphological changes that include cell contraction, membrane blebbing, and apoptotic body formation. Apoptotic stimuli increased the catalytic activity of endogenous PSK2 and JNK, and dominant negative JNK or a physiological inhibitor of JNK blocked these apoptotic morphological responses to PSK2, demonstrating a requirement for JNK. PSK2 also stimulated the cleavage of Rho kinase-1 (ROCK-I), and the activity of ROCK-I was required for PSK2 to induce cell contraction and membrane blebbing. The activation of caspases was also needed for the induction of membrane blebbing by PSK2, which was itself a substrate for caspase 3. PSK2 therefore regulates apoptotic morphology associated with the execution phase of apoptosis, which involves dynamic reorganization of the actin cytoskeleton, via downstream targets that include JNK and ROCK-I. Our findings suggest that PSKs form a subgroup of sterile 20 (STE20)-like kinases that regulate different cytoskeletal processes.

  19. GSKIP- and GSK3-mediated anchoring strengthens cAMP/PKA/Drp1 axis signaling in the regulation of mitochondrial elongation.

    Science.gov (United States)

    Loh, Joon-Khim; Lin, Ching-Chih; Yang, Ming-Chang; Chou, Chia-Hua; Chen, Wan-Shia; Hong, Ming-Chang; Cho, Chung-Lung; Hsu, Ching-Mei; Cheng, Jiin-Tsuey; Chou, An-Kuo; Chang, Chung-Hsing; Tseng, Chao-Neng; Wang, Chi-Huei; Lieu, Ann-Shung; Howng, Shen-Long; Hong, Yi-Ren

    2015-08-01

    GSK3β binding of GSKIP affects neurite outgrowth, but the physiological significance of PKA binding to GSKIP remains to be determined. We hypothesized that GSKIP and GSK3β mediate cAMP/PKA/Drp1 axis signaling and modulate mitochondrial morphology by forming a working complex comprising PKA/GSKIP/GSK3β/Drp1. We demonstrated that GSKIP wild-type overexpression increased phosphorylation of Drp1 S637 by 7-8-fold compared to PKA kinase-inactive mutants (V41/L45) and a GSK3β binding-defective mutant (L130) under H2O2 and forskolin challenge in HEK293 cells, indicating that not only V41/L45, but also L130 may be involved in Drp1-associated protection of GSKIP. Interestingly, silencing either GSKIP or GSK3β but not GSK3α resulted in a dramatic decrease in Drp1 S637 phosphorylation, revealing that both GSKIP and GSK3β are required in this novel PKA/GSKIP/GSK3β/Drp1 complex. Moreover, overexpressed kinase-dead GSK3β-K85R, which retains the capacity to bind GSKIP, but not K85M which shows total loss of GSKIP-binding, has a higher Drp1 S637 phosphorylation similar to the GSKIP wt overexpression group, indicating that GSK3β recruits Drp1 by anchoring rather than in a kinase role. With further overexpression of either V41/L45P or the L130P GSKIP mutant, the elongated mitochondrial phenotype was lost; however, ectopically expressed Drp1 S637D, a phosphomimetic mutant, but not S637A, a non-phosphorylated mutant, restored the elongated mitochondrial morphology, indicating that Drp1 is a downstream effector of direct PKA signaling and possibly has an indirect GSKIP function involved in the cAMP/PKA/Drp1 signaling axis. Collectively, our data revealed that both GSKIP and GSK3β function as anchoring proteins in the cAMP/PKA/Drp1 signaling axis modulating Drp1 phosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Prostate cancer

    International Nuclear Information System (INIS)

    Spera, G.

    2010-01-01

    This work is about diagnosis, treatment and monitoring of prostate cancer. The techniques used are: transrectal ultrasound, laparascopy, bone scan, chest x-ray, radiography, chemoterapy and radiotherapy

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Prostate ultrasound, also called transrectal ultrasound, provides ...

  2. Inflammatory Genetic Markers of Prostate Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Tindall, Elizabeth A.; Hayes, Vanessa M. [Cancer Genetics Group, Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, PO Box 81, Randwick, NSW 2031 (Australia); University of New South Wales, Kensington Campus, Sydney, NSW 2052 (Australia); Petersen, Desiree C., E-mail: dpetersen@ccia.unsw.edu.au [Cancer Genetics Group, Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, PO Box 81, Randwick, NSW 2031 (Australia)

    2010-06-08

    Prostate cancer is the most common cancer in Western society males, with incidence rates predicted to rise with global aging. Etiology of prostate cancer is however poorly understood, while current diagnostic tools can be invasive (digital rectal exam or biopsy) and/or lack specificity for the disease (prostate-specific antigen (PSA) testing). Substantial histological, epidemiological and molecular genetic evidence indicates that inflammation is important in prostate cancer pathogenesis. In this review, we summarize the current status of inflammatory genetic markers influencing susceptibility to prostate cancer. The focus will be on inflammatory cytokines regulating T-helper cell and chemokine homeostasis, together with the Toll-like receptors as key players in the host innate immune system. Although association studies indicating a genetic basis for prostate cancer are presently limited mainly due to lack of replication, larger and more ethnically and clinically defined study populations may help elucidate the true contribution of inflammatory gene variants to prostate cancer risk.

  3. Inflammatory Genetic Markers of Prostate Cancer Risk

    International Nuclear Information System (INIS)

    Tindall, Elizabeth A.; Hayes, Vanessa M.; Petersen, Desiree C.

    2010-01-01

    Prostate cancer is the most common cancer in Western society males, with incidence rates predicted to rise with global aging. Etiology of prostate cancer is however poorly understood, while current diagnostic tools can be invasive (digital rectal exam or biopsy) and/or lack specificity for the disease (prostate-specific antigen (PSA) testing). Substantial histological, epidemiological and molecular genetic evidence indicates that inflammation is important in prostate cancer pathogenesis. In this review, we summarize the current status of inflammatory genetic markers influencing susceptibility to prostate cancer. The focus will be on inflammatory cytokines regulating T-helper cell and chemokine homeostasis, together with the Toll-like receptors as key players in the host innate immune system. Although association studies indicating a genetic basis for prostate cancer are presently limited mainly due to lack of replication, larger and more ethnically and clinically defined study populations may help elucidate the true contribution of inflammatory gene variants to prostate cancer risk

  4. Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α

    Directory of Open Access Journals (Sweden)

    Alessio Paone

    2010-07-01

    Full Text Available Toll-like receptors (TLRs recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-induciblefactor 1 (HIF-1regulates several cellular processes, includingapoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific 1.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF. Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of 1.3 isoform of hif-1α in LNCaP cells allows poly(I:CI-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.

  5. Alterations of androgen receptor-regulated enhancer RNAs (eRNAs) contribute to enzalutamide resistance in castration-resistant prostate cancer.

    Science.gov (United States)

    Zhao, Jingwen; Zhao, Yu; Wang, Liguo; Zhang, Jun; Karnes, R Jeffrey; Kohli, Manish; Wang, Guixia; Huang, Haojie

    2016-06-21

    Enzalutamide is a second-generation anti-androgen for treatment of castration-resistant prostate cancer (CPRC). It prolongs survival of CRPC patients, but its overall survival benefit is relatively modest (4.8 months) and by 24 months most patients progress on enzalutamide. To date, however, the molecular mechanisms underlying enzalutamide resistance remain elusive. Herein, we report enzalutamide treatment-induced alterations of androgen receptor (AR)-regulated enhancer RNAs (AR-eRNAs) and their roles in enzalutamide-resistant growth and survival of CRPC cells. AR chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) and RNA-seq analyses revealed that 188 and 227 AR-eRNAs were differentially expressed in enzalutamide-resistant LNCaP and C4-2 cells, respectively. The AR-eRNAs upregulated in C4-2 cells and downregulated in LNCaP cells were selected through meta-analysis. Expression of AR-eRNAs and related mRNAs in the loci of FTO, LUZP2, MARC1 and NCAM2 were further verified by real-time RT-PCR. Silencing of LUZP2 inhibited, but silencing of MARC1 increased the growth of enzalutamide-resistant C4-2 cells. Intriguingly, meta-analysis showed that expression of LUZP2 mRNA increased in primary tumors compared to normal prostate tissues, but decreased again in metastatic CRPC. Our findings suggest that eRNA alteration profiling is a viable new approach to identify functional gene loci that may not only contribute to enzalutamide-resistant growth of CRPC, but also serve as new targets for CRPC therapy.

  6. Elevated YKL40 is associated with advanced prostate cancer (PCa) and positively regulates invasion and migration of PCa cells.

    Science.gov (United States)

    Jeet, Varinder; Tevz, Gregor; Lehman, Melanie; Hollier, Brett; Nelson, Colleen

    2014-10-01

    Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa. © 2014 The authors.

  7. Triple-axis spectrometer

    International Nuclear Information System (INIS)

    Toeroek, Gy.

    2001-01-01

    A triple-axis spectrometer has been designed for structural and dynamical studies of condensed matter. Because of the limited number of other operational equipment the triple axis spectrometer was used in a multi purpose regime, e.g. high resolution diffractometry, strain analysis, reflectometry, quasielastic and inelastic scattering. A polarization setup was also tested on this spectrometer. (R.P.)

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... BPH) , with measurements acquired as needed for any treatment planning. detect an abnormal growth within the prostate. help diagnose the cause of a man's infertility. A transrectal ultrasound of the prostate gland is typically used to help diagnose symptoms such as: a nodule felt by a physician ...

  9. Anti-proliferative effects of polyphenols from pomegranate rind (Punica granatum L.) on EJ bladder cancer cells via regulation of p53/miR-34a axis.

    Science.gov (United States)

    Zhou, Benhong; Yi, Huilan; Tan, Jun; Wu, Yue; Liu, Gang; Qiu, Zhenpeng

    2015-03-01

    miRNAs and their validated miRNA targets appear as novel effectors in biological activities of plant polyphenols; however, limited information is available on miR-34a mediated cytotoxicity of pomegranate rind polyphenols in cancer cell lines. For this purpose, cell viability assay, Realtime quantitative PCR for mRNA quantification, western blot for essential protein expression, p53 silencing by shRNA and miR-34a knockdown were performed in the present study. EJ cell treatment with 100 µg (GAE)/mL PRE for 48 h evoked poor cell viability and caspase-dependent pro-apoptosis appearance. PRE also elevated p53 protein and triggered miR-34a expression. The c-Myc and CD44 were confirmed as direct targets of miR-34a in EJ cell apoptosis induced by PRE. Our results provide sufficient evidence that polyphenols in PRE can be potential molecular clusters to suppress bladder cancer cell EJ proliferation via p53/miR-34a axis. Copyright © 2015 John Wiley & Sons, Ltd.

  10. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.

    Science.gov (United States)

    Wiley, N C; Dinan, T G; Ross, R P; Stanton, C; Clarke, G; Cryan, J F

    2017-07-01

    The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.

  11. Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis.

    Science.gov (United States)

    Zhu, Jie; Shi, Huirong; Liu, Huina; Wang, Xiaojuan; Li, Fengmei

    2017-09-12

    Increasing evidences showed that long non-coding RNAs (lncRNAs) play vital roles in tumor progression. Recent studies indicated that lncRNA TUG1 was upregulated and promoted tumor processes in several cancers. However, the expression and underlying mechanism of TUG1 in cervical cancer remain unclear. In the present study, we found that TUG1 expression was upregulated in cervical cancer tissues and correlated with advanced clinical features and poor overall survival. TUG1 knockdown suppressed cervical cancer cell growth and metastasis in vitro and tumor growth in vivo . In addition, our results indicated that TUG1 could act as an endogenous sponge by directly binding to miR-138-5p and suppressed miR-138-5p expression. Furthermore, we found that TUG1 could reverse the inhibitory effect of miR-138-5p on cervical cancer cells processes, which might be involved in the activation of SIRT1, a target gene of miR-138-5p, and activation of Wnt/β-catenin signaling pathway. Taken together, we elucidated that TUG1 might promote cervical cancer malignant progression via miR-138-5p-SIRT1-Wnt/β-catenin signaling pathway axis.

  12. Regulation of Cell Proliferation and Migration by miR-203 via GAS41/miR-10b Axis in Human Glioblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjaya Pal

    Full Text Available Glioma amplified sequence 41(GAS41 is a potent transcription factor that play a crucial role in cell proliferation and survival. In glioblastoma, the expression of GAS41 at both transcriptional and post transcriptional level needs to be tightly maintained in response to cellular signals. Micro RNAs (miRNA are small non coding RNA that act as important regulators for modulating the expression of various target genes. Studies have shown that several miRNAs play role in the post-transcriptional regulation of GAS41. Here we identified GAS41 as a novel target for endogenous miR-203 and demonstrate an inverse correlation of miR-203 expression with GAS41 in glioma cell lines (HNGC2 and U87. Over expression of miR-203 negatively regulates GAS41 expression in U87 and HNGC2 cell lines. Moreover, miR-203 restrained miR-10b action by suppressing GAS41. GAS41 is essential for repressing p53 in tumor suppressor pathway during cell proliferation. Enforced expression of GAS41 produced contradictory effect on miR-203 but was able to enhance p53 tumor suppressor pathway associated protein. It was also found that miR-203 maintains the stability of p53 as knock down of p53 expression using siRNA resulted in down regulation of pri-miR and mature miR-203 expression. Conversely reconstitution of miR-203 expression induced apoptosis and inhibited migratory property of glioma cells. Taken together, we show that miR-203 is a key negative regulator of GAS41 and acts as tumor suppressor microRNA in glioma.

  13. Prostate Cancer Prevention

    Science.gov (United States)

    ... prostate cancer A man whose father, brother, or son has had prostate cancer has a higher-than- ... known if these drugs lower the risk of death from prostate cancer. The Prostate Cancer Prevention Trial ( ...

  14. Screening for Prostate Cancer

    Science.gov (United States)

    ... Force reviewed research studies on the prostate-specific antigen (PSA) screening test for prostate cancer. It concluded that ... used to screen for prostate cancer: • Prostate-specific antigen (PSA) blood test: This test looks for PSA, a ...

  15. Understanding Prostate Cancer: Newly Diagnosed

    Science.gov (United States)

    ... vs Cancer Contact Us Newly Diagnosed with Prostate Cancer Prostate Cancer Basics About the Prostate Risk Factors Prostate ... when my.. Donors Patient Stories About the Prostate Cancer Foundation The Prostate Cancer Foundation (PCF) is the world’s leading philanthropic ...

  16. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development.

    Directory of Open Access Journals (Sweden)

    Tobias Bohnenpoll

    2017-08-01

    Full Text Available The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH family of secreted proteins, Sonic hedgehog (SHH as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT.

  17. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development

    Science.gov (United States)

    Wittern, Anna B.; Weiss, Anna-Carina; Rudat, Carsten; Schuster-Gossler, Karin; Wojahn, Irina; Lüdtke, Timo H.-W.; Trowe, Mark-Oliver

    2017-01-01

    The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH) family of secreted proteins, Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO) to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT). PMID:28797033

  18. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development.

    Science.gov (United States)

    Bohnenpoll, Tobias; Wittern, Anna B; Mamo, Tamrat M; Weiss, Anna-Carina; Rudat, Carsten; Kleppa, Marc-Jens; Schuster-Gossler, Karin; Wojahn, Irina; Lüdtke, Timo H-W; Trowe, Mark-Oliver; Kispert, Andreas

    2017-08-01

    The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH) family of secreted proteins, Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO) to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT).

  19. Hypothalamus-pituitary-thyroid axis disruption in rats with breast cancer is related to an altered endogenous oxytocin/insulin-regulated aminopeptidase (IRAP) system.

    Science.gov (United States)

    Carrera-González, María Pilar; Ramírez-Expósito, María Jesús; de Saavedra, Jose Manuel Arias; Sánchez-Agesta, Rafael; Mayas, María Dolores; Martínez-Martos, Jose Manuel

    2011-06-01

    Associations of breast cancer with diseases of the thyroid have been repeatedly reported, but the mechanism underlying this association remains to be elucidated. It has been reported that oxytocin (OXT) attenuates the thyroid-stimulating hormone (TSH) release in response to thyrotrophin-releasing hormone (TRH) and decreased plasma levels of TSH as well as the thyroid hormones by an effect mediated by the central nervous system. Oxytocinase (IRAP) is the regulatory proteolytic enzyme reported to hydrolyze OXT. Changes in IRAP activity have been reported in both human breast cancer and N-methyl-nitrosourea (NMU)-induced rat mammary tumours. Here, we measure IRAP activity fluorometrically using cystyl-β-naphthylamide as the substrate, in the hypothalamus-pituitary-thyroid axis together with the circulating levels of OXT, and its relationship with circulating levels of TSH and free thyroxine (fT4), as markers of thyroid function in control rats and rats with breast cancer induced by NMU. We found decreased thyroid function in rats with breast cancer induced by NMU, supported by the existence of lower serum circulating levels of both TSH and fT4 than their corresponding controls. Concomitantly, we found a decrease of hypothalamic IRAP activity and an increase in circulating levels of OXT. We propose that breast cancer increases OXT pituitary release by decreasing its hypothalamic catabolism through IRAP activity, probably due to the alteration of the estrogenic endocrine status. Thus, high circulating levels of OXT decreased TSH release from the pituitary, and therefore, of thyroid hormones from the thyroid, supporting the association between breast cancer and thyroid function disruption.

  20. Regulation of the PKCθ-NF-κB Axis in T lymphocytes by the Tumor Necrosis Factor Receptor Family Member OX40

    Directory of Open Access Journals (Sweden)

    Takanori eSo

    2012-05-01

    Full Text Available Antigen primed T lymphocytes need to expand and persist to promote adaptive immunity. The growth and survival signals that control this are in large part provided by the NF-κB pathway in activated or effector/memory T cells. Although several membrane receptors impact NF-κB activation, signaling from OX40 (CD134, TNFRSF4, a member of the tumor necrosis factor receptor (TNFR superfamily, has proven to be important for T cell immunity and a strong contributor to NF-κB activity. PKCθ directs the TCR and CD28-dependent assembly of a CBM complex (CARMA1, BCL10, and MALT1 for efficient activation of NF-κB, raising the question of whether other membrane bound receptors that activate NF-κB also require this PKCθ-CBM axis to control TCR-independent T cell activity. We discuss here our recent data demonstrating that after ligation by OX40L (CD252, TNFSF4 expressed on antigen-presenting cells, OX40 translocates into detergent-insoluble membrane lipid microdomains (DIM or lipid rafts in T cells irrespective of TCR signals, and assembles into a novel signaling complex containing PKCθ, together with TRAF2, RIP1, the CBM complex, and the IKKα/β/γ complex. PKCθ is required for optimal NF-κB activation mediated by OX40 and thus works as an essential component of this OX40 signalosome. We also discuss the likelihood that other TNFR superfamily molecules might complex with PKCθ in T cells, and whether PKC isoforms may be critical to the function of TNFR molecules in general. 

  1. Activation of STAT3/HIF-1α/Hes-1 axis promotes trastuzumab resistance in HER2-overexpressing breast cancer cells via down-regulation of PTEN.

    Science.gov (United States)

    Aghazadeh, Safiyeh; Yazdanparast, Razieh

    2017-08-01

    Resistance to the HER2-targeted antibody trastuzumab remains to be a major clinical challenge in the treatment of HER2-positive breast cancer. Hyper-activation of STAT3 is proposed to be a predictive biomarker of trastuzumab resistance. However, the precise mechanism(s) remains poorly defined. Evidence is emerging that HIF-1α, a central downstream element of STAT3 pathway, serves a pivotal role in the complex signaling network with subsequent diverse cellular events. We have established trastuzumab resistant SKBR3 cells (SKBR3-TR). The cell viability, apoptosis as well as western blot, siRNA transfection and co-immunoprecipitation assays were performed to evaluate the involvement of STAT3/HIF-1α in modulation of trastuzumab resistance. We found that in SKBR3-TR cells and conditioned medium-treated parental cells, constitutive phosphorylated STAT3 coincided with prominent up-regulation of HIF-1α which was accompanied with PTEN attenuation. Moreover, the inhibition of STAT3 activation by Stattic and/or genetically STAT3 knocking down decreased HIF-1α level in SKBR3-TR cells. Additionally, treatment with Stattic and/or STAT3 siRNA engendered the up-regulation of PTEN protein in STAT3-inhibited resistant cells. Restoration of PTEN was also observed following siRNA-mediated silencing of HIF-1α expression. Moreover, down-regulation of HIF-1α caused a reduction in the HES-1 content. Further study with HES-1 specific siRNA revealed the elevation of PTEN expression in HES-1 knock-down trastuzumab resistant cells. The impairment of STAT3-HIF-1α-HES-1 pathway restored trastuzumab sensitivity through up-regulation of PTEN protein. These findings highlighted the signal integrator role of HIF-1α in STAT3-mediated trastuzumab resistance induction which would be valuable in designing more efficient chemosensitization strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Does the Androgen Receptor (AR)-Regulated Map Kinase Phosphatase 1 (MKP-1) Enhance Castration-Resistant Prostate Cancer Survival under Therapeutic Stress?

    Science.gov (United States)

    2016-03-01

    in breast cancer models, and is inversely associated with apoptosis in preclinical prostate cancer models. Androgen and glucocorticoid signaling can... effects of both hormonal and chemotherapies. To date, significant progress has been made including optimization of MKP-1 protein detection...with apoptosis in preclinical prostate cancer models. Androgen and glucocorticoid signaling can induce MKP-1 expression; as mCRPC remains driven by

  3. Krogh’s principle or a multiple fish model approach to phosphate balance: is there a centrally regulated intestinal-skeletal-renal axis?

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Guerreiro

    2015-10-01

    Full Text Available Inorganic phosphate (Pi is a crucial ion for vertebrate life. In addition to many physiological roles it is, together with calcium, the major element forming the internal skeleton and Pi balance has been considered a secondary consequence of calciotropic endocrine factors. However, contrary to calcium which can be readily obtained from even Ca-poor environments, Pi is not available in water, and fish can only obtain it via the food. Intestinal absorption drives Pi into the blood stream, but a central part of Pi balance is renal excretion and conservation. Recently, several Pi specific regulatory factors have been brought to light, and we use fish models to investigate their role and the hypothesis of a centrally controlled intestinal-skeletal-renal Pi axis. Using tissues mounted in Ussing chambers under symmetrical and asymmetrical short-circuited conditions we measure unidirectional 33Pi fluxes and test PTHrP, but also STC and FGF23 as regulatory factors, as well as specific drugs to unveil the functional transporting mechanisms. Pi absorption is modified in starved and fed sea bass, an effect dependent on Pi availability in diet, which modifies gene expression of uptake mechanisms. Phosphate secretion across flounder primary renal cell cultures is increased by PTHrP, which reduces the expression of reabsorption mechanisms such as NaPiII and evokes an increase in GFR in cannulated fish, thus resulting in net Pi excretion. A similar effect occurs in the toadfish urinary bladder, which displays moderate Pi transport that is abolished by the drug ouabain and modified by endocrines. Finally we used the shark choroid plexus (CP to show active CSF-to-blood transport with biochemical properties consistent with PiT Na+-dependent transporters. RT-PCR revealed the PiT1/2, but no NaPiII gene expression and we localized PiT2 in CP apical membranes while PiT1 occurred in vascular endothelial cells. Shark CP expresses both PTHrP and its receptor. Could

  4. Benign prostate hyperplasia (BPH) - resources

    Science.gov (United States)

    Resources - benign prostatic hyperplasia (BPH); Prostate enlargement resources; BPH resources ... The following organizations provide information on benign prostatic hyperplasia ( prostate enlargement ... Urology Care Foundation -- www. ...

  5. ING4 Loss in Prostate Cancer Progression

    Science.gov (United States)

    2016-10-01

    4. Luo W, Rodriguez M, Valdez JM, Zhu X, Tan K, Li D, Siwko S, Xin L, Liu M. Lgr4 is a key regulator of prostate development and prostate stem cell...Chang HY, Simon MD, Kutateladze TG, Gozani O. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetyla- tion to attenuate cellular...e6529. Carvalho, F. L., Simons , B. W., Eberhart, C. G. and Berman, D. M. (2014). Notch signaling in prostate cancer: a moving target. The Prostate

  6. Xanthogranulomatous Prostatitis, a Rare Prostatic Entity

    Directory of Open Access Journals (Sweden)

    Alejandro Noyola

    2017-01-01

    Full Text Available There are several benign prostatic pathologies that can clinically mimic a prostate adenocarcinoma. Xanthogranulomatous prostatitis is a benign inflammatory condition of the prostate and a rare entity. A 47-year old male, with 3 years of lower urinary tract symptoms, with a palpable hypogastric tumor, digital rectal examination: solid prostate, of approximately 60 g. Initial PSA was 0.90 ng/mL. He underwent surgical excision of the lower abdominal nodule and prostatectomy. Histopathology showed xanthogranulomatous prostatitis, without malignancy. Xanthogranulomatous prostatitis is an extremely rare entity that can simulate prostate adenocarcinoma, therefore having a correct histopathological diagnosis is essential.

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ... bowel (rectum) removed during prior surgery are not good candidates for ultrasound of the prostate gland because ...

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... receiver coil. top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top ... To locate a medical imaging or radiation oncology provider in your community, you can search the ACR- ...

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Images related to Ultrasound - Prostate Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  10. Prostate Biopsy

    Science.gov (United States)

    ... include "prostatic intraepithelial neoplasia" and "atypical small acinar proliferation." Cancer grading. If the pathologist finds cancer, it's ... does not endorse any of the third party products and services advertised. Advertising and sponsorship policy Advertising ...

  11. Prostate brachytherapy

    Science.gov (United States)

    ... the prostate. The doctor may use a computerized robot to do this. The radioactive material is removed ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  12. Prostatitis - bacterial

    Science.gov (United States)

    ... or tender scrotum The provider may perform a digital rectal exam to examine your prostate. During this ... Bennett's Principles and Practice of Infectious Diseases, Updated Edition . 8th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... rectum into the prostate gland which is situated right in front of the rectum. top of page ... bats, ships and fishermen. When a sound wave strikes an object, it bounces back, or echoes. By ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... phased array) receiver coil. top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Prostate ... Send us your feedback Did you find the information you were looking for? Yes No Please type ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... to investigate a nodule found during a rectal exam, detect abnormalities, and determine whether the gland is ... a man's prostate gland and surrounding tissue. The exam typically requires insertion of an ultrasound probe into ...

  16. Prostate Ultrasound

    Medline Plus

    Full Text Available ... nodule felt by a physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time ...

  17. Prostate Ultrasound

    Medline Plus

    Full Text Available ... patient consultation. View full size with caption Related Articles and Media Benign Prostatic Hyperplasia (BPH) (Enlargement of ... facilities database . This website does not provide cost information. The costs for specific medical imaging tests, treatments ...

  18. Prostate Ultrasound

    Medline Plus

    Full Text Available ... physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty ... vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the rectal wall is relatively insensitive to the pain in the region of the prostate. A biopsy ... needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  20. Prostate Ultrasound

    Medline Plus

    Full Text Available ... physician during a routine physical exam or prostate cancer screening exam. an elevated blood test result. difficulty ... if a patient is at high risk for cancer. In this case, a biopsy is performed and ...

  1. Prostate Ultrasound

    Medline Plus

    Full Text Available ... abnormal growth within the prostate. help diagnose the cause of a man's infertility. A transrectal ultrasound of ... show up well on x-ray images. Ultrasound causes no health problems and may be repeated as ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page This page was reviewed on ...

  3. Prostate Ultrasound

    Medline Plus

    Full Text Available ... This procedure requires little to no special preparation. Leave jewelry at home and wear loose, comfortable clothing. ... BPH) , with measurements acquired as needed for any treatment planning. detect an abnormal growth within the prostate. ...

  4. Prostate Ultrasound

    Medline Plus

    Full Text Available ... probe). A prostate-specific antigen (PSA) test, which measures the amount of PSA in the blood, may ... RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for ...

  5. Prostate cancer

    Science.gov (United States)

    ... who eat a diet high in fat, especially animal fat Obese men Tire plant workers Painters Men ... your doctor Radical prostatectomy - discharge Images Male reproductive anatomy Male urinary tract BPH Prostate cancer PSA blood ...

  6. Prostate Ultrasound

    Medline Plus

    Full Text Available ... abnormal area in the prostate gland for later laboratory testing. top of page How should I prepare? ... needle biopsies and fluid aspiration. Risks For standard diagnostic ultrasound , there are no known harmful effects on ...

  7. The genomic landscape of prostate cancer

    Directory of Open Access Journals (Sweden)

    Sylvan eBaca

    2012-05-01

    Full Text Available Prostate cancer is a common malignancy in men, with a markedly variable clinical course. Somatic alterations in DNA drive the growth of prostate cancers and may underlie the behavior of aggressive versus indolent tumors. The accelerating application of genomic technologies over the last two decades has identified mutations that drive prostate cancer formation, progression, and therapeutic resistance. Here, we discuss exemplary somatic mutations in prostate cancer, and highlight mutated cellular pathways with biological and possible therapeutic importance. Examples include mutated genes involved in androgen signaling, cell cycle regulation, signal transduction and development. Some genetic alterations may also predict the clinical course of disease or response to therapy, although the molecular heterogeneity of prostate tumors poses challenges to genomic biomarker identification. The widespread application of massively parallel sequencing technology to the analysis of prostate cancer genomes should continue to advance both discovery-oriented and diagnostic avenues.

  8. Reciprocal signals between microglia and neurons regulate alpha-synuclein secretion by exophagy through a neuronal cJU-N-Nterminal kinase-signaling axis

    DEFF Research Database (Denmark)

    Christensen, Dan Ploug; Ejlerskov, Patrick; Rasmussen, Izabela

    2016-01-01

    Background: Secretion of proteopathic alpha-synuclein (alpha-SNC) species from neurons is a suspected driving force in the propagation of Parkinson's disease (PD). We have previously implicated exophagy, the exocytosis of autophagosomes, as a dominant mechanism of alpha-SNC secretion...... in monoculture to TNF alpha, a classical pro-inflammatory mediator of activated microglia, is sufficient to increase alpha-SNC secretion in a mechanism dependent on JNK2 or JNK3. In continuation hereof, we show that also IFN beta and TGF beta increase the release of alpha-SNC from PC12 neurons. Conclusions: We...... implicate stress kinases of the JNK family in the regulation of exophagy and release of alpha-SNC following endogenous or exogenous stimulation. In a wider scope, our results imply that microglia not only inflict bystander damage to neurons in late phases of inflammatory brain disease but may also be active...

  9. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment.

    Science.gov (United States)

    Zheng, Xin; Xu, Meng; Yao, Bowen; Wang, Cong; Jia, Yuli; Liu, Qingguang

    2016-09-01

    Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Prostate cancer

    DEFF Research Database (Denmark)

    Chabanova, Elizaveta; Balslev, Ingegerd; Logager, Vibeke

    2011-01-01

    To investigate diagnostic accuracy of detection of prostate cancer by magnetic resonance: to evaluate the performance of T2WI, DCEMRI and CSI and to correlate the results with biopsy and radical prostatectomy histopathological data.......To investigate diagnostic accuracy of detection of prostate cancer by magnetic resonance: to evaluate the performance of T2WI, DCEMRI and CSI and to correlate the results with biopsy and radical prostatectomy histopathological data....

  11. Long Non-coding RNA LINC00339 Stimulates Glioma Vasculogenic Mimicry Formation by Regulating the miR-539-5p/TWIST1/MMPs Axis

    Directory of Open Access Journals (Sweden)

    Junqing Guo

    2018-03-01

    Full Text Available Glioma is recognized as a highly angiogenic malignant brain tumor. Vasculogenic mimicry (VM greatly restricts the therapeutic effect of anti-angiogenic tumor therapy for glioma patients. However, the molecular mechanisms of VM formation in glioma remain unclear. Here, we demonstrated that LINC00339 was upregulated in glioma tissue as well as in glioma cell lines. The expression of LINC00339 in glioma tissues was positively correlated with glioma VM formation. Knockdown of LINC00339 inhibited glioma cell proliferation, migration, invasion, and tube formation, meanwhile downregulating the expression of VM-related molecular MMP-2 and MMP-14. Furthermore, knockdown of LINC00339 significantly increased the expression of miR-539-5p. Both bioinformatics and luciferase reporter assay revealed that LINC00339 regulated the above effects via binding to miR-539-5p. Besides, overexpression of miR-539-5p resulted in decreased expression of TWIST1, a transcription factor known to play an oncogenic role in glioma and identified as a direct target of miR-539-5p. TWIST1 upregulated the promoter activities of MMP-2 and MMP-14. The in vivo study showed that nude mice carrying tumors with knockdown of LINC00339 and overexpression of miR-539-5p exhibited the smallest tumor volume through inhibiting VM formation. In conclusion, LINC00339 may be used as a novel therapeutic target for VM formation in glioma.

  12. LncRNA TUG1 sponges miR-145 to promote cancer progression and regulate glutamine metabolism via Sirt3/GDH axis.

    Science.gov (United States)

    Zeng, Bing; Ye, Huilin; Chen, Jianming; Cheng, Di; Cai, Canfeng; Chen, Guoxing; Chen, Xiang; Xin, Haiyang; Tang, Chaoming; Zeng, Jun

    2017-12-26

    Long noncoding RNAs (lncRNAs) are important regulators in cancer progression. Deregulation of the lncRNA taurine upregulated gene 1 (TUG1) predicts poor prognosis and is implicated in the development of several cancers. In this study, we investigated the role of TUG1 in the pathogenesis of intrahepatic cholangiocarcinoma (ICC). We found that TUG1 is upregulated in ICC samples, which correlates with poor prognosis and adverse clinical pathological characteristics. Knockdown of TUG1 inhibited the proliferation, motility, and invasiveness of cultured ICC cells, and decreased tumor burden in a xenograft mouse model. When we explored the mechanisms underlying these effects, we found that TUG1 acts as an endogenous competing RNA (ceRNA) that 'sponges' miR-145, thereby preventing the degradation of Sirt3 mRNA and increasing expression of Sirt3 and GDH proteins. Accordingly, glutamine consumption, α-KG production, and ATP levels were dramatically decreased by TUG1 knockdown in ICC cells, and this effect was reversed by miR-145 inhibition. These findings indicate that the TUG1/miR-145/Sirt3/GDH regulatory network may provide a novel therapeutic strategy for treatment of ICC.

  13. Prostatitis: Inflammation of the Prostate

    Science.gov (United States)

    ... 2011: 805–810. [3] Murphy AB, Macejko A, Taylor A, Nadler RB. Chronic prostatitis: management strategies. Drugs. ... would like to thank: Mark Litwin, M.D., University of California at Los Angeles; Anthony Schaeffer, M. ...

  14. Perinatal exposure to low-dose of bisphenol A causes anxiety-like alteration in adrenal axis regulation and behaviors of rat offspring: a potential role for metabotropic glutamate 2/3 receptors.

    Science.gov (United States)

    Zhou, Rong; Chen, Fang; Feng, Xuejiao; Zhou, Libin; Li, Yingchun; Chen, Ling

    2015-05-01

    The present study focuses on detecting anxiety-like behavior and associated neurochemical alterations in adolescent rats exposed perinatally to bisphenol A (BPA), an estrogen-mimicking endocrine disrupter and investigating the possible involvement of metabotropic glutamate 2/3 receptors (mGlu2/3 receptors) in BPA-induced anxiogenic effects. When female breeders were administered orally with BPA (40 μg/kg/d) during pregnancy and lactation, their pups (here named 'BPA-exposed offspring') developed an anxiety-like phenotype, characterized by the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, impaired glucocorticoid receptor (GR)-mediated negative feedback regulation of the HPA axis, altered hippocampal synaptic plasticity and increased anxiety-like behaviors. BPA-exposed offspring also showed a reduced expression of mGlu2/3 receptors in the hippocampus. BPA-exposed offspring further subjected to systemic administration of mGlu2/3 receptor agonist (LY379268, 0.5 mg/kg, i.p.) or antagonist (LY341495, 1.5 mg/kg, i.p.) twice per day for 6 days. The results indicated that chronic LY379268 treatment corrected the anxiety-like behaviors and associated neurochemical and endocrinological alterations in BPA-exposed offspring. Our data demonstrate for the first time that the perinatal BPA exposure induces an anxiety-like phenotype in behaviors and -related neuroendocrinology, and suggest that the changes in mGlu2/3 receptor might lie at the core of the pathological reprogramming triggered by early-life adversity. mGlu2/3 receptor may serve as a novel biomarker and potential therapeutic target for anxiety disorders associated with adverse early-life agents including perinatal BPA exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.

    Science.gov (United States)

    Yazaki, Ikuko; Tsurugaya, Toko; Santella, Luigia; Chun, Jong Tai; Amore, Gabriele; Kusunoki, Shinichiro; Asada, Akiko; Togo, Tatsuru; Akasaka, Koji

    2015-06-01

    Sea urchin embryos initiate cell specifications at the 16-cell stage by forming the mesomeres, macromeres and micromeres according to the relative position of the cells in the animal-vegetal axis. The most vegetal cells, micromeres, autonomously differentiate into skeletons and induce the neighbouring macromere cells to become mesoendoderm in the β-catenin-dependent Wnt8 signalling pathway. Although the underlying molecular mechanism for this progression is largely unknown, we have previously reported that the initial events might be triggered by the Ca2+ influxes through the egg-originated L-type Ca2+ channels distributed asymmetrically along the animal-vegetal axis and through the stretch-dependent Ca2+channels expressed specifically in the micromere at the 4th cleavage. In this communication, we have examined whether one of the earliest Ca2+ targets, protein kinase C (PKC), plays a role in cell specification upstream of β-catenin. To this end, we surveyed the expression pattern of β-catenin in early embryos in the presence or absence of the specific peptide inhibitor of Hemicentrotus pulcherrimus PKC (HpPKC-I). Unlike previous knowledge, we have found that the initial nuclear entrance of β-catenin does not take place in the micromeres, but in the macromeres at the 16-cell stage. Using the HpPKC-I, we have demonstrated further that PKC not only determines cell-specific nucleation of β-catenin, but also regulates a variety of cell specification events in the early sea urchin embryos by modulating the cell adhesion structures, actin dynamics, intracellular Ca2+ signalling, and the expression of key transcription factors.

  16. Atorvastatin Alleviates Experimental Diabetic Cardiomyopathy by Regulating the GSK-3β-PP2Ac-NF-κB Signaling Axis.

    Directory of Open Access Journals (Sweden)

    Xiao-Min Ren

    Full Text Available Recent studies reported that atorvastatin (ATOR alleviated progression of experimental diabetic cardiomyopathy (DCM, possibly by protecting against apoptosis. However, the underlying mechanisms of this protective effect remain unclear. Therefore, our study investigated the role of the glycogen synthase kinase (GSK-3β-protein phosphatase 2A(PP2A-NF-κB signaling pathway in the anti-apoptotic and cardioprotective effects of ATOR on cardiomyocytes cultured in high glucose (HG and in DCM. Our results showed that, in HG-cultured cardiomyocytes, phosphorylation of GSK-3β was decreased, while that of the PP2A catalytic subunit C (PP2Ac and IKK/IкBα was increased, followed by NF-кB nuclear translocation and apoptosis. IKK/IкBα phosphorylation and NF-кB nuclear translocation were also increased by treatment of cells with okadaic acid (OA, a selective PP2A inhibitor, or by silencing PP2Ac expression. The opposite results were obtained by silencing GSK-3β expression, which resulted in PP2Ac activation. Furthermore, IKK/IкBα phosphorylation and NF-кB nuclear translocation were markedly inhibited and apoptosis attenuated in cells treated with ATOR. These effects occurred through inactivation of GSK-3β and subsequent activation of PP2Ac. They were abolished by treatment of cells with OA or PP2Ac siRNA. In mice with type 1 diabetes mellitus, treatment with ATOR, at 10 mg-kg-1-d-1, significantly suppressed GSK-3β activation, IKK/IкBα phosphorylation, NF-кB nuclear translocation and caspase-3 activation, while also activating PP2Ac. Finally, improvements in histological abnormalities, fibrosis, apoptosis and cardiac dysfunction were observed in diabetic mice treated with ATOR. These findings demonstrated that ATOR protected against HG-induced apoptosis in cardiomyocytes and alleviated experimental DCM by regulating the GSK-3β-PP2A-NF-κB signaling pathway.

  17. Prostatic paracoccidioidomycosis: differential diagnosis of prostate cancer

    Directory of Open Access Journals (Sweden)

    Daniel Lima Lopes

    2009-02-01

    Full Text Available Symptomatic prostatic paracoccidioidomycosis (PCM is a very rare condition; however, it may express as a typical benign prostatic hyperplasia or a simulating prostatic adenocarcinoma. This case report presents PCM mimicking prostatic adenocarcinoma. The purpose of this paper is to call the general physician's attention to this important differential diagnosis.

  18. Role of autonomous androgen receptor signaling in prostate cancer initiation is dichotomous and depends on the oncogenic signal.

    Science.gov (United States)

    Memarzadeh, Sanaz; Cai, Houjian; Janzen, Deanna M; Xin, Li; Lukacs, Rita; Riedinger, Mireille; Zong, Yang; DeGendt, Karel; Verhoeven, Guido; Huang, Jiaoti; Witte, Owen N

    2011-05-10

    The steroid hormone signaling axis is thought to play a central role in initiation and progression of many hormonally regulated epithelial tumors. It is unclear whether all cancer-initiating signals depend on an intact hormone receptor signaling machinery. To ascertain whether cell autonomous androgen receptor (AR) is essential for initiation of prostate intraepithelial neoplasia (PIN), the response of AR-null prostate epithelia to paracrine and cell autonomous oncogenic signals was assessed in vivo by using the prostate regeneration model system. Epithelial-specific loss of AR blocked paracrine FGF10-induced PIN, whereas the add back of exogenous AR restored this response. In contrast, PIN initiated by cell-autonomous, chronic-activated AKT developed independent of epithelial AR signaling. Our findings demonstrate a selective role for AR in the initiation of PIN, dependent on the signaling pathways driving tumor formation. Insights into the role of hormone receptor signaling in the initiation of epithelial tumors may help define this axis as a target for chemoprevention of carcinomas.

  19. Nutritional Effect on Androgen-Response Gene Expression and Prostate Tumor Growth

    National Research Council Canada - National Science Library

    Wang, Zhou

    2001-01-01

    .... The dietary influence on ventral prostate weight does not seem to involve androgen action axis because dietary components did not influence the expression of several androgen-response genes, serum testosterone...

  20. Prostate Cancer Symptoms

    Science.gov (United States)

    ... Fundraise for PCF: Many vs Cancer Contact Us Prostate Cancer Symptoms and Signs Prostate Cancer Basics About the ... earlier. So what are the warning signs of prostate cancer? Unfortunately, there usually aren’t any early warning ...

  1. Prostate Cancer FAQs

    Science.gov (United States)

    ... Fundraise for PCF: Many vs Cancer Contact Us Prostate Cancer FAQs Top 10 Things You Should Know About ... prostate cancer detected? What are the symptoms of prostate cancer? If the cancer is caught at its earliest ...

  2. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  3. RANKL/OPG system regulation by endogenous PTH and PTH1R/ATF4 axis in bone: Implications for bone accrual and strength in growing rats with mild uremia.

    Science.gov (United States)

    Znorko, Beata; Pawlak, Dariusz; Oksztulska-Kolanek, Ewa; Domaniewski, Tomasz; Pryczynicz, Anna; Roszczenko, Alicja; Rogalska, Joanna; Lipowicz, Paweł; Doroszko, Michał; Brzoska, Malgorzata Michalina; Pawlak, Krystyna

    2018-03-09

    Osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), and parathyroid hormone (PTH) play a central role in the regulation of bone turnover in chronic kidney disease (CKD), but their influence on bone mineral density (BMD) and strength remains unclear, particularly in children. We studied the clinical significance of OPG and RANKL in relation to PTH, femur weight, BMD, and bone biomechanical properties in growing rats after one month (CKD-1) and three months (CKD-3) of surgically-induced mild CKD. Gene expression of parathyroid hormone 1 receptor (PTH1R) and activating transcription factor 4 (ATF4), major regulators of anabolic PTH response in bone, was also determined. Serum PTH and bone PTH1R/ATF4 expression was elevated in CKD-3 compared with other groups, and it positively correlated with femur weight, BMD, and the biomechanical properties of the femoral diaphysis reflecting cortical bone strength. In contrast, bone RANKL/OPG ratios were decreased in CKD-3 rats compared with other groups, and they were inversely correlated with PTH and the other abovementioned bone parameters. However, the PTH-PTH1R-ATF4 axis exerted an unfavorable effect on the biomechanical properties of the femoral neck. In conclusion, this study showed for the first time an inverse association between serum PTH and the bone RANKL/OPG system in growing rats with mild CKD. A decrease in the RANKL/OPG ratio, associated with PTH-dependent activation of the anabolic PTH1R/ATF4 pathway, seems to be responsible for the unexpected, beneficial effect of PTH on cortical bone accrual and strength. Simultaneously, impaired biomechanical properties of the femoral neck were observed, making this bone site more susceptible to fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. PIWIL1/piRNA-DQ593109 Regulates the Permeability of the Blood-Tumor Barrier via the MEG3/miR-330-5p/RUNX3 Axis

    Directory of Open Access Journals (Sweden)

    Shuyuan Shen

    2018-03-01

    Full Text Available The blood-tumor barrier (BTB restricts the efficient delivery of anti-glioma drugs to cranial glioma tissues. Increased BTB permeability may allow greater delivery of the therapeutic agents. Increasing evidence has revealed that PIWI proteins and PIWI-interacting RNAs (piRNAs play an important role in tumor progression. However, whether PIWI proteins and piRNAs regulate BTB permeability remains unclear. In the present study, we demonstrated that the PIWIL1/piRNA-DQ593109 (piR-DQ593109 complex was the predominant regulator of BTB permeability. Briefly, PIWIL1 was upregulated in glioma endothelial cells (GECs. Furthermore, piR-DQ593109 was also overexpressed in GECs, as revealed via a piRNA microarray. Downregulation of PIWIL1 or piR-DQ593109 increased the permeability of the BTB. Moreover, PIWIL1 and piR-DQ593109, which formed a piRNA-induced silencing complex, degraded the long non-coding RNA maternally expressed 3 (MEG3 in a sequenced-dependent manner. Furthermore, restoring MEG3 released post-transcriptional inhibition of Runt related transcription factor 3 (RUNX3 by sponging miR-330-5p. In addition, RUNX3 bounded to the promoter regions and reduced the promoter activities of ZO-1, occludin, and claudin-5, which significantly impaired the expression levels of ZO-1, occludin, and claudin-5. In conclusion, downregulating PIWIL1 and piR-DQ593109 increased BTB permeability through the MEG3/miR-330-5p/RUNX3 axis. These data may provide insight into glioma treatment.

  5. Poly(ADP-ribose) polymerase as a novel regulator of 17β-estradiol-induced cell growth through a control of the estrogen receptor/IGF-1 receptor/PDZK1 axis.

    Science.gov (United States)

    Kim, Hogyoung; Tarhuni, Abdelmetalab; Abd Elmageed, Zakaria Y; Boulares, A Hamid

    2015-07-17

    We and others have extensively investigated the role of PARP-1 in cell growth and demise in response to pathophysiological cues. Most of the clinical trials on PARP inhibitors are targeting primarily estrogen receptor (ER) negative cancers with BRCA-deficiency. It is surprising that the role of the enzyme has yet to be investigated in ER-mediated cell growth. It is noteworthy that ER is expressed in the majority of breast cancers. We recently showed that the scaffolding protein PDZK1 is critical for 17β-estradiol (E2)-induced growth of breast cancer cells. We demonstrated that E2-induced PDZK1 expression is indirectly regulated by ER and requires IGF-1 receptor (IGF-1R). The breast cancer cell lines MCF-7 and BT474 were used as ER(+) cell culture models. Thieno[2,3-c]isoquinolin-5-one (TIQ-A) and olaparib (AZD2281) were used as potent inhibitors of PARP. PARP-1 knockdown by shRNA was used to show specificity of the effects to PARP-1. In this study, we aimed to determine the effect of PARP inhibition on estrogen-induced growth of breast cancer cells and examine whether the potential effect is linked to PDZK1 and IGF-1R expression. Our results show that PARP inhibition pharmacologically by TIQ-A or olaparib or by PARP-1 knockdown blocked E2-dependent growth of MCF-7 cells. Such inhibitory effect was also observed in olaparib-treated BT474 cells. The effect of PARP inhibition on cell growth coincided with an efficient reduction in E2-induced PDZK1 expression. This effect was accompanied by a similar decrease in the cell cycle protein cyclin D1. PARP appeared to regulate E2-induced PDZK1 at the mRNA level. Such regulation may be linked to a modulation of IGF-1R as PARP inhibition pharmacologically or by PARP-1 knockdown efficiently reduced E2-induced expression of the receptor at the protein and mRNA levels. Overall, our results show for the first time that PARP regulates E2-mediated cell growth by controlling the ER/IGF-1R/PDZK1 axis. These findings suggest that the

  6. Mithramycin A induces apoptosis by regulating the mTOR/Mcl-1/tBid pathway in androgen-independent prostate cancer cells

    Science.gov (United States)

    Choi, Eun-Sun; Chung, Taeho; Kim, Jun-Sung; Lee, Hakmo; Kwon, Ki Han; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is an aureolic acid-type polyketide produced by various soil bacteria of the genus Streptomyces. Mith inhibits myeloid cell leukemia-1 (Mcl-1) to induce apoptosis in prostate cancer, but the molecular mechanism underlying this process has not been fully elucidated. The aim of this study was therefore to investigate the detailed molecular mechanism related to Mith-induced apoptosis in prostate cancer cells. Mith decreased the phosphorylation of mammalian target of rapamycin (mTOR) in both cell lines overexpressing phospho-mTOR compared to RWPE-1 human normal prostate epithelial cells. Mith significantly induced truncated Bid (tBid) and siRNA-mediated knock-down of Mcl-1 increased tBid protein levels. Moreover, Mith also inhibited the phosphorylation of mTOR on serine 2448 and Mcl-1, and increased tBid protein in prostate tumors in athymic nude mice bearing DU145 cells as xenografts. Thus, Mith acts as an effective tumor growth inhibitor in prostate cancer cells through the mTOR/Mcl-1/tBid signaling pathway. PMID:24062605

  7. Prostate Ultrasound

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of ...

  8. Prostate Problems

    Science.gov (United States)

    ... If you have BPH, you may need to wake up often to urinate when you sleep. If you can’t urinate at all, you should get medical help right away. Your doctor will know if you have a prostate problem based on ...

  9. Prostate Ultrasound

    Medline Plus

    Full Text Available ... transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then ... ultrasound , there are no known harmful effects on humans. top of page What are the limitations of Prostate Ultrasound Imaging? Men who have ...

  10. Prostate Ultrasound

    Medline Plus

    Full Text Available ... page Additional Information and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page This page was reviewed on March 17, 2016 Send us your feedback Did you find the information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  11. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of the pelvis may be obtained as an alternative imaging test, because it may be obtained with an external (phased array) receiver coil. top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page This page ...

  12. Prostate Ultrasound

    Medline Plus

    Full Text Available ... the equipment look like? How does the procedure work? How is the procedure performed? What will I experience during and after the procedure? Who interprets the results and how do I get them? What are the benefits vs. risks? What are the limitations of Prostate Ultrasound Imaging? ...

  13. Prostate Ultrasound

    Medline Plus

    Full Text Available ... symptoms such as difficulty urinating or an elevated blood test result. It’s also used to investigate a nodule ... exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time ...

  14. Prostate Ultrasound

    Medline Plus

    Full Text Available ... exam or prostate cancer screening exam. an elevated blood test result. difficulty urinating. Because ultrasound provides real-time images, it also can be used to guide procedures such as needle biopsies , in which a needle is used to sample cells (tissue) from an abnormal area in the ...

  15. Vitamin D, Sunlight and Prostate Cancer Risk

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2011-01-01

    Full Text Available Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR, and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention.

  16. LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR‑145‑5p‑Binp3 axis.

    Science.gov (United States)

    Wu, Zhongwei; Zhao, Shengji; Li, Chunfu; Liu, Chaoquan

    2018-02-01

    The aim of the present study was to investigate the function of long non‑coding RNA TUG1 in hypoxia‑induced myocardial cell injury and to explore the potential molecular mechanisms. The cardiomyocyte cell line H9c2 was cultured under hypoxic and normoxic conditions. TUG1 expression under hypoxic conditions was then detected. The effects of TUG1 overexpression on viability, apoptosis, migration and invasion were assayed. In addition, the microRNA (miR)‑145‑5p expression was detected. Following H9c2 cell transfection with miR‑145‑5p mimics, the H9c2 cell viability, apoptosis, migration and invasion were also detected. Additionally, the target gene of miR‑145‑5p was assayed by Luciferase reporter assay. The protein expressions of Wnt‑3a, Wnt5a, and β‑catenin in H9c2 cells under hypoxic conditions were also determined. The results revealed that hypoxia induced injury in H9c2 cells, including inhibiting cell viability, migration and invasion, and promoting cell apoptosis. Overexpression of TUG1 aggravated hypoxia‑induced injury in H9c2 cells. In addition, miR‑145‑5p was negatively regulated by TUG1, and TUG1 overexpression aggravated hypoxia‑induced injury via the downregulation of miR‑145‑5p. Furthermore, B‑cell lymphoma 2 interacting protein 3 (Bnip3) was a target of miR‑145‑5p, and overexpression of Bnip3 aggravated hypoxia‑induced cell injury by activating Wnt/β‑catenin signaling pathways in H9c2 cells. In conclusion, overexpression of TUG1 aggravated hypoxia‑induced injury in cardiomyocytes by regulating the miR‑145‑5p‑Binp3 axis. Activation of the Wnt/β‑catenin signaling pathway may be a key mechanism to mediate the role of TUG1 in regulating hypoxia‑induced myocardial injury. TUG1 may be an effective diagnostic marker and therapeutic target for myocardial ischemia.

  17. LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR-145-5p-Binp3 axis

    Science.gov (United States)

    Wu, Zhongwei; Zhao, Shengji; Li, Chunfu; Liu, Chaoquan

    2018-01-01

    The aim of the present study was to investigate the function of long non-coding RNA TUG1 in hypoxia-induced myocardial cell injury and to explore the potential molecular mechanisms. The cardiomyocyte cell line H9c2 was cultured under hypoxic and normoxic conditions. TUG1 expression under hypoxic conditions was then detected. The effects of TUG1 overexpression on viability, apoptosis, migration and invasion were assayed. In addition, the microRNA (miR)-145-5p expression was detected. Following H9c2 cell transfection with miR-145-5p mimics, the H9c2 cell viability, apoptosis, migration and invasion were also detected. Additionally, the target gene of miR-145-5p was assayed by Luciferase reporter assay. The protein expressions of Wnt-3a, Wnt5a, and β-catenin in H9c2 cells under hypoxic conditions were also determined. The results revealed that hypoxia induced injury in H9c2 cells, including inhibiting cell viability, migration and invasion, and promoting cell apoptosis. Overexpression of TUG1 aggravated hypoxia-induced injury in H9c2 cells. In addition, miR-145-5p was negatively regulated by TUG1, and TUG1 overexpression aggravated hypoxia-induced injury via the downregulation of miR-145-5p. Furthermore, B-cell lymphoma 2 interacting protein 3 (Bnip3) was a target of miR-145-5p, and overexpression of Bnip3 aggravated hypoxia-induced cell injury by activating Wnt/β-catenin signaling pathways in H9c2 cells. In conclusion, overexpression of TUG1 aggravated hypoxia-induced injury in cardiomyocytes by regulating the miR-145-5p-Binp3 axis. Activation of the Wnt/β-catenin signaling pathway may be a key mechanism to mediate the role of TUG1 in regulating hypoxia-induced myocardial injury. TUG1 may be an effective diagnostic marker and therapeutic target for myocardial ischemia. PMID:29207102

  18. Pharmacological treatment of the benign prostatic hyperplasia

    International Nuclear Information System (INIS)

    Perez Guerra, Yohani; Molina Cuevas, Vivian; Oyarzabal Yera, Ambar; Mas Ferreiro, Rosa

    2011-01-01

    Benign prostatic hyperplasia is a common disease in over 50 years-old men consisting in uncontrolled and benign growth of prostatic gland that leads to lower urinary tract symptoms. The etiology of benign prostatic hyperplasia is multifactoral involving the increased conversion of testosterone in dihydrotestosterone by the prostatic 5α-reductase action, which brought about events that encourage the prostate growth (static component) and the increase of the bladder and prostate smooth muscle tone (dynamic component) regulated by the aα 1 -adrenoceptors (ADR). The pharmacological treatment of the benign prostatic hyperplasia includes the prostatic 5aα-reductase inhibitors, the aα 1 -adrenoreceptor blockers, their combined therapy and the phytotherapy. This paper was aimed at presenting the most relevant aspects of the pharmacology of drugs used for treating the benign prostatic hyperplasia, and providing elements to analyze their efficacy, safety and tolerability. To this end, a review was made of the different drugs for the treatment of this pathology and they were grouped according to their mechanism of action. Natural products were included as lipid extracts from Serenoa repens and Pygeum africanum as well as D-004, a lipid extract from Roystonea regia fruits, with proved beneficial effects on the main etiological factors of benign prostatic hyperplasia. D-004 is a prostatic 5a-reductase inhibitor, an aα 1 -adrenoceptor antagonist, aα 5-lipooxygenase inhibitor and has antioxidant action, all of which reveals a multifactoral mechanism. The results achieved till now indicate that D-004 is a safe and well-tolerated product

  19. ErbB-2 signaling plays a critical role in regulating androgen-sensitive and castration-resistant androgen receptor-positive prostate cancer cells.

    Science.gov (United States)

    Muniyan, Sakthivel; Chen, Siu-Ju; Lin, Fen-Fen; Wang, Zhengzhong; Mehta, Parmender P; Batra, Surinder K; Lin, Ming-Fong

    2015-11-01

    While androgen deprivation therapy (ADT) reduces tumor burden, autocrine growth factor loops such as human epidermal growth factor receptor 2 (HER2/ErbB-2/neu) have been proposed to contribute to prostate cancer (PCa) survival and relapse. However, the role of ErbB-2 in regulating androgen-sensitive (AS) and castration-resistant (CR) cell proliferation remains unclear. Here, we determined the role of ErbB-2 in PCa progression and survival under steroid-reduced conditions using two independent PCa cell progression models. In AR-positive androgen-independent (AI) PCa cells that exhibit the CR phenotype, ErbB-2 was constitutively activated, compared to corresponding AS PCa cells. In AS LNCaP C-33 cells, androgen-induced ErbB-2 activation through ERK1/2 mediates PCa cell proliferation. Further, the ErbB-2-specific but not EGFR-specific inhibitor suppresses basal and androgen-stimulated cell proliferation and also blocks ERK1/2 activation. ErbB-2 ectopic expression and cPAcP siRNA transfection of LNCaP C-33 cells each increases ErbB-2 tyrosine phosphorylation, correlating with increased AI PSA secretion and cell proliferation. Conversely, trapping ErbB-2 by transfected endoplasmic reticulum-targeting ScFv5R expression vector abolished DHT-induced LNCaP C-33 cell growth. Moreover, inhibition of ErbB-2 but not EGFR in AI LNCaP C-81 and MDA PCa2b-AI PCa cells significantly abolished AI cell growth. In contrast to androgens via ErbB-2/ERK1/2 signaling in AS PCa cells, the inhibition of ErbB-2 abrogated AI cell proliferation by inhibiting the cell survival protein Akt in those AI cells. These results suggest that ErbB-2 is a prominent player in mediating the ligand-dependent and -independent activation of AR in AS and AI/CR PCa cells respectively for PCa progression and survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  1. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  2. Role of the XIAP-Cooper Axis in Prostate Cancer

    Science.gov (United States)

    2011-04-01

    F., D. S. An, I. S. Chen, and D. Baltimore. 2003. Inhibiting HIV -1 infection in human T cells by lentiviral-mediated delivery of small interfering...RNA against CCR5 . Proc. Natl. Acad. Sci. U. S. A. 100:183–188. 49. Rae, T. D., P. J. Schmidt, R. A. Pufahl, V. C. Culotta, and T. V. O’Halloran. 1999

  3. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  4. Oxidative stress in prostate hypertrophy and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Waldemar M. Przybyszewski

    2009-07-01

    Full Text Available Aging, significant impairment of the oxidation/reduction balance, infection, and inflammation are recognized risk factors of benign hyperplasia and prostate cancer. Chronic symptomatic and asymptomatic prostate inflammatory processes generate significantly elevated levels of reactive oxygen and nitrogen species, and halogenated compounds. Prostate cancer patients showed significantly higher lipid peroxidation and lower antioxidant levels in peripheral blood than healthy controls, whereas patients with prostate hyperplasia did not show such symptoms. Oxidative/nitrosative/halogenative stress causes DNA modifications leading to genome instability that may initiate carcinogenesis; however, it was shown that oxidative damage alone is not sufficient to initiate this process. Peroxidation products induced by reactive oxygen and nitrogen species seem to take part in epigenetic mechanisms regulating genome activity. One of the most common changes occurring in more than 90�0of all analyzed prostate cancers is the silencing of GSTP1 gene activity. The gene encodes glutathione transferase, an enzyme participating in detoxification processes. Prostate hyperplasia is often accompanied by chronic inflammation and such a relationship was not observed in prostate cancer. The participation of infection and inflammation in the development of hyperplasia is unquestionable and these factors probably also take part in initiating the early stages of prostate carcinogenesis. Thus it seems that therapeutic strategies that prevent genome oxidative damage in situations involving oxidative/nitrosative/halogenative stress, i.e. use of antioxidants, plant steroids, antibiotics, and non-steroidal anti-inflammatory drugs, could help prevent carcinogenesis.

  5. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Zhu, Chen; Qin, Chao [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Tao, Tao [Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Gu, Min, E-mail: medzhao1980@163.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Yin, Changjun, E-mail: drcjyin@gmail.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  6. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiguo, E-mail: weiguozhangHU@gmail.com; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-08-12

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of Rb−S780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. - Highlights: • miR-18a promotes the proliferation of ESCC cells. • miR-18a increase cyclin D1 expression in ESCC cells. • miR-18a directly targets PTEN in ESCC cells. • Inhibition of AKT-mTOR prevents miR-18a-induced cyclin D1 in ESCC cells. • miR-18a antagomir sensitizes ESCC cells to cisplatin.

  7. miR-18a promotes cell proliferation of esophageal squamous cell carcinoma cells by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis

    International Nuclear Information System (INIS)

    Zhang, Weiguo; Lei, Caipeng; Fan, Junli; Wang, Jing

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Cyclin D1 is overexpressed and plays an important role in the carcinogenesis of ESCC; however the mechanism of the deregulation of Cyclin D1 in ESCC remains to be determined. In the study, we found that miR-18a promotes the expression Cyclin D1 by targeting PTEN in eophageal squamous cell carcinoma TE13 and Eca109 cells. Transfection of miR-18a mimetics increased cyclin D1, while transfection of miR-18a antagomir decreased D1. Moreover, miR-18a-mediated upregulation of cyclin D1 was accompanied with downregulation of PTEN, which is a direct target of miR-18a, and increase of the phosphorylation of AKT and S6K1. In addition, pharmacologic inhibition of AKT or mTOR kinases abolished the increase of cyclinD1 by miR-18a, which was accompanied with decreased phosphorylation of Rb−S780 and inhibition of cell proliferation. Our results demonstrated the upregulation of miR-18a promoted cell proliferation by increasing cylin D1 via regulating PTEN-PI3K-AKT-mTOR signaling axis, suggesting that small molecule inhibitors of AKT-mTOR signaling are potential agents for the treatment of ESCC patients with upregulation of miR-17-92 cluster. - Highlights: • miR-18a promotes the proliferation of ESCC cells. • miR-18a increase cyclin D1 expression in ESCC cells. • miR-18a directly targets PTEN in ESCC cells. • Inhibition of AKT-mTOR prevents miR-18a-induced cyclin D1 in ESCC cells. • miR-18a antagomir sensitizes ESCC cells to cisplatin.

  8. Prostate Ultrasound

    Medline Plus

    Full Text Available ... of page Additional Information and Resources RTAnswers.org Radiation Therapy for Prostate Cancer top of page This page was reviewed on March 17, 2016 Send us your feedback Did you find the information you were looking for? ... or for a referral to a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you can search ...

  9. The Role of Trop2 Cleavage Products in Prostate Tumorigenesis

    Science.gov (United States)

    2014-10-01

    prostatic tubules when combined with urogenital sinus mesen- chyme (UGSM) and implanted under the kidney capsule of severe combined immunodeficiency (SCID...progenitor self-renewal and prostate tubule formation. We have also determined that Trop2 is activated by regulated intramembrane proteolysis (RIP...combined with UGSM. The grafts composed of prostate cells and UGSM were engrafted under the kidney capsule of SCID mice, allowing regeneration of

  10. Quantification of Prostate and Seminal Vesicle Interfraction Variation During IMRT

    International Nuclear Information System (INIS)

    Frank, Steven J.; Dong Lei; Kudchadker, Rajat J.; De Crevoisier, Renaud; Lee, Andrew K.; Cheung, Rex; Choi, Seungtaek; O'Daniel, Jennifer; Tucker, Susan L.; Wang He; Kuban, Deborah A.

    2008-01-01

    Purpose: To quantify the interfraction variability in prostate and seminal vesicle (SV) positions during a course of intensity-modulated radiotherapy (IMRT) using an integrated computed tomography (CT)-linear accelerator system and to assess the impact of rectal and bladder volume changes. Methods and Materials: We studied 15 patients who had undergone IMRT for prostate carcinoma. Patients had one pretreatment planning CT scan followed by three in-room CT scans per week using a CT-on-rails system. The prostate, bladder, rectum, and pelvic bony anatomy were contoured in 369 CT scans. Using the planning CT scan as a reference, the volumetric and positional changes were analyzed in the subsequent CT scans. Results: For all 15 patients, the mean systematic internal prostate and SV variation was 0.1 ± 4.1 mm and 1.2 ± 7.3 mm in the anteroposterior axis, -0.5 ± 2.9 mm and -0.7 ± 4.5 mm in the superoinferior axis, and 0.2 ± 0.9 mm and -0.9 ± 1.9 mm in the lateral axis, respectively. The mean magnitude of the three-dimensional displacement vector was 4.6 ± 3.5 mm for the prostate and 7.6 ± 4.7 mm for the SVs. The rectal and bladder volume changes during treatment correlated with the anterior and superior displacement of the prostate and SVs. Conclusion: The dominant prostate and SV variations occurred in the anteroposterior and superoinferior directions. The systematic prostate and SV variation between the treatment planning CT and daily therapy as a result of the rectal and bladder volume changes emphasizes the need for daily directed target localization and/or immobilization techniques

  11. Subcellular localization of p44/WDR77 determines proliferation and differentiation of prostate epithelial cells.

    Directory of Open Access Journals (Sweden)

    Shen Gao

    Full Text Available The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77 as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44's location in the cell.

  12. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  13. TGF-beta1 suppresses IL-6-induced STAT3 activation through regulation of Jak2 expression in prostate epithelial cells

    Czech Academy of Sciences Publication Activity Database

    Staršíchová, Andrea; Lincová, Eva; Pernicová, Zuzana; Kozubík, Alois; Souček, Karel

    2010-01-01

    Roč. 22, č. 11 (2010), s. 1734-1744 ISSN 0898-6568 R&D Projects: GA MZd NS9600 Grant - others:GA ČR(CZ) GA310/07/0961 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : interleukin-6 * transforming growth factor-beta * prostate Subject RIV: BO - Biophysics Impact factor: 4.243, year: 2010

  14. Expression of proton-coupled oligopeptide transporter (POTs) in prostate of mice and patients with benign prostatic hyperplasia (BPH) and prostate cancer (PCa).

    Science.gov (United States)

    Sun, Dongli; Tan, Fuqing; Fang, Danbo; Wang, Yuqing; Zeng, Su; Jiang, Huidi

    2013-02-15

    Proton-coupled oligopeptide transporters (POTs) serve as integral membrane protein for the cellular uptake of di/tripeptide. Prostate has a large requirement of nutriment for its function to produce and secrete prostatic fluid. Besides, prostate suffered from limited therapy effect of drug treatment. Thus present study was performed to evaluate the expression of POTs in prostate of mice and human with the aim to provide information for potential role of POTs in absorption of nutriment and peptidomimetic drugs in prostate. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot methods were applied to study the mRNA, protein expression of POTs in prostate, human prostate cancer cells (PC-3), and human prostate epithelial cells (RWPE-1). qRT-PCR study showed different characteristic of POTs mRNA expression in mouse prostate. Among these transporters, protein expression of PepT2 was detected and increasing during the development of mouse prostate, while PepT1, PHT1, and PHT2 protein was not detected. Furthermore, different characteristic of regulation by inflammation on POTs mRNA expression was found in RWPE-1 and PC-3. In addition, mRNA expression of PepT2 and PHT1 in prostate of patients with PCa was demonstrated be lower compared with BPH. These findings provide the first evidence for the expression of POTs in prostate of mice and patients with BPH or PCa and suggest that POTs are likely to play a role in the transport of di/tripeptides and peptidomimetics in prostate. Copyright © 2012 Wiley Periodicals, Inc.

  15. Alterations of the Bone Marrow Microenvironment Contribute to Prostate Cancer Skeletal Metastasis

    Science.gov (United States)

    2012-05-01

    blasts and endothelial cells) and its receptor (CXCR4, expressed by prostate cancer cells) regulate bone- tropism of prostate cancer cells [36]. In...for metastatic prostate cancer cells, and HSCs may function as competitors for metastatic cancer cells with strong bone tropism . Contrary to the data...mechanisms may occur in the bone marrow before arrival of breast or prostate cancer cells in the bone marrow. Particularly, the unique bone- tropism of

  16. Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2015-10-01

    metastasis and responses to curcumin 19 Goals: This proposal tests the hypothesis that chemokine biomarkers that predict biochemical recurrence of...prostate cancer regulate metastatic progression of the cancer and curcumin can inhibit metastasis of prostate cancer by antagonizing inflammatory signaling

  17. Evidence of a liver-alpha cell axis in humans

    DEFF Research Database (Denmark)

    Wewer Albrechtsen, Nicolai J; Færch, Kristine; Jensen, Troels M

    2018-01-01

    in plasma γ-glutamyltransferase levels. CONCLUSIONS/INTERPRETATION: This cross-sectional study supports the existence of a liver-alpha cell axis in humans: glucagon regulates plasma levels of amino acids, which in turn feedback to regulate the secretion of glucagon. With hepatic insulin resistance...

  18. Effect of red maca (Lepidium meyenii) on prostate zinc levels in rats with testosterone-induced prostatic hyperplasia.

    Science.gov (United States)

    Gonzales, C; Leiva-Revilla, J; Rubio, J; Gasco, M; Gonzales, G F

    2012-05-01

    Lepidium meyenii (maca) is a plant that grows exclusively above 4000 m in the Peruvian central Andes. Red maca (RM) extract significantly reduced prostate size in rats with benign prostatic hyperplasia (BPH) induced by testosterone enanthate (TE). Zinc is an important regulator of prostate function. This study aimed to determine the effect of RM on prostate zinc levels in rats with BPH induced by TE. Also, the study attempted to determine the best marker for the effect of RM on sex accessory glands. Rats treated with RM extract from day 1 to day 14 reversed the effect of TE administration on prostate weight and zinc levels. However, RM administered from day 7 to day 14 did not reduce the effect of TE on all studied variables. Finasteride (FN) reduced prostate, seminal vesicle and preputial gland weights in rats treated with TE. Although RM and FN reduced prostate zinc levels, the greatest effect was observed in TE-treated rats with RM from day 1 to day 14. In addition, prostate weight and zinc levels showed the higher diagnosis values than preputial and seminal vesicle weights. In conclusion, RM administered from day 1 to day 14 reduced prostate size and zinc levels in rats where prostatic hyperplasia was induced with TE. Also, this experimental model could be used as accurately assay to determine the effect of maca obtained under different conditions and/or the effect of different products based on maca. © 2011 Blackwell Verlag GmbH.

  19. [Benign prostatic hypertrophy and prostate cancer].

    Science.gov (United States)

    Mourey, Loïc; Doumerc, Nicolas; Gaudin, Clément; Gérard, Stéphane; Balardy, Laurent

    2014-01-01

    Prostatic diseases are extremely common, especially in older men. Amongst them, benign prostatic hypertrophy may affect significantly the quality of life of patients by the symptoms it causes. It requires appropriate care. Prostate cancer is the second most common cancer in men after lung cancer and the fifth leading cause of cancer deaths in the world. It affects preferentially older men. An oncogeriatric approach is required for personalised care.

  20. Enlarged prostate - after care

    Science.gov (United States)

    BPH - self-care; Benign prostatic hypertrophy - self-care; Benign prostatic hyperplasia - self-care ... exercises ( Kegel exercises ) that strengthen the pelvic floor muscles. Doing these exercise may help with leaking or ...

  1. Cryotherapy for prostate cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000907.htm Cryotherapy for prostate cancer To use the sharing features ... first treatment for prostate cancer. What Happens During Cryotherapy Before the procedure, you will be given medicine ...

  2. Prostate cancer in Denmark

    DEFF Research Database (Denmark)

    Brasso, K; Friis, S; Kjaer, S K

    1998-01-01

    To review the trends in prostate cancer (PC) incidence and mortality rates in Denmark during a 50-year period.......To review the trends in prostate cancer (PC) incidence and mortality rates in Denmark during a 50-year period....

  3. Prostate cancer staging

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000397.htm Prostate cancer staging To use the sharing features on this ... trials you may be able to join How Prostate Cancer Staging is Done Initial staging is based on ...

  4. Prostate cancer - treatment

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000403.htm Prostate cancer - treatment To use the sharing features on this page, please enable JavaScript. Treatment for your prostate cancer is chosen after a thorough evaluation. Your doctor ...

  5. Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184.

    Science.gov (United States)

    Zhou, Yan; Wang, Xiuju; Zhang, Jianjun; He, Aina; Wang, Ya Ling; Han, Kun; Su, Yang; Yin, Junyi; Lv, Xiaobin; Hu, Haiyan

    2017-03-14

    Artesunate (ART) is a sesquiterpene lactone isolated from the leafy portions of the Chinese herb Artemisia annua. Here, we evaluated the effect of ART on the prostate cancer (PCa) cell lines DU145 and LNCaP and explored its potential mechanisms. ART inhibited the viability and mobility of DU145 and LNCaP cells. Mechanistically, we found that UCA1, one of the most important lncRNAs in malignancies of the urinary system, may be a potential mediator contributing to the tumor suppressor function of ART. First, the UCA1 level was reduced significantly after being exposed to ART. In addition, UCA1 was up-regulated in prostate cancer tissues compared to hyperplastic prostatic tissues, and a higher UCA1 level predicted poor prognosis in PCa patients. Furthermore, reintroduction of UCA1 into PCa cells reversed the effect of ART on apoptosis and metastatic ability. Then we determined that the miR-184/Bcl-2 axis might be the downstream signaling pathway of UCA1 upon ART treatment. UCA1 binds to miR-184 through its seed sequences and may function as a sponge for miR-184.

  6. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  7. Lycopene Extracts from Different Tomato-Based Food Products Induce Apoptosis in Cultured Human Primary Prostate Cancer Cells and Regulate TP53, Bax and Bcl-2 Transcript Expression

    Science.gov (United States)

    Soares, Nathalia da Costa Pereira; Machado, Clara Lima; Trindade, Bruno Boquimpani; Lima, Ingridy Celestino do Canto; Gimba, Etel Rodrigues Pereira; Teodoro, Anderson Junger; Takiya, Christina; Borojevic, Radovan

    2017-01-01

    Carotenoids are the main tomato components, especially lycopene. Lycopene is more bioavailable in tomato processed products than in raw tomatos, since formation of lycopene cis-isomers during food processing and storage may increase its biological activity. In the current study, we evaluated the influence of lycopene extracts (5 mg / mL) from different tomato-based food products (paste, sauce, extract and ketchup) on cell viability and apoptosis on primary human prostate cancer cells (PCa cels) for 96h. Using MTT assay, we observed a significant decrease on primary PCa cell viability upon treatment with lycopene extracted from either 4 tomato-based food products. Flow cytometeric analysis revealed that lycopene from tomato extract and tomato sauce promoted up to fifty-fold increase on the proportion of apoptotic cells, when compared to the control group. Using real time PCR assay, we found that lycopene promoted an upregulation of TP53 and Bax transcript expression and also downregulation of Bcl-2 expression in PCa cells. In conclusion, our data demostrate that cis-lycopene promoted a significant inhibition on primary PCa cell viability, as well as an increase on their apoptotic rates, evidencing that cis-lycopene contained in tomato sauce and extract cain mainly modulate of primary human prostate cancer cell survival. PMID:28345329

  8. Gut Microbiota-brain Axis

    OpenAIRE

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of s...

  9. Comprehensive overview of prostatitis.

    Science.gov (United States)

    Khan, Farhan Ullah; Ihsan, Awais Ullah; Khan, Hidayat Ullah; Jana, Ruby; Wazir, Junaid; Khongorzul, Puregmaa; Waqar, Muhammad; Zhou, Xiaohui

    2017-10-01

    Prostatitis is a common urinary tract syndrome that many doctors find problematic to treat effectively. It is the third most commonly found urinary tract disease in men after prostate cancer and Benign Prostate Hyperplasia (BPH). Prostatitis may account for 25% of all office visits made to the urological clinics complaining about the genital and urinary systems all over the world. In the present study, we classified prostatitis and comprehensively elaborated the etiology, pathogenesis, diagnosis, and treatment of acute bacterial prostatitis (category I), chronic bacterial prostatitis (category II), chronic pelvic pain syndrome (CPPS) (category III), and asymptomatic prostatitis (category IV). In addition, we also tried to get some insights about other types of prostatitis-like fungal, viral and gonococcal prostatitis. The aim of this review is to present the detail current perspective of prostatitis in a single review. To the best of our knowledge currently, there is not a single comprehensive review, which can completely elaborate this important topic in an effective way. Furthermore, this review will provide a solid platform to conduct future studies on different aspects such as risk factors, mechanism of pathogenesis, proper diagnosis, and rational treatment plans for fungal, viral, and gonococcal prostatitis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Danish Prostate Cancer Registry

    DEFF Research Database (Denmark)

    Helgstrand, J Thomas; Klemann, Nina; Røder, Martin Andreas

    2016-01-01

    of the prostate (TUR-Ps), and the remaining 22,028 (13.6%) specimens were derived from radical prostatectomies, bladder interventions, etc. A total of 48,078 (42.2%) males had histopathologically verified prostate cancer, and of these, 78.8% and 16.8% were diagnosed on prostate biopsies and TUR-Ps, respectively....... FUTURE PERSPECTIVES: A validated algorithm was successfully developed to convert complex prostate SNOMED codes into clinical useful data. A unique database, including males with both normal and cancerous histopathological data, was created to form the most comprehensive national prostate database to date...

  11. Resveratrol in prostate diseases - a short review.

    Science.gov (United States)

    Jasiński, Milosz; Jasińska, Lidia; Ogrodowczyk, Marcin

    2013-01-01

    Resveratrol is a plant-derived polyphenol suggested to have many beneficial health effects, including antioxidant, anti-inflammatory, anti-proliferative, proapoptotic, and anti-angiogenic. It is even specu- lated that uptake of resveratrol by red wine consumption could be behind the so-called French paradox the lower incidence of cardiovascular diseases in the French population. These properties, together with good absorption and tolerance, would make it an attractive agent in prostatic diseases, especially in cancer prevention and treatment. MEDLINE search (keywords "prostate res- veratrol") resulted in 39 research papers published since 2007. It has been shown that resveratol down-regulate androgen receptor expression, inhibit proliferation, and promote apop- tosis in prostate cancer cell lines and enhance their sensitivity to ionizing radiation. Several studies on animal prostate cancer development also suggest that resveratrol is able do delay or prevent carcino- genesis in prostate. Despite these promising results, there is no proof of any therapeutic properties of resveratrol in prostate diseases from human clinical trials nor any information about ongoing trials in this field. Resveratrol is produced and sold as a nutritional supplement, there is not enough clinical evidence to justify a recommendation for the administration of resveratrol in humans at present.

  12. Prostate-specific antigen density: correlation with histological diagnosis of prostate cancer, benign prostatic hyperplasia and prostatitis

    NARCIS (Netherlands)

    van Iersel, M. P.; Witjes, W. P.; de la Rosette, J. J.; Oosterhof, G. O.

    1995-01-01

    To assess the additional value of prostate-specific antigen density in the diagnosis of prostate cancer in patients who undergo prostate biopsies. The study comprised 376 patients with symptoms of prostatism who were undergoing prostate biopsy. Digital rectal examination (DRE) and transrectal

  13. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-κB/MMP-9 Pathway

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-01-01

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-κB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-κB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells. PMID:26115086

  14. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-kB/MMP-9 Pathway.

    Science.gov (United States)

    Chiu, Chun-Tang; Chen, Jing-Hsien; Chou, Fen-Pi; Lin, Hui-Hsuan

    2015-06-24

    Hibiscus sabdariffa leaf has been previously shown to possess hypoglycemic, hypolipidemic, and antioxidant effects, and induce tumor cell apoptosis. However, the molecular mechanisms involved in the anticancer activity of H. sabdariffa leaf extract (HLE) are poorly understood. The object of the study was to examine the anti-invasive potential of HLE. First, HLE was demonstrated to be rich in polyphenols. The results of wound-healing assay and in vitro transwell assay revealed that HLE dose-dependently inhibited the migration and invasion of human prostate cancer LNCaP (lymph node carcinoma of the prostate) cells under non-cytotoxic concentrations. Our results further showed that HLE exerted an inhibitory effect on the activity and expressions of matrix metalloproteinase-9 (MMP-9). The HLE-inhibited MMP-9 expression appeared to be a consequence of nuclear factor-kappaB (NF-κB) inactivation because its DNA-binding activity was suppressed by HLE. Molecular data showed all these influences of HLE might be mediated via inhibition of protein kinase B (PKB, also known as Akt)/NF-kB/MMP-9 cascade pathway, as demonstrated by the transfection of Akt1 overexpression vector. Finally, the inhibitory effect of HLE was proven by its inhibition on the growth of LNCaP cells and the expressions of metastasis-related molecular proteins in vivo. These findings suggested that the inhibition of MMP-9 expression by HLE may act through the suppression of the Akt/NF-kB signaling pathway, which in turn led to the reduced invasiveness of the cancer cells.

  15. Transforming growth factor-β-stimulated clone-22 (TSC-22) is an androgen regulated gene that enhances apoptosis in prostate cancer following IGF-IR inhibition

    Science.gov (United States)

    Sprenger, Cynthia C. T.; Haugk, Kathleen; Sun, Shihua; Coleman, Ilsa; Nelson, Peter S.; Vessella, Robert L.; Ludwig, Dale L.; Wu, Jennifer D.; Plymate, Stephen R.

    2009-01-01

    Purpose Inhibition of IGF signaling using the human IGF-IR monoclonal antibody A12 is most effective at inducing apoptosis in prostate cancer xenografts in the presence of androgen. We undertook this study to determine mechanisms for increased apoptosis by A12 in the presence of androgens. Experimental Methods The castrate-resistant human xenograft LuCaP 35V was implanted into intact or castrate SCID mice and treated with A12 weekly. After six weeks of tumor growth animals were sacrificed and tumors removed and analyzed for cell cycle distribution/apoptosis and cDNA arrays were performed. Results In castrate mice the tumors were delayed in G2 with no apoptosis; in contrast tumors from intact mice underwent apoptosis with either a G1 or G2 delay. TSC-22 was significantly elevated in tumors from the intact mice compared to castrate mice, especially in those tumors with the highest levels of apoptosis. In order to further determine the function of TSC-22, we transfected various human prostate cancer cell lines with a plasmid expressing TSC-22. Cell lines overexpressing TSC-22 demonstrated an increase in apoptosis and a delay in G1. When these cell lines were placed subcutaneously in SCID mice a decreased number of animals formed tumors and the rate of tumor growth was decreased compared to control tumors. Conclusions These data indicate that IGF-IR inhibition in the presence of androgen has an enhanced effect on decreasing tumor growth, in part, through increased expression of the tumor suppressor gene TSC-22. PMID:19996218

  16. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.

    Science.gov (United States)

    Mi, Yuanyuan; Sun, Chuanyu; Wei, Bingbing; Sun, Feiyu; Guo, Yijun; Hu, Qingfeng; Ding, Weihong; Zhu, Lijie; Xia, Guowei

    2018-01-01

    Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G 1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Prostate cancer

    DEFF Research Database (Denmark)

    Elkjær, Maria Carlsen; Andersen, Morten Heebøll; Høyer, Søren

    2017-01-01

    Background Active surveillance (AS) of low-risk prostate cancer (PCa) is an accepted alternative to active treatment. However, the conventional diagnostic trans-rectal ultrasound guided biopsies (TRUS-bx) underestimate PCa aggressiveness in almost half of the cases, when compared with the surgical...... lesions. Significant cancer was defined as GS > 6 or GS 6 (3 + 3) lesions with ≥ 6 mm maximal cancer core length (MCCL). Results A total of 78 patients were included and in 21 patients a total of 22 PIRADS-score 4 or 5 lesions were detected. MRGB pathology revealed that 17 (81%) of these and 22......% of the entire AS population harbored significant cancers at AS inclusion. In eight (38%) cases, the GS was upgraded. Also, nine patients (43%) had GS 6 (3 + 3) foci with MCCL ≥ 6 mm. Conclusion In an AS cohort based on TRUS and TRUS-bx diagnostic strategies, supplemental mpMRI and in-bore MRGB were able...

  18. GAS6/Mer axis regulates the homing and survival of the E2A/PBX1 positive B-cell precursor acute lymphoblastic leukemia in the bone marrow niche

    OpenAIRE

    Shiozawa, Yusuke; Pedersen, Elisabeth A.; Taichman, Russell S.

    2009-01-01

    Despite improvements in current combinational chemotherapy regimens, the prognosis of the (1;19)(q23;p13) translocation (E2A/PBX1) positive B-cell precursor acute lymphoblastic leukemia (ALL) is poor in pediatric leukemia patients. In this study, we examined the roles of GAS6/Mer axis in the interactions between E2A/PBX1 positive B-cell precursor ALL cells and the osteoblastic niche in the bone marrow. The data show that primary human osteoblasts secrete GAS6 in response to the Mer-over-expre...

  19. 6 Common Cancers - Prostate Cancer

    Science.gov (United States)

    ... Home Current Issue Past Issues 6 Common Cancers - Prostate Cancer Past Issues / Spring 2007 Table of Contents For ... for early screening. Photo: AP Photo/Danny Moloshok Prostate Cancer The prostate gland is a walnut-sized structure ...

  20. Three axis attitude control system

    Science.gov (United States)

    Studer, Philip A. (Inventor)

    1988-01-01

    A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.

  1. Monosodium glutamate: Potentials at inducing prostate pathologies ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... Busch C, Hanssen TA, Wagener CO, Brink B (2002). Down-regulation of CEACAM1 in human prostate cancer: correlation with loss of cell polarity, increased proliferation rate, and Gleason grade 3 to 4 transition. Hum. Pathol. 33: 290-298. Choi DM (1988). Calcium mediated neurotoxicity; relationship to ...

  2. Respiratory-induced prostate motion. Characterization and quantification in dynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dinkel, Julien; Zamecnik, Patrick; Schlemmer, Heinz-Peter [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; Thieke, Christian [German Cancer Research Center, Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology; University Clinic Heidelberg (Germany). Dept. of Radiation Oncology; Plathow, Christian [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; Radiology Baden-Baden (Germany); Pruem, Hermann [German Cancer Research Center, Heidelberg (Germany). Software Development for Integrated Diagnostics and Therapy Group; Huber, Peter E. [German Cancer Research Center, Heidelberg (Germany). Clinical Cooperation Unit Radiation Oncology; Kauczor, Hans-Ulrich [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; University Clinic Heidelberg (Germany). Dept. Radiology; Zechmann, Christian M. [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiology; University Clinic Heidelberg (Germany). Dept. of Nuclear Medicine

    2011-07-15

    To investigate prostate movement during deep breathing and contraction of abdominal musculature by means of dynamic MRI and analyze implications for image-guided radiotherapy of prostate cancer. A total of 43 patients and 8 healthy volunteers were examined with MRI. Images during deep respiration and during contraction of abdominal musculature (via a coughing maneuver) were obtained with dynamic two-dimensional (2D) balanced SSFP; 3 frames/s were obtained over an acquisition time of 15 s. Images were acquired in sagittal orientation to evaluate motion along both the craniocaudal (cc)-axis and anteroposterior (ap)-axis. Prostate motion was quantified semi-automatically using dedicated software tools. Respiratory induced mean cc-axis displacement of the prostate was 2.7 {+-} 1.9 (SD) mm (range, 0.5-10.6 mm) and mean ap-axis displacement 1.8 {+-} 1.0 (SD) mm (range, 0.3-10 mm). In 69% of the subjects, breathing-related prostate movements were found to be negligible (< 3 mm). The prostate displacement for abdominal contraction was significantly higher: mean cc-axis displacement was max. 8.4 {+-} 6.7 (SD) mm (range, 0.6-27 mm); mean anteroposterior movement was 8.3 {+-} 7.7 (SD) mm (range, 0.7-26 mm). Dynamic MRI is an excellent tool for noninvasive real-time imaging of prostate movement. Further investigations regarding possible applications in image-guided radiotherapy, e.g., for individualized planning and in integrated linac/MRI systems, are warranted. (orig.)

  3. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  4. Intracellular Modifiers of Integrin Alpha 6p Production in Aggressive Prostate and Breast Cancer Cell Lines

    Science.gov (United States)

    Kacsinta, Apollo D.; Rubenstein, Cynthia S.; Sroka, Isis C.; Pawar, Sangita; Gard, Jaime M.; Nagle, Raymond B.; Cress, Anne E.

    2014-01-01

    Cancer metastasis is a multi-step process in which tumor cells gain the ability to invade beyond the primary tumor and colonize distant sites. The mechanisms regulating the metastatic process confer changes to cell adhesion receptors including the integrin family of receptors. Our group previously discovered that the α6 integrin (ITGA6/CD49f) is post translationally modified by urokinase plasminogen activator (uPA) and its receptor, urokinase plasminogen activator receptor (uPAR), to form the variant ITGA6p. This variant of ITGA6 is a cleaved form of the receptor that lacks the ligand-binding domain. Although it is established that the uPA/uPAR axis drives ITGA6 cleavage, the mechanisms regulating cleavage have not been defined. Intracellular integrin dependent “inside-out” signaling is a major regulator of integrin function and the uPA/uPAR axis. We hypothesized that intracellular signaling molecules play a role in formation of ITGA6p to promote cell migration during cancer metastasis. In order to test our hypothesis, DU145 and PC3B1 prostate cancer and MDA-MB-231 breast cancer cell lines were treated with small interfering RNA targeting actin and the intracellular signaling regulators focal adhesion kinase (FAK), integrin linked kinase (ILK), and paxillin. The results demonstrated that inhibition of actin, FAK, and ILK expression resulted in significantly increased uPAR expression and ITGA6p production. Inhibition of actin increased ITGA6p, although inhibition of paxillin did not affect ITGA6p formation. Taken together, these results suggest that FAK and ILK dependent “inside-out” signaling, and actin dynamics regulate extracellular production of ITGA6p and the aggressive phenotype. PMID:25450398

  5. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells.

    Science.gov (United States)

    Shafi, Ayesha A; Putluri, Vasanta; Arnold, James M; Tsouko, Efrosini; Maity, Suman; Roberts, Justin M; Coarfa, Cristian; Frigo, Daniel E; Putluri, Nagireddy; Sreekumar, Arun; Weigel, Nancy L

    2015-10-13

    Metastatic prostate cancer (PCa) is primarily an androgen-dependent disease, which is treated with androgen deprivation therapy (ADT). Tumors usually develop resistance (castration-resistant PCa [CRPC]), but remain androgen receptor (AR) dependent. Numerous mechanisms for AR-dependent resistance have been identified including expression of constitutively active AR splice variants lacking the hormone-binding domain. Recent clinical studies show that expression of the best-characterized AR variant, AR-V7, correlates with resistance to ADT and poor outcome. Whether AR-V7 is simply a constitutively active substitute for AR or has novel gene targets that cause unique downstream changes is unresolved. Several studies have shown that AR activation alters cell metabolism. Using LNCaP cells with inducible expression of AR-V7 as a model system, we found that AR-V7 stimulated growth, migration, and glycolysis measured by ECAR (extracellular acidification rate) similar to AR. However, further analyses using metabolomics and metabolic flux assays revealed several differences. Whereas AR increased citrate levels, AR-V7 reduced citrate mirroring metabolic shifts observed in CRPC patients. Flux analyses indicate that the low citrate is a result of enhanced utilization rather than a failure to synthesize citrate. Moreover, flux assays suggested that compared to AR, AR-V7 exhibits increased dependence on glutaminolysis and reductive carboxylation to produce some of the TCA (tricarboxylic acid cycle) metabolites. These findings suggest that these unique actions represent potential therapeutic targets.

  6. Indole-3-carbinol and 3’, 3’-diindolylmethane modulate androgen effect up-regulation on C-C chemokine ligand 2 and monocyte attraction to prostate cancer cells

    Science.gov (United States)

    Inflammation has a role in prostate tumorigenesis. Recruitment of inflammatory monocytes to the tumor site is mediated by C-C chemokine ligand 2 (CCL2) through binding to its receptor CCR2. We hypothesized that androgen could modulate CCL2 expression in hormone-responsive prostate cancer cells, and ...

  7. Prostate carcinomas; Cancer de la prostate

    Energy Technology Data Exchange (ETDEWEB)

    Toledano, A.; Chauveinc, L.; Flam, T.; Thiounn, N.; Solignac, S.; Timbert, M.; Rosenwald, J.C.; Cosset, J.M.; Ammor, A.; Bonnetain, F.; Brenier, J.P.; Maingon, P.; Peignaux, K.; Truc, G.; Bosset, M.; Crevoisier, R. de; Tucker, S.; Dong, L.; Cheung, R.; Kuban, D.; Azria, D.; Llacer Moscardo, C.; Ailleres, N.; Allaw, A.; Serre, A.; Fenoglietto, P.; Hay, M.H.; Thezenas, S.; Dubois, J.B.; Pommier, P.; Perol, D.; Lagrange, J.L.; Richaud, P.; Brune, D.; Le Prise, E.; Azria, D.; Beckendorf, V.; Chabaud, S.; Carrie, C.; Bosset, M.; Bosset, J.F.; Maingon, P.; Ammor, A.; Crehangen, G.; Truc, G.; Peignaux, K.; Bonnetain, F.; Keros, L.; Bernier, V.; Aletti, P.; Wolf, D.; Marchesia, V.; Noel, A.; Artignan, X.; Fourneret, P.; Bacconier, M.; Shestaeva, O.; Pasquier, D.; Descotes, J.L.; Balosso, J.; Bolla, M.; Burette, R.; Corbusier, A.; Germeau, F.; Crevoisier, R. de; Dong, L.; Bonnen, M.; Cheung, R.; Tucker, S.; Kuban, D.; Crevoisier, R. de; Melancon, A.; Kuban, D.; Cheung, R.; Dong, L.; Peignaux, K.; Brenier, J.P.; Truc, G.; Bosset, M.; Ammor, A.; Barillot, I.; Maingon, P.; Molines, J.C.; Berland, E.; Cornulier, J. de; Coulet-Parpillon, A.; Cohard, C.; Picone, M.; Fourneret, P.; Artignan, X.; Daanen, V.; Gastaldo, J.; Bolla, M.; Collomb, D.; Dusserre, A.; Descotes, J.L.; Troccaz, J.; Giraud, J.Y.; Quero, L.; Hennequin, C.; Ravery, V.; Desgrandschamps, F.; Maylin, C.; Boccon-Gibod, L.; Salem, N.; Bladou, F.; Gravis, G.; Tallet, A.; Simonian, M.; Serment, G.; Salem, N.; Bladou, F.; Gravis, G.; Simonian, M.; Rosello, R.; Serment, G

    2005-11-15

    Some short communications on the prostate carcinoma are given here. The impact of pelvic irradiation, conformation with intensity modulation, association of radiotherapy and chemotherapy reduction of side effects, imaging, doses escalation are such subjects studied and reported. (N.C.)

  8. Sevoflurane post-conditioning protects primary rat cortical neurons against oxygen-glucose deprivation/resuscitation via down-regulation in mitochondrial apoptosis axis of Bid, Bim, Puma-Bax and Bak mediated by Erk1/2.

    Science.gov (United States)

    Zhang, Li-Min; Zhao, Xiao-Chun; Sun, Wen-Bo; Li, Rui; Jiang, Xiao-Jing

    2015-10-15

    Temporal post-conditioning helps provide neuroprotection against brain injury secondary to ischemia-reperfusion and is considered an effective intervention, but the exact mechanism of sevoflurane post-conditioning is unclear. The essential axis involves activator Bid, Bim, Puma (BH3s), Bax, and Bak; activates the mitochondrial death program; and might be involved in a cell death signal. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in cell growth and proliferation. We hypothesized that sevoflurane post-conditioning might inhibit Bid, Bim, Puma, Bax, and Bak expression and is activated by phosphor-Erk1/2 to decrease neuronal death. To test this hypothesis, we exposed primary cortical neuron cultures to oxygen-glucose deprivation for 1h, along with resuscitation for 24h (OGD/R). MTT assays, propidium iodide uptake (PI), JC-1 fluorescence, and Western blot indicated the following: decreased cell viability (PPuma, Bax, and Bak expression with OGD/R exposure. Inhibition of Erk1/2 phosphorylation could attenuate sevoflurane post-conditioning that mediated an increase in neuronal viability and mitochondrial membrane potential, as well as a decrease in cell death and Bid, Bim, Puma, Bax, and Bak expression after OGD/R treatment. The results demonstrated that sevoflurane post-conditioning caused a marked decrease in cortical neuronal death secondary to OGD/R exposure through the downregulation of the mitochondrial apoptosis axis involving Bid, Bim, Puma, Bax, and Bak that was mediated by the phosphorylation/activation of Erk1/2. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. On cribriform prostate cancer

    OpenAIRE

    Kweldam, Charlotte

    2018-01-01

    markdownabstractThis general aim of the thesis is to study the clinical relevance, interobserver reproducibility, and genetics of cribriform growth in prostate cancer. More specifically, the aims and outline of this thesis are • To study the metastatic potential of modified Gleason score 3+3 prostate cancer in radical prostatectomies. (Chapter 2) • To examine the prognostic value of individual Gleason grade 4 patterns in prostate cancer in radical prostatectomy and diagnostic biopsy specimens...

  10. Activation of the hedgehog pathway in advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    McCormick Frank

    2004-10-01

    Full Text Available Abstract Background The hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications. Results Here we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP, are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu protein, a negative regulator of the hedgehog pathway. We find that Su(Fu protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu. Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27. High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3. We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells. Conclusion Our data indicate that activation of the hedgehog pathway, through loss of Su(Fu or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have

  11. Prostate imaging. An update

    International Nuclear Information System (INIS)

    Franiel, T.; Teichgraeber, U.; Asbach, P.; Hamm, B.; Foller, S.

    2015-01-01

    New technical and clinical developments of sonography and magnetic resonance imaging include improved detection, localization and staging as well as active surveillance of prostate cancer. Multiparametric MRI can best answer these typical clinical questions. However, ultrasound elastography seems to be suitable for the detection of significant prostate cancer as well. The structured reporting system for multiparametric MRI of the prostate according to PI-RADS Version 1 led to improved and reproducible diagnosis of prostate cancer. The new PI-RADS Version 2 aims to minimize the limitations of Version 1 and make PI-RADS standardization more globally acceptable.

  12. Screening for prostate cancer

    Science.gov (United States)

    Weirich, Stephen A.

    1993-01-01

    Despite recent advances in both the survival and cure rates for many forms of cancer, unfortunately the same has not been true for prostate cancer. In fact, the age-adjusted death rate from prostate cancer has not significantly improved since 1949, and prostate cancer remains the most common cancer in American men, causing the second highest cancer mortality rate. Topics discussed include the following: serum testosterone levels; diagnosis; mortality statistics; prostate-sppecific antigen (PSA) tests; and the Occupational Medicine Services policy at LeRC.

  13. Estrogen Receptor Beta Displays Cell Cycle-Dependent Expression and Regulates the G1 Phase through a Non-Genomic Mechanism in Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Antoni Hurtado

    2008-01-01

    Full Text Available Background: It is well known that estrogens regulate cell cycle progression, but the specific contributions and mechanisms of action of the estrogen receptor beta (ERβ remain elusive.

  14. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  15. Review article: Prostate cancer screening using prostate specific ...

    African Journals Online (AJOL)

    Background: Prostate cancer is the commonest cancer among men in Nigeria and early detection is key to cure and survival but its screening through prostate specific antigen (PSA) has remain controversial in literature. Screening with prostate specific antigen (PSA) has led to more men diagnosed with prostate cancer than ...

  16. Estrogen receptors in the human male prostatic urethra and prostate in prostatic cancer and benign prostatic hyperplasia

    DEFF Research Database (Denmark)

    Bødker, A; Bruun, J; Balslev, E

    1999-01-01

    demonstrated in the prostatic stroma and/or prostatic urethra in 6 out of 11 cases. In both BPH and PC patients, immunoreactivity was weak and confined to few cells, indicating low ER content in the prostate as well as in the prostatic urethra. Dextran-coated charcoal (DCC) analysis was used for detection...

  17. Benign Prostatic Hyperplasia (BPH)

    Science.gov (United States)

    ... completely empty the bladder Less common signs and symptoms include: Urinary tract infection Inability to urinate Blood in the urine The size of your prostate doesn't necessarily determine the severity of your symptoms. Some men with only slightly enlarged prostates can ...

  18. Prostate brachytherapy - discharge

    Science.gov (United States)

    ... nausea or vomiting Any new or unusual symptoms Alternative Names Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge References D'Amico AV, Nguyen PL, Crook JM, et al. Radiation therapy for prostate cancer. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, ...

  19. FGF Signaling and Dietary Factors in the Prostate

    Science.gov (United States)

    2006-09-01

    2003). c. The FGF signaling axis in prostate homeostasis and tumorigenesis. Department of Molecular and Cellular Biology, Baylor College of Medicine...Pharmacology, Washington University, School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, 63110; 4, Department of Surgery, University of Western...dilution) from Sigma Co ( Saint Louis, MO); mouse anti-P63 (1:150 dilution) and mouse anti-AR (1:150 dilution) from Santa Cruz (Santa Cruz, CA); rabbit anti

  20. ICAM-1 and AMPK regulate cell detachment and apoptosis by N-methyl-N′-nitro-N-nitrosoguanidine, a widely spread environmental chemical, in human hormone-refractory prostate cancers

    International Nuclear Information System (INIS)

    Chen, Yi-Cheng; Lu, Pin-Hsuan; Hsu, Jui-Ling; Yu, Chia-Chun; Guh, Jih-Hwa

    2011-01-01

    Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N′-Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5 μM did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels. Detection of phosphorylation and degradation of IκB-α and nuclear translocation of NF-κB showed that MNNG induced the activation of NF-κB that was responsible for the ICAM-1 up-regulation since PDTC (a NF-κB inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10 μM) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-κB-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation. Highlights: ► Low level of DNA damage helps cell attachment and survival via ICAM-1 upregulation. ► High level of DNA damage causes AMPK- and JNK-involved cell detachment and death. ► The study provides an anticancer approach targeting PARP-1 and DNA damage

  1. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  2. Association analyses of depression and genes in the hypothalamus-pituitary-adrenal axis

    DEFF Research Database (Denmark)

    Buttenschøn, Henrietta Nørmølle; Krogh, Jesper; Nielsen, Marit Nyholm

    2017-01-01

    OBJECTIVE: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in depression. The aim was to investigate the potential association between depression and seven genes regulating or interfering with the HPA axis, including the gene encoding angiotensin converting enzyme...

  3. X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis.

    Science.gov (United States)

    Cao, Zipeng; Zhang, Ruowen; Li, Jingxia; Huang, Haishan; Zhang, Dongyun; Zhang, Jingjie; Gao, Jimin; Chen, Jingyuan; Huang, Chuanshu

    2013-07-12

    The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target.

  4. Prostate inflammation. Association with benign prostatic hyperplasia and prostate cancer.

    Science.gov (United States)

    Abdel-Meguid, Taha A; Mosli, Hisham A; Al-Maghrabi, Jaudah A

    2009-12-01

    To study the association and possible relationship of prostate inflammation with benign prostatic hyperplasia (BPH), and prostate cancer. The medical records and pathological findings of all Saudi patients who underwent transrectal ultrasound guided prostatic needle biopsies in King Abdulaziz University Medical City, Jeddah,Kingdom of Saudi Arabia from June 2003 to June 2008 were reviewed retrospectively. The indications for biopsy were elevated levels of serum prostate specific antigen, abnormal findings on digital rectal examination, or both. The specimens harboring inflammation, adenocarcinoma, BPH, or their combinations, were selected and included in the study. A total of 214 patients were selected with an age ranging from 37-100 years (median=68). Inflammation was histologically evident in 88 patients. Of them, only one demonstrated acute inflammation, while 87/88 demonstrated chronic inflammation with, or without acute inflammation. Histopathologic features were categorized into 3 main categories: inflammation alone (12/214, 5.6%), BPH category (126/214, 58.9%), and cancer category (76/214, 35.5%) patients. The last 2 categories also included cases associated with inflammation. In the overall analysis of 214 specimens, BPH with inflammation was more prevalent than cancer with inflammation (43/214 [20.1%] versus 33/214 [15.4%]). In a subgroup analysis within each category, inflammation was less prevalent in the BPH category compared to the cancer category (43/126 [34.1%] versus 33/76 [43.4%]). The association between chronic inflammation and both BPH and cancer is obvious in our study. Further studies are needed to substantiate this observation, and to clarify the magnitude of association of inflammation with BPH compared to cancer.

  5. Multi-Drug Resistance ABC Transporter Inhibition Enhances Murine Ventral Prostate Stem/Progenitor Cell Differentiation.

    Science.gov (United States)

    Samant, Mugdha D; Jackson, Courtney M; Felix, Carina L; Jones, Anthony J; Goodrich, David W; Foster, Barbara A; Huss, Wendy J

    2015-05-15

    Multi-drug resistance (MDR)-ATP binding cassette (ABC) transporters, ABCB1, ABCC1, and ABCG2 participate in the efflux of steroid hormones, estrogens, and androgens, which regulate prostate development and differentiation. The role of MDR-ABC efflux transporters in prostate epithelial proliferation and differentiation remains unclear. We hypothesized that MDR-ABC transporters regulate prostate differentiation and epithelium regeneration. Prostate epithelial differentiation was studied using histology, sphere formation assay, and prostate regeneration induced by cycles of repeated androgen withdrawal and replacement. Embryonic deletion of Abcg2 resulted in a decreased number of luminal cells in the prostate and increased sphere formation efficiency, indicating an imbalance in the prostate epithelial differentiation pattern. Decreased luminal cell number in the Abcg2 null prostate implies reduced differentiation. Enhanced sphere formation efficiency in Abcg2 null prostate cells implies activation of the stem/progenitor cells. Prostate regeneration was associated with profound activation of the stem/progenitor cells, indicating the role of Abcg2 in maintaining stem/progenitor cell pool. Since embryonic deletion of Abcg2 may result in compensation by other ABC transporters, pharmacological inhibition of MDR-ABC efflux was performed. Pharmacological inhibition of MDR-ABC efflux enhanced prostate epithelial differentiation in sphere culture and during prostate regeneration. In conclusion, Abcg2 deletion leads to activation of the stem/progenitor cells and enhances differentiating divisions; and pharmacological inhibition of MDR-ABC efflux leads to epithelial differentiation. Our study demonstrates for the first time that MDR-ABC efflux transporter inhibition results in enhanced prostate epithelial cell differentiation.

  6. 17beta-estradiol regulation of human growth hormone (hGH), insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) axis in hypoestrogenic, hypergonadotropic women.

    Science.gov (United States)

    Milewicz, Tomasz; Krzysiek, Józef; Sztefko, Krystyna; Radowicki, Stanisław; Krzyczkowska-Sendrakowska, Magdalena

    2005-01-01

    Ovarian hormonal function may be as important contributing factor to hGH-IGF-I-IGFBP-3 axis as age. To examine plasma hGH, IGF-1 and IGFBP-3 levels in women with premature ovarian failure compared to healthy normal controls and postmenopausal ones. Group A-15 women with premature ovarian failure (POF) (mean: age 38.9+/-5.2 years, FSH 101.4+/-29.0 IU/l; 17beta-estradiol 22.5+/-14.6 ng/l). Group B consisted of 15 menopausal women (mean: age 54.7+/-2.7 years; FSH 81.9+/-32.1 IU/l; 17beta-estradiol 17.1+/- 8.0 ng/l). Group C - controls - 15 normally menstruating women (mean: age 37.1+/-9.0 years; FSH 6.2+/-1.0 IU/l; 17beta-estradiol 144.8+/-117.1 ng/l). Body mass and BMI were measured. Basic fasting plasma hGH, IGF-I, IGFBP-3, insulin, testosterone and LH as well as prolactin (PRL), FSH and estradiol were assessed by RIA kits. Statistical analysis. Shapiro-Wilk test, Mann-Whitney u-test, Spearman rang correlation coefficient, stepwise multiple regression. Mean serum IGF-I level was the lowest (phGH levels. Women in group A and C were younger (phGH levels in group C (r=-0.54; phGH/IGF-1 as well as IGFBP-3/hGH relations were found. Prolactin accounted for 69% of the variance in IGF-I level in the group B (p=0.003) and for 24% in group A (NS). Testosterone accounted for 88% (p=0.004) of the variance in IGF-I level in group B and IGFBP-3 was responsible for 86% (p=0.038) of the variance in IGF-I level in group C. Again IGFBP-3 was responsible for 47% (p=0.023) in group A and for 49% (p=0.04) in group B of the hGH variance. 17b-estradiol may be as important contributor to insulin-like growth factor-I (IGF-I) plasma level as age in hypoestrogenic, hypogonadotropic women.

  7. Imaging and prostate cancer

    International Nuclear Information System (INIS)

    Schwartz, Lawrence H.

    1996-01-01

    The use of imaging in evaluating patients with prostate cancer is highly dependent upon the purpose of the evaluation. Ultrasound, Computed Tomography, Magnetic Resonance Imaging, TC-99m Bone Scanning, and Positron Emission Tomography may all be utilized for imaging in prostate cancer. The utility of each of these modalities depends upon the intended purpose: for instance, screening, staging, or evaluating for progression of disease in patients with prostate cancer. Transrectal ultrasound is performed by placing a 5MHz to 7.5 MHz transducer in the rectum and imaging the prostate in the coronal and sagittal planes. Prostate cancer generally appears as an area of diminished echogenocity in the peripheral zone of the prostate gland. However, up to 24% of prostate cancers are isoechoic and cannot be well distinguished from the remainder of the peripheral zone. In addition, the incidence of malignancy in a lesion judged to be suspicious on ultrasound is between 20% and 25%. Therefore, while ultrasound is the least expensive of the three cross sectional imaging modalities, its relatively low specificity precludes it from being used as a screening examination. Investigators have also looked at the ability of ultrasound to evaluate the presence and extent of extracapsular spread of prostate cancer. The RDOG (Radiology Diagnostic Oncology Group) multi-institutional cooperative trial reported a disappointing overall accuracy of ultrasound of 58% for staging prostate cancer. The accuracy was somewhat higher 63%, for patients with advanced disease. The other cross-sectional imaging modalities available for imaging the prostate include Computed Tomography and Magnetic Resonance Imaging. Computed Tomography is useful as an 'anatomic' imaging technique to detect lymph node enlargement. It is not sensitive in detecting microscopic nodal involvement with tumor, or tumor in non-enlarged pelvic lymph nodes. The primary prostate neoplasm is generally the same attenuation as the normal

  8. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    Directory of Open Access Journals (Sweden)

    Ribeiro Ricardo

    2012-09-01

    Full Text Available Abstract Background Periprostatic (PP adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia. Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated. Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis, whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH. Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable

  9. [Consensus of prostate cancer screening].

    Science.gov (United States)

    2017-05-01

    The incidence of prostate cancer is increasing rapidly in China, the clinical stage of prostate cancer patients is comparatively late and the overall survival rate is inferior to that reported in the developed countries. Prostate cancer screening is an effective measure to reduce the risk of death through early detection. In order to identify the best way of prostate cancer screening in China, the Chinese Anti-Cancer Association Genitourinary Cancer Committee Prostate Cancer Working Group reviewed all published data concerning the benefits and harms of screening for prostate caner and created the consensus. The consensus include the following points: screening asymptomatic men for prostate cancer by prostate specific antigen(PSA)testing in the general population is the potential measure to reduce mortality rates through early detection, PSA testing should be offered earlier in men with life expectancy over 10 years and men at high risk of prostate cancer.

  10. The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p.

    Science.gov (United States)

    Czimmerer, Zsolt; Varga, Tamas; Kiss, Mate; Vázquez, Cesaré Ovando; Doan-Xuan, Quang Minh; Rückerl, Dominik; Tattikota, Sudhir Gopal; Yan, Xin; Nagy, Zsuzsanna S; Daniel, Bence; Poliska, Szilard; Horvath, Attila; Nagy, Gergely; Varallyay, Eva; Poy, Matthew N; Allen, Judith E; Bacso, Zsolt; Abreu-Goodger, Cei; Nagy, Laszlo

    2016-05-31

    IL-4-driven alternative macrophage activation and proliferation are characteristic features of both antihelminthic immune responses and wound healing in contrast to classical macrophage activation, which primarily occurs during inflammatory responses. The signaling pathways defining the genome-wide microRNA expression profile as well as the cellular functions controlled by microRNAs during alternative macrophage activation are largely unknown. Hence, in the current work we examined the regulation and function of IL-4-regulated microRNAs in human and mouse alternative macrophage activation. We utilized microarray-based microRNA profiling to detect the dynamic expression changes during human monocyte-macrophage differentiation and IL-4-mediated alternative macrophage activation. The expression changes and upstream regulatory pathways of selected microRNAs were further investigated in human and mouse in vitro and in vivo models of alternative macrophage activation by integrating small RNA-seq, ChIP-seq, ChIP-quantitative PCR, and gene expression data. MicroRNA-controlled gene networks and corresponding functions were identified using a combination of transcriptomic, bioinformatic, and functional approaches. The IL-4-controlled microRNA expression pattern was identified in models of human and mouse alternative macrophage activation. IL-4-dependent induction of miR-342-3p and repression of miR-99b along with miR-125a-5p occurred in both human and murine macrophages in vitro. In addition, a similar expression pattern was observed in peritoneal macrophages of Brugia malayi nematode-implanted mice in vivo. By using IL4Rα- and STAT6-deficient macrophages, we were able to show that IL-4-dependent regulation of miR-342-3p, miR-99b, and miR-125a-5p is mediated by the IL-4Rα-STAT6 signaling pathway. The combination of gene expression studies and chromatin immunoprecipitation experiments demonstrated that both miR-342-3p and its host gene, EVL, are coregulated directly by STAT

  11. Influence of the neural microenvironment on prostate cancer.

    Science.gov (United States)

    Coarfa, Christian; Florentin, Diego; Putluri, NagiReddy; Ding, Yi; Au, Jason; He, Dandan; Ragheb, Ahmed; Frolov, Anna; Michailidis, George; Lee, MinJae; Kadmon, Dov; Miles, Brian; Smith, Christopher; Ittmann, Michael; Rowley, David; Sreekumar, Arun; Creighton, Chad J; Ayala, Gustavo

    2018-02-01

    Nerves are key factors in prostate cancer (PCa), but the functional role of innervation in prostate cancer is poorly understood. PCa induced neurogenesis and perineural invasion (PNI), are associated with aggressive disease. We denervated rodent prostates chemically and physically, before orthotopically implanting cancer cells. We also performed a human neoadjuvant clinical trial using botulinum toxin type A (Botox) and saline in the same patient, before prostatectomy. Bilateral denervation resulted in reduced tumor incidence and size in mice. Botox treatment in humans resulted in increased apoptosis of cancer cells in the Botox treated side. A similar denervation gene array profile was identified in tumors arising in denervated rodent prostates, in spinal cord injury patients and in the Botox treated side of patients. Denervation induced exhibited a signature gene profile, indicating translation and bioenergetic shutdown. Nerves also regulate basic cellular functions of non-neoplastic epithelial cells. Nerves play a role in the homeostasis of normal epithelial tissues and are involved in prostate cancer tumor survival. This study confirms that interactions between human cancer and nerves are essential to disease progression. This work may make a major impact in general cancer treatment strategies, as nerve/cancer interactions are likely important in other cancers as well. Targeting the neural microenvironment may represent a therapeutic approach for the treatment of human prostate cancer. © 2017 The Authors. The Prostate Published by Wiley Periodicals, Inc.

  12. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  13. The Different Roles of Glucocorticoids in the Hippocampus and Hypothalamus in Chronic Stress-Induced HPA Axis Hyperactivity

    Science.gov (United States)

    Liu, Xiao; Chen, Chen; Han, Zhou; Wu, Hai-Yin; Jing, Xing; Zhou, Hai-Hui; Suh, Hoonkyo; Zhu, Dong-Ya; Zhou, Qi-Gang

    2014-01-01

    Hypothalamus-pituitary-adrenal (HPA) hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR) - neuronal nitric oxide synthesis enzyme (nNOS) - nitric oxide (NO) pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression. PMID:24831808

  14. Statistical volumetric model for characterization and visualization of prostate cancer

    Science.gov (United States)

    Lu, Jianping; Srikanchana, Rujirutana; McClain, Maxine A.; Wang, Yue J.; Xuan, Jian Hua; Sesterhenn, Isabell A.; Freedman, Matthew T.; Mun, Seong K.

    2000-04-01

    To reveal the spatial pattern of localized prostate cancer distribution, a 3D statistical volumetric model, showing the probability map of prostate cancer distribution, together with the anatomical structure of the prostate, has been developed from 90 digitally-imaged surgical specimens. Through an enhanced virtual environment with various visualization modes, this master model permits for the first time an accurate characterization and understanding of prostate cancer distribution patterns. The construction of the statistical volumetric model is characterized by mapping all of the individual models onto a generic prostate site model, in which a self-organizing scheme is used to decompose a group of contours representing multifold tumors into localized tumor elements. Next crucial step of creating the master model is the development of an accurate multi- object and non-rigid registration/warping scheme incorporating various variations among these individual moles in true 3D. This is achieved with a multi-object based principle-axis alignment followed by an affine transform, and further fine-tuned by a thin-plate spline interpolation driven by the surface based deformable warping dynamics. Based on the accurately mapped tumor distribution, a standard finite normal mixture is used to model the cancer volumetric distribution statistics, whose parameters are estimated using both the K-means and expectation- maximization algorithms under the information theoretic criteria. Given the desired number of tissue samplings, the prostate needle biopsy site selection is optimized through a probabilistic self-organizing map thus achieving a maximum likelihood of cancer detection. We describe the details of our theory and methodology, and report our pilot results and evaluation of the effectiveness of the algorithm in characterizing prostate cancer distributions and optimizing needle biopsy techniques.

  15. Effect of magnesium oxide on interfraction prostate motion and rectal filling in prostate cancer radiotherapy. Analysis of a randomized clinical trial

    International Nuclear Information System (INIS)

    Harder, Annemarie M. den; Kotte, Alexis N.T.J.; Vulpen, Marco van; Lips, Irene M.; Gils, Carla H. van

    2014-01-01

    To investigate whether magnesium oxide reduces the interfraction motion of the prostate and the amount of rectal filling and rectal gas, which influences prostate position during radiotherapy for prostate cancer. From December 2008 to February 2010, 92 prostate cancer patients scheduled for intensity-modulated radiotherapy (77 Gy in 35 fractions) using fiducial marker-based position verification were randomly assigned to receive magnesium oxide (500 mg twice a day) or placebo during radiotherapy. In a previous study, we investigated the effect on intrafraction motion and did not find a difference between the treatment arms. Here, we compared the interfraction prostate motion between the two treatment arms as well as the amount of rectal filling and rectal air pockets using pretreatment planning computed tomography and magnetic resonance imaging scans. There was no statistically significant difference between the treatment arms in translation and rotation of the prostate between treatment fractions, except for the rotation around the cranial caudal axis. However, the difference was less than 1 and therefore considered not clinically relevant. There was no significant difference in the amount of rectal filling and rectal air pockets between the treatment arms. Magnesium oxide is not effective in reducing the interfraction prostate motion or the amount of rectal filling and rectal gas during external-beam radiotherapy. Therefore, magnesium oxide is not recommended in clinical practice for these purposes. (orig.) [de

  16. Multiple roles for UDP-glucuronosyltransferase (UGT)2B15 and UGT2B17 enzymes in androgen metabolism and prostate cancer evolution.

    Science.gov (United States)

    Gauthier-Landry, Louis; Bélanger, Alain; Barbier, Olivier

    2015-01-01

    In the prostate, approximately 50% of androgens are from adrenal steroids, mainly dehydroepiandrosterone (DHEA), its sulfate and androstenedione. These compounds are converted first into testosterone, and then into the active hormone dihydrotestosterone (DHT). After having activated the androgen receptor (AR), DHT is reduced into androstane-3α-DIOL (3α-DIOL) and androsterone (ADT), which are subsequently converted into 2 inactive and easily excretable metabolites: 3α-DIOL-17glucuronide (3α-DIOL-17G) and ADT-3glucuronide (ADT-3G). The formation of these last derivatives through the glucuronidation reaction involves 2 UDP-glucuronosyltransferase (UGT) enzymes, namely UGT2B15 and UGT2B17. The present review article aims at providing a comprehensive view of the physiological and pharmacological importance of these 2 enzymes for the control of androgen homeostasis. We will resume: (i) how UGT2B15 and UGT2B17 contribute to androgen elimination; (ii) how their glucuronidation capacity influences the androgen signaling pathway in prostate cells; (iii) how they contribute to the anti-proliferative properties of AR antagonists in prostate cancer cells; and (iv) how AR and its spliced variants regulate the UGT2B15 and/or UGT2B17 genes expression. Finally, whether the unexploited AR-UGT axis could serve as a prognostic maker or a pharmacological target for novel therapeutics in the treatment of prostate cancer is also discussed. This article is part of a special issue entitled 'Essential role of DHEA'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Baseline prostate-specific antigen measurements and subsequent prostate cancer risk in the Danish Diet, Cancer and Health cohort

    DEFF Research Database (Denmark)

    Larsen, Signe Benzon; Brasso, Klaus; Iversen, Peter

    2013-01-01

    AIM: Although prostate-specific antigen (PSA) screening reduces mortality from prostate cancer, substantial over-diagnosis and subsequent overtreatment are concerns. Early screening of men for PSA may serve to stratify the male population by risk of future clinical prostate cancer. METHODS...... AND MATERIAL: Case-control study nested within the Danish 'Diet, Cancer and Health' cohort of 27,179 men aged 50-64 at enrolment. PSA measured in serum collected at cohort entry in 1993-1997 was used to evaluate prostate cancer risk diagnosed up to 14years after. We identified 911 prostate cancer cases...... in the Danish Cancer Registry through 31st December 2007 1:1 age-matched with cancer-free controls. Aggressive cancer was defined as ⩾T3 or Gleason score ⩾7 or N1 or M1. Statistical analyses were based on conditional logistic regression with age as underlying time axis. RESULTS: Total PSA and free-to-total PSA...

  18. CAND1 Promotes PLK4-Mediated Centriole Overduplication and Is Frequently Disrupted in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Nina Korzeniewski

    2012-09-01

    Full Text Available Centrosomes play a crucial role in the maintenance of genome stability by orchestrating bipolar mitotic spindle formation. The centrosome normally duplicates precisely once before mitosis in a process that is extensively regulated by protein degradation including SKP1-Cullin 1 (CUL1-F-box (SCF E3 ubiquitin ligase activity. The core SCF component CUL1 has recently been found to be required to suppress the formation of supernumerary centrosomes and centrioles, the core-forming units of centrosomes. Here, we identify the CUL1-interacting protein cullin-associated and neddylation-dissociated 1 (CAND1 as a novel centrosomal protein with a role in centriole duplication control. CAND1 was found to synergize with Polo-like kinase 4 (PLK4, a master regulator of centriole biogenesis, in the induction of centriole overduplication. We provide evidence that CAND1 functions in this process by increasing PLK4 protein stability. Furthermore, mutants of CUL1 that lack the ability to interact with CAND1 and are unable to assemble functional E3 ubiquitin ligase complexes were impaired in their ability to restrain aberrant daughter centriole synthesis. To corroborate a role of CAND1 in human carcinogenesis, we analyzed a series of prostate adenocarcinomas and found altered expression of CAND1 on the mRNA or protein level in 52.9% and 40.8%, respectively, of the tumor samples analyzed. These results highlight the role of altered SCF components in cancer in general and encourage further studies to explore the SCF-CAND1 axis for the development of novel predictive biomarkers and therapeutic approaches in prostate cancer.

  19. Obesity and prostate enlargement in men with localized prostate cancer.

    Science.gov (United States)

    Kopp, Ryan P; Han, Misop; Partin, Alan W; Humphreys, Elizabeth; Freedland, Stephen J; Parsons, J Kellogg

    2011-12-01

    What's known on the subject? and What does the study add? Obesity is associated with prostate enlargement in men without prostate cancer. This study demonstrates an association between obesity and prostate enlargement in men with prostate cancer, and leads to possible implications for prostate cancer screening and diagnosis. • To determine if obesity is associated with prostate size in men with prostate cancer. • We examined preoperative body mass index (BMI) and whole prostate weight in a cohort of 16,325 patients undergoing radical prostatectomy for localized prostate cancer from 1975 to 2008 at a single institution. • We used multivariable regression modelling adjusting for age, year of surgery, preoperative serum prostate-specific antigen (PSA), pathological stage and Gleason grade. • Of the entire cohort, 13,343 (82%) patients had a prostate weight of at least 40 g. These men were older (P men with BMI men with a BMI ≥35 kg/m(2) had a 40% (odds ratio 1.40, 95% CI 1.01-1.95) increased risk of prostate weight of at least 40 g and a 70% (odds ratio 1.70, 95% CI 1.32-2.20) increased risk of prostate weight of at least 50 g. • In men with localized prostate cancer, obesity is associated with an increased risk of prostate enlargement. • These data validate other observations linking obesity with prostate enlargement and may have important ramifications for prostate cancer diagnosis in obese men. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  20. A systematic comparison of on-axis and off-axis transmission Kikuchi diffraction

    DEFF Research Database (Denmark)

    Niessen, F.; Burrows, A.; Fanta, A. Bastos da Silva

    2018-01-01

    Abstract The capabilities of the novel on-axis transmission Kikuchi diffraction (TKD) technique were explored in a systematic comparison with conventional off-axis TKD. The effect of experimental parameters on the appearance of on-axis and off-axis Kikuchi patterns was measured and discussed. In ...

  1. Profiling of circulating microRNAs for prostate cancer biomarker discovery

    DEFF Research Database (Denmark)

    Haldrup, Christa; Kosaka, Nobuyoshi; Ochiya, Takahiro

    2014-01-01

    Prostate cancer (PC) is the most frequent cancer in men in the Western world. Currently, serum prostate-specific antigen levels and digital rectal examinations are used to indicate the need for diagnostic prostate biopsy, but lack in specificity and sensitivity. Thus, many men undergo unnecessary...... performed genome-wide miRNA profiling of serum samples from 13 benign prostatic hyperplasia (BPH) control patients and 31 PC patients. Furthermore, we carefully reviewed the literature on circulating miRNA biomarkers for PC. Our results confirmed the de-regulation of miR-141 and miR-375, two of the most...

  2. Identification of EphrinB1 expression in prostatic mesenchyme and a role for EphB-EphrinB signalling in prostate development.

    Science.gov (United States)

    Ashley, George R; Grace, O Cathal; Vanpoucke, Griet; Thomson, Axel A

    2010-01-01

    Paracrine signalling from mesenchyme to epithelium plays a key role in regulating prostate organogenesis and it is important to identify the mesenchymally expressed molecules that regulate organ growth, though currently few such molecules are known. Tyrosine kinase signalling via EphB receptors has been characterised in many developmental processes, and EphB3 mRNA expression was detected in prostate inductive mesenchyme in previous gene profiling studies. This led us to examine the expression and function of EphrinB signalling in prostate development, to determine if EphrinB ligands might function as mesenchymal paracrine regulators of prostate growth. Using PCR, wholemount in situ hybridisation, and immunohistochemistry we examined the expression of EphB receptors and EphrinB ligands in rat prostate during development to determine which showed mesenchymal expression. EphB3 and EphrinB1 transcripts and proteins were expressed in the mesenchyme of developing prostate and in female urogenital mesenchyme and smooth muscle. The function of EphrinB signalling was examined using in vitro organ culture assays of ventral prostate (VP), which were treated with EphB3-Fc and EphrinB1-Fc proteins to inhibit or augment Ephrin signalling. Addition of recombinant EphB3-Fc resulted in a significant decrease in VP organ size, while recombinant EphrinB1-Fc resulted in a significant increase in VP organ size and epithelial proliferation. Additionally, EphrinB1-Fc reduced the degree of epithelial branching in VP organs and increased ductal tip size, though without disrupting normal differentiation. We have identified expression of EphrinB1 in prostatic mesenchyme and suggest that the EphrinB signalling system acts as a regulator of prostate growth. EphrinB-EphB signalling may function as an autocrine regulator of mesenchyme and/or as a paracrine regulator of epithelia. Copyright © 2010 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Cardiac lineage protein-1 (CLP-1) regulates cardiac remodeling via transcriptional modulation of diverse hypertrophic and fibrotic responses and angiotensin II-transforming growth factor β (TGF-β1) signaling axis.

    Science.gov (United States)

    Mascareno, Eduardo; Galatioto, Josephine; Rozenberg, Inna; Salciccioli, Louis; Kamran, Haroon; Lazar, Jason M; Liu, Fang; Pedrazzini, Thierry; Siddiqui, M A Q

    2012-04-13

    It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

  4. Cardiac Lineage Protein-1 (CLP-1) Regulates Cardiac Remodeling via Transcriptional Modulation of Diverse Hypertrophic and Fibrotic Responses and Angiotensin II-transforming Growth Factor β (TGF-β1) Signaling Axis*

    Science.gov (United States)

    Mascareno, Eduardo; Galatioto, Josephine; Rozenberg, Inna; Salciccioli, Louis; Kamran, Haroon; Lazar, Jason M.; Liu, Fang; Pedrazzini, Thierry; Siddiqui, M. A. Q.

    2012-01-01

    It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis. PMID:22308025

  5. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Hales, Eric C; Taub, Jeffrey W; Matherly, Larry H

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is characterized as a high-risk stratified disease associated with frequent relapse, chemotherapy resistance, and a poorer prognostic outlook than B-precursor ALL. Many of the challenges in treating T-ALL reflect the lack of prognostic cytogenetic or molecular abnormalities on which to base therapy, including targeted therapy. Notch1 activating mutations were identified in more than 50% of T-ALL cases and can be therapeutically targeted with γ-secretase inhibitors (GSIs). Mutant Notch1 can activate cMyc and PI3K-AKT-mTOR1 signaling in T-ALL. In T-ALLs with wild-type phosphatase and tensin homolog deleted on chromosome ten (PTEN), Notch1 transcriptionally represses PTEN, an effect reversible by GSIs. Notch1 also promotes growth factor receptor (IGF1R and IL7Rα) signaling to PI3K-AKT. Loss of PTEN is common in primary T-ALLs due to mutation or posttranslational inactivation and results in chronic activation of PI3K-AKT-mTOR1 signaling, GSI-resistance, and repression of p53-mediated apoptosis. Notch1 itself might regulate posttranslational inactivation of PTEN. PP2A is activated by Notch1 in PTEN-null T-ALL cells, and GSIs reduce PP2A activity and increase phosphorylation of AKT, AMPK, and p70S6K. This review focuses on the central role of the PI3K-AKT-mTOR1 signaling in T-ALL, including its regulation by Notch1 and potential therapeutic interventions, with emphasis on GSI-resistant T-ALL. © 2013.

  6. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer.

    Science.gov (United States)

    Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe

    2015-12-29

    The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERß) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.

  7. Treating Localized Prostate Cancer

    Science.gov (United States)

    ... the future can talk with their doctor about "banking" their sperm before surgery to remove the prostate ... 1-800-358-9295 or place your order online on the AHRQ Publications Clearinghouse Web page. When ...

  8. Learning about Prostate Cancer

    Science.gov (United States)

    ... gov] There are companies that will soon be marketing and selling genetic tests that will predict a ... enzyme made by the prostate gland, and a digital rectal examination (DRE) are two tests that are ...

  9. Prostate Cancer Foundation News

    Science.gov (United States)

    ... and getting big traps, six-pack abs and “gun show” biceps, your prostate would like to disagree. ... Guides Receive PCF news in your inbox Spam Control Text: Please leave this field empty EIN #95- ...

  10. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  11. Stages of Prostate Cancer

    Science.gov (United States)

    ... of bisphosphonate drugs to prevent or slow the growth of bone metastases is being studied in clinical trials. There are treatments for bone pain caused by bone metastases or hormone therapy. Prostate cancer that has spread to the ...

  12. Promoter hypomethylation and upregulation of trefoil factors in prostate cancer

    DEFF Research Database (Denmark)

    Vestergaard, Else Marie; Nexø, Ebba; Tørring, Niels

    2010-01-01

    . In clinical samples, methylation of the promoter/enhancer regions of TFF1 and TFF3 was significantly lower in PC compared to benign prostatic hyperplasia. The present study shows an inverse relation between promoter methylation and expression of trefoil factors. Preliminary analysis on clinical samples...... cell lines with significant TFF expression as compared to benign immortalized prostate cell lines and PC cell lines not expressing trefoil factor. The most striking difference was observed for CpG sites located close to the AUG start codon overlapping several putative binding sites for cellular......Trefoil factors, mucin-associated peptides, are overexpressed in prostate cancer (PC). We hypothesized that promoter methylation contributes to the regulation of trefoil factors (TFF1, TFF2 and TFF3) in human prostate cells. Here we show hypomethylation of promoter regions of TFF1 and TFF3 in PC...

  13. The androgen receptor is a negative regulator of eIF4E phosphorylation at S209: implications for the use of mTOR inhibitors in advanced prostate cancer.

    Science.gov (United States)

    D'Abronzo, L S; Bose, S; Crapuchettes, M E; Beggs, R E; Vinall, R L; Tepper, C G; Siddiqui, S; Mudryj, M; Melgoza, F U; Durbin-Johnson, B P; deVere White, R W; Ghosh, P M

    2017-11-16

    The antiandrogen bicalutamide is widely used in the treatment of advanced prostate cancer (PCa) in many countries, but its effect on castration-resistant PCa (CRPC) is limited. We previously showed that resistance to bicalutamide results from activation of mechanistic target of rapamycin (mTOR). Interestingly, clinical trials testing combinations of the mTOR inhibitor RAD001 with bicalutamide were effective in bicalutamide-naïve CRPC patients, but not in bicalutamide-pretreated ones. Here we investigate causes for their difference in response. Evaluation of CRPC cell lines identified resistant vs sensitive in vitro models, and revealed that increased eIF4E(S209) phosphorylation is associated with resistance to the combination. We confirmed using a human-derived tumor xenograft mouse model that bicalutamide pre-treatment is associated with an increase in eIF4E(S209) phosphorylation. Thus, AR suppressed eukaryotic initiation factor 4E (eIF4E) phosphorylation, while the use of antiandrogens relieved this suppression, thereby triggering its increase. Additional investigation in human prostatectomy samples showed that increased eIF4E phosphorylation strongly correlated with the cell proliferation marker Ki67. Small interfering RNA-mediated knockdown (k/d) of eIF4E-sensitized CRPC cells to RAD001+bicalutamide, whereas eIF4E overexpression induced resistance. Inhibition of eIF4E phosphorylation by treatment with CGP57380 (an inhibitor of mitogen-activated protein kinase-interacting serine-threonine kinases MAP kinase-interacting kinase 1 (Mnk1/2), the eIF4E upstream kinase) or inhibitors of extracellular signal-regulated kinase 1/2 (ERK1/2), the upstream kinase-regulating Mnk1/2, also sensitized CRPC cells to RAD001+bicalutamide. Examination of downstream targets of eIF4E-mediated translation, including survivin, demonstrated that eIF4E(S209) phosphorylation increased cap-independent translation, whereas its inhibition restored cap-dependent translation, which could be

  14. Human RecQL4 helicase plays critical roles in prostate carcinogenesis

    DEFF Research Database (Denmark)

    Su, Yanrong; Meador, Jarah A; Calaf, Gloria M

    2010-01-01

    ) synthesis and RecQL4-suppressed prostate cancer cells underwent an extensive apoptotic death in a PARP-1-dependent manner. Most notably, RecQL4 knockdown in metastatic prostate cancer cells drastically reduced their cell invasiveness in vitro and tumorigenicity in vivo, showing that RecQL4 is essential...... suppression of RecQL4 by small interfering RNA and short hairpin RNA vectors drastically reduced the growth and survival of metastatic prostate cancer cells, indicating that RecQL4 is a prosurvival factor for prostate cancer cells. RecQL4 suppression led to increased poly(ADP-ribose) polymerase (PARP...... for prostate cancer promotion. Observation of a direct interaction of retinoblastoma (Rb) and E2F1 proteins with RecQL4 promoter suggests that Rb-E2F1 pathway may regulate RecQL4 expression. Collectively, our study shows that RecQL4 is an essential factor for prostate carcinogenesis....

  15. The diet as a cause of human prostate cancer.

    Science.gov (United States)

    Nelson, William G; Demarzo, Angelo M; Yegnasubramanian, Srinivasan

    2014-01-01

    Asymptomatic prostate inflammation and prostate cancer have reached epidemic proportions among men in the developed world. Animal model studies implicate dietary carcinogens, such as the heterocyclic amines from over-cooked meats and sex steroid hormones, particularly estrogens, as candidate etiologies for prostate cancer. Each acts by causing epithelial cell damage, triggering an inflammatory response that can evolve into a chronic or recurrent condition. This milieu appears to spawn proliferative inflammatory atrophy (PIA) lesions, a type of focal atrophy that represents the earliest of prostate cancer precursor lesions. Rare PIA lesions contain cells which exhibit high c-Myc expression, shortened telomere segments, and epigenetic silencing of genes such as GSTP1, encoding the π-class glutathione S-transferase, all characteristic of prostatic intraepithelial neoplasia (PIN) and prostate cancer. Subsequent genetic changes, such as the gene translocations/deletions that generate fusion transcripts between androgen-regulated genes (such as TMPRSS2) and genes encoding ETS family transcription factors (such as ERG1), arise in PIN lesions and may promote invasiveness characteristic of prostatic adenocarcinoma cells. Lethal prostate cancers contain markedly corrupted genomes and epigenomes. Epigenetic silencing, which seems to arise in response to the inflamed microenvironment generated by dietary carcinogens and/or estrogens as part of an epigenetic "catastrophe" affecting hundreds of genes, persists to drive clonal evolution through metastatic dissemination. The cause of the initial epigenetic "catastrophe" has not been determined but likely involves defective chromatin structure maintenance by over-exuberant DNA methylation or histone modification. With dietary carcinogens and estrogens driving pro-carcinogenic inflammation in the developed world, it is tempting to speculate that dietary components associated with decreased prostate cancer risk, such as intake of

  16. Presence of PSA auto-antibodies in men with prostate abnormalities (prostate cancer/benign prostatic hyperplasia/prostatitis).

    Science.gov (United States)

    Lokant, M T; Naz, R K

    2015-04-01

    Prostate-specific antigen (PSA), produced by the prostate, liquefies post-ejaculate semen. PSA is detected in semen and blood. Increased circulating PSA levels indicate prostate abnormality [prostate cancer (PC), benign prostatic hyperplasia (BPH), prostatitis (PTIS)], with variance among individuals. As the prostate has been proposed as an immune organ, we hypothesise that variation in PSA levels among men may be due to presence of auto-antibodies against PSA. Sera from healthy men (n = 28) and men having prostatitis (n = 25), BPH (n = 30) or PC (n = 29) were tested for PSA antibody presence using enzyme-linked immunosorbent assay (ELISA) values converted to standard deviation (SD) units, and Western blotting. Taking ≥2 SD units as cut-off for positive immunoreactivity, 0% of normal men, 0% with prostatitis, 33% with BPH and 3.45% with PC demonstrated PSA antibodies. One-way analysis of variance (anova) performed on the mean absorbance values and SD units of each group showed BPH as significantly different (P prostatitis. All others were nonsignificant (P prostate abnormalities, especially differentiating BPH from prostate cancer and prostatitis. © 2014 Blackwell Verlag GmbH.

  17. High fat diet promotes prostatic basal-to-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells.

    Science.gov (United States)

    Kwon, Oh-Joon; Zhang, Boyu; Zhang, Li; Xin, Li

    2016-05-01

    Recent lineage tracing studies showed that the prostate basal and luminal cells in adult mice are two independent lineages under the physiological condition, but basal cells are capable of generating luminal progenies during bacterial infection-induced prostatitis. Because acute bacterial infection in human prostate tissues is relatively rare, the disease relevance of the bacterial infection-induced basal-to-luminal differentiation is uncertain. Herein we employ a high fat diet-induced sterile prostate inflammation model to determine whether basal-to-luminal differentiation can be induced by inflammation irrespective of the underlying etiologies. A K14-CreER model and a fluorescent report line are utilized to specifically label basal cells with the green fluorescent protein. We show that high fat diet promotes immune cell infiltration into the prostate tissues and basal-to-luminal differentiation. Increased cell proliferation accompanies basal-to-luminal differentiation, suggesting a concurrent regulation of basal cell proliferation and differentiation. This study demonstrates that basal-to-luminal differentiation can be induced by different types of prostate inflammation evolved with distinct etiologies. Finally, high fat diet also accelerates initiation and progression of prostatic intraepithelial neoplasia that are originated from basal cells with loss-of-function of the tumor suppressor Pten. Because prostate cancer originated from basal cells tends to be invasive, our study also provides an alternative explanation for the association between obesity and aggressive prostate cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Prostate cancer epigenetics and its clinical implications

    Directory of Open Access Journals (Sweden)

    Srinivasan Yegnasubramanian

    2016-01-01

    Full Text Available Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy.

  19. Imaging Prostatic Lipids to Distinguish Aggressive Prostate Cancer

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-12-1-0168 TITLE: Imaging Prostatic Lipids to Distinguish Aggressive Prostate Cancer PRINCIPAL INVESTIGATOR: Jackilen...Imaging Prostatic Lipids to Distinguish Aggressive Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0168 5c. PROGRAM ELEMENT NUMBER...overexpression, lipid accumulation, lipid oxidation, and tumor aggressiveness will be explored using metabolomics. Plan: Employing a cross-sectional

  20. [Identification of low-molecular weight prostate-specific antigen(PSA) and lactoferrin in the prostatic secretion of benign prostatic hyperplasia].

    Science.gov (United States)

    Xu, Ke-xin; Wang, Xiao-feng

    2006-12-18

    To investigate the expression of low-molecular-weight PSA(lw-PSA) and lactoferrin in the expressed prostatic secretion (EPS) from both benign prostatic hyperplasia (BPH) and normal prostate. Forty human EPS samples obtained from 20 BPH patients and 20 normal males were subjected to two-dimensional gel electrophoresis (2-DE). Mass spectrometry was performed to confirm the nature of the secreted proteins in EPS. One uniquely expressed protein in BPH was detected and mass spectrometry determined its nature as lw-PSA (molecular weight 10x10(3), pI 8.5-9.3). More importantly, Western blotting analysis also revealed that lw-PSA detected in BPH-EPS, but was undetectable in BPH-free EPS. In addition, up-regulation of Lactoferrin (molecular weight 35x10(3), pI 7-7.5) in BPH-EPS, as compared with BPH-free EPS, was also observed. More interestingly, lactoferrin was absent in prostate cancer tissues. Our results indicate lw-PSA may be produced specifically by BPH epithelium and it has a potential to be used as a specific biological marker for the diagnosis of BPH. In addition, benign prostatic epithelium can produce more lactoferrin while prostate cancer tissues go without its lactoferrin secretion.

  1. Regulation of Cancer Stem Cell Self-Renewal by HOXB9 Antagonizes Endoplasmic Reticulum Stress-Induced Melanoma Cell Apoptosis via the miR-765-FOXA2 Axis.

    Science.gov (United States)

    Lin, Jingrong; Zhang, Dongmei; Fan, Yongsheng; Chao, Yulin; Chang, Jinming; Li, Na; Han, Linlin; Han, Chuanchun

    2018-02-03

    Adaptation to endoplasmic reticulum (ER) stress has been indicated as a driver of malignancy and resistance to therapy in human melanoma. However, the relationship between cancer stem cells and adaptation to ER stress remains unclear. Here, we show that the ratio of cancer stem cells is increased in ER stress-resistant melanoma cells, which inhibit ER stress-induced apoptosis and promote tumorigenesis. Further mechanistic studies showed that HOXB9 triggered by ER stress favors cancer stem cell self-renewal and enhances ER stress resistance. HOXB9 directly binds to the promoter of microRNA-765 and facilitates its transcription, which in turn targets FOXA2, resulting in a FOXA2 decrease and cancer stem cell increase. Additionally, an increase in HOXB9 promotes melanoma growth and inhibits cell apoptosis in a mouse xenograft model. Elevated HOXB9 is found in human melanoma tissues, which is associated with microRNA-765 up-regulation and FOXA2 decreases. Thus, our data showed that the HOXB9-dependent, microRNA-765-mediated FOXA2 pathway contributes to the survival of melanoma under ER stress by maintaining the properties of cancer stem cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer

    DEFF Research Database (Denmark)

    Iglesias Gato, Diego; Chuan, Yin Choy; Wikström, Pernilla

    2014-01-01

    Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2...... with benign tissue. In contrast, however, castration-resistant bone metastases exhibit reduced levels of SOCS2 in comparison with localized or hormone naive, untreated metastatic tumors. In PCa cells, SOCS2 expression is induced by androgens through a mechanism that requires signal transducer and activator......) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison...

  3. New Visual Prostate Symptom Score versus International Prostate ...

    African Journals Online (AJOL)

    in men with lower urinary tract symptoms. Urology 2011;78:17-20. 10. Cam K, Akman Y, Cicekci B, Senel F, Erol A. Mode of administration of international prostate symptom score in patients with lower urinary tract symptoms: Physician vs self. Prostate. Cancer Prostatic Dis 2004;7:41-4. 11. Johnson TV, Abbasi A, Ehrlich SS, ...

  4. Prevalence of histological prostatitis in men with benign prostatic ...

    African Journals Online (AJOL)

    rectal examination, prostate volume, haemoglobin concentration, serum creatinine and prostate-specific antigen (PSA) levels, and histological findings. Results. Prostatic tissue of 385 men without urinary retention at presentation was obtained via biopsy (48.3% of cases), transurethral prostatectomy (62.9%), retropubic ...

  5. Understanding your prostate cancer risk

    Science.gov (United States)

    ... older. Family history. Having a father, brother, or son with prostate cancer increases your risk. Having one immediate family member with prostate cancer doubles a man's own risk. A man who has 2 or ...

  6. Hyaluronan Biosynthesis in Prostate Cancer

    National Research Council Canada - National Science Library

    McCarthy, James B

    2006-01-01

    Despite advances in the diagnosis and treatment of prostate cancer in the last several years metastasis represents the major cause of frustration and failure in the successful treatment of prostate cancer patients. Hyaluronan (HA...

  7. Hyaluronan Biosynthesis in Prostate Cancer

    National Research Council Canada - National Science Library

    McCarthy, James B

    2005-01-01

    Despite advances in the diagnosis and treatment of prostate cancer in the last several years, metastasis represents the major cause of frustration and failure in the successful treatment of prostate cancer patients. Hyaluronan (HA...

  8. MR imaging of the prostate

    International Nuclear Information System (INIS)

    Asbach, P.; Haas, M.; Hamm, B.

    2015-01-01

    Prostate cancer is the most common form of cancer in men in Germany; however, there is a distinct difference between incidence and mortality. The detection of prostate cancer is based on clinical and laboratory testing using serum prostate-specific antigen (PSA) levels and transrectal ultrasound with randomized biopsy. Multiparametric MR imaging of the prostate can provide valuable diagnostic information for detection of prostate cancer, especially after negative results of a biopsy prior to repeat biopsy. In addition the use of MR ultrasound fusion-guided biopsy has gained in diagnostic importance and has increased the prostate cancer detection rate. The prostate imaging reporting and data system (PI-RADS) classification has standardized the reporting of prostate MRI which has positively influenced the acceptance by urologists. (orig.) [de

  9. Molecular Epidemiology of Prostate Cancer

    National Research Council Canada - National Science Library

    Trock, Bruce J

    2005-01-01

    .... The objective of this case-control study is to determine whether oxidative damage is a risk factor for prostate cancer, and whether this mechanism mediates the association between dietary fat and prostate cancer risk...

  10. Center for Prostate Disease Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Prostate Disease Research is the only free-standing prostate cancer research center in the U.S. This 20,000 square foot state-of-the-art basic science...

  11. New Prostate Cancer Treatment Target

    Science.gov (United States)

    Researchers have identified a potential alternative approach to blocking a key molecular driver of an advanced form of prostate cancer, called androgen-independent or castration-resistant prostate cancer.

  12. Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-Met axis.

    Science.gov (United States)

    Ji, Ting-Ting; Huang, Xuan; Jin, Jie; Pan, Sheng-Hua; Zhuge, Xiao-Ju

    2016-05-01

    To discuss the expression of long noncoding RNA TUG1 (lncRNA-TUG1) in gastric carcinoma (GC) and its effects on the transferring and invading capacity of gastric carcinoma cells. Forty cases of carcinoma tissue and para-carcinoma tissue were selected from GC patients who underwent surgical removal in Zhejiang Provincial Hospital of Chinese Traditional Medicine and Wenzhou Central Hospital from January, 2013 to December, 2014; the expressing level of lncRNA-TUG1 in GC and para-C tissues was detected by applying the qRT-PCR technique. The correlation between lncRNA-TUG1 expression and patients' clinical data was classified and analyzed. SGC-7901 cells were transfected using lncRNA-TUG1 specific siRNA. Changes of the transferring and invading capacity of siRNA-transfected SGC-7901 cells were scratch-tested and transwell-detected. qRT-PCR was applied to detect the expression level of microRNA-144 after lncRNA-TUG1 was silenced. Changes of c-Met mRNA and protein expressions was detected by qRT-PCR and western-blot test. The expression level of lncRNA-TUG1 in GC tissue was significant higher than that in para-C tissue (P TUG1 in GC tissue was significantly correlated with tumor lymph nodes metastasis and advance TNM phasing (P TUG1 specific siRNA (P TUG1 was silenced (P TUG1 shows an up-regulated expression in GC tissue and that bears a correlation with clinicopathological features of malignant tumor. lncRNA-TUG1 can promote the transferring and invading capacity of GC by inhibiting the pathway of microRNA-144/c-Met. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  13. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    Science.gov (United States)

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The prostate health index selectively identifies clinically significant prostate cancer.

    Science.gov (United States)

    Loeb, Stacy; Sanda, Martin G; Broyles, Dennis L; Shin, Sanghyuk S; Bangma, Chris H; Wei, John T; Partin, Alan W; Klee, George G; Slawin, Kevin M; Marks, Leonard S; van Schaik, Ron H N; Chan, Daniel W; Sokoll, Lori J; Cruz, Amabelle B; Mizrahi, Isaac A; Catalona, William J

    2015-04-01

    The Prostate Health Index (phi) is a new test combining total, free and [-2]proPSA into a single score. It was recently approved by the FDA and is now commercially available in the U.S., Europe and Australia. We investigate whether phi improves specificity for detecting clinically significant prostate cancer and can help reduce prostate cancer over diagnosis. From a multicenter prospective trial we identified 658 men age 50 years or older with prostate specific antigen 4 to 10 ng/ml and normal digital rectal examination who underwent prostate biopsy. In this population we compared the performance of prostate specific antigen, % free prostate specific antigen, [-2]proPSA and phi to predict biopsy results and, specifically, the presence of clinically significant prostate cancer using multiple criteria. The Prostate Health Index was significantly higher in men with Gleason 7 or greater and "Epstein significant" cancer. On receiver operating characteristic analysis phi had the highest AUC for overall prostate cancer (AUCs phi 0.708, percent free prostate specific antigen 0.648, [-2]proPSA 0.550 and prostate specific antigen 0.516), Gleason 7 or greater (AUCs phi 0.707, percent free prostate specific antigen 0.661, [-2]proPSA 0.558, prostate specific antigen 0.551) and significant prostate cancer (AUCs phi 0.698, percent free prostate specific antigen 0.654, [-2]proPSA 0.550, prostate specific antigen 0.549). At the 90% sensitivity cut point for phi (a score less than 28.6) 30.1% of patients could have been spared an unnecessary biopsy for benign disease or insignificant prostate cancer compared to 21.7% using percent free prostate specific antigen. The new phi test outperforms its individual components of total, free and [-2]proPSA for the identification of clinically significant prostate cancer. Phi may be useful as part of a multivariable approach to reduce prostate biopsies and over diagnosis. Copyright © 2015 American Urological Association Education and Research

  15. Bouncing back - trauma and the HPA-axis in healthy adults

    Directory of Open Access Journals (Sweden)

    Ellen Renée Klaassens

    2010-12-01

    Full Text Available Dysregulation of the hypothalamic–pituitary–adrenal (HPA-axis is thought to underlie stress-related psychiatric disorders such as posttraumatic stress disorder (PTSD. Some studies have reported HPA-axis dysregulation in trauma-exposed (TE adults in the absence of psychiatric morbidity. In this dissertation we set out to unravel part of the mechanism that underlies the complex relations between trauma exposure, stress regulation, and psychopathology. Mentally healthy TE subjects were compared with non-trauma-exposed (NE healthy controls. To distinguish between the potential effects of childhood trauma and adulthood trauma, we included women exposed to childhood trauma as well as men who were exposed to trauma during adulthood. Basal HPA-axis functioning was assessed with salivary cortisol samples. HPA-axis reactivity was assessed with the dexamethasone/corticotropin-releasing hormone (Dex/CRH test. The results show that childhood trauma exposure is associated with an attenuated cortisol response after the Dex/CRH challenge test in women. In contrast, trauma exposure during adulthood was not associated with alterations in HPA-axis regulation after the Dex/CRH test. Neither childhood trauma nor adulthood trauma were associated with basal HPA-axis functioning. Childhood trauma rather than adulthood trauma may chronically affect HPA-axis functioning. Since the association between adulthood trauma and resilience to psychopathology cannot be explained by HPA-axis functioning alone, other factors must play a role.

  16. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    International Nuclear Information System (INIS)

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, André; Gnanasekar, Munirathinam

    2012-01-01

    Highlights: ► Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. ► Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. ► Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. ► Knock down of RAGE abrogates prostate tumor growth in vivo. ► Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  17. Unusual Giant Prostatic Urethral Calculus

    African Journals Online (AJOL)

    2010-06-29

    Jun 29, 2010 ... They are typically asymptomatic and may be associated with benign prostatic hyperplasia, and prostatic cancer.[1] Primary prostatic urethral calculi are usually associated with urethral strictures, posterior urethral valve or diverticula. Acute urinary retention might result secondary to a large urethral calculus.

  18. Prostate biopsy: indications and technique.

    Science.gov (United States)

    Matlaga, Brian R; Eskew, L Andrew; McCullough, David L

    2003-01-01

    The last decade has seen numerous modifications in the way prostate cancer is diagnosed. We review the current indications for and methods of prostate biopsy. The English language literature was reviewed regarding major indications for and methods of prostate biopsy. Pertinent peer reviewed articles were collated and analyzed. The most widely accepted indication for prostate biopsy is a prostate specific antigen (PSA) value of greater than 4.0 ng./ml. However, some investigators advocate prostate biopsy for men with a PSA value in the 2.5 to 4.0 ng./ml. range, believing that use of this parameter results in detection of a greater number of cases of curable disease. Age specific PSA range, percent free PSA and presence of prostatic intraepithelial neoplasia or atypia are all considered to be relative indications for prostate biopsy. The current literature describes a trend toward increasing the number of cores obtained and the sites biopsied beyond those of the standard sextant technique. The additional cores in many series are obtained from more lateral regions of the gland. Although several criteria are used as indications for initial prostate biopsy, all are based on PSA level and/or abnormal digital rectal examination. Future improvements in currently used prostate cancer markers may result in better selection of cases to biopsy. There is no universally accepted technique of prostate gland biopsy. The current literature supports use of more extensive biopsy techniques to increase the likelihood of prostate cancer detection.

  19. Prostate cancer cells induce osteoblastic differentiation via semaphorin 3A.

    Science.gov (United States)

    Liu, Fuzhou; Shen, Weiwei; Qiu, Hao; Hu, Xu; Zhang, Chao; Chu, Tongwei

    2015-03-01

    Prostate cancer metastasis to bone is the second most commonly diagnosed malignant disease among men worldwide. Such metastatic disease is characterized by the presence of osteoblastic bone lesions, and is associated with high rates of mortality. However, the various mechanisms involved in prostate cancer-induced osteoblastic differentiation have not been fully explored. Semaphorin 3A (Sema 3A) is a newly identified regulator of bone metabolism which stimulates differentiation of pre-osteoblastic cells under physiological conditions. We investigated in this study whether prostate cancer cells can mediate osteoblastic activity through Sema 3A. We cultured osteoprogenitor MC3T3-E1 cells in prostate cancer-conditioned medium, and analyzed levels of Sema 3A protein in diverse prostate cancer cell lines to identify cell lines in which Sema 3A production showed a positive correlation with osteo-stimulation. C4-2 cells were stably transfected with Sema 3A short hairpin RNA to further determine whether Sema 3A contributes to the ability of C4-2 cells to induce osteoblastic differentiation. Down-regulation of Sema 3A expression decreased indicators of C4-2 CM-induced osteoblastic differentiation, including alkaline phosphatase production and mineralization. Additionally, silencing or neutralizing Sema 3A in C4-2 cells resulted in diminished β-catenin expression in osteogenitor MC3T3-E1 cells. Our results suggest that prostate cancer-induced osteoblastic differentiation is at least partially mediated by Sema 3A, and may be regulated by the β-catenin signalling pathway. Sema 3A may represent a novel target for treatment of prostate cancer-induced osteoblastic lesions. © 2014 Wiley Periodicals, Inc.

  20. Oxidative stress and DNA methylation in prostate cancer.

    Science.gov (United States)

    Donkena, Krishna Vanaja; Young, Charles Y F; Tindall, Donald J

    2010-01-01

    The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  1. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  2. Acute injuries of the axis vertebra

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J.T. (United General Hospital, Sedro Woolley, WA (USA)); Harris, J.H. (Texas Univ., Houston, TX (USA). Dept. of Radiology)

    1989-08-01

    A retrospective analysis of 165 patients admitted to Hermann Hospital with acute injuries of the axis vertebra revealed 68 (41%) dens fractures, 62 (38%) cases of traumatic spondylolisthesis ('hangman's' fracture), 21 (13%) extension teardrop fractures, 10 (6%) hyperextension dislocations, and 2 (1.0%) fractures each of the laminae and spinous processes. Of the axis injuries 31 (18%) were limited to the axis body alone. Of these, 21 (61%) were hyperextension teardrop fractures and 10 (32%) were hyperextension dislocations. Axis injuries were associated with acute injuries of other cervical vertebrae in 14 (8%) of the patients. (orig./GDG).

  3. miR-518f-5p decreases tetraspanin CD9 protein levels and differentially affects non-tumourigenic prostate and prostate cancer cell migration and adhesion.

    Science.gov (United States)

    Bond, Danielle R; Naudin, Crystal; Carroll, Adam P; Goldie, Belinda J; Brzozowski, Joshua S; Jankowski, Helen M; Cairns, Murray J; Ashman, Leonie K; Scarlett, Christopher J; Weidenhofer, Judith

    2018-01-05

    Tetraspanin CD9 is generally considered to be a metastasis suppressor, with decreased levels associated with progression and metastasis in many advanced stage cancers. Little is known about the cause of CD9 dysregulation in prostate cancer, however there are several miRNA-binding sites in the 3´UTR of the transcript suggesting it could be post-transcriptionally regulated. Using microarrays and luciferase assays in tumourigenic and non-tumourigenic prostate cell lines we identified miR-518f-5p as a regulator of the CD9 3'UTR gene expression, and decreased expression of endogenous CD9 in non-tumorigenic prostate RWPE1 and prostate cancer DU145 cells. This resulted in differential functional effects, in which RWPE1 cells showed increased migration and decreased adhesion to extracellular matrix substrates, whereas DU145 cells showed decreased migration and increased adhesion. Moreover, overexpression of miR-518f-5p significantly increased proliferation between 48h and 72h in normal RWPE1 cells, with no effect on tumourigenic DU145 cell proliferation. These results show that tetraspanin CD9 is regulated by miRNAs in prostate cell lines and that due to differential functional effects in non-tumourigenic versus tumourigenic prostate cells, miR-518f-5p may be an effective biomarker and/or therapeutic target for prostate cancer progression.

  4. Ultrasonography and prostate-specific antigen (PSA) in differential diagnosis of prostate cancer and benign prostatic hyperplasia

    International Nuclear Information System (INIS)

    Mechev, D.S.; Shcherbyina, O.V.; Yatsik, V.Yi.; Gladka, L.Yu.

    2003-01-01

    The purpose of the work is analysis of diagnostic possibilities of transrectal ultrasonography and PSA in differential diagnosis of prostate cancer and benign prostatic hyperplasia. 142 patients have been investigated by transrectal ultrasonography. he transrectal ultrasonography and PSA are sensible tests in diagnosis of prostate cancer and in differential diagnosis of benign prostatic hyperplasia and prostate cancer

  5. Restoring Sensitivity to Apoptosis in Prostate Cancer Cells by Reconstitution of the Tumor Suppressor PTEN

    National Research Council Canada - National Science Library

    Whang, Young

    2003-01-01

    ... suppressor PTEN in regulating sensitivity to apoptosis in prostate cancer. We have previously shown that loss of HEN function leads to excessive antiapoptotic signaling through constitutive activation of the Akt protein kinase...

  6. Genetic Variation in the HSD3B2 Gene and Prostate Cancer

    National Research Council Canada - National Science Library

    Reichardt, Jeurgen

    2002-01-01

    .... We propose to investigate genetic variants of genes involved in the regulation of prostatic growth and particularly in androgen metabolism, particularly the HSD3B2 gene which encodes the type II b...

  7. Genetic Variation in the HSD3B2 Gene and Prostate Cancer

    National Research Council Canada - National Science Library

    Reichardt, Juergen

    2004-01-01

    .... We propose to investigate genetic variants of genes involved in the regulation of prostatic growth and particularly in androgen metabolism, particularly the HSD3B2 gene which encodes the type II b...

  8. The link between benign prostatic hyperplasia and prostate cancer

    DEFF Research Database (Denmark)

    Ørsted, David Dynnes; Bojesen, Stig E

    2013-01-01

    Benign prostatic hyperplasia (BPH) and prostate cancer are among the most common diseases of the prostate gland and represent significant burdens for patients and health-care systems in many countries. The two diseases share traits such as hormone-dependent growth and response to antiandrogen...... therapy. Furthermore, risk factors such as prostate inflammation and metabolic disruption have key roles in the development of both diseases. Despite these commonalities, BPH and prostate cancer exhibit important differences in terms of histology and localization. Although large-scale epidemiological...... studies have shown that men with BPH have an increased risk of prostate cancer and prostate-cancer-related mortality, it remains unclear whether this association reflects a causal link, shared risk factors or pathophysiological mechanisms, or detection bias upon statistical analysis. Establishing BPH...

  9. Granulomatous prostatitis after intravesical immunotherapy mimicking prostate cancer

    Directory of Open Access Journals (Sweden)

    Waldemar Białek

    2016-12-01

    Full Text Available Intravesical immunotherapy with attenuated strains of Mycobacterium bovis is a widely used therapeutic option in patients with non-muscle-invasive transitional cell carcinoma of the bladder. A rare complication of intravesical therapy with the Bacillus Calmette-Guérin vaccine is granulomatous prostatitis, which due to increasing levels of prostate-specific antigen and abnormalities found in transrectal examination of the prostate may suggest concomitant prostate cancer. A case of extensive granulomatous prostatitis in a 61-year-old patient which occurred after the first course of a well-tolerated Bacillus Calmette-Guérin therapy is presented. Due to abnormalities found in rectal examination and an abnormal transrectal ultrasound image of the prostate with extensive infiltration mimicking neoplastic hyperplasia a core biopsy of the prostate was performed. Histopathological examination revealed inflammatory infiltration sites of tuberculosis origin.

  10. [Sexuality and prostate cancer].

    Science.gov (United States)

    Droupy, S; Al Said, B; Lechevallier, E; Colson, M-H; Giuliano, F

    2013-07-01

    All treatments for prostate cancer have a negative impact on sexuality. The objective of this review is to highlight recent developments in the management of sexual dysfunction associated with prostate cancer. We performed a literature search in the Pubmed database to select relevant articles. There is a specific profile of changes in the fields of sexual, urinary, bowel and general quality of life, according to the treatment modalities chosen. Maintenance of a satisfying sex life is a major concern of a majority of men facing prostate cancer and its treatments. It is essential to assess the couple's sexuality before treating prostate cancer in order to deliver comprehensive information and consider early therapeutic solutions adapted to the couple's expectations. The results of randomized studies show that robotic radical prostatectomy allows a faster recovery of natural erections compared to classic laparoscopy. Active pharmacological erectile rehabilitation (intracavernous injections or phosphodiesterase type 5 inhibitors [PDE5i] on demand, during the month following surgery) or passive (daily PDE5i after surgery) might improve the quality of erections especially in response to PDE5i. Unimpaired aspects of sexual response (orgasm) may, when the erection is not yet recovered, represent an alternative allowing the couple to preserve intimacy and complicity. Androgen blockade is a major barrier to maintain or return to a satisfying sex. After the treatment of prostate cancer, one specific support sometimes assisted by networking will optimize satisfying sex life recovery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Microbiota and the gut-brain axis.

    Science.gov (United States)

    Bienenstock, John; Kunze, Wolfgang; Forsythe, Paul

    2015-08-01

    Changes in gut microbiota can modulate the peripheral and central nervous systems, resulting in altered brain functioning, and suggesting the existence of a microbiota gut-brain axis. Diet can also change the profile of gut microbiota and, thereby, behavior. Effects of bacteria on the nervous system cannot be disassociated from effects on the immune system since the two are in constant bidirectional communication. While the composition of the gut microbiota varies greatly among individuals, alterations to the balance and content of common gut microbes may affect the production of molecules such as neurotransmitters, e.g., gamma amino butyric acid, and the products of fermentation, e.g., the short chain fatty acids butyrate, propionate, and acetate. Short chain fatty acids, which are pleomorphic, especially butyrate, positively influence host metabolism by promoting glucose and energy homeostasis, regulating immune responses and epithelial cell growth, and promoting the functioning of the central and peripheral nervous systems. In the future, the composition, diversity, and function of specific probiotics, coupled with similar, more detailed knowledge about gut microbiota, will potentially help in developing more effective diet- and drug-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. RET-mediated glial cell line-derived neurotrophic factor signaling inhibits mouse prostate development.

    Science.gov (United States)

    Park, Hyun-Jung; Bolton, Eric C

    2017-06-15

    In humans and rodents, the prostate gland develops from the embryonic urogenital sinus (UGS). The androgen receptor (AR) is thought to control the expression of morphogenetic genes in inductive UGS mesenchyme, which promotes proliferation and cytodifferentiation of the prostatic epithelium. However, the nature of the AR-regulated morphogenetic genes and the mechanisms whereby AR controls prostate development are not understood. Glial cell line-derived neurotrophic factor (GDNF) binds GDNF family receptor α1 (GFRα1) and signals through activation of RET tyrosine kinase. Gene disruption studies in mice have revealed essential roles for GDNF signaling in development; however, its role in prostate development is unexplored. Here, we establish novel roles of GDNF signaling in mouse prostate development. Using an organ culture system for prostate development and Ret mutant mice, we demonstrate that RET-mediated GDNF signaling in UGS increases proliferation of mesenchyme cells and suppresses androgen-induced proliferation and differentiation of prostate epithelial cells, inhibiting prostate development. We also identify Ar as a GDNF-repressed gene and Gdnf and Gfrα1 as androgen-repressed genes in UGS, thus establishing reciprocal regulatory crosstalk between AR and GDNF signaling in prostate development. © 2017. Published by The Company of Biologists Ltd.

  13. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  14. Long term organ culture of human prostate tissue in a NASA-designed rotating wall bioreactor

    Science.gov (United States)

    Margolis, L.; Hatfill, S.; Chuaqui, R.; Vocke, C.; Emmert-Buck, M.; Linehan, W. M.; Duray, P. H.

    1999-01-01

    PURPOSE: To maintain ex vivo integral prostatic tissue including intact stromal and ductal elements using the NASA-designed Rotating Wall Vessel (RWV) which maintains colocalized cells in an environment that promotes both three-dimensional cellular interactions together with the uniform mass transfer of nutrients and metabolic wastes. MATERIALS AND METHODS: Samples of normal prostate were obtained as a byproduct of transurethral prostatectomy or needle biopsy. Prostatic tissue dissected into small 1 x 1 mm. blocks was cultured in the Rotating Wall Vessel (RWV) Bioreactor for various time periods and analyzed using histological, immunochemical, and total cell RNA assays. RESULTS: We report the long term maintenance of benign explanted human prostate tissue grown in simple culture medium, under the simulated microgravity conditions afforded by the RWV bioreactor. Mesenchymal stromal elements including blood vessels and architecturally preserved tubuloglandular acini were maintained for a minimum of 28 days. Cytokeratins, vimentin and TGF-beta2 receptor and ligand were preserved through the entire culture period as revealed by immunocytochemistry. Prostatic acid phosphatase (PAP) was continuously expressed during the culture period, although somewhat decreased. Prostatic specific antigen (PSA) and its transcript were down regulated over time of culture. Prostatic carcinoma cells from the TSU cell line were able to invade RWV-cultured benign prostate tissue explants. CONCLUSIONS: The RWV bioreactor represents an additional new technology for culturing prostate tissue for further investigations concerning the basic physiology and pathobiology of this clinically important tissue.

  15. Sonic Hedgehog signaling in advanced prostate cancer.

    Science.gov (United States)

    Datta, S; Datta, M W

    2006-02-01

    The Hedgehog family of growth factors activate a highly conserved signaling system for cell-cell communication that regulates cell proliferation and differentiation during development. Abnormal activation of the Hedgehog pathway has been demonstrated in a variety of human tumors, including those of the skin, brain, lung and digestive tract. Hedgehog pathway activity in these tumors is required for cancer cell proliferation and tumor growth. Recent studies have uncovered the role for Hedgehog signaling in advanced prostate cancer and demonstrated that autocrine signaling by tumor cells is required for proliferation, viability, and invasive behavior. The level of Hedgehog activity correlates with the severity of the tumor and is both necessary and sufficient for metastatic behavior. Blockade of Hedgehog signaling leads to tumor shrinkage and remission in preclinical tumor xenograft models. Thus, Hedgehog signaling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring.

  16. Osteoporosis and prostate cancer

    DEFF Research Database (Denmark)

    Poulsen, Mads Hvid; Nielsen, Morten Frost Munk; Abrahamsen, Bo

    2014-01-01