International Nuclear Information System (INIS)
Iagolnitzer, D.
1981-02-01
An introduction to recent works, in S-matrix theory and axiomatic field theory, on the analysis and derivation of momentum-space analyticity properties of the multiparticle S matrix is presented. It includes an historical survey, which outlines the successes but also the basic difficulties encountered in the sixties in both theories, and the evolution of the subject in the seventies
Progress in the axiomatic quantum field theory
International Nuclear Information System (INIS)
Vladimirov, V.S.; Polivanov, M.K.
1975-01-01
The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras
Suppes, Patrick
1972-01-01
This clear and well-developed approach to axiomatic set theory is geared toward upper-level undergraduates and graduate students. It examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, finite sets and cardinal numbers, rational and real numbers, and other subjects. 1960 edition.
Progress in the axiomatic quantum field theory. [Review
Energy Technology Data Exchange (ETDEWEB)
Vladimirov, V S; Polivanov, M K
1975-01-01
The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras.
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
Explicational axiomatics of quantum theory
International Nuclear Information System (INIS)
Lomsadze, Yu.M.; Lomsadze, Sh.Yu.
1982-01-01
The paper is developed to the solution of the Einstein-Po- dolsky-Rosen famous paradox within the framework of explicational axiomatics of quantum theory developed by one of the authors. It is shown that revealed in the process of the analysis a possibility of practically instantaneous propagation of material perturbation at any distances is so specific that can not serve as a mean for data transmission at a superlight velocity. The presence of such noninformative material perturbations requires reformulation of the microcasuality principle. This fact makes necessary the clear difference in terms of ''propagation of material perturbation'' and ''data transmission'' [ru
Axiomatic method and category theory
Rodin, Andrei
2014-01-01
This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method. It presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics.
Interpretability degrees of finitely axiomatized sequential theories
Visser, Albert
In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory-like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB-have suprema. This partially answers a question posed
Interpretability Degrees of Finitely Axiomatized Sequential Theories
Visser, Albert
2012-01-01
In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory —like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB— have suprema. This partially answers a question
Introduction to axiomatic set theory
Takeuti, Gaisi
1971-01-01
In 1963, the first author introduced a course in set theory at the Uni versity of Illinois whose main objectives were to cover G6del's work on the consistency of the axiom of choice (AC) and the generalized con tinuum hypothesis (GCH), and Cohen's work on the independence of AC and the GCH. Notes taken in 1963 by the second author were the taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are highlighted, and second, the student who wishes to master the sub ject is compelled to develop the details on his own. However, an in structor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text. We have chosen instead a development that is quite detailed and complete. F...
A synthetic axiomatization of Map Theory
DEFF Research Database (Denmark)
Berline, Chantal; Grue, Klaus Ebbe
2016-01-01
of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert's epsilon operator from Map Theory then one is left with a computer programming language. Map Theory fulfills Church's original aim of lambda calculus. Map Theory is suited for reasoning about...... classical mathematics as well as computer programs. Furthermore, Map Theory is suited for eliminating the barrier between classical mathematics and computer science rather than just supporting the two fields side by side. Map Theory axiomatizes a universe of “maps”, some of which are “wellfounded......”. The class of wellfounded maps in Map Theory corresponds to the universe of sets in ZFC. The first axiomatization MT 0 of Map Theory had axioms which populated the class of wellfounded maps, much like the power set axiom along with others populate the universe of ZFC. The new axiomatization MT of Map Theory...
Axiomatics of Galileo-invariant quantum field theory
International Nuclear Information System (INIS)
Dadashev, L.A.
1986-01-01
The aim of this paper is to construct the axiomatics of Galileo-invariant quantum field theory. The importance of this problem is demonstrated from various points of view: general properties that the fields and observables must satisfy are considered; S-matrix nontriviality of one such model is proved; and the differences from the relativistic case are discussed. The proposed system of axioms is in many respects analogous to Wightman axiomatics, but is less general. The main result is contained in theorems which describe the admissible set of initial fields and total Hamiltonians, i.e., precisely the two entities that completely determine interacting fields. The author considers fields that prove the independence of some axioms
S-matrix theory of nuclear forces
International Nuclear Information System (INIS)
Vinh Mau, R.
1984-09-01
The use of the S-matrix theory for deriving the nucleon-nucleon interaction is reviewed. Fits to recent NN data are described. Applications to nuclear structure properties and nucleon-nucleus reactions are also discussed, and the results compared with data. 20 references
An Axiomatization of Cumulative Prospect Theory for Decision under Risk
Wakker, P.P.; Chateauneuf, A.
1999-01-01
Cumulative prospect theory was introduced by Tversky and Kahneman so as to combine the empirical realism of their original prospect theory with the theoretical advantages of Quiggin's rank-dependent utility. Preference axiomatizations were provided in several papers. All those axiomatizations,
Improving the requirements process in Axiomatic Design Theory
DEFF Research Database (Denmark)
Thompson, Mary Kathryn
2013-01-01
This paper introduces a model to integrate the traditional requirements process into Axiomatic Design Theory and proposes a method to structure the requirements process. The method includes a requirements classification system to ensure that all requirements information can be included...... in the Axiomatic Design process, a stakeholder classification system to reduce the chances of excluding one or more key stakeholders, and a table to visualize the mapping between the stakeholders and their requirements....
The S-matrix of superstring field theory
International Nuclear Information System (INIS)
Konopka, Sebastian
2015-01-01
We show that the classical S-matrix calculated from the recently proposed superstring field theories give the correct perturbative S-matrix. In the proof we exploit the fact that the vertices are obtained by a field redefinition in the large Hilbert space. The result extends to include the NS-NS subsector of type II superstring field theory and the recently found equations of motions for the Ramond fields. In addition, our proof implies that the S-matrix obtained from Berkovits’ WZW-like string field theory then agrees with the perturbative S-matrix to all orders.
Time-dependent--S-matrix Hartree-Fock theory of complex reactions
International Nuclear Information System (INIS)
Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.
1980-01-01
Some limitations of the conventional time-dependent Hartree-Fock method for describing complex reactions are noted, and one particular ubiquitous defect is discussed in detail: the post-breakup spurious cross channel correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated time-dependent--S-matrix Hartree-Fock theory is proposed, which obviates this difficulty. Axiomatic requirements minimal to assure that the time-dependent--S-matrix Hartree-Fock theory represents an unambiguous and physically interpretable asymptotic reaction theory are utilized to prescribe conditions upon the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the time-dependent--S-matrix Hartree-Fock theory to encompass the collisions of mathematically well-defined ''time-dependent Hartree-Fock droplets.'' The physical properties of these objects then circumscribe the content of the Hartree-Fock single determinantal description. If their periodic vibrations occur for continuous ranges of energy then the resulting ''classical'' time-dependent Hartree-Fock droplets are seen to be intrinsically dissipative, and the single determinantal description of their collisions reduces to a ''trajectory'' theory which can describe the masses and relative motions of the fragments but can provide no information about specific asymptotic excited states beyond their constants of motion, or the average properties of the limit, if it exists, of their equilibrization process. If, on the other hand, the periodic vibrations of the time-dependent Hartree-Fock droplets are discrete in energy, then the time-dependent--S-matrix Hartree-Fock theory can describe asymptotically the time-average properties of the whole spectrum of such periodic vibrations
Elementary process theory axiomatic introduction and applications
Cabbolet, Marcoen J T F
2011-01-01
Modern physics lacks a unitary theory that applies to all four fundamental interactions. This PhD thesis is a proposal for a single, complete, and coherent scheme of mathematically formulated elementary laws of nature. While the first chapter presents the general background, the second chapter addresses the method by which the main result has been developed. The next three chapters rigorously introduce the Elementary Process Theory, its mathematical foundations, and its applications to physics, cosmology and philosophy of mind. The final two chapters discuss the results and present the conclusions. Summarizing, the Elementary Process Theory is a scheme of seven well-formed closed expressions, written in the mathematical language of set matrix theory – a generalization of Zermelo-Fraenkel set theory. In the physical world, these seven expressions can be interpreted as elementary principles governing the universe at supersmall scale. The author critically confronts the theory with Quantum Mechanics and Genera...
S matrix theory of the massive Thirring model
International Nuclear Information System (INIS)
Berg, B.
1980-01-01
The S matrix theory of the massive Thirring model, describing the exact quantum scattering of solitons and their boundstates, is reviewed. Treated are: Factorization equations and their solution, boundstates, generalized Jost functions and Levinson's theorem, scattering of boundstates, 'virtual' and anomalous thresholds. (orig.) 891 HSI/orig. 892 MKO
Statistical theory of nuclear cross section fluctuations with account s-matrix unitarity
International Nuclear Information System (INIS)
Kun, S.Yu.
1985-01-01
Statistical properties of the S-matrix fluctuating part delta S=S- sub(T) in the T/D>>1, N>>1 Ericoson fluctuations mode are investigated. A unitary representation is used for the investigation of statistical properties of the S-matrix. The problem on correlation of fluctuating elements of the S-matrix is discussed. The S-matrix unitary representation allows one to strictly substantiates the assumptions of the Ericson fluctuations theory: a) the real and imaginary parts of the deltaS-matrix have identical dispersions, do not correlate and are distributed according to the normal law; 2) various deltaS-matrix elements do not correlate
Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.
Capra, Fritjof
1979-01-01
Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…
A Unifying Approach to Axiomatic Non-Expected Utility Theories: Correction and Comment
S.H. Chew; L.G. Epstein (Larry); P.P. Wakker (Peter)
1993-01-01
textabstractChew and Epstein attempted to provide a unifying axiomatic framework for a number of generalizations of expected utility theory. Wakker pointed out that Theorem A, on which the central unifying proposition is based, is false. In this note, we apply Segal′s result to prove that Theorem 2
A unifying approach to axiomatic non-expected utility theories: correction and comment
Hong, C.S.; Epstein, L.G.; Wakker, P.
1993-01-01
Chew and Epstein attempted to provide a unifying axiomatic framework for a number of generalizations of expected utility theory. Wakker pointed out that Theorem A, on which the central unifying proposition is based, is false. In this note, we apply Segal's result to prove that Theorem 2 is
International Nuclear Information System (INIS)
Mukherjee, M.K.
1981-01-01
In an axiomatic study of quantum theory Jauch postulated the completeness of the lattice underlying a quantum logic. The theory of Baer semigroup is utilized to specify quite generally the completeness of the lattice. (author)
On the S-matrix of type-0 string theory
International Nuclear Information System (INIS)
DeWolfe, Oliver; Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia; Walcher, Johannes
2003-01-01
The recent discovery of non-perturbatively stable two-dimensional string back-grounds and their dual matrix models allows the study of complete scattering matrices in string theory. In this note we adapt work of Moore, Plesser, and Ramgoolam on the bosonic string to compute the exact S-matrices of 0A and 0B string theory in two dimensions. Unitarity of the 0B theory requires the inclusion of massless soliton sectors carrying RR scalar charge as asymptotic states. We propose a regularization of IR divergences and find transition probabilities that distinguish the otherwise energetically degenerate soliton sectors. Unstable D-branes can decay into distinct soliton sectors. (author)
Axiomatic unsharp quantum theory (From Mackey to Ludwig and Piron)
Cattaneo, Gianpiero; Laudisa, Federico
1994-05-01
On the basis of Mackey's axiomatic approach to quantum physics or, equivalently, of a “state-event-probability” (SEVP) structure, using a quite standard “fuzzification” procedure, a set of unsharp events (or “effects”) is constructed and the corresponding “state-effect-probability” (SEFP) structure is introduced. The introduction of some suitable axioms gives rise to a partially ordered structure of quantum Brouwer-Zadeh (BZ) poset; i.e., a poset endowed with two nonusual orthocomplementation mappings, a fuzzy-like orthocomplementation, and an intuitionistic-like orthocomplementation, whose set of sharp elements is an orthomodular complete lattice. As customary, by these orthocomplementations the two modal-like necessity and possibility operators are introduced, and it is shown that Ludwig's and Jauch-Piron's approaches to quantum physics are “interpreted” in complete SEFP. As a marginal result, a standard procedure to construct a lot of unsharp realizations starting from any sharp realization of a fixed observable is given, and the relationship among sharp and corresponding unsharp realizations is studied.
Compound nucleus in Livsic open-system theory: Factorization of the S matrix
International Nuclear Information System (INIS)
Avishai, Y.
1988-01-01
The compound-nucleus system fits into a mathematical theory of open systems in physics developed by the mathematician M. Livsic [Translations of Mathematical Monographs (American Mathematical Society, Providence, Rhode Island, 1973), Vol. 34]. In this article we review some basic concepts of the above theory and apply it to study the structure of the compound-nucleus S matrix. One of the results is a factorization of the S matrix in the form S(ω) = S +iA/sub k//(tau/sub k/-ω)], where A/sub k/ are known matrices and tau/sub k/ are the complex resonance energies
Axiomatic field theory and quantum electrodynamics: the massive case
International Nuclear Information System (INIS)
Steinmann, O.
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(μν) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(μ); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(μν) with the current Jsub(μ). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(μ) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely
Quantum field theory on curved spacetimes: Axiomatic framework and examples
International Nuclear Information System (INIS)
Fredenhagen, Klaus; Rejzner, Kasia
2016-01-01
In this review article, we want to expose a systematic development of quantum field theory on curved spacetimes. The leading principle is the emphasis on local properties. It turns out that this requires a reformulation of the QFT framework which also yields a new perspective for the theories on Minkowski space. The aim of the present work is to provide an almost self-contained introduction into the framework, which should be accessible for both mathematical physicists and mathematicians.
Quantum field theory on curved spacetimes: Axiomatic framework and examples
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Klaus [II Institut fur Theoretische Physik, Universitat Hamburg, Hamburg 22761 (Germany); Rejzner, Kasia [Department of Mathematics, University of York, York YO10 5DD (United Kingdom)
2016-03-15
In this review article, we want to expose a systematic development of quantum field theory on curved spacetimes. The leading principle is the emphasis on local properties. It turns out that this requires a reformulation of the QFT framework which also yields a new perspective for the theories on Minkowski space. The aim of the present work is to provide an almost self-contained introduction into the framework, which should be accessible for both mathematical physicists and mathematicians.
Formal scattering theory approach to S-matrix relations in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Amado, R.D.; Cannata, F.; Dedonder, J.P.
1988-01-01
Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain relations between the S matrix and its supersymmetric partner. These relations involve only asymptotic quantities and do not require knowledge of the dynamical details. For example, for coupled channels with no threshold differences the relations involve the asymptotic normalization constant of the bound state removed by supersymmetry
The early S-matrix theory and its propagation (1942-1952)
International Nuclear Information System (INIS)
Rechenberg, H.
1989-01-01
This paper describes the development of S-matrix theory in the 1940s and 1950s, which described the scattering and emission problems in elementary particle theory. Its chief architect, Werner Heisenberg, worked in Germany all through the Second World War. Communication problems were intense and made discussion of this useful tool very difficult. Werner Heisenberg's collaborative efforts with Hendrik Kramers in Holland and Christian Moeller are noted. The theory had its opponents and their objections are described. As other scientists took up the theory it was used in new ways such as in quantum electrodynamics, and to predict the creation of massive particles by analyzing S-matrix threshold behaviour. Although the theory fell into disfavour in the early 1950s, it was later readopted when ideas such as crossed channels and analytic behaviour in the complex angular-momentum plane needed explanations. (UK)
Generalized canonical formalism and the S-matrix of theories with constraints of the general type
International Nuclear Information System (INIS)
Fradkina, T.Ye.
1987-01-01
A canonical quantization method is given for systems with first and second class constraints of arbitrary rank. The effectiveness of the method is demonstrated using sample Yang-Mills and gravitational fields. A correct expression is derived for the S-matrix of theories that are momentum-quadratic within the scope of canonical gauges, including ghost fields. Generalized quantization is performed and the S-matrix is derived in configurational space for theories of relativistic membranes representing a generalization of theories of strings to the case of an extended spatial implementation. It is demonstrated that the theory of membranes in n+l-dimensional space is a system with rank-n constraints
Progress in the application of classical S-matrix theory to inelastic collision processes
International Nuclear Information System (INIS)
McCurdy, C.W.; Miller, W.H.
1980-01-01
Methods are described which effectively solve two of the technical difficulties associated with applying classical S-matrix theory to inelastic/reactive scattering. Specifically, it is shown that rather standard numerical methods can be used to solve the ''root search'' problem (i.e., the nonlinear boundary value problem necessary to impose semiclassical quantum conditions at the beginning and the end of the classical trajectories) and also how complex classical trajectories, which are necessary to describe classically forbidden (i.e., tunneling) processes, can be computed in a numerically stable way. Application is made to vibrational relaxation of H 2 by collision with He (within the helicity conserving approximation). The only remaining problem with regard to applying classical S-matrix theory to complex collision processes has to do with the availability of multidimensional uniform asymptotic formulas for interpolating the ''primitive'' semiclassical expressions between their various regions of validity
The S-Matrix coupling dependence for a, d and e affine Toda field theory
International Nuclear Information System (INIS)
Braden, H.W.; Sasaki, R.
1990-09-01
Affine Toda field theories are solvable 1+1 dimensional quantum field theories closely related to integrable deformations of conformal field theory. The S-Matrix elements for an affine Toda field theory are known to depend on the coupling constant β through one universal function B(β) which cannot be determined by unitarity, crossing and the bootstrap. From the requirement of nonexistence of extra poles in the physical region its form is conjectured to be B(β) = (2π) -1 ·β 2 /((1+β 2 )/4π). We show that the above conjecture is correct up to one loop order (i.e., β 4 ) of perturbation for simply laced, i.e., a, d and e affine Toda field theories using a general argument which exhibits much of the richness of these theories. (author)
The semiclassical S-matrix theory of three body Coulomb break-up
International Nuclear Information System (INIS)
Chocian, P.
1999-01-01
Using semiclassical methods we investigate the threshold behaviour for 3-particle break-up of a system with one particle of charge Z and two other particles of charge -q. For the particular case where the ratio of the charges of the third particle to the wing particles is Z/q = 1/4, the Wannier exponent for break-up diverges and it is found that the threshold law changes from a power law to an exponential law of the form exp(-λ/√E) which is in agreement with other results. Wannier's threshold theory is extended analytically to above threshold energies and it is found that the classical law for the divergent case is identical to an analytical result from the quantal hidden crossing theory. Corrections to the threshold behaviour for hydrogen from the above-threshold derivation are compared with those predicted by a calculation from hidden crossing theory. Excellent agreement is found which confirms the success of our classical derivation. The threshold behaviour is tested using semiclassical S-matrix theory above the region of divergence and it is found that for Z/q - of the initial states in S-matrix theory translates to a uniform distribution of outgoing trajectories on the boundary of the reaction zone. Observations of classical trajectories suggest that the radius of the reaction zone (R b ) is dependent on the total energy of the system. R b is determined numerically from ionization trajectories. When the dependence on R b is included in half-collision calculations, cross sections are produced which are in excellent agreement with full-collision S-matrix results for all values of Z > 0.25. (author)
Rigorous results of low-energy models of the analytic S-matrix theory
International Nuclear Information System (INIS)
Meshcheryakov, V.A.
1974-01-01
Results of analytic S-matrix theory, mainly dealing with the static limit of dispersion relations, are applied to pion-nucleon scattering in the low-energy region. Various approaches to solving equations of the chew-Low type are discussed. It is concluded that interesting results are obtained by reducing the equations to a system of nonlinear difference equations; the crucial element of this approach being the study of functions on the whole Riemann surface. Boundary and crossing symmetry conditions are studied. (HFdV)
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
National Research Council Canada - National Science Library
Szatkowski, John
2000-01-01
... undesirable effect on other functionally unrelated parameters. A methodology based on axiomatic design principles that strives to eliminate the currently accepted iterative nature of concept level ship design is proposed...
Microcausality, macrocausality and the physical region (micro)analytic S-matrix
International Nuclear Information System (INIS)
Iagolnitzer, D.
1980-01-01
Recent works on the physical region analytic structure of multiparticle collision amplitudes in relativistic quantum theory are presented. First, the structure that can be expected and which is the expression, in terms of general essential support or microanalyticity properties, of macrocausality and macrocausal factorization, is described. It is shown that, taken together, these properties are equivalent to decompositions of the S-matrix, in bounded parts of the physical region, in terms of generalized Feynman integrals. Derivations of this structure obtained recently for 3 → 3 processes below the four-particle threshold both in S-matrix theory (without recourse to the crucial ad hoc assumption of 'separation of singularities' in unitarity equations used previously) and in axiomatic field theory are then reviewed. It is finally explained how this structure applies in two-dimensional space-time and yields factorization of the multiparticle S-matrix itself for a class of models. (orig.)
International Nuclear Information System (INIS)
Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.
1979-01-01
It is suggested that the TDHF method be viewed, not as an approximation to but as a model of the exact Schroedinger system; that is, as a gedanken many-body experiment whose analysis with digital computers provides data worthy in itself of theoretical study. From such a viewpoint attention is focused on the structural analogies of the TDHF system with the exact theory rather than upon its quantitative equivalence, and the TDHF many-body system is studied as a challenge of its own which, although much simpler than the realistic problem, may still offer complexity enough to educate theorists in the present state of knowledge. In this spirit, the TDHF description of continuum reactions can be restructured from an initial-value problem into a form analogous to the S-matrix version of the Schroedinger theory. The resulting TD-S-HF theory involves only self-consistent single determinantal solutions of the TDHF equations and invokes time averaging to obtain a consistent interpretation of the TDHF analogs of quantities which are constant in the exact theory, such as the S-matrix and the asymptotic reaction channel characteristics. Periodic solutions then play the role of stationary eigenstates in the construction of suitable asymptotic reaction channels. If these periodic channel states occur only at discrete energies, then the resulting channels are mutually orthogonal (on the time average) and the theory exhibits a structure fully analogous to the exact theory. In certain special cases where the periodic solutions are known to occur as an energy continuum, the requirement that the periodicity of the channel solutions be gauge invariant provides a natural requantization condition which (suggestively) turns out to be identical with the Bohr-Sommerfeld quantization rule. 11 references
Bogolyubov axiomatic method in quantum electrodynamics
International Nuclear Information System (INIS)
Bazhanov, V.V.; Pron'ko, G.P.; Solov'ev, L.D.
1979-01-01
A number of problems of quantum electrodynamics are reviewed which permit an exact solution for both strong and electromagnetic interactions. The solutions have been obtained in the framework of the S-matrix method based on the Bogolyubov axiomatic approach supplemented with some axioms which make it possible to extended the field of application of the Bogolyubov approach for quantum electrodynamics. Infrared ''renormalization'' of axioms and fundamental equations of the S-matrix electrodynamics is discussed. Low-energy theorems for matrix elements of radiative operators have been obtained as solutions of fundamental equations. The low-energy theorems are used for describing the electrodynamic phenomena of soft photons. The bremsstrahlung amplitude is found. A generalized threshold theorem is formulated for the Compton scattering amplitude. The results of examining the infrared asymptotics of the charged particle Green functions, the small-angle scattering of charged particles and electromagnetic effects on heavy narrow resonance production are presented. The problems discussed show that the consequences of general principles of the relativistic quantum theory supplemented with requirements on gauge invariance are essentially nontrivial
On a third S-matrix in the theory of quantized fields on curved spacetimes
International Nuclear Information System (INIS)
Gottschalk, H.; Hack, T.
2007-01-01
Wightman functions for interacting quantum fields on curved space times are calculated via the perturbation theory of the Yang-Feldman equations, where the incoming field is a free field in a quasifree representation. We show that these Wightman functions that are obtained as a sum over extended Feynman graphs fulfill the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity and locality (the latter property is shown up to second order in the loop expansion). In the case of non-stationary spacetimes, the outgoing field in general is in a non-quasifree representation of the CCR. This makes it necessary to develop a method to calculate the unitary transformation between a non quasifree representation and a quasifree one. This is carried out using *-calculus on the dual of the Borchers algebra with a combinatorial co-product. Given that preferred quasifree representations for early and late times exist, we thus obtain a complete scattering description using three S-matrices: The first is determined by vacuum expectation values between incoming and outgoing fields. The second is a unitary transformation between the non-quasifree representation for the ''out''-fields and the quasifree representation for the ''in''-field. The last one is the Bogoliubov transformation between the preferred representation at early times (i.e. the ''in''-field representation) and the preferred representation at late times. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.
International Nuclear Information System (INIS)
Iagolnitzer, D.
1983-11-01
Recent axiomatic results on the (non holonomic) analytic structure of the multiparticle S matrix and Green functions are reviewed and related general conjectures are described: (i) formal expansions of Green functions in terms of (holonomic) Feynman-type integrals in which each vertex represents an irreducible kernel, and (ii) ''graph by graph unitarity'' and other discontinuity formulae of the latter. These conjectures are closely linked with unitarity or asymptotic completeness equations, which they yield in a formal sense. In constructive field theory, a direct proof of the first conjecture (together with an independent proof of the second) would thus imply, as a first step, asymptotic completeness in that sense
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.
1978-08-19
A minimal set of auxiliary fields (scalarpseudoscalar and pseudovector) providing the closed algebra in supergravity is constructed. A compact scheme for the generating functional with closed gauge algebra is proposed. The S-matrix and the Ward identities for arbitrary theory that admits the closing of the algebra by introducing auxiliary fields is obtained.
International Nuclear Information System (INIS)
Cabbolet, M.J.T.F.
2010-01-01
Theories of modern physics predict that antimatter having rest mass will be attracted by the earth's gravitational field, but the actual coupling of antimatter with gravitation has not been established experimentally. The purpose of the present research was to identify laws of physics that would govern the universe if antimatter having rest mass would be repulsed by the earth's gravitational field. As a result, a formalized axiomatic system was developed together with interpretation rules for the terms of the language: the intention is that every theorem of the system yields a true statement about physical reality. Seven non-logical axioms of this axiomatic system form the elementary process theory (EPT): this is then a scheme of elementary principles describing the dynamics of individual processes taking place at supersmall scale. It is demonstrated how gravitational repulsion functions in the universe of the EPT, and some observed particles and processes have been formalized in the framework of the EPT. Incompatibility of quantum mechanics (QM) and General Relativity (GR) with the EPT is proven mathematically; to demonstrate applicability to real world problems to which neither QM nor GR applies, the EPT has been applied to a theory of the Planck era of the universe. The main conclusions are that a completely formalized framework for physics has been developed supporting the existence of gravitational repulsion and that the present results give rise to a potentially progressive research program. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Directory of Open Access Journals (Sweden)
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
Intuition and the axiomatic method
Carson, Emily
2006-01-01
Following developments in modern geometry, logic and physics, many scientists and philosophers in the modern era considered Kant's theory of intuition to be obsolete. But this only represents one side of the story concerning Kant, intuition and twentieth century science. Several prominent mathematicians and physicists were convinced that the formal tools of modern logic, set theory and the axiomatic method are not sufficient for providing mathematics and physics with satisfactory foundations. All of Hilbert, Gödel, Poincaré, Weyl and Bohr thought that intuition was an indispensable element in
Axiomatizing GSOS with Predicates
Directory of Open Access Journals (Sweden)
Luca Aceto
2011-08-01
Full Text Available In this paper, we introduce an extension of the GSOS rule format with predicates such as termination, convergence and divergence. For this format we generalize the technique proposed by Aceto, Bloom and Vaandrager for the automatic generation of ground-complete axiomatizations of bisimilarity over GSOS systems. Our procedure is implemented in a tool that receives SOS specifications as input and derives the corresponding axiomatizations automatically. This paves the way to checking strong bisimilarity over process terms by means of theorem-proving techniques.
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia
2018-04-01
As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper, we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E. The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. `explore or not?'; `open new well or not?'; `contaminated by water or not?'; `double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism). This article is part of the theme issue `Hilbert's sixth problem'.
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia
2018-04-28
As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Uncertainty and complementarity in axiomatic quantum mechanics
International Nuclear Information System (INIS)
Lahti, P.J.
1980-01-01
An investigation of the uncertainty principle and the complementarity principle is carried through. The physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. Two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. (author)
Unconventional Algorithms: Complementarity of Axiomatics and Construction
Directory of Open Access Journals (Sweden)
Gordana Dodig Crnkovic
2012-10-01
Full Text Available In this paper, we analyze axiomatic and constructive issues of unconventional computations from a methodological and philosophical point of view. We explain how the new models of algorithms and unconventional computations change the algorithmic universe, making it open and allowing increased flexibility and expressive power that augment creativity. At the same time, the greater power of new types of algorithms also results in the greater complexity of the algorithmic universe, transforming it into the algorithmic multiverse and demanding new tools for its study. That is why we analyze new powerful tools brought forth by local mathematics, local logics, logical varieties and the axiomatic theory of algorithms, automata and computation. We demonstrate how these new tools allow efficient navigation in the algorithmic multiverse. Further work includes study of natural computation by unconventional algorithms and constructive approaches.
Al- Khwarizmi and axiomatic foundation of algebra
International Nuclear Information System (INIS)
Fares, N.
2015-01-01
This paper intends to investigate the axiomatic foundations of algebra, as they were presented in the book of algebra of al-Khwarizmi (9 th century), and as they were developed in many subsequent Arabic works. The paper gives also a description of algebra evolution towards a discipline independent ofgeometry and arithmetic: the two disciplines whosemarriage had led to its birth.By an in depth reading of some details in the text of al Khwarizmi , we concluded that this mathematician intended to lay down the axiomatic foundations of that new discipline. His resort to arithmetical and geometrical means was a way of making his theory more accessible. He used them to justify the axioms: those that were not explicitly introduced per se, and those that were remained implicit. The paper also relies on some unedited writingsof al-Khwarizmi's successors, which could shedlight on the ways they used to consolidate the foundations of algebra and improve its methods. (author)
CERN. Geneva
2016-01-01
In this talk I will describe recent work aiming to reinvigorate the 50 year old S-matrix program, which aims to constrain scattering of massive particles non-perturbatively. I will begin by considering quantum fields in anti-de Sitter space and show that one can extract information about the S-matrix by considering correlators in conformally invariant theories. The latter can be studied with "bootstrap" techniques, which allow us to constrain the S-matrix. In particular, in 1+1D one obtains bounds which are saturated by known integrable models. I will also show that it is also possible to directly constrain the S-matrix, without using the CFT crutch, by using crossing symmetry and unitarity. This alternative method is simpler and gives results in agreement with the previous approach. Both techniques are generalizable to higher dimensions.
Giddings, Steven B
2010-01-01
We investigate the hypothesized existence of an S-matrix for gravity, and some of its expected general properties. We first discuss basic questions regarding existence of such a matrix, including those of infrared divergences and description of asymptotic states. Distinct scattering behavior occurs in the Born, eikonal, and strong gravity regimes, and we describe aspects of both the partial wave and momentum space amplitudes, and their analytic properties, from these regimes. Classically the strong gravity region would be dominated by formation of black holes, and we assume its unitary quantum dynamics is described by corresponding resonances. Masslessness limits some powerful methods and results that apply to massive theories, though a continuation path implying crossing symmetry plausibly still exists. Physical properties of gravity suggest nonpolynomial amplitudes, although crossing and causality constrain (with modest assumptions) this nonpolynomial behavior, particularly requiring a polynomial bound in c...
Causal theory in (2+1)-dimensional Qed
International Nuclear Information System (INIS)
Scharf, G.; Wreszinski, W.F.
1994-01-01
The program of constructing the S-matrix by means of causality in quantum field theory goes back to Stueckelberg and Bogoliubov. Epstein and Glaser proposed an axiomatic construct where ultraviolet divergences do not appear, leading directly to the renormalized perturbation series. They have shown that in the causal theory the UV problem is a consequence of incorrect distribution splitting. This paper studies the causal theory in (2+1)D Qed
Axiomatics of uniform space-time models
International Nuclear Information System (INIS)
Levichev, A.V.
1983-01-01
The mathematical statement of space-time axiomatics of the special theory of relativity is given; it postulates that the space-time M is the binding single boundary Hausedorf local-compact four-dimensional topological space with the given order. The theorem is proved: if the invariant order in the four-dimensional group M is given by the semi-group P, which contingency K contains inner points , then M is commutative. The analogous theorem is correct for the group of two and three dimensionalities
Dynamics of Strong Interactions and the S-Matrix
Energy Technology Data Exchange (ETDEWEB)
Omnes, R. [Laboratoire de Physique Theorique et Hautes Energies, Universite de Paris, Orsay (France)
1969-08-15
The physical principles underlying the S-matrix theory of strong interactions are reviewed. In particular, the problem of whether these principles are sufficient to completely determine the S-matrix, i.e. to yield a dynamical theory of strong interactions, is discussed. (author)
Axiomatizations of Pareto Equilibria in Multicriteria Games
Voorneveld, M.; Vermeulen, D.; Borm, P.E.M.
1997-01-01
We focus on axiomatizations of the Pareto equilibrium concept in multicriteria games based on consistency.Axiomatizations of the Nash equilibrium concept by Peleg and Tijs (1996) and Peleg, Potters, and Tijs (1996) have immediate generalizations.The axiomatization of Norde et al.(1996) cannot be
Baryoniums - the S-matrix approach
International Nuclear Information System (INIS)
Roy, D.P.
1979-08-01
In this series of lectures the question of how the baryoniums are related to charmoniums and strangoniums is discussed and it is pointed out that in the S-matrix framework, they all follow from the same pair of hypotheses, duality and no exotics. Invoking no underlying quark structure, except that inherent in the assumption of no exotics, it is shown that there are no mesons outside the singlet and octet representation of SU(3) and no baryons outside the singlet, octet and decaplet. In other words all mesons occur within the quantum number of a q-antiq system and all baryons within those of qqq. This seems to be an experimental fact, which has no natural explanation within the S-matrix framework except that it is the minimal non-zero solution to the duality constraints. The approach in the past has been to take it as an experimental input and build up a phenomenological S-matrix framework. Lately it has been realised that the answer may come from the colour dynamics of quarks. If true this would provide an important link between the fundamental but invisible field theory of quarks and gluons and the phenomenological but visible S-matrix theory overlying it. The subject is discussed under the headings; strangonium and charmonium, baryonium, spectroscopy, baryonium resonances, FESR constraint, baryonium exchange, phenomenological estimate of ω - baryonium mixing at t = 0, and models of ω - baryonium mixing. (UK)
Axiomatic Design of Space Life Support Systems
Jones, Harry W.
2017-01-01
Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.
THE AESTHETIC AXIOMATIC: DECONSTRUCTION
Directory of Open Access Journals (Sweden)
IRINA VASKES SANTCHES
2007-08-01
Full Text Available Resumen: El presente trabajo contribuye al debate sobre la actualidad estética, abordando diferentes enfoques del polémico concepto de deconstrucción, introducido por Jacques Derrida. Esta categoría es de referencia casi obligatoriacuando se habla sobre teoría estética contemporánea, forma parte de su nuevo aparato conceptual y expresa bien la nueva realidad que no tiene análogos históricos en lo que antes llamaban arte, estética y cultura. La elaboracióndel concepto de deconstrucción, el análisis de cómo funciona esa nueva forma del pensamiento crítico, y el método creativo de la interpretación y de la producción del texto artístico, nos permite entrar en el código de muchas obras artísticas actuales donde el espacio entre arte y teoría del arte es cada vez más incierto, especialmente en las diversas formas de arte conceptual o “performance art”.Abstract: Tackling polemic concept of deconstruction, introduced by Jacqes Derrida, from different approaches this article contributes to the debate on aesthetic current issues. This category is of almost obligatory reference when discussing about contemporary aesthetic theory. Deconstruction belongs to its new conceptual apparatus, and expresses well new reality that does not have historical analogy with what before was called art, aesthetics and culture. The elaboration of the concept of deconstruction, and the analysis of how this new form of strategical “procedure” of interpretation and production of the text (as textual reading is functioning allow us to enter the code of many current art works where the space between art and theory of the art is more and more uncertain, specially in the diverse forms of conceptual art or “performance art“.
Axiomatic design in large systems complex products, buildings and manufacturing systems
Suh, Nam
2016-01-01
This book provides a synthesis of recent developments in Axiomatic Design theory and its application in large complex systems. Introductory chapters provide concise tutorial materials for graduate students and new practitioners, presenting the fundamentals of Axiomatic Design and relating its key concepts to those of model-based systems engineering. A mathematical exposition of design axioms is also provided. The main body of the book, which represents a concentrated treatment of several applications, is divided into three parts covering work on: complex products; buildings; and manufacturing systems. The book shows how design work in these areas can benefit from the scientific and systematic underpinning provided by Axiomatic Design, and in so doing effectively combines the state of the art in design research with practice. All contributions were written by an international group of leading proponents of Axiomatic Design. The book concludes with a call to action motivating further research into the engineeri...
Adapt! – Agile Project Management Supported by Axiomatic Design
Directory of Open Access Journals (Sweden)
Weber Jakob
2017-01-01
Full Text Available This paper presents a novel approach for the use of Axiomatic Design Theory in combination with agile project management methods like Scrum for an effective, structured and combined product design and development process. Agile project management methods give a guideline how to manage a project, but there is only minor assistance regarding the actual product development process itself. Axiomatic Design can be used to support these methods in this point. In concrete terms, the results of the decomposition process of this theory can be used to formulate and structure the work packages for the agile project managing process. The Independence Axiom of Axiomatic Design Theory has a substantial contribution by ensuring the independence of the work packages which can be assigned to different project team members and can be processed independently by them. The combination of the different methods not only helps to ensure a good design solution but also helps to work more agile within a project team. The here proposed approach is one part of a holistic product design and development process for changeable production units – called Adapt! – and is described within a use case in the automotive sector.
Alternative Axiomatic Characterizations of the Grey Shapley Value
Directory of Open Access Journals (Sweden)
Sirma Zeynep Alparslan Gok
2014-05-01
Full Text Available The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapley value for cooperative games, where the set of players is finite and the coalition values are interval grey numbers. The central question in this paper is how to characterize the grey Shapley value. In this context, we present two alternative axiomatic characterizations. First, we characterize the grey Shapley value using the properties of efficiency, symmetry and strong monotonicity. Second, we characterize the grey Shapley value by using the grey dividends.
Uncertainty and Complementarity in Axiomatic Quantum Mechanics
Lahti, Pekka J.
1980-11-01
In this work an investigation of the uncertainty principle and the complementarity principle is carried through. A study of the physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point for this analysis. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. In this general framework two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. The sufficiency of the state system guarantees that the observables satisfying the uncertainty principle are unbounded and noncompatible. The complementarity principle implies a non-Boolean proposition structure for the theory. Moreover, nonconstant complementary observables are always noncompatible. The uncertainty principle and the complementarity principle, as formulated in this work, are mutually independent. Some order is thus brought into the confused discussion about the interrelations of these two important principles. A comparison of the present formulations of the uncertainty principle and the complementarity principle with the Jauch formulation of the superposition principle is also given. The mutual independence of the three fundamental principles of the quantum theory is hereby revealed.
International Nuclear Information System (INIS)
Knight, D.W.
1976-01-01
Reasons are given for studying the form factor and a method for constructing all believed-to-be leading form factor diagrams in a certain class of non-Abelian gauge theories (NAGT's) in typical kinematic limits. The possibility that the form factor ''exponentiates'' in NAGT's (as it does in QED) is discussed. A method is given for constructing all 1CI planar diagrams (this is, all 1PI diagrams except those which separate upon cutting at a vertex) directly from one's heat--that is, without the need to refer to tables, et cetera. It is noted that the material is believed to be essentially completely original, that is, the technique for constructing all 1CI planar diagrams in an iterative fashion is completely new. Of course, one can construct them in an essentially random fashion, but this technique is slow and extremely error prone compared with the iterative technique given. The idea of associating an elastic resonance with a complex pole in the analytic scattering amplitude, T(E), is discussed. Calculations of the pole position and the residue of the Δ 33 resonance are given, along with an analysis of experimentally induced error in the pole position
A Finite Axiomatization of G-Dependence
Paolini, Gianluca
2015-01-01
We show that a form of dependence known as G-dependence (originally introduced by Grelling) admits a very natural finite axiomatization, as well as Armstrong relations. We also give an explicit translation between functional dependence and G-dependence.
International Nuclear Information System (INIS)
Ducomet, B.
1984-03-01
We give a technical result necessary for a preceding paper on the logarithmic asymptotic behaviour (with respect to the external momenta, in the euclidean space) of the convolution product associated with a general graph, in quantum field theory [fr
Axiomatic derivation of Feynman rules and related topics
International Nuclear Information System (INIS)
Dorfmeister, G.K.
1992-01-01
Previous results in axiomatic field theory by Steinmann and Epstein-Glaser establish the existence of the retarded and time ordered Green's functions in every order of perturbation. To connect these Green's functions with the ones calculated in canonical field theories via the Feynman rules, one has to consistently build them not just for every order of perturbation but for each specific graph. (open-quotes Consisentlyclose quotes means here that the Green functions associated with two open-quotes smallclose quotes graphs build up to the Green's functions of the open-quotes bigclose quotes graph formed by connecting the two open-quotes smallclose quotes ones). This paper shows that this can indeed be done; that in this sense the Feynman rules of perturbative Lagrangian field theory can be derived from the abstract, but physically very basic, principles of axiomatic field theory. All results hold only for massive field theories. The LSZ formalism, to the best knowledge of the author, has so far not been modified to admit mass zero fields. To make the representation simpler and more transparent, the author restricts the discussion to a single component, scalar Φ 4 interaction which is a part of the Standard Model of Particle Physics. Motivated by its role in particle physics, the author complements the perturbative study of Φ 4 -theory by reviewing the status of non-perturbative solutions to the theory in the final chapter
Minimal theory of quantum electrodynamics
International Nuclear Information System (INIS)
Berrondo, M.; Jauregui, R.
1986-01-01
Within the general framework of the Lehmann-Symanzik-Zimmermann axiomatic field theory, we obtain a simple and coherent formulation of quantum electrodynamics. The definitions of the current densities fulfill the one-particle stability condition, and the commutation relations for the interacting fields are obtained rather than being postulated a priori, thus avoiding the inconsistencies which appear in the canonical formalism. This is possible due to the fact that we use the integral form of the equations of motion in order to compute the propagators and the S matrix. The resulting spectral representations automatically fulfill the correct boundary conditions thus fixing the ubiquitous quasilocal operators in a unique fashion
The black hole S-Matrix from quantum mechanics
Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga
2016-01-01
We revisit the old black hole S-Matrix construction and its new partial wave expansion of 't Hooft. Inspired by old ideas from non-critical string theory \\& $c=1$ Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model\\textemdash of waves scattering off
Hamiltonian formalism, quantization and S matrix for supergravity. [S matrix, canonical constraints
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.
1977-12-05
The canonical formalism for supergravity is constructed. The algebra of canonical constraints is found. The correct expression for the S matrix is obtained. Usual 'covariant methods' lead to an incorrect S matrix in supergravity since a new four-particle interaction of ghostfields survives in the Lagrangian expression of the S matrix.
Axiomatic Characterizations of IVF Rough Approximation Operators
Directory of Open Access Journals (Sweden)
Guangji Yu
2014-01-01
Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.
An Axiomatic Representation of System Dynamics
Baianu, I
2004-01-01
An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.
The black hole S-Matrix from quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University, Princetonplein 5, Utrecht, 3508 TD The (Netherlands)
2016-11-22
We revisit the old black hole S-Matrix construction and its new partial wave expansion of ’t Hooft. Inspired by old ideas from non-critical string theory & c=1 Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model — of waves scattering off inverted harmonic oscillator potentials — that exactly reproduces the unitary black hole S-Matrix for all spherical harmonics; each partial wave corresponds to an inverted harmonic oscillator with ground state energy that is shifted relative to the s-wave oscillator. Identifying a connection to 2d string theory allows us to show that there is an exponential degeneracy in how a given total initial energy may be distributed among many partial waves of the 4d black hole.
The black hole S-Matrix from quantum mechanics
International Nuclear Information System (INIS)
Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga
2016-01-01
We revisit the old black hole S-Matrix construction and its new partial wave expansion of ’t Hooft. Inspired by old ideas from non-critical string theory & c=1 Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model — of waves scattering off inverted harmonic oscillator potentials — that exactly reproduces the unitary black hole S-Matrix for all spherical harmonics; each partial wave corresponds to an inverted harmonic oscillator with ground state energy that is shifted relative to the s-wave oscillator. Identifying a connection to 2d string theory allows us to show that there is an exponential degeneracy in how a given total initial energy may be distributed among many partial waves of the 4d black hole.
Axiomatic electrodynamics and microscopic mechanics
International Nuclear Information System (INIS)
Yussouff, M.
1981-04-01
A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)
Low-cost Antenna Positioning System Designed with Axiomatic Design
Directory of Open Access Journals (Sweden)
Timothy Foley Joseph
2017-01-01
Full Text Available The Engineering Optimization and Modeling Center at Reykjavik University has been carrying out research on antenna CAD, including the simulation-driven design of novel antenna topologies. However, simulation is not enough to validate a design: a custom RF anechoic chamber has been built to quantify antenna performance, particularly in terms of field properties such as radiation patterns. Such experiments require careful positioning of the antenna in the chamber accurately in 3-axis with a short development time, challenging material constraints, and minimal funding. Axiomatic Design Theory principles were applied to develop an automated 3-axis positioner system for a reference antenna and the antenna to be calibrated. Each axis can be individually controlled with a repeatability of 1 degree. This 3000 USD device can be fabricated using easily available components and rapid prototyping tools.
Complete Axiomatization for the Bisimilarity Distance on Markov Chains
DEFF Research Database (Denmark)
Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand
2016-01-01
In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS...
Directory of Open Access Journals (Sweden)
Kyryliuk Serhii
2017-09-01
Full Text Available Three consequent concepts that build up the algorithm of the identification of modern landscapes on the Moon surface are suggested. They are anaglyphonosphere axiomatic and landscape concepts obtained with the use of the axiomatic method. The first concept depicts the geographic envelope of the Moon as an anaglyphonosphere layer (relief that is a continuum (total environment. The latter becomes the research subject for both a geomorphologist and a landscape researcher. Continuity, dynamics, range (amplitude, and erosion potential determine anaglyphonosphere. Axiomatic concept means constructing the sole scheme (mathematically determined of the search for the elementary surface units using the geometric interpretation of surface patterns of the Moon and its landscape interpretation. The landscape concept is based on the classical principles of the landscape theory and the axiomatic principles of the previous concept. The synthesis of concepts is implemented in the models of Moon landscapes of four scales: zero, linear, two- and three-dimensional. The paper offers the last two models of Davy Catena. Proposed concepts with appropriate correction can be used in parallel studies of the natural environment: geological, geomorphological, climatic, etc. The advantages of the axiomatic method consist in the objective approach to the division of the surface into specific units (the landscapes in our case. The proposed method of identifying and displaying the landscape complexes on the lunar surface can be a significant complement for the study and mapping of terrestrial planets, satellites of planet-giants, etc.
Complex Masses in the S-Matrix
International Nuclear Information System (INIS)
Rupp, G.; Coito, S.; Beveren, E. van
2010-01-01
Most excited hadrons have multiparticle strong decay modes, which can often be described as resulting from intermediate states containing one or two resonances. In a theoretical approach, such a description in terms of quasi-two-particle initial and final states leads to unitarity violations, because of the complex masses of the involved resonances. In the present paper, an empirical algebraic procedure is presented to restore unitarity of the S-matrix while preserving its symmetry. Preliminary results are presented in a first application to S-wave ππ scattering, in the framework of the Resonance-Spectrum Expansion. (author)
Tetrahedron equations and the relativistic S-matrix of straight-strings in 2+1-dimensions
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1981-01-01
The quantum S-matrix theory of straight-strings (infinite one-dimensioanl objects like straight domain walls) in 2 + 1-dimensions is considered. The S-matrix is supposed to be purely elastic and factorized. The tetrahedron equations (which are the factorization conditions) are investigated for the special two-colour model. The relativistic three-string S-matrix, which apparently satisfies this tetrahedron equation, is proposed. (orig.)
Personnel Selection Using Fuzzy Axiomatic Design Principles
Directory of Open Access Journals (Sweden)
Anant V. Khandekar
2016-09-01
Full Text Available Overall competency of the working personnel is often observed to ultimately affect the productivity of an organization. The globalised competitive atmosphere coupled with technological improvements demands for efficient and specialized manpower for the industrial operations. A set of typical technological skills and attitudes is thus demanded for every job profile. Most often, these skills and attitudes are expressed imprecisely and hence, necessitating the support of fuzzy sets for their effective understanding and further processing. In this paper, a method based on fuzzy axiomatic design principles is applied for solving the personnel selection problems. Selecting a middle management staff of a service department for a large scale organization is demonstrated here as a real life example. Five shortlisted candidates are assessed with respect to a set of 18 evaluation criteria, and the selection committee with experts from the related fields also realizes the outcome of the adopted approach to be quite appropriate, befitting and in agreement with their expectations.
Semiclassical S-matrix for black holes
Bezrukov, Fedor; Sibiryakov, Sergey
2015-01-01
We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.
Particles as S-matrix poles: hadron democracy
International Nuclear Information System (INIS)
Chew, G.F.
1989-01-01
The connection between two theoretical ideas of the 1950s is traced in this article, namely that hadrons are nonfundamental, ''composite'' particles and that all physically observable particles correspond to singularities of an analytic scattering matrix. The S matrix theory developed by Werner Heisenberg in the early forties now incorporated the concepts of unitarity, invariance, analyticity and causality. The meson-exchange force meant that poles must be present in nucleon-nuclear and pion-nucleon scattering as predicted by dispersion relations. Experimental work in accessible regions determined pole residues. Pole residue became associated with force strength and pole position with particle mass. In 1959, the author discovered the so-called ''bootstrap'' theory the rho meson as a force generates a rho particle. By the end of the 1950s it was clear that all hadrons had equal status, each being bound states of other hadrons, sustained by hadron exchange forces and that hadrons are self-generated by an S-matrix bootstrap mechanism that determines all their properties. (UK)
Design of Safety Injection Tanks Using Axiomatic Design and TRIZ
Energy Technology Data Exchange (ETDEWEB)
Heo, Gyunyoung [Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701 (Korea, Republic of); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)
2008-07-01
Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)
Design of Safety Injection Tanks Using Axiomatic Design and TRIZ
International Nuclear Information System (INIS)
Heo, Gyunyoung; Jeong, Yong Hoon
2008-01-01
Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)
Geometry and experience: Einstein's 1921 paper and Hilbert's axiomatic system
International Nuclear Information System (INIS)
De Gandt, Francois
2006-01-01
In his 1921 paper Geometrie und Erfahrung, Einstein decribes the new epistemological status of geometry, divorced from any intuitive or a priori content. He calls that 'axiomatics', following Hilbert's theoretical developments on axiomatic systems, which started with the stimulus given by a talk by Hermann Wiener in 1891 and progressed until the Foundations of geometry in 1899. Difficult questions arise: how is a theoretical system related to an intuitive empirical content?
Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz-type effective 2d actions
International Nuclear Information System (INIS)
Roiban, R; Tirziu, A; Tseytlin, A A
2006-01-01
Motivated by the desire to relate Bethe ansatz equations for anomalous dimensions found on the gauge-theory side of the AdS/CFT correspondence to superstring theory on AdS 5 x S 5 we explore a connection between the asymptotic S-matrix that enters the Bethe ansatz and an effective two-dimensional quantum field theory. The latter generalizes the standard 'non-relativistic' Landau-Lifshitz (LL) model describing low-energy modes of ferromagnetic Heisenberg spin chain and should be related to a limit of superstring effective action. We find the exact form of the quartic interaction terms in the generalized LL-type action whose quantum S-matrix matches the low-energy limit of the asymptotic S-matrix of the spin chain of Beisert, Dippel and Staudacher (BDS). This generalizes to all orders in the 't Hooft coupling λ an earlier computation of Klose and Zarembo of the S-matrix of the standard LL model. We also consider a generalization to the case when the spin-chain S-matrix contains an extra 'string' phase and determine the exact form of the LL 4-vertex corresponding to the low-energy limit of the ansatz of Arutyunov, Frolov and Staudacher (AFS). We explain the relation between the resulting 'non-relativistic' non-local action and the second-derivative string sigma model. We comment on modifications introduced by strong-coupling corrections to the AFS phase. We mostly discuss the SU(2) sector but also present generalizations to the SL(2) and SU(1|1) sectors, confirming universality of the dressing phase contribution by matching the low-energy limit of the AFS-type spin-chain S-matrix with tree-level string-theory S-matrix
Jesudason, Christopher G.
2003-09-01
Recently, there have appeared interesting correctives or challenges [Entropy 1999, 1, 111-147] to the Second law formulations, especially in the interpretation of the Clausius equivalent transformations, closely related in area to extensions of the Clausius principle to irreversible processes [Chem. Phys. Lett. 1988, 143(1), 65-70]. Since the traditional formulations are central to science, a brief analysis of some of these newer theories along traditional lines is attempted, based on well-attested axioms which have formed the basis of equilibrium thermodynamics. It is deduced that the Clausius analysis leading to the law of increasing entropy does not follow from the given axioms but it can be proved that for irreversible transitions, the total entropy change of the system and thermal reservoirs (the "Universe") is not negative, even for the case when the reservoirs are not at the same temperature as the system during heat transfer. On the basis of two new simple theorems and three corollaries derived for the correlation between irreversible and reversible pathways and the traditional axiomatics, it is shown that a sequence of reversible states can never be used to describe a corresponding sequence of irreversible states for at least closed systems, thereby restricting the principle of local equilibrium. It is further shown that some of the newer irreversible entropy forms given exhibit some paradoxical properties relative to the standard axiomatics. It is deduced that any reconciliation between the traditional approach and novel theories lie in creating a well defined set of axioms to which all theoretical developments should attempt to be based on unless proven not be useful, in which case there should be consensus in removing such axioms from theory. Clausius' theory of equivalent transformations do not contradict the traditional understanding of heat- work efficiency. It is concluded that the intuitively derived assumptions over the last two centuries seem to
Introduction to symmetry and supersymmetry in quantum field theory
International Nuclear Information System (INIS)
Lopuszanski, J.
1988-01-01
This is a set of lecture notes given by the author at the Universities of Gottingen and Wroclaw. The text presents the axiomatic approach to field theory and studies in depth the concepts of symmetry and supersymmetry and their associated generators, currents and charges. It is intended as a one- semester course for graduate students in the field of mathematical physics and high energy physics. Contents: Introduction; Example of a Classical and Quantum Scalar Free Field Theory; Scene and Subject of the Drama. Axiom 1 and 2; Subject of the Drama; Principle of Relativity. Causality. Axiom 3, 4 and 5; Irreducibility of the Field Algebra and Scattering Theory. Axiom 6. Axiom O; Preliminaries about Physical Symmetries; Currents and Charges; Global Symmetries and Supersymmetries of the S - Matrix; Representations of the Super-Lie Algebra; The Case of Massless Particles; Fermionic Charges; Concluding Remarks
Causality and dispersion relations and the role of the S-matrix in the ongoing research
International Nuclear Information System (INIS)
Schroer, Bert; Freie Univ. , Berlin
2011-01-01
The adaptation of the Kramers-Kronig dispersion relations to the causal localization structure of QFT led to an important project in particle physics, the only one with a successful closure. The same cannot be said about the subsequent attempts to formulate particle physics as a pure S-matrix project. The feasibility of a pure S-matrix approach are critically analyzed and their seri- ous shortcomings are highlighted. Whereas the conceptual/mathematical demands of renormalized perturbation theory are modest and misunderstandings could easily be corrected, the correct understanding about the origin of the crossing property demands the use of the mathematical theory of modular localization and its relation to the thermal KMS condition. These concepts which combine localization, vacuum polarization and thermal properties under the roof of modular theory will be explained and their use in a new constructive (nonperturbative) approach to QFT will be indicated. The S-matrix still plays a predominant role, but different from Heisenberg's and Mandelstam's proposals the new project is not a pure S-matrix approach. (author)
Causality and dispersion relations and the role of the S-matrix in the ongoing research
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert, E-mail: schroer@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Univ. , Berlin (Germany). Inst. fur Theoretische Physik
2011-07-01
The adaptation of the Kramers-Kronig dispersion relations to the causal localization structure of QFT led to an important project in particle physics, the only one with a successful closure. The same cannot be said about the subsequent attempts to formulate particle physics as a pure S-matrix project. The feasibility of a pure S-matrix approach are critically analyzed and their seri- ous shortcomings are highlighted. Whereas the conceptual/mathematical demands of renormalized perturbation theory are modest and misunderstandings could easily be corrected, the correct understanding about the origin of the crossing property demands the use of the mathematical theory of modular localization and its relation to the thermal KMS condition. These concepts which combine localization, vacuum polarization and thermal properties under the roof of modular theory will be explained and their use in a new constructive (nonperturbative) approach to QFT will be indicated. The S-matrix still plays a predominant role, but different from Heisenberg's and Mandelstam's proposals the new project is not a pure S-matrix approach. (author)
An Axiomatic, Unified Representation of Biosystems and Quantum Dynamics
Baianu, I
2004-01-01
An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.
An axiomatic characterization of the Hirsch-index
Woeginger, G.J.
2008-01-01
The Hirsch-index is a well-known index for measuring and comparing the output of scientific researchers. The main contribution of this article is an axiomatic characterization of the Hirsch-index in terms of three natural axioms. Furthermore, two other scientific impact indices (called the w-index
Paired comparisons analysis: an axiomatic approach to ranking methods
Gonzalez-Diaz, J.; Hendrickx, Ruud; Lohmann, E.R.M.A.
2014-01-01
In this paper we present an axiomatic analysis of several ranking methods for general tournaments. We find that the ranking method obtained by applying maximum likelihood to the (Zermelo-)Bradley-Terry model, the most common method in statistics and psychology, is one of the ranking methods that
Nash was a first to axiomatize expected utility
H. Bleichrodt (Han); C. Li (Chen); I. Moscati (Ivan); P.P. Wakker (Peter)
2016-01-01
textabstractNash is famous for many inventions, but it is less known that he, simultaneously with Marschak, also was the first to axiomatize expected utility for risk. In particular, these authors were the first to state the independence condition, a condition that should have been but was not
Entropic Measure of Epistemic Uncertainties in Multibody System Models by Axiomatic Design
Directory of Open Access Journals (Sweden)
Francesco Villecco
2017-06-01
Full Text Available In this paper, the use of the MaxInf Principle in real optimization problems is investigated for engineering applications, where the current design solution is actually an engineering approximation. In industrial manufacturing, multibody system simulations can be used to develop new machines and mechanisms by using virtual prototyping, where an axiomatic design can be employed to analyze the independence of elements and the complexity of connections forming a general mechanical system. In the classic theories of Fisher and Wiener-Shannon, the idea of information is a measure of only probabilistic and repetitive events. However, this idea is broader than the probability alone field. Thus, the Wiener-Shannon’s axioms can be extended to non-probabilistic events and it is possible to introduce a theory of information for non-repetitive events as a measure of the reliability of data for complex mechanical systems. To this end, one can devise engineering solutions consistent with the values of the design constraints analyzing the complexity of the relation matrix and using the idea of information in the metric space. The final solution gives the entropic measure of epistemic uncertainties which can be used in multibody system models, analyzed with an axiomatic design.
International Nuclear Information System (INIS)
Thielman, Jeff; Ge, Ping; Wu, Qiao; Parme, Laurence
2005-01-01
The development of the Generation IV (Gen-IV) nuclear reactors has presented social, technical, and economical challenges to nuclear engineering design and research. To develop a robust, reliable nuclear reactor system with minimal environmental impact and cost, modularity has been gradually accepted as a key concept in designing high-quality nuclear reactor systems. While the establishment and reliability of a nuclear power plant is largely facilitated by the installment of standardized base units, the realization of modularity at the sub-system/sub-unit level in a base unit is still highly heuristic, and lacks consistent, quantifiable measures. In this work, an axiomatic design approach is developed to evaluate and optimize the reactor cavity cooling system (RCCS) of General Atomics' Gas Turbine-Modular Helium Reactor (GT-MHR) nuclear reactor, for the purpose of constructing a quantitative tool that is applicable to Gen-IV systems. According to Suh's axiomatic design theory, modularity is consistently represented by functional independence through the design process. Both qualitative and quantitative measures are developed here to evaluate the modularity of the current RCCS design. Optimization techniques are also used to improve the modularity at both conceptual and parametric level. The preliminary results of this study have demonstrated that the axiomatic design approach has great potential in enhancing modular design, and generating more robust, safer, and less expensive nuclear reactor sub-units
Asymptotic states and the definition of the S-matrix in quantum gravity
International Nuclear Information System (INIS)
Wiesendanger, C
2013-01-01
Viewing gravitational energy–momentum p G μ as equal by observation, but different in essence from inertial energy–momentum p I μ naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski space M 4 . The generalized asymptotic free scalar, Dirac and gauge fields in that theory are canonically quantized, the Fock spaces of stationary states are constructed and the gravitational limit—mapping the gravitational energy–momentum onto the inertial energy–momentum to account for their observed equality—is introduced. Next the S-matrix in quantum gravity is defined as the gravitational limit of the transition amplitudes of asymptotic in- to out-states in the gauge theory of volume-preserving diffeomorphisms. The so-defined S-matrix relates in- and out-states of observable particles carrying gravitational equal to inertial energy–momentum. Finally, generalized Lehmann–Symanzik–Zimmermann reduction formulae for scalar, Dirac and gauge fields are established which allow us to express S-matrix elements as the gravitational limit of truncated Fourier-transformed vacuum expectation values of time-ordered products of field operators of the interacting theory. Together with the generating functional of the latter established in Wiesendanger (2011 arXiv:1103.1012) any transition amplitude can in principle be computed consistently to any order in perturbative quantum gravity. (paper)
Atoms in molecules, an axiomatic approach. I. Maximum transferability
Ayers, Paul W.
2000-12-01
Central to chemistry is the concept of transferability: the idea that atoms and functional groups retain certain characteristic properties in a wide variety of environments. Providing a completely satisfactory mathematical basis for the concept of atoms in molecules, however, has proved difficult. The present article pursues an axiomatic basis for the concept of an atom within a molecule, with particular emphasis devoted to the definition of transferability and the atomic description of Hirshfeld.
Exploitation as the Unequal Exchange of Labour : An Axiomatic Approach
Yoshihara, Naoki; Veneziani, Roberto
2009-01-01
In subsistence economies with general convex technology and rational optimising agents, a new, axiomatic approach is developed, which allows an explicit analysis of the core positive and normative intuitions behind the concept of exploitation. Three main new axioms, called Labour Exploitation in Subsistence Economies , Relational Exploitation , and Feasibility of Non-Exploitation , are presented and it is proved that they uniquely characterise a definition of exploitation conceptually related...
On the axiomatization of some classes of discrete universal integrals
Czech Academy of Sciences Publication Activity Database
Klement, E.P.; Mesiar, Radko
2012-01-01
Roč. 28, č. 1 (2012), s. 13-18 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional research plan: CEZ:AV0Z10750506 Keywords : Comonotone modularity * Copula * Universal integral Subject RIV: BA - General Mathematics Impact factor: 4.104, year: 2012 http://library.utia.cas.cz/separaty/2012/E/mesiar-on the axiomatization of some classes of discrete universal integrals. pdf
Towards an axiomatic model of fundamental interactions at Planck scale
Kiselev, Arthemy V.
2014-01-01
By exploring possible physical sense of notions, structures, and logic in a class of noncommutative geometries, we try to unify the four fundamental interactions within an axiomatic quantum picture. We identify the objects and algebraic operations which could properly encode the formation and structure of sub-atomic particles, antimatter, annihilation, CP-symmetry violation, mass endowment mechanism, three lepton-neutrino matchings, spin, helicity and chirality, electric charge and electromag...
Perturbative S-matrix for massive scalar fields in global de Sitter space
International Nuclear Information System (INIS)
Marolf, Donald; Srednicki, Mark; Morrison, Ian A
2013-01-01
We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)
A Simple Axiomatization of Nonadditive Expected Utility
R.K. Sarin (Rakesh); P.P. Wakker (Peter)
1992-01-01
textabstractThis paper provides an extension of Savage's subjective expected utility theory for decisions under uncertainty. It includes in the set of events both unambiguous events for which probabilities are additive and ambiguous events for which probabilities are permitted to be nonadditive. The
A simple axiomatization of nonadditive expected utility
Wakker, P.P.; Sarin, R.K.
1992-01-01
This paper provides an extension of Savage's subjective expected utility theory for decisions under uncertainty. It includes in the set of events both unambiguous events for which probabilities are additive as well as ambiguous events for which probabilities are permitted to be nonadditive. The main
On the linear conditions of the axiomatic quantum field theory
International Nuclear Information System (INIS)
Hofmann, G.
1982-01-01
It is shown that the Wightman Kernel is included in a subspace of the algebra of test functions, which is topologically complementable and has no finite codimension. Thus, the existence of tau/sub infinite/ non-continuous Wightman functionals is poved
arXiv The S-matrix Bootstrap II: Two Dimensional Amplitudes
Paulos, Miguel F.; Toledo, Jonathan; van Rees, Balt C.; Vieira, Pedro
2017-11-22
We consider constraints on the S-matrix of any gapped, Lorentz invariant quantum field theory in 1 + 1 dimensions due to crossing symmetry and unitarity. In this way we establish rigorous bounds on the cubic couplings of a given theory with a fixed mass spectrum. In special cases we identify interesting integrable theories saturating these bounds. Our analytic bounds match precisely with numerical bounds obtained in a companion paper where we consider massive QFT in an AdS box and study boundary correlators using the technology of the conformal bootstrap.
Inclusive fitness maximization: An axiomatic approach.
Okasha, Samir; Weymark, John A; Bossert, Walter
2014-06-07
Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of quasi-inclusive fitness maximization can be derived from axioms on an individual׳s 'as if preferences' (binary choices) for the case in which phenotypic effects are additive. Our results help integrate evolutionary theory and rational choice theory, help draw out the behavioural implications of inclusive fitness maximization, and point to a possible way in which evolution could lead organisms to implement it. Copyright © 2014 Elsevier Ltd. All rights reserved.
S-matrix analysis of the baryon electric charge correlation
Lo, Pok Man; Friman, Bengt; Redlich, Krzysztof; Sasaki, Chihiro
2018-03-01
We compute the correlation of the net baryon number with the electric charge (χBQ) for an interacting hadron gas using the S-matrix formulation of statistical mechanics. The observable χBQ is particularly sensitive to the details of the pion-nucleon interaction, which are consistently incorporated in the current scheme via the empirical scattering phase shifts. Comparing to the recent lattice QCD studies in the (2 + 1)-flavor system, we find that the natural implementation of interactions and the proper treatment of resonances in the S-matrix approach lead to an improved description of the lattice data over that obtained in the hadron resonance gas model.
Microlocal study of S-matrix singularity structure
International Nuclear Information System (INIS)
Kawai, Takahiro; Kyoto Univ.; Stapp, H.P.
1975-01-01
Support is adduced for two related conjectures of simplicity of the analytic structure of the S-matrix and related function; namely, Sato's conjecture that the S-matrix is a solution of a maximally over-determined system of pseudo-differential equations, and our conjecture that the singularity spectrum of any bubble diagram function has the conormal structure with respect to a canonical decomposition of the solutions of the relevant Landau equations. This latter conjecture eliminates the open sets of allowed singularities that existing procedures permit. (orig.) [de
Poles of the S matrix for a complex potential
International Nuclear Information System (INIS)
Dabrowski, J.
1996-01-01
Trajectories of S matrix poles in complex k plane are presented for a complex square well potential. A simple rule is given for predicting the effect of an absorptive potential on the location of these poles. copyright 1996 The American Physical Society
S-matrix elements from T-duality
International Nuclear Information System (INIS)
Babaei Velni, Komeil; Garousi, Mohammad R.
2013-01-01
Recently it has been speculated that the S-matrix elements satisfy the Ward identity associated with the T-duality. This indicates that a group of S-matrix elements is invariant under the linear T-duality transformations on the external states. If one evaluates one component of such T-dual multiplet, then all other components may be found by the simple use of the linear T-duality. The assumption that fields must be independent of the Killing coordinate, however, may cause, in some cases, the T-dual multiplet not to be gauge invariant. In those cases, the S-matrix elements contain more than one T-dual multiplet which are intertwined by the gauge symmetry. In this paper, we apply the T-dual Ward identity on the S-matrix element of one RR (p−3)-form and two NSNS states on the world volume of a D p -brane to find its corresponding T-dual multiplet. In the case that the RR potential has two transverse indices, the T-dual multiplet is gauge invariant, however, in the case that it has one transverse index the multiplet is not gauge invariant. We find a new T-dual multiplet in this case by imposing the gauge symmetry. We show that the multiplets are reproduced by explicit calculation, and their low energy contact terms at order α ′2 are consistent with the existing couplings in the literature
The S-matrix for abstract scattering systems
International Nuclear Information System (INIS)
Amrein, W.O.; Pearson, D.B.
1979-01-01
Let S(lambda) be the S-matrix at energy lambda for an abstract scattering system. A bound is derived in terms of the interaction, on integrals of the form ∫ h(lambda)/S(lambda) - I/ 2 sub(HS) dlambda, where /./sub(HS) denotes the Hilbert-Schmidt norm. (Auth.)
Λ < 0 quantum gravity in 2 + 1 dimensions: I. Quantum states and stringy S-matrix
International Nuclear Information System (INIS)
Krasnov, Kirill
2002-01-01
We consider the theory of pure gravity in 2 + 1 dimensions, with negative cosmological constant. The theory contains simple matter in the form of point particles; the latter are classically described as lines of conical singularities. We propose a formalism in which quantum amplitudes for the process involving black holes and point particles are obtained as conformal field theory (CFT) correlation functions on Riemann surfaces X. Point particles are described by the CFT vertex operators; black holes (asymptotic regions) are in correspondence with boundaries of X. We consider two examples: the amplitude for emission of a particle by the BTZ black hole and the amplitude of black-hole creation by two point particles. We then define an inner product between quantum states. The value of this inner product can be interpreted as the amplitude for one set of point particles to go into another set producing black holes. The full particle S-matrix is then given by the sum of all such amplitudes. This S-matrix is that of a non-critical string theory, with the worldsheet CFT being essentially the Liouville theory. Λ < 0 quantum gravity in 2 + 1 dimensions is thus a string theory
Fuzzy Entropy： Axiomatic Definition and Neural Networks Model
Institute of Scientific and Technical Information of China (English)
QINGMing; CAOYue; HUANGTian-min
2004-01-01
The measure of uncertainty is adopted as a measure of information. The measures of fuzziness are known as fuzzy information measures. The measure of a quantity of fuzzy information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. Fuzzy entropy has been focused and studied by many researchers in various fields. In this paper, firstly, the axiomatic definition of fuzzy entropy is discussed. Then, neural networks model of fuzzy entropy is proposed, based on the computing capability of neural networks. In the end, two examples are discussed to show the efficiency of the model.
From outcomes to acts : a non-standard axiomatization of the expected utility principle
Peterson, M.B.
2004-01-01
This paper presents an axiomatization of the principle of maximizing expected utility that does not rely on the independence axiom or sure-thing principle. Perhaps more importantly the new axiomatization is based on an ex ante approach, instead of the standard ex post approach. An ex post approach
Measurement Theory and the Foundations of Utilitarianism
John a. Weymark
2004-01-01
Harsanyi used expected utility theory to provide two axiomatizations of weighted utilitarian rules. Sen (and later, Weymark) has argued that Harsanyi has not, in fact, axiomatized utilitarianism because he has misapplied expected utility theory. Specifically, Sen and Weymark have argued that von Neumann-Morgenstern expected utility theory is an ordinal theory and, therefore, any increasing transform of a von Neumann-Morgenstern utility function is a satisfactory representation of a preference...
Constructing the tree-level Yang-Mills S-matrix using complex factorization
Schuster, Philip C.; Toro, Natalia
2009-06-01
A remarkable connection between BCFW recursion relations and constraints on the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that mutual consistency of different BCFW constructions of four-particle amplitudes generates non-trivial (but familiar) constraints on three-particle coupling constants — these include gauge invariance, the equivalence principle, and the lack of non-trivial couplings for spins > 2. These constraints can also be derived with weaker assumptions, by demanding the existence of four-point amplitudes that factorize properly in all unitarity limits with complex momenta. From this starting point, we show that the BCFW prescription can be interpreted as an algorithm for fully constructing a tree-level S-matrix, and that complex factorization of general BCFW amplitudes follows from the factorization of four-particle amplitudes. The allowed set of BCFW deformations is identified, formulated entirely as a statement on the three-particle sector, and using only complex factorization as a guide. Consequently, our analysis based on the physical consistency of the S-matrix is entirely independent of field theory. We analyze the case of pure Yang-Mills, and outline a proof for gravity. For Yang-Mills, we also show that the well-known scaling behavior of BCFW-deformed amplitudes at large z is a simple consequence of factorization. For gravity, factorization in certain channels requires asymptotic behavior ~ 1/z2.
Constructing the tree-level Yang-Mills S-matrix using complex factorization
International Nuclear Information System (INIS)
Schuster, Philip C.; Toro, Natalia
2009-01-01
A remarkable connection between BCFW recursion relations and constraints on the S-matrix was made by Benincasa and Cachazo in 0705.4305, who noted that mutual consistency of different BCFW constructions of four-particle amplitudes generates non-trivial (but familiar) constraints on three-particle coupling constants - these include gauge invariance, the equivalence principle, and the lack of non-trivial couplings for spins > 2. These constraints can also be derived with weaker assumptions, by demanding the existence of four-point amplitudes that factorize properly in all unitarity limits with complex momenta. From this starting point, we show that the BCFW prescription can be interpreted as an algorithm for fully constructing a tree-level S-matrix, and that complex factorization of general BCFW amplitudes follows from the factorization of four-particle amplitudes. The allowed set of BCFW deformations is identified, formulated entirely as a statement on the three-particle sector, and using only complex factorization as a guide. Consequently, our analysis based on the physical consistency of the S-matrix is entirely independent of field theory. We analyze the case of pure Yang-Mills, and outline a proof for gravity. For Yang-Mills, we also show that the well-known scaling behavior of BCFW-deformed amplitudes at large z is a simple consequence of factorization. For gravity, factorization in certain channels requires asymptotic behavior ∼ 1/z 2 .
On the processes of generation of particles in the extended S-matrix method
International Nuclear Information System (INIS)
Dushutin, N.K.; Mal'tsev, V.M.; Sinegovskij, S.I.
1975-01-01
In order to understand the processes of hadron multiple production very important are integral characteristics, such as the multiplicity distribution function Psub(n)=sigmasub(n)/sigmasub(inel) and correlation parameters of fsub(K). From the shape of distribution and the energy dependence of correlation parameters one may arrive at definite conclusions about the interaction dynamics. In the paper a possibility is studied of obtaining integral characteristics in the S matrix formulation of the quantum field theory. This technique is based on principles of the scattering matrix expanding beyond the energy surface (ES). This follows from the fact that the predetermination of the scattering matrix on the ES does not permit strict to determinate the condition for causality. The expansion of S matrix is performed by introducing some object described by a substantial function rho(x) and interacting with a quantum system, properties of rho(x) being such that the space of asymptotic states remains complete for the expanded matrix also, i.e., the unitarity condition is fulfilled for S(rho) too. The expansion of S-matrix over the function of the interaction insertion g(x) and the transition to the differential equations for the coupling constant allowed investigation of hadron inelastic processes at some simplifying suppositions. Experimental data do not contradict in the main the proposed picture of interactions [ru
Strong factor in the SO(2,3) S matrix
International Nuclear Information System (INIS)
Amado, R.D.; Sparrow, D.A.
1986-01-01
The group theoretic S matrix of Alhassid, Iachello, and Wu is factorable into a product of Coulomb and strong factors. The strong factor is examined with a view to relating it to more fa- miliar potential and phase shift descriptions. We find simple approximate expressions for the phase shifts which are very accurate for heavy-ion-type applications. For peripheral scattering it is possible to obtain simple expressions relating the strong factor to an effective potential
Classical-limit S-matrix for heavy ion scattering
International Nuclear Information System (INIS)
Donangelo, R.J.
1977-01-01
An integral representation for the classical limit of the quantum mechanical S-matrix is developed and applied to heavy-ion Coulomb excitation and Coulomb-nuclear interference. The method combines the quantum principle of superposition with exact classical dynamics to describe the projectile-target system. A detailed consideration of the classical trajectories and of the dimensionless parameters that characterize the system is carried out. The results are compared, where possible, to exact quantum mechanical calculations and to conventional semiclassical calculations. It is found that in the case of backscattering the classical limit S-matrix method is able to almost exactly reproduce the quantum-mechanical S-matrix elements, and therefore the transition probabilities, even for projectiles as light as protons. The results also suggest that this approach should be a better approximation for heavy-ion multiple Coulomb excitation than earlier semiclassical methods, due to a more accurate description of the classical orbits in the electromagnetic field of the target nucleus. Calculations using this method indicate that the rotational excitation probabilities in the Coulomb-nuclear interference region should be very sensitive to the details of the potential at the surface of the nucleus, suggesting that heavy-ion rotational excitation could constitute a sensitive probe of the nuclear potential in this region. The application to other problems as well as the present limits of applicability of the formalism are also discussed
Towards an S-matrix Description of Gravitational Collapse
Amati, D; Veneziano, Gabriele
2008-01-01
Extending our previous results on trans-Planckian ($Gs \\gg \\hbar$) scattering of light particles in quantum string-gravity we present a calculation of the corresponding S-matrix from the region of large impact parameters ($b \\gg G\\sqrt{s}>\\lambda_s$) down to the regime where classical gravitational collapse is expected to occur. By solving the semiclassical equations of a previously introduced effective-action approximation, we find that the perturbative expansion around the leading eikonal result diverges at a critical value $b = b_c = O(G\\sqrt{s})$, signalling the onset of a new (black-hole related?) regime. We then discuss the main features of our explicitly unitary S-matrix -- and of the associated effective metric -- down to (and in the vicinity of) $b = b_c$, and present some ideas and results on its extension all the way to the $ b \\to 0$ region. We find that for $b
Effects of the virtual particle number on the S matrix of the (phi4)/sub 1+1/ model
International Nuclear Information System (INIS)
Kroeger, H.; Girard, R.; Dufour, G.
1987-01-01
We present results of the S matrix in the (phi 4 )/sub 1 + 1/ model obtained by a nonperturbative calculation using a momentum-space discretization technique. First, we calculate the two-body S matrix in the strong-coupling regime (up to λ/sub eff/ = 3), with the restriction of taking into account only two-body virtual particle states. We find agreement with standard perturbation theory obtained by summing up the corresponding graphs to infinite order. We also estimate the effect of mass renormalization. Second, we investigate the effect of including higher virtual particle numbers in two-particle scattering in the cases λ/sub eff/ = (1/6) and λ/sub eff/ = 1. In both cases we find convergence of the S matrix with respect to increasing the virtual-particle-number cutoff
Note on dual superconformal symmetry of the N=4 super Yang-Mills S matrix
International Nuclear Information System (INIS)
Brandhuber, Andreas; Heslop, Paul; Travaglini, Gabriele
2008-01-01
We present a supersymmetric recursion relation for tree-level scattering amplitudes in N=4 super Yang-Mills. Using this recursion relation, we prove that the tree-level S matrix of the maximally supersymmetric theory is covariant under dual superconformal transformations. We further analyze the consequences that the transformation properties of the trees under this symmetry have on those of the loops. In particular, we show that the coefficients of the expansion of generic one-loop amplitudes in a basis of pseudoconformally invariant scalar box functions transform covariantly under dual superconformal symmetry, and in exactly the same way as the corresponding tree-level amplitudes.
Time dependent mean field approximation to the many-body S-matrix
International Nuclear Information System (INIS)
Alhassid, Y.; Koonin, S.E.
1980-01-01
Time-dependent Hartree-Fock (TDHF) calculations are a good description of some inclusive properties of deep inelastic heavy-ion collisions. The first steps toward a mean-field theory that approximates specific elements of the many-body S matrix are presented. A many-body system with pairwise interactions excited by an external, time-dependent one-body field is considered. The methods are used to solve the forced Lipkin model. The moduli of elastic and excitation amplitudes are plotted. 3 figures
Gauge amplitude identities by on-shell recursion relation in S-matrix program
International Nuclear Information System (INIS)
Feng Bo; Huang Rijun; Jia Yin
2011-01-01
Using only the Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relation we prove color-order reversed relation, U(1)-decoupling relation, Kleiss-Kuijf (KK) relation and Bern-Carrasco-Johansson (BCJ) relation for color-ordered gauge amplitude in the framework of S-matrix program without relying on Lagrangian description. Our derivation is the first pure field theory proof of the new discovered BCJ identity, which substantially reduces the color-ordered basis from (n-2)! to (n-3)!. Our proof gives also its physical interpretation as the mysterious bonus relation with 1/(z 2 ) behavior under suitable on-shell deformation for no adjacent pair.
Absence of particle production and factorization of the s-matrix in 1 + 1 dimensional models
International Nuclear Information System (INIS)
Parke, S.
1980-01-01
In massive, 1 + 1 dimensional, local, quantum field theories the existence of two conserved charges is shown to be a sufficient condition for the absence of particle production and factorization of the s-matrix. These charges must commute and be integrals of local current densities. Their transformation properties under the Lorentz group must be different and also different from the transformation properties under the Lorentz group must be different and also different from the transformation properties pf a vector or a scalar. Also, they must not annihilate any single-particle momentum eigenstate. (orig.)
LAMBDA < 0 quantum gravity in 2 + 1 dimensions: I. Quantum states and stringy S-matrix
Krasnov, K V
2002-01-01
We consider the theory of pure gravity in 2 + 1 dimensions, with negative cosmological constant. The theory contains simple matter in the form of point particles; the latter are classically described as lines of conical singularities. We propose a formalism in which quantum amplitudes for the process involving black holes and point particles are obtained as conformal field theory (CFT) correlation functions on Riemann surfaces X. Point particles are described by the CFT vertex operators; black holes (asymptotic regions) are in correspondence with boundaries of X. We consider two examples: the amplitude for emission of a particle by the BTZ black hole and the amplitude of black-hole creation by two point particles. We then define an inner product between quantum states. The value of this inner product can be interpreted as the amplitude for one set of point particles to go into another set producing black holes. The full particle S-matrix is then given by the sum of all such amplitudes. This S-matrix is that o...
Energy Technology Data Exchange (ETDEWEB)
Requate, A
2007-03-15
Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)
International Nuclear Information System (INIS)
Requate, A.
2007-03-01
Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)
Fuzzy Axiomatic Design approach based green supplier selection
DEFF Research Database (Denmark)
Kannan, Devika; Govindan, Kannan; Rajendran, Sivakumar
2015-01-01
proposes a multi-criteria decision-making (MCDM) approach called Fuzzy Axiomatic Design (FAD) to select the best green supplier for Singapore-based plastic manufacturing company. At first, the environmental criteria was developed along with the traditional criteria based on the literature review......Abstract Green Supply Chain Management (GSCM) is a developing concept recently utilized by manufacturing firms of all sizes. All industries, small or large, seek improvements in the purchasing of raw materials, manufacturing, allocation, transportation efficiency, in curbing storage time, importing...... responsible in addition to being efficiently managed. A significant way to implement responsible GSCM is to reconsider, in innovative ways, the purchase and supply cycle, and a preliminary step would be to ensure that the supplier of goods successfully incorporates green criteria. Therefore, this paper...
Mechanical design of an electronic control unit using axiomatic principles
Directory of Open Access Journals (Sweden)
Cazacu Vlad
2017-01-01
Full Text Available If the engine of the car can be considered as the heart, then the E.C.U’s represents the brain of the car. Electronic control units (E.C.U’s are electronic devices which control the way different components of a car (engine, windows, airbags, etc. react in some situations (overheating, button pressed by a passenger, crash, etc.. Axiomatic design is a set of principles that theorizes the act of conceiving a new project. Based on two axiom this method comes into designers help, giving them the option to reach in a short period of time a fully functional and compliant product without supporting the design of the product on chance, past experiences or “try and fail” principle.
Schmidt, Ulrich; Zank, Horst
2010-01-01
In previous models of (cumulative) prospect theory reference-dependence of preferences is imposed beforehand and the location of the reference point is exogenously determined. This paper provides an axiomatization of a new specification of cumulative prospect theory, termed endogenous prospect theory, where reference-dependence is derived from preference conditions and a unique reference point arises endogenously.
Directory of Open Access Journals (Sweden)
Ramin Zahedi
2017-09-01
Full Text Available In this article, as a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic (matrix formalism based on the ring theory and Clifford algebras (presented in Section 2, “it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the fundamental forces of nature (represented by a set of two definite classes of general covariant massive field equations, with new matrix formalisms, are derived uniquely from only a very few axioms.” In agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic energy-momentum can only take rational values. In essence, the main scheme of this new mathematical axiomatic approach to the fundamental laws of nature is as follows: First, based on the assumption of the rationality of D-momentum and by linearization (along with a parameterization procedure of the Lorentz invariant energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible with certain Clifford and symmetric algebras is derived. Then by an initial quantization (followed by a basic procedure of minimal coupling to space-time geometry of these determined systems of linear equations, a set of two classes of general covariant massive (tensor field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras is derived uniquely as well.
The amplitude of quantum field theory
International Nuclear Information System (INIS)
Medvedev, B.V.; Pavlov, V.P.; Polivanov, M.K.; Sukhanov, A.D.
1989-01-01
General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number
S-matrix, Feynman zigzag and Einstein correlation
International Nuclear Information System (INIS)
Costa de Beauregard, O.
1978-01-01
An inherent binding between Einstein correlations and the S-matrix formalism entails full relativistic covariance, complete time symmetry, and spacelike connexions via Feynman zigzags. The relay is in the past for predictive correlations between future measurements, and in the future for retrodictive correlations between past preparations (Pflegor and Mandel). An analogy and a partial binding exist between intrinsic symmetry together with factlike asymmetry of (1) 'blind statistical' prediction and retrodiction (retarded and advanced waves, information as cognizance and as will) and (2) positive and negative frequencies (particles and antiparticles). As advanced waves are required for completeness of expansions, 'antiphysics' obeying blind statistical retrodiction should show up in appropriate contexts, 'parapsychology' being submitted as one of them. (Auth.)
International Nuclear Information System (INIS)
Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun
2009-01-01
A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems
A Road Map for Knowledge Management Systems Design Using Axiomatic Design Approach
Directory of Open Access Journals (Sweden)
Houshmand Mahmoud
2017-01-01
Full Text Available Successful design and implementation of knowledge management systems have been the main concern of many researchers. It has been reported that more than 50% of knowledge management systems have failed, therefore, it is required to seek for a new and comprehensive scientific approach to design and implement it. In the design and implementation of a knowledge management system, it is required to know ’what we want to achieve’ and ’how and by what processes we will achieve it’. A literature review conducted and axiomatic design theory selected for this purpose. For the first time, this paper develops a conceptual design of knowledge management systems by means of a hierarchical structure, composed of ’Functional Requirements’ (FRs, ’Design Parameters’ (DPs, and ’Process Variables’ (PVs. The intersection of several studies conducted in the field of knowledge management systems has been used to design the knowledge management model. It reveals that six essential bases of knowledge management are organizational culture, organizational structure, human resources, management and leadership, information technology, and the external environment of the organization; that are represented as top DPs in the structure of the model. These essential factors are decomposed to lower levels by means of zigzagging. The model implemented in Tehran Urban and Suburban Railway Operation Corporation (TUSROC and the results were very promising. The most important result of this study is a roadmap to design successful and efficient knowledge management systems.
Design evaluation of emergency core cooling systems using Axiomatic Design
Energy Technology Data Exchange (ETDEWEB)
Heo, Gyunyoung [Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)]. E-mail: gheo@mit.edu; Lee, Song Kyu [Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)
2007-01-15
In designing nuclear power plants (NPPs), the evaluation of safety is one of the important issues. As a measure for evaluating safety, this paper proposes a methodology to examine the design process of emergency core cooling systems (ECCSs) in NPPs using Axiomatic Design (AD). This is particularly important for identifying vulnerabilities and creating solutions. Korean Advanced Power Reactor 1400 MWe (APR1400) adopted the ECCS, which was improved to meet the stronger safety regulations than that of the current Optimized Power Reactor 1000 MWe (OPR1000). To improve the performance and safety of the ECCS, the various design strategies such as independency or redundancy were implemented, and their effectiveness was confirmed by calculating core damage frequency. We suggest an alternative viewpoint of evaluating the deployment of design strategies in terms of AD methodology. AD suggests two design principles and the visualization tools for organizing design process. The important benefit of AD is that it is capable of providing suitable priorities for deploying design strategies. The reverse engineering driven by AD has been able to show that the design process of the ECCS of APR1400 was improved in comparison to that of OPR1000 from the viewpoint of the coordination of design strategies.
Applications of Axiomatic Design in Developing Nuclear Systems
Energy Technology Data Exchange (ETDEWEB)
Heo, Gyunyoung [Kyung Hee University, Seoul (Korea, Republic of)
2007-10-15
The first step of designing nuclear systems starts with the identification of the top-level requirements given by stake holders and regulatory authorities. A detailed design of structure, system and component then follows. Design is divided into two processes: 'synthesis' and 'analysis.' While synthesis is the process of decision making on parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process, particularly of a conceptual stage, are never completely corrected in the analysis process, which is more serious in designing complex safety critical systems such as nuclear power plants. It should be also noted that we normally believe that synthesis is only driven by engineers' heuristic knowledge. This paper proposes the applications of Axiomatic Design (AD), which is a design management tool as slightly opposed to this conventional view. I hypothesize that the design management using design axioms reduces uncertainty and subjectivity particularly at a conceptual phase so that a safer nuclear system can be developed while reducing cost in view of the system's entire life cycle. I will describe the notion of AD and introduce a few case studies.
New symmetries for the gravitational S-matrix
International Nuclear Information System (INIS)
Campiglia, Miguel; Laddha, Alok
2015-01-01
In http://dx.doi.org/10.1103/PhysRevD.90.124028 we proposed a generalization of the BMS group G which is a semi-direct product of supertranslations and smooth diffeomorphisms of the conformal sphere. Although an extension of BMS, G is a symmetry group of asymptotically flat space times. By taking G as a candidate symmetry group of the quantum gravity S-matrix, we argued that the Ward identities associated to the generators of Diff(S 2 ) were equivalent to the Cachazo-Strominger subleading soft graviton theorem. Our argument however was based on a proposed definition of the Diff(S 2 ) charges which we could not derive from first principles as G does not have a well defined action on the radiative phase space of gravity. Here we fill this gap and provide a first principles derivation of the Diff(S 2 ) charges. The result of this paper, in conjunction with the results of http://arxiv.org/abs/1401.7026http://dx.doi.org/10.1103/PhysRevD.90.124028 prove that the leading and subleading soft theorems are equivalent to the Ward identities associated to G.
arXiv The S-matrix Bootstrap I: QFT in AdS
Paulos, Miguel F.; Toledo, Jonathan; van Rees, Balt C.; Vieira, Pedro
2017-11-21
We propose a strategy to study massive Quantum Field Theory (QFT) using conformal bootstrap methods. The idea is to consider QFT in hyperbolic space and study correlation functions of its boundary operators. We show that these are solutions of the crossing equations in one lower dimension. By sending the curvature radius of the background hyperbolic space to infinity we expect to recover flat-space physics. We explain that this regime corresponds to large scaling dimensions of the boundary operators, and discuss how to obtain the flat-space scattering amplitudes from the corresponding limit of the boundary correlators. We implement this strategy to obtain universal bounds on the strength of cubic couplings in 2D flat-space QFTs using 1D conformal bootstrap techniques. Our numerical results match precisely the analytic bounds obtained in our companion paper using S-matrix bootstrap techniques.
A Qualitative Linear Utility Theory for Spohn's Theory of Epistemic Beliefs
Giang, Phan H.; Shenoy, Prakash P.
2013-01-01
In this paper, we formulate a qualitative "linear" utility theory for lotteries in which uncertainty is expressed qualitatively using a Spohnian disbelief function. We argue that a rational decision maker facing an uncertain decision problem in which the uncertainty is expressed qualitatively should behave so as to maximize "qualitative expected utility." Our axiomatization of the qualitative utility is similar to the axiomatization developed by von Neumann and Morgenstern for probabilistic l...
Factorizable S-matrix for SO(D)/SO(2) circle times SO(D - 2) non-linear σ models with fermions
International Nuclear Information System (INIS)
Abdalla, E.; Lima-Santos, A.
1988-01-01
The authors compute the exact S matrix for the non-linear sigma model with symmetry SO(D)/SO(2) circle times SO(D-2) coupled to fermions in a minimal or supersymmetric way. The model has some relevance in string theory with non-zero external curvature
Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics.
Corry, Leo
2018-04-28
The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Hilbert's sixth problem: between the foundations of geometry and the axiomatization of physics
Corry, Leo
2018-04-01
The sixth of Hilbert's famous 1900 list of 23 problems was a programmatic call for the axiomatization of the physical sciences. It was naturally and organically rooted at the core of Hilbert's conception of what axiomatization is all about. In fact, the axiomatic method which he applied at the turn of the twentieth century in his famous work on the foundations of geometry originated in a preoccupation with foundational questions related with empirical science in general. Indeed, far from a purely formal conception, Hilbert counted geometry among the sciences with strong empirical content, closely related to other branches of physics and deserving a treatment similar to that reserved for the latter. In this treatment, the axiomatization project was meant to play, in his view, a crucial role. Curiously, and contrary to a once-prevalent view, from all the problems in the list, the sixth is the only one that continually engaged Hilbet's efforts over a very long period of time, at least between 1894 and 1932. This article is part of the theme issue `Hilbert's sixth problem'.
Axiomatizations of Banzhaf Permisson Values for Games with a Hierarchical Permission Structure.
van den Brink, J.R.
2010-01-01
In games with a permission structure it is assumed that players in a cooperative transferable utility game are hierarchically ordered in the sense that there are players that need permission from other players before they are allowed to cooperate. We provide axiomatic characterizations of Banzhaf
Hilbertian quantum theory as the theory of complementarity
International Nuclear Information System (INIS)
Lahti, P.J.
1983-01-01
It is demonstrated that the notion of complementary physical quantities assumes the possibility of performing ideal first-kind measurements of such quantities. This then leads to an axiomatic reconstruction of the Hilbertian quantum theory based on the complementarity principle and on its connection with the measurement theoretical idealization known as the projection postulate. As the notion of complementary physical quantities does not presuppose the notion of probability, the given axiomatic reconstruction reveals complementarity as an essential reason for the irreducibly probabilistic nature of the quantum theory. (author)
Z4-symmetric factorized S-matrix in two space-time dimensions
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1979-01-01
The factorized S-matrix with internal symmetry Z 4 is constructed in two space-time dimensions. The two-particle amplitudes are obtained by means of solving the factorization, unitarity and analyticity equations. The solution of factorization equations can be expressed in terms of elliptic functions. The S-matrix cotains the resonance poles naturally. The simple formal relation between the general factorized S-matrices and the Baxter-type lattice transfer matrices is found. In the sense of this relation the Z 4 -symmetric S-matrix corresponds to the Baxter transfer matrix itself. (orig.)
Logical frameworks for truth and abstraction an axiomatic study
Cantini, A
1996-01-01
This English translation of the author's original work has been thoroughly revised, expanded and updated. The book covers logical systems known as type-free or self-referential. These traditionally arise from any discussion on logical and semantical paradoxes. This particular volume, however, is not concerned with paradoxes but with the investigation of type-free sytems to show that: (i) there are rich theories of self-application, involving both operations and truth which can serve as foundations for property theory and formal semantics; (ii) these theories provide a new outlook on classical
Minimal set of auxiliary fields and S-matrix for extended supergravity
Energy Technology Data Exchange (ETDEWEB)
Fradkin, E S; Vasiliev, M A [Physical Lebedev Institute - Moscow
1979-05-19
Minimal set of auxiliary fields for linearized SO(2) supergravity and one-parameter extension of the minimal auxiliary fields in the SO(1) supergravity are constructed. The expression for the S-matrix in SO(2) supergravity are given.
Design of a nuclear fuel rod support grid using axiomatic design
International Nuclear Information System (INIS)
Song, Kee Nam; Yoon, Kyung Ho; Kang, Byung Soo; Park, Gyung Jin; Choi, Sung Kyoo
2002-01-01
Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design
The Automatic Integration of Folksonomies with Taxonomies Using Non-axiomatic Logic
Geldart, Joe; Cummins, Stephen
Cooperative tagging systems such as folksonomies are powerful tools when used to annotate information resources. The inherent power of folksonomies is in their ability to allow casual users to easily contribute ad hoc, yet meaningful, resource metadata without any specialist training. Older folksonomies have begun to degrade due to the lack of internal structure and from the use of many low quality tags. This chapter describes a remedy for some of the problems associated with folksonomies. We introduce a method of automatic integration and inference of the relationships between tags and resources in a folksonomy using non-axiomatic logic. We test this method on the CiteULike corpus of tags by comparing precision and recall between it and standard keyword search. Our results show that non-axiomatic reasoning is a promising technique for integrating tagging systems with more structured knowledge representations.
Complete axiomatization of the stutter-invariant fragment of the linear time µ-calculus
Gheerbrant, A.
2010-01-01
The logic µ(U) is the fixpoint extension of the "Until"-only fragment of linear-time temporal logic. It also happens to be the stutter-invariant fragment of linear-time µ-calculus µ(◊). We provide complete axiomatizations of µ(U) on the class of finite words and on the class of ω-words. We introduce
Space-time S-matrix and flux tube S-matrix II. Extracting and matching data
International Nuclear Information System (INIS)
Basso, Benjamin; Sever, Amit; Vieira, Pedro
2014-01-01
We elaborate on a non-perturbative formulation of scattering amplitudes/null polygonal Wilson loops in planar N=4 Super-Yang-Mills theory. It allows one to compute a precise IR finite ratio of scattering amplitudes that captures all the conformally invariant data of interest. Our construction is based on a decomposition of the dual Wilson loops into elementary building blocks named pentagon transitions. This discussion expands on a previous letter of the authors where these transitions were introduced and analyzed for the so-called gluonic excitations. In this paper we revisit these transitions and extend the analysis to the sector of scalar excitations. We restrict ourselves to the single particle transitions and bootstrap their finite coupling expressions using a set of axioms. Besides these considerations, the main focus of the paper is on the extraction of perturbative data from scattering amplitudes at weak coupling and its comparison against the proposed pentagon transitions. We present several tests for both the hexagon and heptagon (MHV and NMHV) amplitudes up to two- and three-loop orders. In attached notebooks we provide explicit higher-loop predictions obtained from our method
Axiomatic Ontology Learning Approaches for English Translation of the Meaning of Quranic Texts
Directory of Open Access Journals (Sweden)
Saad Saidah
2017-01-01
Full Text Available Ontology learning (OL is the computational task of generating a knowledge base in the form of an ontology, given an unstructured corpus in natural language (NL. While most works in the field of ontology learning have been primarily based on a statistical approach to extract lightweight OL, very few attempts have been made to extract axiomatic OL (called heavyweight OL from NL text documents. Axiomatic OL supports more precise formal logic-based reasoning when compared to lightweight OL. Lexico-syntactic pattern matching and statisticsal one cannot lead to very accurate learning, mostly because of several linguistic nuances in the NL. Axiomatic OL is an alternative methodology that has not been explored much, where a deep linguistics analysis in computational linguistics is used to generate formal axioms and definitions instead of simply inducing a taxonomy. The ontology that is created not only stores the information about the application domain in explicit knowledge, but also can deduce the implicit knowledge from this ontology. This research will explore the English translation of the meaning of Quranic texts.
Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals
Directory of Open Access Journals (Sweden)
Gabriele Arcidiacono
2017-01-01
Full Text Available Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system.
Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals
Arcidiacono, Gabriele; Matt, Dominik T.; Rauch, Erwin
2017-01-01
Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system. © 2017 Gabriele Arcidiacono et al.
The Axiomatic Basis of Anticipated Utility: A Clarification
J. Quiggin (John); P.P. Wakker (Peter)
1994-01-01
textabstractQuiggin (J. Econ. Behav. Organization3 (1982), 323-345) introduced anticipated ("rank-dependent") utility theory into decision making under risk. Questions have been raised about mathematical aspects of Quiggin′s analysis. This paper settles these questions and shows that a minor
Energy Technology Data Exchange (ETDEWEB)
Kahraman, Cengiz; Kaya, Ihsan; Cebi, Selcuk [Istanbul Technical University, Department of Industrial Engineering, 34367, Macka-Istanbul (Turkey)
2009-10-15
Renewable energy is the energy generated from natural resources such as sunlight, wind, rain, tides and geothermal heat which are renewable. Energy resources are very important in perspective of economics and politics for all countries. Hence, the selection of the best alternative for any country takes an important role for energy investments. Among decision-making methodologies, axiomatic design (AD) and analytic hierarchy process (AHP) are often used in the literature. The fuzzy set theory is a powerful tool to treat the uncertainty in case of incomplete or vague information. In this paper, fuzzy multicriteria decision- making methodologies are suggested for the selection among renewable energy alternatives. The first methodology is based on the AHP which allows the evaluation scores from experts to be linguistic expressions, crisp, or fuzzy numbers, while the second is based on AD principles under fuzziness which evaluates the alternatives under objective or subjective criteria with respect to the functional requirements obtained from experts. The originality of the paper comes from the fuzzy AD application to the selection of the best renewable energy alternative and the comparison with fuzzy AHP. In the application of the proposed methodologies the most appropriate renewable energy alternative is determined for Turkey. (author)
Commutative monads as a theory of distributions
DEFF Research Database (Denmark)
Kock, Anders
2012-01-01
It is shown how the theory of commutative monads provides an axiomatic framework for several aspects of distribution theory in a broad sense, including probability distributions, physical extensive quantities, and Schwartz distributions of compact support. Among the particular aspects considered...... here are the notions of convolution, density, expectation, and conditional probability....
Shan, Xiao; Xiahou, Chengkui; Connor, J N L
2018-01-03
In earlier research, we have demonstrated that broad "hidden" rainbows can occur in the product differential cross sections (DCSs) of state-to-state chemical reactions. Here we ask the question: can pronounced and localized rainbows, rather than broad hidden ones, occur in reactive DCSs? Further motivation comes from recent measurements by H. Pan and K. Liu, J. Phys. Chem. A, 2016, 120, 6712, of a "bulge" in a reactive DCS, which they conjecture is a rainbow. Our theoretical approach uses a "weak" version of Heisenberg's scattering matrix program (wHSMP) introduced by X. Shan and J. N. L. Connor, Phys. Chem. Chem. Phys., 2011, 13, 8392. This wHSMP uses four general physical principles for chemical reactions to suggest simple parameterized forms for the S matrix; it does not employ a potential energy surface. We use a parameterization in which the modulus of the S matrix is a smooth-step function of the total angular momentum quantum number, J, and (importantly) its phase is a cubic polynomial in J. We demonstrate for a Legendre partial wave series (PWS) the existence of pronounced rainbows, supernumerary rainbows, and other interference effects, in reactive DCSs. We find that reactive rainbows can be more complicated in their structure than the familiar rainbows of elastic scattering. We also analyse the angular scattering using Nearside-Farside (NF) PWS theory and NF PWS Local Angular Momentum (LAM) theory, including resummations of the PWS. In addition, we apply full and NF asymptotic (semiclassical) rainbow theories to the PWS - in particular, the uniform Airy and transitional Airy approximations for the farside scattering. This lets us prove that structure in the DCSs are indeed rainbows, supernumerary rainbows as well as other interference effects.
The AdS5xS5 superstring worldsheet S matrix and crossing symmetry
International Nuclear Information System (INIS)
Janik, Romuald A.
2006-01-01
An S matrix satisfying the Yang-Baxter equation with symmetries relevant to the AdS 5 xS 5 superstring recently has been determined up to an unknown scalar factor. Such scalar factors are typically fixed using crossing relations; however, due to the lack of conventional relativistic invariance, in this case its determination remained an open problem. In this paper we propose an algebraic way to implement crossing relations for the AdS 5 xS 5 superstring worldsheet S matrix. We base our construction on a Hopf-algebraic formulation of crossing in terms of the antipode and introduce generalized rapidities living on the universal cover of the parameter space which is constructed through an auxillary, coupling-constant dependent, elliptic curve. We determine the crossing transformation and write functional equations for the scalar factor of the S matrix in the generalized rapidity plane
Three-body forces for electrons by the S-matrix method
International Nuclear Information System (INIS)
Margaritelli, R.
1989-01-01
A electromagnetic three-body potential between eletrons is derived by the S-matrix method. This potential can be compared up to a certain point with other electromagnetic potentials (obtained by other methods) encountered in the literature. However, since the potential derived here is far more complete than others, this turns direct comparison with the potentials found in the literature somewhat difficult. These calculations allow a better understanding of the S-matrix method as applied to problems which involve the calculations of three-body nuclear forces (these calculations are performed in order to understand the 3 He form factor). Furthermore, these results enable us to decide between two discrepant works which derive the two-pion exchange three-body potential, both by the S-matrix method. (author) [pt
Solution of the inverse scattering problem at fixed energy with non-physical S matrix elements
International Nuclear Information System (INIS)
Eberspaecher, M.; Amos, K.; Apagyi, B.
1999-12-01
The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier method. A set of S matrix elements calculated from a realistic analytic optical model potential serves as input data. It is demonstrated that the quality of the inversion potential can be improved by including non-physical S matrix elements to half, quarter and eighth valued partial waves if the original set does not contain enough information to determine the interaction potential. We demonstrate that results can be very sensitive to the choice of those non-physical S matrix values both with the analytic potential model and in a real application in which the experimental cross section for the symmetrical scattering system of 12 C+ 12 C at E=7.998 MeV is analyzed
Direct integration of the S-matrix applied to rigorous diffraction
International Nuclear Information System (INIS)
Iff, W; Lindlein, N; Tishchenko, A V
2014-01-01
A novel Fourier method for rigorous diffraction computation at periodic structures is presented. The procedure is based on a differential equation for the S-matrix, which allows direct integration of the S-matrix blocks. This results in a new method in Fourier space, which can be considered as a numerically stable and well-parallelizable alternative to the conventional differential method based on T-matrix integration and subsequent conversions from the T-matrices to S-matrix blocks. Integration of the novel differential equation in implicit manner is expounded. The applicability of the new method is shown on the basis of 1D periodic structures. It is clear however, that the new technique can also be applied to arbitrary 2D periodic or periodized structures. The complexity of the new method is O(N 3 ) similar to the conventional differential method with N being the number of diffraction orders. (fast track communication)
Directory of Open Access Journals (Sweden)
Deljavan R
2012-07-01
Full Text Available Reza Deljavan,1 Homayoun Sadeghi-Bazarganim,2,3 Nasrin Fouladim,4 Shahnam Arshi,5 Reza Mohammadi61Injury Epidemiology and Prevention Research Center, 2Neuroscience Research Center, Department of Statistics and Epidemiology, Tabriz University of Medical Sciences, Tabriz, Iran; 3Public Health Department, Karolinska Institute, Stockholm, Sweden; 4Ardabil University of Medical Sciences, Ardabil, Iran; 5Shahid Beheshti University of Medical Sciences, Tehran, Iran; 6Public Health Department, Karolinska Institute, Stockholm, SwedenBackground: Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon’s matrix through qualitative research methods to better understand people’s perceptions about burn injuries.Methods: This study applied Haddon’s matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon’s matrix was used to develop an interview guide and also through the analysis phase.Results: The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education, pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators. This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans.Conclusion: Haddon’s matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon’s matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries
S-matrix formulation of thermodynamics with N-body scatterings
Energy Technology Data Exchange (ETDEWEB)
Lo, Pok Man [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Extreme Matter Institute EMMI, GSI, Darmstadt (Germany)
2017-08-15
We apply a phase space expansion scheme to incorporate the N-body scattering processes in the S-matrix formulation of statistical mechanics. A generalized phase shift function suitable for studying the thermal contribution of N → N processes is motivated and examined in various models. Using the expansion scheme, we revisit how the hadron resonance gas model emerges from the S-matrix framework, and consider an example of structureless scattering in which the phase shift function can be exactly worked out. Finally we analyze the influence of dynamics on the phase shift function in a simple example of 3- and 4-body scattering. (orig.)
Complete S-matrix of the O(2N) Gross-Neveu model
International Nuclear Information System (INIS)
Karowski, M.; Thun, H.J.
1980-11-01
We present the complete S-matrix of the O(2N) Gross-Neveu model including kinks, elementary fermions, and higher bound states. In addition to the S-matrix factorization, unitarity, and crossing conditions we make essential use of constraints which follow from the fact that particles in the spectrum are bound states of each other. A consistent solution can only be obtained if the kinks obey generalized statistics. Remarkably, some quantities related to this such as 'spins' and Klein factors show Bott periodicity. (orig.)
On single-time reduction in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.
1984-01-01
It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory
Improving Reliability of a fire-fighting pump set with Axiomatic Design
Directory of Open Access Journals (Sweden)
Arcidiacono Gabriele
2017-01-01
Full Text Available This paper introduces a case study featuring Axiomatic Design and Multi-Level Hierarchical model (MLH applied to redesign a fire-fighting pump set. In particular, two different design concepts are presented to be applied to the supporting frame of the system to limit a vibration problem that can arise during potential malfunctioning of the fire-fighting pump. The selection of the best design has been carried out through reliability evaluation process and through the cost of failure based on the MLH model.
Local distortion techniques and unitarity of the S-matrix for the 2-body problem
International Nuclear Information System (INIS)
Babbitt, D.; Balslev, E.
1976-01-01
The two-body S-matrix for an interaction with exponential decay at infinity is defined in a time-independent way and its unitarity is proved directly by local distortion techniques. Complete sets of incoming and outgoing states or delicate resolvent estimates are not needed for the proof
Liu, Baoding
2015-01-01
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, c...
A philosophical assessment of decision theory
DEFF Research Database (Denmark)
Jensen, Karsten Klint
2012-01-01
modern axiomatic decision theory is an instance of fundamental measurement theory. This is then followed by a thorough introduction to Savage’s version of modern axiomatic decision theory. Turning to the interpretation of the theory, the maxim “maximize expected utility,” which stems from classical...... assignments. In the modern approach, the action guidance is to conform to the axioms. Analyzing decision theory as a theory of good, the maxim “maximize expected goodness” repeats the misunderstanding. Moreover, it implies risk neutrality about good and a cardinal measure of good, and both are problematic......The significance of decision theory consists of giving an account of rational decision making under circumstances of uncertainty. This question is important both from the point of view of what is in our personal interest and from the point of view of what is ethically right. But decision theory...
Dynamic Order Algebras as an Axiomatization of Modal and Tense Logics
Chajda, Ivan; Paseka, Jan
2015-12-01
The aim of the paper is to introduce and describe tense operators in every propositional logic which is axiomatized by means of an algebra whose underlying structure is a bounded poset or even a lattice. We introduce the operators G, H, P and F without regard what propositional connectives the logic includes. For this we use the axiomatization of universal quantifiers as a starting point and we modify these axioms for our reasons. At first, we show that the operators can be recognized as modal operators and we study the pairs ( P, G) as the so-called dynamic order pairs. Further, we get constructions of these operators in the corresponding algebra provided a time frame is given. Moreover, we solve the problem of finding a time frame in the case when the tense operators are given. In particular, any tense algebra is representable in its Dedekind-MacNeille completion. Our approach is fully general, we do not relay on the logic under consideration and hence it is applicable in all the up to now known cases.
An MEG signature corresponding to an axiomatic model of reward prediction error.
Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J
2012-01-02
Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Gülşen AKMAN
2016-02-01
Full Text Available In the world and in our country, most of urban transportation is performed by public transportation. Public transportation is a system which provides transportation easiness and opportunity to people, not to vehicles. Therefore, giving priority to public transportation system is necessary in organizing urban transportation. In this study, in order to reduce traffic intensity and to facilitate passenger transportation in Izmit urban transportation, It is tried to determine appropriate public transportation system. For this, firstly, alternatives which could be used for public transportation were determined. These alternatives are metro, metrobus, tram, light rail system and monorail. Afterwards, the variables affecting decision making about public transportation were determined. These variables are cost, transportation line features, vehicle characteristics, sensitivity to environment and customer satisfaction. Lastly, most appropriate public transportation system is proposed by using the axiomatic design method. As a result, light trail system and metrobus are determined as the most appropriate alternatives for Izmit public transportation system.Keywords: Urban transportation, Multi criteria decision making, Axiomatic design
Comments on "There is no axiomatic system for the quantum theory"
de Barros, J. Acacio
2012-01-01
In a recent paper, Nagata [1] claims to derive inconsistencies from quantum mechanics. In this paper, we show that the inconsistencies do not come from quantum mechanics, but from extra assumptions about the reality of observables.
International Nuclear Information System (INIS)
Ageev, S M
2007-01-01
The Noebeling space N k 2k+1 , a k-dimensional analogue of the Hilbert space, is considered; this is a topologically complete separable (that is, Polish) k-dimensional absolute extensor in dimension k (that is, AE(k)) and a strongly k-universal space. The conjecture that the above-listed properties characterize the Noebeling space N k 2k+1 in an arbitrary finite dimension k is proved. In the first part of the paper a full axiom system of the Noebeling spaces is presented and the problem of the improvement of a partition connectivity is solved on its basis. Bibliography: 29 titles.
A S-matrix-like approximation in the charged particle scattering by the hydrogen atom
International Nuclear Information System (INIS)
Mignaco, J.A.; Tort, A.C.
1979-01-01
The Born approximation for charged particle scattering by the hydrogen atom is unfit at low energies. From a S-matrix-like consideration on the dominance of the neighbour singularities, the calculation of other contributions is suggested. The inclusion of bound states is made, following Eden's and his colaborators' ideas, which are described by their interest and likeness with procedures in the intermediate energy physics. (Author) [pt
Gauge dependence of world lines and invariance of the S-matrix in relativistic classical mechanics
International Nuclear Information System (INIS)
Molotkov, V.V.; Todorov, I.T.
1980-07-01
The notion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend in general (in the presence of interaction) on the choice of the equal-time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a two-particle system and the (classical) S-matrix are indepent of this choice. (author)
An introduction to conformal field theory in two dimensions and string theory
International Nuclear Information System (INIS)
Wadia, S.R.
1989-01-01
This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields
The exact S -matrix for an osp(2 vertical bar 2) disordered system
International Nuclear Information System (INIS)
Bassi, Zorawar S.; LeClair, Andre
2000-01-01
We study a two-dimensional disordered system consisting of Dirac fermions coupled to a scalar potential. This model is closely related to a more general disordered system that has been introduced in conjunction with the integer quantum Hall transition. After disorder averaging, the interaction can be written as a marginal osp(2 vertical bar 2) current-current perturbation. The osp(2 vertical bar 2) current-current model in turn can be viewed as the fully renormalized version of an osp(2 vertical bar 2) (1) Toda-type system (at the marginal point). We build nonlocal charges for the Toda system satisfying the U q [osp(2 vertical bar 2) (1) ] quantum superalgebra. The corresponding quantum group symmetry is used to construct a Toda S -matrix for the vector representation. We argue that in the marginal (or rational) limit, this S -matrix gives the exact (Yangian symmetric) physical S -matrix for the fundamental 'solitons' of the osp(2 vertical bar 2) current-current model
On the exact S-matrix from CP sup(n-1) and SU(n) chiral Thirring model
International Nuclear Information System (INIS)
Abdalla, E.; Abdalla, M.C.B.
1980-03-01
The S-matrix of CP sub(n-1) and SU(n) Thirring model is calculated, perturbatively, up to 2 loops. The calculation shows striking similarities, but the S -matrix has some deviations from the expected exact one. (Author) [pt
Evaluation of E-Learning Web Sites Using Fuzzy Axiomatic Design Based Approach
Directory of Open Access Journals (Sweden)
2010-04-01
Full Text Available High quality web site has been generally recognized as a critical enabler to conduct online business. Numerous studies exist in the literature to measure the business performance in relation to web site quality. In this paper, an axiomatic design based approach for fuzzy group decision making is adopted to evaluate the quality of e-learning web sites. Another multi-criteria decision making technique, namely fuzzy TOPSIS, is applied in order to validate the outcome. The methodology proposed in this paper has the advantage of incorporating requirements and enabling reductions in the problem size, as compared to fuzzy TOPSIS. A case study focusing on Turkish e-learning websites is presented, and based on the empirical findings, managerial implications and recommendations for future research are offered.
Manufacturing system design based on axiomatic design: Case of assembly line
Energy Technology Data Exchange (ETDEWEB)
Hager, T.; Wafik, H.; Faouzi, M.
2017-07-01
In this paper, a combined Production Line Design (PLD) process which includes many design aspects is presented, developed and validated. Design/methodology/approach: The PLD process is based on the SADT (Structured Analysis and Design Technique) diagram and the Axiomatic Design (AD) method. Practical implications: For a purpose of validation, this proposed process has been applied in a manufacturing company and it has been validated by simulation. Findings: The results of the validation indicated that the production line designed by this process is outperformed the initial line of the company. Originality/value: Recently, the problems of production line design (PLD) have attracted the attention of many researchers. However, only a few studies have treated the PLD which includes all design aspects. In this work, a combined PLD process is presented. It should be noted that the proposed process is simple and effective.
Manufacturing system design based on axiomatic design: Case of assembly line
International Nuclear Information System (INIS)
Hager, T.; Wafik, H.; Faouzi, M.
2017-01-01
In this paper, a combined Production Line Design (PLD) process which includes many design aspects is presented, developed and validated. Design/methodology/approach: The PLD process is based on the SADT (Structured Analysis and Design Technique) diagram and the Axiomatic Design (AD) method. Practical implications: For a purpose of validation, this proposed process has been applied in a manufacturing company and it has been validated by simulation. Findings: The results of the validation indicated that the production line designed by this process is outperformed the initial line of the company. Originality/value: Recently, the problems of production line design (PLD) have attracted the attention of many researchers. However, only a few studies have treated the PLD which includes all design aspects. In this work, a combined PLD process is presented. It should be noted that the proposed process is simple and effective.
An Axiomatic Analysis Approach for Large-Scale Disaster-Tolerant Systems Modeling
Directory of Open Access Journals (Sweden)
Theodore W. Manikas
2011-02-01
Full Text Available Disaster tolerance in computing and communications systems refers to the ability to maintain a degree of functionality throughout the occurrence of a disaster. We accomplish the incorporation of disaster tolerance within a system by simulating various threats to the system operation and identifying areas for system redesign. Unfortunately, extremely large systems are not amenable to comprehensive simulation studies due to the large computational complexity requirements. To address this limitation, an axiomatic approach that decomposes a large-scale system into smaller subsystems is developed that allows the subsystems to be independently modeled. This approach is implemented using a data communications network system example. The results indicate that the decomposition approach produces simulation responses that are similar to the full system approach, but with greatly reduced simulation time.
How Axiomatic Design can promote creativity in the design of new products
Directory of Open Access Journals (Sweden)
Gabriel-Santos António
2017-01-01
Full Text Available In product development, creativity is the driving force for doing something that leads to innovation. A typical ideation background has three subsystems: inspiration, dematerialization and recombination. The most basic concepts of Axiomatic Design, i.e. domains, hierarchies and zigzagging, as well as the two design axioms, provide a powerful framework to implement ideation, as to make creativity easier when developing a new product. The result of dematerialization is in the functional domain, which is the place where the customer needs are presented by functional requirements and purged of any kind of physical bias. The recombination creates the design parameters, at the physical domain, which are the set of elements of the design object that have been chosen to satisfy the functional requirements, into a new materialization profile of a new product. In this paper, a concrete case illustrating the above-mentioned concepts is presented.
An ACL2 Mechanization of an Axiomatic Framework for Weak Memory
Directory of Open Access Journals (Sweden)
Benjamin Selfridge
2014-06-01
Full Text Available Proving the correctness of programs written for multiple processors is a challenging problem, due in no small part to the weaker memory guarantees afforded by most modern architectures. In particular, the existence of store buffers means that the programmer can no longer assume that writes to different locations become visible to all processors in the same order. However, all practical architectures do provide a collection of weaker guarantees about memory consistency across processors, which enable the programmer to write provably correct programs in spite of a lack of full sequential consistency. In this work, we present a mechanization in the ACL2 theorem prover of an axiomatic weak memory model (introduced by Alglave et al.. In the process, we provide a new proof of an established theorem involving these axioms.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The basic ideas of game theory were originated from the problems of maximum and minimum given by J.Yon Neumann in 1928. Later, wars accelerated the study of game theory, there are many developments that contributed to the advancement of game theory, many problems of optimum appeared in economic development process. Scientists applied mathematic methods to studying game theory to make the theory more profound and perfect. The axiomatic structure of game theory was nearly complete in 1944. The path of the development of game theory started from finite to infinite, from two players to many players, from expressing gains with quantity to showing the ending of game theory with abstract result, and from certainty problems to random problems. Thus development of game theory is closely related to the economic development. In recent years, the research on the non-differentiability of Shapley value posed by Belgian Mertens is one of the advanced studies in game theory.
Essay on a general theory of nervous system functions
Energy Technology Data Exchange (ETDEWEB)
Schweizer, H J
1985-01-01
The axiomatic theory unites the aspects of neurophysiology, psychology and system-theory. The formulation of the structural-nucleus of the theory relies on basic insights from biology, neurophysiology and system-theory. The structural-nucleus allows the reconstruction of the essential properties of nervous system functions, organisation and development. The theory also contributes to the discussion of stochastic automata and artificial intelligence.
S-matrix to potential inversion of low-energy. alpha. - sup 12 C phase shifts
Energy Technology Data Exchange (ETDEWEB)
Cooper, S.G.; Mackintosh, R.S. (Open Univ., Milton Keynes (UK). Dept. of Physics)
1990-10-22
The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for {alpha}-{sup 12}C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect. (orig.).
S-Matrix to potential inversion of low-energy α-12C phase shifts
Cooper, S. G.; Mackintosh, R. S.
1990-10-01
The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for α-12C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect.
Factorizable S-matrix and symmetry operator with toroidal rapidity values
International Nuclear Information System (INIS)
Hu Zhanning; Hou Boyu
1992-01-01
The factorizable S-matrix was constructed and the symmetry operator which commutes with the S-metric and has a new form of 'co-product', the elements of which depend on the parameters defining the toroidal rapidity surface. By defining a new operator which commutes with the symmetry operator the Yang-Baxter equation can be obtained. Finally, the relation between the broken Z N -symmetric model and the chiral Potts model was expressed explicitly in the self-dual genus zero limit
On application of the S-matrix two-point function to nuclear data evaluation
International Nuclear Information System (INIS)
Igarasi, S.
1992-01-01
Statistical model calculation using S-matrix two-point function (STF) was tried. The results were compared with those calculated with the Hauser-Feshbach formula (HF) with and without resonance level-width fluctuation corrections (WFC). The STF gave almost the same cross sections as calculated using Moldauer's degrees of freedom for the χ 2 -distributions (MCD). The effect of the WFC to the final states in continuum was also studied using the HF with WFC of the MCD and of Porter-Thomas distribution (PTD). The HF with the MCD is recommended for practical calculation of the cross sections. (orig.)
Iterative approach as alternative to S-matrix in modal methods
Semenikhin, Igor; Zanuccoli, Mauro
2014-12-01
The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.
Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
Energy Technology Data Exchange (ETDEWEB)
Saadi, Y., E-mail: S_yahiadz@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria); Maamache, M. [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria)
2012-03-19
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
Approaching the axiomatic enrichment of the Gene Ontology from a lexical perspective.
Quesada-Martínez, Manuel; Mikroyannidi, Eleni; Fernández-Breis, Jesualdo Tomás; Stevens, Robert
2015-09-01
The main goal of this work is to measure how lexical regularities in biomedical ontology labels can be used for the automatic creation of formal relationships between classes, and to evaluate the results of applying our approach to the Gene Ontology (GO). In recent years, we have developed a method for the lexical analysis of regularities in biomedical ontology labels, and we showed that the labels can present a high degree of regularity. In this work, we extend our method with a cross-products extension (CPE) metric, which estimates the potential interest of a specific regularity for axiomatic enrichment in the lexical analysis, using information on exact matches in external ontologies. The GO consortium recently enriched the GO by using so-called cross-product extensions. Cross-products are generated by establishing axioms that relate a given GO class with classes from the GO or other biomedical ontologies. We apply our method to the GO and study how its lexical analysis can identify and reconstruct the cross-products that are defined by the GO consortium. The label of the classes of the GO are highly regular in lexical terms, and the exact matches with labels of external ontologies affect 80% of the GO classes. The CPE metric reveals that 31.48% of the classes that exhibit regularities have fragments that are classes into two external ontologies that are selected for our experiment, namely, the Cell Ontology and the Chemical Entities of Biological Interest ontology, and 18.90% of them are fully decomposable into smaller parts. Our results show that the CPE metric permits our method to detect GO cross-product extensions with a mean recall of 62% and a mean precision of 28%. The study is completed with an analysis of false positives to explain this precision value. We think that our results support the claim that our lexical approach can contribute to the axiomatic enrichment of biomedical ontologies and that it can provide new insights into the engineering of
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Influence of the absorptive part of the complex potential on the S-Matrix poles
International Nuclear Information System (INIS)
Grama, C.; Grama, N.; Zamfirescu, I
2001-01-01
Although the polology of the S-matrix has been extensively studied, it occurred that some aspects remained disputable in the case of complex central potential V(r)=gV(r), g in C . These aspects are related to the origin of the observed narrow Σ-hypernuclear states that have been interpreted by Gal, Toker and Alexander as states which correspond to S-matrix poles situated in the second k-plane quadrant. From the analytical properties of the S-matrix for a real potential it results that there is no pole in the first and second k-plane quadrants, except for the imaginary k-axis. By switching on the absorption the S-matrix poles for real potential can evolve into the second quadrant of the k-plane. A critical study of the Σ-hypernuclear states needs the analysis of the motion of the S-matrix poles in the k-plane for variable complex coupling strength g. Recently contradictory opinions relative to the S-matrix poles trajectories in the complex k-plane for a complex square potential occurred. According to some authors the poles in the second quadrant can occur either from bound state poles moving anticlockwise, or from virtual state poles and capture resonant state poles moving clockwise as the absorption is switched on. Dabrowski argues that the statement made by Gal et al, Bonetti et al and Oset et al concerning the movement of the virtual poles with increasing absorptive potential is in general not correct. Dabrowski relates the direction in which the pole moves when the potential absorption increases to the direction in which the pole moves with increasing the real part of the potential, without clarifying this last question. For example, two poles moving in opposite directions along the imaginary k-axis are associated by Dabrowski to the same state. This is a wrong result, because one should associate a single pole to each quantum state. The aim of our work is to study the influence of the absorptive part of the potential on the S-matrix poles for the non
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
Pinter, Charles C
2014-01-01
Suitable for upper-level undergraduates, this accessible approach to set theory poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. Starting with a repetition of the familiar arguments of elementary set theory, the level of abstract thinking gradually rises for a progressive increase in complexity.A historical introduction presents a brief account of the growth of set theory, with special emphasis on problems that led to the development of the various systems of axiomatic set theory. Subsequent chapters explore classes and
1/2-BPS correlators as c = 1 S-matrix
International Nuclear Information System (INIS)
Jevicki, Antal; Yoneya, Tamiaki
2007-01-01
We argue from two complementary viewpoints of Holography that the 2-point correlation functions of 1/2-BPS multi-trace operators in the large-N (planar) limit are nothing but the (Wick-rotated) S-matrix elements of c = 1 matrix model. On the bulk side, we consider an Euclideanized version of the so-called bubbling geometries and show that the corresponding droplets reach the conformal boundary. Then the scattering matrix of fluctuations of the droplets gives directly the two-point correlators through the GKPW prescription. On the Yang-Mills side, we show that the two-point correlators of holomorphic and anti-holomorphic operators are essentially equivalent with the transformation functions between asymptotic in- and out-states of c = 1 matrix model. Extension to non-planar case is also discussed
S-matrix description of anomalous large-angle heavy-ion scattering
Energy Technology Data Exchange (ETDEWEB)
Frahn, W E; Hussein, M S [Sao Paulo Univ. (Brazil). Inst. de Fisica; Canto, L F; Donangelo, R [Rio de Janeiro Univ. (Brazil). Inst. de Fisica
1981-10-12
We present a quantitative description of the well-known anomalous features observed in the large-angle scattering of n..cap alpha.. type heavy ions, in particular of the pronounced structures in the backangle excitation function for /sup 16/O + /sup 28/Si. Our treatment is based on the close connection between these anomalies and particular structural deviations of the partial-wave S-matrix from normal strong-absorption behaviour. The properties of these deviations are found to be rather well specified by the data: they are localized within a narrow 'l-window' centered at a critical angular momentum significantly smaller than the grazing value, and have a parity-dependent as well as a parity-independent part. These properties provide important clues as to the physical processes causing the large-angle enhancement.
S-matrix description of anomalus large-angle heavy-ion scattering
International Nuclear Information System (INIS)
Frahn, W.E.; Hussein, M.S.; Canto, L.F.; Donangelo, R.J.
1981-01-01
A quantitative description of the well-known anomalous features observed in the large-angle scattering of n.α type heavy ions, in particular of the pronounced structures in the backangle excitation function or 16 O + 28 Si is presented. This treatment is based on the close connection between these anomalies and particular structural deviations of the partial-wave S-matrix from normal strong-absorption behaviour. The properties of these deviations are found to be rather well specified by the data: they are localized within a narrow 'l-window' centered at a critical angular momentum significantly smaller than the grazing value, and have a parity-dependent as well as a parity-independent part. These properties provide important clues as to the physical processes causing the large-angle enhancement. (Author) [pt
Vacuum states and the S matrix in dS/CFT
International Nuclear Information System (INIS)
Spradlin, Marcus; Volovich, Anastasia
2002-01-01
We propose a definition of dS/CFT correlation functions by equating them to S-matrix elements for scattering particles from I - to I + . In planar coordinates, which cover half of de Sitter space, we consider instead the S vector obtained by specifying a fixed state on the horizon. We construct the one-parameter family of de Sitter invariant vacuum states for a massive scalar field in these coordinates, and show that the vacuum obtained by analytic continuation from the sphere has no particles on the past horizon. We use this formalism to provide evidence that the one-parameter family of vacua corresponds to marginal deformations of the CFT by computing a three-point function
Interactive system design using the complementarity of axiomatic design and fault tree analysis
International Nuclear Information System (INIS)
Heo, Gyun Young; Do, Sung Hee; Lee, Tae Sik
2007-01-01
To efficiently design safety-critical systems such as nuclear power plants, with requirement of high reliability, methodologies allowing for rigorous interactions between the synthesis and analysis processes have been proposed. This paper attempts to develop a reliability-centered design framework through an interactive process between Axiomatic Design (AD) and Fault Tree Analysis (FTA). Integrating AD and FTA into a single framework appears to be a viable solution, as they compliment each other with their unique advantages. AD provides a systematic synthesis tool while FTA is commonly used as a safety analysis tool. These methodologies build a design process that is less subjective, and they enable designers to develop insights that lead to solutions with improved reliability. Due to the nature of the two methodologies, the information involved in each process is complementary: a success tree versus a fault tree. Thus, at each step a system using AD is synthesized, and its reliability is then quantified using the FT derived from the AD synthesis process. The converted FT provides an opportunity to examine the completeness of the outcome from the synthesis process. This study presents an example of the design of a Containment Heat Removal System (CHRS). A case study illustrates the process of designing the CHRS with an interactive design framework focusing on the conversion of the AD process to FTA
Hilbert's 'Foundations of Physics': Gravitation and electromagnetism within the axiomatic method
Brading, K. A.; Ryckman, T. A.
2008-01-01
In November and December 1915, Hilbert presented two communications to the Göttingen Academy of Sciences under the common title 'The Foundations of Physics'. Versions of each eventually appeared in the Nachrichten of the Academy. Hilbert's first communication has received significant reconsideration in recent years, following the discovery of printer's proofs of this paper, dated 6 December 1915. The focus has been primarily on the 'priority dispute' over the Einstein field equations. Our contention, in contrast, is that the discovery of the December proofs makes it possible to see the thematic linkage between the material that Hilbert cut from the published version of the first communication and the content of the second, as published in 1917. The latter has been largely either disregarded or misinterpreted, and our aim is to show that (a) Hilbert's two communications should be regarded as part of a wider research program within the overarching framework of 'the axiomatic method' (as Hilbert expressly stated was the case), and (b) the second communication is a fine and coherent piece of work within this framework, whose principal aim is to address an apparent tension between general invariance and causality (in the precise sense of Cauchy determination), pinpointed in Theorem I of the first communication. This is not the same problem as that found in Einstein's 'hole argument'-something that, we argue, never confused Hilbert.
Classical representations for quantum-like systems through an axiomatics for context dependence
International Nuclear Information System (INIS)
Coecke, B.
1997-01-01
We introduce a definition for a 'hidden measurement system', i.e., a physical entity for which there exist: (i) 'a set of non-contextual states of the entity under study' and (ii) 'a set of states of the measurement context', and which are such that all uncertainties are due to a lack of knowledge on the actual state of the measurement context. First we identify an explicit criterion that enables us to verify whether a given hidden measurement system is a representation of a given couple Σ, ε consisting of a set of states Σ and a set of measurements ε (= measurement system). Then we prove for every measurement system that there exists at least one representation as a hidden measurement system with [0, 1] as set of states of the measurement context. Thus, we can apply this definition of a hidden measurement system to impose an axiomatics for context dependence. We show that in this way we always find classical representations (hidden measurement representations) for general non-classical entities (e.g. quantum entities). (orig.)
ICRH antenna S-matrix measurements and plasma coupling characterisation at JET
Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET
2018-04-01
The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.
The logical foundations of scientific theories languages, structures, and models
Krause, Decio
2016-01-01
This book addresses the logical aspects of the foundations of scientific theories. Even though the relevance of formal methods in the study of scientific theories is now widely recognized and regaining prominence, the issues covered here are still not generally discussed in philosophy of science. The authors focus mainly on the role played by the underlying formal apparatuses employed in the construction of the models of scientific theories, relating the discussion with the so-called semantic approach to scientific theories. The book describes the role played by this metamathematical framework in three main aspects: considerations of formal languages employed to axiomatize scientific theories, the role of the axiomatic method itself, and the way set-theoretical structures, which play the role of the models of theories, are developed. The authors also discuss the differences and philosophical relevance of the two basic ways of aximoatizing a scientific theory, namely Patrick Suppes’ set theoretical predicate...
The equational theory of prebisimilarity over basic CCS with divergence
Aceto, L.; Capobianco, S.; Ingólfsdóttir, A.; Luttik, B.
2008-01-01
This paper studies the equational theory of prebisimilarity, a bisimulation-based preorder introduced by Hennessy and Milner in the early 1980s, over basic CCS with the divergent process O. It is well known that prebisimilarity affords a finite ground-complete axiomatization over this language; this
Subjective Expected Utility Theory without States of the World
Edi Karni
2005-01-01
This paper develops an axiomatic theory of decision making under uncertainty that dispenses with the state space. The results are subjective expected utility models with unique, action-dependent, subjective probabilities, and a utility function defined over wealth-effect pairs that is unique up to positive linear transformation.
A critical analysis of the quantum theory of measurement
International Nuclear Information System (INIS)
Fer, F.
1984-01-01
Keeping strictly in the positivist and probabilistic, hence hilbertian frame of Quantum Mechanics, the author tries to ascertain whether or not Quantum Mechanics, starting from its axioms, reaches the aim of any physical theory, that is, comparison with experiment. The answer is: no, as long as it keeps close to the existing axiomatics, and also to accurate mathematics. (Auth.)
International Nuclear Information System (INIS)
Olkhovsky, V.S.; Zaichenko, A.K.
1981-01-01
The analytical properties and the resonant structure of the nonrelativistic S-matrix are investigated for elastic scattering with absorption for central, noncentral and parity-violating interactions and when the equations of motion for particles inside a sphere with finite radius are unknown. The conditions for the completeness of wave functions outside the interaction sphere, for the symmetry and for the generalized unitarity of the S-matrix are used. The conditions of micro- and macro-causality for the obtained results are investigated. (author)
van de Vel, MLJ
1993-01-01
Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear si
Directory of Open Access Journals (Sweden)
Iliescu Dragoş
2017-01-01
Full Text Available In education, the communication processes are critical. The result of education process depends on a significant manner by the quality of the incurred communication. To enhance learning in higher engineering education, an application of axiomatic design for the construction of a Learning Management System is proposed. The clients of such a system are identified, and their expectations were gathered as well. Functional requirements and design parameters to be designed are compiled regarding the two principles of axiomatic design. Finally, we investigate four design options to select the optimal design solution.
A theory of Bayesian decision making
Karni, Edi
2009-01-01
This paper presents a complete, choice-based, axiomatic Bayesian decision theory. It introduces a new choice set consisting of information-contingent plans for choosing actions and bets and subjective expected utility model with effect-dependent utility functions and action-dependent subjective probabilities which, in conjunction with the updating of the probabilities using Bayes’ rule, gives rise to a unique prior and a set of action-dependent posterior probabilities representing the decisio...
Probability and logical structure of statistical theories
International Nuclear Information System (INIS)
Hall, M.J.W.
1988-01-01
A characterization of statistical theories is given which incorporates both classical and quantum mechanics. It is shown that each statistical theory induces an associated logic and joint probability structure, and simple conditions are given for the structure to be of a classical or quantum type. This provides an alternative for the quantum logic approach to axiomatic quantum mechanics. The Bell inequalities may be derived for those statistical theories that have a classical structure and satisfy a locality condition weaker than factorizability. The relation of these inequalities to the issue of hidden variable theories for quantum mechanics is discussed and clarified
Székely, Gergely
2012-01-01
Within an axiomatic framework of kinematics, we prove that the existence of faster than light particles is logically independent of Einstein's special theory of relativity. Consequently, it is consistent with the kinematics of special relativity that there might be faster than light particles.
Variational principles are a powerful tool also for formulating field theories
Dell'Isola , Francesco; Placidi , Luca
2012-01-01
Variational principles and calculus of variations have always been an important tool for formulating mathematical models for physical phenomena. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest for scientists and engineers and are the main tool for the axiomatization of physical theories
Gamow-Jordan vectors and non-reducible density operators from higher-order S-matrix poles
International Nuclear Information System (INIS)
Bohm, A.; Loewe, M.; Maxson, S.; Patuleanu, P.; Puentmann, C.; Gadella, M.
1997-01-01
In analogy to Gamow vectors that are obtained from first-order resonance poles of the S-matrix, one can also define higher-order Gamow vectors which are derived from higher-order poles of the S-matrix. An S-matrix pole of r-th order at z R =E R -iΓ/2 leads to r generalized eigenvectors of order k=0,1,hor-ellipsis,r-1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (E R -iΓ/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher-order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher-order poles, the microphysical state obeys a purely exponential decay law. copyright 1997 American Institute of Physics
The unitarity defect of the S-matrix and statistical multistep direct nuclear processes
International Nuclear Information System (INIS)
Hussein, M.S.
1986-09-01
A relation is derived which connects the unitarity defect function S + S-1 with the imaginary part of the absorptive potential responsible for the nuclear scattering. The concept of angle-dependent reaction cross-section is introduced for the purpose. A similar relation is also obtained for the equivalent quantity S + -S -1 . Several applications to nucler scattering are made, and possible relevance of this unitarity defect relation to statistical coupled channels theories of preequilibrium reactions is pointed out and discussed. (Author) [pt
On the application of the Williams-Weizsaecker-method to higher order S-matrix-approximations
International Nuclear Information System (INIS)
Ziegelbecker, R.C.
1983-05-01
In this paper the method of quasireal processes is investigated using a special example - pair production in the stationary field of a nucleus by an incident electron. As a result, the semi-classical version of the Williams-Weizsaecker-method is confirmed on the basis of all 3sup(rd)-order Feynman-diagrams. The spectra of quasireal processes, derived from quantum field theory, can also be applied simultaneously in several vertex points on one diagram and are valid for higher photon energies than the semiclassical spectrum; the restriction #betta# [de
The general theory of quantized fields in the 1950s
International Nuclear Information System (INIS)
Wightman, A.S.
1989-01-01
This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)
International Nuclear Information System (INIS)
Colomo, F.; Mussardo, G.
1992-01-01
In this paper, the authors compute the S matrix of the tricritical Ising model perturbed by the subleading magnetic operator using Smirnov's RSOS reduction of the Izergin-Korepin model. The massive model contains kink excitations which interpolate between two degenerate asymmetric vacua. As a consequence of the different structure of the two vacua, the crossing symmetry is implemented in a nontrivial way. The authors use finite-size techniques to compare their results with the numerical data obtained by the truncated conformal space approach and find good agreement
Time Breath of Psychological Theories
DEFF Research Database (Denmark)
Tateo, Luca; Valsiner, Jaan
2015-01-01
Psychology as a self-aspiring, ambitious, developmental science faces the crucial limit of time—both theoretically and practically. The issue of time in constructing psychology’s theories is a major unresolved metatheoretical task. This raises several questions about generalization of knowledge...... of time—or fail to do that? How can they generalize with respect to time? The different conceptions of time often remain implicit, while shaping the concepts used in understanding psychological processes. Any preconception about time in human development will foster the generalizability of theory, as well......: which is the time length of breath of psychological theories? Which is the temporal dimension of psychological processes? In this article we discuss the role of different axiomatic assumptions about time in the construction of psychological theories. How could different theories include a concept...
Wilde, Mark M
2017-01-01
Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...
Hermiticity and CPT in string theory
International Nuclear Information System (INIS)
Sonoda, Hidenori
1989-01-01
In the application of conformal field theory to string theory S-matrix elements are obtained from correlation functions of vertex operators. By studying the relation between the vertex operators for the incoming states and those for the outgoing states we obtain two results: First we show that hermiticity of the string vertices is equivalent to the CPT invariance of the corresponding conformal field theory. Secondly we prove that the S-matrix elements in any string theory in flat space-time background are invariant under CPT. (orig.)
The Mathematical Event: Mapping the Axiomatic and the Problematic in School Mathematics
de Freitas, Elizabeth
2013-01-01
Traditional philosophy of mathematics has been concerned with the nature of mathematical objects rather than events. This traditional focus on reified objects is reflected in dominant theories of learning mathematics whereby the learner is meant to acquire familiarity with ideal mathematical objects, such as number, polygon, or tangent. I argue…
CERN. Geneva; CERN. Geneva
2001-01-01
Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.
POLLA-NESC, Resonance Parameter R-Matrix to S-Matrix Conversion by Reich-Moore Method
International Nuclear Information System (INIS)
Saussure, G. de; Perez, R.B.
1975-01-01
1 - Description of problem or function: The program transforms a set of r-matrix nuclear resonance parameters into a set of equivalent s-matrix (or Kapur-Peierls) resonance parameters. 2 - Method of solution: The program utilizes the multilevel formalism of Reich and Moore and avoids diagonalization of the level matrix. The parameters are obtained by a direct partial fraction expansion of the Reich-Moore expression of the collision matrix. This approach appears simpler and faster when the number of fission channels is known and small. The method is particularly useful when a large number of levels must be considered because it does not require diagonalization of a large level matrix. 3 - Restrictions on the complexity of the problem: By DIMENSION statements, the program is limited to maxima of 100 levels and 5 channels
Supersymmetrical dual string theories and their field theory limits: A review
International Nuclear Information System (INIS)
Green, M.B.
1985-01-01
This paper outlines the construction and properties of supersymmetric string theories. Such theories, which describe the quantum mechanics of relativistic strings in ten-space time dimensions contain both N=4 Yang-Mills and N=8 supergravity field theories as special limits in which the string tension becomes infinite. Calculations of one-loop S-matrix elements reveal remarkable finiteness properties
Axiomatic and operational connections between the l1-norm of coherence and negativity
Zhu, Huangjun; Hayashi, Masahito; Chen, Lin
2018-02-01
Quantum coherence plays a central role in various research areas. The l1-norm of coherence is one of the most important coherence measures that are easily computable, but it is not easy to find a simple interpretation. We show that the l1-norm of coherence is uniquely characterized by a few simple axioms, which demonstrates in a precise sense that it is the analog of negativity in entanglement theory and sum negativity in the resource theory of magic-state quantum computation. We also provide an operational interpretation of the l1-norm of coherence as the maximum entanglement, measured by the negativity, produced by incoherent operations acting on the system and an incoherent ancilla. To achieve this goal, we clarify the relation between the l1-norm of coherence and negativity for all bipartite states, which leads to an interesting generalization of maximally correlated states. Surprisingly, all entangled states thus obtained are distillable. Moreover, their entanglement cost and distillable entanglement can be computed explicitly for a qubit-qudit system.
Scattering theory of space-time non-commutative abelian gauge field theory
International Nuclear Information System (INIS)
Rim, Chaiho; Yee, Jaehyung
2005-01-01
The unitary S-matrix for space-time non-commutative quantum electrodynamics is constructed using the *-time ordering which is needed in the presence of derivative interactions. Based on this S-matrix, we formulate the perturbation theory and present the Feynman rule. We then apply this perturbation analysis to the Compton scattering process to the lowest order and check the gauge invariance of the scattering amplitude at this order.
Game theory, social choice and ethics
1979-01-01
There are problems to whose solution I would attach an infinitely greater import ancf! than to those of mathematics, for example touching ethics, or our relation to God, or conceming our destiny and our future; but their solution lies wholly beyond us and completely outside the province 0 f science. J. F. C. Gauss For a1l his prescience in matters physical and mathematieal, the great Gauss apparently did not foresee one development peculiar to OUT own time. The development I have in mind is the use of mathematical reasoning - in partieu lar the axiomatic method - to explicate alternative concepts of rationality and morality. The present bipartite collection of essays (Vol. 11, Nos. 2 and 3 of this journal) is entitled 'Game Theory, Social Choiee, and Ethics'. The eight papers represent state-of-the-art research in formal moral theory. Their intended aim is to demonstrate how the methods of game theory, decision theory, and axiomatic social choice theory can help to illuminate ethical questions central not...
International Nuclear Information System (INIS)
Kuznichenko, A.V.; Onishchenko, G.M.; Pilipenko, V.V.; Dem'yanova, A.S.; Burtebaev, N.
2003-01-01
The analysis of the cross sections of the 16 O + 16 O nuclei elastic scattering by the energy of 124, 145, 250, 350, 480, 704 and 1120 MeV is carried out on the basis of the phenomenological S-matrix model. It is shown, that by high energy the refraction behavior of the opalescent-type cross sections is well described by the simple smooth dependence of the S-matrix on the angular moment and by the energy E ≤ 480 MeV the opalescent-type structures are strongly effected by the Regge poles and S-matrix zeroes, close to the actual axis. The comparison with the results of the cross sections by the optical model is carried out [ru
Quaternionic quantum field theory
International Nuclear Information System (INIS)
Adler, S.L.
1986-01-01
In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Haag-Ruelle scattering theory as a scattering theory in different spaces of states
International Nuclear Information System (INIS)
Koshmanenko, V.D.
1979-01-01
The aim of the paper is the extraction of the abstract content from the Haag-Ruelle theory, i.e. to find out the total mathematical scheme of the theory without the account of physical axiomatics. It is shown that the Haag-Ruelle scattering theory may be naturally included into the scheme of the abstract theory of scattering with the pair of spaces, the wave operators being determined by the method of bilinear functionals. A number of trivial features of the scattering operator is found in the abstract theory. The concrete prospects of the application of the data obtained are outlined in the problem of the scattering of the field quantum theory
Theory of direct interparticle action
International Nuclear Information System (INIS)
Vladimirov, Yu.S.; Turygin, A.Yu.
1986-01-01
Unusual point of view on the physical picture of the Universe and ratio between main physical categories is considered. Principal moments and theory peculiarities based on the conception of direct interparticle action are underlined. The direct interparticle action theory (DIAT) is considered from the position of choosing one or another axiomatics. At first the Fokker action principle is postulated there and then identical satisfiability of field equations is proved. All that relates to vacuum DIAT ignores and actions of matter formations are used as the basis. DIAT bears up against a global factor-account of absrbers of all surroundings (the Mach principle). The DIAT pretended to relativistic description of only additional concepts with the previously asigned space-time ratios. Concept for construction of the physical picture of the Universe, where classical space-time ratios being of secondary character, is suggested
Equational theories of tropical sernirings
DEFF Research Database (Denmark)
Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna
2003-01-01
examples of such structures are the (max,+) semiring and the tropical semiring. It is shown that none of the exotic semirings commonly considered in the literature has a finite basis for its equations, and that similar results hold for the commutative idempotent weak semirings that underlie them. For each......This paper studies the equational theories of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime...... of these commutative idempotent weak semirings, the paper offers characterizations of the equations that hold in them, decidability results for their equational theories, explicit descriptions of the free algebras in the varieties they generate, and relative axiomatization results. Udgivelsesdato: APR 11...
Non-renormalisation theorems in string theory
International Nuclear Information System (INIS)
Vanhove, P.
2007-10-01
In this thesis we describe various non renormalisation theorems for the string effective action. These results are derived in the context of the M theory conjecture allowing to connect the four gravitons string theory S matrix elements with that of eleven dimensional supergravity. These theorems imply that N = 8 supergravity theory has the same UV behaviour as the N = 4 supersymmetric Yang Mills theory at least up to three loops, and could be UV finite in four dimensions. (author)
International Nuclear Information System (INIS)
Pivovarchik, V.N.; Poplavskij, I.V.
1982-01-01
The asymptotic behaviour of the regular solution, the Yost function and the S-matrix of the Schrodinger equation is estimated by means of WKB quasiclassical method at a fixed physical value of energy (k>0) for lambda→infinity in the domain Re lambda→0 for central and spin-orbital interaction [ru
Magni, Carlo Alberto
2007-01-01
This paper presents a theoretical framework for valuation, investment decisions, and performance measurement based on a nonstandard theory of residual income. It is derived from the notion of "unrecovered" capital, which is here named "lost" capital because it represents the capital foregone by the investors. Its theoretical strength and meaningfulness is shown by deriving it from four main perspectives: financial, microeconomic, axiomatic, accounting. Implications for asset valuation, cap...
Lee, Taesik; Jeziorek, Peter
2004-01-01
Large complex projects cost large sums of money throughout their life cycle for a variety of reasons and causes. For such large programs, the credible estimation of the project cost, a quick assessment of the cost of making changes, and the management of the project budget with effective cost reduction determine the viability of the project. Cost engineering that deals with these issues requires a rigorous method and systematic processes. This paper introduces a logical framework to a&e effective cost engineering. The framework is built upon Axiomatic Design process. The structure in the Axiomatic Design process provides a good foundation to closely tie engineering design and cost information together. The cost framework presented in this paper is a systematic link between the functional domain (FRs), physical domain (DPs), cost domain (CUs), and a task/process-based model. The FR-DP map relates a system s functional requirements to design solutions across all levels and branches of the decomposition hierarchy. DPs are mapped into CUs, which provides a means to estimate the cost of design solutions - DPs - from the cost of the physical entities in the system - CUs. The task/process model describes the iterative process ot-developing each of the CUs, and is used to estimate the cost of CUs. By linking the four domains, this framework provides a superior traceability from requirements to cost information.
Theory of Brownian motion with the Alder-Wainwright effect
International Nuclear Information System (INIS)
Okabe, Y.
1986-01-01
The Stokes-Boussinesq-Langevin equation, which describes the time evolution of Brownian motion with the Alder-Wainwright effect, can be treated in the framework of the theory of KMO-Langevin equations which describe the time evolution of a real, stationary Gaussian process with T-positivity (reflection positivity) originating in axiomatic quantum field theory. After proving the fluctuation-dissipation theorems for KMO-Langevin equations, the authors obtain an explicit formula for the deviation from the classical Einstein relation that occurs in the Stokes-Boussinesq-Langevin equation with a white noise as its random force. The authors interested in whether or not it can be measured experimentally
Deducing T, C, and P invariance for strong interactions in topological particle theory
International Nuclear Information System (INIS)
Jones, C.E.
1985-01-01
It is shown here how the separate discrete invariances [time reversal (T), charge conjugation (C), and parity (P)] in strong interactions can be deduced as consequences of other S-matrix requirements in topological particle theory
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
Quantum field theory with a momentum space of constant curvature (perturbation theory)
International Nuclear Information System (INIS)
Mir-Kasimov, R.M.
1978-01-01
In the framework of the field-theoretical approach in which the off-the-mass shell extension proceeds in the p-space of constant curvature, the perburbation theory is developed. The configurational representation of the de Sitter space is introduced with the help of the Fourier transformation of the group of motions. On the basis of a natural generalization of the Bogolyubov causality condition to the case of the new configurational representation a perturbation theory is constructed with the local in xi space Lagrangian density fucntion. The obtained S matrix obeys the reguirement of translation invariance. The S matrix elements are given by convergent expressions
International Nuclear Information System (INIS)
Gottlieb, I.; Agop, M.; Jarcau, M.
2004-01-01
One builds the vacuum metrics of the stationary electromagnetic field through the complex potential model. There are thus emphasized both a variational principle, independent on the Ricci tensor, and some internal symmetries of the vacuum solutions. One shows that similar results may be obtained using the Barbiliant's group. By analytical continuation of a Barbilian transformation the link between the fixed points of the modular groups of the vacuum and the golden mean PHI=(1/(1+PHI))=(√5-1)/2 of ε (∞) space-time is established. Finally, a Cantorian fractal axiomatic model of the space-time is presented. The model is explained using a set of coupled equations which may describe the self organizing processes at the solid-liquid, plasma-plasma, and superconductor-superconductor interfaces
[Taxonomic theory for non-classical systematics].
Pavlinov, I Ia
2012-01-01
Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.
Exact results for integrable asymptotically-free field theories
Evans, J M; Evans, Jonathan M; Hollowood, Timothy J
1995-01-01
An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).
Weak Quantum Theory: Formal Framework and Selected Applications
International Nuclear Information System (INIS)
Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann
2006-01-01
Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli
Incompatibility of the quantum and relativity theories and a possible resolution
International Nuclear Information System (INIS)
Sachs, M.
1982-01-01
This paper presents a comparison of the conceptual bases of the quantum theory and the theory of relativity, each considered as fundamental theories of elementary matter. From a study of the irreducible axiomatic bases of these respective approaches to elementary matter, it is concluded that they cannot peacefully co-exist because of logical incompatibility. Among the reasons discussed for this conclusion, one is the implication of the Hamiltonian form of quantum mechanics yielding an irreducible absolute frame of reference - that of the measuring apparatus - in the basic expression for the laws of elementary particles. This difficulty leads to logical inconsistency as well as a formulation of relativistic quantum field theory that is not demonstrably mathematically consistent. In spite of their logical incompatiability, it is argued that each of these theories logically requires the other, within its own framework. The conclusion is reached that, to make further progress in our understanding of elementary matter, it is necessary to abandon the axiomatic basis of one of these theories for the other, while keeping the formal structure of the abandoned theory as an accurate mathematical approximation (under special physical conditions) for a generalized form of the retained theory. An argument is presented for the author's retention of the theory of relativity as an authentic basis of elementary matter, and how its generalization is achieved by incorporating a fully (generally) covariant expression of the inertial manifestations of matter with its force manifestations
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
International Nuclear Information System (INIS)
Figueira de Morisson Faria, C.; Sanpera, A.; Lewenstein, M.; Schomerus, H.; Liu, X.; Becker, W.
2005-01-01
Full text: We provide a summarizing account of a series of investigations, in which laser-induced nonsequential double ionization (NSDI) is described as the inelastic collision of an electron with its parent ion, and treated quantummechanically, within the strong-field approximation. In particular, we employ a specific uniform saddle-point approximation whose only validity requirement is that the saddles occur in pairs. As a first step, we address the question of how the type of the interaction by which the second electron is dislodged, as well as final-state electron-electron repulsion, influences the NDSI differential electron momentum distributions. We found that a contact-type interaction and uncorrelated final electron states yields the best agreement with the experimental results, namely circular-shaped distributions peaked at p 1II = p 2II = ±2 √U p , where p nII (n = 1,2) denotes the electron momentum components parallel to the laser-field polarization and U p the ponderomotive energy. Final-state repulsion leads to a broadening in such distributions, with respect to p 1II = p 2II , whereas a Coulomb-type interaction favors unequal momenta. The influence of the interaction and of final-state electron-electron repulsion is most extreme if at least one of the transverse momentum components is kept small, while, for large transverse momenta, different types of interaction or two-electron final states lead to minor discrepancies. In all cases, we obtain very similar results as compared to a classical ensemble computation, in which electrons are released with a quasi-static tunneling rate, apart from minor differences near the boundary of the momentum region for which the collision process in question is classically allowed. Such results suggest that the residual ion has a strong influence on the dynamics of both electrons in NSDI, screening the long-range interaction and the final-state Coulomb repulsion. This interpretation is strengthened by more recent studies, in which a systematic analysis of the influence of the initial bound states of both electrons, and of the spatial extension of the electronic wave function, on the NSDI momentum distributions, has been performed. Such studies have shown that the best agreement with experiments should occur for highly localized bound states and an effective short-range interaction. In the above-stated studies, the external laser field has been approximated by a monochromatic wave. This is a reasonable assumption if the laser pulses in question are relatively long. For few-cycle pulses, however, one expects a very different behavior and, in particular, that the so-called absolute phase, i.e., the phase difference between the pulse envelope and its carrier oscillation, influences the momentum distributions in question. Within this context, we have shown that the differential momentum distributions are highly asymmetric and either concentrated in the first or the third quadrant of the (p 1II , p 2II ) plane. Around a critical value of the absolute phase, the distributions shift from one region to the other. Such a behavior can be explained in terms of the trajectories of an electron recombining inelastically with its parent ion, and the critical phase can be traced to a change in the dominant set of trajectories. This effect is present both in a classical and a quantum-mechanical framework, with the difference that, in the quantum-mechanical case, the distributions start to shift at a slightly smaller phase. This is due to the fact that, if NSDI is classically forbidden, the quantum mechanical distributions are exponentially decaying, whereas their classical counterparts vanish. This behavior is more extreme than those observed for other high-intensity phenomena, such as above-threshold ionization or high-harmonic generation, so that NSDI is an efficient tool for absolute-phase measurements. Refs. 3 (author)
Towards a simple mathematical theory of citation distributions.
Katchanov, Yurij L
2015-01-01
The paper is written with the assumption that the purpose of a mathematical theory of citation is to explain bibliometric regularities at the level of mathematical formalism. A mathematical formalism is proposed for the appearance of power law distributions in social citation systems. The principal contributions of this paper are an axiomatic characterization of citation distributions in terms of the Ekeland variational principle and a mathematical exploration of the power law nature of citation distributions. Apart from its inherent value in providing a better understanding of the mathematical underpinnings of bibliometric models, such an approach can be used to derive a citation distribution from first principles.
Decision making by hybrid probabilistic: Possibilistic utility theory
Directory of Open Access Journals (Sweden)
Pap Endre
2009-01-01
Full Text Available It is presented an approach to decision theory based upon nonprobabilistic uncertainty. There is an axiomatization of the hybrid probabilistic possibilistic mixtures based on a pair of triangular conorm and triangular norm satisfying restricted distributivity law, and the corresponding non-additive Smeasure. This is characterized by the families of operations involved in generalized mixtures, based upon a previous result on the characterization of the pair of continuous t-norm and t-conorm such that the former is restrictedly distributive over the latter. The obtained family of mixtures combines probabilistic and idempotent (possibilistic mixtures via a threshold.
S-matrices for perturbations of certain conformal field theories
International Nuclear Information System (INIS)
Freund, P.G.O.; Klassen, T.R.; Melzer, E.; Chicago Univ., IL
1989-01-01
We present a family of factorizable S-matrix theories in 1+1 dimensions with an arbitrary number N of particles of distinct masses, and find the conservation laws of these theories. An analysis of the conservation laws of the family of nonunitary CFTs with central charge c=c 2,2N+3 =-2N(6N+5)/(2N+3) perturbed by the φ (1,3) operator, leads us to conjecture the identification of these perturbed CFTs with the S-matrix theories we found. The case N=1 was treated by Cardy and Mussardo. We also present the S-matrix of an E 7 -related unitary model. (orig.)
Mean-deviation analysis in the theory of choice.
Grechuk, Bogdan; Molyboha, Anton; Zabarankin, Michael
2012-08-01
Mean-deviation analysis, along with the existing theories of coherent risk measures and dual utility, is examined in the context of the theory of choice under uncertainty, which studies rational preference relations for random outcomes based on different sets of axioms such as transitivity, monotonicity, continuity, etc. An axiomatic foundation of the theory of coherent risk measures is obtained as a relaxation of the axioms of the dual utility theory, and a further relaxation of the axioms are shown to lead to the mean-deviation analysis. Paradoxes arising from the sets of axioms corresponding to these theories and their possible resolutions are discussed, and application of the mean-deviation analysis to optimal risk sharing and portfolio selection in the context of rational choice is considered. © 2012 Society for Risk Analysis.
The use of Ixaru's method in locating the poles of the S-matrix in strictly finite-range potentials
Energy Technology Data Exchange (ETDEWEB)
Vertse, Tamas; Lovas, R. G.; Racz, A.; Salamon, P. [University of Debrecen, Faculty of Informatics, Chair of Applied Mathematics and Probability, Debrecen, Hungary and Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary); Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary); University of Debrecen, Faculty of Informatics, Chair of Applied Mathematics and Probability, Debrecen (Hungary); Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen (Hungary)
2012-09-26
Energies of the S-matrix poles are calculated by solving the radial Schroedinger equation numerically by using Ixaru's CPM(2) method. The trajectories of the poles in the complex wave number plane are determined for two nuclear potentials that are zero beyond finite distances. These are the Woods-Saxon form with cutoff and the Salamon-Vertse potential, which goes to zero smoothly at a finite distance. Properties of the trajectories are analyzed for real and complex values of the depths of the corresponding potentials.
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
On a Formalization of Cantor Set Theory for Natural Models of the Physical Phenomena
Directory of Open Access Journals (Sweden)
Nudel'man A. S.
2010-01-01
Full Text Available This article presents a set theory which is an extension of ZFC . In contrast to ZFC , a new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of the proposed theory and Vdovin set theory will permit to formulate a (presumably non- contradictory axiomatic set theory which will represent the core of Cantor set theory in a maximally full manner as to the essence and the contents of the latter. This is possible due to the fact that the generalized principle of choice and the generalized continuum hypothesis are proved in Vdovin theory. The theory, being more complete than ZF and more natural according to Cantor, will allow to construct and study (in its framework only natural models of the real physical phenomena.
On a Formalization of Cantor Set Theory for Natural Models of the Physical Phenomena
Directory of Open Access Journals (Sweden)
Nudel'man A. S.
2010-01-01
Full Text Available This article presents a set theory which is an extension of $ZFC$. In contrast to $ZFC$, a new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of the proposed theory and Vdovin set theory will permit to formulate a (presumably non-contradictory axiomatic set theory which will represent the core of Cantor set theory in a maximally full manner as to the essence and the contents of the latter. This is possible due to the fact that the generalized principle of choice and the generalized continuum hypothesis are proved in Vdovin theory. The theory, being more complete than $ZF$ and more natural according to Cantor, will allow to construct and study (in its framework only natural models of the real physical phenomena.
International Nuclear Information System (INIS)
Queen, N.M.
1978-01-01
This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)
An introduction to the general boundary formulation of quantum field theory
International Nuclear Information System (INIS)
Colosi, Daniele
2015-01-01
We give a brief introduction to the so-called general boundary formulation (GBF) of quantum theory. This new axiomatic formulation provides a description of the quantum dynamics which is manifestly local and does not rely on a metric background structure for its definition. We present the basic ingredients of the GBF, in particular we review the core axioms that assign algebraic structures to geometric ones, the two quantisation schemes so far developed for the GBF and the probability interpretation which generalizes the standard Born rule. Finally we briefly discuss some of the results obtained studying specific quantum field theories within the GBF. (paper)
Universal character and large N factorization in topological gauge/string theory
International Nuclear Information System (INIS)
Kanno, Hiroaki
2006-01-01
We establish a formula of the large N factorization of the modular S-matrix for the coupled representations in U(N) Chern-Simons theory. The formula was proposed by Aganagic, Neitzke and Vafa, based on computations involving the conifold transition. We present a more rigorous proof that relies on the universal character for rational representations and an expression of the modular S-matrix in terms of the specialization of characters
Energy Technology Data Exchange (ETDEWEB)
Sabad, E P; Lomsadze, Yu M [AN Ukrainskoj SSR, Kiev. Inst. Teoreticheskoj Fiziki
1980-01-01
It is proved that each of the classes PHI*(Rsup(4n),F) investigated by means of suitable local topologization can be transformed into a concrete realization of the abstract class SR(..cap omega..sub(f)sup(a) ..-->.. C/sup 1/) of complexly spread reducible generalized functions. The class PHI*(Rsup(4n),F) preset by a certain representation on the basis of signal ideology is proved to be a class of generalized functions over the Poincare-invariant complete topological locally convex linear involutive space (PHI(Rsup(4n),F),Q) of test functions with the topology Q preset by a countable number of norms. These results allow a correct formulation of the axiom of complexly broken microcausality.
International Nuclear Information System (INIS)
Schlingemann, D.
1996-10-01
Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ 4 2 -model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ) 2 -models. We identify a large class of vacuum states, including the vacua of the P(φ) 2 -models, the Yukawa 2 -like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.)
The foundation of quantum theory and noncommutative spectral theory: Part 2
International Nuclear Information System (INIS)
Kummer, H.
1991-01-01
The present paper comprises Sects. 5-8 of a work which proposes an axiomatic approach to quantum mechanics in which the concept of a filter is the central primitive concept. Having laid down the foundations in the first part of this work, the author arrived at a dual pair left-angle Y,M right-angle consisting of a base norm space Y and an order unit space M, being in order and norm duality with respect to each other. This is precisely the setting of noncommutative spectral theory, a theory which has been developed during the late nineteen seventies by Alfsen and Shultz. In this part he added to the four axioms (Axioms S, DP, R, SP) of Sect. 3 three further axioms (Axioms E, O, L). These axioms are suggested by the work of Alfsen and Shultz and and enable him to derive the JB-algebra structure of quantum mechanics (cf. Theorem 8.9)
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2004-01-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction
Integrable theories that are asymptotically CFT
Evans, J M; Jonathan M Evans; Timothy J Hollowood
1995-01-01
A series of sigma models with torsion are analysed which generate their mass dynamically but whose ultra-violet fixed points are non-trivial conformal field theories -- in fact SU(2) WZW models at level k. In contrast to the more familiar situation of asymptotically free theories in which the fixed points are trivial, the sigma models considered here may be termed ``asymptotically CFT''. These theories have previously been conjectured to be quantum integrable; we confirm this by proposing a factorizable S-matrix to describe their infra-red behaviour and then carrying out a stringent test of this proposal. The test involves coupling the theory to a conserved charge and evaluating the response of the free-energy both in perturbation theory to one loop and directly from the S-matrix via the Thermodynamic Bethe Ansatz with a chemical potential at zero temperature. Comparison of these results provides convincing evidence in favour of the proposed S-matrix; it also yields the universal coefficients of the beta-func...
Solitonic Integrable Perturbations of Parafermionic Theories
Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L
1997-01-01
The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.
The theory of cosmic aberration
International Nuclear Information System (INIS)
Parish, L.
1981-01-01
Part I of this paper criticises current theory, which fails to solve the puzzle of the quasars and drives us to double thinking about the simple notions of distance and space. What is more, this current interpretation clashes with the almost axiomatic rule that the speed of light is constant in space: and it also comes into direct conflict with Special Relativity's equation for the addition of two velocities, one of which is that of light. Part II offers an alternative theory for the origin of the apparently recessional speeds leading to red-shifts. It claims that this recession is due to geometric perspective, which makes extra-galactic bodies appear to be moving, like the Sun, across the sky relative to the observer. Part III is essentially a refutation of a criticism put forward by the Royal Astronomical Society. They felt that the theory of transverse recession, due to rotation, was unacceptable because it implied a lack of isotropy at high latitudes in the distribution of the red-shifts, which actual observations did not support. This paper maintains, however, that the alleged isotropy is not factual but is based on an a priori argument, an argument which claims that extra-galactic sources with the same red-shift lie at the same distance, whatever the direction in which they are seen. (author)
A New Foundation of Physical Theories
Ludwig, Günther
2006-01-01
Written in the tradition of G. Ludwig’s groundbreaking works, this book aims to clarify and formulate more precisely the fundamental ideas of physical theories. By introducing a basic descriptive language of simple form, in which it is possible to formulate recorded facts, ambiguities of physical theories are avoided as much as possible. In this approach the field of physics that should be described by a theory is determined by basic concepts only, i.e. concepts that can be explained without a theory. In this context the authors introduce a new concept of idealization and review the process of discovering new concepts. They believe that, when the theories are formulated within an axiomatic basis, solutions can be found to many difficult problems such as the interpretation of physical theories, the relations between theories as well as the introduction of physical concepts. The book addresses both physicists and philosophers of science and should encourage the reader to contribute to the understanding of the...
Preface to a GUT (Grand Unified Theory)
International Nuclear Information System (INIS)
Honig, W.
1982-01-01
A Grand Unified Theory (GUT) is proposed exhibiting relativistic invariance and based on a physical model for vacuum space consisting of the superposition of oppositely charged continuous fluids. Models for the photon, electron, neutrino, proton, etc., consist of separate unique variations in the relative densities of the fluids and their flow patterns. This GUT is also based on the use of transfinite axiomatic number forms and on a concept of metrical relativity which hopefully reconciles the many logical dichotomies in and between Special Relativity and Quantum Mechanics. These ideas result in a number of experimental proposals and predicted results which appear to be underivable from present paradigms, first among which is a physical model for the hidden variable of Quantum Mechanics. It is on these features that attention should rest. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Mahoux, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-02-01
It is shown that any regularized helicity amplitude, which is known from axiomatic local field theory to satisfy dispersion relations for -t{sub M} < t {<=} 0, is in fact analytic in the quasi-topological product ( |t| < R) product (s in the cut plane). This is the extension to the scattering of spin particles, of a result obtained by Martin in the scalar case. As a first consequence, the Froissart limits are extended to all helicity amplitudes. Furthermore, it is shown that for -t{sub M} < t < 0 and s going to infinity, the regularized helicity amplitudes in the t channel, with initial (resp. final) helicities {lambda}1 and {lambda}2 (resp. {mu}1 and {mu}2), are bounded by: C s{sup 1-Max} (|{lambda}|,|{lambda}|) log{sup 2}s if {lambda} + {mu} is even C s{sup 1-Max} (|{lambda}|,|{mu}|) log{sup 3}s if {lambda} + {mu} is odd where {lambda} = {lambda}1 - {lambda}2 and {mu} = {mu}1 - {mu}2. This gives super-convergent amplitudes as soon as one of the spins is larger than 1. The case of spin 0 - spin 1 scattering is marginal, and in the absence of any detailed dynamical information, one cannot obtain a super-convergent amplitude in that case. (author) [French] II est demontre que toute amplitude cinematiquement reguliere, qui decrit la diffusion elastique de deux particules de masses non nulles, et de spins quelconques, dont on sait par la theorie axiomatique des champs locaux, qu'elle satisfait des relations de dispersion en s a transfert t fixe (-t{sub M} < t {<=} 0), est en fait analytique dans le produit quasitopologique ( |t| < R) produit (s dans un plan coupe), ou R est une constante. Ce resultat etend aux particules de spins non nuls, le theoreme de Martin relatif au cas scalaire. Une premiere consequence est l'extension des bornes de Froissart a toute amplitude d'helicite. Puis il est montre que, pour t fixe (-t{sub M} < t {<=} 0) et s tendant vers l'infini, les amplitudes d'helicite regularisees dans la voie t, avec les helicites initiales {lambda}1 et {lambda
The quantum double in integrable quantum field theory
International Nuclear Information System (INIS)
Bernard, D.; LeClair, A.
1993-01-01
Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)
On the complex angular momentum theory of scattering
International Nuclear Information System (INIS)
Thylwe, K.-E.
1983-01-01
A contribution to the theory of complex angular momentum techniques in the field of atomic and molecular collisions is given. A new, flexible representation of the scattering amplitude on the basis of realistic assumptions for the behaviour of the S matrix in the complex angular momentum plane is derived. The representation has the form of a sum of steepest-descent integrals, S-matrix residue terms and a symmetry-type background integral. The flexibility is due to the presence of two integer parameters which may be chosen conveniently so as to make the residue sums sufficiently convergent and to minimise the total number of important terms. (author)
Algebraic and analyticity properties of the n-point function in quantum field theory
International Nuclear Information System (INIS)
Bros, Jacques
1970-01-01
The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Costescu, A [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Spanulescu, S [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania)
2007-08-14
The right expressions of the nonrelativistic K-shell Rayleigh scattering amplitudes and cross-sections are obtained by using the Coulomb Green's function method. Our analytical result does not have the spurious poles that occur in the old nonrelativistic result with retardation (Gavrila and Costescu 1970 Phys. Rev. A 2 1752). Starting from the expression of the second-order S-matrix element for the case of the elastic scattering of photons by K-shell bound electrons, we obtain the correct nonrelativistic Rayleigh angular distribution (valid for photon energies {omega} up to {alpha}Zm) by removing the relativistic higher order terms in {alpha}Z and {omega}/m. The imaginary part of the Rayleigh amplitudes is obtained for any scattering angles in a closed form in terms of elementary functions. Thereby a simple formula for the exact nonrelativistic photoeffect total cross-section is obtained via the optical theorem, giving significantly better predictions than Fischer's nonrelativistic photoeffect formula. Comparing the predictions given by our formulae with the full relativistic numerical calculations of Kissel et al (Phys. Rev. 1980 A 22 1970), and with experimental results, a fairly good agreement within 10% is found for the angular distribution of Rayleigh scattering for photon energies up to 200 keV and both below and above the first resonance.
Rigorous Quantum Field Theory A Festschrift for Jacques Bros
Monvel, Anne Boutet; Iagolnitzer, Daniel; Moschella, Ugo
2007-01-01
Jacques Bros has greatly advanced our present understanding of rigorous quantum field theory through numerous fundamental contributions. This book arose from an international symposium held in honour of Jacques Bros on the occasion of his 70th birthday, at the Department of Theoretical Physics of the CEA in Saclay, France. The impact of the work of Jacques Bros is evident in several articles in this book. Quantum fields are regarded as genuine mathematical objects, whose various properties and relevant physical interpretations must be studied in a well-defined mathematical framework. The key topics in this volume include analytic structures of Quantum Field Theory (QFT), renormalization group methods, gauge QFT, stability properties and extension of the axiomatic framework, QFT on models of curved spacetimes, QFT on noncommutative Minkowski spacetime. Contributors: D. Bahns, M. Bertola, R. Brunetti, D. Buchholz, A. Connes, F. Corbetta, S. Doplicher, M. Dubois-Violette, M. Dütsch, H. Epstein, C.J. Fewster, K....
Brandhuber, Andreas; Heslop, Paul; Travaglini, Gabriele; Young, Donovan
2015-10-02
It is known that the Yangian of PSU(2,2|4) is a symmetry of the tree-level S matrix of N=4 super Yang-Mills theory. On the other hand, the complete one-loop dilatation operator in the same theory commutes with the level-one Yangian generators only up to certain boundary terms found by Dolan, Nappi, and Witten. Using a result by Zwiebel, we show how the Yangian symmetry of the tree-level S matrix of N=4 super Yang-Mills theory implies precisely the Yangian invariance, up to boundary terms, of the one-loop dilatation operator.
Unitarity condition in covariant quantum field theory with indefinite metric
International Nuclear Information System (INIS)
Slavnov, A.A.
1989-01-01
Conditions that ensure the existence of a unitarity S matrix acting on the subspace of states with positive norm are formulated. A study is made of BRST quantization. The only restriction on the class of theories is that the author assumes asymptotic linearization of the theory, namely, that the asymptotic dynamics is determined by a quadratic Hamiltonian. In field theory this is always the case in the framework of standard perturbation theory. However, in some models, for example, string models, and also outside the framework of perturbation theory, this condition need not be satisfied
Chiral symmetry breaking in gauge theories from Reggeon diagram analysis
International Nuclear Information System (INIS)
White, A.R.
1991-01-01
It is argued that reggeon diagrams can be used to study dynamical properties of gauge theories containing a large number of massless fermions. SU(2) gauge theory is studied in detail and it is argued that there is a high energy solution which is analogous to the solution of the massless Schwinger model. A generalized winding-number condensate produces the massless pseudoscalar spectrum associated with chiral symmetry breaking and a ''trivial'' S-Matrix
Open string theory in 1+1 dimensions
International Nuclear Information System (INIS)
Bershadsky, M.; Kutasov, D.
1992-01-01
We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)
A periodic table of effective field theories
Energy Technology Data Exchange (ETDEWEB)
Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
Classes and Theories of Trees Associated with a Class Of Linear Orders
DEFF Research Database (Denmark)
Goranko, Valentin; Kellerman, Ruaan
2011-01-01
Given a class of linear order types C, we identify and study several different classes of trees, naturally associated with C in terms of how the paths in those trees are related to the order types belonging to C. We investigate and completely determine the set-theoretic relationships between...... these classes of trees and between their corresponding first-order theories. We then obtain some general results about the axiomatization of the first-order theories of some of these classes of trees in terms of the first-order theory of the generating class C, and indicate the problems obstructing such general...... results for the other classes. These problems arise from the possible existence of nondefinable paths in trees, that need not satisfy the first-order theory of C, so we have started analysing first order definable and undefinable paths in trees....
An introduction to some mathematical aspects of scattering theory in models of quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1974-01-01
An elementary introduction is given to some results, problems and methods of the recent study of scattering in models developed in connection with constructive quantum field theory. A deliberate effort has been made to be understandable also for mathematicians having some notions of non-relativistic quantum mechanics but no specific previous knowledge of quantum field theory. The Fock space, the free fields and the free Hamiltonian are introduced and the singular perturbation problem posed by local relativistic interaction is discussed. Scattering theory is first discussed for the simplified cases of space cut-off interactions and of translation invariant interactions with persistent vacuum. The Wightman-Haag-Ruelle axiomatic framework is given as a guide for the construction of models with local, relativistic interactions and of the corresponding scattering theory. The verification of the axioms is carried through in a class of models with local relativistic interactions in two-dimensional space-time. (Auth.)
Soluble theory with massive ghosts
International Nuclear Information System (INIS)
Pisarski, R.D.
1983-01-01
To investigate the unitarity of asymptotically free, higher-derivative theories, like certain models of quantum gravity, I study a prototype in two space-time dimensions. The prototype is a kind of higher-derivative nonlinear sigma model; it is asymptotically free, exhibits dimensional transmutation, and is soluble in a large-N expansion. The S-matrix elements, constructed from the analytic continuation of the Euclidean Green's functions, conserve probability to approx.O(N -1 ), but violate unitarity at approx.O(N -2 ). The model demonstrates that in higher-derivative theories unitarity, or the lack thereof, cannot be decided without explicit control over the infrared limit. Even so, the results suggest that there may exist some (rather special) asymptotically free, higher-derivative theories which are unitary
Probability Estimation in the Framework of Intuitionistic Fuzzy Evidence Theory
Directory of Open Access Journals (Sweden)
Yafei Song
2015-01-01
Full Text Available Intuitionistic fuzzy (IF evidence theory, as an extension of Dempster-Shafer theory of evidence to the intuitionistic fuzzy environment, is exploited to process imprecise and vague information. Since its inception, much interest has been concentrated on IF evidence theory. Many works on the belief functions in IF information systems have appeared. Although belief functions on the IF sets can deal with uncertainty and vagueness well, it is not convenient for decision making. This paper addresses the issue of probability estimation in the framework of IF evidence theory with the hope of making rational decision. Background knowledge about evidence theory, fuzzy set, and IF set is firstly reviewed, followed by introduction of IF evidence theory. Axiomatic properties of probability distribution are then proposed to assist our interpretation. Finally, probability estimations based on fuzzy and IF belief functions together with their proofs are presented. It is verified that the probability estimation method based on IF belief functions is also potentially applicable to classical evidence theory and fuzzy evidence theory. Moreover, IF belief functions can be combined in a convenient way once they are transformed to interval-valued possibilities.
Indefinite-metric quantum field theory of general relativity
International Nuclear Information System (INIS)
Nakanishi, Noboru
1978-01-01
Quantum field theory of Einstein's general relativity is formulated in the indefinitemetric Hilbert space in such a way that asymptotic fields are manifestly Lorentz covariant and the physical S-matrix is unitary. The general coordinate transformation is transcribed into a q-number transformation, called the BRS transformation. Its abstract definition is presented on the basis of the BRS transformation for the Yang-Mills theory. The BRS transformation for general relativity is then explicitly constructed. The gauge-fixing Lagrangian density and the Faddeev-Popov one are introduced in such a way that their sum behaves like a scalar density under the BRS transformation. One can then proceed in the same way as in the Kugo-Ojima formalism of the Yang-Mills theory to establish the unitarity of the physical S-matrix. (author)
Loop amplitudes in an extended gravity theory
Dunbar, David C.; Godwin, John H.; Jehu, Guy R.; Perkins, Warren B.
2018-05-01
We extend the S-matrix of gravity by the addition of the minimal three-point amplitude or equivalently adding R3 terms to the Lagrangian. We demonstrate how Unitarity can be used to simply examine the renormalisability of this theory and determine the R4 counter-terms that arise at one-loop. We find that the combination of R4 terms that arise in the extended theory is complementary to the R4 counter-term associated with supersymmetric Lagrangians.
Topological geometrodynamics. III. Quantum theory
International Nuclear Information System (INIS)
Pitkanen, M.
1986-01-01
The description of 3-space as a spacelike 3-surface of the space H = M 4 x CP 2 (product of Minkowski space and two-dimensional complex projective space CP 2 ) and the idea that particles correspond to 3-surfaces of finite size in H are the basic ingredients of topological geometrodynamics, TGD, an attempt to a geometry-based unification of the fundamental interactions. The observations that the Schroedinger equation can be derived from a variational principle and that the existence of a unitary S matrix follows from the phase symmetry of this action lead to the idea that quantum TGD should be derivable from a quadratic phase symmetric variational principle in the space SH consisting of the spacelike 3-surfaces of H. In this paper a formal realization of this idea is proposed. First, the space SH is endowed with the necessary geometric structures (metric, vielbein, and spinor structures) induced from the corresponding structures of the space H. Second, the concepts of the scalar super field in SH (both fermions and bosons should be describable by the same probability amplitude) and of super d'Alambertian are defined. It is shown that the requirement of a maximal symmetry leads to a unique CP-breaking super d'Alambertian and thus to a unique theory ''predicting everything.'' Finally, a formal expression for the S matrix of the theory is derived
Meaning of the BRS Lagrangian theory
International Nuclear Information System (INIS)
Cheng, H.; Tsai, E.
1989-01-01
A simplified treatment of the Becchi-Rouet-Stora (BRS) Lagrangian theory is presented. With this treatment we show that the BRS Lagrangian theory in general, and the Feynman-gauge field theory in particular, are effective theories, not the physical theory, and the Feynman gauge is not, strictly speaking, a gauge. The relationship between the quantum states in the BRS Lagrangian theory and those in the physical theory is explicitly given. We also show that one may obtain matrix elements of gauge-invariant operators in the physical theory by calculating corresponding ones in the BRS Lagrangian theory. The formulas which equate such matrix elements are called correspondence formulas. The correspondence formula for the S matrix enables us to equate the scattering amplitudes in the physical theory with those in the BRS Lagrangian theory, thus a proof of the unitary of the Feynman-gauge (as well as other covariant gauges) Feynman rules is rendered unnecessary. This treatment can be applied to various gauge field theories and the examples of the pure Yang-Mills theory and a gauge field theory with a Higgs field is explicitly worked out
Group manifold approach to gravity and supergravity theories
International Nuclear Information System (INIS)
d'Auria, R.; Fre, P.; Regge, T.
1981-05-01
Gravity theories are presented from the point of view of group manifold formulation. The differential geometry of groups and supergroups is discussed first; the notion of connection and related Yang-Mills potentials is introduced. Then ordinary Einstein gravity is discussed in the Cartan formulation. This discussion provides a first example which will then be generalized to more complicated theories, in particular supergravity. The distinction between ''pure'' and ''impure' theories is also set forth. Next, the authors develop an axiomatic approach to rheonomic theories related to the concept of Chevalley cohomology on group manifolds, and apply these principles to N = 1 supergravity. Then the panorama of so far constructed pure and impure group manifold supergravities is presented. The pure d = 5 N = 2 case is discussed in some detail, and N = 2 and N = 3 in d = 4 are considered as examples of the impure theories. The way a pure theory becomes impure after dimensional reduction is illustrated. Next, the role of kinematical superspace constraints as a subset of the group-manifold equations of motion is discussed, and the use of this approach to obtain the auxiliary fields is demonstrated. Finally, the application of the group manifold method to supersymmetric Super Yang-Mills theories is addressed
Combinatorial set theory with a gentle introduction to forcing
Halbeisen, Lorenz J
2017-01-01
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Th...
A new approach to quantum field theory and a spacetime quantization
International Nuclear Information System (INIS)
Banai, I.
1982-09-01
A quantum logical approach to achieve a sound kinematical picture for LQFT (local quantum field theory) is reviewed. Then a general language in the framework of axiomatic set theory is presented, in which the 'local' description of a LQFT can be formulated in almost the same form as quantum mechanics was formulated by von Neumann. The main physical implication of this approach is that, in this framework, the quantization of a CRLFT (classical relativistic local field theory) requires not only the quantization of physical fields over M 4 but the quantization of spacetime M 4 itself, too. The uncertainty priciple is compatible with the Heisenberg uncertainty principle, but it requires the generalization of Poincare symmetries to all unitary symmetries. Some indications show that his approach might be successful in describing low laying hadronic phenomena. (author)
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Relativistic quantum mechanics and introduction to field theory
Energy Technology Data Exchange (ETDEWEB)
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Relativistic quantum mechanics and introduction to field theory
International Nuclear Information System (INIS)
Yndurain, F.J.
1996-01-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources
Convergence of perturbation theory expansion for the Yukawa interaction
International Nuclear Information System (INIS)
Basuev, A.G.
1975-01-01
It is shown that the perturbation theory series in the translational-invariant case and upon removal of the boson propagator cut-off for euclidian Green's functions converges when gsup(2)/2 2 is the mass of the boson and Δ(o) is the fermion propagator in the zero of kappa-space. This problem was previously considered by other methods in respect of pseudo-euclidian functions (for the S-matrix) and of euclidian Green's functions. (author)
Energy-momentum tensor in the quantum field theory
International Nuclear Information System (INIS)
Azakov, S.I.
1977-01-01
An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor
The R-matrix of the Uq(d4(3)) algebra and g2(1) affine Toda field theory
International Nuclear Information System (INIS)
Takacs, G.
1997-01-01
The R-matrix of the U q (d 4 (3) ) algebra is constructed in the 8-dimensional fundamental representation. Using this result, an exact S-matrix is conjectured for the imaginary coupled g 2 (1) affine Toda field theory, the structure of which is found to be very similar to the previously investigated S-matrix of d 4 (3) Toda theory. It is shown that this S-matrix is consistent with the results for the case of real coupling using the breather-particle correspondence. For q a root of unity it is argued that the theory can be restricted to yield Φ(11 vertical stroke 12) perturbations of WA 2 minimal models. (orig.)
Tree-level unitarity and renormalizability in Lifshitz scalar theory
International Nuclear Information System (INIS)
Fujimori, Toshiaki; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka
2016-01-01
We study unitarity and renormalizability in the Lifshitz scalar field theory, which is characterized by an anisotropic scaling between the space and time directions. Without the Lorentz symmetry, both the unitarity and the renormalizability conditions are modified from those in relativistic theories. We show that for renormalizability, an extended version of the power-counting condition is required in addition to the conventional one. The unitarity bound for S-matrix elements also gives stronger constraints on interaction terms because of the reference frame dependence of scattering amplitudes. We prove that both unitarity and renormalizability require identical conditions as in the case of conventional relativistic theories
Galois and simple current symmetries in conformal field theory
International Nuclear Information System (INIS)
Schweigert, C.
1995-01-01
In this thesis various aspects of rational field theories are studied. In part I explicit examples for N=2 superconformal field theories are constructed by means of the coset approach. By means of these models string vacua are constructed, and the massless spectra of the string compactifications based on these models are computed. The symmetry of the S matrix, which implements the modular transformation on the space of characters is the subject of Part II. The developed methods are applied to the fusion rings of WZW theories. (HSI)
Towards a nonpotential scattering theory
International Nuclear Information System (INIS)
Mignani, R.
1985-01-01
We present a formal approach to nonpotential scattering theory (i.e. scattering under unrestricted nonlocal non-Hamiltonian forces), based on the generalization of the concept of scattering matrix (and related topics) to the Lie-isotopic and Lie-admissible case. In the time-dependent formalism, the main taks is the determination of the evolution operator, from which the S matrix is found as a double infinite limit. The study of time-development operators is carried out in detail in the isotopic case, and involves the isotopic generalizations of Moller wave operators, in- and out-states, and temporal (retarded and advanced) propagators. We give also expansion techniques for the S matrix, which extend to the Lie-isotopic formulation the Feynman-Dyson perturbation series, the Magnus expansion, and the Wei-Norman theorem. In the time-independent approach, we solve the isotopic Schroedinger eigenvalue equation by exploiting the properties of isotopic Green operators, Lippmann-Schwinger equations, and incoming and outgoing states, which turn out to be suitable generalizations of the conventional ones. The changes in cross sections due to nonpotential forces are explicitly worked out in some simple cases. A purely algebraic approach to nonpotential scattering, essentially based on the properties of the isowave operators, is presented. The Lie-admissible formulation of the main results is briefly outlined
Matrix analysis for associated consistency in cooperative game theory
Xu, G.; Driessen, Theo; Sun, H.; Sun, H.
Hamiache's recent axiomatization of the well-known Shapley value for TU games states that the Shapley value is the unique solution verifying the following three axioms: the inessential game property, continuity and associated consistency. Driessen extended Hamiache's axiomatization to the enlarged
Matrix analysis for associated consistency in cooperative game theory
Xu Genjiu, G.; Driessen, Theo; Sun, H.; Sun, H.
Hamiache axiomatized the Shapley value as the unique solution verifying the inessential game property, continuity and associated consistency. Driessen extended Hamiache’s axiomatization to the enlarged class of efficient, symmetric, and linear values. In this paper, we introduce the notion of row
Unitarity relations in c=1 Liouville theory
International Nuclear Information System (INIS)
Lowe, D.A.
1992-01-01
In this paper, the authors consider the S-matrix of c = 1 Liouville theory with vanishing cosmological constant. The authors examine some of the constraints imposed by unitarity. These completely determine (N,2) amplitudes at tree level in terms of the (N,1) amplitudes when the plus tachyon momenta take generic values. A surprising feature of the matrix model results is the lack of particle creation branch cuts in the higher genus amplitudes. In fact, the authors show that the naive field theory limit of Liouville theory would predict such branch cuts. However, unitarity in the full string theory ensures that such cuts do not appear in genus one (N,1) amplitudes. The authors conclude with some comments about the genus one (N,2) amplitudes
Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field
International Nuclear Information System (INIS)
Haegele, G.
1979-01-01
The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)
Quantum conserved charges in N=1 and N=2 supersymmetric sine-Gordon theories
International Nuclear Information System (INIS)
Kobayashi, Ken-ichiro; Uematsu, Tsuneo; Yu Yangzheng
1993-01-01
We investigate quantum conservation laws in the N=1 and N=2 supersymmetric sine-Gordon theories. We study conserved charges at the quantum level based on perturbation theory formulated in superspace. It will turn out that there exist extra conserved charges of the vertex operator type at the quantum level and they generate a quantum group symmetry in supersymmetric sine-Gordon systems. We also discuss the implication of the quantum group symmetry on the S-matrix structure. (orig.)
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
On the microscopic foundation of scattering theory
International Nuclear Information System (INIS)
Moser, T.
2007-01-01
The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
Field theories with multiple fermionic excitations
International Nuclear Information System (INIS)
Crawford, J.P.
1978-01-01
The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation
Semantic theory for logic programming
Energy Technology Data Exchange (ETDEWEB)
Brown, F M
1981-01-01
The author axiomatizes a number of meta theoretic concepts which have been used in logic programming, including: meaning, logical truth, nonentailment, assertion and erasure, thus showing that these concepts are logical in nature and need not be defined as they have previously been defined in terms of the operations of any particular interpreter for logic programs. 10 references.
Non-integrable quantum field theories as perturbations of certain integrable models
International Nuclear Information System (INIS)
Delfino, G.; Simonetti, P.
1996-03-01
We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab
Analytic properties of Feynman diagrams in quantum field theory
Todorov, I T
1971-01-01
Analytic Properties of Feynman Diagrams in Quantum Field Theory deals with quantum field theory, particularly in the study of the analytic properties of Feynman graphs. This book is an elementary presentation of a self-contained exposition of the majorization method used in the study of these graphs. The author has taken the intermediate position between Eden et al. who assumes the physics of the analytic properties of the S-matrix, containing physical ideas and test results without using the proper mathematical methods, and Hwa and Teplitz, whose works are more mathematically inclined with a
R matrix: its relation to Titchmarsh-Weyl theory and its complex rotated analogue
International Nuclear Information System (INIS)
Elander, N.; Krylstedt, P.; Braendas, E.; Engdahl, E.
1986-01-01
The R matrix theory in its simplest form is discussed and analyzed in terms of the classical Titchmarsh-Weyl's theory for a singular second order differential equation. It is observed that the R matrix described as an abstract R operator is contained in the framework of Weyls classical extension to an infinite interval of finite Sturm-Liuoville theory. As a result they find that the exterior complex rotation method can be synthesized with the R matrix theory to obtain a method for deriving the S matrix poles out in the complex energy or momentum planes
The Systemic Theory of Living Systems and Relevance to CAM
Directory of Open Access Journals (Sweden)
José A. Olalde Rangel
2005-01-01
Full Text Available The Systemic Theory of Living Systems is being published in several parts in eCAM. The theory is axiomatic. It originates from the phenomenological idea that physiological health is based on three factors: integrity of its structure or organization, O, functional organic energy reserve, E, and level of active biological intelligence, I. From the theory is derived a treatment strategy called Systemic Medicine (SM. This is based on identifying and prescribing phytomedicines and/or other medications that strengthen each factor. Energy-stimulating phytomedicines increase available energy and decrease total entropy of an open biological system by providing negative entropy. The same occurs with phytomedicines that act as biological intelligence modulators. They should be used as the first line of treatment in all ailments, since all pathologies, by definition, imply a higher than normal organic entropy. SM postulates that the state of health, H, of an individual, is effectively equal to the product of the strength of each factor H = O × E × I. SM observes that when all three factors are brought back to ideal levels, patients' conditions begin the recovery to normal health.
Huang, Yu-tin; Johansson, Henrik
2013-04-26
We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.
Purely elastic scattering theories and their ultraviolet limits
International Nuclear Information System (INIS)
Klassen, T.R.; Chicago Univ., IL; Melzer, E.
1990-01-01
We use the thermodynamic Bethe ansatz to find the finite-size corrections to the ground-state energy in an arbitrary (1+1)-dimensional purely elastic scattering theory. The leading finite-size effects are characterized by tilde c=c-12d 0 , where c and d 0 are the central charge and the lowest scaling dimension, respectively, of the (possibly nonunitary) CFT describing the ultraviolet limit of the massive scattering theory. After presenting the purely elastic S-matrix theories that emerged in recent discussions of perturbed CFTs, we calculate their finite-size scaling coefficient tilde c. Our results show that the UV limits of the 'minimal' S-matrix theories are the unperturbed CFTs in question. On the other hand, the S-matrices which have been suggested to describe affine Toda field theories, differing from the minimal S-matrices by coupling-dependent factors, are seen to have free bosonic CFTs as their UV limits. We also discuss some interesting properties of tilde c. In particular, we suggest that tilde c is a measure of the number of degrees of freedom of an arbitrary two-dimensional CFT. (orig.)
Quantum theory and human perception of the macro-world.
Aerts, Diederik
2014-01-01
We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new 'conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing-light as a geometric theory-and human touching-only ruled by Pauli's exclusion principle-plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects-as they occur in smaller entities-appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed.
Quantum Theory and Human Perception of the Macro-World
Directory of Open Access Journals (Sweden)
Diederik eAerts
2014-06-01
Full Text Available We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e. as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new `conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing -- light as a geometric theory -- and human touching -- only ruled by Pauli's exclusion principle -- plays a role in our perception of macroscopic entities as ontologically stable objects in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects -- as they occur in smaller entities -- appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping with separated entities, meaning that a more general
Directory of Open Access Journals (Sweden)
A. Yu. Ivanov
2017-01-01
Full Text Available Presented article is the second of two articles, the aim of which is to introduce the reader has no special mathematical training, with the possibilities of application of mathematical methods developed in the scientific direction of “Conceptual analysis and design of systems of organizational management (CAD SOM”, designed to solve a variety of tasks, such as technical and humanitarian spheres on the basis of the proposed methodological approach to the mathematization of the theoretical knowledge. At the heart of this methodological approach is a process of conceptualization, which is understood as a theoretical study of qualitative aspects of a selected domain using mathematical forms (axiomatic theory, the locking connection between the concepts of logical derivability characterizing this subject area. Designed axiomatic theory – conceptual scheme – is the basis for building database structures, decision-making processes, a variety of phenomena subject area, structure and genesis of domain analysis and other tasks. One of the main advantages of the sending of methodological approach is the ability to work with complex regions based on the controlled synthesis tool terminal theory of conceptual schemes, explicated simple fragments of the subject area. Given the non-mathematical preparation of the reader, the contents of the methods illustrated by conceptualizing a conceptually simple subject areas – areas related relations, as well as the choice of one of the most simple goals conceptualization – structuring the domain and build a variety of its phenomena. The first article was given a brief description of mathematical methods, describes the main stages of the conceptualization of the subject areas, ranging from the definition of the boundaries of the domain and ending with the theory of the synthesis of the terminal and determine its compliance with the tasks of conceptualizing. In the chosen example – areas related relations
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
From twistor string theory to recursion relations
International Nuclear Information System (INIS)
Spradlin, Marcus; Volovich, Anastasia
2009-01-01
Witten's twistor string theory gives rise to an enigmatic formula 1 known as the 'connected prescription' for tree-level Yang-Mills scattering amplitudes. We derive a link representation for the connected prescription by Fourier transforming it to mixed coordinates in terms of both twistor and dual twistor variables. We show that it can be related to other representations of amplitudes by applying the global residue theorem to deform the contour of integration. For six and seven particles we demonstrate explicitly that certain contour deformations rewrite the connected prescription as the Britto-Cachazo-Feng-Witten representation, thereby establishing a concrete link between Witten's twistor string theory and the dual formulation for the S matrix of the N=4 SYM recently proposed by Arkani-Hamed et al. Other choices of integration contour also give rise to 'intermediate prescriptions'. We expect a similar though more intricate structure for more general amplitudes.
Variational principle for the Bloch unified reaction theory
International Nuclear Information System (INIS)
MacDonald, W.; Rapheal, R.
1975-01-01
The unified reaction theory formulated by Claude Bloch uses a boundary value operator to write the Schroedinger equation for a scattering state as an inhomogeneous equation over the interaction region. As suggested by Lane and Robson, this equation can be solved by using a matrix representation on any set which is complete over the interaction volume. Lane and Robson have proposed, however, that a variational form of the Bloch equation can be used to obtain a ''best'' value for the S-matrix when a finite subset of this basis is used. The variational principle suggested by Lane and Robson, which gives a many-channel S-matrix different from the matrix solution on a finite basis, is considered first, and it is shown that the difference results from the fact that their variational principle is not, in fact, equivalent to the Bloch equation. Then a variational principle is presented which is fully equivalent to the Bloch form of the Schroedinger equation, and it is shown that the resulting S-matrix is the same as that obtained from the matrix solution of this equation. (U.S.)
International Nuclear Information System (INIS)
Ahn, Changrim; Nepomechie, Rafael I.; Suzuki, Junji
2008-01-01
Beisert et al. have identified an integrable SU(2,2) quantum spin chain which gives the one-loop anomalous dimensions of certain operators in large N c QCD. We derive a set of nonlinear integral equations (NLIEs) for this model, and compute the scattering matrix of the various (in particular, magnon) excitations
DEFF Research Database (Denmark)
Wæver, Ole
2009-01-01
-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory......, shows the power of a dominant philosophy of science in US IR, and thus the challenge facing any ambitious theorising. The article suggests a possible movement of fronts away from the ‘fourth debate' between rationalism and reflectivism towards one of theory against empiricism. To help this new agenda...
Entropy and information causality in general probabilistic theories
International Nuclear Information System (INIS)
Barnum, Howard; Leifer, Matthew; Spekkens, Robert; Barrett, Jonathan; Clark, Lisa Orloff; Stepanik, Nicholas; Wilce, Alex; Wilke, Robin
2010-01-01
We investigate the concept of entropy in probabilistic theories more general than quantum mechanics, with particular reference to the notion of information causality (IC) recently proposed by Pawlowski et al (2009 arXiv:0905.2292). We consider two entropic quantities, which we term measurement and mixing entropy. In the context of classical and quantum theory, these coincide, being given by the Shannon and von Neumann entropies, respectively; in general, however, they are very different. In particular, while measurement entropy is easily seen to be concave, mixing entropy need not be. In fact, as we show, mixing entropy is not concave whenever the state space is a non-simplicial polytope. Thus, the condition that measurement and mixing entropies coincide is a strong constraint on possible theories. We call theories with this property monoentropic. Measurement entropy is subadditive, but not in general strongly subadditive. Equivalently, if we define the mutual information between two systems A and B by the usual formula I(A: B)=H(A)+H(B)-H(AB), where H denotes the measurement entropy and AB is a non-signaling composite of A and B, then it can happen that I(A:BC)< I(A:B). This is relevant to IC in the sense of Pawlowski et al: we show that any monoentropic non-signaling theory in which measurement entropy is strongly subadditive, and also satisfies a version of the Holevo bound, is informationally causal, and on the other hand we observe that Popescu-Rohrlich boxes, which violate IC, also violate strong subadditivity. We also explore the interplay between measurement and mixing entropy and various natural conditions on theories that arise in quantum axiomatics.
On SYM theory and all order bulk singularity structures of BPS strings in type II theory
Hatefi, Ehsan
2018-06-01
The complete forms of the S-matrix elements of a transverse scalar field, two world volume gauge fields, and a Potential Cn-1 Ramond-Ramond (RR) form field are investigated. In order to find an infinite number of t , s , (t + s + u)-channel bulk singularity structures of this particular mixed open-closed amplitude, we employ all the conformal field theory techniques to , exploring all the entire correlation functions and all order α‧ contact interactions to these supersymmetric Yang-Mills (SYM) couplings. Singularity and contact term comparisons with the other symmetric analysis, and are also carried out in detail. Various couplings from pull-Back of branes, Myers terms and several generalized Bianchi identities should be taken into account to be able to reconstruct all order α‧ bulk singularities of type IIB (IIA) superstring theory. Finally, we make a comment on how to derive without any ambiguity all order α‧ contact terms of this S-matrix which carry momentum of RR in transverse directions.
Energy Technology Data Exchange (ETDEWEB)
Johnson, J. D. (Prostat, Mesa, AZ); Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ); Storlie, Curtis B. (North Carolina State University, Raleigh, NC)
2006-10-01
Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.
Fold maps and positive topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Wrazidlo, Dominik Johannes
2017-04-12
The notion of positive TFT as coined by Banagl is specified by an axiomatic system based on Atiyah's original axioms for TFTs. By virtue of a general framework that is based on the concept of Eilenberg completeness of semirings from computer science, a positive TFT can be produced rigorously via quantization of systems of fields and action functionals - a process inspired by Feynman's path integral from classical quantum field theory. The purpose of the present dissertation thesis is to investigate a new differential topological invariant for smooth manifolds that arises as the state sum of the fold map TFT, which has been constructed by Banagl as a example of a positive TFT. By eliminating an internal technical assumption on the fields of the fold map TFT, we are able to express the informational content of the state sum in terms of an extension problem for fold maps from cobordisms into the plane. Next, we use the general theory of generic smooth maps into the plane to improve known results about the structure of the state sum in arbitrary dimensions, and to determine it completely in dimension two. The aggregate invariant of a homotopy sphere, which is derived from the state sum, naturally leads us to define a filtration of the group of homotopy spheres in order to understand the role of indefinite fold lines beyond a theorem of Saeki. As an application, we show how Kervaire spheres can be characterized by indefinite fold lines in certain dimensions.
A representation of the exchange relation for affine Toda field theory
International Nuclear Information System (INIS)
Corrigan, E.; Dorey, P.E.
1991-01-01
Vertex operators are constructed providing representations of the exchange relations containing either the S-matrix of a real coupling (simply-laced) affine Toda field theory, or its minimal counterpart. One feature of the construction is that the bootstrap relations for the S-matrices follow automatically from those for the conserved quantities, via an algebraic interpretation of the fusing of two particles to form a single bound state. (orig.)
Block diagrams and the cancellation of divergencies in energy-level perturbation theory
International Nuclear Information System (INIS)
Michels, M.A.J.; Suttorp, L.G.
1979-01-01
The effective Hamiltonian for the degenerate energy-eigenvalue problem in adiabatic perturbation theory is cast in a form that permits an expansion in Feynman diagrams. By means of a block representation a resummation of these diagrams is carried out such that in the adiabatic limit no divergencies are encountered. The resummed form of the effective Hamiltonian is used to establish a connexion with the S matrix. (Auth.)
Cutkosky rules for superstring field theory
International Nuclear Information System (INIS)
Pius, Roji; Sen, Ashoke
2016-01-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
The spectrum of the conserved charges in affine Toda theories
International Nuclear Information System (INIS)
Niedermaier, M.R.
1992-07-01
A vertex operator construction for the phase of the minimal form factor is used to predict the exact spectrum of the infinite set of conserved charges on the multi-particle states in affine Toda theories from the bootstrap S-matrix. Conversely, the scattering phase can be recovered from the spectral information. The result is checed against the classical spectrum which is calculated ab-initio using the τ-function formalism. The latter is shown to provide a considerable shortcut compared to the traditional use of the inverse scattering transform. (orig.)
Quantum field theory in a gravitational shock wave background
International Nuclear Information System (INIS)
Klimcik, C.
1988-01-01
A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)
Jara, Pascual; Torrecillas, Blas
1988-01-01
The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.
DEFF Research Database (Denmark)
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Analysis of interacting quantum field theory in curved spacetime
International Nuclear Information System (INIS)
Birrell, N.D.; Taylor, J.G.
1980-01-01
A detailed analysis of interacting quantized fields propagating in a curved background spacetime is given. Reduction formulas for S-matrix elements in terms of vacuum Green's functions are derived, special attention being paid to the possibility that the ''in'' and ''out'' vacuum states may not be equivalent. Green's functions equations are obtained and a diagrammatic representation for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate space techniques for showing renormalizability are developed in Minkowski space, for lambdaphi 3 /sub() 4,6/ field theories. The extension of these techniques to curved spacetimes is considered. It is shown that the possibility of field theories becoming nonrenormalizable there cannot be ruled out, although, allowing certain modifications to the theory, phi 3 /sub( 4 ) is proven renormalizable in a large class of spacetimes. Finally particle production from the vacuum by the gravitational field is discussed with particular reference to Schwarzschild spacetime. We shed some light on the nonlocalizability of the production process and on the definition of the S matrix for such processes
International Nuclear Information System (INIS)
Chan Hongmo.
1987-10-01
The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
Spectral theory of linear operators and spectral systems in Banach algebras
Müller, Vladimir
2003-01-01
This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. The theory is presented in a unified, axiomatic and elementary way. Many results appear here for the first time in a monograph. The material is self-contained. Only a basic knowledge of functional analysis, topology, and complex analysis is assumed. The monograph should appeal both to students who would like to learn about spectral theory and to experts in the field. It can also serve as a reference book. The present second edition contains a number of new results, in particular, concerning orbits and their relations to the invariant subspace problem. This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach alg...
Inclusive Fitness Maximization:An Axiomatic Approach
Okasha, Samir; Weymark, John; Bossert, Walter
2014-01-01
Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of qu...
Communication vs. Information, an Axiomatic Neutrosophic Solution
Directory of Open Access Journals (Sweden)
Florentin Smarandache
2013-03-01
Full Text Available This study represents an application of the neutrosophic method, for solving the contradiction between communication and information. In addition, it recourse to an appropriate method of approaching the contradictions: Extensics, as the method and the science of solving the contradictions. The research core is the reality that the scientific research of communication-information relationship has reached a dead end. The bivalent relationship communication information, information-communication has come to be contradictory, and the two concepts to block each other. After the critical examination of conflicting positions expressed by many experts in the field, the extensic and inclusive hypothesis is issued that information is a form of communication. The object of communication is the sending of a message. The message may consist of thoughts, ideas, opinions, feelings, beliefs, facts, information, intelligence or other significational elements. When the message content is primarily informational, communication will become information or intelligence.
Physics in six dimensions: an axiomatic formulation
International Nuclear Information System (INIS)
Pappas, P.T.
1978-01-01
In this work it is assumed that light is linearly superimposed by three independent components in the three orthogonal directions of space. Together with a selection of axioms and interpretations a six dimensional space arises. At the end the recent and hoc defined formulae for transverse mass which lead to longitudinal phase space are naturally derived
Labour motivation : an axiomatic vector model
Kotliarov, Ivan
2008-01-01
En el presente artículo se da una lista de axiomas necesarios para la construcción de una teoría matemática de la motivación humana. Se propone un modelo matemático de la motivación en el trabajo. La motivación se representa como un vector resultante de la motivación parcial generada por grupos específicos de necesidades. El modelo de Vroom se incluye en el modelo propuesto como ejemplo de motivación. Se establece una correlación entre los gastos de motivación, el nivel de motivación y el niv...
Directory of Open Access Journals (Sweden)
Amelent A.E.
2016-11-01
Full Text Available in this article an attempt is made to move away from the traditional consideration of the problems of the Farm. As the author notes the fallacy of the traditional approach is that if the mathematician-fan was able to formulate a statement as proven, then specially trained and well-trained people could have made it easily. And, if they couldn’t, then there was a gap in the science of mathematics. A different approach is required.
Axiomatic Specification of Database Domain Statics
Wieringa, Roelf J.
1987-01-01
In the past ten years, much work has been done to add more structure to database models 1 than what is represented by a mere collection of flat relations (Albano & Cardelli [1985], Albano et al. [1986], Borgida eta. [1984], Brodie [1984], Brodie & Ridjanovic [1984], Brodie & Silva (1982], Codd
Uchiyama, T
1974-01-01
Rigorous lower bounds are derived from axiomatic field theory, by invoking analyticity and unitarity of the S-matrix. The bounds are expressed in terms of the total cross section and the slope parameter, and are found to be compatible with CERN experimental pp scattering data. It is also shown that the calculated lower-bound values imply non-existence of zeros for -t
Double soft theorems in gauge and string theories
Energy Technology Data Exchange (ETDEWEB)
Volovich, Anastasia [Brown University Department of Physics,182 Hope St, Providence, RI, 02912 (United States); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy); Zlotnikov, Michael [Brown University Department of Physics,182 Hope St, Providence, RI, 02912 (United States)
2015-07-20
We investigate the tree-level S-matrix in gauge theories and open superstring theory with several soft particles. We show that scattering amplitudes with two or three soft gluons of non-identical helicities behave universally in the limit, with multi-soft factors which are not the product of individual soft gluon factors. The results are obtained from the BCFW recursion relations in four dimensions, and further extended to arbitrary dimensions using the CHY formula. We also find new soft theorems for double soft limits of scalars and fermions in N=4 and pure N=2 SYM. Finally, we show that the double-soft-scalar theorems can be extended to open superstring theory without receiving any α{sup ′} corrections.
A Tangent Bundle Theory for Visual Curve Completion.
Ben-Yosef, Guy; Ben-Shahar, Ohad
2012-07-01
Visual curve completion is a fundamental perceptual mechanism that completes the missing parts (e.g., due to occlusion) between observed contour fragments. Previous research into the shape of completed curves has generally followed an "axiomatic" approach, where desired perceptual/geometrical properties are first defined as axioms, followed by mathematical investigation into curves that satisfy them. However, determining psychophysically such desired properties is difficult and researchers still debate what they should be in the first place. Instead, here we exploit the observation that curve completion is an early visual process to formalize the problem in the unit tangent bundle R(2) × S(1), which abstracts the primary visual cortex (V1) and facilitates exploration of basic principles from which perceptual properties are later derived rather than imposed. Exploring here the elementary principle of least action in V1, we show how the problem becomes one of finding minimum-length admissible curves in R(2) × S(1). We formalize the problem in variational terms, we analyze it theoretically, and we formulate practical algorithms for the reconstruction of these completed curves. We then explore their induced visual properties vis-à-vis popular perceptual axioms and show how our theory predicts many perceptual properties reported in the corresponding perceptual literature. Finally, we demonstrate a variety of curve completions and report comparisons to psychophysical data and other completion models.
Relativistic dynamics of quasistable states. I. Perturbation theory for the Poincare group
International Nuclear Information System (INIS)
Wickramasekara, S.
2009-01-01
We propose a theory of resonances by combining the S-matrix approach with the Bakamjian-Thomas (BT) construction. Characterization of resonances by the poles of the S-matrix has many advantages. Foremost among them is perhaps the gauge invariance of the definitions of resonance mass and width, a problem with which some definitions based on field theoretical approaches suffer. The BT construction provides a general framework for constructing Poincare generators for an interacting quantum system. While much of what we develop here can be cast in the language of quantum field theory, in the spirit of BT construction, which does not assume the existence of local field mediating interactions, we will work at the fundamental level of an interacting Poincare algebra. Our construction shows that a subset of this Poincare algebra integrates to a representation of the semigroup of causal transformations of relativistic space-time. These representations are characterized by the spin and S-matrix complex pole position of the resonance. The state vectors that transform under these representations also show an exact exponential decay, the signature of a decaying state. In this sense, the semigroup representations developed here tie together resonances and decaying states into a single theoretical description.
The resolution of field identification fixed points in diagonal coset theories
International Nuclear Information System (INIS)
Fuchs, J.; Schellekens, B.; Schweigert, C.
1995-09-01
The fixed point resolution problem is solved for diagonal coset theories. The primary fields into which the fixed points are resolved are described by submodules of the branching spaces, obtained as eigenspaces of the automorphisms that implement field identification. To compute the characters and the modular S-matrix we use ''orbit Lie algebras'' and ''twining characters'', which were introduced in a previous paper. The characters of the primary fields are expressed in terms branching functions of twining characters. This allows us to express the modular S-matrix through the S-matrices of the orbit Lie algebras associated to the identification group. Our results can be extended to the larger class of ''generalized diagonal cosets''. (orig.)
Scattering theory on the lattice and with a Monte Carlo method
International Nuclear Information System (INIS)
Kroeger, H.; Moriarty, K.J.M.; Potvin, J.
1990-01-01
We present an alternative time-dependent method of calculating the S matrix in quantum systems governed by a Hamiltonian. In the first step one constructs a new Hamiltonian that describes the physics of scattering at energy E with a reduced number of degrees of freedom. Its matrix elements are computed with a Monte Carlo projector method. In the second step the scattering matrix is computed algebraically via diagonalization and exponentiation of the new Hamiltonian. Although we have in mind applications in many-body systems and quantum field theory, the method should be applicable and useful in such diverse areas as atomic and molecular physics, nuclear physics, high-energy physics and solid-state physics. As an illustration of the method, we compute s-wave scattering of two nucleons in a nonrelativistic potential model (Yamaguchi potential), for which the S matrix is known exactly
International Nuclear Information System (INIS)
Uehara, S.
1985-01-01
Of all supergravity theories, the maximal, i.e., N = 8 in 4-dimension or N = 1 in 11-dimension, theory should perform the unification since it owns the highest degree of symmetry. As to the N = 1 in d = 11 theory, it has been investigated how to compactify to the d = 4 theories. From the phenomenological point of view, local SUSY GUTs, i.e., N = 1 SUSY GUTs with soft breaking terms, have been studied from various angles. The structures of extended supergravity theories are less understood than those of N = 1 supergravity theories, and matter couplings in N = 2 extended supergravity theories are under investigation. The harmonic superspace was recently proposed which may be useful to investigate the quantum effects of extended supersymmetry and supergravity theories. As to the so-called Kaluza-Klein supergravity, there is another possibility. (Mori, K.)
Johnstone, PT
2014-01-01
Focusing on topos theory's integration of geometric and logical ideas into the foundations of mathematics and theoretical computer science, this volume explores internal category theory, topologies and sheaves, geometric morphisms, other subjects. 1977 edition.
Dorogovtsev, A Ya; Skorokhod, A V; Silvestrov, D S; Skorokhod, A V
1997-01-01
This book of problems is intended for students in pure and applied mathematics. There are problems in traditional areas of probability theory and problems in the theory of stochastic processes, which has wide applications in the theory of automatic control, queuing and reliability theories, and in many other modern science and engineering fields. Answers to most of the problems are given, and the book provides hints and solutions for more complicated problems.
International Nuclear Information System (INIS)
Lee, B.W.
1976-01-01
Some introductory remarks to Yang-Mills fields are given and the problem of the Coulomb gauge is considered. The perturbation expansion for quantized gauge theories is discussed and a survey of renormalization schemes is made. The role of Ward-Takahashi identities in gauge theories is discussed. The author then discusses the renormalization of pure gauge theories and theories with spontaneously broken symmetry. (B.R.H.)
International Nuclear Information System (INIS)
Fateev, V.; Lukyanov, S.; Zamolodchikov, A.; Zamolodchikov, A.
1998-01-01
Exact expectation values of the fields e aφ in the Bullough-Dodd model are derived by adopting the ''''reflection relations'''' which involve the reflection S-matrix of the Liouville theory, as well as a special analyticity assumption. Using this result we propose explicit expressions for expectation values of all primary operators in the c 1,2 or Φ 2,1 . Some results concerning the Φ 1,5 perturbed minimal models are also presented. (orig.)
International Nuclear Information System (INIS)
Hart, C.F.
1981-01-01
A gauge invariant effective action which generalizes the usual background field method is applied to quantum non-Abelian gauge theories. The gauge properties of the theory as well as its equivalence to the conventional theory are presented. Solutions to the new effective field equations are found to be physical and it is shown how S-matrix elements may be computed in terms of this new effective action. Feynman rules are given and the renormalization theory is discussed using minimal subtraction and dimensional regularization. The resulting computation of counterterms is found to be simpler than that of the usual method. A complete two-loop calculation of the β function for pure Yang-Mills theory is given as a specific example of this approach
Nonlinear many-body reaction theories from nuclear mean field approximations
International Nuclear Information System (INIS)
Griffin, J.J.
1983-01-01
Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)
Relativistic quantum theory of composite systems
International Nuclear Information System (INIS)
Sogami, I.
1978-01-01
A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)
Finite-size effect of the dyonic giant magnons in N=6 super Chern-Simons theory
International Nuclear Information System (INIS)
Ahn, Changrim; Bozhilov, P.
2009-01-01
We consider finite-size effects for the dyonic giant magnon of the type IIA string theory on AdS 4 xCP 3 by applying the Luescher μ-term formula which is derived from a recently proposed S matrix for the N=6 super Chern-Simons theory. We compute explicitly the effect for the case of a symmetric configuration where the two external bound states, each of A and B particles, have the same momentum p and spin J 2 . We compare this with the classical string theory result which we computed by reducing it to the Neumann-Rosochatius system. The two results match perfectly.
Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory
International Nuclear Information System (INIS)
Cooper, A.S.
1981-01-01
The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)
Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field
International Nuclear Information System (INIS)
Philipp, W.
1975-01-01
The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
Harris, Tina
2015-04-29
Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.
Number theory via Representation theory
Indian Academy of Sciences (India)
2014-11-09
Number theory via Representation theory. Eknath Ghate. November 9, 2014. Eightieth Annual Meeting, Chennai. Indian Academy of Sciences1. 1. This is a non-technical 20 minute talk intended for a general Academy audience.
International Nuclear Information System (INIS)
Schwarz, J.H.
1985-01-01
Dual string theories, initially developed as phenomenological models of hadrons, now appear more promising as candidates for a unified theory of fundamental interactions. Type I superstring theory (SST I), is a ten-dimensional theory of interacting open and closed strings, with one supersymmetry, that is free from ghosts and tachyons. It requires that an SO(eta) or Sp(2eta) gauge group be used. A light-cone-gauge string action with space-time supersymmetry automatically incorporates the superstring restrictions and leads to the discovery of type II superstring theory (SST II). SST II is an interacting theory of closed strings only, with two D=10 supersymmetries, that is also free from ghosts and tachyons. By taking six of the spatial dimensions to form a compact space, it becomes possible to reconcile the models with our four-dimensional perception of spacetime and to define low-energy limits in which SST I reduces to N=4, D=4 super Yang-Mills theory and SST II reduces to N=8, D=4 supergravity theory. The superstring theories can be described by a light-cone-gauge action principle based on fields that are functionals of string coordinates. With this formalism any physical quantity should be calculable. There is some evidence that, unlike any conventional field theory, the superstring theories provide perturbatively renormalizable (SST I) or finite (SST II) unifications of gravity with other interactions
C*-algebraic scattering theory and explicitly solvable quantum field theories
International Nuclear Information System (INIS)
Warchall, H.A.
1985-01-01
A general theoretical framework is developed for the treatment of a class of quantum field theories that are explicitly exactly solvable, but require the use of C*-algebraic techniques because time-dependent scattering theory cannot be constructed in any one natural representation of the observable algebra. The purpose is to exhibit mechanisms by which inequivalent representations of the observable algebra can arise in quantum field theory, in a setting free of other complications commonly associated with the specification of dynamics. One of two major results is the development of necessary and sufficient conditions for the concurrent unitary implementation of two automorphism groups in a class of quasifree representations of the algebra of the canonical commutation relations (CCR). The automorphism groups considered are induced by one-parameter groups of symplectic transformations on the classical phase space over which the Weyl algebra of the CCR is built; each symplectic group is conjugate by a fixed symplectic transformation to a one-parameter unitary group. The second result, an analog to the Birman--Belopol'skii theorem in two-Hilbert-space scattering theory, gives sufficient conditions for the existence of Moller wave morphisms in theories with time-development automorphism groups of the above type. In a paper which follows, this framework is used to analyze a particular model system for which wave operators fail to exist in any natural representation of the observable algebra, but for which wave morphisms and an associated S matrix are easily constructed
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Dependence theory via game theory
Grossi, D.; Turrini, P.
2011-01-01
In the multi-agent systems community, dependence theory and game theory are often presented as two alternative perspectives on the analysis of social interaction. Up till now no research has been done relating these two approaches. The unification presented provides dependence theory with the sort
A critical look at 50 years particle theory from the perspective of the crossing property
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2010-02-01
The crossing property, which originated more than 5 decades ago in the aftermath of dispersion relations, was the central new concept which opened an S-matrix based line of research in particle theory. Many constructive ideas in particle theory outside perturbative QFT, among them the S-matrix bootstrap program, the dual resonance model and the various stages of string theory have their historical roots in this property. The crossing property is perhaps the most subtle aspect of the particle-field relation. Although it is not difficult to state its content in terms of certain analytic properties relating different matrix elements of the S-matrix or form factors, its relation to the localization- and positive energy spectral principles requires a level of insight into the inner workings of QFT which goes beyond anything which can be found in typical textbooks on QFT. This paper presents a recent account based on new ideas derived from 'modular localization' including a mathematic appendix on this subject. The main content is an in-depth criticism of the dual model and its string theoretic extension. The conceptual flaws of these models are closely related to misunderstandings of the true meaning of crossing. The correct interpretation of string theory is that of a dynamic infinite component wave function or pointlike field i.e. a theory which under irreducible Poincare decomposition into an infinite mass/spin tower but which also contains operators which do not commute with the generators of the Poincare group but rather intertwine between different mass/spin levels. (author)
A critical look at 50 years particle theory from the perspective of the crossing property
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Universitaet, Berlin (Germany). Inst. fuer Theoretische Physik
2010-02-15
The crossing property, which originated more than 5 decades ago in the aftermath of dispersion relations, was the central new concept which opened an S-matrix based line of research in particle theory. Many constructive ideas in particle theory outside perturbative QFT, among them the S-matrix bootstrap program, the dual resonance model and the various stages of string theory have their historical roots in this property. The crossing property is perhaps the most subtle aspect of the particle-field relation. Although it is not difficult to state its content in terms of certain analytic properties relating different matrix elements of the S-matrix or form factors, its relation to the localization- and positive energy spectral principles requires a level of insight into the inner workings of QFT which goes beyond anything which can be found in typical textbooks on QFT. This paper presents a recent account based on new ideas derived from 'modular localization' including a mathematic appendix on this subject. The main content is an in-depth criticism of the dual model and its string theoretic extension. The conceptual flaws of these models are closely related to misunderstandings of the true meaning of crossing. The correct interpretation of string theory is that of a dynamic infinite component wave function or pointlike field i.e. a theory which under irreducible Poincare decomposition into an infinite mass/spin tower but which also contains operators which do not commute with the generators of the Poincare group but rather intertwine between different mass/spin levels. (author)
Analytic multi-Regge theory and the pomeron in QCD. 1
International Nuclear Information System (INIS)
White, A.R.
1991-01-01
This paper reports on the formalism of analytic multi-Regge theory developed as a basis for the study of abstract critical and super-critical pomeron high-energy behavior and for related studies of the Regge behavior of spontaneously broken gauge theories and the pomeron in QCD. Asymptotic domains of analyticity for multiparticle amplitudes are shown to follow from properties of field theory and S-matrix theory. General asymptotic dispersion relations are then derived for such amplitudes in which the spectral components are described by the graphical formalism of hexagraphs. Further consequences are distinct Sommerfeld-Watson representations for each hexagraph spectral component, together with a complete set of angular momentum plane unitarity equations which control the form of all multi-Regge amplitudes. Because of this constraint of reggeon unitarity the critical pomeron solution of the reggeon field theory gives the only known non-trivial unitary high-energy S-matrix. By exploiting the full structure of multi-Regge amplitudes as the pomeron becomes super-critical, one can study the simultaneous modification of hadrons and the pomeron. The result is a completely consistent description of the super-critical pomeron appearing in hadron scattering. Reggeon unitarity is satisfied in the super-critical phase by the appearance of a massive gluon (Reggeized vector particle) coupling pair-wise to the pomeron
International Nuclear Information System (INIS)
Fronsdal, C.
1987-01-01
Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED
Chang, CC
2012-01-01
Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko
Aubin, Jean-Pierre; Saint-Pierre, Patrick
2011-01-01
Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explai
Cox, David A
2012-01-01
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!"—Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galo
Dufwenberg, Martin
2011-03-01
Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.
Hashiguchi, Koichi
2009-01-01
This book details the mathematics and continuum mechanics necessary as a foundation of elastoplasticity theory. It explains physical backgrounds with illustrations and provides descriptions of detailed derivation processes..
The role of operator ordering in quantum field theory
International Nuclear Information System (INIS)
Suzuki, Tsuneo; Hirshfeld, A.C.; Leschke, H.
1980-01-01
We study the role of operator ordering in quantum field theory. Operator ordering techniques discussed in our previous papers in the quantum mechanical context are extended to field theory. In this case formally infinite terms appear which must be given a meaning in the framework of some definite regularization scheme. Different orderings for the non-commuting operators in the interaction Hamiltonian lead in general to different expressions for the Dyson-Wick expansion of the S-matrix, implying different Feynman rules. Different orderings correspond to different assignments for the initially undetermined values of the contractions occurring in closed-loop diagrams. Combining a special class of ordering schemes (u-ordering, a generalization of Weyl-ordering) with dimensional regularization leads to important simplifications, and in this case manipulations in which ordering complications are neglected may be justified. We use our methods to discuss gauge invariance in scalar electrodynamics, and the equivalent theorem for a reducible field theoretical model. (author)
Scattering theory in quantum mechanics and asymptotic completeness
International Nuclear Information System (INIS)
Combes, J.M.
1977-07-01
A trial for describing the status of the scattering theory in quantum mechanics is given. The S matrix being defined, its unitarity is a consequence of the asymptotic completeness relation which is one of the mean problems discussed. It is shown that the multichannel scattering theory can be reformulated in the two Hilbert space formalism with a suitable choice of H 0 and J (one-body problem and N-body systems). Time-dependent methods try to solve directly the existence problem for wave-operators without recourse to resolvent methods. Emphasis is put on the fact that the success of such a method can be traced to its semi-classical aspect in the sense that the stationary phase method is a special way to single-out from the quantum dynamics the contribution of classical orbits
International Nuclear Information System (INIS)
Bartlett, R.; Kirtman, B.; Davidson, E.R.
1978-01-01
After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references
R. Veenhoven (Ruut)
2014-01-01
markdownabstract__Abstract__ Need theory of happiness is linked to affect theory, which holds that happiness is a reflection of how well we feel generally. In this view, we do not "calculate" happiness but rather "infer" it, the typical heuristic being "I feel good most of the time, hence
Bouwkamp, C.J.
1954-01-01
A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of
Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří
1988-01-01
Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal...
DEFF Research Database (Denmark)
Bjerg, Ole; Presskorn-Thygesen, Thomas
2017-01-01
The paper is a contribution to current debates about conspiracy theories within philosophy and cultural studies. Wittgenstein’s understanding of language is invoked to analyse the epistemological effects of designating particular questions and explanations as a ‘conspiracy theory......’. It is demonstrated how such a designation relegates these questions and explanations beyond the realm of meaningful discourse. In addition, Agamben’s concept of sovereignty is applied to explore the political effects of using the concept of conspiracy theory. The exceptional epistemological status assigned...... to alleged conspiracy theories within our prevalent paradigms of knowledge and truth is compared to the exceptional legal status assigned to individuals accused of terrorism under the War on Terror. The paper concludes by discussing the relation between conspiracy theory and ‘the paranoid style...
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
DEFF Research Database (Denmark)
Hjørland, Birger
2009-01-01
Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge...... organizing systems (e.g. classification systems, thesauri and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe......, evaluate and use such systems. Based on "a post-Kuhnian view" of paradigms this paper put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism and pragmatism...
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
Schmidli, Hanspeter
2017-01-01
This book provides an overview of classical actuarial techniques, including material that is not readily accessible elsewhere such as the Ammeter risk model and the Markov-modulated risk model. Other topics covered include utility theory, credibility theory, claims reserving and ruin theory. The author treats both theoretical and practical aspects and also discusses links to Solvency II. Written by one of the leading experts in the field, these lecture notes serve as a valuable introduction to some of the most frequently used methods in non-life insurance. They will be of particular interest to graduate students, researchers and practitioners in insurance, finance and risk management.
DEFF Research Database (Denmark)
Smith, Shelley
This paper came about within the context of a 13-month research project, Focus Area 1 - Method and Theory, at the Center for Public Space Research at the Royal Academy of the Arts School of Architecture in Copenhagen, Denmark. This project has been funded by RealDania. The goals of the research...... project, Focus Area 1 - Method and Theory, which forms the framework for this working paper, are: * To provide a basis from which to discuss the concept of public space in a contemporary architectural and urban context - specifically relating to theory and method * To broaden the discussion of the concept...
Lubliner, Jacob
2008-01-01
The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and
DEFF Research Database (Denmark)
Linder, Stefan; Foss, Nicolai Juul
Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting and informational conditions, the theory addresses problems of ex...... ante (“hidden characteristics”) as well as ex post information asymmetry (“hidden action”), and examines conditions under which various kinds of incentive instruments and monitoring arrangements can be deployed to minimize the welfare loss. Its clear predictions and broad applicability have allowed...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....
DEFF Research Database (Denmark)
Linder, Stefan; Foss, Nicolai Juul
2015-01-01
Agency theory studies the problems and solutions linked to delegation of tasks from principals to agents in the context of conflicting interests between the parties. Beginning from clear assumptions about rationality, contracting, and informational conditions, the theory addresses problems of ex...... ante (‘hidden characteristics’) as well as ex post information asymmetry (‘hidden action’), and examines conditions under which various kinds of incentive instruments and monitoring arrangements can be deployed to minimize the welfare loss. Its clear predictions and broad applicability have allowed...... agency theory to enjoy considerable scientific impact on social science; however, it has also attracted considerable criticism....
Off-critical statistical models: factorized scattering theories and bootstrap program
International Nuclear Information System (INIS)
Mussardo, G.
1992-01-01
We analyze those integrable statistical systems which originate from some relevant perturbations of the minimal models of conformal field theories. When only massive excitations are present, the systems can be efficiently characterized in terms of the relativistic scattering data. We review the general properties of the factorizable S-matrix in two dimensions with particular emphasis on the bootstrap principle. The classification program of the allowed spins of conserved currents and of the non-degenerate S-matrices is discussed and illustrated by means of some significant examples. The scattering theories of several massive perturbations of the minimal models are fully discussed. Among them are the Ising model, the tricritical Ising model, the Potts models, the series of the non-unitary minimal models M 2,2n+3 , the non-unitary model M 3,5 and the scaling limit of the polymer system. The ultraviolet limit of these massive integrable theories can be exploited by the thermodynamics Bethe ansatz, in particular the central charge of the original conformal theories can be recovered from the scattering data. We also consider the numerical method based on the so-called conformal space truncated approach which confirms the theoretical results and allows a direct measurement of the scattering data, i.e. the masses and the S-matrix of the particles in bootstrap interaction. The problem of computing the off-critical correlation functions is discussed in terms of the form-factor approach
Nel, Louis
2016-01-01
This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...
Hodges, Wilfrid
1993-01-01
An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.
Lunardi, Alessandra
2018-01-01
This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.
International Nuclear Information System (INIS)
1989-06-01
This report discusses concepts in nuclear theory such as: neutrino nucleosynthesis; double beta decay; neutrino oscillations; chiral symmetry breaking; T invariance; quark propagator; cold fusion; and other related topics
R. Veenhoven (Ruut)
2014-01-01
markdownabstract__Abstract__ Assumptions Livability theory involves the following six key assumptions: 1. Like all animals, humans have innate needs, such as for food, safety, and companionship. 2. Gratification of needs manifests in hedonic experience. 3. Hedonic experience determines how
SAIDANI Lassaad
2015-01-01
The nokton theory is an attempt to construct a theory adapted to every physical phenomenon. Space and time have been discretized. Its laws are iterative and precise. Probability plays an important role here. At first I defined the notion of image function and its mathematical framework. The notion of nokton and its state are the basis of several definitions. I later defined the canonical image function and the canonical contribution. Two constants have been necessary to define the dynam...
SAIDANI Lassaad
2017-01-01
The nokton theory is an attempt to construct a theory adapted to every physical phenomenon. Space and time have been discretized. Its laws are iterative and precise. Probability plays an important role here. At first I defined the notion of image function and its mathematical framework. The notion of nokton and its state are the basis of several definitions. I later defined the canonical image function and the canonical contribution. Two constants have been necessary to define the dynam...
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Study on the dissociative recombination of HeH+ by multi-channel quantum defect theory
Directory of Open Access Journals (Sweden)
Takagi Hidekazu
2015-01-01
Full Text Available The dissociative recombination of HeH+ is studied using multi-channel quantum defect theory. We investigated how the partial waves of incident electrons affect the DR cross section. The DR cross section depends on the position of the center of partial wave expansion for the adiabatic S-matrix of electron scattering. When the Rydberg states correlate with the Rydberg states of the hydrogen atom at large internuclear distances, the center should be on the hydrogen atom for a better convergence of the expansion.
Kodaira, Kunihiko
2017-01-01
This book deals with the classical theory of Nevanlinna on the value distribution of meromorphic functions of one complex variable, based on minimum prerequisites for complex manifolds. The theory was extended to several variables by S. Kobayashi, T. Ochiai, J. Carleson, and P. Griffiths in the early 1970s. K. Kodaira took up this subject in his course at The University of Tokyo in 1973 and gave an introductory account of this development in the context of his final paper, contained in this book. The first three chapters are devoted to holomorphic mappings from C to complex manifolds. In the fourth chapter, holomorphic mappings between higher dimensional manifolds are covered. The book is a valuable treatise on the Nevanlinna theory, of special interests to those who want to understand Kodaira's unique approach to basic questions on complex manifolds.
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
Stewart, Ian
2003-01-01
Ian Stewart's Galois Theory has been in print for 30 years. Resoundingly popular, it still serves its purpose exceedingly well. Yet mathematics education has changed considerably since 1973, when theory took precedence over examples, and the time has come to bring this presentation in line with more modern approaches.To this end, the story now begins with polynomials over the complex numbers, and the central quest is to understand when such polynomials have solutions that can be expressed by radicals. Reorganization of the material places the concrete before the abstract, thus motivating the g
International Nuclear Information System (INIS)
Sitenko, A.
1991-01-01
This book emerged out of graduate lectures given by the author at the University of Kiev and is intended as a graduate text. The fundamentals of non-relativistic quantum scattering theory are covered, including some topics, such as the phase-function formalism, separable potentials, and inverse scattering, which are not always coverded in textbooks on scattering theory. Criticisms of the text are minor, but the reviewer feels an inadequate index is provided and the citing of references in the Russian language is a hindrance in a graduate text
Theory of inelastic effects in resonant atom-surface scattering
International Nuclear Information System (INIS)
Evans, D.K.
1983-01-01
The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results
Sferra, Bobbie A.; Paddock, Susan C.
This booklet describes various theoretical aspects of leadership, including the proper exercise of authority, effective delegation, goal setting, exercise of control, assignment of responsibility, performance evaluation, and group process facilitation. It begins by describing the evolution of general theories of leadership from historic concepts…
Hall, Marshall
2011-01-01
Includes proof of van der Waerden's 1926 conjecture on permanents, Wilson's theorem on asymptotic existence, and other developments in combinatorics since 1967. Also covers coding theory and its important connection with designs, problems of enumeration, and partition. Presents fundamentals in addition to latest advances, with illustrative problems at the end of each chapter. Enlarged appendixes include a longer list of block designs.
Toso, Robert B.
2000-01-01
Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)
de Vreese, C.H.; Lecheler, S.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.
2016-01-01
Political issues can be viewed from different perspectives and they can be defined differently in the news media by emphasizing some aspects and leaving others aside. This is at the core of news framing theory. Framing originates within sociology and psychology and has become one of the most used
International Nuclear Information System (INIS)
Gong, Ha Soung
2006-12-01
The text book composed of five parts, which are summary of this book, arrangement of electricity theory including electricity nad magnetism, a direct current, and alternating current. It has two dictionary electricity terms for a synonym. The last is an appendix. It is for preparing for test of officer, electricity engineer and fire fighting engineer.
DEFF Research Database (Denmark)
Monthoux, Pierre Guillet de; Statler, Matt
2014-01-01
The recent Carnegie report (Colby, et al., 2011) characterizes the goal of business education as the development of practical wisdom. In this chapter, the authors reframe Scharmer’s Theory U as an attempt to develop practical wisdom by applying certain European philosophical concepts. Specifically...
DEFF Research Database (Denmark)
Guillet de Monthoux, Pierre; Statler, Matt
2017-01-01
The recent Carnegie report (Colby, et al., 2011) characterizes the goal of business education as the development of practical wisdom. In this chapter, the authors reframe Scharmer's Theory U as an attempt to develop practical wisdom by applying certain European philosophical concepts. Specifically...
International Nuclear Information System (INIS)
Tang, W.M.
2001-01-01
This is a summary of the advances in magnetic fusion energy theory research presented at the 17th International Atomic Energy Agency Fusion Energy Conference from 19 24 October, 1998 in Yokohama, Japan. Theory and simulation results from this conference provided encouraging evidence of significant progress in understanding the physics of thermonuclear plasmas. Indeed, the grand challenge for this field is to acquire the basic understanding that can readily enable the innovations which would make fusion energy practical. In this sense, research in fusion energy is increasingly able to be categorized as fitting well the 'Pasteur's Quadrant' paradigm, where the research strongly couples basic science ('Bohr's Quadrant') to technological impact ('Edison's Quadrant'). As supported by some of the work presented at this conference, this trend will be further enhanced by advanced simulations. Eventually, realistic three-dimensional modeling capabilities, when properly combined with rapid and complete data interpretation of results from both experiments and simulations, can contribute to a greatly enhanced cycle of understanding and innovation. Plasma science theory and simulation have provided reliable foundations for this improved modeling capability, and the exciting advances in high-performance computational resources have further accelerated progress. There were 68 papers presented at this conference in the area of magnetic fusion energy theory
Penland, Patrick R.
Three papers are presented which delineate the foundation of theory and principles which underlie the research and instructional approach to communications at the Graduate School of Library and Information Science, University of Pittsburgh. Cybernetic principles provide the integration, and validation is based in part on a situation-producing…
Lee, William H K.
2016-01-01
A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.
Plummer, MD
1986-01-01
This study of matching theory deals with bipartite matching, network flows, and presents fundamental results for the non-bipartite case. It goes on to study elementary bipartite graphs and elementary graphs in general. Further discussed are 2-matchings, general matching problems as linear programs, the Edmonds Matching Algorithm (and other algorithmic approaches), f-factors and vertex packing.
DEFF Research Database (Denmark)
Bertelsen, Olav Wedege; Bødker, Susanne
2003-01-01
the young HCI research tradition. But HCI was already facing problems: lack of consideration for other aspects of human behavior, for interaction with other people, for culture. Cognitive science-based theories lacked means to address several issues that came out of the empirical projects....
Theories of extended objects and composite models of particles
International Nuclear Information System (INIS)
Barut, A.O.
1992-05-01
The goal of the relativistic theory of extended objects is to predict and correlate the experimentally observed mass spectra, form factors, inelastic transitions, polarizabilities, structure functions of particles from different probes (photons, neutrinos, electrons), and eventually, the break-up, pair production of the system, and scattering of extended objects among themselves. The internal structure may be classified by the nature and number of the internal variables: discrete (fundamental particles), finite number of continuous variables (bound systems), infinite number of continuous variables (p-membranes or localized fields). The algebraic group theoretical S-matrix approach allows us to formulate all the above properties in a unified manner. Different structures are then characterized by different specific parameters. (author). Refs, 4 figs, 1 tab
Non-local charges in local quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.
1985-05-01
Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)
One-loop divergences in the quantum theory of supergravity
International Nuclear Information System (INIS)
Nieuwenhuizen, P. van; Vermaseren, J.A.M.
1976-01-01
Supergravity does not lead to a finite quantum theory of gravitation when coupled to the spin 1, 1/2 matter multiplet. The S-matrix of photon-photon scattering diverges; its divergences are proportional to the square of the photon energy-momentum tensor, in agreement with electro-magnetic duality and chiral invariance. The graviton self-energy corrections are divergent in pure supergravity as well as in the coupled Maxwell-Einstein system and satisfy their Ward identity because the supersymmetry ghost field is commuting. The photon-graviton vertex corrections diverge, as expected from the non-invariance of the action under local scale transformations, and satisfy the equivalence principle at the quantum level. The photon self-energy is divergent. (Auth.)
DEFF Research Database (Denmark)
Stein, Irene F.; Stelter, Reinhard
2011-01-01
Communication theory covers a wide variety of theories related to the communication process (Littlejohn, 1999). Communication is not simply an exchange of information, in which we have a sender and a receiver. This very technical concept of communication is clearly outdated; a human being...... is not a data processing device. In this chapter, communication is understood as a process of shared meaning-making (Bruner, 1990). Human beings interpret their environment, other people, and themselves on the basis of their dynamic interaction with the surrounding world. Meaning is essential because people...... ascribe specific meanings to their experiences, their actions in life or work, and their interactions. Meaning is reshaped, adapted, and transformed in every communication encounter. Furthermore, meaning is cocreated in dialogues or in communities of practice, such as in teams at a workplace or in school...
2015-01-01
A one-sentence definition of operator theory could be: The study of (linear) continuous operations between topological vector spaces, these being in general (but not exclusively) Fréchet, Banach, or Hilbert spaces (or their duals). Operator theory is thus a very wide field, with numerous facets, both applied and theoretical. There are deep connections with complex analysis, functional analysis, mathematical physics, and electrical engineering, to name a few. Fascinating new applications and directions regularly appear, such as operator spaces, free probability, and applications to Clifford analysis. In our choice of the sections, we tried to reflect this diversity. This is a dynamic ongoing project, and more sections are planned, to complete the picture. We hope you enjoy the reading, and profit from this endeavor.
Helms, Lester L
2014-01-01
Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In ...
DEFF Research Database (Denmark)
Jensen, Klaus Bruhn
2016-01-01
This article revisits the place of normative and other practical issues in the wider conceptual architecture of communication theory, building on the tradition of philosophical pragmatism. The article first characterizes everyday concepts of communication as the accumulated outcome of natural...... evolution and history: practical resources for human existence and social coexistence. Such practical concepts have served as the point of departure for diverse theoretical conceptions of what communication is. The second part of the article highlights the past neglect and current potential of normative...... communication theories that ask, in addition, what communication ought to be, and what it could be, taking the relationship between communication and justice as a case in point. The final section returns to empirical conceptualizations of different institutions, practices and discourses of communication...
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
International Nuclear Information System (INIS)
Perjes, Z.
1982-01-01
Particle models in twistor theory are reviewed, starting with an introduction into the kinematical-twistor formalism which describes massive particles in Minkowski space-time. The internal transformations of constituent twistors are then discussed. The quantization rules available from a study of twistor scattering situations are used to construct quantum models of fundamental particles. The theory allows the introduction of an internal space with a Kaehlerian metric where hadron structure is described by spherical states of bound constituents. It is conjectured that the spectrum of successive families of hadrons might approach an accumulation point in energy. Above this threshold energy, the Kaehlerian analog of ionization could occur wherein the zero-mass constituents (twistors) of the particle break free. (Auth.)
DEFF Research Database (Denmark)
Carroll, Joseph; Clasen, Mathias; Jonsson, Emelie
2017-01-01
Biocultural theory is an integrative research program designed to investigate the causal interactions between biological adaptations and cultural constructions. From the biocultural perspective, cultural processes are rooted in the biological necessities of the human life cycle: specifically human...... of research as contributions to a coherent, collective research program. This article argues that a mature biocultural paradigm needs to be informed by at least 7 major research clusters: (a) gene-culture coevolution; (b) human life history theory; (c) evolutionary social psychology; (d) anthropological...... forms of birth, growth, survival, mating, parenting, and sociality. Conversely, from the biocultural perspective, human biological processes are constrained, organized, and developed by culture, which includes technology, culturally specific socioeconomic and political structures, religious...
Weber, Rebecca
2012-01-01
What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including re...
Hashiguchi, Koichi
2014-01-01
This book was written to serve as the standard textbook of elastoplasticity for students, engineers and researchers in the field of applied mechanics. The present second edition is improved thoroughly from the first edition by selecting the standard theories from various formulations and models, which are required to study the essentials of elastoplasticity steadily and effectively and will remain universally in the history of elastoplasticity. It opens with an explanation of vector-tensor analysis and continuum mechanics as a foundation to study elastoplasticity theory, extending over various strain and stress tensors and their rates. Subsequently, constitutive equations of elastoplastic and viscoplastic deformations for monotonic, cyclic and non-proportional loading behavior in a general rate and their applications to metals and soils are described in detail, and constitutive equations of friction behavior between solids and its application to the prediction of stick-slip phenomena are delineated. In additi...
Amplitude relations in heterotic string theory and Einstein-Yang-Mills
Energy Technology Data Exchange (ETDEWEB)
Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam (Germany)
2016-11-11
We present all-multiplicity evidence that the tree-level S-matrix of gluons and gravitons in heterotic string theory can be reduced to color-ordered single-trace amplitudes of the gauge multiplet. Explicit amplitude relations are derived for up to three gravitons, up to two color traces and an arbitrary number of gluons in each case. The results are valid to all orders in the inverse string tension α{sup ′} and generalize to the ten-dimensional superamplitudes which preserve 16 supercharges. Their field-theory limit results in an alternative proof of the recently discovered relations between Einstein-Yang-Mills amplitudes and those of pure Yang-Mills theory. Similarities and differences between the integrands of the Cachazo-He-Yuan formulae and the heterotic string are investigated.
On the microscopic foundation of scattering theory; Zur mikroskopischen Begruendung der Streutheorie
Energy Technology Data Exchange (ETDEWEB)
Moser, T.
2007-02-26
The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics {psi}{sub in} and {psi}{sub out} can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics.
Test of a hypothesis of realism in quantum theory using a Bayesian approach
Nikitin, N.; Toms, K.
2017-05-01
In this paper we propose a time-independent equality and time-dependent inequality, suitable for an experimental test of the hypothesis of realism. The derivation of these relations is based on the concept of conditional probability and on Bayes' theorem in the framework of Kolmogorov's axiomatics of probability theory. The equality obtained is intrinsically different from the well-known Greenberger-Horne-Zeilinger (GHZ) equality and its variants, because violation of the proposed equality might be tested in experiments with only two microsystems in a maximally entangled Bell state |Ψ-> , while a test of the GHZ equality requires at least three quantum systems in a special state |ΨGHZ> . The obtained inequality differs from Bell's, Wigner's, and Leggett-Garg inequalities, because it deals with spin s =1 /2 projections onto only two nonparallel directions at two different moments of time, while a test of the Bell and Wigner inequalities requires at least three nonparallel directions, and a test of the Leggett-Garg inequalities requires at least three distinct moments of time. Hence, the proposed inequality seems to open an additional experimental possibility to avoid the "contextuality loophole." Violation of the proposed equality and inequality is illustrated with the behavior of a pair of anticorrelated spins in an external magnetic field and also with the oscillations of flavor-entangled pairs of neutral pseudoscalar mesons.
Walach, H
2003-08-01
Homeopathy is scientifically banned, both for lack of consistent empirical findings, but more so for lack of a sound theoretical model to explain its purported effects. This paper makes an attempt to introduce an explanatory idea based on a generalized version of quantum mechanics (QM), the weak quantum theory (WQT). WQT uses the algebraic formalism of QM proper, but drops some restrictions and definitions typical for QM. This results in a general axiomatic framework similar to QM, but more generalized and applicable to all possible systems. Most notably, WQT predicts entanglement, which in QM is known as Einstein-Podolsky-Rosen (EPR) correlatedness within quantum systems. According to WQT, this entanglement is not only tied to quantum systems, but is to be expected whenever a global and a local variable describing a system are complementary. This idea is used here to reconstruct homeopathy as an exemplification of generalized entanglement as predicted by WQT. It transpires that homeopathy uses two instances of generalized entanglement: one between the remedy and the original substance (potentiation principle) and one between the individual symptoms of a patient and the general symptoms of a remedy picture (similarity principle). By bringing these two elements together, double entanglement ensues, which is reminiscent of cryptographic and teleportation applications of entanglement in QM proper. Homeopathy could be a macroscopic analogue to quantum teleportation. This model is exemplified and some predictions are derived, which make it possible to test the model. Copyright 2003 S. Karger GmbH, Freiburg
Veenhoven, Ruut
2014-01-01
markdownabstract__Abstract__ Assumptions Livability theory involves the following six key assumptions: 1. Like all animals, humans have innate needs, such as for food, safety, and companionship. 2. Gratification of needs manifests in hedonic experience. 3. Hedonic experience determines how much we like the life we live (happiness). Hence, happiness depends on need gratification. 4.Need gratification depends on both external living conditions and inner abilities to use these. Hence, bad living...
International Nuclear Information System (INIS)
Casten, R F
2015-01-01
This paper discusses some simple issues that arise in testing models, with a focus on models for low energy nuclear structure. By way of simplified examples, we illustrate some dangers in blind statistical assessments, pointing out especially the need to include theoretical uncertainties, the danger of over-weighting precise or physically redundant experimental results, the need to assess competing theories with independent and physically sensitive observables, and the value of statistical tests properly evaluated. (paper)
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
Friedrich, Harald
2016-01-01
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...
On the construction of classical superstring field theories
Energy Technology Data Exchange (ETDEWEB)
Konopka, Sebastian Johann Hermann
2016-07-01
This thesis describes the construction of classical superstring field theories based on the small Hilbert space. First we describe the traditional construction of perturbative superstring theory as an integral over the supermoduli space of type II world sheets. The geometry of supermoduli space dictates many algebraic properties of the string field theory action. In particular it allows for an algebraisation of the construction problem for classical superstring field theories in terms of homotopy algebras. Next, we solve the construction problem for open superstrings based on Witten's star product. The construction is recursive and involves a choice of homotopy operator for the zero mode of the η-ghost. It turns out that the solution can be extended to the Neveu-Schwarz subsectors of all superstring field theories. The recursive construction involves a hierarchy of string products at various picture deficits. The construction is not entirely natural, but it is argued that different choices give rise to solutions related by a field redefinition. Due to the presence of odd gluing parameters for Ramond states the extension to full superstring field theory is non-trivial. Instead, we construct gauge-invariant equations of motion for all superstring field theories. The realisation of spacetime supersymmetry in the open string sector is highly non-trivial and is described explicitly for the solution based on Witten's star product. After a field redefinition the non-polynomial equations of motion and the small Hilbert space constraint become polynomial. This polynomial system is shown to be supersymmetric. Quite interestingly, the supersymmetry algebra closes only up to gauge transformations. This indicates that only the physical phase space realizes N=1 supersymmetry. Apart from the algebraic constraints dictated by the geometry of supermoduli space the equations of motion or action should reproduce the traditional string S-matrix. The S-matrix of a field
Complete set of essential parameters of an effective theory
Ioffe, M. V.; Vereshagin, V. V.
2018-04-01
The present paper continues the series [V. V. Vereshagin, True self-energy function and reducibility in effective scalar theories, Phys. Rev. D 89, 125022 (2014); , 10.1103/PhysRevD.89.125022A. Vereshagin and V. Vereshagin, Resultant parameters of effective theory, Phys. Rev. D 69, 025002 (2004); , 10.1103/PhysRevD.69.025002K. Semenov-Tian-Shansky, A. Vereshagin, and V. Vereshagin, S-matrix renormalization in effective theories, Phys. Rev. D 73, 025020 (2006), 10.1103/PhysRevD.73.025020] devoted to the systematic study of effective scattering theories. We consider matrix elements of the effective Lagrangian monomials (in the interaction picture) of arbitrary high dimension D and show that the full set of corresponding coupling constants contains parameters of both kinds: essential and redundant. Since it would be pointless to formulate renormalization prescriptions for redundant parameters, it is necessary to select the full set of the essential ones. This is done in the present paper for the case of the single scalar field.
Advanced quantum theory and its applications through Feynman diagrams
International Nuclear Information System (INIS)
Scadron, M.D.
1979-01-01
The two themes of scattering diagrams and the fundamental forces characterize this book. Transformation theory is developed to review the concepts of nonrelativistic quantum mechanics and to formulate the relativistic Klein-Gordon, Maxwell, and Dirac wave equations for relativistic spin-0, massless spin-1, and spin-1/2 particles, respectively. The language of group theory is used to write relativistic Lorentz transformations in a form similar to ordinary rotations and to describe the important discrete symmetries of C, P, and T. Then quantum mechanics is reformulated in the language of scattering theory, with the momentum-space S matrix replacing the coordinate-space hamiltonian as the central dynamical operator. Nonrelativistic perturbation scattering diagrams are then developed, and simple applications given for nuclear, atomic, and solid-state scattering problems. Next, relativistic scattering diagrams built up from covariant Feynman propagators and vertices in a manner consistent with the CPT theorem are considered. The theory is systematically applied to the lowest-order fundamental electromagnetic, strong, weak, and gravitational interactions. Finally, the use of higher-order Feynman diagrams to explain more detailed aspects of quantum electrodynamics (QED) and strong-interaction elementary-particle physics is surveyed. Throughout, the notion of currents is used to exploit the underlying symmetries and dynamical interactions of the various quantum forces. 258 references, 77 figures, 1 table
Goldie, Charles M
1991-01-01
This book is an introduction, for mathematics students, to the theories of information and codes. They are usually treated separately but, as both address the problem of communication through noisy channels (albeit from different directions), the authors have been able to exploit the connection to give a reasonably self-contained treatment, relating the probabilistic and algebraic viewpoints. The style is discursive and, as befits the subject, plenty of examples and exercises are provided. Some examples and exercises are provided. Some examples of computer codes are given to provide concrete illustrations of abstract ideas.
2009-01-01
This book deals with the basic subjects of design theory. It begins with balanced incomplete block designs, various constructions of which are described in ample detail. In particular, finite projective and affine planes, difference sets and Hadamard matrices, as tools to construct balanced incomplete block designs, are included. Orthogonal latin squares are also treated in detail. Zhu's simpler proof of the falsity of Euler's conjecture is included. The construction of some classes of balanced incomplete block designs, such as Steiner triple systems and Kirkman triple systems, are also given.
International business theory and marketing theory
Soldner, Helmut
1984-01-01
International business theory and marketing theory : elements for internat. marketing theory building. - In: Marketing aspects of international business / Gerald M. Hampton ... (eds.). - Boston u.a. : Kluwer, 1984. - S. 25-57
Theory of the Trojan-Horse method
International Nuclear Information System (INIS)
Baur, Gerhard; Typel, Stefan
2004-01-01
The Trojan-Horse method is an indirect approach to determine the energy dependence of S factors of astrophysically relevant two-body reactions. This is accomplished by studying closely related three-body reactions under quasi-free scattering conditions. The basic theory of the Trojan-Horse method is developed starting from a post-from distorted wave Born approximation of the T-matrix element. In the surface approximation the cross section of the three-body reaction can be related to the S-matrix elements of the two-body reaction. The essential feature of the Trojan-Horse method is the effective suppression of the Coulomb barrier at low energies for the astrophysical reaction leading to finite cross sections at the threshold of the two-body reaction. In a modified plane wave approximation the relation between the two-body and three-body cross sections becomes very transparent. Applications of the Trojan Horse Method are discussed. It is special interest that electron screening corrections are negligible due to the high projectile energy. (author)
Theory of the Trojan-Horse method
International Nuclear Information System (INIS)
Typel, S.; Baur, G.
2003-01-01
The Trojan-Horse method is an indirect approach to determine the energy dependence of S factors of astrophysically relevant two-body reactions. This is accomplished by studying closely related three-body reactions under quasi-free scattering conditions. The basic theory of the Trojan-Horse method is developed starting from a post-form distorted wave Born approximation of the T-matrix element. In the surface approximation the cross-section of the three-body reaction can be related to the S-matrix elements of the two-body reaction. The essential feature of the Trojan-Horse method is the effective suppression of the Coulomb barrier at low energies for the astrophysical reaction leading to finite cross-sections at the threshold of the two-body reaction. In a modified plane wave approximation the relation between the two- and three-body cross-sections becomes very transparent. The appearing Trojan-Horse integrals are studied in detail
International Nuclear Information System (INIS)
Markland, J.T.
1992-01-01
Techniques used in conventional project appraisal are mathematically very simple in comparison to those used in reservoir modelling, and in the geosciences. Clearly it would be possible to value assets in mathematically more sophisticated ways if it were meaningful and worthwhile so to do. The DCf approach in common use has recognized limitations; the inability to select a meaningful discount rate being particularly significant. Financial Theory has advanced enormously over the last few years, along with computational techniques, and methods are beginning to appear which may change the way we do project evaluations in practice. The starting point for all of this was a paper by Black and Scholes, which asserts that almost all corporate liabilities can be viewed as options of varying degrees of complexity. Although the financial presentation may be unfamiliar to engineers and geoscientists, some of the concepts used will not be. This paper outlines, in plain English, the basis of option pricing theory for assessing the market value of a project. it also attempts to assess the future role of this type of approach in practical Petroleum Exploration and Engineering economics. Reference is made to relevant published Natural Resource literature
International Nuclear Information System (INIS)
Schroer, Bert; FU-Berlin
2012-02-01
Recent insights into the conceptual structure of localization in QFT ('modular localization') led to clarifications of old unsolved problems. The oldest one is the Einstein-Jordan conundrum which led Jordan in 1925 to the discovery of quantum field theory. This comparison of fluctuations in subsystems of heat bath systems (Einstein) with those resulting from the restriction of the QFT vacuum state to an open sub volume (Jordan) leads to a perfect analogy; the globally pure vacuum state becomes upon local restriction a strongly impure KMS state. This phenomenon of localization-caused thermal behavior as well as the vacuum-polarization clouds at the causal boundary of the localization region places localization in QFT into a sharp contrast with quantum mechanics and justifies the attribute 'holistic'. In fact it positions the E-J Gedankenexperiment into the same conceptual class as the cosmological constant problem and the Unruh Gedankenexperiment and the problem of the cosmological constant. The holistic structure of QFT resulting from 'modular localization' also leads to a revision of the conceptual origin of the crucial crossing property which entered particle theory at the time of the bootstrap S-matrix approach but suffered from incorrect use in the S-matrix settings of the dual model and string theory. The new point of view, which strengthens the autonomous aspect of QFT, also comes with new messages for gauge theory by exposing the clash between Hilbert space structure and pointlike localization for massless higher spin fields. It hopefully also will contribute to its solution. (author)
International Nuclear Information System (INIS)
Gong, Ha Seong
2006-02-01
This book explains electric theory which is divided into four chapters. The first chapter includes electricity and material, electric field, capacitance, magnetic field and electromagnetic force, inductance. The second chapter mentions electronic circuit analysis, electric resistance,heating and power, chemical activity on current and battery with electrolysis. The third chapter deals with an alternating current circuit about the basics of an AC circuit, operating of resistance, inductance and capacitance, series circuit and parallel circuit of PLC, an alternating current circuit, Three-phase Alternating current, two terminal pair network and voltage and current of non-linearity circuit. The last explains transient phenomena of RC series circuit, RL series circuit, transient phenomena of an alternating current circuit and transient phenomena of RLC series circuit.
International Nuclear Information System (INIS)
Nobile, G.
1993-07-01
With reference to highly debated sustainable growth strategies to counter pressing interrelated global environmental and socio-economic problems, this paper reviews economic and resource development theories proposed by classical and neoclassical economists. The review evidences the growing debate among public administration decision makers regarding appropriate methods to assess the worth of natural resources and ecosystems. Proposed methods tend to be biased either towards environmental protection or economic development. Two major difficulties in the effective implementation of sustainable growth strategies are also evidenced - the management of such strategies would require appropriate revisions to national accounting systems, and the dynamic flow of energy and materials between an economic system and the environment would generate a sequence of unstable structures evolving in a chaotic and unpredictable way
A Future of Communication Theory: Systems Theory.
Lindsey, Georg N.
Concepts of general systems theory, cybernetics and the like may provide the methodology for communication theory to move from a level of technology to a level of pure science. It was the purpose of this paper to (1) demonstrate the necessity of applying systems theory to the construction of communication theory, (2) review relevant systems…
Resonances, scattering theory and rigged Hilbert spaces
International Nuclear Information System (INIS)
Parravicini, G.; Gorini, V.; Sudarshan, E.C.G.
1979-01-01
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free, in, and out eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian; the singularities of the out eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of complete sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the out eigenvectors. The free, in and out eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee-Friedrichs model. 48 references
International Nuclear Information System (INIS)
Maillard, S.; Skorek, R.; Maugis, P.; Dumont, M.
2015-01-01
This chapter presents the basic principles of cluster dynamics as a particular case of mesoscopic rate theory models developed to investigate fuel behaviour under irradiation such as in UO 2 . It is shown that as this method simulates the evolution of the concentration of every type of point or aggregated defect in a grain of material. It produces rich information that sheds light on the mechanisms involved in microstructure evolution and gas behaviour that are not accessible through conventional models but yet can provide for improvements in those models. Cluster dynamics parameters are mainly the energetic values governing the basic evolution mechanisms of the material (diffusion, trapping and thermal resolution). In this sense, the model has a general applicability to very different operational situations (irradiation, ion-beam implantation, annealing) provided that they rely on the same basic mechanisms, without requiring additional data fitting, as is required for more empirical conventional models. This technique, when applied to krypton implanted and annealed samples, yields a precise interpretation of the release curves and helps assess migration mechanisms and the krypton diffusion coefficient, for which data is very difficult to obtain due to the low solubility of the gas. (authors)
Atomic nuclei and nuclear reactions. Theory and application
International Nuclear Information System (INIS)
Sitenko, A.G.; Tartakovsky, V.K.; Kenjebaev, K.K.; Shunkeyev, K.Sh.; Ismatov, E.I.; Mukhammedov, S.; Comsan, M.N.H.; Djuraev, Sh.Kh.
2004-01-01
Full text: The short description of the book preparation by the collective authors from Ukraine, Kazakhstan, Uzbekistan and Egypt is given. The present book is the expanded course of lectures on the theory of nuclei, nuclear reactions and their applications delivered by the authors for a number of years in the Ukrainian National University, Aktubinsk State University of the Kazakhstan Republic, Tashkent National University, Samarkand and Termez State Universities of Uzbekistan Republic, Egyptian National Universities (Al-Az'har, Menoufeya, Suez-Canal and Tanta) and the Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan. The lectures present foundations of the modern concepts of the structure of nuclei, on the nature of nuclear processes and nuclear transformations. Main attention in the book was paid to the presentation of the basics and some modern achievements in the field of the theory of nuclei and nuclear reactions. A number of problems was investigated in original works and were not presented in the physics textbooks. The book presents the non-relativistic theory of nuclear reactions, questions of relativistic nuclear physics were not considered here. Non-relativistic theory of nuclear reactions is based on the notions of collision matrix or S-matrix. In absence of consequent microscopic theory, the scattering matrix can be found phenomenological based on definite assumptions on the character of nuclear interactions. Modern applications of nuclear reactions for the development of nuclear methods of analysis are presented. The delayed and nuclear techniques with nuclear reactor, accelerators and radioisotopic sources are considered. The book is designed as a textbook for bachelor and postgraduate students of physical faculties of universities and engineering-physical institutions, lecturers and researchers, working in the field of nuclear physics. The book gives an up-to-date list of references on nuclear reaction theory and
Yang-Baxter algebras of monodromy matrices in integrable quantum field theories
International Nuclear Information System (INIS)
Vega, H.J. de; Maillet, J.M.; Eichenherr, H.
1984-01-01
We consider a large class of two-dimensional integrable quantum field theories with nonabelian internal symmetry and classical scale invariance. We present a general procedure to determine explicitly the conserved quantum monodromy operator generating infinitely many non-local charges. The main features of our methods are a factorization principle and the use of P, T, and internal symmetries. The monodromy operator is shown to satisfy a Yang-Baxter algebra, the structure constants (i.e. the quantum R-matrix) of which are determined by the two-particle S-matrix of the theory. We apply the method to the chiral SU(N) and the O(2N) Gross-Neveu models. (orig.)
a Classical Isodual Theory of Antimatter and its Prediction of Antigravity
Santilli, Ruggero Maria
An inspection of the contemporary physics literature reveals that, while matter is treated at all levels of study, from Newtonian mechanics to quantum field theory, antimatter is solely treated at the level of second quantization. For the purpose of initiating the restoration of full equivalence in the treatment of matter and antimatter in due time, and as the classical foundations of an axiomatically consistent inclusion of gravitation in unified gauge theories recently appeared elsewhere, in this paper we present a classical representation of antimatter which begins at the primitive Newtonian level with corresponding formulations at all subsequent levels. By recalling that charge conjugation of particles into antiparticles is antiautomorphic, the proposed theory of antimatter is based on a new map, called isoduality, which is also antiautomorphic (and more generally, antiisomorphic), yet it is applicable beginning at the classical level and then persists at the quantum level where it becomes equivalent to charge conjugation. We therefore present, apparently for the first time, the classical isodual theory of antimatter, we identify the physical foundations of the theory as being the novel isodual Galilean, special and general relativities, and we show the compatibility of the theory with all available classical experimental data on antimatter. We identify the classical foundations of the prediction of antigravity for antimatter in the field of matter (or vice-versa) without any claim on its validity, and defer its resolution to specifically identified experiments. We identify the novel, classical, isodual electromagnetic waves which are predicted to be emitted by antimatter, the so-called space-time machine based on a novel non-Newtonian geometric propulsion, and other implications of the theory. We also introduce, apparently for the first time, the isodual space and time inversions and show that they are nontrivially different than the conventional ones, thus
Modular localization and the holistic structure of causal quantum theory, a historical perspective
International Nuclear Information System (INIS)
Schroer, Bert
2014-01-01
Recent insights into the conceptual structure of localization in QFT ('modular localization') led to clarifications of old unsolved problems. The oldest one is the Einstein-Jordan conundrum which led Jordan in 1925 to the discovery of quantum field theory. This comparison of fluctuations in subsystems of heat bath systems (Einstein) with those resulting from the restriction of the QFT vacuum state to an open subvolume (Jordan) leads to a perfect analogy; the globally pure vacuum state becomes upon local restriction a strongly impure KMS state. This phenomenon of localization-caused thermal behavior as well as the vacuum-polarization clouds at the causal boundary of the localization region places localization in QFT into a sharp contrast with quantum mechanics and justifies the attribute 'holstic'. In fact it positions the E-J Gedankenexperiment into the same conceptual category as the cosmological constant problem and the Unruh Gedankenexperiment. The holistic structure of QFT resulting from 'modular localization' also leads to a revision of the conceptual origin of the crucial crossing property which entered particle theory at the time of the bootstrap S-matrix approach but suffered from incorrect use in the S-matrix settings of the dual model and string theory. The new holistic point of view, which strengthens the autonomous aspect of QFT, also comes with new messages for gauge theory by exposing the clash between Hilbert space structure and localization and presenting alternative solutions based on the use of string local fields in Hilbert space. Among other things this leads to a radical reformulation of the Englert-Higgs symmetry breaking mechanism. (author)
The causal approach in quantum field theory
International Nuclear Information System (INIS)
Grigore, D. R.
2003-01-01
The mathematical formulation of perturbative renormalization theory starts from Bogoliubov axioms imposed on the S-matrix (or equivalently on the chronological products). The S-matrix is a formal series of operator valued distributions: these distributions are denoted by T(x 1 , ... , x n ) and one supposes that they act in the Fock space of some collection of free fields. These operator-valued distributions are called chronological products. The expression T(x) is called the interaction Lagrangian. It is convenient to construct more general objects namely, the operator-valued distributions T(W 1 (x 1 ), ... ,W n (x n )), where W j are arbitrary Wick monomials. These objects verify some properties (following from Bogolyubov axioms) and express the following properties: the initial condition, skew-symmetry in all arguments, Poincare invariance, causality and unitarity. The existence of solutions follows from the analysis of Epstein and Glaser as a recursive procedure using in an essential way the causality axiom. Sometimes it is possible to supplement these axioms by other invariance properties with respect to space-time symmetries (inversions and/or scale invariance), charge conjugation, global symmetry with respect to some internal symmetry group, supersymmetric invariance, etc. if they are valid for the interaction Lagrangian. In the literature, the invariance properties of the chronological products with respect to scale invariance was analyzed in detail. The scale invariance operators U λ are transforming field operators corresponding to particles of masses m j in fields corresponding to scaled masses λ -1 m j . One can prove that if all masses are positive the chronological products can be normalized such that they are scale invariant. On the contrary, if all masses of the model are zero then the scale invariance of the chronological products can be implemented only up to some logarithmic terms in λ. For models describing higher spin particles unphysical
MACCIA, ELIZABETH S.; AND OTHERS
AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY…
Müller, Gert; Sacks, Gerald
1990-01-01
These proceedings contain research and survey papers from many subfields of recursion theory, with emphasis on degree theory, in particular the development of frameworks for current techniques in this field. Other topics covered include computational complexity theory, generalized recursion theory, proof theoretic questions in recursion theory, and recursive mathematics.
K-theory and representation theory
International Nuclear Information System (INIS)
Kuku, A.O.
2003-01-01
This contribution includes K-theory of orders, group-rings and modules over EI categories, equivariant higher algebraic K-theory for finite, profinite and compact Lie group actions together with their relative generalisations and applications
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin-Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynm an functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky-DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should be noted that DeWitt's book
Gravity, general relativity theory and alternative theories
International Nuclear Information System (INIS)
Zel'dovich, Ya.B.; Grishchuk, L.P.; Moskovskij Gosudarstvennyj Univ.
1986-01-01
The main steps in plotting the current gravitation theory and some prospects of its subsequent development are reviewed. The attention is concentrated on a comparison of the relativistic gravitational field with other physical fields. Two equivalent formulations of the general relativity (GR) - geometrical and field-theoretical - are considered in detail. It is shown that some theories of gravity constructed as the field theories at a flat background space-time are in fact just different formulations of GR and not alternative theories
Generalizability theory and item response theory
Glas, Cornelis A.W.; Eggen, T.J.H.M.; Veldkamp, B.P.
2012-01-01
Item response theory is usually applied to items with a selected-response format, such as multiple choice items, whereas generalizability theory is usually applied to constructed-response tasks assessed by raters. However, in many situations, raters may use rating scales consisting of items with a selected-response format. This chapter presents a short overview of how item response theory and generalizability theory were integrated to model such assessments. Further, the precision of the esti...
Becker, Katrin; Becker, Melanie; Schwarz, John H.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line
Proceedings of the 14. Claude Itzykson Meeting-2009 recent advances in string theory
International Nuclear Information System (INIS)
Aharoni, O.; Arkani-Hamed, N.; Becker, K.; Berkovits, N.; Bern, Z.; De Boer, J.; Emparan, R.; Green, M.; Hartnoll, S.; Heckman, J.; Kachru, S.; Lambert, N.; Louis, J.; Marino, M.; Mathur, S.; McAllister, L.; McGreevy, J.; Polchinski, J.; Sen, A.; Weigand, T.
2009-01-01
This document is made up of the slides of the presentations. The titles of the 20 presentations are the following: 1) On d=3 Yang-Mills Chern-Simons theories with 'fractional branes' and their gravity duals; 2) Holography and the S-Matrix; 3) Torsional heterotic geometries; 4) Spin chains from the topological AdS 5 xS 5 string; 5) Harmony of Scattering Amplitudes: from N=4 Super-Yang-Mills Theory to N=8 Supergravity; 6) Quantum aspects of black holes; 7) Black-folds; 8) Supersymmetric String and Field Theory Scattering Amplitudes; 9) Quantum bosons for holographic superconductors; 10) The Point of E8 in F-theory GUTs; 11) Gauge/gravity duality and particle physics; 12) Coupling M2-branes to Background Fields; 13) Compactifications and Generalized Geometries; 14) Nonperturbative aspects of the topological string; 15) Lessons from the information paradox: 16) Inflation in String Theory; 17) Holographic descriptions of quantum liquids; 18) Holography from CFT; 19) Black hole hair removal; and 20) Type IIB GUT vacua and their F-theory uplift
International Nuclear Information System (INIS)
Bergmann, P.G.
1980-01-01
A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion
Boley, Bruno A
1997-01-01
Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.
International Nuclear Information System (INIS)
Marciano, W.J.
1984-12-01
The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references
Jardine, John F
2015-01-01
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, n...
Algebraic Meta-Theory of Processes with Data
Directory of Open Access Journals (Sweden)
Daniel Gebler
2013-07-01
Full Text Available There exists a rich literature of rule formats guaranteeing different algebraic properties for formalisms with a Structural Operational Semantics. Moreover, there exist a few approaches for automatically deriving axiomatizations characterizing strong bisimilarity of processes. To our knowledge, this literature has never been extended to the setting with data (e.g. to model storage and memory. We show how the rule formats for algebraic properties can be exploited in a generic manner in the setting with data. Moreover, we introduce a new approach for deriving sound and ground-complete axiom schemata for a notion of bisimilarity with data, called stateless bisimilarity, based on intuitive auxiliary function symbols for handling the store component. We do restrict, however, the axiomatization to the setting where the store component is only given in terms of constants.
Rationality, Theory Acceptance and Decision Theory
Directory of Open Access Journals (Sweden)
J. Nicolas Kaufmann
1998-06-01
Full Text Available Following Kuhn's main thesis according to which theory revision and acceptance is always paradigm relative, I propose to outline some possible consequences of such a view. First, asking the question in what sense Bayesian decision theory could serve as the appropriate (normative theory of rationality examined from the point of view of the epistemology of theory acceptance, I argue that Bayesianism leads to a narrow conception of theory acceptance. Second, regarding the different types of theory revision, i.e. expansion, contraction, replacement and residuals shifts, I extract from Kuhn's view a series of indications showing that theory replacement cannot be rationalized within the framework of Bayesian decision theory, not even within a more sophisticated version of that model. Third, and finally, I will point to the need for a more comprehensive model of rationality than the Bayesian expected utility maximization model, the need for a model which could better deal with the different aspects of theory replacement. I will show that Kuhn's distinction between normal and revolutionary science gives us several hints for a more adequate theory of rationality in science. I will also show that Kuhn is not in a position to fully articulate his main ideas and that he well be confronted with a serious problem concerning collective choice of a paradigm.
International Nuclear Information System (INIS)
Darewych, J.W.
1997-01-01
The complex scalar (Klein-Gordon) quantum field theory (QFT) with a λ(var-phi * var-phi) 2 interaction is considered in the Feshbach-Villars formulation. It is shown that exact few-particle eigenstates of the QFT Hamiltonian can be obtained. The resulting relativistic few-body equations correspond to Klein-Gordon particles interacting via delta-function, or open-quotes contact,close quotes potentials. Momentum-space solutions of the two-body equation yield a open-quotes trivialclose quotes unity S matrix. copyright 1997 The American Physical Society
From chaos to unification: U theory vs. M theory
International Nuclear Information System (INIS)
Ye, Fred Y.
2009-01-01
A unified physical theory called U theory, that is different from M theory, is defined and characterized. U theory, which includes spinor and twistor theory, loop quantum gravity, causal dynamical triangulations, E-infinity unification theory, and Clifford-Finslerian unifications, is based on physical tradition and experimental foundations. In contrast, M theory pays more attention to mathematical forms. While M theory is characterized by supersymmetry string theory, U theory is characterized by non-supersymmetry unified field theory.
Homotopy Types and Social Theory: Theoretical Foundations of Strategic Dynamics
2016-06-15
extended through strategy, industry and/or good fortune. Its preservation is typically a salient priority, even for actors without a strong strategic...Research Triangle Park, NC 27709-2211 axiomatic methods, multiscale social interaction, cross-scale consequences REPORT DOCUMENTATION PAGE 11...law, no person shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB
Contemporary theories of democracy
Directory of Open Access Journals (Sweden)
Mladenović Ivan
2008-01-01
Full Text Available The aim of this paper is two-fold: first, to analyze several contemporary theories of democracy, and secondly, to propose a theoretical framework for further investigations based on analyzed theories. The following four theories will be analyzed: pluralism, social choice theory, deliberative democracy and participatory democracy.
Moschovakis, YN
1987-01-01
Now available in paperback, this monograph is a self-contained exposition of the main results and methods of descriptive set theory. It develops all the necessary background material from logic and recursion theory, and treats both classical descriptive set theory and the effective theory developed by logicians.
't Hooft, Gerardus; Witten, Edward
2005-01-01
In his later years, Einstein sought a unified theory that would extend general relativity and provide an alternative to quantum theory. There is now talk of a "theory of everything"; fifty years after his death, how close are we to such a theory? (3 pages)
de Bruin, B.P.
2005-01-01
Game theory is the mathematical study of strategy and conflict. It has wide applications in economics, political science, sociology, and, to some extent, in philosophy. Where rational choice theory or decision theory is concerned with individual agents facing games against nature, game theory deals
Nonrelativistic superstring theories
International Nuclear Information System (INIS)
Kim, Bom Soo
2007-01-01
We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the βγ CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory
Nonrelativistic closed string theory
International Nuclear Information System (INIS)
Gomis, Jaume; Ooguri, Hirosi
2001-01-01
We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting
Gauge theory loop operators and Liouville theory
International Nuclear Information System (INIS)
Drukker, Nadav; Teschner, Joerg
2009-10-01
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S 4 - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)