Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
Suppes, Patrick
1972-01-01
This clear and well-developed approach to axiomatic set theory is geared toward upper-level undergraduates and graduate students. It examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, finite sets and cardinal numbers, rational and real numbers, and other subjects. 1960 edition.
A synthetic axiomatization of Map Theory
DEFF Research Database (Denmark)
Berline, Chantal; Grue, Klaus Ebbe
2016-01-01
This paper presents a substantially simplified axiomatization of Map Theory and proves the consistency of this axiomatization (called MT) in ZFC under the assumption that there exists an inaccessible ordinal. Map Theory axiomatizes lambda calculus plus Hilbert's epsilon operator. All theorems...... of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert's epsilon operator from Map Theory then one is left with a computer programming language. Map Theory fulfills Church's original aim of lambda calculus. Map Theory is suited for reasoning about...... classical mathematics as well as computer programs. Furthermore, Map Theory is suited for eliminating the barrier between classical mathematics and computer science rather than just supporting the two fields side by side. Map Theory axiomatizes a universe of “maps”, some of which are “wellfounded...
Axiomatic approach to perturbative quantum field teory
Energy Technology Data Exchange (ETDEWEB)
Steinmann, O. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
1995-10-01
A derivation with axiomatic methods of a perturbative expansion for the Wightman functions of a relativistic field theory is described. The method gives also the correlation functions of the fields in KMS states. Using these results, a scattering formalism for QED is introduced, which does not involve any infrared divergent quantities. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Bongaarts, P.J.M.
1977-07-01
An approach to the investigation of the Maxwell field in the framework of axiomatic quantum field theory is presented which employs Borchers' algebraic reformulation of Wightman theory in a modified form adapted to the special features of the electromagnetic field. This makes it possible to clarify the relation between tensor and potential field operators, the meaning and properties of different gauges, the sense in which field equations hold and the properties of state spaces with their special subspaces.
Interpretability degrees of finitely axiomatized sequential theories
Visser, Albert
In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory-like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB-have suprema. This partially answers a question posed
Interpretability Degrees of Finitely Axiomatized Sequential Theories
Visser, Albert
2012-01-01
In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory —like Elementary Arithmetic EA, IΣ1, or the Gödel-Bernays theory of sets and classes GB— have suprema. This partially answers a question
Introduction to axiomatic set theory
Takeuti, Gaisi
1971-01-01
In 1963, the first author introduced a course in set theory at the Uni versity of Illinois whose main objectives were to cover G6del's work on the consistency of the axiom of choice (AC) and the generalized con tinuum hypothesis (GCH), and Cohen's work on the independence of AC and the GCH. Notes taken in 1963 by the second author were the taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are highlighted, and second, the student who wishes to master the sub ject is compelled to develop the details on his own. However, an in structor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text. We have chosen instead a development that is quite detailed and complete. F...
Improving the requirements process in Axiomatic Design Theory
DEFF Research Database (Denmark)
Thompson, Mary Kathryn
2013-01-01
This paper introduces a model to integrate the traditional requirements process into Axiomatic Design Theory and proposes a method to structure the requirements process. The method includes a requirements classification system to ensure that all requirements information can be included in the Axi......This paper introduces a model to integrate the traditional requirements process into Axiomatic Design Theory and proposes a method to structure the requirements process. The method includes a requirements classification system to ensure that all requirements information can be included...... in the Axiomatic Design process, a stakeholder classification system to reduce the chances of excluding one or more key stakeholders, and a table to visualize the mapping between the stakeholders and their requirements....
On the Axiomatic Theory of Multistate Coherent Structures.
1981-10-01
ONR Contract N00014-76-C-0839. * S On leave from the Institute de Matematica e Estatistica , Universidade de Sao Paulo, Sao Paulo, Brasil. 01 1882 017 ON...THE AXIOMATIC THEORY OF MULTISTATE COHERENT STRUCTURES Wagner de Souza Borges and Fl~vio Wagner Rodrigues Instituto de Matematica e Estatistica
The geometric side for an axiomatic theory of evolution.
Bocci, Cristiano; Freguglia, Paolo
2006-01-01
In this paper we present a geometric model for a proposal of axiomatization of Evolution Theory. For this aim, we use suitable tools of Geometry and Topology. In particular, we define the concept of fertility factor as a main instrument for the studying of speciation. This concept, in our opinion, has an important biological meaning.
Elementary process theory axiomatic introduction and applications
Cabbolet, Marcoen J T F
2011-01-01
Modern physics lacks a unitary theory that applies to all four fundamental interactions. This PhD thesis is a proposal for a single, complete, and coherent scheme of mathematically formulated elementary laws of nature. While the first chapter presents the general background, the second chapter addresses the method by which the main result has been developed. The next three chapters rigorously introduce the Elementary Process Theory, its mathematical foundations, and its applications to physics, cosmology and philosophy of mind. The final two chapters discuss the results and present the conclusions. Summarizing, the Elementary Process Theory is a scheme of seven well-formed closed expressions, written in the mathematical language of set matrix theory – a generalization of Zermelo-Fraenkel set theory. In the physical world, these seven expressions can be interpreted as elementary principles governing the universe at supersmall scale. The author critically confronts the theory with Quantum Mechanics and Genera...
International Nuclear Information System (INIS)
Mukherjee, M.K.
1981-01-01
In an axiomatic study of quantum theory Jauch postulated the completeness of the lattice underlying a quantum logic. The theory of Baer semigroup is utilized to specify quite generally the completeness of the lattice. (author)
Axiomatic unsharp quantum theory (From Mackey to Ludwig and Piron)
Cattaneo, Gianpiero; Laudisa, Federico
1994-05-01
On the basis of Mackey's axiomatic approach to quantum physics or, equivalently, of a “state-event-probability” (SEVP) structure, using a quite standard “fuzzification” procedure, a set of unsharp events (or “effects”) is constructed and the corresponding “state-effect-probability” (SEFP) structure is introduced. The introduction of some suitable axioms gives rise to a partially ordered structure of quantum Brouwer-Zadeh (BZ) poset; i.e., a poset endowed with two nonusual orthocomplementation mappings, a fuzzy-like orthocomplementation, and an intuitionistic-like orthocomplementation, whose set of sharp elements is an orthomodular complete lattice. As customary, by these orthocomplementations the two modal-like necessity and possibility operators are introduced, and it is shown that Ludwig's and Jauch-Piron's approaches to quantum physics are “interpreted” in complete SEFP. As a marginal result, a standard procedure to construct a lot of unsharp realizations starting from any sharp realization of a fixed observable is given, and the relationship among sharp and corresponding unsharp realizations is studied.
International Nuclear Information System (INIS)
Cabbolet, M.J.T.F.
2010-01-01
Theories of modern physics predict that antimatter having rest mass will be attracted by the earth's gravitational field, but the actual coupling of antimatter with gravitation has not been established experimentally. The purpose of the present research was to identify laws of physics that would govern the universe if antimatter having rest mass would be repulsed by the earth's gravitational field. As a result, a formalized axiomatic system was developed together with interpretation rules for the terms of the language: the intention is that every theorem of the system yields a true statement about physical reality. Seven non-logical axioms of this axiomatic system form the elementary process theory (EPT): this is then a scheme of elementary principles describing the dynamics of individual processes taking place at supersmall scale. It is demonstrated how gravitational repulsion functions in the universe of the EPT, and some observed particles and processes have been formalized in the framework of the EPT. Incompatibility of quantum mechanics (QM) and General Relativity (GR) with the EPT is proven mathematically; to demonstrate applicability to real world problems to which neither QM nor GR applies, the EPT has been applied to a theory of the Planck era of the universe. The main conclusions are that a completely formalized framework for physics has been developed supporting the existence of gravitational repulsion and that the present results give rise to a potentially progressive research program. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Axiomatic Testing of Structure Metrics
van den Berg, Klaas; van den Broek, P.M.
1994-01-01
In this paper, axiomatic testing of software metrics is described. The testing is based on representation axioms from the measurement theory. In a case study, the axioms are given for the formal relational structure and the empirical relational structure. Two approaches of axiomatic testing are
Axiomatic Testing of Structure Metrics
van den Berg, Klaas; van den Broek, P.M.
In this paper, axiomatic testing of software metrics will be described. The testing is based on representation axioms from the measurement theory. In a case study, the axioms are given for the formal relational structure and the empirical relational structure. Two approaches of axiomatic testing are
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
On single-time reduction in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.
1984-01-01
It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory
Axiomatic Characterizations of the Choquet Integral
DEFF Research Database (Denmark)
Groes, Ebbe; Whitta-Jacobsen, Hans Jørgen; Sloth, Birgitte
The Choquet integral is an integral part of recent advances in decision theory involving non-additive measures. In this article we present two new axiomatic characterizations of this functional......The Choquet integral is an integral part of recent advances in decision theory involving non-additive measures. In this article we present two new axiomatic characterizations of this functional...
Axiomatic Characterizations of the Choquet Integral
DEFF Research Database (Denmark)
Groes, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte
1998-01-01
The Choquet integral is an integral part of recent advances in decision theory involving non-additive measures. In this article we present two new axiomatic characterizations of this functional.......The Choquet integral is an integral part of recent advances in decision theory involving non-additive measures. In this article we present two new axiomatic characterizations of this functional....
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
Uniting model theory and the universalist tradition of logic: Carnap's early axiomatics
Loeb, I.
2014-01-01
We shift attention from the development of model theory for demarcated languages to the development of this theory for fragments of a language. Although it is often assumed that model theory for demarcated languages is not compatible with a universalist conception of logic, no one has denied that
Mathematical aspects of quantum field theories
Strobl, Thomas
2015-01-01
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...
Axiomatic characterization of physical geometry
International Nuclear Information System (INIS)
Schmidt, H.J.
1979-01-01
This book deals with the foundations of a theory which can be considered as the most ancient part of physics, namely Euclidean geometry. It may be viewed as a partial realization of a program set up by G. Ludwig who suggested to formulate geometry explicity as a theory of possible operations with practically rigid bodies, using as basic concepts 'region', 'inclusion' and 'transport'. After an introduction to the problems, in which we sketch also the historical development, we develop a pre-theory with respect to the geometry with the aim to give an interpretation of the above-mentioned basic geometrical concepts in terms of notions which are closely related to experimental situations. The passage from a pure topological analysis of physical space to the differential geometrical view is made in the next section where we use the prerequisites established in the previous chapter to apply the Tits/Freudenthal solution of the Helmholtz-Lie problem. The main theorem of this book is stated in the last section by a characterization of Euclidean geometry. It turns out that two additional postulates are necessary whose empirical meaning we stress by referring to the axiom of dimension. The book might be of interest to scientist working in the field of axiomatics. Unfamiliar readers will be required to have a sound knowledge of topology and group theory. (HJ) 891 HJ/HJ 892 MB
An introduction to symmetry and supersymmetry in quantum field theory
Lopuszánski, Jan T
1991-01-01
This is a set of lecture notes given by the author at the Universities of Göttingen and Wroclaw. The text presents the axiomatic approach to field theory and studies in depth the concepts of symmetry and supersymmetry and their associated generators, currents and charges. It is intended as a one-semester course for graduate students in the field of mathematical physics and high energy physics.
The general theory of quantized fields in the 1950s
International Nuclear Information System (INIS)
Wightman, A.S.
1989-01-01
This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)
Axiomatic derivation of Feynman rules and related topics
International Nuclear Information System (INIS)
Dorfmeister, G.K.
1992-01-01
Previous results in axiomatic field theory by Steinmann and Epstein-Glaser establish the existence of the retarded and time ordered Green's functions in every order of perturbation. To connect these Green's functions with the ones calculated in canonical field theories via the Feynman rules, one has to consistently build them not just for every order of perturbation but for each specific graph. (open-quotes Consisentlyclose quotes means here that the Green functions associated with two open-quotes smallclose quotes graphs build up to the Green's functions of the open-quotes bigclose quotes graph formed by connecting the two open-quotes smallclose quotes ones). This paper shows that this can indeed be done; that in this sense the Feynman rules of perturbative Lagrangian field theory can be derived from the abstract, but physically very basic, principles of axiomatic field theory. All results hold only for massive field theories. The LSZ formalism, to the best knowledge of the author, has so far not been modified to admit mass zero fields. To make the representation simpler and more transparent, the author restricts the discussion to a single component, scalar Φ 4 interaction which is a part of the Standard Model of Particle Physics. Motivated by its role in particle physics, the author complements the perturbative study of Φ 4 -theory by reviewing the status of non-perturbative solutions to the theory in the final chapter
Intuition and the axiomatic method
Carson, Emily
2006-01-01
Following developments in modern geometry, logic and physics, many scientists and philosophers in the modern era considered Kant's theory of intuition to be obsolete. But this only represents one side of the story concerning Kant, intuition and twentieth century science. Several prominent mathematicians and physicists were convinced that the formal tools of modern logic, set theory and the axiomatic method are not sufficient for providing mathematics and physics with satisfactory foundations. All of Hilbert, Gödel, Poincaré, Weyl and Bohr thought that intuition was an indispensable element in
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
The grey Shapley value: an axiomatization
Ekici, M.; Palanci, O.; Alparslan Gök, S. Z.
2018-01-01
This study focuses on an interesting class of cooperative games where the coalitional values are interval grey numbers. These cooper- ative games are called cooperative grey games. In this paper, we deal with an axiomatization of the grey Shapley value. We introduce the Banzhaf value and the egalitarian rule by using cooperative grey game theory. Finally, we conclude the paper with a conclusion.
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Field theories with subcanonical fields
International Nuclear Information System (INIS)
Bigi, I.I.Y.
1976-01-01
The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia
2018-04-28
As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
Uncertainty and complementarity in axiomatic quantum mechanics
International Nuclear Information System (INIS)
Lahti, P.J.
1980-01-01
An investigation of the uncertainty principle and the complementarity principle is carried through. The physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. Two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. (author)
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Ketov, Sergei V
1995-01-01
Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
International Nuclear Information System (INIS)
Eloranta, E.
2003-11-01
The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)
Unconventional Algorithms: Complementarity of Axiomatics and Construction
Directory of Open Access Journals (Sweden)
Gordana Dodig Crnkovic
2012-10-01
Full Text Available In this paper, we analyze axiomatic and constructive issues of unconventional computations from a methodological and philosophical point of view. We explain how the new models of algorithms and unconventional computations change the algorithmic universe, making it open and allowing increased flexibility and expressive power that augment creativity. At the same time, the greater power of new types of algorithms also results in the greater complexity of the algorithmic universe, transforming it into the algorithmic multiverse and demanding new tools for its study. That is why we analyze new powerful tools brought forth by local mathematics, local logics, logical varieties and the axiomatic theory of algorithms, automata and computation. We demonstrate how these new tools allow efficient navigation in the algorithmic multiverse. Further work includes study of natural computation by unconventional algorithms and constructive approaches.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Superspace conformal field theory
International Nuclear Information System (INIS)
Quella, Thomas
2013-07-01
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
Hyperfunction quantum field theory
International Nuclear Information System (INIS)
Nagamachi, S.; Mugibayashi, N.
1976-01-01
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Rigorous Quantum Field Theory A Festschrift for Jacques Bros
Monvel, Anne Boutet; Iagolnitzer, Daniel; Moschella, Ugo
2007-01-01
Jacques Bros has greatly advanced our present understanding of rigorous quantum field theory through numerous fundamental contributions. This book arose from an international symposium held in honour of Jacques Bros on the occasion of his 70th birthday, at the Department of Theoretical Physics of the CEA in Saclay, France. The impact of the work of Jacques Bros is evident in several articles in this book. Quantum fields are regarded as genuine mathematical objects, whose various properties and relevant physical interpretations must be studied in a well-defined mathematical framework. The key topics in this volume include analytic structures of Quantum Field Theory (QFT), renormalization group methods, gauge QFT, stability properties and extension of the axiomatic framework, QFT on models of curved spacetimes, QFT on noncommutative Minkowski spacetime. Contributors: D. Bahns, M. Bertola, R. Brunetti, D. Buchholz, A. Connes, F. Corbetta, S. Doplicher, M. Dubois-Violette, M. Dütsch, H. Epstein, C.J. Fewster, K....
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Algebraic quantum field theory
International Nuclear Information System (INIS)
Foroutan, A.
1996-12-01
The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)
International Nuclear Information System (INIS)
Strominger, A.
1987-01-01
A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)
Interpolating string field theories
International Nuclear Information System (INIS)
Zwiebach, B.
1992-01-01
This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles
Petrov, Alexey A
2016-01-01
This book is a broad-based text intended to help the growing student body interested in topics such as gravitational effective theories, supersymmetric effective theories, applications of effective theory techniques to problems in condensed matter physics (superconductivity) and quantum chromodynamics (such as soft-collinear effective theory). It begins with a review of the use of symmetries to identify the relevant degrees of freedom in a problem, and then presents a variety of methods that can be used to solve physical problems. A detailed discussion of canonical examples of effective field theories with increasing complexity is then conducted. Special cases such as supersymmetry and lattice EFT are discussed, as well as recently-found applications to problems in gravitation and cosmology. An appendix includes various factoids from group theory and other topics that are used throughout the text, in an attempt to make the book self-contained.
Wentzel, Gregor
1949-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Axiomatics of uniform space-time models
International Nuclear Information System (INIS)
Levichev, A.V.
1983-01-01
The mathematical statement of space-time axiomatics of the special theory of relativity is given; it postulates that the space-time M is the binding single boundary Hausedorf local-compact four-dimensional topological space with the given order. The theorem is proved: if the invariant order in the four-dimensional group M is given by the semi-group P, which contingency K contains inner points , then M is commutative. The analogous theorem is correct for the group of two and three dimensionalities
Theoretical physics. Field theory
International Nuclear Information System (INIS)
Landau, L.; Lifchitz, E.
2004-01-01
This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Theory of electromagnetic fields
Wolski, Andrzej
2011-01-01
We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.
Axiomatizations of Pareto Equilibria in Multicriteria Games
Voorneveld, M.; Vermeulen, D.; Borm, P.E.M.
1997-01-01
We focus on axiomatizations of the Pareto equilibrium concept in multicriteria games based on consistency.Axiomatizations of the Nash equilibrium concept by Peleg and Tijs (1996) and Peleg, Potters, and Tijs (1996) have immediate generalizations.The axiomatization of Norde et al.(1996) cannot be
Euclidean quantum field theory
International Nuclear Information System (INIS)
Jaffe, A.
1985-01-01
In four seminal papers, written from 1963 to 1968, Kurt Symanzik laid the foundations for his euclidean quantum field theory program (EQFT). His original goal was to use EQFT as a tool to approach the existence question for interacting quantum fields. In 1968, when other methods appeared better suited for the existence question, Symanzik abandoned this heroic attempt and redirected his research toward different questions. (orig./HSI)
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
International Nuclear Information System (INIS)
Cadavid, A.C.
1989-01-01
The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index
Introduction to string field theory
International Nuclear Information System (INIS)
Horowitz, G.T.
1989-01-01
A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)
Axiomatic Design of Space Life Support Systems
Jones, Harry W.
2017-01-01
Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.
International Nuclear Information System (INIS)
Green, M.B.
1984-01-01
Superstring field theories are formulated in terms of light-cone-gauge superfields that are functionals of string coordinates chi(sigma) and theta(sigma). The formalism used preserves only the manifest SU(4) symmetry that corresponds to rotations among six of the eight transverse directions. In type I theories, which have one ten-dimensional supersymmetry and describe both open and closed strings, there are five interaction terms of two basic kinds. One kind is a breaking or joining interaction, which is a string generalization of a cubic Yang-Mills coupling. It is relevant to both the three open-string vertex and the open-string to closed-string transition vertex. The other kind is an exchange or crossing-over interaction, which is a string generalization of a cubic gravitational coupling. All the interactions can be uniquely determined by requiring continuity of the coordinates chi(sigma) and theta(sigma) (which implies local conservation of the conjugate momenta) and by imposing the global supersymmetry algebra. Specific local operators are identified for each of the two kinds of interactions. In type II theories, which have two ten-dimensional supersymmetries and contain closed strings only, the entire interaction hamiltonian consists of a single cubic vertex. The higher-order contact terms of the N=8 supergravity theory that arises in the low-energy limit give an effective description of the exchange of massive string modes. (orig.)
Algebraic and analyticity properties of the n-point function in quantum field theory
International Nuclear Information System (INIS)
Bros, Jacques
1970-01-01
The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr
Beyond mean field theory: statistical field theory for neural networks.
Buice, Michael A; Chow, Carson C
2013-03-01
Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi-Peliti-Janssen formalism, are particularly useful in this regard.
Thermal Field Theory in Equilibrium
Andersen, Jens O.
2000-01-01
In this talk, I review recent developments in equilibrium thermal field theory. Screened perturbation theory and hard-thermal-loop perturbation theory are discussed. A self-consistent $\\Phi$-derivable approach is also briefly reviewed.
Artin, Emil
2009-01-01
This classic book, originally published in 1968, is based on notes of a year-long seminar the authors ran at Princeton University. The primary goal of the book was to give a rather complete presentation of algebraic aspects of global class field theory, and the authors accomplished this goal spectacularly: for more than 40 years since its first publication, the book has served as an ultimate source for many generations of mathematicians. In this revised edition, two mathematical additions complementing the exposition in the original text are made. The new edition also contains several new foot
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
International Nuclear Information System (INIS)
Mancini, F.
1986-01-01
Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
An introduction to some mathematical aspects of scattering theory in models of quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1974-01-01
An elementary introduction is given to some results, problems and methods of the recent study of scattering in models developed in connection with constructive quantum field theory. A deliberate effort has been made to be understandable also for mathematicians having some notions of non-relativistic quantum mechanics but no specific previous knowledge of quantum field theory. The Fock space, the free fields and the free Hamiltonian are introduced and the singular perturbation problem posed by local relativistic interaction is discussed. Scattering theory is first discussed for the simplified cases of space cut-off interactions and of translation invariant interactions with persistent vacuum. The Wightman-Haag-Ruelle axiomatic framework is given as a guide for the construction of models with local, relativistic interactions and of the corresponding scattering theory. The verification of the axioms is carried through in a class of models with local relativistic interactions in two-dimensional space-time. (Auth.)
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Fractional Stochastic Field Theory
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
International Nuclear Information System (INIS)
Khoury, Justin
2013-01-01
Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this paper, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: (i) the range of the chameleon force at cosmological density today can be at most ∼Mpc; (ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We show how requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound of m −3 ) 1/3 eV for gravitational strength coupling, whereas fifth force experiments place a lower bound of m > 0.0042 eV. An improvement of less than a factor of 2 in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential. (paper)
THE AESTHETIC AXIOMATIC: DECONSTRUCTION
Directory of Open Access Journals (Sweden)
IRINA VASKES SANTCHES
2007-08-01
Full Text Available Resumen: El presente trabajo contribuye al debate sobre la actualidad estética, abordando diferentes enfoques del polémico concepto de deconstrucción, introducido por Jacques Derrida. Esta categoría es de referencia casi obligatoriacuando se habla sobre teoría estética contemporánea, forma parte de su nuevo aparato conceptual y expresa bien la nueva realidad que no tiene análogos históricos en lo que antes llamaban arte, estética y cultura. La elaboracióndel concepto de deconstrucción, el análisis de cómo funciona esa nueva forma del pensamiento crítico, y el método creativo de la interpretación y de la producción del texto artístico, nos permite entrar en el código de muchas obras artísticas actuales donde el espacio entre arte y teoría del arte es cada vez más incierto, especialmente en las diversas formas de arte conceptual o “performance art”.Abstract: Tackling polemic concept of deconstruction, introduced by Jacqes Derrida, from different approaches this article contributes to the debate on aesthetic current issues. This category is of almost obligatory reference when discussing about contemporary aesthetic theory. Deconstruction belongs to its new conceptual apparatus, and expresses well new reality that does not have historical analogy with what before was called art, aesthetics and culture. The elaboration of the concept of deconstruction, and the analysis of how this new form of strategical “procedure” of interpretation and production of the text (as textual reading is functioning allow us to enter the code of many current art works where the space between art and theory of the art is more and more uncertain, specially in the diverse forms of conceptual art or “performance art“.
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
An Axiomatic Approach to Hyperconnectivity
Wilkinson, Michael H. F.
In this paper the notion of hyperconnectivity, first put forward by Serra as an extension of the notion of connectivity is explored theoretically. Hyperconnectivity operators, which are the hyperconnected equivalents of connectivity openings are defined, which supports both hyperconnected reconstruction and attribute filters. The new axiomatics yield insight into the relationship between hyperconnectivity and structural morphology. The latter turns out to be a special case of the former, which means a continuum of filters between connected and structural exists, all of which falls into the category of hyperconnected filters.
A new approach to quantum field theory and a spacetime quantization
International Nuclear Information System (INIS)
Banai, I.
1982-09-01
A quantum logical approach to achieve a sound kinematical picture for LQFT (local quantum field theory) is reviewed. Then a general language in the framework of axiomatic set theory is presented, in which the 'local' description of a LQFT can be formulated in almost the same form as quantum mechanics was formulated by von Neumann. The main physical implication of this approach is that, in this framework, the quantization of a CRLFT (classical relativistic local field theory) requires not only the quantization of physical fields over M 4 but the quantization of spacetime M 4 itself, too. The uncertainty priciple is compatible with the Heisenberg uncertainty principle, but it requires the generalization of Poincare symmetries to all unitary symmetries. Some indications show that his approach might be successful in describing low laying hadronic phenomena. (author)
Axiomatic design in large systems complex products, buildings and manufacturing systems
Suh, Nam
2016-01-01
This book provides a synthesis of recent developments in Axiomatic Design theory and its application in large complex systems. Introductory chapters provide concise tutorial materials for graduate students and new practitioners, presenting the fundamentals of Axiomatic Design and relating its key concepts to those of model-based systems engineering. A mathematical exposition of design axioms is also provided. The main body of the book, which represents a concentrated treatment of several applications, is divided into three parts covering work on: complex products; buildings; and manufacturing systems. The book shows how design work in these areas can benefit from the scientific and systematic underpinning provided by Axiomatic Design, and in so doing effectively combines the state of the art in design research with practice. All contributions were written by an international group of leading proponents of Axiomatic Design. The book concludes with a call to action motivating further research into the engineeri...
Adapt! – Agile Project Management Supported by Axiomatic Design
Directory of Open Access Journals (Sweden)
Weber Jakob
2017-01-01
Full Text Available This paper presents a novel approach for the use of Axiomatic Design Theory in combination with agile project management methods like Scrum for an effective, structured and combined product design and development process. Agile project management methods give a guideline how to manage a project, but there is only minor assistance regarding the actual product development process itself. Axiomatic Design can be used to support these methods in this point. In concrete terms, the results of the decomposition process of this theory can be used to formulate and structure the work packages for the agile project managing process. The Independence Axiom of Axiomatic Design Theory has a substantial contribution by ensuring the independence of the work packages which can be assigned to different project team members and can be processed independently by them. The combination of the different methods not only helps to ensure a good design solution but also helps to work more agile within a project team. The here proposed approach is one part of a holistic product design and development process for changeable production units – called Adapt! – and is described within a use case in the automotive sector.
Fold maps and positive topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Wrazidlo, Dominik Johannes
2017-04-12
The notion of positive TFT as coined by Banagl is specified by an axiomatic system based on Atiyah's original axioms for TFTs. By virtue of a general framework that is based on the concept of Eilenberg completeness of semirings from computer science, a positive TFT can be produced rigorously via quantization of systems of fields and action functionals - a process inspired by Feynman's path integral from classical quantum field theory. The purpose of the present dissertation thesis is to investigate a new differential topological invariant for smooth manifolds that arises as the state sum of the fold map TFT, which has been constructed by Banagl as a example of a positive TFT. By eliminating an internal technical assumption on the fields of the fold map TFT, we are able to express the informational content of the state sum in terms of an extension problem for fold maps from cobordisms into the plane. Next, we use the general theory of generic smooth maps into the plane to improve known results about the structure of the state sum in arbitrary dimensions, and to determine it completely in dimension two. The aggregate invariant of a homotopy sphere, which is derived from the state sum, naturally leads us to define a filtration of the group of homotopy spheres in order to understand the role of indefinite fold lines beyond a theorem of Saeki. As an application, we show how Kervaire spheres can be characterized by indefinite fold lines in certain dimensions.
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
Entropic Measure of Epistemic Uncertainties in Multibody System Models by Axiomatic Design
Directory of Open Access Journals (Sweden)
Francesco Villecco
2017-06-01
Full Text Available In this paper, the use of the MaxInf Principle in real optimization problems is investigated for engineering applications, where the current design solution is actually an engineering approximation. In industrial manufacturing, multibody system simulations can be used to develop new machines and mechanisms by using virtual prototyping, where an axiomatic design can be employed to analyze the independence of elements and the complexity of connections forming a general mechanical system. In the classic theories of Fisher and Wiener-Shannon, the idea of information is a measure of only probabilistic and repetitive events. However, this idea is broader than the probability alone field. Thus, the Wiener-Shannon’s axioms can be extended to non-probabilistic events and it is possible to introduce a theory of information for non-repetitive events as a measure of the reliability of data for complex mechanical systems. To this end, one can devise engineering solutions consistent with the values of the design constraints analyzing the complexity of the relation matrix and using the idea of information in the metric space. The final solution gives the entropic measure of epistemic uncertainties which can be used in multibody system models, analyzed with an axiomatic design.
Field theory and particle physics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1990-01-01
This book contains the proceedings of the topics covered during the fifth Jorge Andre Swieca Summer School. The first part of the book collects the material devoted to quantum field theory. There were four courses on methods in Field Theory; H. O. Girotti lectured on constrained dynamics, R. Jackiw on the Schrodinger representation in Field Theory, S.-Y. Pi on the application of this representation to quantum fields in a Robertson-Walker spacetime, and L. Vinet on Berry Connections. There were three courses on Conformal Field Theory: I. Todorov focused on the problem of construction and classification of conformal field theories. Lattice models, two-dimensional S matrices and conformal field theory were looked from the unifying perspective of the Yang-Baxter algebras in the lectures given by M. Karowski. Parasupersymmetric quantum mechanics was discussed in the lectures by L. Vinet. Besides those courses, there was an introduction to string field theory given by G. Horowitz. There were also three seminars: F. Schaposnik reported on recent applications of topological methods in field theory, P. Gerbert gave a seminar on three dimensional gravity and V. Kurak talked on two dimensional parafermionic models. The second part of this proceedings is devoted to phenomenology. There were three courses on Particle Physics: Dan Green lectured on collider physics, E. Predrazzi on strong interactions and G. Cohen-Tanoudji on the use of strings in strong interactions
Class field theory from theory to practice
Gras, Georges
2003-01-01
Global class field theory is a major achievement of algebraic number theory, based on the functorial properties of the reciprocity map and the existence theorem. The author works out the consequences and the practical use of these results by giving detailed studies and illustrations of classical subjects (classes, idèles, ray class fields, symbols, reciprocity laws, Hasse's principles, the Grunwald-Wang theorem, Hilbert's towers,...). He also proves some new or less-known results (reflection theorem, structure of the abelian closure of a number field) and lays emphasis on the invariant (/cal T) p, of abelian p-ramification, which is related to important Galois cohomology properties and p-adic conjectures. This book, intermediary between the classical literature published in the sixties and the recent computational literature, gives much material in an elementary way, and is suitable for students, researchers, and all who are fascinated by this theory. In the corrected 2nd printing 2005, the author improves s...
Alternative Axiomatic Characterizations of the Grey Shapley Value
Directory of Open Access Journals (Sweden)
Sirma Zeynep Alparslan Gok
2014-05-01
Full Text Available The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapley value for cooperative games, where the set of players is finite and the coalition values are interval grey numbers. The central question in this paper is how to characterize the grey Shapley value. In this context, we present two alternative axiomatic characterizations. First, we characterize the grey Shapley value using the properties of efficiency, symmetry and strong monotonicity. Second, we characterize the grey Shapley value by using the grey dividends.
Uncertainty and Complementarity in Axiomatic Quantum Mechanics
Lahti, Pekka J.
1980-11-01
In this work an investigation of the uncertainty principle and the complementarity principle is carried through. A study of the physical content of these principles and their representation in the conventional Hilbert space formulation of quantum mechanics forms a natural starting point for this analysis. Thereafter is presented more general axiomatic framework for quantum mechanics, namely, a probability function formulation of the theory. In this general framework two extra axioms are stated, reflecting the ideas of the uncertainty principle and the complementarity principle, respectively. The quantal features of these axioms are explicated. The sufficiency of the state system guarantees that the observables satisfying the uncertainty principle are unbounded and noncompatible. The complementarity principle implies a non-Boolean proposition structure for the theory. Moreover, nonconstant complementary observables are always noncompatible. The uncertainty principle and the complementarity principle, as formulated in this work, are mutually independent. Some order is thus brought into the confused discussion about the interrelations of these two important principles. A comparison of the present formulations of the uncertainty principle and the complementarity principle with the Jauch formulation of the superposition principle is also given. The mutual independence of the three fundamental principles of the quantum theory is hereby revealed.
Broken symmetries in field theory
Kok, Mark Okker de
2008-01-01
The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1.
Field theory approach to gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1978-01-01
A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable
Renormalization and effective field theory
Costello, Kevin
2011-01-01
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...
Axiomatic electrodynamics and microscopic mechanics
International Nuclear Information System (INIS)
Yussouff, M.
1981-04-01
A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)
Semiclassical methods in field theories
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt
Lectures on quantum field theory
Das, Ashok
2008-01-01
This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio
Introduction to quantum field theory
International Nuclear Information System (INIS)
Kazakov, D.I.
1988-01-01
The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2016-11-28
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
Embedding classical fields in quantum field theories
International Nuclear Information System (INIS)
Blaha, S.
1978-01-01
We describe a procedure for quantizing a classical field theory which is the field-theoretica analog of Sudarshan's method for embedding a classical-mechanical system in a quantum-mechanical system. The essence of the difference between our quantization procedure and Fock-space quantization lies in the choice of vacuum states. The key to our choice of vacuum is the procedure we outline for constructing Lagrangians which have gradient terms linear in the field varialbes from classical Lagrangians which have gradient terms which are quadratic in field variables. We apply this procedure to model electrodynamic field theories, Yang-Mills theories, and a vierbein model of gravity. In the case of electrodynamics models we find a formalism with a close similarity to the coherent-soft-photon-state formalism of QED. In addition, photons propagate to t = + infinity via retarded propagators. We also show how to construct a quantum field for action-at-a-distance electrodynamics. In the Yang-Mills case we show that a previously suggested model for quark confinement necessarily has gluons with principle-value propagation which allows the model to be unitary despite the presence of higher-order-derivative field equations. In the vierbein-gravity model we show that our quantization procedure allows us to treat the classical and quantum parts of the metric field in a unified manner. We find a new perturbation scheme for quantum gravity as a result
Topological field theories and duality
International Nuclear Information System (INIS)
Stephany, J.; Universidad Simon Bolivar, Caracas
1996-05-01
Topologically non trivial effects appearing in the discussion of duality transformations in higher genus manifold are discussed in a simple example, and their relation with the properties of Topological Field Theories is established. (author). 16 refs
Renormalization in classical field theory
International Nuclear Information System (INIS)
Corbo, Guido
2010-01-01
We discuss simple examples in which renormalization is required in classical field theory. The presentation is accessible to undergraduate students with a knowledge of the basic notions of classical electromagnetism. (letters and comments)
Finite-temperature field theory
International Nuclear Information System (INIS)
Kapusta, J.I.; Landshoff, P.V.
1989-01-01
Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)
Supersymmetric field theories and generalized cohomology
Teichner, Peter; Stolz, Stephan
2011-01-01
This survey discusses our results and conjectures concerning supersymmetric field theories and their relationship to cohomology theories. A careful definition of supersymmetric Euclidean field theories is given, refining Segal's axioms for conformal field theories. We state and give an outline of the proof of various results relating field theories to cohomology theories.
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
Dimensional continuation in field theory
International Nuclear Information System (INIS)
Lee, T.
1988-01-01
The continuation of space-time dimension to an arbitrary complex number is discussed. The ultra-violet and infra-red divergences are simply regularized by analytically continuing to some proper dimension n. Combined with functional integral quantization, it provides a simple and elegant description of quantum field theory. Two well known field theories are discussed. Scalar field theory and quantum electrodynamics. In the scalar theory, the focus is on the operator product expansion. It is showed that a renormalization scheme (minimal subtraction) clearly defines the operator product expansion. In the quantum electrodynamics, it is shown that BRS symmetry can simplify the renormalization process. Composite operators are the renormalized and renormalized stress-energy tensor is formed
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
International Nuclear Information System (INIS)
Ramond, P.
1987-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 -anti L 0 =0 should not be imposed on all the fields of the closed string in the gauge invariant formalism; we show that it can be incorporated in the gauge invariant formalism at the price of being unable to extract the equations of motion from a Langrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. (orig.)
International Nuclear Information System (INIS)
Ramond, P.
1986-01-01
We review the construction of the free equations of motion for open and closed strings in 26 dimensions, using the methods of the Florida Group. Differing from previous treatments, we argue that the constraint L 0 - L 0 -bar = 0 should not be imposed on all the fields of the closed string in the gauge invariant formalism: we show that it can be incorporated in the invariant formalism at the price of being unable to extract the equations of motion from a Lagrangian. We then describe our purely algebraic method to introduce interactions, which works equally well for open and closed strings. Quartic interactions are absent except in the Physical Gauge. Finally, we speculate on the role of the measure of the open string path functional. 20 refs
Classical field theory with fermions
International Nuclear Information System (INIS)
Borsanyi, Sz.; Hindmarsh, M.
2009-01-01
Classical field theory simulations have been essential for our understanding of non-equilibrium phenomena in particle physics. In this talk we discuss the possible extension of the bosonic classical field theory simulations to include fermions. In principle we use the inhomogeneous mean field approximation as introduced by Aarts and Smit. But in practice we turn from their deterministic technique to a stochastic approach. We represent the fermion field as an ensemble of pairs of spinor fields, dubbed male and female. These c-number fields solve the classical Dirac equation. Our improved algorithm enables the extension of the originally 1+1 dimensional analyses and is suitable for large-scale inhomogeneous settings, like defect networks.
Electromagnetic field theories for engineering
Salam, Md Abdus
2014-01-01
A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.
Generalized field theory of gravitation
International Nuclear Information System (INIS)
Yilmaz, H.
1976-01-01
It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1
Renormalization of topological field theory
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-11-01
One loop corrections to topological field theory in three and four dimensions are presented. By regularizing determinants, we compute the effective action and β-function in four dimensional topological Yang-Mills theory and find that the BRST symmetry is preserved. Moreover, the minima of the effective action still correspond to instanton configurations. In three dimensions, an analysis of the Chern-Simons theory shows that the topological nature of the theory is also preserved to this order. In addition, we find that this theory possesses an extra supersymmetry when quantized in the Landau gauge. Using dimensional regularization, we then study the Ward identities of the extended BRST symmetry in the three dimensional topological Yang-Mills-Higgs model. (author). 22 refs
Gauge and supergauge field theories
International Nuclear Information System (INIS)
Slavnov, A.
1977-01-01
The most actual problems concerning gauge fields are reviwed. Theoretical investigations conducted since as early as 1954 are enclosed. Present status of gauge theories is summarized, including intermediate vector mesons, heavy leptons, weak interactions of hadrons, V-A structure, universal interaction, infrared divergences in perturbation theory, particle-like solutions in gauge theories, spontaneous symmetry breaking. Special emphasis is placed on strong interactions, or more precisely, on the alleged unobservability of ''color'' objects (quark confinement). Problems dealing with the supersymmetric theories invariant under gauge transformations and spontaneous breaking of supersymmetry are also discussed. Gauge theories are concluded to provide self-consistent apparatus for weak and electromagnetic interactions. As to strong interactions such models are still to be discovered
Fornace, Mark E; Lee, Joonho; Miyamoto, Kaito; Manby, Frederick R; Miller, Thomas F
2015-02-10
We introduce embedded mean-field theory (EMFT), an approach that flexibly allows for the embedding of one mean-field theory in another without the need to specify or fix the number of particles in each subsystem. EMFT is simple, is well-defined without recourse to parameters, and inherits the simple gradient theory of the parent mean-field theories. In this paper, we report extensive benchmarking of EMFT for the case where the subsystems are treated using different levels of Kohn-Sham theory, using PBE or B3LYP/6-31G* in the high-level subsystem and LDA/STO-3G in the low-level subsystem; we also investigate different levels of density fitting in the two subsystems. Over a wide range of chemical problems, we find EMFT to perform accurately and stably, smoothly converging to the high-level of theory as the active subsystem becomes larger. In most cases, the performance is at least as good as that of ONIOM, but the advantages of EMFT are highlighted by examples that involve partitions across multiple bonds or through aromatic systems and by examples that involve more complicated electronic structure. EMFT is simple and parameter free, and based on the tests provided here, it offers an appealing new approach to a multiscale electronic structure.
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
Bosonic colored group field theory
Energy Technology Data Exchange (ETDEWEB)
Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2010-12-15
Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)
Gravitation and bilocal field theory
International Nuclear Information System (INIS)
Vollendorf, F.
1975-01-01
The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
International Nuclear Information System (INIS)
Vajskopf, V.F.
1982-01-01
The article deals with the history of the development of quantum electrodynamics since the date of publishing the work by P.A.M. Dirac ''The Quantum Theory of the Emission and Absorption of Radiation''. Classic ''before-Dirac'' electrodynamics related with the names of Maxwell, Lorenz, Hertz, is outlined. Work of Bohr and Rosenfeld is shown to clarify the physical sense of quantized field and to reveal the existence of uncertainties between the strengths of different fields. The article points to the significance of the article ''Quantum theory of radiation'' by E. Fermi which clearly describes the Dirac theory of radiation, relativistic wave equation and fundamentals of quantum electrodynamics. Shown is work on elimination of troubles related with the existence of states with negative kinetic energy or with negative mass. Hypothesis on the Dirac filled-in vacuum led to understanding of the existence of antiparticles and two unknown till then fundamental processes - pair production and annihilation. Ways of fighting against the infinite quantities in quantum electrodynamics are considered. Renormalization of the theory overcame all the infinities and gave a pattern for calculation of any processes of electron interactions with electromagnetic field to any desired accuracy
Exceptional field theory: SL(5)
International Nuclear Information System (INIS)
Musaev, Edvard T.
2016-01-01
In this work the exceptional field theory formulation of supergravity with SL(5) gauge group is considered. This group appears as a U-duality group of D=7 maximal supergravity. In the formalism presented the hidden global duality group is promoted into a gauge group of a theory in dimensions 7+number of extended directions. This work is a continuation of the series of works for E 8,7,6 ,SO(5,5) and SL(3)×SL(2) duality groups.
Perturbative coherence in field theory
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt
Einstein's theory of unified fields
Tonnelat, Marie Antoinette
2014-01-01
First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic
Baal, Pierre Van
2014-01-01
""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the
Introduction to quantum field theory
Chang, Shau-Jin
1990-01-01
This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s
Axiomatic Characterizations of IVF Rough Approximation Operators
Directory of Open Access Journals (Sweden)
Guangji Yu
2014-01-01
Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.
An Axiomatic Representation of System Dynamics
Baianu, I
2004-01-01
An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.
Variational methods for field theories
International Nuclear Information System (INIS)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Theory of field reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1990-01-01
This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs
Directory of Open Access Journals (Sweden)
Ramin Zahedi
2017-09-01
Full Text Available In this article, as a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic (matrix formalism based on the ring theory and Clifford algebras (presented in Section 2, “it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the fundamental forces of nature (represented by a set of two definite classes of general covariant massive field equations, with new matrix formalisms, are derived uniquely from only a very few axioms.” In agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic energy-momentum can only take rational values. In essence, the main scheme of this new mathematical axiomatic approach to the fundamental laws of nature is as follows: First, based on the assumption of the rationality of D-momentum and by linearization (along with a parameterization procedure of the Lorentz invariant energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible with certain Clifford and symmetric algebras is derived. Then by an initial quantization (followed by a basic procedure of minimal coupling to space-time geometry of these determined systems of linear equations, a set of two classes of general covariant massive (tensor field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras is derived uniquely as well.
On incompleteness of classical field theory
Sardanashvily, G.
2009-01-01
Classical field theory is adequately formulated as Lagrangian theory on fibre bundles and graded manifolds. One however observes that non-trivial higher stage Noether identities and gauge symmetries of a generic reducible degenerate Lagrangian field theory fail to be defined. Therefore, such a field theory can not be quantized.
Introduction to conformal field theory. With applications to string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph; Plauschinn, Erik
2009-01-01
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)
Braided quantum field theories and their symmetries
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2007-01-01
Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)
Inverse bootstrapping conformal field theories
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
Regularization of quantum field theories
International Nuclear Information System (INIS)
Rayski, J.
1985-01-01
General idea of regularization and renormalization in quantum field theory is presented. It is postulated that it is possible not to go to infinity with the auxiliary masses of regularization but to attach to them a certain physical meaning, but it is equivalent with a violation of unitarity of the operator of evolution in time. It may be achieved in two different ways: it might be simply assumed that only the direction but not the length of the state vector possesses a physical meaning and that not all possible physical events are predictable. 3 refs., 1 fig. (author)
Applying the V Model and Axiomatic Design in the Domain of IT Architecture Practice
René Bakker; Stef Joosten; Debbie Tarenskeen
2015-01-01
This paper applies and discusses the principles of Axiomatic Design for changing IT architecture in health care. It presents three case studies positioned in the field of Enterprise architecture that explore how IT architects, as professionals, manage change and re-design the structure of the IT
Topics in low-dimensional field theory
Energy Technology Data Exchange (ETDEWEB)
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Number theory arising from finite fields analytic and probabilistic theory
Knopfmacher, John
2001-01-01
""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Effective Field Theory on Manifolds with Boundary
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
A superstring field theory for supergravity
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
N=1 field theory duality from M theory
International Nuclear Information System (INIS)
Schmaltz, M.; Sundrum, R.
1998-01-01
We investigate Seiberg close-quote s N=1 field theory duality for four-dimensional supersymmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory configuration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in type IIA string theory is given an elegant derivation from M theory. copyright 1998 The American Physical Society
Quantum Field Theory A Modern Perspective
Parameswaran Nair, V
2005-01-01
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...
Quantum field theory of universe
International Nuclear Information System (INIS)
Hosoya, Akio; Morikawa, Masahiro.
1988-08-01
As is well-known, the wave function of universe dictated by the Wheeler-DeWitt equation has a difficulty in its probabilistic interpretation. In order to overcome this difficulty, we explore a theoretical possibility of the second quantization of universe, following the same passage historically taken for the Klein-Gordon particles and the Nambu-Goto strings. It turns out that multiple production of universes is an inevitable consequence even if the initial state is nothing. The problematical interpretation of wave function of universe is circumvented by introducing an internal comoving model detector, which is an analogue of the DeWitt-Unruh detector in the quantum field theory in curved space-time. (author)
Octonionic methods in field theory
International Nuclear Information System (INIS)
Duendarer, A.R.
1987-01-01
Some applications of octonion algebra and octonionic analysis to group theory and higher dimensional field theories are presented. To this end an eight dimensional covariant treatment of the octonion algebra is needed. The existing formulations which are covariant only in seven dimensions are reviewed. In this work the eight dimensional formulation is developed through the introduction of fourth rank tensors f abcd and f' abcd in eight dimensions that generalize the octonionic structure constants. The seven octonion units e α are generalized to an 8-vector e a and two second rank tensors e ab and e' ab . Higher rank tensors associated with e α are also introduced. Chirality and duality properties of the structure tensors, f,f' and the octonionic tensors e a , e ab , etc. are discussed and various new identities relating these quantities are derived. New vector products for two, three and four octonions are introduced and their duality properties with respect to the eight-dimensional Levi-Civita tensor as well as their orthogonality properties are studied
Families and degenerations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Roggenkamp, D.
2004-09-01
In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)
BRST field theory of relativistic particles
International Nuclear Information System (INIS)
Holten, J.W. van
1992-01-01
A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs
Large N Field Theories, String Theory and Gravity
Aharony, O; Maldacena, J M; Ooguri, H; Oz, Y
2000-01-01
We review the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N=4 supersymmetric gauge theory in four dimensions, but we discuss also field theories in other dimensions, conformal and non-conformal, with or without supersymmetry, and in particular the relation to QCD. We also discuss some implications for black hole physics.
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2015-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
A philosophical approach to quantum field theory
Öttinger, Hans Christian
2017-01-01
This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.
Particles, fields and quantum theory
International Nuclear Information System (INIS)
Bongaarts, P.J.M.
1982-01-01
The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
Gauge field theories: various mathematical approaches
Jordan, François; Serge, Lazzarini; Thierry, Masson
2014-01-01
This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common...
Quantum field theory in gravitational background
International Nuclear Information System (INIS)
Narnhofer, H.
1986-01-01
The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space
Analytic aspects of rational conformal field theories
International Nuclear Information System (INIS)
Kiritsis, E.B.; Lawrence Berkeley Lab., CA
1990-01-01
The problem of deriving linear differential equations for correlation functions of Rational Conformal Field Theories is considered. Techniques from the theory of fuchsian differential equations are used to show that knowledge of the central charge, dimensions of primary fields and fusion rules are enough to fix the differential equations for one- and two-point functions on the tours. Any other correlation function can be calculated along similar lines. The results settle the issue of 'exact solution' of rational conformal field theories. (orig.)
Strings - Links between conformal field theory, gauge theory and gravity
International Nuclear Information System (INIS)
Troost, J.
2009-05-01
String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity
Singularity theory and N = 2 superconformal field theories
International Nuclear Information System (INIS)
Warner, N.P.
1989-01-01
The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs
Kyryliuk, Serhii; Kholiavchuk, Dariia
2017-09-01
Three consequent concepts that build up the algorithm of the identification of modern landscapes on the Moon surface are suggested. They are anaglyphonosphere axiomatic and landscape concepts obtained with the use of the axiomatic method. The first concept depicts the geographic envelope of the Moon as an anaglyphonosphere layer (relief) that is a continuum (total environment). The latter becomes the research subject for both a geomorphologist and a landscape researcher. Continuity, dynamics, range (amplitude), and erosion potential determine anaglyphonosphere. Axiomatic concept means constructing the sole scheme (mathematically determined) of the search for the elementary surface units using the geometric interpretation of surface patterns of the Moon and its landscape interpretation. The landscape concept is based on the classical principles of the landscape theory and the axiomatic principles of the previous concept. The synthesis of concepts is implemented in the models of Moon landscapes of four scales: zero, linear, two- and three-dimensional. The paper offers the last two models of Davy Catena. Proposed concepts with appropriate correction can be used in parallel studies of the natural environment: geological, geomorphological, climatic, etc. The advantages of the axiomatic method consist in the objective approach to the division of the surface into specific units (the landscapes in our case). The proposed method of identifying and displaying the landscape complexes on the lunar surface can be a significant complement for the study and mapping of terrestrial planets, satellites of planet-giants, etc.
Directory of Open Access Journals (Sweden)
Kyryliuk Serhii
2017-09-01
Full Text Available Three consequent concepts that build up the algorithm of the identification of modern landscapes on the Moon surface are suggested. They are anaglyphonosphere axiomatic and landscape concepts obtained with the use of the axiomatic method. The first concept depicts the geographic envelope of the Moon as an anaglyphonosphere layer (relief that is a continuum (total environment. The latter becomes the research subject for both a geomorphologist and a landscape researcher. Continuity, dynamics, range (amplitude, and erosion potential determine anaglyphonosphere. Axiomatic concept means constructing the sole scheme (mathematically determined of the search for the elementary surface units using the geometric interpretation of surface patterns of the Moon and its landscape interpretation. The landscape concept is based on the classical principles of the landscape theory and the axiomatic principles of the previous concept. The synthesis of concepts is implemented in the models of Moon landscapes of four scales: zero, linear, two- and three-dimensional. The paper offers the last two models of Davy Catena. Proposed concepts with appropriate correction can be used in parallel studies of the natural environment: geological, geomorphological, climatic, etc. The advantages of the axiomatic method consist in the objective approach to the division of the surface into specific units (the landscapes in our case. The proposed method of identifying and displaying the landscape complexes on the lunar surface can be a significant complement for the study and mapping of terrestrial planets, satellites of planet-giants, etc.
Algebraic quantum field theory, perturbation theory, and the loop expansion
International Nuclear Information System (INIS)
Duetsch, M.; Fredenhagen, K.
2001-01-01
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Classical gravity and quantum matter fields in unified field theory
von Borzeszkowski, Horst-Heino; Treder, Hans-Jürgen
1996-01-01
The Einstein-Schrödinger purely affine field theory of the non-symmetric field provides canonical field equations without constraints. These equations imply the Heisenberg-Pauli commutation rules of quantum field theory. In the Schrödinger gauging of the Einstein field coordinatesU {/kl i }=Γ{/kl i }-δ{/l i }Γ{/km m }, this unified geometric field theory becomes a model of the coupling between a quantized Maxwellian field in a medium and classical gravity. Therefore, independently of the question as to the physical truth of this model, its analysis performed in the present paper demonstrates that, in the framework of a quantized unified field theory, gravity can appear as a genuinely classical field.
Relativistic quantum mechanics and field theory
Gross, Franz
1999-01-01
An accessible, comprehensive reference to modern quantum mechanics and field theory.In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field.
Holographic applications of logarithmic conformal field theories
Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.
2013-01-01
We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in
New results in topological field theory and Abelian gauge theory
International Nuclear Information System (INIS)
Thompson, G.
1995-10-01
These are the lecture notes of a set of lectures delivered at the 1995 Trieste summer school in June. I review some recent work on duality in four dimensional Maxwell theory on arbitrary four manifolds, as well as a new set of topological invariants known as the Seiberg-Witten invariants. Much of the necessary background material is given, including a crash course in topological field theory, cohomology of manifolds, topological gauge theory and the rudiments of four manifold theory. My main hope is to wet the readers appetite, so that he or she will wish to read the original works and perhaps to enter this field. (author). 41 refs, 5 figs
Topological quantum field theory and four manifolds
Marino, Marcos
2005-01-01
The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...
Worked examples in engineering field theory
Fuller, A J Baden
1976-01-01
Worked Examples in Engineering Field Theory is a product of a lecture course given by the author to first-year students in the Department of Engineering in the University of Leicester. The book presents a summary of field theory together with a large number of worked examples and solutions to all problems given in the author's other book, Engineering Field Theory. The 14 chapters of this book are organized into two parts. Part I focuses on the concept of flux including electric flux. This part also tackles the application of the theory in gravitation, ideal fluid flow, and magnetism. Part II d
Using field theory in hadron physics
International Nuclear Information System (INIS)
Abarbanel, H.D.I.
1978-03-01
Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references
Calculations in perturbative string field theory
International Nuclear Information System (INIS)
Thorn, C.B.
1987-01-01
The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules
An introduction to conformal field theory
International Nuclear Information System (INIS)
Zuber, J.B.
1995-01-01
The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)
Using field theory in hadron physics
Energy Technology Data Exchange (ETDEWEB)
Abarbanel, H.D.I.
1978-03-01
Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references. (JFP)
Semiclassical Quantization of Classical Field Theories
Cattaneo, A.; Mnev, P.; Reshetikhin, N.; Calaque, D.; Strobi, Th.
2015-01-01
Abstract These lectures are an introduction to formal semiclassical quantization of classical field theory. First we develop the Hamiltonian formalism for classical field theories on space time with boundary. It does not have to be a cylinder as in the usual Hamiltonian framework. Then we outline
On the interplay between string theory and field theory
International Nuclear Information System (INIS)
Brunner, I.
1998-01-01
In this thesis, we have discussed various aspects of branes in string theory and M-theory. In chapter 2 we were able to construct six-dimensional chiral interacting eld theories from Hanany-Witten like brane setups. The field theory requirement that the anomalies cancel was reproduced by RR-charge conservation in the brane setup. The data of the Hanany-Witten setup, which consists of brane positions, was mapped to instanton data. The orbifold construction can be extended to D and E type singularities. In chapter 3 we discussed a matrix conjecture, which claims that M-theory in the light cone gauge is described by the quantum mechanics of D0 branes. Toroidal compactifications of M-theory have a description in terms of super Yang-Mills theory an the dual torus. For more than three compactified dimensions, more degrees of freedom have to be added. In some sense, the philosophy in this chapter is orthogonal to the previous chapter: Here, we want to get M-theory results from eld theory considerations, whereas in the previous chapter we obtained eld theory results by embedding the theories in string theory. Our main focus was on the compactification on T 6 , which leads to complications. Here, the Matrix model is again given by an eleven dimensional theory, not by a lower dimensional field theory. Other problems and possible resolutions of Matrix theory are discussed at the end of chapter 3. In the last chapter we considered M- and F-theory compactifications on Calabi-Yau fourfolds. After explaining some basics of fourfolds, we showed that the web of fourfolds is connected by singular transitions. The two manifolds which are connected by the transition are different resolutions of the same singular manifold. The resolution of the singularities can lead to a certain type of divisors, which lead to non-perturbative superpotentials, when branes wrap them. The vacua connected by the transitions can be physically very different. (orig.)
Quantum Field Theory in a Semiotic Perspective
Günter Dosch, Hans; Sieroka, Norman
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...
Introduction to field theory of strings
International Nuclear Information System (INIS)
Kikkawa, K.
1987-01-01
The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed
Austerity and geometric structure of field theories
International Nuclear Information System (INIS)
Kheyfets, A.
1986-01-01
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories
Schrodinger representation in renormalizable quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1983-01-01
The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward
Local algebras in Euclidean quantum field theory
International Nuclear Information System (INIS)
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
Holography for field theory solitons
Domokos, Sophia K.; Royston, Andrew B.
2017-07-01
We extend a well-known D-brane construction of the AdS/dCFT correspondence to non-abelian defects. We focus on the bulk side of the correspondence and show that there exists a regime of parameters in which the low-energy description consists of two approximately decoupled sectors. The two sectors are gravity in the ambient spacetime, and a six-dimensional supersymmetric Yang-Mills theory. The Yang-Mills theory is defined on a rigid AdS4 × S 2 background and admits sixteen supersymmetries. We also consider a one-parameter deformation that gives rise to a family of Yang-Mills theories on asymptotically AdS4 × S 2 spacetimes, which are invariant under eight supersymmetries. With future holographic applications in mind, we analyze the vacuum structure and perturbative spectrum of the Yang-Mills theory on AdS4 × S 2, as well as systems of BPS equations for finite-energy solitons. Finally, we demonstrate that the classical Yang-Mills theory has a consistent truncation on the two-sphere, resulting in maximally supersymmetric Yang-Mills on AdS4.
Mathematical aspects of quantum field theory
de Faria, Edson
2010-01-01
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Supersymmetry and Duality in Field Theory and String Theory
Kiritsis, Elias B
1999-01-01
This is a set of lectures given at the 99' Cargese Summer School, "Particle Physics : Ideas and Recent Developments". They contain a pedestrian exposition of recent theoretical progress in non-perturbative field theory and string theory based on ideas of duality.
Introduction to conformal field theory and string theory
International Nuclear Information System (INIS)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs
Introduction to conformal field theory and string theory
Energy Technology Data Exchange (ETDEWEB)
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
String field theory in curved space
International Nuclear Information System (INIS)
Kikkawa, Keiji; Maeno, Masahiro; Sawada, Shiro
1988-01-01
The purely cubic action in the string field theory is shown to provide a set of equations of motion for background fields which agree to those obtained by the vanishing condition of β-functions in the non-linear sigma model. Using the sigma model as an auxiliary tool, a systematic method for solving the string field theory in curved space is proposed. (author)
Axiomatic nonextensive statistics at NICA energies
Energy Technology Data Exchange (ETDEWEB)
Nasser Tawfik, Abdel [Modern University for Technology and Information (MTI), Egyptian Center for Theoretical Physics (ECTP), Cairo (Egypt); World Laboratory for Cosmology And Particle Physics (WLCAPP), Cairo (Egypt); Network for Nuclear Sciences (NNS), Academy for Scientific Research and Technology (ASRT), Cairo (Egypt)
2016-08-15
We discuss the possibility of implementing axiomatic nonextensive statistics, where it is conjectured that the phase-space volume determines the (non)extensive entropy, on the particle production at NICA energies. Both Boltzmann-Gibbs and Tsallis statistics are very special cases of this generic (non)extensivity. We conclude that the lattice thermodynamics is ab initio extensive and additive and thus the nonextensive approaches including Tsallis statistics categorically are not matching with them, while the particle production, for instance the particle ratios at various center-of-mass energies, is likely a nonextensive process but certainly not of Tsallis type. The resulting freezeout parameters, the temperature and the chemical potentials, are approximately compatible with the ones deduced from Boltzmann-Gibbs statistics. (orig.)
Light-front quantization of field theory
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-07-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincare algebra and the LF spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory, regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons. (author). 20 refs.
Field theory of relativistic strings: I. Trees
International Nuclear Information System (INIS)
Kaku, M.; Kikkawa, K.
1985-01-01
The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Mass corrections in string theory and lattice field theory
International Nuclear Information System (INIS)
Del Debbio, Luigi; Kerrane, Eoin; Russo, Rodolfo
2009-01-01
Kaluza-Klein (KK) compactifications of higher-dimensional Yang-Mills theories contain a number of 4-dimensional scalars corresponding to the internal components of the gauge field. While at tree level the scalar zero modes are massless, it is well known that quantum corrections make them massive. We compute these radiative corrections at 1 loop in an effective field theory framework, using the background field method and proper Schwinger-time regularization. In order to clarify the proper treatment of the sum over KK modes in the effective field theory approach, we consider the same problem in two different UV completions of Yang-Mills: string theory and lattice field theory. In both cases, when the compactification radius R is much bigger than the scale of the UV completion (R>>√(α ' ), a), we recover a mass renormalization that is independent of the UV scale and agrees with the one derived in the effective field theory approach. These results support the idea that the value of the mass corrections is, in this regime, universal for any UV completion that respects locality and gauge invariance. The string analysis suggests that this property holds also at higher loops. The lattice analysis suggests that the mass of the adjoint scalars appearing in N=2, 4 super Yang-Mills is highly suppressed, even if the lattice regularization breaks all supersymmetries explicitly. This is due to an interplay between the higher-dimensional gauge invariance and the degeneracy of bosonic and fermionic degrees of freedom.
Fermion boson metamorphosis in field theory
International Nuclear Information System (INIS)
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered
A Road Map for Knowledge Management Systems Design Using Axiomatic Design Approach
Directory of Open Access Journals (Sweden)
Houshmand Mahmoud
2017-01-01
Full Text Available Successful design and implementation of knowledge management systems have been the main concern of many researchers. It has been reported that more than 50% of knowledge management systems have failed, therefore, it is required to seek for a new and comprehensive scientific approach to design and implement it. In the design and implementation of a knowledge management system, it is required to know ’what we want to achieve’ and ’how and by what processes we will achieve it’. A literature review conducted and axiomatic design theory selected for this purpose. For the first time, this paper develops a conceptual design of knowledge management systems by means of a hierarchical structure, composed of ’Functional Requirements’ (FRs, ’Design Parameters’ (DPs, and ’Process Variables’ (PVs. The intersection of several studies conducted in the field of knowledge management systems has been used to design the knowledge management model. It reveals that six essential bases of knowledge management are organizational culture, organizational structure, human resources, management and leadership, information technology, and the external environment of the organization; that are represented as top DPs in the structure of the model. These essential factors are decomposed to lower levels by means of zigzagging. The model implemented in Tehran Urban and Suburban Railway Operation Corporation (TUSROC and the results were very promising. The most important result of this study is a roadmap to design successful and efficient knowledge management systems.
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Introduction to classical and quantum field theory
International Nuclear Information System (INIS)
Ng, Tai-Kai
2009-01-01
This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)
Effective theories of single field inflation when heavy fields matter
Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P
2012-01-01
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...
Conformal techniques in string theory and string field theory
International Nuclear Information System (INIS)
Giddings, S.B.
1987-01-01
The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string
[Studies in quantum field theory]: Progress report
International Nuclear Information System (INIS)
Polmar, S.K.
1988-01-01
The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, 1/N expansions, quantum solitons, phase transitions, nuclear potentials, and early universe calculations
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Clifford algebra in finite quantum field theories
International Nuclear Information System (INIS)
Moser, M.
1997-12-01
We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)
Polynomial field theories and nonintegrability
International Nuclear Information System (INIS)
Euler, N.; Steeb, W.H.; Cyrus, K.
1990-01-01
The nonintegrability of the nonlinear field equation v ηξ = v 3 is studied with the help of the Painleve test. The condition at the resonance is discussed in detail. Particular solutions are given. (orig.)
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
Design of Safety Injection Tanks Using Axiomatic Design and TRIZ
International Nuclear Information System (INIS)
Heo, Gyunyoung; Jeong, Yong Hoon
2008-01-01
Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)
Design of Safety Injection Tanks Using Axiomatic Design and TRIZ
Energy Technology Data Exchange (ETDEWEB)
Heo, Gyunyoung [Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701 (Korea, Republic of); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)
2008-07-01
Design can be categorized into two steps: 'synthesis' and 'analysis'. While synthesis is the process of decision-making on design parameters, analysis is the process of optimizing the parameters selected. It is known from experience that the mistakes made in the synthesis process are hardly corrected in the analysis process. 'Systematic synthesis' is, therefore, easy to overlook but an important topic. 'Systematic' is interpreted as 'minimizing' uncertainty and subjectivity. This paper will introduce the design product achieved by using Axiomatic Design (AD) and TRIZ (Theory of Inventive Problem Solving romanized acronym for Russian), which is a new design of Safety Injection Tank (SIT). In designing a large-capacity SIT which should play an important role in mitigating the large break loss of coolant accidents, there are three issues: 1) the excessively large plenum for pressurized nitrogen gas; 2) the difficulties maintaining the high initial injection flow rate; and 3) the non-condensable nitrogen gas in the coolant. This study proposes a conceptual idea for SITs that are pressurized by the chemical reaction of solid propellants. The AD theory and the principles of TRIZ enable new approach in problem-solving for those three issues in an innovative way. The paper made an effort to clarify the systematic synthesis process to reach the final design solution. (authors)
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Factorization algebras in quantum field theory
Costello, Kevin
2017-01-01
Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
String theory inspired deformations of quantum field theories
Chiou, Dah-Wei
In this dissertation, some extensions on field theories with deformations inspired by string theory are explored and their implications are investigated. These are: (i) noncommutative dipole field theory (DFT) and unitarity; (ii) three dimensional super Yang-Mills theory and mini-twistor string theory; (iii) massive super Yang-Mills theory and twistor string theory; and (iv) a deformation of twistor space and N = 4 super Yang-Mills theory with a chiral mass term. The DFT with fixed spacetime vectors ("dipole-vectors") is formulated for gauge theory coupled with a scalar field of adjoint charge. The argument for the violation of unitarity in field theories on a noncommutative spacetime is extended to the case of DFT: with a timelike dipole vector, 1-loop amplitudes are shown not to obey the optical theorem and thus violate unitarity. Likewise, a simple 0 + 1D quantum mechanical system with nonlocal potential of finite extent in time also gives violation of unitarity. Associated with D = 3 super Yang-Mills theory, the topological B-model is constructed for the twistor string theory, of which the target space is the (super-)mini-twistor space. As the D = 4 twistor space can be considered as a fibration over D = 3 mini-twistor space, the dimensional reduction from D = 4 to D = 3 is conducted to obtain the scattering amplitudes for D = 3 super Yang-Mills theory. The result shows that, analogous to the D = 4 case, the twistor transformed D = 3 amplitudes are supported on holomorphic curves in the (super-)mini-twistor space. Another alternative twistor description---Berkovits's open string theory---is also analyzed. By the prescription which interrelates Witten's B-model and Berkovits's open string theory, the dimensional reduction can be made for Berkovits's model as well, in which the enhanced R-symmetry Spin(7) is recognized, whereas only the subgroup SU(4) is manifest in the B-model. The extension of the twistor string theory by adding mass terms is then proposed and
Lectures on interacting string field theory
International Nuclear Information System (INIS)
Jevicki, A.
1986-09-01
We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs
Dynamical symmetry breaking in quantum field theories
Miransky, Vladimir A
1993-01-01
The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.
Recent progress in reggeon field theory
International Nuclear Information System (INIS)
Sugar, R.L.
1977-01-01
The present status of the pomeron theory in the reggeon field theory is summarized. For α 0 ( 0 -a bare intercept, αsub(oc) - a certain critical value) the theory is in a very good shape. It appears to satisfy both S and t-channel unitarity, and to avoid all of the decreases which plagued the simple pole model of the pomeron. For α 0 >αsub(oc) the situation is less clear
Pure field theories and MACSYMA algorithms
Ament, W. S.
1977-01-01
A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.
Axion topological field theory of topological superconductors
Qi, Xiao-Liang; Witten, Edward; Zhang, Shou-Cheng
2013-04-01
Topological superconductors are gapped superconductors with gapless and topologically robust quasiparticles propagating on the boundary. In this paper, we present a topological field theory description of three-dimensional time-reversal invariant topological superconductors. In our theory the topological superconductor is characterized by a topological coupling between the electromagnetic field and the superconducting phase fluctuation, which has the same form as the coupling of “axions” with an Abelian gauge field. As a physical consequence of our theory, we predict the level crossing induced by the crossing of special “chiral” vortex lines, which can be realized by considering s-wave superconductors in proximity with the topological superconductor. Our theory can also be generalized to the coupling with a gravitational field.
An introduction to relativistic quantum field theory
Schweber, Silvan S
1961-01-01
Complete, systematic, and self-contained, this text introduces modern quantum field theory. "Combines thorough knowledge with a high degree of didactic ability and a delightful style." - Mathematical Reviews. 1961 edition.
Quantum field theory with infinite component local fields as an alternative to the string theories
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-05-01
We show that the introduction of the infinite component local fields with higher order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ 5 -anomalous theories the introduction of the infinite component field makes the theory renormalizable or superrenormalizable. (orig.)
The conceptual basis of Quantum Field Theory
Hooft, G. 't
2005-01-01
Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental
Renormalizability of effective scalar field theory
Ball, R D
1994-01-01
We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...
Introductory lectures on quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Vasquez-Mozo, M.A.
2011-01-01
In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to particle physics and string theory. (author)
Klein Topological Field Theories from Group Representations
Directory of Open Access Journals (Sweden)
Sergey A. Loktev
2011-07-01
Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
Field theories with multiple fermionic excitations
International Nuclear Information System (INIS)
Crawford, J.P.
1978-01-01
The reason for the existence of the muon has been an enigma since its discovery. Since that time there has been a continuing proliferation of elementary particles. It is proposed that this proliferation of leptons and quarks is comprehensible if there are only four fundamental particles, the leptons ν/sub e/ and e - , and the quarks u and d. All other leptons and quarks are imagined to be excited states of these four fundamental entities. Attention is restricted to the charged leptons and the electromagnetic interactions only. A detailed study of a field theory in which there is only one fundamental charged fermionic field having two (or more) excitations is made. When the electromagnetic interactions are introduced and the theory is second quantized, under certain conditions this theory reproduces the S matrix obtained from usual OED. In this case no electromagnetic transitions are allowed. A leptonic charge operator is defined and a superselection rule for this leptonic charge is found. Unfortunately, the mass spectrum cannot be obtained. This theory has many renormalizable generalizations including non-abelian gauge theories, Yukawa-type theories, and Fermi-type theories. Under certain circumstances the Yukawa- and Fermi-type theories are finite in perturbation theory. It is concluded that there are no fundamental objections to having fermionic fields with more than one excitation
Simple recursion relations for general field theories
International Nuclear Information System (INIS)
Cheung, Clifford; Shen, Chia-Hsien; Trnka, Jaroslav
2015-01-01
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensional analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. Our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
A Complete Axiomatic System for Process-based Spatial Logic
DEFF Research Database (Denmark)
Mardare, Radu Iulian; Policriti, Alberto
2008-01-01
R. Mardare, A. Policriti. A Complete Axiomatic System for Process-based Spatial Logic. In Proc. of 33rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2008, Lecture Notes in Computer Science 5168:491-502, Springer......R. Mardare, A. Policriti. A Complete Axiomatic System for Process-based Spatial Logic. In Proc. of 33rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2008, Lecture Notes in Computer Science 5168:491-502, Springer...
Geometry and experience: Einstein's 1921 paper and Hilbert's axiomatic system
International Nuclear Information System (INIS)
De Gandt, Francois
2006-01-01
In his 1921 paper Geometrie und Erfahrung, Einstein decribes the new epistemological status of geometry, divorced from any intuitive or a priori content. He calls that 'axiomatics', following Hilbert's theoretical developments on axiomatic systems, which started with the stimulus given by a talk by Hermann Wiener in 1891 and progressed until the Foundations of geometry in 1899. Difficult questions arise: how is a theoretical system related to an intuitive empirical content?
Unified-field theory: yesterday, today, tomorrow
International Nuclear Information System (INIS)
Bergman, P.G.
1982-01-01
Beginning with the expounding of Einstein understanding of advantages and disadvantages of general relativity theory, the authors proceed to consideration of what the complete unified theory have to be according to Einstein. The four theories which can be considered as ''unified'', namely weyl and Calutsa ones, worked out a half of century ago, and twistor twisting and supersymmetry theories, nowadays attracting attention, are briefly described and discussed. The authors come to a conclusion that achievements in elementary-particle physics have to affect any future theory, that this theory has to explain the principle contradictions between classical and quantum field theories, and that finally it can lead to change of the modern space-time model as a four-dimensional variety
Quantum field theory in a semiotic perspective
International Nuclear Information System (INIS)
Dosch, H.G.
2005-01-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Quantum field theory in a semiotic perspective
Energy Technology Data Exchange (ETDEWEB)
Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)
2005-07-01
Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)
Superstring field theory equivalence: Ramond sector
International Nuclear Information System (INIS)
Kroyter, Michael
2009-01-01
We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.
Weiss, Edwin
1998-01-01
Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te
Magnetic Catalysis in Graphene Effective Field Theory.
DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas
2016-12-23
We report on the first calculation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle.
Supersymmetric gauge theories, quantization of Mflat, and conformal field theory
International Nuclear Information System (INIS)
Teschner, J.; Vartanov, G.S.
2013-02-01
We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.
Infrared problems in field perturbation theory
International Nuclear Information System (INIS)
David, Francois.
1982-12-01
The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field
Towards the mathematics of quantum field theory
Paugam, Frédéric
2014-01-01
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...
Gravitation Field Dynamics in Jeans Theory
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description ...
Field theory of polar continua
International Nuclear Information System (INIS)
Heinz, C.
1988-01-01
A Lagrangian density in the polar space X 1+3+3 depending of the potentials and their derivativs and of the fluxes is introduced. The potentials are then the mechanical and electromagnetic potentials, the potentials of gravity and in the polar space X 1+3+3 the components of affine connection. The fluxes are essentially the tangential motors of the mechanical and electromagnetic world-lines multiplied with the density of mass and electric charge. The Hamilton principle gives, with the in variational calculus usual integrations by part, here done via the theorem of Gauss, the equations of motion and the field equations. The conditions of integrability for these equations are discussed. (author)
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Circuit complexity in quantum field theory
Jefferson, Robert A.; Myers, Robert C.
2017-10-01
Motivated by recent studies of holographic complexity, we examine the question of circuit complexity in quantum field theory. We provide a quantum circuit model for the preparation of Gaussian states, in particular the ground state, in a free scalar field theory for general dimensions. Applying the geometric approach of Nielsen to this quantum circuit model, the complexity of the state becomes the length of the shortest geodesic in the space of circuits. We compare the complexity of the ground state of the free scalar field to the analogous results from holographic complexity, and find some surprising similarities.
Dark Matter, Elko Fields and Weinberg's Quantum Field Theory Formalism
Gillard, Adam; Martin, Benjamin
2012-02-01
The Elko quantum field was introduced by Ahluwalia and Grumiller, who proposed it as a candidate for dark matter. We study the Elko field in Wemberg's formalism for quantum field theory. We prove that if one takes the symmetry group to be the full Pomcaré group then the Elko field is not a quantum field in the sense of Weinberg. This confirms results of Ahluwalia, Lee and Schritt, who showed using a different approach that the Elko field does not transform covariantly under rotations and hence has a preferred axis.
Coadjoint orbits and conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Taylor, IV, Washington [Univ. of California, Berkeley, CA (United States)
1993-08-01
This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription.
Axiomatic Ontology Learning Approaches for English Translation of the Meaning of Quranic Texts
Directory of Open Access Journals (Sweden)
Saad Saidah
2017-01-01
Full Text Available Ontology learning (OL is the computational task of generating a knowledge base in the form of an ontology, given an unstructured corpus in natural language (NL. While most works in the field of ontology learning have been primarily based on a statistical approach to extract lightweight OL, very few attempts have been made to extract axiomatic OL (called heavyweight OL from NL text documents. Axiomatic OL supports more precise formal logic-based reasoning when compared to lightweight OL. Lexico-syntactic pattern matching and statisticsal one cannot lead to very accurate learning, mostly because of several linguistic nuances in the NL. Axiomatic OL is an alternative methodology that has not been explored much, where a deep linguistics analysis in computational linguistics is used to generate formal axioms and definitions instead of simply inducing a taxonomy. The ontology that is created not only stores the information about the application domain in explicit knowledge, but also can deduce the implicit knowledge from this ontology. This research will explore the English translation of the meaning of Quranic texts.
Knots, topology and quantum field theories
International Nuclear Information System (INIS)
Lusanna, L.
1989-01-01
The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks
Cutkosky rules for superstring field theory
International Nuclear Information System (INIS)
Pius, Roji; Sen, Ashoke
2016-01-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
Cutkosky rules for superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Pius, Roji [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)
2016-10-06
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
Experimental signature of scaling violation implied by field theories
International Nuclear Information System (INIS)
Tung, W.
1975-01-01
Renormalizable field theories are found to predict a surprisingly specific pattern of scaling violation in deep inelastic scattering. Comparison with experiments is discussed. The feasibility of distinguishing asymptotically free field theories from conventional field theories is evaluated
Nonequilibrium statistical field theory for classical particles: Basic kinetic theory.
Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias
2015-06-01
Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010); J. Stat. Phys. 149, 643 (2012); J. Stat. Phys. 152, 159 (2013); Phys. Rev. E 83, 041125 (2011)] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
Further studies in aesthetic field theory
International Nuclear Information System (INIS)
Muraskin, M.
1984-01-01
We study different facets of Aesthetic Field Theory. First, we have found within the complex version of the theory a bounded particle system which has more structure than what we have previously observed. The particle is built from planar 3 maxima--minima confluence regions. The confluence region closes in 3 spatial dimensions, so once again we have a ''topological'' particle. If we characterize bound stats by the number of large magnitude regions in close proximity, then the simplest interpretation of what we are seeing is that of a 3 particle bound system. Secondly, again within the framework of complex Aesthetic Field Theory, but using a more symmetric system of equations, we observe a confluence type topological particle spontaneously arising out of the vacuum (creation effect). The particle again has a loop shape. The extended particles thus far found in 4 dimensional Aesthetic Field Theory have always had problems with the spreading of the particle system as time went on. Thirdly, we found a bounded confluence particle system, which in addition to confinement and non attenuation shows the desirable property of not spreading in time. In this case, we work exclusively with real fields. The particle system has a dipole looking shape. We also studied complex null Aesthetic Field Theory in 8 dimensions having a 4 direct-sum 4 structure. We were not able to find a bound to our particle system here
Weak gravity conjecture and effective field theory
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
Massive deformations of Type IIA theory within double field theory
Çatal-Özer, Aybike
2018-02-01
We obtain massive deformations of Type IIA supergravity theory through duality twisted reductions of Double Field Theory (DFT) of massless Type II strings. The mass deformation is induced through the reduction of the DFT of the RR sector. Such reductions are determined by a twist element belonging to Spin+(10, 10), which is the duality group of the DFT of the RR sector. We determine the form of the twists and give particular examples of twists matrices, for which a massive deformation of Type IIA theory can be obtained. In one of the cases, requirement of gauge invariance of the RR sector implies that the dilaton field must pick up a linear dependence on one of the dual coordinates. In another case, the choice of the twist matrix violates the weak and the strong constraints explicitly in the internal doubled space.
Recent Developments in D=2 String Field Theory
Kaku, Michio
1994-01-01
In this review article, we review the recent developments in constructing string field theories that have been proposed, all of which correctly reproduce the correlation functions of two-dimensional string theory. These include: (a) free fermion field theory (b) collective string field theory (c) temporal gauge string field theory (d) non-polynomial string field theory. We analyze discrete states, the $w(\\infty)$ symmetry, and correlation functions in terms of these different string field the...
International Nuclear Information System (INIS)
Skyrme, T.H.R.
1994-01-01
A unified field theory of mesons and their particle sources is proposed and considered in its classical aspects. The theory has static solutions of a singular nature, but finite energy, characterized by spin directions; the number of such entities is a rigorously conserved constant of motion; they interact with an external meson field through a derivative-type coupling with the spins, akin to the formalism of strong-coupling meson theory. There is a conserved current identifiable with isobaric spin, and another that may be related to hypercharge. The postulates include one constant of the dimensions of length, and another that is conjecture necessarily to have the value (h/2π)c, or perhaps 1/2(h/2π)c, in the quantized theory. (author). 5 refs
Hydrodynamics, fields and constants in gravitational theory
International Nuclear Information System (INIS)
Stanyukovich, K.P.; Mel'nikov, V.N.
1983-01-01
Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles
Field theory of the Eulerian perfect fluid
Ariki, Taketo; Morales, Pablo A.
2018-01-01
The Eulerian perfect-fluid theory is reformulated from its action principle in a pure field-theoretic manner. Conservation of the convective current is no longer imposed by Lin’s constraints, but rather adopted as the central idea of the theory. Our formulation, for the first time, successfully reduces redundant degrees of freedom promoting one half of the Clebsch variables to true dynamical fields. Interactions on these fields allow for the exchange of the convective current of quantities such as mass and charge, which are uniformly understood as the breaking of the underlying symmetry of the force-free fluid. The Clebsch fields play the essential role of exchanging angular momentum with the force field producing vorticity.
A general field-covariant formulation of quantum field theory
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
Neutrix calculus and finite quantum field theory
International Nuclear Information System (INIS)
Ng, Y Jack; Dam, H van
2005-01-01
In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)
Quantum field theory in generalised Snyder spaces
International Nuclear Information System (INIS)
Meljanac, S.; Meljanac, D.; Mignemi, S.; Štrajn, R.
2017-01-01
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Staircase Models from Affine Toda Field Theory
Dorey, P; Dorey, Patrick; Ravanini, Francesco
1993-01-01
We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.
Quantum field theory in generalised Snyder spaces
Energy Technology Data Exchange (ETDEWEB)
Meljanac, S.; Meljanac, D. [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia); Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)
2017-05-10
We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.
Magnetic monopoles in field theory and cosmology.
Rajantie, Arttu
2012-12-28
The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.
Effective field theory for magnetic compactifications
Buchmuller, Wilfried; Dierigl, Markus; Dudas, Emilian; Schweizer, Julian
2017-04-01
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N = 1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus; Schweizer Julian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Dudas, Emilian [Univ. Paris-Saclay, Palaiseau (France). Ecole Polytechnique
2016-12-15
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)
2017-04-10
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Effective field theory for triaxially deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)
2017-10-15
Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
Conformal field theory with gauge symmetry
Ueno, Kenji
2008-01-01
This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of
Supergauge Field Theory of Covariant Heterotic Strings
Michio, KAKU; Physics Department, Osaka University : Physics Department, City College of the City University of New York
1986-01-01
We present the gauge covariant second quantized field theory for free heterotic strings, which is leading candidate for a unified theory of all known particles. Our action is invariant under the semi-direct product of the super Virasoro and the Kac-Moody E_8×E_8 or Spin(32)/Z_2 group. We derive the covariant action by path integrals in the same way that Feynman originally derived the Schrodinger equation. By adding an infinite number of auxiliary fields, we can also make the action explicitly...
Field theory a path integral approach
Das, Ashok
2006-01-01
This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.
A geometric formulation of exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Bosque, Pascal du [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Hassler, Falk [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 E. Cameron Ave., Chapel Hill, NC 27599-3255 (United States); City University of New York, The Graduate Center, 365 Fifth Avenue, New York, NY 10016 (United States); Department of Physics, Columbia University, Pupin Hall, 550 West 120th St., New York, NY 10027 (United States); Lüst, Dieter [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München (Germany); Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics,Department für Physik, Ludwig-Maximilians-Universität München,Theresienstraße 37, 80333 München (Germany)
2017-03-01
We formulate the full bosonic SL(5) exceptional field theory in a coordinate-invariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with SL(5)×ℝ{sup +}-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the SL(5)×ℝ{sup +}-structure is not locally flat.
Closed superstring field theory and its applications
de Lacroix, Corinne; Erbin, Harold; Kashyap, Sitender Pratap; Sen, Ashoke; Verma, Mritunjay
2017-10-01
We review recent developments in the construction of heterotic and type II string field theories and their various applications. These include systematic procedures for determining the shifts in the vacuum expectation values of fields under quantum corrections, computing renormalized masses and S-matrix of the theory around the shifted vacuum and a proof of unitarity of the S-matrix. The S-matrix computed this way is free from all divergences when there are more than 4 noncompact space-time dimensions, but suffers from the usual infrared divergences when the number of noncompact space-time dimensions is 4 or less.
Statistical field theory of futures commodity prices
Baaquie, Belal E.; Yu, Miao
2018-02-01
The statistical theory of commodity prices has been formulated by Baaquie (2013). Further empirical studies of single (Baaquie et al., 2015) and multiple commodity prices (Baaquie et al., 2016) have provided strong evidence in support the primary assumptions of the statistical formulation. In this paper, the model for spot prices (Baaquie, 2013) is extended to model futures commodity prices using a statistical field theory of futures commodity prices. The futures prices are modeled as a two dimensional statistical field and a nonlinear Lagrangian is postulated. Empirical studies provide clear evidence in support of the model, with many nontrivial features of the model finding unexpected support from market data.
From topological quantum field theories to supersymmetric gauge theories
International Nuclear Information System (INIS)
Bossard, G.
2007-10-01
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the β function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
The Global Approach to Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)
2003-12-12
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
On space of integrable quantum field theories
Directory of Open Access Journals (Sweden)
F.A. Smirnov
2017-02-01
Full Text Available We study deformations of 2D Integrable Quantum Field Theories (IQFT which preserve integrability (the existence of infinitely many local integrals of motion. The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (TT¯ built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
On the general theory of quantized fields
International Nuclear Information System (INIS)
Fredenhagen, K.
1991-10-01
In my lecture I describe the present stage of the general theory of quantized fields on the example of 5 subjects. They are ordered in the direction from large to small distances. The first one is the by now classical problem of the structure of superselection sectors. It involves the behavior of the theory at spacelike infinity and is directly connected with particle statistics and internal symmetries. It has become popular in recent years by the discovery of a lot of nontrivial models in 2d conformal-field theory, by connections to integrable models and critical behavior in statistical mechanics and by the relations to the Jones' theory of subfactors in von Neumann algebras and to the corresponding geometrical objects (braids, knots, 3d manifolds, ...). At large timelike distances the by far most important feature of quantum field theory is the particle structure. This will be the second subject of my lecture. It follows the technically most involved part which is concerned with the behavior at finite distances. Two aspets, nuclearity which emphasizes the finite density of states in phase space, and the modular structure which relies on the infinite number of degrees of freedom present even locally, and their mutual relations will be treated. The next point, involving the structure at infinitesimal distances, is the connection between the Haag-Kastler framework of algebras of local and the framework of Wightman fields. Finally, problems in approaches to quantum gravity will be discussed, as far as they are accessible by the methods of the general theory of quantized fields. (orig.)
On the History of Unified Field Theories
Directory of Open Access Journals (Sweden)
Goenner Hubert F.M.
2004-01-01
Full Text Available This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin - with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
Symmetry analysis for anisotropic field theories
International Nuclear Information System (INIS)
Parra, Lorena; Vergara, J. David
2012-01-01
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Anomalies in Witten's NSR superstring field theory
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Medvedev, P.B.
1988-01-01
The action of Witten's NSR superstring field theory if shown to depend on the regularization being choosen to define its value on non-smooth states that are generated by supertransformation. The necessity of additional regularization originates from the appearance of products of picture-changing operators in coincident points. Two different regularization are described, one corresponding to Witten's scheme and the other to the scheme based on the notion of truncated fields
Integrable structures in quantum field theory
International Nuclear Information System (INIS)
Negro, Stefano
2016-01-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)
Dual field theories of quantum computation
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N
String amplitudes: from field theories to number theory
CERN. Geneva
2017-01-01
In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...
Logarithmic conformal field theory: beyond an introduction
Creutzig, Thomas; Ridout, David
2013-12-01
This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model \\mathfrak {M} (1,2), related to the triplet model \\mathfrak {W} (1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess-Zumino-Witten model based on \\widehat{\\mathfrak {sl}} \\left( 2 \\right) at k=-\\frac{1}{2}, related to the bosonic βγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroup \\mathsf {GL} \\left( 1 {\\mid} 1 \\right), related to \\mathsf {SL} \\left( 2 {\\mid} 1 \\right) at k=-\\frac{1}{2} and 1, the Bershadsky-Polyakov algebra W_3^{(2)} and the Feigin-Semikhatov algebras W_n^{(2)}. These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models \\mathfrak {W} (q,p), the fractional level Wess-Zumino-Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excluding \\mathsf {OSP} \\left( 1 {\\mid} 2n \\right)). In this review, the emphasis lies on the representation theory
Causality Constraints in Conformal Field Theory
CERN. Geneva
2015-01-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...
Double field theory: a pedagogical review
International Nuclear Information System (INIS)
Aldazabal, Gerardo; Marqués, Diego; Núñez, Carmen
2013-01-01
Double field theory (DFT) is a proposal to incorporate T-duality, a distinctive symmetry of string theory, as a symmetry of a field theory defined on a double configuration space. The aim of this review is to provide a pedagogical presentation of DFT and its applications. We first introduce some basic ideas on T-duality and supergravity in order to proceed to the construction of generalized diffeomorphisms and an invariant action on the double space. Steps towards the construction of a geometry on the double space are discussed. We then address generalized Scherk–Schwarz compactifications of DFT and their connection to gauged supergravity and flux compactifications. We also discuss U-duality extensions and present a brief parcours on worldsheet approaches to DFT. Finally, we provide a summary of other developments and applications that are not discussed in detail in the review. (topical review)
Cross Sections From Scalar Field Theory
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
Gravitational descendants in symplectic field theory
Fabert, O.
2011-01-01
It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic
Quantum field theory with soliton conservation laws
Schrör, B
1978-01-01
Field theories with soliton conservation laws are the most promising candidates for explicitly constructable models. The author exemplifies in the case of the massive Thirring model how the old S matrix bootstrap idea, supplemented with a soliton factorization property, may be used as a systematic starting point for the construction of the S matrix, form factors and (hopefully) correlation functions. (34 refs).
Covariant field theory of closed superstrings
International Nuclear Information System (INIS)
Siopsis, G.
1989-01-01
The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction
Fusion rules in conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.
1993-06-01
Several aspects of fusion rings and fusion rule algebras, and of their manifestations in two-dimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme. (orig.)
The quantum symmetry of rational field theories
International Nuclear Information System (INIS)
Fuchs, J.
1993-12-01
The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)
Reconstructing bidimensional scalar field theory models
International Nuclear Information System (INIS)
Flores, Gabriel H.; Svaiter, N.F.
2001-07-01
In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)
General relativity invariance and string field theory
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Volovich, I.V.
1987-04-01
The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs
Construction of topological field theories using BV
Jonghe, F. de; Vandoren, S.
1993-01-01
We discuss in detail the construction of topological field theories us- ing the Batalin–Vilkovisky (BV) quantisation scheme. By carefully examining the dependence of the antibracket on an external metric, we show that differentiating with respect to the metric and the BRST charge do not commute
Wilson lines in quantum field theory
Cherednikov, Igor O; Veken, Frederik F van der
2014-01-01
The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.
Twisted conformal field theories and Morita equivalence
Energy Technology Data Exchange (ETDEWEB)
Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy)], E-mail: adelenaddeo@yahoo.it
2009-04-01
The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter {theta} (in appropriate units): an isomorphism is established between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means of the m-reduction procedure [V. Marotta, J. Phys. A 26 (1993) 3481; V. Marotta, Mod. Phys. Lett. A 13 (1998) 853; V. Marotta, Nucl. Phys. B 527 (1998) 717; V. Marotta, A. Sciarrino, Mod. Phys. Lett. A 13 (1998) 2863], and show that it is the Morita equivalent of a NCFT. Finally, the whole m-reduction procedure is shown to be the image in the ordinary space of the Morita duality. An application to the physics of a quantum Hall fluid at Jain fillings {nu}=m/(2pm+1) is explicitly discussed in order to further elucidate such a correspondence and to clarify its role in the physics of strongly correlated systems. A new picture emerges, which is very different from the existing relationships between noncommutativity and many body systems [A.P. Polychronakos, arXiv: 0706.1095].
Translationally invariant self-consistent field theories
International Nuclear Information System (INIS)
Shakin, C.M.; Weiss, M.S.
1977-01-01
We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables
Causality and analyticity in quantum fields theory
International Nuclear Information System (INIS)
Iagolnitzer, D.
1992-01-01
This is a presentation of results on the causal and analytical structure of Green functions and on the collision amplitudes in fields theories, for massive particles of one type, with a positive mass and a zero spin value. (A.B.)
Asymptotic mass degeneracies in conformal field theories
International Nuclear Information System (INIS)
Kani, I.; Vafa, C.
1990-01-01
By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)
Superconformal quantum field theories in string. Gauge theory dualities
Energy Technology Data Exchange (ETDEWEB)
Wiegandt, Konstantin
2012-08-14
In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investigated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop/amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N=4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.
Light front field theory: an advanced primer
International Nuclear Information System (INIS)
Martinovic, L.
2007-01-01
We present an elementary introduction to quantum field theory formulated in terms of Dirac's light front variables. In addition to general principles and methods, a few more specific topics and approaches based on the author's work will be discussed. Most of the discussion deals with massive two-dimensional models formulated in a finite spatial volume starting with a detailed comparison between quantization of massive free fields in the usual field theory and the light front (LF) quantization. We discuss basic properties such as relativistic invariance and causality. After the LF treatment of the soluble Federbush model, a LF approach to spontaneous symmetry breaking is explained and a simple gauge theory - the massive Schwinger model in various gauges is studied. A LF version of bosonization and the massive Thirring model are also discussed. A special chapter is devoted to the method of discretized light cone quantization and its application to calculations of the properties of quantum solitons. The problem of LF zero modes is illustrated with the example of the two/dimensional Yukawa model. Hamiltonian perturbation theory in the LF formulation is derived and applied to a few simple processes to demonstrate its advantages. As a byproduct, it is shown that the LF theory cannot be obtained as a 'light-like' limit of the usual field theory quantized on a initial space-like surface. A simple LF formulation of the Higgs mechanism is then given Since our intention was to provide a treatment of the light front quantization accessible to postgradual students, an effort was made to discuss most of the topics pedagogically and number of technical details and derivations are contained in the appendices (Author)
A periodic table of effective field theories
Energy Technology Data Exchange (ETDEWEB)
Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
A symplectic framework for field theories
International Nuclear Information System (INIS)
Kijowski, J.; Tulczyjew, W.M.
1979-01-01
These notes are concerned with the formulation of a new conceptual framework for classical field theories. Although the formulation is based on fairly advanced concepts of symplectic geometry these notes cannot be viewed as a reformulation of known structures in more rigorous and elegant torns. Our intention is rather to communicate to theoretical physicists a set of new physical ideas. We have chosen for this purpose the language of local coordinates which is more elementary and more widely known than the abstract language of modern differntial geometry. Our emphasis is directed more to physical intentions than to mathematical vigour. We start with a symplectic analysis of staties. Both discrete and continuous systems are considered on a largely intuitive level. The notion of reciprocity and potentiality of the theory is discussed. Chapter II is a presentation of particle dynamics together with more rigorous definitions of the geometric structure. Lagrangian-Submanifolds and their generating function 3 are defined and the time evolution of particle states is studied. Chapter II form the main part of these notes. Here we describe the construction of canonical momenta and discuss the field dynamics in finite domains of space-time. We also establish the relation between our symplectic framework and the geometric formulation of the calculus of variations of multiple integrals. In the following chapter we give a few examples of field theories selected to illustrate various features of the new approach. A new formulation of the theory of gravity consists of using the affine connection in space-time as the field configuration. In the past section we present an analysis of hydrodynamics within our framework which reveals a formal analogy with electrodynamics. The discovery of potentials for hydrodynamics and the subsequent formulation of a variational principle provides an excellent example for the fruitfulness of the new approach to field theory. A short review of
Quantum field theory in topology changing spacetimes
International Nuclear Information System (INIS)
Bauer, W.
2007-03-01
The goal of this diploma thesis is to present an overview of how to reduce the problem of topology change of general spacetimes to the investigation of elementary cobordisms. In the following we investigate the possibility to construct quantum fields on elementary cobordisms, in particular we discuss the trousers topology. Trying to avoid the problems occuring at spacetimes with instant topology change we use a model for simulating topology change. We construct the algebra of observables for a free scalar field with the algebraic approach to quantum field theory. Therefore we determine a fundamental solution of the eld equation. (orig.)
Symmetry aspects of nonholonomic field theories
Energy Technology Data Exchange (ETDEWEB)
Vankerschaver, Joris [Control and Dynamical Systems, California Institute of Technology, MC 107-81, Pasadena, CA 91125 (United States); Diego, David MartIn de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)
2008-01-25
The developments in this paper are concerned with nonholonomic field theories in the presence of symmetries. Having previously treated the case of vertical symmetries, we now deal with the case where the symmetry action can also have a horizontal component. As a first step in this direction, we derive a new and convenient form of the field equations of a nonholonomic field theory. Nonholonomic symmetries are then introduced as symmetry generators whose virtual work is zero along the constraint submanifold, and we show that for every such symmetry, there exists a so-called momentum equation, describing the evolution of the associated component of the momentum map. Keeping up with the underlying geometric philosophy, a small modification of the derivation of the momentum lemma allows us to also treat generalized nonholonomic symmetries, which are vector fields along a projection. Such symmetries arise for example in practical examples of nonholonomic field theories such as the Cosserat rod, for which we recover both energy conservation (a previously known result) and a modified conservation law associated with spatial translations.
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1986-01-01
Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)
Interaction vertices in reduced string field theories
International Nuclear Information System (INIS)
Embacher, F.
1989-01-01
In contrast to previous expectations, covariant overlap vertices are not always suitable for gauge-covariant formulations of bosonic string field theory with a reduced supplementary field content. This is demonstrated for the version of the theory suggested by Neveu, Schwarz and West. The method to construct the interaction, as formulated by Neveu and West, fails at one level higher than these authors have considered. The condition for a general vertex to describe formally a local gauge-invariant interaction is derived. The solution for the action functional and the gauge transformation law is exhibited for all fields at once, to the first order in the coupling constant. However, all these vertices seem to be unphysical. 21 refs. (Author)
Extending Gurwitsch's field theory of consciousness.
Yoshimi, Jeff; Vinson, David W
2015-07-01
Aron Gurwitsch's theory of the structure and dynamics of consciousness has much to offer contemporary theorizing about consciousness and its basis in the embodied brain. On Gurwitsch's account, as we develop it, the field of consciousness has a variable sized focus or "theme" of attention surrounded by a structured periphery of inattentional contents. As the field evolves, its contents change their status, sometimes smoothly, sometimes abruptly. Inner thoughts, a sense of one's body, and the physical environment are dominant field contents. These ideas can be linked with (and help unify) contemporary theories about the neural correlates of consciousness, inattention, the small world structure of the brain, meta-stable dynamics, embodied cognition, and predictive coding in the brain. Published by Elsevier Inc.
Applying axiomatic design methodology in developing modified libertation products
Directory of Open Access Journals (Sweden)
Bibiana Margarita Vallejo Díaz
2004-09-01
Full Text Available Some conceptual elements regarding the axiomatic design method were applied to a specific case-study regarding developing modified liberation compressed product (CLM-UN, for use in the agricultural sector as pH regulating agent in solil. The study was orientated towards defining functional requeriments, design parameters and process variables for manufacturing the product. Independence and information were evaluated, supporting axiomatic design as an alternative for integral product and process design (as a rational and systemic exercise, facilitating producing products having the quality which future users expect from them.
Cosmological field theory for observational astronomers
International Nuclear Information System (INIS)
Zel'Dovich, Y.B.
1987-01-01
Theories of the very early Universe that use scalar fields (i.e., the so-called inflationary models of the Universe) have now come into wide use. The inflationary universe approach may perhaps solve some of the most difficult enigmas about the Universe as a whole. The inflationary universe forms a good bridge between the quantum theory of the birth of the Universe (which is still in the initial stages of development) and the standard hot Big Bang theory (which is well established, at least qualitatively). Therefore, an understanding of the basic ideas of inflation is a must for astronomers interested in the broad picture of the science. Astronomers are mathematically oriented enough (via celestial mechanics, electromagnetic theory, magnetohydrodynamics, nuclear reactions,etc.) that there is no negative attitude towards formulae in general. What the astronomer lacks is a knowledge of recent developments in particle physics and field theory. The astronomer should not be blamed for this, because these branches of physics are developing in a very peculiar fashion: some subfields of it are progressing comparatively slowly, with experimental verifications at each and every step, while other subfields progress rapidly
BRST quantization of topological field theories
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-07-01
We consider in detail the construction of a variety of topological quantum field theories through BRST quantization. In particular, we show that supersymmetric quantum mechanics on an arbitrary Riemannian manifold can be obtained as the BRST quantization of a purely bosonic theory. The introduction of a new local symmetry allows for the possibility of different gauge choices, and we show how this freedom can simplify the evaluation of the Witten index in certain cases. Topological sigma models are also constructed via the same mechanism. In three dimensions, we consider a Yang-Mills-Higgs model related to the four dimensional TQFT of Witten. (author). 24 refs
Thermo field theory versus imaginary time formalism
International Nuclear Information System (INIS)
Fujimoto, Y.; Nishino, H.; Grigjanis, R.
1983-11-01
We calculate a two-loop diagram at finite temperature to compare Thermo Field Theory (=Th.F.Th.) with the conventional imaginary time formalism (=Im.T.F.). The summation over the Matsubara frequency in Im.T.F. is carried out at two-loop level, and the result is shown to coincide with that of Th.F.Th. We confirm that in Im.T.F. the temperature dependent divergences cancel out at least in the calculation of effective potential of phi 4 theory, as in Th.F.Th. (author)
Recursion equations in gauge field theories
International Nuclear Information System (INIS)
Migdal, A.A.
1975-01-01
An approximate recursive equation describing scale transformation of the effective action of a gauging field has been formulated. The equation becomes exact in the two-dimensional space-time. In the four-dimensional theory it reproduces the asymptotic freedom with an accuracy of 30% in β-function coefficients. In the region of strong coupling β-function remains negative, that leads to an asymptotic ''prison'' in the infrared range. Some possible generalizations and appendices to the colour quark-gluon gauging theory are being discussed
Twistors and supertwistors for exceptional field theory
Energy Technology Data Exchange (ETDEWEB)
Cederwall, Martin [Dept. of Fundamental Physics, Chalmers University of Technology, Gothenburg, SE 412 96 (Sweden)
2015-12-18
As a means of examining the section condition and its possible solutions and relaxations, we perform twistor transforms related to versions of exceptional field theory with Minkowski signature. The spinor parametrisation of the momenta naturally solves simultaneously both the mass-shell condition and the (weak) section condition. It is shown that the incidence relations for multi-particle twistors force them to share a common section, but not to be orthogonal. The supersymmetric extension contains additional scalar fermionic variables shown to be kappa-symmetry invariants. We speculate on some implications, among them a possible relation to higher spin theory.
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
Self-consistent normal ordering of gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1987-01-01
Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs
Alternative approaches to maximally supersymmetric field theories
International Nuclear Information System (INIS)
Broedel, Johannes
2010-01-01
The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated
Negative power spectra in quantum field theory
International Nuclear Information System (INIS)
Hsiang, Jen-Tsung; Wu, Chun-Hsien; Ford, L.H.
2011-01-01
We consider the spatial power spectra associated with fluctuations of quadratic operators in field theory, such as quantum stress tensor components. We show that the power spectrum can be negative, in contrast to most fluctuation phenomena where the Wiener-Khinchin theorem requires a positive power spectrum. We show why the usual argument for positivity fails in this case, and discuss the physical interpretation of negative power spectra. Possible applications to cosmology are discussed. -- Highlights: → Wiener-Khinchin theorem usually implies a positive power spectrum of fluctuations. → We show this is not always the case in quantum field theory. → Quantum stress tensor fluctuations can have a negative power spectrum. → Negative power interchanges correlations and anticorrelations.
Quantum field theory and critical phenomena
Zinn-Justin, Jean
1996-01-01
Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...
Propositional systems in local field theories
International Nuclear Information System (INIS)
Banai, M.
1980-07-01
The authors investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The spacetime covariance can be implemented in natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these logics there is enough structure to characterize the classical and quantum, non relativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics. (author)
Propositional systems in local field theories
Energy Technology Data Exchange (ETDEWEB)
Banai, M.
1981-03-01
We investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The space-time covariance can be implemented in a natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these there is enough structure to characterize the classical and quantum, nonrelativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics.
Magnetic fields and density functional theory
International Nuclear Information System (INIS)
Salsbury, Freddie Jr.
1999-01-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules
New ideas about unified field theory
International Nuclear Information System (INIS)
Gleiser, M.
1986-01-01
An outline of the physical concepts evolution is given from the ancient philosophers to the present time. With qualitative explanations about the meaning of the theories that is the milestones of these concepts evolution, it mentions the ideas which lead the studies to the conception of a unified field theory. Chronologically, it has brief information about the ideas of Laplace (mechanical determinism), Maxwell (the field concept), Einsten (the space-time structure), Heisenberg and Schroedinger (the quantum mechanics), Dirac (the relativistic quantum and the antiparticles), Gell-Mann (the quarks), Weinberg-Salam (Weak interactions and eletromagnetic unification), H. Georgi and S. Glashon (strong interactions plus Weinberg-Salam), Kaluza-Klein (a fifth space-time coordinate), and Zumino-Weiss (supersymmetry and supergravity). (G.D.F.) [pt
Consistency relations in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)
2017-06-01
The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.
New framework for gauge field theories
International Nuclear Information System (INIS)
Blaha, S.
1979-01-01
Gauge theories are formulated within the framework of a generalization of quantum field theory. In particular, models of electrodynamics and of Yang-Mills theories, we discuss a model of the strong interaction with higher-order derivatives and quark confinement and a renormalizable model of pure quantum gravity with Einstein Lagrangian. In the case of electrodynamics it is shown that two models are possible: one with predictions which are identical to QED and one which is a quantum action-at-a-distance model of electrodynamics. In the case of Yang-Mills theories a model is constructed which is identical in predictions to any conventional model, or a quantum action-at-a-distance model. In the second case it is possible to eliminate all loops of Yang-Mills particles (in all gauges) in a manner consistent with unitarity. A variation of Yang-Mills models exists in this formulation which has higher-order derivative field equations. It is unitary and has positive probabilities. It can be used to construct a model of the strong interactions which has a linear potential and manifest quark confinement. Finally, it is shown how to construct an action-at-a-distance model of pure quantum gravity (whose classical limit is the dynamics of the Einstein Lagrangian) coupled to an external classical source. The model is trivially renormalizable. (author)
Why are tensor field theories asymptotically free?
Rivasseau, V.
2015-09-01
In this pedagogic letter we explain the combinatorics underlying the generic asymptotic freedom of tensor field theories. We focus on simple combinatorial models with a 1/p2 propagator and quartic interactions and on the comparison between the intermediate field representations of the vector, matrix and tensor cases. The transition from asymptotic freedom (tensor case) to asymptotic safety (matrix case) is related to the crossing symmetry of the matrix vertex, whereas in the vector case, the lack of asymptotic freedom (“Landau ghost”), as in the ordinary scalar φ^44 case, is simply due to the absence of any wave function renormalization at one loop.
On quantum field theory in gravitational background
International Nuclear Information System (INIS)
Haag, R.; Narnhofer, H.; Stein, U.
1984-02-01
We discuss Quantum Fields on Riemannian space-time. A principle of local definitness is introduced which is needed beyond equations of motion and commutation relations to fix the theory uniquely. It also allows to formulate local stability. In application to a region with a time-like Killing vector field and horizons it yields the value of the Hawking temperature. The concept of vacuum and particles in a non stationary metric is treated in the example of the Robertson-Walker metric and some remarks on detectors in non inertial motion are added. (orig.)
Arnaudon, Alexis; López, Marco Castrillón; Holm, Darryl D
2018-01-01
The un-reduction procedure introduced previously in the context of classical mechanics is extended to covariant field theory. The new covariant un-reduction procedure is applied to the problem of shape matching of images which depend on more than one independent variable (for instance, time and an additional labelling parameter). Other possibilities are also explored: nonlinear [Formula: see text]-models and the hyperbolic flows of curves.
Two problems in thermal field theory
Indian Academy of Sciences (India)
F can be calculated perturbatively as a sum of vacuum ... F / F id eal d c b a. Figure 4. Results of the screened perturbative expansion for the free energy as a func- tion of the coupling constant in scalar field theory [8]. (a) and (b): first ... for the pressure of a SU(3) Yang–Mills gas just by introducing a mass in the propagator.
Special relativity and classical field theory
Susskind, Leonard
2017-01-01
Physicist Leonard Susskind and data engineer Art Friedman are back. This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.
Multibrane solutions in open string field theory
Czech Academy of Sciences Publication Activity Database
Murata, Masaki; Schnabl, Martin
2012-01-01
Roč. 2012, č. 7 (2012), 1-26 ISSN 1126-6708 R&D Projects: GA MŠk(CZ) LH11106 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * tachyon condensation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP07%282012%29063
Topics on field theories at finite temperature
International Nuclear Information System (INIS)
Eboli, O.J.P.
1985-01-01
The dynamics of a first order phase transition through the study of the decay rate of the false vacuum in the high temperature limit are analysed. An alternative approach to obtain the phase diagram of a field theory which is based on the study of the free energy of topological defects, is developed the behavior of coupling constants with the help of the Dyson-Schwinger equations at finite temperature, is evaluated. (author) [pt
Numerical studies of gauge field theories
International Nuclear Information System (INIS)
Creutz, M.
1981-06-01
Monte Carlo simulation of statistical systems is a well established technique of the condensed matter physicist. In the last few years, particle theorists have rediscovered this method and are having a marvelous time applying it to quantized gauge field theories. The main result has been strong numerical evidence that the standard SU(3) non-Abelian gauge theory of the strong interaction is capable of simultaneously confining quarks into the physical hadrons and exhibiting asymptotic freedom, the phenomenon of quark interactions being small at short distances. In four dimensions, confinement is a non-perturbative phenomenon. Essentially all models of confinement tie widely separated quarks together with strings of gauge field flux. This gives rise to a linear potential at long distances. A Monte Carlo program generates a sequence of field configuration by a series of random changes of the fields. The algorithm is so constructed that ultimately the probability density for finding any given configuration is proportional to the Boltzmann weighting. We bring our lattices into thermal equilibrium with a heat bath at a temperature specified by the coupling constant. Thus we do computer experiments with four-dimensional crystals stored in a computer memory. As the entire field configuration is stored, we have access to any correlation function desired. These lectures describe the kinds of experiments being done and the implications of these results for strong interaction physics
Tachyon condensation in superstring field theory
International Nuclear Information System (INIS)
Berkovits, Nathan; Sen, Ashoke; Zwiebach, Barton
2000-01-01
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension
Topics in string theory and quantum field theory
Giombi, Simone
In this dissertation we study several topics in string theory and quantum field theory, which we collect into three main parts. The first part contains some studies in the context of twistor string theory. Witten proposed that the perturbative expansion of N = 4 super Yang-Mills theory has a dual formulation in terms of a topological string theory on the supertwistor space CP3|4 . We discuss extensions of this construction in two directions. First, we make some preliminary considerations on the possibility of having a similar twistor approach to perturbative gravity. Then we extend the construction to theories with lower supersymmetry by taking orbifolds in the fermionic directions of CP3|4 . We consider N = 1 and N = 2 superconformal quiver gauge theories as specific examples. In the second part of the dissertation we study worldline methods in curved space. In particular, we use the N = 2 spinning particle to describe antisymmetric tensors of arbitrary rank propagating in a curved background. The path integral quantization of the N = 2 particle produces a novel and compact representation of the one loop effective action for generic differential p-forms, including the vector field as a special example. We study both the massless and massive case, and show that the worldline representation of the one loop effective action can be used to efficiently study various quantum effects for antisymmetric tensor fields of arbitrary rank in arbitrary dimension. In the last and final part we study some topics in the context of the AdS/CFT correspondence. We start by investigating the recently discovered description of half-BPS supergravity backgrounds in terms of one-dimensional free fermions. We study a generalization of this construction obtained by considering free fermions at non-zero temperature. The ADM mass of the corresponding supergravity background is shown to agree with the fermion thermal energy, and we propose a way to qualitatively match the entropy in the two
Paired Comparisons Analysis : An Axiomatic Approach to Rankings in Tournaments
Gonzalez-Diaz, J.; Hendrickx, R.L.P.; Lohmann, E.R.M.A.
2011-01-01
In this paper we present an axiomatic analysis of several ranking methods for tournaments. We find that two of them exhibit a very good behaviour with respect to the set of properties under consideration. One of them is the maximum likelihood ranking, the most common method in statistics and
Paired comparisons analysis: an axiomatic approach to ranking methods
Gonzalez-Diaz, J.; Hendrickx, Ruud; Lohmann, E.R.M.A.
2014-01-01
In this paper we present an axiomatic analysis of several ranking methods for general tournaments. We find that the ranking method obtained by applying maximum likelihood to the (Zermelo-)Bradley-Terry model, the most common method in statistics and psychology, is one of the ranking methods that
An Axiomatic, Unified Representation of Biosystems and Quantum Dynamics
Baianu, I
2004-01-01
An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.
Undergraduate Lecture Notes in Topological Quantum Field Theory
Ivancevic, Vladimir G.; Ivancevic, Tijana T.
2008-01-01
These third-year lecture notes are designed for a 1-semester course in topological quantum field theory (TQFT). Assumed background in mathematics and physics are only standard second-year subjects: multivariable calculus, introduction to quantum mechanics and basic electromagnetism. Keywords: quantum mechanics/field theory, path integral, Hodge decomposition, Chern-Simons and Yang-Mills gauge theories, conformal field theory
Particle versus field structure in conformal quantum field theories
International Nuclear Information System (INIS)
Schroer, Bert
2000-06-01
I show that a particle structure in conformal field theory is incompatible with interactions. As a substitute one has particle-like excitations whose interpolating fields have in addition to their canonical dimension an anomalous contribution. The spectra of anomalous dimension is given in terms of the Lorentz invariant quadratic invariant (compact mass operator) of a conformal generator R μ with pure discrete spectrum. The perturbative reading of R o as a Hamiltonian in its own right, associated with an action in a functional integral setting naturally leads to the Ad S formulation. The formal service role of Ad S in order to access C QFT by a standard perturbative formalism (without being forced to understand first massive theories and then taking their scale-invariant limit) vastly increases the realm of conventionally accessible 4-dim. C QFT beyond those for which one had to use Lagrangians with supersymmetry in order to have a vanishing Beta-function. (author)
On the background independence of string field theory
International Nuclear Information System (INIS)
Sen, A.
1990-01-01
Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)
(Non-)decoupled supersymmetric field theories
International Nuclear Information System (INIS)
Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar
2014-01-01
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
An invitation to quantum field theory
International Nuclear Information System (INIS)
Alvarez-Gaume, Luis; Vazquez-Mozo, Miguel A.
2012-01-01
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)
An invitation to quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Gaume, Luis [CERN, Geneva (Switzerland). Physics Dept.; Vazquez-Mozo, Miguel A. [Salamanca Univ. (Spain). Dept. de Fisica Fundamental
2012-07-01
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level - with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework. (orig.)
Monoidal categories and topological field theory
Turaev, Vladimir
2017-01-01
This monograph is devoted to monoidal categories and their connections with 3-dimensional topological field theories. Starting with basic definitions, it proceeds to the forefront of current research. Part 1 introduces monoidal categories and several of their classes, including rigid, pivotal, spherical, fusion, braided, and modular categories. It then presents deep theorems of Müger on the center of a pivotal fusion category. These theorems are proved in Part 2 using the theory of Hopf monads. In Part 3 the authors define the notion of a topological quantum field theory (TQFT) and construct a Turaev-Viro-type 3-dimensional state sum TQFT from a spherical fusion category. Lastly, in Part 4 this construction is extended to 3-manifolds with colored ribbon graphs, yielding a so-called graph TQFT (and, consequently, a 3-2-1 extended TQFT). The authors then prove the main result of the monograph: the state sum graph TQFT derived from any spherical fusion category is isomorphic to the Reshetikhin-Turaev surgery gr...
Relativistic mean field theory for unstable nuclei
International Nuclear Information System (INIS)
Toki, Hiroshi
2000-01-01
We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)
Theory of field-reversed configurations
International Nuclear Information System (INIS)
Steinhauer, L.C.
1993-01-01
This report summarizes results from the theoretical program on field reversed configurations (FRC) at STI Optronics. The program, which has spanned the last 13 years, has included analytical as well as computational components. It has led to published papers on every major topic of FRC theory. The report is outlined to summarize results from each of these topic areas: formation, equilibrium, stability, and confinement. Also briefly described are Steinhauer's activities as Compact Toroid Theory Listening Post. Appendix A is a brief listing of the major advances achieved in this program. Attached at the back of this report is a collection of technical papers in archival journals that resulted from work in this program. The discussion within each subsection is given chronologically in order to give a historical sense of the evolution of understanding of FRC physics
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Vortex operators in gauge field theories
International Nuclear Information System (INIS)
Polchinski, J.G.
1980-01-01
We study several related aspects of the t Hooft vortex operator. The first chapter reviews the current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator. The second chapter deals with the Abelian vortex operator written in terms of elementary fields and with the calculation of its Green's functions. The Dirac veto problem appears in a new guise. We present a two dimensional solvable model of a Dirac string. This leads us to a new solution of the veto problem; we discuss its extension to four dimensions. We then show how the Green's functions can be expressed more neatly in terms of Wu and Yang's geometrical idea of sections. In the third chapter we discuss the dependence of the Green's functions of the Wilson and t Hooft operators on the nature of the vacuum. In the fourth chapter we consider systems which have fields in the fundamental representation, so that there are no vortex operators. When these fields enter only weakly into the dynamics, as is the case in QCD and in real superconductors, we would expect to be able to define a vortex-like operator. We show that any such operator can no longer be local looplike, but must have commutators at long range. We can still find an operator with useful properties, its cluster property, though more complicated than that of the usual vortex operator, still appears to distinguish Higgs, confining and perturbative phases. To test this, we consider a U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint)
The Supersymmetric Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.
Field theory approach to quantum hall effect
International Nuclear Information System (INIS)
Cabo, A.; Chaichian, M.
1990-07-01
The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig
Theory of microemulsions in a gravitational field
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
A matrix model from string field theory
Directory of Open Access Journals (Sweden)
Syoji Zeze
2016-09-01
Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
The Effective Field Theory of nonsingular cosmology
International Nuclear Information System (INIS)
Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song
2017-01-01
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Exact integrability in quantum field theory
International Nuclear Information System (INIS)
Thacker, H.B.
1980-08-01
The treatment of exactly integrable systems in various branches of two-dimensional classical and quantum physics has recently been placed in a unified framework by the development of the quantum inverse method. This method consolidates a broad range of developments in classical nonlinear wave (soliton) physics, statistical mechanics, and quantum field theory. The essential technique for analyzing exactly integrable quantum systems was invested by Bethe in 1931. The quantum-mechanical extension of the inverse scattering method and its relationship to the methods associated with Bethe's ansatz are examined here
Field theory approaches to new media practices
DEFF Research Database (Denmark)
Hartley, Jannie Møller; Willig, Ida; Waltorp, Karen
2015-01-01
In this article introducing the theme of the special issue we argue that studies of new media practices might benefit from especially Pierre Bourdieu’s research on cultural production. We introduce some of the literature, which deals with the use of digital media, and which have taken steps...... on more studies within a field theory framework, as the ability of the comprehensive theoretical work and the ideas of a reflexive sociology is able to trigger the good questions, more than it claims to offer a complete and self-sufficient sociology of media and inherent here also new media....
A simple proof of orientability in colored group field theory.
Caravelli, Francesco
2012-01-01
Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.
Quantum field theory lectures of Sidney Coleman
Derbes, David; Griffiths, David; Hill, Brian; Sohn, Richard; Ting, Yuan-Sen
2018-01-01
Sidney Coleman was a physicist's physicist. He is largely unknown outside of the theoretical physics community, and known only by reputation to the younger generation. He was an unusually effective teacher, famed for his wit, his insight and his encyclopedic knowledge of the field to which he made many important contributions. There are many first-rate quantum field theory books (the ancient Bjorken and Drell, the more modern Itzykson and Zuber, the now-standard Peskin and Schroder, and the recent Zee), but the immediacy of Prof. Coleman's approach and his ability to present an argument simply without sacrificing rigor makes his book easy to read and ideal for the student. Part of the motivation in producing this book is to pass on the work of this outstanding physicist to later generations, a record of his teaching that he was too busy to leave himself.
Advanced concepts in particle and field theory
Hübsch, Tristan
2015-01-01
Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...
Field theory approaches to new media practices
DEFF Research Database (Denmark)
Willig, Ida; Waltorp, Karen; Hartley, Jannie Møller
2015-01-01
This special issue of MedieKultur specifically addresses new media practices and asks how field theory approaches can help us understand how culture is (prod)used via various digital platforms. In this article introducing the theme of the special issue, we argue that studies of new media practices...... could benefit particularly from Pierre Bourdieu’s research on cultural production. We introduce some of the literature that concerns digital media use and has been significant for field theory’s development in this context. We then present the four thematic articles in this issue and the articles...... of a reflexive sociology are capable of prompting important questions without necessarily claiming to offer a complete and self-sufficient sociology of media, including new media....
Quantum scattering from classical field theory
International Nuclear Information System (INIS)
Gould, T.M.; Poppitz, E.R.
1995-01-01
We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))
Global integrability of field theories. Proceedings
International Nuclear Information System (INIS)
Calmet, J.; Seiler, W.M.; Tucker, R.W.
2006-01-01
The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very
Histories and observables in covariant field theory
Paugam, Frédéric
2011-09-01
Motivated by DeWitt's viewpoint of covariant field theory, we define a general notion of a non-local classical observable that applies to many physical Lagrangian systems (with bosonic and fermionic variables), by using methods that are now standard in algebraic geometry. We review the methods of local functional calculus, as they are presented by Beilinson and Drinfeld, and relate them to our construction. We partially explain the relation of these with Vinogradov's secondary calculus. The methods present here are all necessary to understand mathematically properly, and with simple notions, the full renormalization of the standard model, based on functional integral methods. Our approach is close in spirit to non-perturbative methods since we work with actual functions on spaces of fields, and not only formal power series. This article can be seen as an introduction to well-grounded classical physical mathematics, and as a good starting point to study quantum physical mathematics, which make frequent use of non-local functionals, like for example in the computation of Wilson's effective action. We finish by describing briefly a coordinate-free approach to the classical Batalin-Vilkovisky formalism for general gauge theories, in the language of homotopical geometry.
Homogeneous cosmologies as group field theory condensates
Energy Technology Data Exchange (ETDEWEB)
Gielen, Steffen [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada); Oriti, Daniele; Sindoni, Lorenzo [Max Planck Institute for Gravitational Physics (Albert Einstein Institute),Am Mühlenberg 1, 14476 Golm (Germany)
2014-06-03
We give a general procedure, in the group field theory (GFT) formalism for quantum gravity, for constructing states that describe macroscopic, spatially homogeneous universes. These states are close to coherent (condensate) states used in the description of Bose-Einstein condensates. The condition on such states to be (approximate) solutions to the quantum equations of motion of GFT is used to extract an effective dynamics for homogeneous cosmologies directly from the underlying quantum theory. The resulting description in general gives nonlinear and nonlocal equations for the ‘condensate wavefunction’ which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates. We show the general form of the effective equations for current quantum gravity models, as well as some concrete examples. We identify conditions under which the dynamics becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces the classical Friedmann equation in vacuum with positive spatial curvature. We show how the formalism can be consistently extended from Riemannian signature to Lorentzian signature models, and discuss the addition of matter fields, obtaining the correct coupling of a massless scalar in the Friedmann equation from the most natural extension of the GFT action. We also outline the procedure for extending our condensate states to include cosmological perturbations. Our results form the basis of a general programme for extracting effective cosmological dynamics directly from a microscopic non-perturbative theory of quantum gravity.
International Nuclear Information System (INIS)
Thielman, Jeff; Ge, Ping; Wu, Qiao; Parme, Laurence
2005-01-01
The development of the Generation IV (Gen-IV) nuclear reactors has presented social, technical, and economical challenges to nuclear engineering design and research. To develop a robust, reliable nuclear reactor system with minimal environmental impact and cost, modularity has been gradually accepted as a key concept in designing high-quality nuclear reactor systems. While the establishment and reliability of a nuclear power plant is largely facilitated by the installment of standardized base units, the realization of modularity at the sub-system/sub-unit level in a base unit is still highly heuristic, and lacks consistent, quantifiable measures. In this work, an axiomatic design approach is developed to evaluate and optimize the reactor cavity cooling system (RCCS) of General Atomics' Gas Turbine-Modular Helium Reactor (GT-MHR) nuclear reactor, for the purpose of constructing a quantitative tool that is applicable to Gen-IV systems. According to Suh's axiomatic design theory, modularity is consistently represented by functional independence through the design process. Both qualitative and quantitative measures are developed here to evaluate the modularity of the current RCCS design. Optimization techniques are also used to improve the modularity at both conceptual and parametric level. The preliminary results of this study have demonstrated that the axiomatic design approach has great potential in enhancing modular design, and generating more robust, safer, and less expensive nuclear reactor sub-units
Nucleon Polarisabilities and Effective Field Theories
Griesshammer, Harald W.
2017-09-01
Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.
Large $N$ QCD and $q$-Deformed Quantum Field Theories
Aref'eva, I. Ya.
1996-01-01
A construction of master field describing multicolour QCD is presented. The master fields for large N matrix theories satisfy to standard equations of relativistic field theory but fields are quantized according $q$-deformed commutation relations with $q=0$. These commutation relations are realized in the Boltzmannian Fock space. The master field for gauge theory does not take values in a finite-dimensional Lie algebra, however, there is a non-Abelian gauge symmetry and BRST-invariance.
On the scaling limits in the Euclidean (quantum) field theory
International Nuclear Information System (INIS)
Gielerak, R.
1983-01-01
The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)
Higgs effective field theories. Systematics and applications
Energy Technology Data Exchange (ETDEWEB)
Krause, Claudius G.
2016-07-28
Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different
Minimal theory of quantum electrodynamics
International Nuclear Information System (INIS)
Berrondo, M.; Jauregui, R.
1986-01-01
Within the general framework of the Lehmann-Symanzik-Zimmermann axiomatic field theory, we obtain a simple and coherent formulation of quantum electrodynamics. The definitions of the current densities fulfill the one-particle stability condition, and the commutation relations for the interacting fields are obtained rather than being postulated a priori, thus avoiding the inconsistencies which appear in the canonical formalism. This is possible due to the fact that we use the integral form of the equations of motion in order to compute the propagators and the S matrix. The resulting spectral representations automatically fulfill the correct boundary conditions thus fixing the ubiquitous quasilocal operators in a unique fashion
On the axiomatization of some classes of discrete universal integrals
Czech Academy of Sciences Publication Activity Database
Klement, E.P.; Mesiar, Radko
2012-01-01
Roč. 28, č. 1 (2012), s. 13-18 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional research plan: CEZ:AV0Z10750506 Keywords : Comonotone modularity * Copula * Universal integral Subject RIV: BA - General Mathematics Impact factor: 4.104, year: 2012 http://library.utia.cas.cz/separaty/2012/E/mesiar-on the axiomatization of some classes of discrete universal integrals.pdf
Geometrical exposition of structural axiomatic economics (I): Fundamentals
Kakarot-Handtke, Egmont
2012-01-01
Behavioral assumptions are not solid enough to be eligible as first principles of theoretical economics. Hence all endeavors to lay the formal foundation on a new site and at a deeper level actually need no further vindication. Part (I) of the structural axiomatic analysis submits three nonbehavioral axioms as groundwork and applies them to the simplest possible case of the pure consumption economy. The geometrical analysis makes the interrelations between income, profit and...
Towards an axiomatic model of fundamental interactions at Planck scale
Kiselev, Arthemy V.
2014-01-01
By exploring possible physical sense of notions, structures, and logic in a class of noncommutative geometries, we try to unify the four fundamental interactions within an axiomatic quantum picture. We identify the objects and algebraic operations which could properly encode the formation and structure of sub-atomic particles, antimatter, annihilation, CP-symmetry violation, mass endowment mechanism, three lepton-neutrino matchings, spin, helicity and chirality, electric charge and electromag...
Exploitation as the Unequal Exchange of Labour : An Axiomatic Approach
Yoshihara, Naoki; Veneziani, Roberto
2009-01-01
In subsistence economies with general convex technology and rational optimising agents, a new, axiomatic approach is developed, which allows an explicit analysis of the core positive and normative intuitions behind the concept of exploitation. Three main new axioms, called Labour Exploitation in Subsistence Economies , Relational Exploitation , and Feasibility of Non-Exploitation , are presented and it is proved that they uniquely characterise a definition of exploitation conceptually related...
International Nuclear Information System (INIS)
Hueffel, H.
2004-01-01
The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)
An Axiomatic Basis for Quantum Mechanics
Cassinelli, Gianni; Lahti, Pekka
2016-10-01
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.
Quadratic α′-corrections to heterotic double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2015-10-01
Full Text Available We investigate α′-corrections of heterotic double field theory up to quadratic order in the language of supersymmetric O(D,D+dimG gauged double field theory. After introducing double-vielbein formalism with a parametrization which reproduces heterotic supergravity, we show that supersymmetry for heterotic double field theory up to leading order α′-correction is obtained from supersymmetric gauged double field theory. We discuss the necessary modifications of the symmetries defined in supersymmetric gauged double field theory. Further, we construct supersymmetric completion at quadratic order in α′.
Effective field theory analysis of Higgs naturalness
Energy Technology Data Exchange (ETDEWEB)
Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Star democracy in open string field theory
Energy Technology Data Exchange (ETDEWEB)
Maccaferri, Carlo [International School for Advanced Studies (SISSA/ISAS), Via Beirut 2-4, 34014 Trieste (Italy); INFN, Sezione di Trieste (Italy)]. E-mail: maccafer@sissa.it; Mamone, Davide [International School for Advanced Studies (SISSA/ISAS), Via Beirut 2-4, 34014 Trieste (Italy); INFN, Sezione di Trieste (Italy)
2003-09-01
We study three types of star products in Saft: the ghosts, the twisted ghosts and the matter. We find that their Neumann coefficients are related to each other in a compact way which includes the Gross-Jevicki relation between matter and ghost sector: we explicitly show that the same relation, with a minus sign, holds for the twisted and non-twisted ghosts (which are different but define the same solution). In agreement with this, we prove that matter and twisted ghost coefficients just differ by a minus sign. As a consistency check, we also compute the spectrum of the twisted ghost vertices from conformal field theory and, using equality of twisted and reduced slivers, we derive the spectrum of the non twisted ghost star. (author)
Quantum curves and conformal field theory
Manabe, Masahide; Sułkowski, Piotr
2017-06-01
To a given algebraic curve we assign an infinite family of quantum curves (Schrödinger equations), which are in one-to-one correspondence with, and have the structure of, Virasoro singular vectors. For a spectral curve of a matrix model we build such quantum curves out of an appropriate representation of the Virasoro algebra, encoded in the structure of the α /β -deformed matrix integral and its loop equation. We generalize this construction to a large class of algebraic curves by means of a refined topological recursion. We also specialize this construction to various specific matrix models with polynomial and logarithmic potentials, and among other results, show that various ingredients familiar in the study of conformal field theory (Ward identities, correlation functions and a representation of Virasoro operators acting thereon, Belavin-Polyakov-Zamolodchikov equations) arise upon specialization of our formalism to the multi-Penner matrix model.
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Quantum field theory and nuclear structure
International Nuclear Information System (INIS)
Celenza, L.S.; Goulard, B.; Shakin, C.M.
1981-01-01
We discuss recent successful calculations of the properties of nuclear matter within the context of theories exhibiting mass generation through spontaneous symmetry breaking. We start with the sigma model of Gell-Mann and Levy and introduce the nucleon mass (in a vacuum) in the usual manner. We relate the expectation value of the sigma field in a vacuum to a finite value of the scalar density. If the vacuum is now filled with nucleons (nuclear matter) the scalar density is increased and the new value for the nucleon mass must be determined. We exhibit the equation whose solution determines the new mass, and we also define a perturbative scheme for the determination of this mass. This scheme involves an expansion of the various quantities of the theory in terms of matrix elements calculated with positive- and negative-energy spinors parametrized with the vacuum mass. Although the decrease in the mass upon going from vacuum to nuclear matter at the equilibrium density is quite large (approx.400 MeV), we are still able to exhibit a small parameter which allows for a perturbative expansion of the binding energy and other observables. The leading term in such an expansion reproduces the approximation widely used in other calculations of the properties of nuclear matter. The truncation of the expansion at the leading term is inadequate and this fact accounts for the lack of success in previous calculations using the standard formalism. We proceed to make a transformation to the Weinberg Lagrangian retaining the fluctuating parts of the sigma field. We further make a small-oscillation approximation, dropping the nonlinear terms in this Lagrangian
Euler-Poincare reduction for discrete field theories
International Nuclear Information System (INIS)
Vankerschaver, Joris
2007-01-01
In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed
Inclusive fitness maximization: An axiomatic approach.
Okasha, Samir; Weymark, John A; Bossert, Walter
2014-06-07
Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of quasi-inclusive fitness maximization can be derived from axioms on an individual׳s 'as if preferences' (binary choices) for the case in which phenotypic effects are additive. Our results help integrate evolutionary theory and rational choice theory, help draw out the behavioural implications of inclusive fitness maximization, and point to a possible way in which evolution could lead organisms to implement it. Copyright © 2014 Elsevier Ltd. All rights reserved.
Theory of electrolyte crystallization in magnetic field
DEFF Research Database (Denmark)
Madsen, Hans Erik Lundager
2007-01-01
Crystallization from aqueous solution of a sparingly soluble electrolyte is accelerated by magnetic field if the crystalizing phase is a diamagnetic salt of a weak acid, and crystallization is from neutral or acid solution in ordinary (not heavy) water. Since the effect of Lorentz force is neglig......Crystallization from aqueous solution of a sparingly soluble electrolyte is accelerated by magnetic field if the crystalizing phase is a diamagnetic salt of a weak acid, and crystallization is from neutral or acid solution in ordinary (not heavy) water. Since the effect of Lorentz force...... phenomena. The basis of the theory is a crystal model of a sparingly soluble salt with NaCl structure, where the ions are divalent, and the anion is a base. It is assumed that almost all the anions in the surface layer are protonized, and that an approaching metal ion pushes the proton away...... to a neighbouring anion, which then becomes doubly protonized. If the two protons are in the same spin state, the Pauli principle requires that one of them enter a state of higher energy, which enhances the activation energy and reduces the rate of the process, but even with opposite spins the incoming proton must...
Les Houches lectures on large N field theories and gravity
International Nuclear Information System (INIS)
Maldacena, J.
2002-01-01
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. (authors)
Non-perturbative field theory/field theory on a lattice
International Nuclear Information System (INIS)
Ambjorn, J.
1988-01-01
The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas
Classical Solutions in Quantum Field Theory
International Nuclear Information System (INIS)
Mann, Robert
2013-01-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons-–kinks, vortices, and magnetic monopoles-–and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is
Quantum field theory of point particles and strings
Hatfield, Brian
1992-01-01
The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.
Types of two-dimensional N = 4 superconformal field theories
Indian Academy of Sciences (India)
Superconformal field theory; free field realization; string theory; AdS-CFT correspon- dence. PACS Nos 11.25.Hf; 11.25.-w; 11.30.Ly; 11.30.Pb. Conformal symmetries in two space-time dimensions have been very extensively studied owing to their applications both in string theory and two-dimensional statistical systems.
Surface field theories of point group symmetry protected topological phases
Huang, Sheng-Jie; Hermele, Michael
2018-02-01
We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.
Algebraic structure of cohomological field theory models and equivariant cohomology
International Nuclear Information System (INIS)
Stora, R.; Thuillier, F.; Wallet, J.Ch.
1994-01-01
The definition of observables within conventional gauge theories is settled by general consensus. Within cohomological theories considered as gauge theories of an exotic type, that question has a much less obvious answer. It is shown here that in most cases these theories are best defined in terms of equivariant cohomologies both at the field level and at the level of observables. (author). 21 refs
The field theory of specific heat
Gusev, Yu. V.
2016-01-01
Finite temperature quantum field theory in the heat kernel method is used to study the heat capacity of condensed matter. The lattice heat is treated à la P. Debye as energy of the elastic (sound) waves. The dimensionless functional of free energy is re-derived with a cut-off parameter and used to obtain the specific heat of crystal lattices. The new dimensionless thermodynamical variable is formed as Planck's inverse temperature divided by the lattice constant. The dimensionless constant, universal for the class of crystal lattices, which determines the low temperature region of molar specific heat, is introduced and tested with the data for diamond lattice crystals. The low temperature asymptotics of specific heat is found to be the fourth power in temperature instead of the cubic power law of the Debye theory. Experimental data for the carbon group elements (silicon, germanium) and other materials decisively confirm the quartic law. The true low temperature regime of specific heat is defined by the surface heat, therefore, it depends on the geometrical characteristics of the body, while the absolute zero temperature limit is geometrically forbidden. The limit on the growth of specific heat at temperatures close to critical points, known as the Dulong-Petit law, appears from the lattice constant cut-off. Its value depends on the lattice type and it is the same for materials with the same crystal lattice. The Dulong-Petit values of compounds are equal to those of elements with the same crystal lattice type, if one mole of solid state matter were taken as the Avogadro number of the composing atoms. Thus, the Neumann-Kopp law is valid only in some special cases.
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
Generalized BRST symmetry for arbitrary spin conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)
2015-05-11
We develop the finite field-dependent BRST (FFBRST) transformation for arbitrary spin-s conformal field theories. We discuss the novel features of the FFBRST transformation in these systems. To illustrate the results we consider the spin-1 and spin-2 conformal field theories in two examples. Within the formalism we found that FFBRST transformation connects the generating functionals of spin-1 and spin-2 conformal field theories in linear and non-linear gauges. Further, the conformal field theories in the framework of FFBRST transformation are also analyzed in Batalin–Vilkovisky (BV) formulation to establish the results.
Fractional Quantum Field Theory: From Lattice to Continuum
Directory of Open Access Journals (Sweden)
Vasily E. Tarasov
2014-01-01
Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.
Lattice models and conformal field theories
International Nuclear Information System (INIS)
Saleur, H.
1988-01-01
Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied
Some topics in quantum field theory
International Nuclear Information System (INIS)
Symanzik, K.
1981-10-01
After a few general remarks on lattice theory, I describe the relation of lattice to continuum theory on the basis of perturbation theory, and deduce herefrom the principles of constructing 'improved' lattice actions. Then I briefly describe some recent perturbative and nonperturbative results in continuum theory. Finally, I point out a few recent approaches of more speculative nature that appear to merit particular attention. In the appendix, a few standard formulae from renormalization group analysis are collected for reference. (orig./HSI)
Gravitational consequences of modern field theories
Horowitz, Gary T.
1989-01-01
Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.
Towards quantum gravity via quantum field theory. Problems and perspectives
Energy Technology Data Exchange (ETDEWEB)
Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)
2016-07-01
General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.
Classification of networks of automata by dynamical mean field theory
International Nuclear Information System (INIS)
Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.
1990-01-01
Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)
Non-local deformation of a supersymmetric field theory
Energy Technology Data Exchange (ETDEWEB)
Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)
2017-09-15
In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)
Effective field theory analysis of Higgs naturalness
Bar-Shalom, Shaouly; Soni, Amarjit; Wudka, Jose
2015-07-01
Assuming the presence of physics beyond the Standard Model (SM) with a characteristic scale M ˜O (10 ) TeV , we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the complete set of higher-dimensional effective operators (at any dimension n ≥5 ) that give the leading one-loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff and discuss the (fine-) tuning between these terms and the SM one-loop contribution, which is required in order to alleviate the little hierarchy problem. We then show that this tuning can be translated into a condition for naturalness in the underlying new physics, a condition we denote by "EFT naturalness" and which we express as constraints on the corresponding higher-dimensional operator coefficients up to the scale of the effective action Λ
Nonequilibrium dynamical mean-field theory
International Nuclear Information System (INIS)
Eckstein, Martin
2009-01-01
The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)
Self consistent field theory of virus assembly
Li, Siyu; Orland, Henri; Zandi, Roya
2018-04-01
The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer–shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent–tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.
Nonequilibrium dynamical mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Martin
2009-12-21
The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)
Collinear factorization violation and effective field theory
Schwartz, Matthew D.; Yan, Kai; Zhu, Hua Xing
2017-09-01
The factorization of amplitudes into hard, soft and collinear parts is known to be violated in situations where incoming particles are collinear to outgoing ones. This result was first derived by studying limits where noncollinear particles become collinear. We show that through an effective field theory framework with Glauber operators, these factorization-violating effects can be reproduced from an amplitude that is factorized before the splitting occurs. We confirm results at one loop, through single Glauber exchange, and at two loops, through double Glauber exchange. To approach the calculation, we begin by reviewing the importance of Glauber scaling for factorization. We show that for any situation where initial-state and final-state particles are not collinear, the Glauber contribution is entirely contained in the soft contribution. The contributions coming from Glauber operators are necessarily nonanalytic functions of external momentum, with the nonanalyticity arising from the rapidity regulator. The nonanalyticity is critical so that Glauber operators can both preserve factorization when it holds and produce factorization-violating effects when they are present.
Protected gates for topological quantum field theories
Beverland, Michael E.; Buerschaper, Oliver; Koenig, Robert; Pastawski, Fernando; Preskill, John; Sijher, Sumit
2016-02-01
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
Protected gates for topological quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Beverland, Michael E.; Pastawski, Fernando; Preskill, John [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Buerschaper, Oliver [Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin (Germany); Koenig, Robert [Institute for Advanced Study and Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Sijher, Sumit [Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)
2016-02-15
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
On background-independent open-string field theory
International Nuclear Information System (INIS)
Witten, E.
1992-01-01
A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator
Axiomatic approaches to Stevens' magnitude scaling
DEFF Research Database (Denmark)
Zimmer, Karin; Ellermeier, Wolfgang
2006-01-01
In 1996, Narens showed that Stevens’ methods of magnitude scaling are based on but a few qualitative assumptions that are straightforward to evaluate empirically. Two crucial assumptions are commutativity (the outcome of a sequence of two assessments does not depend on their order) and multiplica......In 1996, Narens showed that Stevens’ methods of magnitude scaling are based on but a few qualitative assumptions that are straightforward to evaluate empirically. Two crucial assumptions are commutativity (the outcome of a sequence of two assessments does not depend on their order...... & Faulhammer, 2000), the authors found commutativity to hold and multiplicativity to fail in the majority of listeners, leading to the conclusion that, while respondents seem to be able to base their judgments on a ratio-scale of sensation strength, the numerals used in the assessments do not correspond...... to the scale values proper. This situation inspired research into the generalizability of both the empirical findings and Narens’ (1996) theory. This paper will give an overview of these recent developments, focusing on empirical evaluations of commutativity and multiplicativity in different sensory modalities...
Twist Field as Three String Interaction Vertex in Light Cone String Field Theory
Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke
2006-01-01
It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.
Next-to-simplest quantum field theories
Lal, Shailesh; Raju, Suvrat
2010-05-01
We describe new on-shell recursion relations for tree amplitudes in N=1 and N=2 gauge theories and use these to show that the structure of the one-loop S-matrix in pure (i.e. without any matter) N=1 and N=2 gauge theories resembles that of pure Yang-Mills theory. We proceed to study gluon scattering in gauge theories coupled to matter in arbitrary representations. The contribution of matter to individual bubble and triangle coefficients can depend on the fourth- and sixth-order indices of the matter representation, respectively. So, the condition that one-loop amplitudes be free of bubbles and triangles can be written as a set of linear Diophantine equations involving these higher-order indices. These equations simplify for supersymmetric theories. We present new examples of supersymmetric theories that have only boxes (and no triangles or bubbles at one-loop) and nonsupersymmetric theories that are free of bubbles. These theories see simplifications in their S-matrices that cannot be deduced just from naive power-counting. In particular, our results indicate that one-loop scattering amplitudes in the N=2, SU(N) theory with a symmetric tensor hypermultiplet and an antisymmetric tensor hypermultiplet are simple like those in the N=4 theory.
Effective field theory for halo nuclei
International Nuclear Information System (INIS)
Hagen, Philipp Robert
2014-01-01
We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus 6 He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for such
Reggeon field theory for large Pomeron loops
International Nuclear Information System (INIS)
Altinoluk, Tolga; Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2014-01-01
We analyze the range of applicability of the high energy Reggeon Field Theory H RFT derived in http://dx.doi.org/10.1088/1126-6708/2009/03/109. We show that this theory is valid as long as at any intermediate value of rapidity η throughout the evolution at least one of the colliding objects is dilute. Importantly, at some values of η the dilute object could be the projectile, while at others it could be the target, so that H RFT does not reduce to either H JIMWLK or H KLWMIJ . When both objects are dense, corrections to the evolution not accounted for in http://dx.doi.org/10.1088/1126-6708/2009/03/109 become important. The same limitation applies to other approaches to high energy evolution available today, such as for example (http://dx.doi.org/10.1103/PhysRevD.78.054019; http://dx.doi.org/10.1103/PhysRevD.78.054020 and http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054). We also show that, in its regime of applicability H RFT can be simplified. We derive the simpler version of H RFT and in the large N c limit rewrite it in terms of the Reggeon creation and annihilation operators. The resulting H RFT is explicitly self dual and provides the generalization of the Pomeron calculus developed in (http://dx.doi.org/10.1016/S0370-2693(00)00571-2; http://dx.doi.org/10.1140/epjc/s2003-01565-9; http://dx.doi.org/10.1016/j.physletb.2005.10.054) by including higher Reggeons in the evolution. It is applicable for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings occur close in rapidity to one dilute object (projectile), while all the merging close to the other one (target). Additionally we derive, in the same regime expressions for single and double inclusive gluon production (where the gluons are not separated by a large rapidity interval) in terms of the Reggeon degrees of freedom
Non-commutative field theory with twistor-like coordinates
International Nuclear Information System (INIS)
Taylor, Tomasz R.
2007-01-01
We consider quantum field theory in four-dimensional Minkowski spacetime, with the position coordinates represented by twistors instead of the usual world-vectors. Upon imposing canonical commutation relations between twistors and dual twistors, quantum theory of fields described by non-holomorphic functions of twistor variables becomes manifestly non-commutative, with Lorentz symmetry broken by a time-like vector. We discuss the free field propagation and its impact on the short- and long-distance behavior of physical amplitudes in perturbation theory. In the ultraviolet limit, quantum field theories in twistor space are generically less divergent than their commutative counterparts. Furthermore, there is no infrared-ultraviolet mixing problem
Random walks, critical phenomena, and triviality in quantum field theory
International Nuclear Information System (INIS)
Fernandez, R.; Froehlich, J.; Sokal, A.D.
1992-01-01
The subject of this book is equilibrium statistical mechanics - in particular the theory of critical phenomena - and quantum field theory. A general review of the theory of critical phenomena in spin systems, field theories, and random-walk and random-surface models is presented. Among the more technical topics treated in this book, the central theme is the use of random-walk representations as a tool to derive correlation inequalities. The consequences of these inequalities for critical-exponent theory and the triviality question in quantum field theory are expounded in detail. The book contains some previously unpublished results. It addresses both the researcher and the graduate student in modern statistical mechanics and quantum field theory. (orig.)
Supersymmetric field theories at finite temperature
International Nuclear Information System (INIS)
Dicus, D.A.; Tata, X.R.
1983-01-01
We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry
Perturbation theory and coupling constant analyticity in two-dimensional field theories
International Nuclear Information System (INIS)
Simon, B.
1973-01-01
Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)
Improving jet distributions with effective field theory.
Bauer, Christian W; Schwartz, Matthew D
2006-10-06
We obtain perturbative expressions for jet distributions using soft-collinear effective theory (SCET). By matching SCET onto QCD at high energy, tree level matrix elements and higher order virtual corrections can be reproduced in SCET. The resulting operators are then evolved to lower scales, with additional operators being populated by required threshold matchings in the effective theory. We show that the renormalization group evolution and threshold matchings reproduce the Sudakov factors and splitting functions of QCD, and that the effective theory naturally combines QCD matrix elements and parton showers. The effective theory calculation is systematically improvable and any higher order perturbative effects can be included by a well-defined procedure.
A novel string field theory solving string theory by liberating left and right movers
International Nuclear Information System (INIS)
Nielsen, Holger B.; Ninomiya, Masao
2014-01-01
We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model
A Yang-Mills structure for string field theory
International Nuclear Information System (INIS)
Tsousheung Tsun
1990-01-01
String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)
Effective field theories for muonic hydrogen
Directory of Open Access Journals (Sweden)
Peset Clara
2017-01-01
Full Text Available Experimental measurements of muonic hydrogen bound states have recently started to take place and provide a powerful setting in which to study the properties of QCD. We profit from the power of effective field theories (EFTs to provide a theoretical framework in which to study muonic hydrogen in a model independent fashion. In particular, we compute expressions for the Lamb shift and the hyperfine splitting. These expressions include the leading logarithmic O(mμα6 terms, as well as the leading O(mμα5mμ2ΛQCD2${\\cal O}\\left( {{m_\\mu }{\\alpha ^5}{{m_\\mu ^2} \\over {\\Lambda _{{\\rm{QCD}}}^2}}} \\right$ hadronic effects. Most remarkably, our analyses include the determination of the spin-dependent and spin-independent structure functions of the forward virtualphoton Compton tensor of the proton to O(p3 in HBET and including the Delta particle. Using these results we obtain the leading hadronic contributions to the Wilson coeffcients of the lepton-proton four fermion operators in NRQED. The spin-independent coeffcient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, which is the main source of uncertainty in our computation. The spindependent coeffcient yields the prediction of the hyperfine splitting. The use of EFTs crucially helps us organizing the computation, in such a way that we can clearly address the parametric accuracy of our result. Furthermore, we review in the context of NRQED all the contributions to the energy shift of O(mμα5, as well as those that scale like mrα6× logarithms.
Wall deffects in field theories at finite temperature
International Nuclear Information System (INIS)
Bazeia Filho, D.
1985-01-01
We discuss the effect of restauration of simmetry in field theories at finite temperature and its relation with wall deffects which appear as consequence of the instability of the constant field configuration. (M.W.O.) [pt
The State of the Field: Interdisciplinary Theory
Newell, William H.
2013-01-01
This chronological overview of the development of interdisciplinary theory starts with the pre-cursors of theory: the development and elaboration of the definition of interdisciplinary studies, influential but problematic images of interdisciplinary studies proposed by Donald Campbell and Erich Jantsch, and best practices in interdisciplinary…
Generalized classical mechanics and field theory
International Nuclear Information System (INIS)
De Leon, M.; Rodrigues, P.R.
1985-01-01
The aim of this book is to build up a large panel of the present situation of Lagrangian and Hamiltonian formalisms involving higher order derivatives. The achievements of differential geometry in formulating a more modern and powerful treatment of these theories are developed. An extensive review of the development of these theories in classical language is also given. (Auth.)
From quantum gravity to quantum field theory via noncommutative geometry
International Nuclear Information System (INIS)
Aastrup, Johannes; Grimstrup, Jesper Møller
2014-01-01
A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)
Problems of vector Lagrangians in field theories
International Nuclear Information System (INIS)
Krivsky, I.Yu.; Simulik, V.M.
1997-01-01
A vector Lagrange approach to the Dirac spinor field and the relationship between the vector Lagrangians for the spinor and electromagnetic fields are considered. A vector Lagrange approach for the system of interacting electromagnetic B=(B μ υ)=(E-bar,H-bar) and spinor Ψ fields is constructed. New Lagrangians (scalar and vector) for electromagnetic field in terms of field strengths are found. The foundations of two new QED models are formulated
Nonlinear boundary value problems in quantum field theory
International Nuclear Information System (INIS)
Schrader, R.
1989-01-01
We discuss the general structure of a quantum field theory which is free in the interior of a bounded set B of R n . It is shown how to recover the field theory in the interior of B from a certain quantum field theory on the boundary. With an application to string theory in mind, we discuss the example where B equals an interval and the boundary value problem is given in terms of a euclidean functional integral with a P(var phi) interaction restricted to the boundary. copyright 1989 Academic Press, Inc
Note on Weyl versus conformal invariance in field theory
Energy Technology Data Exchange (ETDEWEB)
Wu, Feng [Nanchang University, Department of Physics, Nanchang (China)
2017-12-15
It was argued recently that conformal invariance in flat spacetime implies Weyl invariance in a general curved background for unitary theories and possible anomalies in the Weyl variation of scalar operators are identified. We argue that generically unitarity alone is not sufficient for a conformal field theory to be Weyl invariant. Furthermore, we show explicitly that when a unitary conformal field theory couples to gravity in a Weyl-invariant way, each primary scalar operator that is either relevant or marginal in the unitary conformal field theory corresponds to a Weyl-covariant operator in the curved background. (orig.)
Dynamics of polymers: a mean-field theory.
Fredrickson, Glenn H; Orland, Henri
2014-02-28
We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose (MSR) type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR response field ϕ, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamics involving hybrid particle-field simulation techniques such as the single-chain in mean-field method.
Time evolution in string field theory and T-duality
International Nuclear Information System (INIS)
Ilderton, A.; Mansfield, P.
2005-01-01
The time evolution operator (Schrodinger functional) of quantum field theory can be expressed in terms of first quantised particles moving on S 1 /Z 2 . We give a graphical derivation of this that generalises to second quantised string theory. T-duality then relates evolution through time t with evolution through 1/t and an interchange of string fields and backgrounds
Theory of field induced incommensurability: CsFeCl3
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1986-01-01
Using correlation theory for the singlet-doublet magnet CsFeCl3 in a magnetic field, a field induced incommensurate ordering along K-M is predicted without invoking dipolar effects. A fully self-consistent RPA theory gives Hc=44 kG in agreement with experiments at T=1.3K. Correlation and dipolar...
String field theory solution for any open string background
Czech Academy of Sciences Publication Activity Database
Erler, T.; Maccaferri, Carlo
2014-01-01
Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014
Infinitely many inequivalent field theories from one Lagrangian
100__; Mavromatos, Nick E.; Sarkar, Sarben
2014-01-01
Logarithmic time-like Liouville quantum field theory has a generalized PT invariance, where T is the time-reversal operator and P stands for an S-duality reflection of the Liouville field $\\phi$. In Euclidean space the Lagrangian of such a theory, $L=\\frac{1}{2}(\
Particle solutions in variations of Einstein's unified field theory
International Nuclear Information System (INIS)
Huerta, R.H.
1981-01-01
A method is found which makes it possible to reduce the field equations for a class of nonsymmetric unified field theories to an ordinary integrodifferential equation in the case of a spherically symmetric, time independent metric. Numerical solutions for the Einstein-Bonnor and Einstein-Kursunoglu theories yield extended mass solutions with finite rest mass, corresponding to electrically charged particles
Field theory amplitudes in a space with SU(2) fuzziness
Komaie-Moghaddam, H.; Fatollahi, A. H.; Khorrami, M.
2008-02-01
The structure of transition amplitudes in field theory in a three-dimensional space whose spatial coordinates are noncommutative and satisfy the SU(2) Lie algebra commutation relations is examined. In particular, the basic notions for constructing the observables of the theory as well as subtleties related to the proper treatment of δ distributions (corresponding to conservation laws) are introduced. Explicit examples are given for scalar field theory amplitudes in the lowest order of perturbation.
A relativistic theory for continuous measurement of quantum fields
International Nuclear Information System (INIS)
Diosi, L.
1990-04-01
A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs
Nonperturbative approach to quantum field theories: phase transitions and confinement
International Nuclear Information System (INIS)
Yankielowicz, S.
1976-08-01
Lectures are given on a nonperturbative approach to quantum field theories. Phenomena are discussed for which the usual weak coupling perturbative approach in terms of Feynman diagrams is of no assistance. Properties associated with large distance behavior, i.e., phase transitions, low lying spectra, coherent excitations which are presumably built out of the long wave structure of the theory are described. These methods are important for the study of strong coupling field theories and the question of quarks confinement. 25 references
Conformal field theory and its application to strings
International Nuclear Information System (INIS)
Verlinde, E.P.
1988-01-01
Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes
Noether's theorems applications in mechanics and field theory
Sardanashvily, Gennadi
2016-01-01
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
L{sub ∞} algebras and field theory
Energy Technology Data Exchange (ETDEWEB)
Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2017-03-15
We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Lectures on classical and quantum theory of fields
Arodz, Henryk
2017-01-01
This textbook addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. It aims to deliver a unique combination of classical and quantum field theory in one compact course.
Flat holography: aspects of the dual field theory
Energy Technology Data Exchange (ETDEWEB)
Bagchi, Arjun [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Basu, Rudranil [Saha Institute of Nuclear Physics,Block AF, Sector 1, Bidhannagar, Kolkata 700068 (India); Kakkar, Ashish [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India); Mehra, Aditya [Indian Institute of Technology Kanpur,Kalyanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan, Pune 411008 (India)
2016-12-29
Assuming the existence of a field theory in D dimensions dual to (D+1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk – 2d boundary case and then focus on the 4d bulk – 3d boundary example, where the symmetry in question is the infinite dimensional BMS{sub 4} algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under the conformal Carroll group in D=4. We explore the different sectors within these Carrollian gauge theories and investigate the symmetries of the equations of motion to find that an infinite ultra-relativistic conformal structure arises in each case.
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Exact marginality in open string field theory. A general framework
International Nuclear Information System (INIS)
Kiermaier, M.
2007-07-01
We construct analytic solutions of open bosonic string field theory for any exactly marginal deformation in any boundary conformal field theory when properly renormalized operator products of the marginal operator are given. We explicitly provide such renormalized operator products for a class of marginal deformations which include the deformations of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine potential for the time-like coordinate. In our construction we use integrated vertex operators, which are closely related to finite deformations in boundary conformal field theory, while previous analytic solutions were based on unintegrated vertex operators. We also introduce a modified star product to formulate string field theory around the deformed background. (orig.)
Einstein and interpretation of quantum field theory
International Nuclear Information System (INIS)
Kashlyun, F.
1982-01-01
The main problems of the quantum theory, the basis of which was laid by Planck in 1900 as a result of the discovery of elementary quantum of action, are examined. The most important Einstein contributions to the quantum theory are enumerated. The Einstein work about the light quanta, proved wave-particle dualism, stated one of the most complicated problems to the physics. The work on the specific heat capacity of solids shows that the quantum theory should be beyond the limits of the narrow range of the problems on black radiation. The works on the equilibrium of radiation have convincingly demonstrates statistical character of the radiation processes and have marked the way to Heizenberg form of the quantum mechanics. Einstein generalized the idea of wave-particle dualism to the ordinary gas. It helped to prepare the Schroedinger form of quantum mechanics
Heavy Quarks, QCD, and Effective Field Theory
Energy Technology Data Exchange (ETDEWEB)
Thomas Mehen
2012-10-09
The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.
String field theory. Algebraic structure, deformation properties and superstrings
International Nuclear Information System (INIS)
Muenster, Korbinian
2013-01-01
This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the
Open superstring field theory on the restricted Hilbert space
International Nuclear Information System (INIS)
Konopka, Sebastian; Sachs, Ivo
2016-01-01
It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture −3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.
Quantum field theory on higher-genus Riemann surfaces, 2
International Nuclear Information System (INIS)
Kubo, Reijiro; Ojima, Shuichi.
1990-08-01
Quantum field theory for closed bosonic string systems is formulated on arbitrary higher-genus Riemann surfaces in global operator formalism. Canonical commutation relations between bosonic string field X μ and their conjugate momenta P ν are derived in the framework of conventional quantum field theory. Problems arising in quantizing bosonic systems are considered in detail. Applying the method exploited in the preceding paper we calculate Ward-Takahashi identities. (author)
Quantum field theory in curved spacetime and black hole thermodynamics
Wald, Robert M
1994-01-01
In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum f...
Cosmological viability of theories with massive spin-2 fields
Energy Technology Data Exchange (ETDEWEB)
Koennig, Frank
2017-03-30
Theories of spin-2 fields take on a particular role in modern physics. They do not only describe the mediation of gravity, the only theory of fundamental interactions of which no quantum field theoretical description exists, it furthermore was thought that they necessarily predict massless gauge bosons. Just recently, a consistent theory of a massive graviton was constructed and, subsequently, generalized to a bimetric theory of two interacting spin-2 fields. This thesis studies both the viability and consequences at cosmological scales in massive gravity as well as bimetric theories. We show that all consistent models that are free of gradient and ghost instabilities behave like the cosmological standard model, LCDM. In addition, we construct a new theory of massive gravity which is stable at both classical background and quantum level, even though it suffers from the Boulware-Deser ghost.
Four-dimensional boson field theory. II. Existence
International Nuclear Information System (INIS)
Baker, G.A. Jr.
1986-01-01
The existence of the continuum, quantum field theory found by Baker and Johnson [G. A. Baker, Jr. and J. D. Johnson, J. Phys. A 18, L261 (1985)] to be nontrivial is proved rigorously. It is proved to satisfy all usual requirements of such a field theory, except rotational invariance. Currently known information is consistent with rotational invariance however. Most of the usual properties of other known Euclidean boson quantum field theories hold here, in a somewhat weakened form. Summability of the sufficiently strongly ultraviolet cutoff bare coupling constant perturbation series is proved as well as a nonzero radius of convergence for high-temperature expansions of the corresponding continuous-spin Ising model. The description of the theory by these two series methods is shown to be equivalent. The field theory is probably not asymptotically free
Two problems in thermal field theory
Indian Academy of Sciences (India)
Abstract. In this talk, I review recent progress made in two areas of thermal ﬁeld theory. In particular, I discuss various approaches for the calculation of the quark gluon plasma thermodynamical properties, and the problem of its photon production rate.
Reduction theory for a rational function field
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Classification des groupes de Lie algébriques, Secrétariat mathématique (Paris: 11 rue Pierre Curie). (1958) pp. 16-01 to 16-09. [3] Dedekind R and Weber H, Die theorie der algebraischen funktionen einer veränderlichen,. J. Reine Angew.
Extended monopoles in gauge field theories
International Nuclear Information System (INIS)
Horvath, Z.; Palla, L.
1977-04-01
The paper gives a review of the 't Hooft monopole and briefly discusses the general topological considerations connected with monopoles. A method is presented for constructing explicit monopole solutions in any gauge theory. Some stability questions and time-dependent problems are also considered
Soft theorems from conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Lipstein, Arthur E. [II. Institute for Theoretical Physics, University of Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany)
2015-06-24
Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.
Continuum and discretum—Unified field theory and elementary constants
Treder, Hans-Jürgen
1992-03-01
Unitary field theories and “SUPER-GUT” theories work with an universal continuum, the structured spacetime of R. Descartes, B. Spinoza, B. Riemann, and A. Einstein, or a (Machian (1 3) ) structured vacuum according the quantum theory of unitary fields (Dirac, (4,5) and Heisenberg (6 8) ). The atomistic aspect of the substantial world is represented by the fundamental constants which are invariant against “all transformations” and which “depend on nothings” (Planck (9 11) ). A satisfactory unitary theory has to involve these constants like the mathematical numbers. Today, Planck's conception of the three elementary constants ħ, c, and G may be the key to general relativistic quantum field theory like unitary theory. However, the elementary constants are a question of measurement-theory, also. According to Popper's theory (12 16) of induction, such unitary theories are “universal explaining theories.” The fundamental constants involve the complementarity between the universal statements in unitary theory and the “basic statements” in the language of classical observables.
Energy Technology Data Exchange (ETDEWEB)
Bossard, G
2007-10-15
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the {beta} function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
Fractal tracer distributions in turbulent field theories
DEFF Research Database (Denmark)
Hansen, J. Lundbek; Bohr, Tomas
1998-01-01
We study the motion of passive tracers in a two-dimensional turbulent velocity field generated by the Kuramoto-Sivashinsky equation. By varying the direction of the velocity-vector with respect to the field-gradient we can continuously vary the two Lyapunov exponents for the particle motion and t...
Correlated effective field theory in transition metal compounds
International Nuclear Information System (INIS)
Mukhopadhyay, Subhasis; Chatterjee, Ibha
2004-01-01
Mean field theory is good enough to study the physical properties at higher temperatures and in higher dimensions. It explains the critical phenomena in a restricted sense. Near the critical temperatures, when fluctuations become important, it may not give the correct results. Similarly in low dimensions, the correlations become important and the mean field theory seems to be inadequate to explain the physical phenomena. At low-temperatures too, the quantum correlations become important and these effects are to be treated in an appropriate way. In 1974, Prof. M.E. Lines of Bell Laboratories, developed a theory which goes beyond the mean field theory and is known as the correlated effective field (CEF) theory. It takes into account the fluctuations in a semiempirical way. Lines and his collaborators used this theory to explain the short-range correlations and their anisotropy in the paramagnetic phase. Later Suzuki et al., Chatterjee and Desai, Mukhopadhyay and Chatterjee applied this theory to the magnetically ordered phase and a tremendous success of the theory has been found in real systems. The success of the CEF theory is discussed in this review. In order to highlight the success of this theory, earlier effective field theories and their improvements over mean field theories e.g., Bethe-Peierls-Weiss method, reaction field approximation, etc., are also discussed in this review for completeness. The beauty of the CEF theory is that it is mean field-like, but captures the essential physics of real systems to a great extent. However, this is a weak correlated theory and as a result is inappropriate for the metallic phase when strong correlations become important. In recent times, transition metal oxides become important due to the discovery of the high-temperature superconductivity and the colossal magnetoresistance phenomena. These oxides seem to be Mott insulators and undergo an insulator to metal transition by applying magnetic field, pressure and by changing
Lectures on classical and quantum theory of fields
Energy Technology Data Exchange (ETDEWEB)
Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics
2010-07-01
This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)
Unambiguous formalism for higher order Lagrangian field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris
2009-01-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
A solution for relevant deformations in open string field theory
Czech Academy of Sciences Publication Activity Database
Maccaferri, Carlo
2011-01-01
Roč. 2011, č. 188 (2011), s. 83-93 ISSN 0375-9687. [International Conference on String Field Theory and Related Aspects (SFT2010). Kyoto, 18.10.2010-22.10.2010] Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * boundary conformal field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.063, year: 2011 http://ptp.ipap.jp/link?PTPS/188/83/
Lattice formulation of a two-dimensional topological field theory
International Nuclear Information System (INIS)
Ohta, Kazutoshi; Takimi, Tomohisa
2007-01-01
We investigate an integrable property and the observables of 2-dimensional N=(4,4) topological field theory defined on a discrete lattice by using the 'orbifolding' and 'deconstruction' methods. We show that our lattice model is integrable and, for this reason, the partition function reduces to matrix integrals of scalar fields on the lattice sites. We elucidate meaningful differences between a discrete lattice and a differentiable manifold. This is important for studying topological quantities on a lattice. We also propose a new construction of N=(2,2) supersymmetric lattice theory, which is realized through a suitable truncation of scalar fields from the N=(4,4) theory. (author)
Lattice Ising model in a field: E8 scattering theory
Bazhanov, V.V.; Nienhuis, B.; Warnaar, S.O.
1994-01-01
Zamolodchikov found an integrable field theory related to the Lie algebra E8, which describes the scaling limit of the Ising model in a magnetic field. He conjectured that there also exist solvable lattice models based on E8 in the universality class of the Ising model in a field. The dilute A3
Quantum tunneling and field electron emission theories
Liang, Shi-Dong
2013-01-01
Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f
Discrete symmetries (C,P,T) in noncommutative field theories
International Nuclear Information System (INIS)
Sheikh-Jabbari, M.M.
2000-01-01
In this paper we study the invariance of the noncommutative gauge theories tinder C, P and T transformations. For the noncommutative space (when only the spatial part of θ is non-zero) we show that NCQED is Parity invariant. In addition, we show that under charge conjugation the theory on noncommutative R θ 4 is transformed to the theory on R -θ 4 , so NCQED is a CP violating theory. The theory remains invariant under time reversal if, together with proper changes in fields, we also change θ by -θ. Hence altogether NCQED is CPT invariant. Moreover we show that the CPT invariance holds for general noncommutative space-time. (author)
Causality in finite temperature quantum field theory
International Nuclear Information System (INIS)
Paz, J.P.
1991-01-01
Some properties of various 'real time' formalisms are examined. The authors discuss conceptual (and sometimes very important) differences between the Niemi-Semmenoff method, the Closed Time Path formalism, and Thermo Field Dynamics. (author). 15 refs
Conformal invariance in the quantum field theory
International Nuclear Information System (INIS)
Kurak, V.
1975-09-01
Basic features concerning the present knowledge of conformal symmetry are illustrated in a simple model. Composite field dimensions of this model are computed and related to the conformal group. (author) [pt
Quantum field theory in curved spacetime
International Nuclear Information System (INIS)
Gibbons, G.W.
1978-04-01
The purpose of this article is to outline what the extension of such a treatment to curved space entails and to discuss what essentially new features arise when one takes into account the quantum mechanical nature of gravitating systems. I shall throughout assume a classical, unquantized gravitational field and confine the discussion to matter fields although similar techniques and ideas may be applied to 'gravitons' - that is linearized perturbations of the metric propagating on some fixed, unperturbed, background. (orig./WL) [de
Ride comfort evaluation and suspension design using axiomatic design
International Nuclear Information System (INIS)
Kim, Jung Hoon; Kim, Kang Sik; Kang, Yeon June
2007-01-01
This study presents a theoretical formulation based on the axiomatic design (AD) approach to suspension systems for improving both ride comfort and static design factors (SDFs) of passenger vehicles. This approach was adapted to the kinematic design of suspension systems to create a decoupled or less coupled relationship between the functional requirements (FRs) and design parameters (DPs). SDFs related to wheel alignment and ride comfort are selected for FRs and suspension hardpoint positions are chosen for common DPs. A flexible commercial vehicle body model is used to mathematically express SDFs by defining the performance index and analyzing the dynamic characteristics for ride comfort evaluation. The sensitivity matrices are defined between the FRs and DPs. The SDF design sequences are proposed by using these matrices with the vehicle model. This study improves both ride comfort and SDFs by properly designing the kinematic DPs
Fuzzy axiomatic design approach based green supplier selection
DEFF Research Database (Denmark)
Kannan, Devika; Govindan, Kannan; Rajendran, Sivakumar
2015-01-01
proposes a multi-criteria decision-making (MCDM) approach called Fuzzy Axiomatic Design (FAD) to select the best green supplier for Singapore-based plastic manufacturing company. At first, the environmental criteria was developed along with the traditional criteria based on the literature review...... and company requirements. Next, the FAD methodology evaluates the requirements of both the manufacturer (design needs) and the supplier (functional needs), and because multiple criteria must be considered, a multi-objective optimization model of a fuzzy nature must be developed. The application...... of the proposed approach in the case company has been illustrated and the result of this study helps firm to establish the systematic approach to select the best green supplier within the set of criteria. When the proposed methodology is applied, it allows not only to select the most appropriate green supplier...
An axiomatic approach to Maxwell’s equations
International Nuclear Information System (INIS)
Heras, José A
2016-01-01
This paper suggests an axiomatic approach to Maxwell’s equations. The basis of this approach is a theorem formulated for two sets of functions localized in space and time. If each set satisfies a continuity equation then the theorem provides an integral representation for each function. A corollary of this theorem yields Maxwell’s equations with magnetic monopoles. It is pointed out that the causality principle and the conservation of electric and magnetic charges are the most fundamental physical axioms underlying these equations. Another application of the corollary yields Maxwell’s equations in material media. The theorem is also formulated in the Minkowski space-time and applied to obtain the covariant form of Maxwell’s equations with magnetic monopoles and the covariant form of Maxwell’s equations in material media. The approach makes use of the infinite-space Green function of the wave equation and is therefore suitable for an advanced course in electrodynamics. (paper)
Applying axiomatic design to a medication distribution system
Raguini, Pepito B.
As the need to minimize medication errors drives many medical facilities to come up with robust solutions to the most common error that affects patient's safety, these hospitals would be wise to put a concerted effort into finding methodologies that can facilitate an optimized medical distribution system. If the hospitals' upper management is looking for an optimization method that is an ideal fit, it is just as important that the right tool be selected for the application at hand. In the present work, we propose the application of Axiomatic Design (AD), which is a process that focuses on the generation and selection of functional requirements to meet the customer needs for product and/or process design. The appeal of the axiomatic approach is to provide both a formal design process and a set of technical coefficients for meeting the customer's needs. Thus, AD offers a strategy for the effective integration of people, design methods, design tools and design data. Therefore, we propose the AD methodology to medical applications with the main objective of allowing nurses the opportunity to provide cost effective delivery of medications to inpatients, thereby improving quality patient care. The AD methodology will be implemented through the use of focused stores, where medications can be readily stored and can be conveniently located near patients, as well as a mobile apparatus that can also store medications and is commonly used by hospitals, the medication cart. Moreover, a robust methodology called the focused store methodology will be introduced and developed for both the uncapacitated and capacitated case studies, which will set up an appropriate AD framework and design problem for a medication distribution case study.
Schmidt, Ulrich; Zank, Horst
2010-01-01
In previous models of (cumulative) prospect theory reference-dependence of preferences is imposed beforehand and the location of the reference point is exogenously determined. This paper provides an axiomatization of a new specification of cumulative prospect theory, termed endogenous prospect theory, where reference-dependence is derived from preference conditions and a unique reference point arises endogenously.
Effective Field Theories and the Role of Consistency in Theory Choice
Wells, James D
2012-01-01
Promoting a theory with a finite number of terms into an effective field theory with an infinite number of terms worsens simplicity, predictability, falsifiability, and other attributes often favored in theory choice. However, the importance of these attributes pales in comparison with consistency, both observational and mathematical consistency, which propels the effective theory to be superior to its simpler truncated version of finite terms, whether that theory be renormalizable (e.g., Standard Model of particle physics) or nonrenormalizable (e.g., gravity). Some implications for the Large Hadron Collider and beyond are discussed, including comments on how directly acknowledging the preeminence of consistency can affect future theory work.
Topological field theories, Nicolai maps and BRST quantization
International Nuclear Information System (INIS)
Birmingham, D.; Rakowski, M.; Thompson, G.
1988-05-01
We establish a connection between topological field theories, Nicolai maps, BRST quantization and Langevin equations. In particular we show that there is a one-to-one correspondence between global unbroken supersymmetric theories which admit a Nicolai map and theories which arise as the BRST quantization of the square of the Langevin equation, setting the random field to zero. As such they are topological in nature. As an example we consider the topological quantum field theory of Witten in the Labastida-Pernici form and show that it is the first example of a theory admitting a complete Nicolai map in four dimensions. We also consider the topological sigma models of Witten and show that they too arise from the BRST quantization of the square of the Langevin equation. (author). 17 refs
Quantum groups, quantum categories and quantum field theory
Fröhlich, Jürg
1993-01-01
This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.
Topological Field Theory of Time-Reversal Invariant Insulators
Energy Technology Data Exchange (ETDEWEB)
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
Lattice Gauge Field Theory and Prismatic Sets
DEFF Research Database (Denmark)
Akyar, Bedia; Dupont, Johan Louis
We study prismatic sets analogously to simplicial sets except that realization involves prisms, i.e., products of simplices rather than just simplices. Particular examples are the prismatic subdivision of a simplicial set and the prismatic star of . Both have the same homotopy type...... as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying...
Quantum Algorithms for Fermionic Quantum Field Theories
2014-04-28
Feynman rules for the discretized theory. The propagator is = γµp̃µ + m̃(p) p̃2 − m̃(p)2 , (120) where p̃µ... Feynman rules are = −i , = −ig . (124) At one-loop order, − iM(p) = + , (125) where the second diagram is the counterterm. The first diagram gives = −g20...stabilizer problem, arXiv:quant-ph (1995). [37] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma, Exponential improvement in precision for simulating sparse Hamiltonians, arXiv:1312.1414 (2013). 29
Superstrings, conformal field theories and holographic duality
International Nuclear Information System (INIS)
Benichou, R.
2009-06-01
The first half of this work is dedicated to the study of non-compact Gepner models.The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. We have also studied bound states in N=2 Liouville theory with boundary and deep throat D-branes. We have shown that the bound states can give rise to massless vector and hyper multiplets in a low-energy gauge theory on D-branes deep inside the throat. The second half of this work deals with the issue of the quantization of the string in the presence of Ramond-Ramond backgrounds. Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling. Sigma models on supergroup manifolds are relevant for quantifying string in various Anti-de-Sitter space-time with Ramond-Ramond backgrounds. We show that the conformal current algebra is realized in non-linear sigma models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting
Quantum gravity from conformal field theory
Aprile, F.; Drummond, J. M.; Heslop, P.; Paul, H.
2018-01-01
We bootstrap loop corrections to AdS5 supergravity amplitudes by enforcing the consistency of the known classical results with the operator product expansion of N = 4 super Yang-Mills theory. In particular this yields much new information on the spectrum of double-trace operators which can then be used, in combination with superconformal symmetry and crossing symmetry, to obtain a prediction for the one-loop amplitude for four graviton multiplets in AdS. This in turn yields further new results on subleading O(1 /N 4) corrections to certain double-trace anomalous dimensions.
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Free bosonic string field theory without supplementary fields
International Nuclear Information System (INIS)
Embacher, F.
1987-01-01
A covariant local action for free bosonic string fields is constructed without the use of supplementary fields. The open string case is treated in detail. Up to a mathematical conjecture which is likely to hold it is shown that the Virasoro constraints arise as a special choice of gauge. The kinetic operator turns out to be extremely simple, the gauge transformation law arising rather implicitly. The case of closed strings is briefly discussed. 25 refs. (Author)
Twinlike models in scalar field theories
International Nuclear Information System (INIS)
Bazeia, D.; Losano, L.; Dantas, J. D.; Gomes, A. R.; Menezes, R.
2011-01-01
This work deals with the presence of defect structures in models described by a real scalar field in a diversity of scenarios. The defect structures that we consider are static solutions of the equations of motion that depend on a single spatial dimension. We search for different models, which support the same defect solution, with the very same energy density. We work in flat spacetime, where we introduce and investigate a new class of models. We also work in curved spacetime, within the braneworld context, with a single extra dimension of infinite extent, and there we show how the brane is formed from the static field configuration.
Asymptotic Conservation Laws in Classical Field Theory
International Nuclear Information System (INIS)
Anderson, I.M.; Torre, C.G.
1996-01-01
A new, general, field theoretic approach to the derivation of asymptotic conservation laws is presented. In this approach asymptotic conservation laws are constructed directly from the field equations according to a universal prescription which does not rely upon the existence of Noether identities or any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as the Arnowitt-Deser-Misner energy in general relativity. copyright 1996 The American Physical Society