WorldWideScience

Sample records for axially symmetric tokamaks

  1. Modular coils and finite-β operation of a quasi-axially symmetric tokamak

    International Nuclear Information System (INIS)

    Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nuehrenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (MERKEL, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (HIRSHMAN, S.P., VAN RIJ, W.I., MERKEL, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak

  2. Axially symmetric rotating traversable wormholes

    CERN Document Server

    Kuhfittig, P K F

    2003-01-01

    This paper generalizes the static and spherically symmetric traversable wormhole geometry to a rotating axially symmetric one with a time-dependent angular velocity by means of an exact solution. It was found that the violation of the weak energy condition, although unavoidable, is considerably less severe than in the static spherically symmetric case. The radial tidal constraint is more easily met due to the rotation. Similar improvements are seen in one of the lateral tidal constraints. The magnitude of the angular velocity may have little effect on the weak energy condition violation for an axially symmetric wormhole. For a spherically symmetric one, however, the violation becomes less severe with increasing angular velocity. The time rate of change of the angular velocity, on the other hand, was found to have no effect at all. Finally, the angular velocity must depend only on the radial coordinate, confirming an earlier result.

  3. Axially symmetric SU(3) gravitating skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora [Maths Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: ti3@auth.gr; Kleihaus, Burkhard [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)]. E-mail: kleihaus@theorie.physik.uni-oldenburg.de; Zakrzewski, Wojtek [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)]. E-mail: w.j.zakrzewski@durham.ac.uk

    2004-10-21

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  4. Axially symmetric SU(3) Gravitating Skyrmions

    CERN Document Server

    Ioannidou, T A; Zakrzewski, W J; Ioannidou, Theodora; Kleihaus, Burkhard; Zakrzewski, Wojtek

    2004-01-01

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [1]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  5. Axially symmetric SU(3) gravitating skyrmions

    International Nuclear Information System (INIS)

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail

  6. Polarization converters based on axially symmetric twisted nematic liquid crystal.

    Science.gov (United States)

    Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien

    2010-02-15

    An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369

  7. Axially symmetric static sources of gravitational field

    CERN Document Server

    Hernandez-Pastora, J L; Martin, J

    2016-01-01

    A general procedure to find static and axially symmetric, interior solutions to the Einstein equations is presented. All the so obtained solutions, verify the energy conditions for a wide range of values of the parameters, and match smoothly to some exterior solution of the Weyl family, thereby representing globally regular models describing non spherical sources of gravitational field. In the spherically symmetric limit, all our models converge to the well known incompressible perfect fluid solution.The key stone of our approach is based on an ansatz allowing to define the interior metric in terms of the exterior metric functions evaluated at the boundary source. Some particular sources are obtained, and the physical variables of the energy-momentum tensor are calculated explicitly, as well as the geometry of the source in terms of the relativistic multipole moments. The total mass of different configurations is also calculated, it is shown to be equal to the monopole of the exterior solution.

  8. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  9. On Stationary Axially Symmetric Solutions in Brans-Dicke Theory

    CERN Document Server

    Kirezli, Pınar

    2015-01-01

    Stationary axially symmetric Brans-Dicke-Maxwell solutions are re-examined in the framework of the Brans-Dicke theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electro-vacuum space-times for this theory. This analysis also permit us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for Brans-Dicke theory from a seed solution of General Relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e. the Kinnersley solution and general magnetized Kerr-Newman type solutions. Some physical properties and circular motion of test particles for a particular subclass of Kinnersley solution, i.e. Kerr-Newman-NUT type ...

  10. STED microscopy based on axially symmetric polarized vortex beams

    Science.gov (United States)

    Zhehai, Zhou; Lianqing, Zhu

    2016-03-01

    A stimulated emission depletion (STED) microscopy scheme using axially symmetric polarized vortex beams is proposed based on unique focusing properties of such kinds of beams. The concept of axially symmetric polarized vortex beams is first introduced, and the basic principle about the scheme is described. Simulation results for several typical beams are then shown, including radially polarized vortex beams, azimuthally polarized vortex beams, and high-order axially symmetric polarized vortex beams. The results indicate that sharper doughnut spots and thus higher resolutions can be achieved, showing more flexibility than previous schemes based on flexible modulation of both phase and polarization for incident beams. Project supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 61475021), the Natural Science Foundation of Beijing, China (Grant No. 4152015), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-13-0667), and the Top Young Talents Support Program of Beijing, China (Grant No. CIT&TCD201404113).

  11. Resonances in axially symmetric dielectric objects

    CERN Document Server

    Helsing, Johan

    2016-01-01

    A high-order convergent and robust numerical solver is constructed and used to find complex eigenwavenumbers and electromagnetic eigenfields of dielectric objects with axial symmetry. The solver is based on Fourier--Nystr\\"om discretization of M\\"uller's combined integral equations for the transmission problem and can be applied to demanding resonance problems at microwave, terahertz, and optical wavelengths. High achievable accuracy, even at very high wavenumbers, makes the solver ideal for benchmarking and for assessing the performance of general purpose commercial software.

  12. On the generation techniques of axially symmetric stationary metrics

    Indian Academy of Sciences (India)

    S Chaudhuri

    2002-03-01

    In the present paper, a relationship between the method of Gutsunaev–Manko and the soliton technique (for two-soliton solutions) of Belinskii–Zakharov, for generating solutions of axially symmetric stationary space-times in general relativity is discussed.

  13. Dynamics and statics of flexible axially symmetric shallow shells

    OpenAIRE

    J. Awrejcewicz; V. A. Krysko; I. V. Kravtsova

    2006-01-01

    In this work, we propose the method for the investigation of stochastic vibrations of deterministic mechanical systems represented by axially symmetric spherical shells. These structure members are widely used as sensitive elements of pressure measuring devices in various branches of measuring and control industry, machine design, and so forth. The proposed method can be easily extended for the investigation of shallow spherical shells, goffer-type membranes, and so on. T...

  14. Axially symmetric dissipative fluids in the quasi--static approximation

    CERN Document Server

    Herrera, L; Ospino, J; Carot, J

    2015-01-01

    Using a framework based on the $1+3$ formalism we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi--static regime. We first derive a set of invariantly defined "velocities", which allow for an inambiguous definition of the quasi--static approximation. Next we rewrite all the relevant equations in this aproximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of "velocities" change of sign within the fluid distribution with respect to theirs sign on the boundary surface. It is shown that states of gravitational radiation are not {\\it a priori} incompatible with the quasistatic--regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.

  15. Axially-symmetric Neutron stars: Implication of rapid rotation

    CERN Document Server

    Sharma, B K

    2009-01-01

    Models of relativistic rotating neutron star composed of hyperon rich matter is constructed in the framework of an effective field theory in the mean-field approach. The gross properties of compact star is calculated at both static and the mass-shedding limit in the axially symmetric basis. The effect of appearance and abundance of hyperons on equation of state of dense matter and stellar properties is lineated with particular emphasis on the underlying nuclear interactions. We find that the models can explain fast rotations, which supports the existence of millisecond pulsars. An important offshoot of the present investigation is that, irrespective of the model parameters and interaction taken, the star seems to sustain faster rotations (an increase in rotational frequency up to $\\approx$ 50%) without any further deformation.

  16. Skyrme RPA for spherical and axially symmetric nuclei

    CERN Document Server

    Repko, Anton; Nesterenko, V O; Reinhard, P -G

    2015-01-01

    Random Phase Approximation (RPA) is the basic method for calculation of excited states of nuclei over the Hartree-Fock ground state, suitable also for energy density functionals (EDF or DFT). We developed a convenient formalism for expressing densities and currents in a form of reduced matrix elements, which allows fast calculation of spectra for spherical nuclei. All terms of Skyrme functional were taken into account, so it is possible to calculate electric, magnetic and vortical/toroidal/compression transitions and strength functions of any multipolarity. Time-odd (spin) terms in Skyrme functional become important for magnetic M1 and isovector toroidal E1 transitions. It was also found that transition currents in pygmy region (low-lying part of E1 resonance) exhibit isoscalar toroidal flow, so the previously assumed picture of neutron-skin vibration is not the only mechanism present in pygmy transitions. RPA calculations with heavy axially-symmetric nuclei now become feasible on ordinary PC. Detailed formul...

  17. Dynamics and statics of flexible axially symmetric shallow shells

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In this work, we propose the method for the investigation of stochastic vibrations of deterministic mechanical systems represented by axially symmetric spherical shells. These structure members are widely used as sensitive elements of pressure measuring devices in various branches of measuring and control industry, machine design, and so forth. The proposed method can be easily extended for the investigation of shallow spherical shells, goffer-type membranes, and so on. The so-called charts of control parameters for a shell subjected to a transversal uniformly distributed and local harmonic loading force and resistance moment are constructed. The scenarios of the transition of vibration of shallow-type system into chaotic state are investigated with the use of the theory of differential equations and the theory of nonlinear dynamics. The method of the control of chaotic vibrations of flexible spherical shells subjected to a transversal harmonic load through a synchronized action of either harmonic resistance moment or force is proposed, illustrated, and discussed.

  18. The spacetime outside a source of gravitational radiation: The axially symmetric null fluid

    CERN Document Server

    Herrera, L; Ospino, J

    2016-01-01

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric spacetimes. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the $1+3$ formalism.

  19. Effect of an Electric Field on Transfer Processes in Axially Symmetric Magnetic Traps

    International Nuclear Information System (INIS)

    By solving the kinetic equation in the drift approximation, expressions are derived for the particle flux and energy density across a strong magnetic field in axially symmetric systems of the Levitron or Tokamak type. In addition to the longitudinal accelerating electric field, which is responsible for creating the longitudinal current, account is taken of the presence of a quasistatic electric field directed along the minor radius and resulting from ambipolarity of dispersion. Both the case of very low collision frequencies (lower than the characteristic frequency of the azimuthal motion of the ''blocked'' particles) and that of intermediate and high collision frequencies are considered. It is shown that, if either the thermal velocity of the particles or the ratio of the poloidal magnetic field to the longitudinal magnetic field is fairly large (so that the mean longitudinal velocity of the toroidally ''blocked'' particles is much less than the azimuthal variations of their longitudinal velocity), then allowance for the radial electric field corresponds to allowance in the flux expressions for corrections of the next higher (i.e. fourth) order with respect to the smallness parameter used. In the opposite limiting case, allowance for the radial electric field becomes very important: in the region of very low and very high collision frequencies it leads to a substantial change in the functional dependence of the dispersion and heat conduction coefficients on the plasma and magnetic field parameters, while in the region of intermediate collision frequencies it leads to corrections proportional to the square of the ratio of the Larmor radius in the poloidal magnetic field to the characteristic dimension of the plasma inhomogeneity. In conclusion, the author discusses the question of determining a self-consistent radial electric field within the framework of a theory which takes into account only the lowest order with respect to the Larmor radius. (author)

  20. Acoustic horizons for axially and spherically symmetric fluid flow

    CERN Document Server

    Cadoni, M

    2006-01-01

    We investigate the formation of acoustic horizons for an inviscid fluid moving in a pipe in the case of stationary and axi-symmetric flow. We show that, differently from what is generally believed, the acoustic horizon forms in correspondence of either a local minimum or maximum of the flux tube cross-section. Similarly, the external potential is required to have either a maximum or a minimum at the horizon, so that the external force has to vanish there. Choosing a power-law equation of state for the fluid, $P\\propto \\rho^{n}$, we solve the equations of the fluid dynamics and show that the two possibilities are realized respectively for $n>-1$ and $n<-1$. These results are extended also to the case of spherically symmetric flow.

  1. White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging

    CERN Document Server

    Hansen, Brian; Shemesh, Noam; Lund, Torben E; Sangill, Ryan; Østergaard, Leif; Jespersen, Sune N

    2016-01-01

    White matter tract integrity (WMTI) can be used to characterize tissue microstructure in areas with axisymmetric fiber bundles. Several WMTI biomarkers have now been validated against microscopy and provided promising results in studies of brain development and aging, as well as in a number of brain disorders. In a clinical setting, however, the diffusion kurtosis imaging (DKI) protocol utilized as part of WMTI imaging may be prohibitively long. Consequently, the diagnostic value of the WMTI parameters is rarely explored outside of dedicated animal studies and clinical studies of slowly progressing diseases. Here, we evaluate WMTI based on recently introduced axially symmetric DKI which has lower data demand than conventional DKI. We compare WMTI parameters derived from conventional DKI to those from axially symmetric DKI and to parameters calculated analytically from the axially symmetric tensors. We also assess the effect of the imposed symmetry on the kurtosis fractional anisotropy (KFA). We employ numeric...

  2. Axially Symmetric Shear-free Fluids in $f(R,T)$ Gravity

    CERN Document Server

    Noureen, Ifra

    2016-01-01

    In this work we have discussed the implications of shear-free condition on axially symmetric anisotropic gravitating objects in $f(R,T)$ theory. Restricted axial symmetry ignoring rotation and reflection enteries is taken into account for establishment of instability range. Implementation of linear perturbation on constitutive modified dynamical equations yield evolution equation. This equation associates adiabatic index $\\Gamma$ with material and dark source components defining stable and unstable regions in Newtonian (N) and post-Newtonian (pN) approximations.

  3. Decreasing "circumference" for increasing "radius" in axially symmetric gravitating systems

    CERN Document Server

    Lubo, M

    2001-01-01

    Apart from the flat space with an angular deficit, Einstein general relativity possesses another cylindrically symmetric solution. Because this configuration displays circles whose "circumferences" tend to zero when their "radius" go to infinity, it has not received much attention in the past. We propose a geometric interpretation of this feature and find that it implies field boundary conditions different from the ones found in the literature if one considers a source consisting of the scalar and the vector fields of a U(1) system . To obtain a non increasing energy density the gauge symmetry must be unbroken . For the Higgs potential this is achieved only with a vanishing vacuum expectation value but then the solution has a null scalar field. A non trivial scalar behaviour is exhibited for a potential of sixth order. The trajectories of test particles in this geometry are studied, its causal structure discussed. We find that this bosonic background can support a normalizable fermionic condensate but not suc...

  4. Existence of axially symmetric solutions in SU(2)-Yang-Mills and related theories

    CERN Document Server

    Hannibal, L; Hannibal, Ludger; Ossietzky, Carl von

    1999-01-01

    It is shown that the static axially symmetric solutions of SU(2) Einstein-Yang-Mills-Dilaton theory constructed by Kleihaus and Kunz are gauge-equivalent to two-parameter families of embedded abelian solutions, characterized by mass and magnetic dipole moment. The existence of other particle-like solutions is excluded.

  5. On the extension of axially symmetric volume flow and mean curvature flow

    OpenAIRE

    Kandanaarachchi, Sevvandi

    2013-01-01

    We investigate conditions of singularity formation of mean curvature flow and volume preserving mean curvature flow in an axially symmetric setting. We prove that no singularities can develop during a finite time interval, if the mean curvature is bounded within that time interval on the entire surface. We prove this for volume preserving mean curvature flow as well as for mean curvature flow.

  6. Axial preloading of a 20 TESLA prototype of a single turn Tokamak toroidal field coil

    International Nuclear Information System (INIS)

    An axial preloading system has been designed and built as part of the 0.06 scale prototype toroidal field (TF) magnet for the IGNITEX experiment. In the prototype TF coil, as in the full size IGNITEX tokamak, the peak stresses in the inner leg during discharge are made more isotropic (hence the von Mises stress intensity is lowered) through axial preloading. Although preliminary (nonpreloaded) tests of the TF magnet should produce fields as high as 15 T, preloading will permit demonstration of the high (20 T) on-axis magnetic field to be achieved in the IGNITEX device. The preloading system for the prototype is a hydraulic press capable of a load of 580 tons. The press is designed with a short stroke which takes the press from a condition of noncontact to full preloading. During the magnet's pulse and subsequent thermal growth, the hydraulic system of the press maintains the preload force

  7. A Volume-Weighting Cloud-in-Cell Model for Particle Simulation of Axially Symmetric Plasmas

    Institute of Scientific and Technical Information of China (English)

    李永东; 何锋; 刘纯亮

    2005-01-01

    A volume-weighting cloud-in-cell (VW-CIC) model is developed to implement the particle-in-cell (PIC) simulation in axially symmetric systems. This model gives a first-order accuracy in the cylindrical system, and it is incorporated into a PIC code. A planar diode with a finite-radius circular emitter is simulated with the code. The simulation results show that the VW-CIC model has a better accuracy and a lower noise than the conventional area-weighting cloud-in-cell (AW-CIC) model, especially on those points near the axis. The two-dimensional (2-D) space-charge-limited current density obtained from VW-CIC model is in better agreement with Lau's analytical result. This model is more suitable for 2.5-D PIC simulation of axially symmetric plasmas.

  8. Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological Models with Time-Dependent and

    Indian Academy of Sciences (India)

    Nawsad Ali

    2013-09-01

    The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter . Consequences of the four cases of phenomenological decay of have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.

  9. A microscopic derivation of nuclear collective rotation-vibration model, axially symmetric case

    OpenAIRE

    Gulshani, Parviz

    2015-01-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed the to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on th...

  10. A critical regularity condition on the angular velocity of axially symmetric Navier-Stokes equations

    OpenAIRE

    Zhang, Qi S.

    2015-01-01

    Let $v$ be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. It is shown that $v$ is regular if the angular velocity $v_\\theta$ satisfies an integral condition which is critical under the standard scaling. This condition allows functions satisfying \\[ |v_\\theta(x, t)| \\le \\frac{C}{r |\\ln r|^{2+\\epsilon}}, \\quad r

  11. FINITE ELEMENT FOR STRESS-STRAIN STATE MODELING OF TWO-LAYERED AXIALLY SYMMETRIC SHELLS

    Directory of Open Access Journals (Sweden)

    K. S. Kurochka

    2015-07-01

    Full Text Available Subject of Research. Computation of composite material designs requires application of numerical methods. The finiteelement method usage is connected with surface approximation problems. Application of volumetric and laminar elements leads to systems with large sizes and a great amount of computation. The objective of this paper is to present an equivalent two-layer mathematical model for evaluation of displacements and stresses of cross-ply laminated cone shells subjected to uniformly distributed load. An axially symmetric element for shell problems is described. Method. Axially symmetric finite element is proposed to be applied in calculations with use of correlation for the inner work of each layer separately. It gives the possibility to take into account geometric and physical nonlinearities and non-uniformity in the layers of the shell. Discrete mathematical model is created on the base of the finite-element method with the use of possible motions principle and Kirchhoff–Love assumptions. Hermite element is chosen as a finite one. Cone shell deflection is considered as the quantity sought for. Main Results. One-layered and two-layered cone shells have been considered for proposed mathematical model verification with known analytical and numerical analytical solutions, respectively. The axial displacements of the two-layered cone are measured with an error not exceeding 5.4 % for the number of finite elements equal to 30. The proposed mathematical model requires fewer nodes to define the finite element meshing of the system and much less computation time. Thereby time for finding solution decreases considerably. Practical Relevance. Proposed model is applicable for computation of multilayered designs under axially symmetric loads: composite high-pressure bottles, cylinder shaped fiberglass pipes, reservoirs for explosives and flammable materials, oil and gas storage tanks.

  12. A cylindrical shell with an axial crack under skew-symmetric loading.

    Science.gov (United States)

    Yuceoglu, U.; Erdogan, F.

    1973-01-01

    The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is assumed that the material has a special orthotropy - namely, that the shear modulus may be evaluated from the measured Young's moduli and Poisson ratios and is not an independent material constant. The problem is solved within the confines of an eighth-order linearized shallow shell theory. As numerical examples, the torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter increases, unlike the results found in the pressurized shell, the bending stresses around crack ends do not change sign.

  13. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    CERN Document Server

    Sundell, Per

    2016-01-01

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in arXiv:1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by the sum of two generalized Petrov type-D tensors, and the twistor space connections are smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  14. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Manzoor, Rubab [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2016-06-15

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  15. Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate.

    Science.gov (United States)

    Fan, Fan; Du, Tao; Srivastava, Abhishek Kumar; Lu, Wang; Chigrinov, Vladimir; Kwok, Hoi Sing

    2012-10-01

    We present a method to fabricate a radially and azimuthally polarized light converter by deploying a patterned liquid crystal (LC) quarter-wave plates (QWP). The patterned QWP has been fabricated by providing the axially symmetric alignment to the LC layer by mean of photo-alignment. When the left handed circularly (LHC) or right handed circularly (RHC) polarized light passes through these patterned QWPs, the emergent light becomes radially or azimuthally polarized. Moreover, the proposed polarization converters are characterized by the fast response time, thus could find application in various fast photonic devices. PMID:23188267

  16. Calculating the hydraulic characteristics of a plane axially symmetrical feeding collector

    International Nuclear Information System (INIS)

    Two-dimensional equations of liquid flow in a reactor plane cylindrical axially symmetrical feeding collector without and in the presence of friction and volume resistance are analyzed. The analytical solutions for some particular cases of spiral flow (hyperbolic spiral, logarithmic spiral, Archimedean spiral) are obtained. It is shown that the type of flow is determined by the effective Reynolds number and effective coefficient of volume hydraulic resistance. Non-uniformity in coolant feeding when hydraulic resistance increasing descreases at first and then changing the sign increases in absolute value

  17. Stability Analysis of Restricted Axial Symmetric Collapse in $f(R)$ Gravity

    CERN Document Server

    Sharif, M

    2014-01-01

    In this paper, we analyze stability regions of a non-static restricted class of axially symmetric spacetime with anisotropic matter distribution. We develop dynamical as well as collapse equations within the framework of proposed perturbation technique for $f(R)=R+{\\epsilon}R^2$ model and explore dynamical instabilities at Newtonian and post-Newtonian regimes. It is concluded that radial profile of physical parameters like pressure anisotropy, energy density and higher curvature terms of the $f(R)$ model affect the instability ranges.

  18. An axially symmetric gamma-ray backscatter system for DuMond spectrometry

    International Nuclear Information System (INIS)

    An axially symmetric spectrometer is described which evolved from a program of measuring Compton profiles with unusually high geometric efficiency. When fitted with a large-volume Ge detector for combined X-ray and γ-ray spectrometry, such as the 51 mm diameter LO-AX detector from EG and G, it allows Compton profiles to be measured at counting rates in excess of 20000 cps. The axially symmetric configuration is also suited to high-efficiency analyses of thick targets by both XRF and Rayleigh/Compton (R/C) ratios. The same spectra permit a competitive binary-system analysis based on the shape of the Compton profile. Both this new analysis, which we call DuMond spectrometry, and R/C analysis are applied to studies of osteoporosis in the calcaneus with promising results. The combination of high intrinsic and geometric detection efficiency makes it practical to use very weak sources (≅ 100 MBq) and unusually low, localized doses (≅ 1 μGy) per reading. (orig.)

  19. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  20. Report on the Dynamical Evolution of an Axially Symmetric Quasar Model

    Indian Academy of Sciences (India)

    N. J. Papadopoulos; N. D. Caranicolas

    2006-12-01

    The role of the angular momentum in the regular or chaotic character of motion in an axially symmetric quasar model is examined. It is found that, for a given value of the critical angular momentum , there are two values of the mass of the nucleus for which transition from regular to chaotic motion occurs. The [-] relationship shows a linear dependence for the time independent model and an exponential dependence for the evolving model. Both cases are explained using theoretical arguments together with some numerical evidence. The evolution of the orbits is studied, as mass is transported from the disk to the nucleus. The results are compared with the outcomes derived for galactic models with massive nuclei.

  1. Axially Symmetric-dS Solution in Teleparallel f(T Gravity Theories

    Directory of Open Access Journals (Sweden)

    Gamal G. L. Nashed

    2015-01-01

    Full Text Available We apply a tetrad field with six unknown functions to Einstein field equations. Exact vacuum solution, which represents axially symmetric-dS spacetime, is derived. We multiply the tetrad field of the derived solution by a local Lorentz transformation which involves a generalization of the angle ϕ and get a new tetrad field. Using this tetrad, we get a differential equation from the scalar torsion T=TαμνSαμν. Solving this differential equation we obtain a solution to the f(T gravity theories under certain conditions on the form of f(T and its first derivatives. Finally, we calculate the scalars of Riemann Christoffel tensor, Ricci tensor, Ricci scalar, torsion tensor, and its contraction to explain the singularities associated with this solution.

  2. Shearing and geodesic axially symmetric perfect fluids that do not produce gravitational radiation

    CERN Document Server

    Herrera, L; Ospino, J; Carot, J

    2015-01-01

    Using a framework based on the 1+3 formalism we carry out a study on axially and reflection symmetric perfect and geodesic fluids, looking for possible models of sources radiating gravitational waves. Therefore, the fluid should be necessarily shearing, for otherwise the magnetic part of the Weyl tensor vanishes, leading to a vanishing of the super-Poynting vector. However, for the family of perfect, geodesic fluids considered here, it appears that all possible cases reduce to conformally flat, shear--free, vorticity-free, fluids, i.e Friedmann-Roberston-Walker. The super-Poynting vector vanishes and therefore no gravitational radiation is expected to be produced. The physical meaning of the obtained result is discussed.

  3. Beam squint in axially symmetric reflector antennas with laterally displaced feeds

    Science.gov (United States)

    Fiebig, Dirk; Wohlleben, Rudolph; Prata, Aluizio; Rusch, Willard V. T.

    1991-06-01

    The beam squint effect appearing in axially symmetric reflector antennas with laterally displaced feeds was investigated. Numerical calculations have been carried out and the beam squint for circular polarized excitation has been measured using a 100-m telescope. The telescope was operated in the Gregorian mode, where the equivalent focal length equals 387.5 m. The feed horn was laterally displaced by 1.364 m from the optical axis at the system focus. Good agreement was obtained between the numerical calculations and the experimental results. The authors found a shift of the two radiation patterns of phi of about 2 arcsec. The orientation of the beam squint in the configuration with a laterally displaced feed is different from the orientation in offset reflector antennas.

  4. Non-Abelian fields in AdS$_4$ spacetime: axially symmetric, composite configurations

    CERN Document Server

    Kichakova, Olga; Radu, Eugen; Shnir, Yasha

    2014-01-01

    We construct new finite energy regular solutions in Einstein-Yang-Mills-SU(2) theory. They are static, axially symmetric and approach at infinity the anti-de Sitter spacetime background. These configurations are characterized by a pair of integers $(m, n)$, where $m$ is related to the polar angle and $n$ to the azimuthal angle, being related to the known flat space monopole-antimonopole chains and vortex rings. Generically, they describe composite configurations with several individual components, possesing a nonzero magnetic charge, even in the absence of a Higgs field. Such Yang-Mills configurations exist already in the probe limit, the AdS geometry supplying the attractive force needed to balance the repulsive force of Yang-Mills gauge interactions. The gravitating solutions are constructed by numerically solving the elliptic Einstein-DeTurck--Yang-Mills equations. The variation of the gravitational coupling constant $\\alpha$ reveals the existence of two branches of gravitating solutions which bifurcate at...

  5. A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations

    CERN Document Server

    Brousseau, D; Parent, J; Ruel, H J; Borra, Ermanno F.; Brousseau, Denis; Parent, Jocelyn; Ruel, Hubert-Jean

    2006-01-01

    We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

  6. Earliest stages of the non-equilibrium in axially symmetric, self-gravitating, dissipative fluids

    CERN Document Server

    Herrera, L; Ospino, J; Carot, J

    2016-01-01

    We report a study on axially and reflection symmetric dissipative fluids, just after its departure from hydrostatic and thermal equilibrium, at the smallest time scale at which the first signs of dynamic evolution appear. Such a time scale is smaller than the thermal relaxation time, the thermal adjustment time and the hydrostatic time. It is obtained that the onset of non--equilibrium will critically depend on a single function directly related to the time derivative of the vorticity. Among all fluid variables (at the time scale under consideration), only the tetrad component of the anisotropic tensor in the subspace orthogonal to the four--velocity and the Killing vector of axial symmetry, shows signs of dynamic evolution. Also, the first step towards a dissipative regime begins with a non--vanishing time derivative of the heat flux component along the meridional direction. The magnetic part of the Weyl tensor vanishes (not so its time derivative), indicating that the emission of gravitational radiation wil...

  7. Earliest stages of the nonequilibrium in axially symmetric, self-gravitating, dissipative fluids

    Science.gov (United States)

    Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J.

    2016-09-01

    We report a study on axially and reflection symmetric dissipative fluids, just after its departure from hydrostatic and thermal equilibrium, at the smallest time scale at which the first signs of dynamic evolution appear. Such a time scale is smaller than the thermal relaxation time, the thermal adjustment time, and the hydrostatic time. It is obtained that the onset of nonequilibrium will critically depend on a single function directly related to the time derivative of the vorticity. Among all fluid variables (at the time scale under consideration), only the tetrad component of the anisotropic tensor in the subspace orthogonal to the four-velocity and the Killing vector of axial symmetry, shows signs of dynamic evolution. Also, the first step toward a dissipative regime begins with a nonvanishing time derivative of the heat flux component along the meridional direction. The magnetic part of the Weyl tensor vanishes (not so its time derivative), indicating that the emission of gravitational radiation will occur at later times. Finally, the decreasing of the effective inertial mass density, associated to thermal effects, is clearly illustrated.

  8. Comments on "Existence of axially symmetric solutions in SU(2)-Yang Mills and related theories [hep-th/9907222]"

    CERN Document Server

    Kleihaus, B; Kunz, Jutta

    1999-01-01

    In [hep-th/9907222] Hannibal claims to exclude the existence of particle-like static axially symmetric non-abelian solutions in SU(2) Einstein-Yang-Mills-dilaton theory. His argument is based on the asymptotic behaviour of such solutions. Here we disprove his claim by giving explicitly the asymptotic form of non-abelian solutions with winding number n=2.

  9. Optically switchable and axially symmetric half-wave plate based on photoaligned liquid crystal films

    Science.gov (United States)

    Lin, C.-C.; Huang, T.-C.; Chu, C.-C.; Hsiao, Vincent K. S.

    2016-07-01

    We demonstrate an optically switchable half-wave plate (HWP) composed of a photoaligned and axially symmetric liquid crystal (ASLC) film containing two azobenzene derivatives, methyl red (MR) and 4-butyl-4‧-methoxyazobenzene (BMAB). MR is responsible for photoalignment, and BMAB is used for optical tuning and switching the state of polarization (SOP) of probe beam (633 nm He-Ne laser) passing through the MR/BMAB doped ASLC film. The photoaligned ASLC film is first fabricated using a line-shaped laser beam (532 nm) exposure applied on a rotating LC sample. The fabricated ASLC film can passively change the linearly polarized light. Under UV light exposure, the formation of cis-BMAB (bend-like shape) within the film disrupts the LC molecules, switches the LC orientation, and further changes the SOP of the probe beam. Under laser irradiation (532 nm), the formation of trans-BMAB (rod-like shape) reverts the LC orientation back and simultaneously generates cis-MR, helping anchor the LC in the previously photoaligned orientation. The photoaligned MR/BMAB-doped LC HWP can change the linear SOP under alternating UV and visible light exposure.

  10. Motion of relativistic particles in axially symmetric and perturbed magnetic fields in a tokamak

    NARCIS (Netherlands)

    de Rover, M.; Cardozo, N. J. L.; Montvai, A.

    1996-01-01

    An extensive comparison is given between an analytical theory for the computations of particle orbits of relativistic runaway electrons [M. de Rover et al., Phys. Plasmas 3, 4468 (1996)], and numerical simulations. A new numerical scheme is used for the computer simulations of guiding center orbits.

  11. Snap-through of the system for a shallow axially symmetric bimetallic shell using non-linear theory

    OpenAIRE

    Kosel, Tadej; Batista, Milan; Jakomin, Marko; Kosel, Franc

    2015-01-01

    The paper deals with the stresses, strains and buckling conditions in thin, axially symmetric, shallow, bimetallic shells. Based on third-order theory, which takes into account the equilibrium state of the forces and moments that are acting on the deformed system, the paper presents a model with a mathematical description of the geometry of the system, the stresses, the thermoelastic strains and the displacements. The mathematical formulation is based on the theory of large displacements. As ...

  12. On stability of uniformly-accelerated motions of an axially-symmetric heavy rigid body in an ideal fluid

    DEFF Research Database (Denmark)

    Deriabine, Mikhail

    2003-01-01

    We consider the problem of heavy rigid body dynamics in an infinite volume of an ideal incompressible fluid performing a potential motion. If the body is axially-symmetric, then the system admits partial solutions, when the axis of symmetry is vertical, and the body sinks and rotates around its...... axis, direction. The method of constructing the Lyapunov function may be generalized for deriving stability conditions for mechanical systems with nonstationary force-fields....

  13. Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Meglicki, Z

    1995-09-19

    We describe in detail the implementation of a weighted differences code, which is used to simulate a tokamak using the Maschke-Perrin solution as an initial condition. The document covers the mainlines of the program and the most important problem-specific functions used in the initialization, static tests, and dynamic evolution of the system. The mathematics of the Maschke-Perrin solution is discussed in parallel with its realisation within the code. The results of static and dynamic tests are presented in sections discussing their implementation.The code can also be obtained by ftp -anonymous from cisr.anu.edu.au Directory /pub/papers/meglicki/src/tokamak. This code is copyrighted. (author). 13 refs.

  14. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  15. Radial electrical field in non axi-symmetrical tokamak plasmas - study through doppler reflectometry

    International Nuclear Information System (INIS)

    Nuclear fusion research aims at producing plasmas mainly heated by fusion reactions between Tritium and Deuterium ions. This work deals with the problem of turbulent transport, which is one of the main limiting factors in the performance of tokamak operation. It is focused on the radial electric field (Er, pointing outwards/inwards from the plasma), which can generate transport barriers when its shearing rate is sufficient to cause a turbulence de-correlation. We have investigated the mechanisms causing the spontaneous generation of the radial electric field inside the last closed magnetic surface. In the Tore Supra tokamak, a Doppler reflectometer allows a quasi-direct measurement of the electric drift velocity due to Er. The effect of ripple (a periodic variation of the magnetic field between two coils, in the toroidal direction) is shown by comparing the measurements with predictions from various models, corresponding to different diffusion regimes (ripple-plateau, local trapping). In some special experimental conditions, a locally positive radial electric field has been measured inside the last closed flux surface in Tore Supra, which contrasts with the usual negative Er in this region. This suggests the presence of other non-ambipolar mechanisms. A discussion on the possible role of MHD activity and islands based on the Doppler reflectometry measurements is made. (author)

  16. Exact dynamic stiffness matrix of non-symmetric thin-walled curved beams subjected to initial axial force

    Science.gov (United States)

    Nam-Il, Kim; Moon-Young, Kim

    2005-06-01

    An improved numerical method to exactly evaluate the dynamic element stiffness matrix is proposed for the spatially coupled free vibration analysis of non-symmetric thin-walled curved beams subjected to uniform axial force. For this purpose, firstly equations of motion, boundary conditions and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next systems of linear algebraic equations with non-symmetric matrices are constructed by introducing 14 displacement parameters and transforming the fourth-order simultaneous differential equations into the first-order simultaneous equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact 14×14 element stiffness matrix is determined using force-deformation relations. In order to demonstrate the validity and the accuracy of this study, the spatially coupled natural frequencies of non-symmetric thin-walled curved beams subjected to uniform compressive and tensile forces are evaluated and compared with analytical and finite element solutions using Hermitian curved beam elements or ABAQUS's shell element. In addition, some results by the parametric study are reported.

  17. Axial symmetric rotation of a partially immersed body in a liquid with a surfactant layer

    Indian Academy of Sciences (India)

    Sunil Datta; Nidhi Pandya

    2001-08-01

    This paper gives a simple integral formula to evaluate the torque on a slowly rotating symmetric body partially immersed in a viscous liquid covered by an adsorbed surface film. Besides the results known earlier, new results have also been derived for small values of the surface shear viscosity parameter . It is seen that the effect of in all cases is to increase the torque.

  18. Approximate calculation of electronic energy levels of axially symmetric quantum dot and quantum ring by using energy dependent effective mass

    Institute of Scientific and Technical Information of China (English)

    Liu Yu-Min; Yu Zhong-Yuan

    2009-01-01

    Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.

  19. Lie map for the nonlinear transport of continuous intense beams in the axial-symmetric electrostatic fields

    Institute of Scientific and Technical Information of China (English)

    Jianqin Lü; Xiaosong Zhao

    2008-01-01

    Nonlinear transport of intense continuous beam in the axial-symmetric electrostatic fields is analyzed with the Lie algebraic method.The K-V particle distribution is adopted in the analysis. The results obtained can be used in the calculations of the intense continuous beam dynamics in the beam optical systems consisting of drift spaces, electrostatic lenses, and DC electrostatic accelerating tubes. A com-puter code has been designed for practical simulations. To meet the needs of accurate calculation, all the elements are divided into many small segments, the electric fields in each segment are regarded as uniform fields, and the dividing points are treated as thin lenses. Iter-ation procedures are adopted in the code to obtain self-consistent solutions. The code can be used to design low energy dc beam transport systems, electrostatic accelerators, and ion implantation machines.

  20. Exact analytic solutions for the rotation of an axially symmetric rigid body subjected to a constant torque

    Science.gov (United States)

    Romano, Marcello

    2008-08-01

    New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.

  1. Axial Symmetric Solutions to Einstein's Field Equations for Deformed Neutron Stars

    Science.gov (United States)

    Zubairi, Omair; Weber, Fridolin

    2016-03-01

    Traditional models of neutron stars are constructed under of assumption that they are perfect spheres. This is not correct, however, if the matter inside of neutron stars is described by an non-isotropic model for the equation of state. Examples of such stars are magnetars and neutron stars that would contain color-superconducting quark matter. In this work, we derive the stellar structure equations which describe the properties of non-isotropic neutron stars. The equations are solved numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure and density profiles and investigate any changes from conventional spherically symmetric neutron stars. This work was supported through the National Science Foundation under Grants PHYS-1411708 and DUE-1259951. Additional computing resources were provided by the CSRC at SDSU and the Department of Sciences at Wentworth Institute of Technology.

  2. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    International Nuclear Information System (INIS)

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm−1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  3. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S. [Department of Physics and Astronomy, Division of Applied Nuclear Physics, Uppsala University, Lägerhyddsgatan 1, 751 20 Uppsala (Sweden)

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  4. Mechanical analysis of an axially symmetric cylindrical phantom with a spherical heterogeneity for MR elastography

    Science.gov (United States)

    Schwartz, Benjamin L.; Yin, Ziying; Magin, Richard L.

    2016-09-01

    Cylindrical homogenous phantoms for magnetic resonance (MR) elastography in biomedical research provide one way to validate an imaging systems performance, but the simplified geometry and boundary conditions can cloak complexity arising at tissue interfaces. In an effort to develop a more realistic gel tissue phantom for MRE, we have constructed a heterogenous gel phantom (a sphere centrally embedded in a cylinder). The actuation comes from the phantom container, with the mechanical waves propagating toward the center, focusing the energy and thus allowing for the visualization of high-frequency waves that would otherwise be damped. The phantom was imaged and its stiffness determined using a 9.4 T horizontal MRI with a custom build piezo-elastic MRE actuator. The phantom was vibrated at three frequencies, 250, 500, and 750 Hz. The resulting shear wave images were first used to reconstruct material stiffness maps for thin (1 mm) axial slices at each frequency, from which the complex shear moduli μ were estimated, and then compared with forward modeling using a recently developed theoretical model which took μ as inputs. The overall accuracy of the measurement process was assessed by comparing theory with experiment for selected values of the shear modulus (real and imaginary parts). Close agreement is shown between the experimentally obtained and theoretically predicted wave fields.

  5. Comment on "Singularities in axially symmetric solutions of Einstein-Yang Mills and related theories, by Ludger Hannibal, [hep-th/9903063]"

    CERN Document Server

    Kleihaus, B

    1999-01-01

    We point out that the statements in [hep-th/9903063] concerning the regularity of static axially symmetric solutions in Yang-Mills-dilaton (YMD) [1] and Einstein-Yang-Mills(-dilaton) (EYMD) theory [2,3] are incorrect, and that the non-singular local gauge potential of the YMD solutions [4] is twice differentiable.

  6. Particle and impurity transport in the Axial Symmetric Divertor Experiment Upgrade and the Joint European Torus, experimental observations and theoretical understanding

    DEFF Research Database (Denmark)

    Angioni, C.; Carraro, L.; Dannert, T.;

    2007-01-01

    Experimental observations on core particle and impurity transport from the Axial Symmetric Divertor Experiment Upgrade [O. Gruber, H.-S. Bosch, S. Gunter , Nucl Fusion 39, 1321 (1999)] and the Joint European Torus [J. Pamela, E. R. Solano, and JET EFDA Contributors, Nucl. Fusion 43, 1540 (2003...

  7. Characterization of a potentially axially symmetric europium(III) complex of a tetraacetate,tetraaza, macrocyclic ligand by luminescence excitation, emission and lifetime spectroscopy

    Science.gov (United States)

    Albin, Michael; de, William; Horrocks, W., Jr.; Liotta, Frank J.

    1982-01-01

    The Eu(III) complex of the octadentate macrocyclic ligand, 1,4,7,10-tetraazacyclododecane-N,N',N'',N''' -tetraacetate, DOTA, has been examined by luminescence excitation, emission, and lifetime spectroscopy using pulsed dye laser techniques. The results confirm the expected axially symmetric nature of the major component in solution and reveal that 1.2 ± 0.4 water molecules arc coordinatcd to the Eu(III) ion in the complex.

  8. Effect of an axially-symmetric cyclonic vortex on the sea surface temperature in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, E.E.; Mendoza, V.M.; Adem, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: eevu@atmosfera.unam.mx

    2006-04-15

    A model for the mixed layer of the Gulf of Mexico has been used to determine the effect that an idealized cyclonic vortex has in the sea surface temperature. The model consists of the equations of conservation of thermal energy and this of balance between mechanical energy and thermal energy, last based on the Kraus-Turner theory; both equations are vertically integrated in the mixed layer. As atmospheric forcing, we prescribe the surface wind associated with an axially-symmetric cyclonic vortex characterized by two parameters: the maximum tangential velocity and the radius at which that velocity is reached. The values of these two parameters, which depend on the position of the vortex, correspond to two cases: hurricane Hilda, which crossed the central part of the Gulf of Mexico between September 29 and October 3, 1964 and hurricane Gilbert whose trajectory between 11 and 17 September, 1988 crossed the Caribbean Sea, the Yucatan Peninsula and the southwest Gulf of Mexico. The results show that a cyclonic vortex with such characteristics, produce during its passage by the sea vertical turbulent water transport through the thermocline (entrainment) that is able to cool down the mixed layer in several degrees and increases the thermocline depth in several meters, in agreement with the observations. [Spanish] Se aplica un modelo de capa de mezcla para el Golfo de Mexico con el objeto de determinar el efecto de un vortice ciclonico idealizado sobre la temperatura de la superficie del mar. El modelo consiste basicamente de dos ecuaciones, la de conservacion de energia termica y la de balance entre energia mecanica y energia termica, esta ultima derivada de la teoria de Kraus-Turner; ambas ecuaciones son verticalmente integradas y acopladas en la capa de mezcla. Como forzamiento atmosferico sobre la superficie del mar se prescribe el viento asociado a un vortice ciclonico axialmente simetrico caracterizado por dos parametros: la velocidad tangencial maxima y el radio al

  9. Generation of radially polarized high energy mid-infrared optical vortex by use of a passive axially symmetric ZnSe waveplate

    International Nuclear Information System (INIS)

    We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%

  10. Generation of radially polarized high energy mid-infrared optical vortex by use of a passive axially symmetric ZnSe waveplate

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, Toshitaka, E-mail: wakayama@saitama-med.ac.jp; Yonemura, Motoki [School of Biomedical Engineering, Saitama Medical University, Yamane 1397-1, Hidaka, Saitama 350-1241 (Japan); Oikawa, Hiroki; Sasanuma, Atsushi; Arai, Goki; Fujii, Yusuke [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Dinh, Thanh-Hung; Otani, Yukitoshi [Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Center for Optical Research & Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Sakaue, Kazuyuki, E-mail: kazuyuki.sakaue@aoni.waseda.jp [Waseda Institute for Advanced Study, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Miura, Taisuke, E-mail: miura@fzu.cz [HiLASE Centre, Institute of Physics CAS, Za radnicí 828, 252 41, Dolní Břežany (Czech Republic); Takahashi, Akihiko [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582 (Japan); Nakamura, Daisuke; Okada, Tatsuo [Graduate School of Information Sciences and Electrical Engineering, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2015-08-24

    We demonstrated the generation of the intense radially polarized mid-infrared optical vortex at a wavelength of 10.6 μm by use of a passive axially symmetric zinc selenide (ZnSe) waveplate with high energy pulse throughput. The phase of the radially polarized optical vortex with the degree of polarization of 0.95 was spirally distributed in regard to the angle. The converted laser beam energy of about 2.6 mJ per pulse was obtained at the input pulse energy of 4.9 mJ, corresponding to the energy conversion efficiency of 56%.

  11. Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces

    Institute of Scientific and Technical Information of China (English)

    Lü Xiao-Long; Zhang Xia; Liu Xiao-Long; Yan Xin; Cui Jian-Gong; Li Jun-Shuai; Huang Yong-Qing

    2013-01-01

    We report on the Au-assisted vapour-liquid-solid (VLS) growth of GaAs/InxGa1-xAs/GaAs (0.2 ≤ x ≤ 1) axial double-heterostructure nanowires on GaAs (111) B substrates via the metal-organic chemical vapor deposition (MOCVD) technique.The influence of the indium (In) content in an Au particle on the morphology of nanowires is investigated systematically.A short period of pre-introduced In precursor before the growth of InxGa1-xAs segment,coupled with a group Ⅲ precursor interruption,is conducive to obtaining symmetrical heterointerfaces as well as the desired In/Ga ratio in the InxGa1 xAs section.The nanowire morphology,such as kinking and tapering,are thought to be related to the In composition in the catalyst alloy as well as the VLS growth mechanism.

  12. Analysis of axially symmetric wire antennas by the use of exact kernel of electric field integral equation

    Directory of Open Access Journals (Sweden)

    Krneta Aleksandra J.

    2016-01-01

    Full Text Available The paper presents a new method for the analysis of wire antennas with axial symmetry. Truncated cones have been applied to precisely model antenna geometry, while the exact kernel of the electric field integral equation has been used for computation. Accuracy and efficiency of the method has been further increased by the use of higher order basis functions for current expansion, and by selecting integration methods based on singularity cancelation techniques for the calculation of potential and impedance integrals. The method has been applied to the analysis of a typical dipole antenna, thick dipole antenna and a coaxial line. The obtained results verify the high accuracy of the method. [Projekat Ministarstva nauke Republike Srbije, br. TR-32005

  13. 带异形反射腔和寄生螺旋的均匀升角轴向模螺旋天线%Symmetrical pitch angle axial mode helical antennas with especial reflection cavity and parasitic helix

    Institute of Scientific and Technical Information of China (English)

    问建; 张割

    2012-01-01

    A helical antenna with a cuiving reflection cavity was designed based on symmetrical pitch angle axial mode helical antenna with a parasitic helix to improve radiation performance of axial mode helical antennas. Its radiation properties was simulated with the software HFSS. The contrast result come from the simulation of several helical antennas shows that the helical antenna can effectively improve the power gain coefficient of axial mode helical antenna. Its circular polarizable consistency is good. The method is simple and efficient for improving radiation performance of axial mode helical antennas.%为了改善轴向模螺旋天线的辐射特性,在带有寄生螺旋的均匀升角轴向模螺旋天线基础上,设计了一种带有曲反射面背腔的螺旋天线,并用HFSS软件对天线的辐射特性进行了仿真分析.通过对比几种不同形式的螺旋天线的仿真结果,证明了该种螺旋天线可以有效地提高轴向模螺旋天线增益系数,圆极化一致性良好,是一种提高轴向模螺旋天线性能的有效方法.

  14. Numerical Simulation of the Axial-flow Pump with Duide Vane Adopted Symmetrical Airfoil%对称翼型导叶的轴流泵数值模拟

    Institute of Scientific and Technical Information of China (English)

    孟凡英; 吕晓军

    2014-01-01

    针对农业灌溉中对轴流泵性能的要求,为了更深入的研究该轴流泵的性能特性,研究了NACA0006对称翼型导叶的轴流泵性能,利用计算流体动力学软件Fluent ,采用RNG k-ε湍流模型和SIMPLEC算法对该轴流泵进行数值模拟。通过对其进行数值计算和对比分析表明,设计工况下的数据值不仅与 Fluent软件模拟的数据值相对误差为1.9%,并且应用Fluent软件模拟计算得到泵的性能曲线与性能实验的结果吻合较好,证明了在轴流泵导叶设计中,NACA0006翼型不仅结构简单、适用性良好,而且取得了更高的效率。%For the requirements of axial flow pump performance in agricultural irrigation ,in order to research the characteristics of axial-flow pump further ,the performance of axial guide vane by NACA 0006 symmetrical air-foil flow pump was studied .Through the computational fluid dynamics software of Fluent and RNG k -εtur-bulent model and SIMPLEC algorithm ,the axial flow pump was simulated .The numerical calculation and com-parative analysis showed that relative error of data was 1 .9% with data stimulated by Fluent software under design condition ,and the performance curve and experiment results simulated by application of Fluent software were in good agreement .It proved that the design of flow pump in axial guide vane ,NACA0006 airfoil had sim-ple structure and good applicability ,and it could achieve higher efficiency .

  15. Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid

    CERN Document Server

    Kaplan, Alex; Carmon, Tal; Kozlov, Maxim; Cohen, Oren; Bartal, Guy; Schwefel, Harald G L

    2013-01-01

    We present an optical mode solver for a whispering gallery resonator coupled to an adjacent arbitrary shaped nano-particle that breaks the axial symmetry of the resonator. Such a hybrid resonator-nanoparticle is similar to what was recently used for bio-detection and for field enhancement. We demonstrate our solver by parametrically studying a toroid-nanoplasmonic device and get the optimal nano-plasmonic size for maximal enhancement. We investigate cases near a plasmonic resonance as well as far from a plasmonic resonance. Unlike common plasmons that typically benefit from working near their resonance, here working far from plasmonic resonance provides comparable performance. This is because the plasmonic resonance enhancement is accompanied by cavity quality degradation through plasmonic absorption.

  16. 多种气膜冷却形式下轴对称矢量喷管壁温计算研究%Numerical Study on Film Cooling and Wall Temperature of Vectored Axial-symmetric Nozzle

    Institute of Scientific and Technical Information of China (English)

    薛航; 陈徐屹; 张小英

    2014-01-01

    The study on the cooling structure of vectoring nozzle is very essential for developing the vectoring propulsion technology in aero-engine .To study the cooling technology of the heat shield on the axial-symmetric vectoring nozzle with 20° deflection ,the heat balance equation based on heat transfer of nozzle has been devel-oped and solved with Newton-Rafael method to give wall temperature .Heat transfer of film cooling is computed with empirical formula of cooling effectiveness .And radiative heating from the gas is computed with net radia-tion analysis method in an enclosure .To verify the computation method ,wall temperature of a certain axial-symmetric nozzle in after burning condition is computed and compared with the results of reference .Study shows that the heat shield plays a good cooling part for convergent part of nozzle with film cooling reducing its temperature remarkably .Compared with convergent part of nozzle which is protected by the heat shield ,tem-perature of the divergent section of nozzle is much higher and needs further cooling .%航空发动机矢量喷管的冷却结构设计是研究矢量推进技术应用的关键问题之一。针对某偏转20°轴对称矢量喷管隔热屏采用的十种气膜冷却结构,建立基于壁面传热的热平衡方程,采用牛顿-拉斐尔森迭代法得出十种冷却结构下壁面及隔热屏的温度。其中气膜冷却采用有效温比经验公式计算,燃气辐射采用封闭腔净辐射分析法计算,并把本文计算的壁温与文献结果进行对比分析。结果表明:隔热屏对喷管收敛段有很好的冷却作用,采用气膜冷却可显著降低其温度;相对于受隔热屏保护的收敛段而言,喷管扩张段的受热形势较为严峻,温度更高,其冷却有待加强。

  17. Characterization of dust particles produced in an all-tungsten wall tokamak and potentially mobilized by airflow

    Energy Technology Data Exchange (ETDEWEB)

    Rondeau, A., E-mail: anthony.rondeau@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Peillon, S.; Roynette, A.; Sabroux, J.-C.; Gelain, T.; Gensdarmes, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, 91192 Gif-sur-Yvette (France); Rohde, V. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Grisolia, C. [CEA, IRFM, 13108 Saint-Paul-lez-Durance (France); Chassefière, E. [Laboratoire Géosciences Paris Sud (GEOPS), UMR 8148, Université Paris Sud, 91403 Orsay Cedex (France)

    2015-08-15

    At the starting of the shutdown of the AUG (ASDEX Upgrade: Axially Symmetric Divertor EXperiment) German tokamak, we collected particles deposited on the divertor surfaces by means of a dedicated device called “Duster Box”. This device allows to collect the particles using a controlled airflow with a defined shear stress. Consequently, the particles collected correspond to a potentially mobilizable fraction, by an airflow, of deposited dust. A total of more than 70,000 tungsten particles was, analysed showing a bimodal particle size distribution with a mode composed of flakes at 0.6 μm and a mode composed of spherical particles at 1.8 μm.

  18. Axially Symmetric Post-Newtonian Stellar Systems

    Directory of Open Access Journals (Sweden)

    Camilo Akímushkin

    2010-01-01

    Full Text Available Presentamos un método para obtener modelos estelares discoidales, axialmente simétricos, auto-consistentes en la primera aproximación post-Newtoniana (1PN. Usando en las ecuaciones de campo de la aproximación 1PN una función de distribución conocida (DF que corresponde a un modelo Newtoniano, se obtienen dos ecuaciones fundamentales para determinar las correcciones 1PN. Las curvas de rotación de los modelos corregidos difieren de las clásicas y las correcciones son claramente apreciables con los valores de la masa y el radio de una galaxia típica. Por otro lado, la corrección relativista de la masa se puede ignorar para todos los modelos.

  19. Propagation of Axially Symmetric Detonation Waves

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  20. Axially symmetric pseudo-Newtonian hydrodynamics code

    CERN Document Server

    Kim, Jinho; Choptuik, Matthew William; Lee, Hyung Mok

    2012-01-01

    We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses the weak field approximation for the geometry, and a generalized source term for the Poisson equation that takes into account relativistic effects. The code was designed to treat moderately relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are solved using a finite volume method with High Resolution Shock Capturing (HRSC) techniques. We implement several different slope limiters for second order reconstruction schemes and also investigate higher order reconstructions. We use the method of lines (MoL) to convert the mixed spatial-time partial differential equations into ordinary differential equations (ODEs) that depend only on time. These ODEs are solved using 2nd and 3rd order Runge-Kutta methods. The Poisson equation for the gravitational potential is solved with a multigrid method. In order to confirm the validity of our code, we carry out four different tests including one and two...

  1. 猫眼腔激光器光束合成轴对称线偏振矢量光束%Generation of Axially Symmetric Linearly-Polarized Vector Beams From Cat-Eye Cavity Laser Beams

    Institute of Scientific and Technical Information of China (English)

    肖保玲; 胡朝晖; 周哲海; 张书练; 杨洁; 王晓玲; 祝连庆

    2012-01-01

    提出了一种将猫眼腔氦氖激光器与马赫-曾德尔干涉仪相结合、通过模式叠加生成多种轴对称线偏振矢量光束的新方法.利用猫眼腔激光器获得了TEM00、TEM01、TEM10、TEM11、TEM20、TEM21、TEM30、TEM31等多种激光横模;利用马赫-曾德尔干涉仪通过模式叠加获得了四种不同形式的轴对称线偏振矢量光束,其偏振级次和初始偏振方位角分别为(+1,0°)、(+1,-90°)、(-1,0°)和(-1,90°);测量了生成光束经过线偏振片的强度分布,验证了生成光束的偏振分布特性.利用该方法可在同一系统上通过调制猫眼腔激光器生成多种形式的轴对称线偏振矢量光束,无需特殊光学元件,成本较低,操作简单.%A novel method based on a cat-eye cavity laser and a Mach-Zehnder interferometer is presented to generate various axially symmetric linearly-polarized vector beams (ASLPVB) by modes superposition. Transverse modes of TEM00, TEM0,1, TEM10, TEM11, TEM20, TEM21 , TEM30 and TEM31 are obtained by adjusting the cat-eye cavity laser. And then, four kinds of ASLPVB, whose polarization orders and initial azimuthal polarization angles are ( + 1,0°), ( + 1,-90°), ( - 1,0°) and ( - 1,90°) respectively, are further achieved by modes superposition using the Mach-Zehnder interferometer. The transmitted intensities of generated beams passing through a linear polarizer are further measured using a CCD, which verify the polarization properties of generated vector beams. Various forms of ASLPVB can also be generated using such method in one system, which does not need special optical components, costs least and operates easily.

  2. Simulation of an Axial Vircator

    CERN Document Server

    Tikhomirov, V V

    2013-01-01

    An algorithm of particle-in-cell simulations is described and tested to aid further the actual design of simple vircators working on axially symmetric modes. The methods of correction of the numerical solution, have been chosen and jointly tested, allow the stable simulation of the fast nonlinear multiflow dynamics of virtual cathode formation and evolution, as well as the fields generated by the virtual cathode. The selected combination of the correction methods can be straightforwardly generalized to the case of axially nonsymmetric modes, while the parameters of these correction methods can be widely used to improve an agreement between the simulation predictions and the experimental data.

  3. Status of tokamak research

    International Nuclear Information System (INIS)

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  4. Simulation of an Axial Vircator

    OpenAIRE

    Tikhomirov, V. V.; Siahlo, S. E.

    2013-01-01

    An algorithm of particle-in-cell simulations is described and tested to aid further the actual design of simple vircators working on axially symmetric modes. The methods of correction of the numerical solution, have been chosen and jointly tested, allow the stable simulation of the fast nonlinear multiflow dynamics of virtual cathode formation and evolution, as well as the fields generated by the virtual cathode. The selected combination of the correction methods can be straightforwardly gene...

  5. Tokamak Systems Code

    International Nuclear Information System (INIS)

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  6. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  7. Analytic study of plastic instabilities during tension or compression tests on a metallic plate bi-axially loaded in its plane: symmetric and antisymmetric modes with respect to the median plane

    International Nuclear Information System (INIS)

    This report is a continuation of the thesis [23], devoted to the onset of necking plastic instabilities during tension tests on metallic plates bi-axially loaded in their plane. We are also interested here in compression tests, and in the development of antisymmetric defects with respect to the median plane of the plate. As in the thesis, we search for the dominant mode, i.e. the most unstable pair of wavelengths (λ1, λ2) in the loading plane. An approximate analytical formulation for the growth rate is proposed, especially for plane-strain tests in the absence of viscous effects, and for static tests in tension in the x1 and x2 loading directions. In that latter case, we retrieve published results [14][15]. For plane-strain tests, we show that infinitely dense networks of shear bands inclined at 45 deg. with respect to the loading direction instantaneously occur when heat softening prevails over work-hardening. (author)

  8. Tokamak concept innovations

    International Nuclear Information System (INIS)

    This document contains the results of the IAEA Specialists' Meeting on Tokamak Concept Innovations held 13-17 January 1986 in Vienna. Although it is the most advanced fusion reactor concept the tokamak is not without its problems. Most of these problems should be solved within the ongoing R and D studies for the next generation of tokamaks. Emphasis for this meeting was placed on innovations that would lead to substantial improvements in a tokamak reactor, even if they involved a radical departure from present thinking

  9. Tokamak ARC damage

    International Nuclear Information System (INIS)

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage

  10. Survey of Tokamak experiments

    International Nuclear Information System (INIS)

    The survey covers the following topics:- Introduction and history of tokamak research; review of tokamak apparatus, existing and planned; remarks on measurement techniques and their limitations; main results in terms of electron and ion temperatures, plasma density, containment times, etc. Empirical scaling; range of operating densities; impurities, origin, behaviour and control (including divertors); data on fluctuations and instabilities in tokamak plasmas; data on disruptive instabilities; experiments on shaped cross-sections; present experimental evidence on β limits; auxiliary heating; experimental and theoretical problems for the future. (author)

  11. Stability of Reflection Symmetric Collapsing Structures

    CERN Document Server

    Sharif, M

    2015-01-01

    In this paper, we explore instability regions of non-static axial reflection symmetric spacetime with anisotropic source in the interior. We impose linear perturbation on the Einstein field equations and dynamical equations to establish the collapse equation. The effects of different physical factors like energy density and anisotropic stresses on the instability regions are studied under Newtonian and post-Newtonian limits. We conclude that stiffness parameter has a significant role in this analysis while the reflection terms increase instability ranges of non-static axial collapse.

  12. Research using small tokamaks

    International Nuclear Information System (INIS)

    These proceedings of the IAEA-sponsored meeting held in Nice, France 10-11 October, 1988, contain the manuscripts of the 21 reports dealing with research using small tokamaks. The purpose of this meeting was to highlight some of the achievements of small tokamaks and alternative magnetic confinement concepts and assess the suitability of starting new programs, particularly in developing countries. Papers presented were either review papers, or were detailed descriptions of particular experiments or concepts. Refs, figs and tabs

  13. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  14. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  15. The Dynamic Mutation Characteristics of Thermonuclear Reaction in Tokamak

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-01-01

    Full Text Available The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated in this paper. The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with the method of multiple scales and the average equations turn to be a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given.

  16. Symmetrical Brodie's abscess.

    Science.gov (United States)

    Chambler, A F; Chapman-Sheath, P J; Pearse, M F; Hollingdale, J

    1997-10-01

    Chronic recurrent multifocal osteomyelitis is often confused with symmetrical Brodie's abscess as it has a similar pathogenesis. We report an otherwise healthy 17-year-old boy presenting with a true symmetrical Brodie's abscess. We conclude that a symmetrical Brodie's abscess presenting in an otherwise healthy patient is a separate clinical condition with a different management protocol.

  17. Joint research using small tokamaks

    International Nuclear Information System (INIS)

    Small tokamaks have an important role in fusion research. More than 40 small tokamaks are operational. Research on small tokamaks has created a scientific basis for the scaling-up to larger tokamaks. Well-known scientific and engineering schools, which are now determining the main directions of fusion science and technology, have been established through research on small tokamaks. Combined efforts within a network of small and medium size tokamaks will further enhance the contribution of small tokamaks. A new concept of interactive coordinated research using small tokamaks in the mainstream fusion science areas, in testing of new diagnostics, materials and technologies as well as in education, training and broadening of the geography of fusion research in the scope of the IAEA Coordinated Research Project, is presented

  18. Computation of liquid drop deformation energy for axial symmetric nuclei

    International Nuclear Information System (INIS)

    Computation methods for deformation dependent terms of the nuclear potential energy in the Myers-Swiatecki's and Krappe-Nix's variants of the liquid-drop model are presented. Also, an extension of the Krappe-Nix integral, surface and Coulomb energies formulas in case of reflection asymmetric deformations leading to fragments with different charge-to-mass ratio is introduced. (author)

  19. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  20. Refractive index determination in axially symmetric oprtically inhomogeneous media

    Science.gov (United States)

    Ionescu-Pallas, Nicholas; Vlad, Valentin I.; Bociort, Florian

    The focussing method from transversally light, put forward by Dietrich Marcuse in view of determining the refractive index profile (RIP) in optical fibers and fiber performs, is revised. A more rigorous derivation of the Marcuse formula is given, establishing the conditions of its validity and a simplified version is initially proposed, able to avoid the systematic errors in the processing of light intensity data.

  1. Convection in axially symmetric accretion discs with microscopic transport coefficients

    CERN Document Server

    Malanchev, K L; Shakura, N I

    2016-01-01

    The vertical structure of stationary thin accretion discs is calculated from the energy balance equation with heat generation due to microscopic ion viscosity {\\eta} and electron heat conductivity {\\kappa}, both depending on temperature. In the optically thin discs it is found that for the heat conductivity increasing with temperature, the vertical temperature gradient exceeds the adiabatic value at some height, suggesting convective instability in the upper disc layer. There is a critical Prandtl number, Pr = 4/9, above which a Keplerian disc become fully convective. The vertical density distribution of optically thin laminar accretion discs as found from the hydrostatic equilibrium equation cannot be generally described by a polytrope but in the case of constant viscosity and heat conductivity. In the optically thick discs with radiation heat transfer, the vertical disc structure is found to be convectively stable for both absorption dominated and scattering dominated opacities, unless a very steep dependen...

  2. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    International Nuclear Information System (INIS)

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  3. Dust-filled axially symmetric universes with a cosmological constant

    CERN Document Server

    Aguiar, P; Aguiar, Paulo; Crawford, Paulo

    2000-01-01

    Following the recent recognition of a positive value for the vacuum energy density and the realization that a simple Kantowski-Sachs model might fit the classical tests of cosmology, we study the qualitative behavior of three anisotropic and homogeneous models: Kantowski-Sachs, Bianchi type-I and Bianchi type-III universes, with dust and a cosmological constant, in order to find out which are physically permitted. We find that these models undergo isotropization up to the point that the observations will not be able to distinguish between them and the standard model, except for the Kantowski-Sachs model $(\\Omega_{k_{0}}0)$ with $\\Omega_{\\Lambda_{0}}$ smaller than some critical value $\\Omega_{\\Lambda_{M}}$. Even if one imposes that the Universe should be nearly isotropic since the last scattering epoch ($z\\approx 1000$), meaning that the Universe should have approximately the same Hubble parameter in all directions (considering the COBE 4-Year data), there is still a large range for the matter density paramete...

  4. Axially symmetric equations for differential pulsar rotation with superfluid entrainment

    CERN Document Server

    Antonelli, Marco

    2016-01-01

    We propose an analytical two-components model for pulsar rotational dynamics: the aim is to reduce the 3D hydrodynamical problem to a 1D (radial) problem, using the hypothesis of negligible azimuthal inhomogeneities. The result is the construction of a computationally simple model that takes into account for the non-uniform structure of the star, entrainment effect and differential rotation of the superfluid component. For the first time all these ingredients are treated in a fully consistent way within the picture provided by our initial hypotheses. Our treatment clarifies which are the physical inputs needed to build, to current knowledge, more realistic simulations of rotating neutron stars and gives a neat description of the effect of entrainment when straight vortex lines are considered. Moreover, on this basis, we briefly introduce a new method that can be used to put a constraint to the mass of the pulsars that display very large glitches and to the relative spin up timescales.

  5. Convection in axially symmetric accretion discs with microscopic transport coefficients

    Science.gov (United States)

    Malanchev, K. L.; Postnov, K. A.; Shakura, N. I.

    2016-09-01

    The vertical structure of stationary thin accretion discs is calculated from the energy balance equation with heat generation due to microscopic ion viscosity η and electron heat conductivity κ, both depending on temperature. In the optically thin discs it is found that for the heat conductivity increasing with temperature, the vertical temperature gradient exceeds the adiabatic value at some height, suggesting convective instability in the upper disc layer. There is a critical Prandtl number, Pr = 4/9, above which a Keplerian disc become fully convective. The vertical density distribution of optically thin laminar accretion discs as found from the hydrostatic equilibrium equation cannot be generally described by a polytrope but in the case of constant viscosity and heat conductivity. In the optically thick discs with radiation heat transfer, the vertical disc structure is found to be convectively stable for both absorption dominated and scattering dominated opacities, unless a very steep dependence of the viscosity coefficient on temperature is assumed. A polytropic-like structure in this case is found for Thomson scattering dominated opacity.

  6. Texas Experimental Tokamak

    International Nuclear Information System (INIS)

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported

  7. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  8. Beyond axial symmetry: An improved class of models for global data

    KAUST Repository

    Castruccio, Stefano

    2014-03-01

    An important class of models for data on a spherical domain, called axially symmetric, assumes stationarity across longitudes but not across latitudes. The main aim of this work is to introduce a new and more flexible class of models by relaxing the assumption of longitudinal stationarity in the context of regularly gridded climate model output. In this investigation, two other related topics are discussed: the lack of fit of an axially symmetric parametric model compared with a non-parametric model and to longitudinally reversible processes, an important subclass of axially symmetric models.

  9. An Unbroken Axial Vector Current Conservation Law

    CERN Document Server

    Sharafiddinov, Rasulkhozha S

    2015-01-01

    The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space i...

  10. Symmetric, coherent, Choquet capacities

    OpenAIRE

    Kadane, Joseph B.; Wasserman, Larry

    1996-01-01

    Choquet capacities are a generalization of probability measures that arise in robustness, decision theory and game theory. Many capacities that arise in robustness are symmetric or can be transformed into symmetric capacities. We characterize the extreme points of the set of upper distribution functions corresponding to coherent, symmetric Choquet capacities on [0, 1]. We also show that the set of 2-alternating capacities is a simplex and we give a Choquet representation of this set.

  11. Reconnection in tokamaks

    International Nuclear Information System (INIS)

    Calculations with several different computer codes based on the resistive MHD equations have shown that (m = 1, n = 1) tearing modes in tokamak plasmas grow by magnetic reconnection. The observable behavior predicted by the codes has been confirmed in detail from the waveforms of signals from x-ray detectors and recently by x-ray tomographic imaging

  12. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  13. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1998-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  14. Advanced tokamak concepts

    NARCIS (Netherlands)

    Oomens, A. A. M.

    1996-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described and the main e

  15. Research using small tokamaks

    International Nuclear Information System (INIS)

    The technical reports contained in this collection of papers on research using small tokamaks fall into four main categories, i.e., (i) experimental work (heating, stability, plasma radial profiles, fluctuations and transport, confinement, ultra-low-q tokamaks, wall physics, a.o.), (ii) diagnostics (beam probes, laser scattering, X-ray tomography, laser interferometry, electron-cyclotron absorption and emission systems), (iii) theory (strong turbulence, effects of heating on stability, plasma beta limits, wave absorption, macrostability, low-q tokamak configurations and bootstrap currents, turbulent heating, stability of vortex flows, nonlinear islands growth, plasma-drift-induced anomalous transport, ergodic divertor design, a.o.), and (iv) new technical facilities (varistors applied to establish constant current and loop voltage in HT-6M), lower-hybrid-current-drive systems for HT-6B and HT-6M, radio-frequency systems for HT-6M ICR heating experimentation, and applications of fiber optics for visible and vacuum ultraviolet radiation detection as applied to tokamaks and reversed-field pinches. A total number of 51 papers are included in the collection. Refs, figs and tabs

  16. Research using small tokamaks

    International Nuclear Information System (INIS)

    This document consists of a collection of papers presented at the IAEA Technical Committee Meeting on Research Using Small Tokamaks. It contains 22 papers on a wide variety of research aspects, including diagnostics, design, transport, equilibrium, stability, and confinement. Some of these papers are devoted to other concepts (stellarators, compact tori). Refs, figs and tabs

  17. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  18. Inverse Symmetric Inflationary Attractors

    CERN Document Server

    Odintsov, S D

    2016-01-01

    We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...

  19. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  20. Efficient Cartesian-grid-based modeling of rotationally symmetric bodies

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2007-01-01

    Axially symmetric waveguides, resonators, and scatterers of arbitrary cross section and anisotropy in the cross section can be modeled rigorously with use of 2-D Cartesian-grid based codes by means of mere redefinition of material permittivity and permeability profiles. The method is illustrated by...

  1. Next tokamak facility

    International Nuclear Information System (INIS)

    Design studies on a superconducting, long-pulse, current-driven, ignited tokamak, called the Toroidal Fusion Core Demonstration (TFCD), are being conducted by the Fusion Engineering Design Center (FEDC) and Princeton Plasma Physics Laboratory (PPPL) with additional broad community involvement. Options include the use of all-superconducting toroidal field (TF) coils, a superconducting-copper hybrid arrangement of TF coils, or all-copper TF coils. Only the first two options have been considered to date. The general feasibility of these approaches has been established with the goal of high performance (ignition, approx. 390 MW; wall loading approx. 2.2 MW/m2) at minimum capital cost. The preconceptual effort will be completed in early FY 1984 and a selection made from the indicated options. The TFCD is judged to represent a reasonable necessary step between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor

  2. Tritium catalyzed deuterium tokamaks

    International Nuclear Information System (INIS)

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the 3He from the D(D,n)3He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general)

  3. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  4. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  5. [High beta tokamak research

    International Nuclear Information System (INIS)

    Our activities on High Beta Tokamak Research during the past 20 months of the present grant period can be divided into six areas: reconstruction and modeling of high beta equilibria in HBT; measurement and analysis of MHD instabilities observed in HBT; measurements of impurity transport; diagnostic development on HBT; numerical parameterization of the second stability regime; and conceptual design and assembly of HBT-EP. Each of these is described in some detail in the sections of this progress report

  6. Symmetrical gait descriptions

    Science.gov (United States)

    Dunajewski, Adam; Dusza, Jacek J.; Rosado Muñoz, Alfredo

    2014-11-01

    The article presents a proposal for the description of human gait as a periodic and symmetric process. Firstly, the data for researches was obtained in the Laboratory of Group SATI in the School of Engineering of University of Valencia. Then, the periodical model - Mean Double Step (MDS) was made. Finally, on the basis of MDS, the symmetrical models - Left Mean Double Step and Right Mean Double Step (LMDS and RMDS) could be created. The method of various functional extensions was used. Symmetrical gait models can be used to calculate the coefficients of asymmetry at any time or phase of the gait. In this way it is possible to create asymmetry, function which better describes human gait dysfunction. The paper also describes an algorithm for calculating symmetric models, and shows exemplary results based on the experimental data.

  7. Noncommutative Bessel symmetric functions

    OpenAIRE

    Novelli, Jean-Christophe; Thibon, Jean-Yves

    2006-01-01

    The consideration of tensor products of 0-Hecke algebra modules leads to natural analogs of the Bessel J-functions in the algebra of noncommutative symmetric functions. This provides a simple explanation of various combinatorial properties of Bessel functions.

  8. A symmetrical rail accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  9. SYMMETRIC VORTICAL STRUCTURE AND ITS TOPOLOGICAL STABILITY

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; LIANG Xin-gang; GANG Ming-li

    2005-01-01

    Using time-dependent compressible laminar Navier-Stokes equations with a finite volume method incorporating a third-order-accurate discretization scheme, the flow structures around a slender at certain incidences are numerical simulated and typical crossflow patterns are presented. At incidence 10°, these vortical configurations are different at dissimilar axial locations though they are symmetric. At 35°, the symmetric vortical structures still maintain over the slender, yet their interaction at afterbody is intense than that at the forebody since the two vortices have fully developed downstream. The unstable topological structure of trajectory of saddle-to-saddle points and multiple limit cycle are further discussed in topological stability theory. These structures easily produce bifurcation with perturbation. The results support the view of hydrodynamic instability of vortices flow field.

  10. Locating cantori for symmetric tokamap and symmetric ergodic magnetic limiter map using mean-energy error criterion

    Energy Technology Data Exchange (ETDEWEB)

    Jazayeri, S.M. [Physics Department, Iran University of Science and Technology, Tehran, (Iran, Islamic Republic of); Sohrabi, A.R., E-mail: arsohrabi@iust.ac.ir [Faculty of Computer and information technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of)

    2014-07-01

    We use a method based on the conservation of energy, the mean-energy error criterion, to approximately locate the place of a cantorus by locating the series of its convergent. The mean-energy error curve has nearly stationary parts in the vicinity of elliptic (minimax) orbits, the so-called magnetic islands. Stable minimax orbits converge to orbits homoclinic to a cantorus. By tracing the island series, we limit the cantorus to a narrow region. A near-critical perturbation parameter is used so that, while the cantorus may be destabilized, its high order minimax orbits remain intact. As illustrations, we consider two symplectic maps, systematically derived from the Hamilton– Jacobi equation and Jacobi’s theorem, in the context of the magnetically confined plasmas in a tokamak: a symmetric tokamap realistically reproduces the main features of a tokamak, and a symmetric ergodic magnetic limiter (EML) map is defined to describe the action of EML rings on the magnetic field lines in the tokamak. (author)

  11. Time-resolved spectroscopy in the Rijnhuizen Tokamak Project tokamak

    NARCIS (Netherlands)

    Box, F. M. A.; Howard, J.; VandeKolk, E.; Meijer, F. G.

    1997-01-01

    At the Rijnhuizen Tokamak Project tokamak spectrometers are used to diagnose the velocity distribution and abundances of impurity ions. Quantities can be measured as a function of time, and the temporal resolution depends on the line emissivity and can be as good as 0.2 ms for the strongest lines. S

  12. Second harmonic generation of off axial vortex beam in the case of walk-off effect

    Science.gov (United States)

    Chen, Shunyi; Ding, Panfeng; Pu, Jixiong

    2016-07-01

    Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.

  13. Magnetic confinement experiment -- 1: Tokamaks

    International Nuclear Information System (INIS)

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization

  14. Magnetic confinement experiment -- 1: Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J.

    1994-12-31

    This report reviews presentations made at the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion on experimental tokamak physics, particularly on advances in core plasma physics, divertor and edge physics, heating and current drive, and tokamak concept optimization.

  15. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  16. Thermophoretic motion of bodies with axial symmetry

    International Nuclear Information System (INIS)

    Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen number, K n. The study is made in the limit where the typical length of the immersed body is small compared with the mean free path. It is shown that in this case, in contrast to what is the case for spherical bodies, the arising thermal force on the body is not in general anti-parallel to the temperature gradient. It is also shown that the gas exerts a torque on the body, which in magnitude and direction depends on the body geometry. Equations of motion describing the body movement are derived. Stationary solutions are studied

  17. Tokamak burn control

    International Nuclear Information System (INIS)

    Research of the fusion plasma thermal instability and its control is reviewed. General models of the thermonuclear plasma are developed. Techniques of stability analysis commonly employed in burn control research are discussed. Methods for controlling the plasma against the thermal instability are reviewed. Emphasis is placed on applications to tokamak confinement concepts. Additional research which extends the results of previous research is suggested. Issues specific to the development of control strategies for mid-term engineering test reactors are identified and addressed. 100 refs., 24 figs., 10 tabs

  18. Demonstration tokamak power plant

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System.

  19. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  20. Axial static mixer

    Science.gov (United States)

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  1. Surface nanoscale axial photonics

    OpenAIRE

    Sumetsky, M.; Fini, J. M.

    2011-01-01

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger e...

  2. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  3. Multiparty Symmetric Sum Types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  4. Progressive symmetric erythrokeratoderma

    Directory of Open Access Journals (Sweden)

    Gharpuray Mohan

    1990-01-01

    Full Text Available Four patients had symmetrically distributed hyperkeratotic plaques on the trunk and extremities; The lesions in all of them had appeared during infancy, and after a brief period of progression, had remained static, All of them had no family history of similar skin lesions. They responded well to topical applications of 6% salicylic acid in 50% propylene glycol. Unusual features in these cases of progressive symmetric erythrokeratoderma were the sparing of palms and soles, involvement of the trunk and absence of erythema.

  5. ITER tokamak device

    Science.gov (United States)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  6. Edge turbulence in tokamaks

    Science.gov (United States)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  7. Dust Measurements in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  8. Axisymmetric control in tokamaks

    International Nuclear Information System (INIS)

    Vertically elongated tokamak plasmas are intrinsically susceptible to vertical axisymmetric instabilities as a result of the quadrupole field which must be applied to produce the elongation. The present work analyzes the axisymmetric control necessary to stabilize elongated equilibria, with special application to the Alcator C-MOD tokamak. A rigid current-conserving filamentary plasma model is applied to Alcator C-MOD stability analysis, and limitations of the model are addressed. A more physically accurate nonrigid plasma model is developed using a perturbed equilibrium approach to estimate linearized plasma response to conductor current variations. This model includes novel flux conservation and vacuum vessel stabilization effects. It is found that the nonrigid model predicts significantly higher growth rates than predicted by the rigid model applied to the same equilibria. The nonrigid model is then applied to active control system design. Multivariable pole placement techniques are used to determine performance optimized control laws. Formalisms are developed for implementing and improving nominal feedback laws using the C-MOD digital-analog hybrid control system architecture. A proportional-derivative output observer which does not require solution of the nonlinear Ricatti equation is developed to help accomplish this implementation. The nonrigid flux conserving perturbed equilibrium plasma model indicates that equilibria with separatrix elongation of at least sep = 1.85 can be stabilized robustly with the present control architecture and conductor/sensor configuration

  9. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard;

    2010-01-01

    of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...

  10. Quantum Binary Symmetric Channels

    Institute of Scientific and Technical Information of China (English)

    陈小余; 仇佩亮

    2001-01-01

    Quantum binary symmetric channels are defined via the invariance of fidelity under unitary transformations ofthe input density operators. In this definition, they not only include the most studied case of the depolarizingchannel but also other channels. We investigate the character of the latter and find the maximum of the coherentinformation to estimate the capacities of the channels.

  11. Multiparty Symmetric Sum Types

    Directory of Open Access Journals (Sweden)

    Lasse Nielsen

    2010-11-01

    Full Text Available This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs. Processes using the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient implementation of a prototypical tool for CPGs which automatically translates the original CPG specifications from a representation called the Process Matrix to symmetric sum types, type checks programs and executes them.

  12. Symmetric Spaces in Supergravity

    CERN Document Server

    Ferrara, Sergio

    2008-01-01

    We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of solutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.

  13. Time-resolved spectroscopy in the Rijnhuizen Tokamak Project tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Box, F.M.A.; Kolk, E. van de [Associatie Euratom-FOM, Nieuwegein (Netherlands). FOM-Instituut voor Plasmafysica; Howard, J. [Plasma Research Laboratory, Research School of Physical Science and Engineering, Australian National University, Canberra 0200 (Australia); Meijer, F.G. [Physics Faculty, University of Amsterdam, Amsterdam (Netherlands)

    1997-03-01

    At the Rijnhuizen Tokamak Project tokamak spectrometers are used to diagnose the velocity distribution and abundances of impurity ions. Quantities can be measured as a function of time, and the temporal resolution depends on the line emissivity and can be as good as 0.2 ms for the strongest lines. Several spectrometers, equipped with a charge-coupled device array, are being used with spectral ranges in the visible, the vacuum UV and the extreme UV. (orig.)

  14. Research using small tokamaks

    International Nuclear Information System (INIS)

    The technical reports in this document were presented at the IAEA Technical Committee Meeting ''Research on Small Tokamaks'', September 1990, in three sessions, viz., (1) Plasma Modes, Control, and Internal Phenomena, (2) Edge Phenomena, and (3) Advanced Configurations and New Facilities. In Section (1) experiments at controlling low mode number modes, feedback control using external coils, lower-hybrid current drive for the stabilization of sawtooth activity and continuous (1,1) mode, and unmodulated and fast modulated ECRH mode stabilization experiments were reported, as well as the relation to disruptions and transport of low m,n modes and magnetic island growth; static magnetic perturbations by helical windings causing mode locking and sawtooth suppression; island widths and frequency of the m=2 tearing mode; ultra-fast cooling due to pellet injection; and, finally, some papers on advanced diagnostics, i.e., lithium-beam activated charge-exchange spectroscopy, and detection through laser scattering of discrete Alfven waves. In Section (2), experimental edge physics results from a number of machines were presented (positive biasing on HYBTOK II enhancing the radial electric field and improving confinement; lower hybrid current drive on CASTOR improving global particle confinement, good current drive efficiency in HT-6B showing stabilization of sawteeth and Mirnov oscillations), as well as diagnostic developments (multi-chord time resolved soft and ultra-soft X-ray plasma radiation detection on MT-1; measurements on electron capture cross sections in multi-charged ion-atom collisions; development of a diagnostic neutral beam on Phaedrus-T). Theoretical papers discussed the influence of sheared flow and/or active feedback on edge microstability, large edge electric fields, and two-fluid modelling of non-ambipolar scrape-off layers. Section (3) contained (i) a proposal to construct a spherical tokamak ''Proto-Eta'', (ii) an analysis of ultra-low-q and runaway

  15. Volt-second consumption in tokamaks with sawtooth activity

    International Nuclear Information System (INIS)

    The effects of sawtooth activity on the poloidal magnetic flux and energy balances in tokamak plasmas on a diffusive timescale are evaluated through the application of conservation principles to Maxwell's equations. Poloidal magnetic flux (volt-second) consumption can be partitioned into internal and dissipative components by two methods: the 'axial method' based on a magnetic flux balance and the 'Poynting method' based on a magnetic energy balance. Both require additional terms that specifically account for the poloidal flux and magnetic energy changes during magnetic reconnection derived from analysis on a magnetohydrodynamic (MHD) timescale. In experimental analyses these terms are absorbed in the inferred resistive dissipation, while in predictive analyses thay must be evaluated directly. The dissipation of poloidal flux by sawtooth activity can exceed the normal resistive dissipation when the axial method of accounting is used

  16. Spheromak injection into a tokamak

    OpenAIRE

    Brown, M R; Bellan, P. M.

    1990-01-01

    Recent results from the Caltech spheromak injection experiment [to appear in Phys. Rev. Lett.] are reported. First, current drive by spheromak injection into the ENCORE tokamak as a result of the process of magnetic helicity injection is observed. An initial 30% increase in plasma current is observed followed by a drop by a factor of 3 because of sudden plasma cooling. Second, spheromak injection results in an increase of tokamak central density by a factor of 6. The high-current/high-density...

  17. Confinement and diffusion in tokamaks

    International Nuclear Information System (INIS)

    The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cTe/eB(δni/ni)rms which is also derived by a simple theory, the cross-field diffusion time, tp=a2/D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation

  18. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  19. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  20. The ARIES tokamak reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  1. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D3He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  2. Symmetric waterbomb origami

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  3. Homogenous finitary symmetric groups

    Directory of Open Access Journals (Sweden)

    Otto‎. ‎H‎. Kegel

    2015-03-01

    Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .

  4. EQUIFOCAL HYPERSURFACES IN SYMMETRIC SPACES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This note investigates the multiplicity problem of principal curvatures of equifocal hyper surfaces in simply connected rank 1 symmetric spaces. Using Clifford representation theory, and the author also constructs infinitely many equifocal hypersurfaces in the symmetric spaces.

  5. Symmetric Extended Ockham Algebras

    Institute of Scientific and Technical Information of China (English)

    T.S. Blyth; Jie Fang

    2003-01-01

    The variety eO of extended Ockham algebras consists of those algealgebra with an additional endomorphism k such that the unary operations f and k commute. Here, we consider the cO-algebras which have a property of symmetry. We show that there are thirty two non-isomorphic subdirectly irreducible symmetric extended MS-algebras and give a complete description of them.2000 Mathematics Subject Classification: 06D15, 06D30

  6. Symmetric Itinerary Sets

    CERN Document Server

    Barnsley, Michael F

    2011-01-01

    We consider a one parameter family of dynamical systems W :[0, 1] -> [0, 1] constructed from a pair of monotone increasing diffeomorphisms Wsub(i), such that Wsub(i)(inverse): [0, 1] -> [0, 1], (i = 0, 1). We characterise the set of symbolic itineraries of W using an attractor of an iterated closed relation,in the terminology of McGehee, and prove that there is a member of the family for which is symmetrical.

  7. Symmetric Brownian motor

    OpenAIRE

    Gomez-Marin, A.; Sancho, J. M.

    2004-01-01

    In this paper we present a model of a symmetric Brownian motor (SBM) which changes the sign of its velocity when the temperature gradient is inverted. The velocity, external work and efficiency are studied as a function of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when another parameter (a phase shift) is varied. Analytical predictions and results from numerical simulations are performed and agree very well. Generic properties of this type...

  8. Bibliography of fusion product physics in tokamaks

    International Nuclear Information System (INIS)

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category

  9. Symmetrization of binary random variables

    OpenAIRE

    Kagan, Abram; Mallows, Colin L.; Shepp, Larry A.; Vanderbei, Robert J.; Vardi, Yehuda

    1999-01-01

    A random variable [math] is called an independent symmetrizer of a given random variable [math] if (a) it is independent of [math] and (b) the distribution of [math] is symmetric about [math] . In cases where the distribution of [math] is symmetric about its mean, it is easy to see that the constant random variable [math] is a minimum-variance independent symmetrizer. Taking [math] to have the same distribution as [math] clearly produces a symmetric sum, but it may not be of minimum variance....

  10. Twists of symmetric bundles

    OpenAIRE

    Cassou-Nogues, Ph.; Erez, B.; Taylor, M. J.

    2004-01-01

    We establish comparison results between the Hasse-Witt invariants w_t(E) of a symmetric bundle E over a scheme and the invariants of one of its twists E_{\\alpha}. For general twists we describe the difference between w_t(E) and w_t(E_{\\alpha}) up to terms of degree 3. Next we consider a special kind of twist, which has been studied by A. Fr\\"ohlich. This arises from twisting by a cocycle obtained from an orthogonal representation. We show how to explicitly describe the twist for representatio...

  11. Symmetrically Constrained Compositions

    CERN Document Server

    Beck, Matthias; Lee, Sunyoung; Savage, Carla D

    2009-01-01

    Given integers $a_1, a_2, ..., a_n$, with $a_1 + a_2 + ... + a_n \\geq 1$, a symmetrically constrained composition $\\lambda_1 + lambda_2 + ... + lambda_n = M$ of $M$ into $n$ nonnegative parts is one that satisfies each of the the $n!$ constraints ${\\sum_{i=1}^n a_i \\lambda_{\\pi(i)} \\geq 0 : \\pi \\in S_n}$. We show how to compute the generating function of these compositions, combining methods from partition theory, permutation statistics, and lattice-point enumeration.

  12. Fusion potential for spherical and compact tokamaks

    International Nuclear Information System (INIS)

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high β-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect

  13. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  14. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  15. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  16. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  17. On Cyclically Symmetrical Spacetimes

    Science.gov (United States)

    Barnes, A.

    2001-07-01

    In a recent paper Carot et al. considered the definition of cylindrical symmetry as a specialisation of the case of axial symmetry. One of their propositions states that if there is a second Killing vector, which together with the one generating the axial symmetry, forms the basis of a two-dimensional Lie algebra, then the two Killing vectors must commute, thus generating an Abelian group. In this paper a similar result, valid under considerably weaker assumptions, is derived: any two-dimensional Lie transformation group which contains a one-dimensional subgroup whose orbits are circles, must be Abelian. The method used to prove this result is extended to apply to three-dimensional Lie transformation groups. It is shown that the existence of a one-dimensional subgroup with closed orbits restricts the Bianchi type of the associated Lie algebra to be I, II, III, VIIq = 0, VIII or IX. Some results on n-dimensional Lie groups are also derived and applied to show there are severe restrictions on the structure of the allowed four-dimensional Lie transformation groups compatible with cyclic symmetry.

  18. On Cyclically Symmetrical Spacetimes

    CERN Document Server

    Barnes, A

    2000-01-01

    In a recent paper Carot et al. considered the definition of cylindrical symmetry as a specialisation of the case of axial symmetry. One of their propositions states that if there is a second Killing vector, which together with the one generating the axial symmetry, forms the basis of a two-dimensional Lie algebra, then the two Killing vectors must commute, thus generating an Abelian group. In this paper a similar result, valid under considerably weaker assumptions, is derived: any two-dimensional Lie transformation group which contains a one-dimensional subgroup whose orbits are circles, must be Abelian. The method used to prove this result is extended to apply three-dimensional Lie transformation groups. It is shown that the existence of a one-dimensional subgroup with closed orbits restricts the Bianchi type of the associated Lie algebra to be I, II, III, VII_0, VIII or IX. Some results on n-dimensional Lie groups are also derived and applied to show there are severe restrictions on the structure of the all...

  19. Detecting internally symmetric protein structures

    Directory of Open Access Journals (Sweden)

    Basner Jodi

    2010-06-01

    Full Text Available Abstract Background Many functional proteins have a symmetric structure. Most of these are multimeric complexes, which are made of non-symmetric monomers arranged in a symmetric manner. However, there are also a large number of proteins that have a symmetric structure in the monomeric state. These internally symmetric proteins are interesting objects from the point of view of their folding, function, and evolution. Most algorithms that detect the internally symmetric proteins depend on finding repeating units of similar structure and do not use the symmetry information. Results We describe a new method, called SymD, for detecting symmetric protein structures. The SymD procedure works by comparing the structure to its own copy after the copy is circularly permuted by all possible number of residues. The procedure is relatively insensitive to symmetry-breaking insertions and deletions and amplifies positive signals from symmetry. It finds 70% to 80% of the TIM barrel fold domains in the ASTRAL 40 domain database and 100% of the beta-propellers as symmetric. More globally, 10% to 15% of the proteins in the ASTRAL 40 domain database may be considered symmetric according to this procedure depending on the precise cutoff value used to measure the degree of perfection of the symmetry. Symmetrical proteins occur in all structural classes and can have a closed, circular structure, a cylindrical barrel-like structure, or an open, helical structure. Conclusions SymD is a sensitive procedure for detecting internally symmetric protein structures. Using this procedure, we estimate that 10% to 15% of the known protein domains may be considered symmetric. We also report an initial, overall view of the types of symmetries and symmetric folds that occur in the protein domain structure universe.

  20. Symmetric Quartic Map in natural canonical coordinates

    Science.gov (United States)

    Baldwin, Danielle; Jones, Bilal; Settle, Talise; Ali, Halima; Punjabi, Alkesh

    2015-11-01

    The generating function for the simple map is modified by replacing the cubic term in canonical momentum by a quartic term. New parameters are introduced in the modified generating function to control the height and the width of ideal separatrix surface and the poloidal magnetic flux inside ideal separatrix. The new generating function is the generating function for the Symmetric Quartic Map (SQM). The new parameters in the generating function are chosen such that the height, width, elongation, and the poloidal flux inside the separatrix for the SQM are same as the simple map. The resulting generating function for the SQM is then transformed from the physical coordinates to the natural canonical coordinates. The equilibrium separatrix of the SQM is calculated in the natural canonical coordinates. The purpose of this research is to calculate the homoclinic tangle of the SQM and compare with the simple map. The separatrix of the simple map is open and unbounded; while the separatrix of the SQM is closed and compact. Motivation is to see what role the topology of the separatrix plays in its homoclinic tangle in single-null divertor tokamaks. This work is supported by grants DE-FG02-01ER54624, DE-FG02-04ER54793, and DE-FG02-07ER54937.

  1. Plasma boundary phenomena in tokamaks

    International Nuclear Information System (INIS)

    The focus of this review is on processes occurring at the edge, and on the connection between boundary plasma - the scrape-off layer (SOL) and the radiating layer - and central plasma processes. Techniques used for edge diagnosis are reviewed and basic experimental information (ne and Te) is summarized. Simple models of the SOL are summarized, and the most important effects of the boundary plasma - the influence on the fuel particles, impurities, and energy - on tokamak operation dealt with. Methods of manipulating and controlling edge conditions in tokamaks and the experimental data base for the edge during auxiliary heating of tokamaks are reviewed. Fluctuations and asymmetries at the edge are also covered. (9 tabs., 134 figs., 879 refs.)

  2. The Symmetricity of Normal Modes in Symmetric Complexes

    CERN Document Server

    Song, Guang

    2016-01-01

    In this work, we look at the symmetry of normal modes in symmetric structures, particularly structures with cyclic symmetry. We show that normal modes of symmetric structures have different levels of symmetry, or symmetricity. One novel theoretical result of this work is that, for a ring structure with $m$ subunits, the symmetricity of the normal modes falls into $m$ groups of equal size, with normal modes in each group having the same symmetricity. The normal modes in each group can be computed separately, using a much smaller amount of memory and time (up to $m^3$ less), thus making it applicable to larger complexes. We show that normal modes with perfect symmetry or anti-symmetry have no degeneracy while the rest of the modes have a degeneracy of two. We show also how symmetry in normal modes correlates with symmetry in structure. While a broken symmetry in structure generally leads to a loss of symmetricity in symmetric normal modes, the symmetricity of some symmetric normal modes is preserved even when s...

  3. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  4. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  5. LHCD experiments on tokamak CASTOR

    International Nuclear Information System (INIS)

    A short survey is given of the experimental activities at the small Prague tokamak CASTOR. They concern primarily the LH current drive using multijunction waveguide grills as launching antennae. During two last years the, efforts were focused on a study of the electrostatic and magnetic fluctuations under conditions of combined inductive/LHCD regimes and of the relation of the level of these fluctuations to the anomalous particles transport in tokamak CASTOR. Results of the study are discussed in some detail. (author). 24 figs., 51 refs

  6. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  7. Symmetric π—Calculus

    Institute of Scientific and Technical Information of China (English)

    傅育熙

    1998-01-01

    An alternative presentation of the π-calculus is given.This version of the π-calculus is symmetric in the sense that communications are symmetric and there is no difference between input and output prefixes.The point of the symmetric π-calculus is that it has no abstract names.The set of closed names is therefore homogeneous.The π-calculus can be fully embedded into the symmetric π-calculus.The symmetry changes the emphasis of the communication mechanism of the π-calculus and opens up possibility for further variations.

  8. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  9. Calculations for axial compressor blading with uniform inlet enthalpy and radial enthalpy gradient

    OpenAIRE

    Schlachter, W

    1981-01-01

    A computer program was used to calculate the radial distribution of flow parameters in an axial compressor stage designed to have a symmetrical velocity diagram at the mean radius and particular variations of reaction from hub to tip. Uniform energy addition was assumed to occur in the rotor. Both cases of uniform enthalpy and uniform radial enthalpy gradient at the entrance to the stage were considered. Advantages were found in the selection of fully symmetric blading and in the use of the i...

  10. Assembly of Aditya upgrade tokamak

    International Nuclear Information System (INIS)

    The existing Aditya tokamak, a medium sized tokamak with limiter configuration is being upgraded to a tokamak with divertor configuration. At present the existing ADITYA tokamak has been dismantled up to bottom plinth on which the whole assembly of toroidal field (TF) coils and vacuum vessel rested. The major components of ADITYA machine includes 20 TF coils and its structural components, 9 Ohmic coils and its clamps, 4 BV coils and its clamps as well as their busbar connections, vacuum vessel and its supports and buckling cylinder, which are all being dismantled. The re-assembly of the ADITYA Upgrade tokamak started with installation and positioning of new buckling cylinder and central solenoid (TR1) coil. After that the inner sections of TF coils are placed following which in-situ winding, installation, positioning and support mounting of two pairs of new inner divertor coils have been carried out. After securing the TF coils with top I-beams the new torus shaped vacuum vessel with circular cross-section in 2 halves have been installed. The assembly of TF structural components such as top and bottom guiding wedges, driving wedges, top and bottom compression ring, inner and outer fish plates and top inverted triangle has been carried out in an appropriate sequence. The assembly of outer sections of TF coils along with the proper placements of top auxiliary TR and vertical field coils with proper alignment and positioning with the optical metrology instrument mainly completes the reassembly. Detailed re-assembly steps and challenges faced during re-assembly will be discussed in this paper. (author)

  11. Symmetric Differentiation on Time Scales

    OpenAIRE

    da Cruz, Artur M. C. Brito; Martins, Natalia; Delfim F. M. Torres

    2012-01-01

    We define a symmetric derivative on an arbitrary nonempty closed subset of the real numbers and derive some of its properties. It is shown that real-valued functions defined on time scales that are neither delta nor nabla differentiable can be symmetric differentiable.

  12. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  13. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  14. NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution

    OpenAIRE

    Eriksson, Stefanie; Lasič, Samo; Nilsson, Markus; Westin, Carl-Fredrik; Topgaard, Daniel

    2015-01-01

    We introduce a nuclear magnetic resonance method for quantifying the shape of axially symmetric microscopic diffusion tensors in terms of a new diffusion anisotropy metric, DΔ, which has unique values for oblate, spherical, and prolate tensor shapes. The pulse sequence includes a series of equal-amplitude magnetic field gradient pulse pairs, the directions of which are tailored to give an axially symmetric diffusion-encoding tensor b with variable anisotropy bΔ. Averaging of data acquired for...

  15. Transport of Dust Particles in Tokamak Devices

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D; Rozenberg, M

    2006-06-06

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  16. MINIMIZATION PROBLEM FOR SYMMETRIC ORTHOGONAL ANTI-SYMMETRIC MATRICES

    Institute of Scientific and Technical Information of China (English)

    Yuan Lei; Anping Liao; Lei Zhang

    2007-01-01

    By applying the generalized singular value decomposition and the canonical correlation decomposition simultaneously, we derive an analytical expression of the optimal approximate solution (X), which is both a least-squares symmetric orthogonal anti-symmetric solution of the matrix equation ATXA = B and a best approximation to a given matrix X*.Moreover, a numerical algorithm for finding this optimal approximate solution is described in detail, and a numerical example is presented to show the validity of our algorithm.

  17. Effects of suprathermal fusion particles in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W.

    1978-01-01

    Several crucial properties of suprathermal (> 500 keV) fusion-products are explored, both in their initial phase and during their slowing-down period. A guiding center drift theory, which predicts the effect of energy loss on the motion of these suprathermals, is derived for a low-..beta.., symmetric (non-ripple) tokamak. Velocity-space scattering is ignored. Among the important implications of this theory are: (1) the net inward drift of fusion particles during their slow-down phase and (2) the importance of the plasma density and temperature in determining this drift. The effect the inward drifting has on the spatial profile for the suprathermals approaching thermal energies, on the energy distribution, and on the plasma heating profile is demonstrated for five reactor cases, ranging from near-term low-current devices to conceptual power reactors.

  18. Low temperature plasma near a tokamak reactor limiter

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Singer, C.E.

    1985-01-01

    Analytic and two-dimensional computational solutions for the plasma parameters near a toroidally symmetric limiter are illustrated for the projected parameters of a Tokamak Fusion Core Experiment (TFCX). The temperature near the limiter plate is below 20 eV, except when the density 10 cm inside the limiter contact is 8 x 10/sup 13/cm/sup -3/ or less and the thermal diffusivity in the edge region is 2 x 10/sup 4/cm/sup 2//s or less. Extrapolation of recent experimental data suggests that neither of these conditions is likely to be met near ignition in TFCX, so a low plasma temperature near the limiter should be considered a likely possibility.

  19. Bootstrap Current in Spherical Tokamaks

    Institute of Scientific and Technical Information of China (English)

    王中天; 王龙

    2003-01-01

    Variational principle for the neoclassical theory has been developed by including amomentum restoring term in the electron-electron collisional operator, which gives an additionalfree parameter maximizing the heat production rate. All transport coefficients are obtained in-cluding the bootstrap current. The essential feature of the study is that the aspect ratio affects thefunction of the electron-electron collision operator through a geometrical factor. When the aspectratio approaches to unity, the fraction of circulating particles goes to zero and the contribution toparticle flux from the electron-electron collision vanishes. The resulting diffusion coefficient is inrough agreement with Hazeltine. When the aspect ratio approaches to infinity, the results are inagreement with Rosenbluth. The formalism gives the two extreme cases a connection. The theoryis particularly important for the calculation of bootstrap current in spherical tokamaks and thepresent tokamaks, in which the square root of the inverse aspect ratio, in general, is not small.

  20. Options for an ignited tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.

    1984-02-01

    It is expected that the next phase of the fusion program will involve a tokamak with the goals of providing an ignited plasma for pulses of hundreds of seconds. A simple model is described in this memorandum which establishes the physics conditions for such a self-sustaining plasma, for given ion and electron thermal diffusivities, in terms of R/a, b/a, I, B/q, epsilon ..beta../sub p/, anti T/sub i/, and anti T/sub e//anti T/sub i/. The model is used to produce plots showing the wide range of tokamaks that may ignite or have a given ignition margin. The constraints that limit this range are discussed.

  1. A compact Tokamak transmutation reactor

    Institute of Scientific and Technical Information of China (English)

    QiuLi-Jian; XiaoBing-Jia

    1997-01-01

    The low aspect ration tokamak is proposed for the driver of a transmutation reactor.The main parameters of the reactor core,neutronic analysis of the blanket are given>the neutron wall loading can be lowered from the magnitude order of 1 MW/m2 to 0.5MW/m2 which is much easier to reach in the near future,and the transmutation efficiency (fission/absorption ratio)is raised further.The blanket power density is about 200MW/m3 which is not difficult to deal with.The key components such as diverter and center conductor post are also designed and compared with conventional TOkamak,Finally,by comparison with the other drivers such as FBR,PWR and accelerator,it can be anticipated that the low aspect ratio transmutation reactor would be one way of fusion energy applications in the near future.

  2. Equilibrium Reconstruction in EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    QIAN Jinping; WAN Baonian; L. L. LAO; SHEN Biao; S. A. SABBAGH; SUN Youwen; LIU Dongmei; XIAO Singjia; REN Qilong; GONG Xianzu; LI Jiangang

    2009-01-01

    Reconstruction of experimental axisymmetric equilibria is an important part of toka-mak data analysis. Fourier expansion is applied to reconstruct the vessel current distribution in EFIT code. Benchmarking and testing calculations are performed to evaluate and validate this algorithm. Two cases for circular and non-circular plasma discharges are presented. Fourier ex-pansion used to fit the eddy current is a robust method and the real time EFIT can be introduced to the plasma control system in the coming campaign.

  3. Extra-axial brain tumors.

    Science.gov (United States)

    Rapalino, Otto; Smirniotopoulos, James G

    2016-01-01

    Extra-axial brain tumors are the most common adult intracranial neoplasms and encompass a broad spectrum of pathologic subtypes. Meningiomas are the most common extra-axial brain tumor (approximately one-third of all intracranial neoplasms) and typically present as slowly growing dural-based masses. Benign meningiomas are very common, and may occasionally be difficult to differentiate from more aggressive subtypes (i.e., atypical or malignant varieties) or other dural-based masses with more aggressive biologic behavior (e.g., hemangiopericytoma or dural-based metastases). Many neoplasms that typically affect the brain parenchyma (intra-axial), such as gliomas, may also present with primary or secondary extra-axial involvement. This chapter provides a general and concise overview of the common types of extra-axial tumors and their typical imaging features. PMID:27432671

  4. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  5. Magnetic confinement experiment. I: Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM`y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nT{tau}`s {approximately} 2.5x greater than ELM`ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices.

  6. The nucleon axial isoscalar coupling constant and the Bjorken sum rule

    International Nuclear Information System (INIS)

    The nucleon coupling constant with the axial isoscalar current entering the Bjorken sum rule for the deep inelastic scattering of polarized electrons on a polarized target is calculated in nonperturbative QCD. The result, gsub(A)sup(s) approximately 0.5, is about a factor of two smaller as compared to that of the SU(6) symmetric quark model

  7. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  8. Generation of symmetric exponential sums

    OpenAIRE

    Sergeyev, Yaroslav D.

    2011-01-01

    In this paper, a new method for generation of infinite series of symmetric identities written for exponential sums in real numbers is proposed. Such systems have numerous applications in theory of numbers, chaos theory, algorithmic complexity, dynamic systems, etc. Properties of generated identities are studied. Relations of the introduced method for generation of symmetric exponential sums to the Morse-Hedlund sequence and to the theory of magic squares are established.

  9. Symmetric Composite Laminate Stress Analysis

    Science.gov (United States)

    Wang, T.; Smolinski, K. F.; Gellin, S.

    1985-01-01

    It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.

  10. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-01-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  11. The Einstein field equations for cylindrically symmetric elastic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Brito, I; Vaz, E G L R [Departamento de Matematica e Aplicacoes, Universidade do Minho, 4800-058 Guimaraes (Portugal); Carot, J, E-mail: ireneb@math.uminho.pt, E-mail: jcarot@uib.cat, E-mail: evaz@math.uminho.pt [Departament de Fisica, Universitat de les Illes Balears, Cra Valdemossa pk 7.5, E-07122 Palma (Spain)

    2011-09-22

    In the context of relativistic elasticity it is interesting to study axially symmetric space-times due to their significance in modeling neutron stars and other astrophysical systems of interest. To approach this problem, here, a particular class of these space-times is considered. A cylindrically symmetric elastic space-time configuration is studied, where the material metric is taken to be flat. The components of the energy-momentum tensor for elastic matter are written in terms of the invariants of the strain tensor, here chosen to be the eigenvalues of the pulled-back material metric. The Einstein field equations are presented and a condition confirming the existence of a constitutive function is obtained. This condition leads to special cases, in one of which a new system for the metric functions and an expression for the constitutive function are deduced. The new system depends on a particular function, which builds up the constitutive equation.

  12. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  13. Tokamak plasma position dynamics and feedback control

    International Nuclear Information System (INIS)

    The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form

  14. Economic evaluation of tokamak power plants

    International Nuclear Information System (INIS)

    This study reports the impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  15. The disruptive instability in Tokamak plasmas

    NARCIS (Netherlands)

    Salzedas, F.J.B.

    2001-01-01

    Studies performed in RTP (Rijnhuizen Tokamak Project) of the most violent and dangerous instability in tokamak plasmas, the major disruption, are presented. A particular class of disruptions is analyzed, namely the density limit disruption, which occur in high density plasmas. The radiative te

  16. The role of limiter in Egyptor Tokamak

    CERN Document Server

    Ei-Sisi, A B

    2002-01-01

    In Egyptor Tokamak, the limiter is used for separation of the plasma from the vessel. In this work an overview of limiter types, and construction of limiter in Egyptor Tokamak is discussed. Also simulation results of the radial electron density distribution in case of limiter are presented. The results of the simulation are in agreement with the experimental and analytical results.

  17. EFFECT OF PROFILES AND SHAPE ON IDEAL STABILITY OF ADVANCED TOKAMAK EQUILIBRIA

    Energy Technology Data Exchange (ETDEWEB)

    MAKOWSKI,MA; CASPER,TA; FERRON,JR; TAYLOR,TS; TURNBULL,AD

    2003-08-01

    OAK-B135 The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/

    {approx} 2.0-4.5, weak negative central shear, high q{sub min} (> 2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  18. Effect of Profiles and Space on Ideal Stability of Advanced Tokamak Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, M A; Casper, T A; Ferron, J R; Taylor, T S; Turnbull, A D

    2003-07-07

    The pressure profile and plasma shape, parameterized by elongation ({kappa}), triangularity ({delta}), and squareness ({zeta}), strongly influence stability. In this study, ideal stability of single null and symmetric, double-null, advanced tokamak (AT) configurations is examined. All the various shapes are bounded by a common envelope and can be realized in the DIII-D tokamak. The calculated AT equilibria are characterized by P{sub 0}/{l_angle}P{r_brace} {approx} 2.0-4.5, weak negative central shear, high q{sub min} (>2.0), high bootstrap fraction, an H-mode pedestal, and varying shape parameters. The pressure profile is modeled by various polynomials together with a hyperbolic tangent pedestal, consistent with experimental observations. Stability is calculated with the DCON code and the resulting stability boundary is corroborated by GATO runs.

  19. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  20. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  1. Axial gap rotating electrical machine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  2. Ultraviolet and infrared aspects of the axial anomaly. I

    International Nuclear Information System (INIS)

    The paper is the first part of a brief review of some perturbative aspects of the Adler-Bell-Jackiw axial anomaly, described in terms of ultraviolet and infrared behavior of the famous VVA triangle graph. Apart from a general overview of the diversified role played by the anomaly in quantum field theory and particle physics, an elementary introduction is presented to the subject of the anomaly, comprehensible to an uninitiated reader with only a basic background in quantum field theory. The ultraviolet aspects of the anomaly are stressed and the topics covered are the following: vector and axial-vector Ward identities for the VVA triangle graph; the anomaly and several ways to derive it, namely the symmetric momentum cut-off and shifting the integration variables in linearly divergent integrals; the Adler-Rosenberg argument; the Pauli-Villars method; and dimensional regularization. (author) 2 figs., 34 refs

  3. Evaluation of the performance and flow in an axial compressor

    Science.gov (United States)

    Waddell, J. L.

    1982-10-01

    An experimental evaluation of the axial compressor test rig with one stage of symmetric blading was conducted to determine its suitability for studies of tip clearance effects. Measurements were made of performance parameters and internal flow fields. The configuration tested was found to be unsuitable due to poor flow from the inlet guide vanes, particularly near the tip region. Secondary flows and flaws in construction of the guide vanes were suggested as probable causes. Recommendations were made for a program to resolve the problem.

  4. Stability analysis of restricted non-static axial symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Bhatti, M. Zaeem Ul Haq, E-mail: msharif.math@pu.edu.pk, E-mail: mzaeem.math@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2013-11-01

    This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.

  5. Stability analysis of restricted non-static axial symmetry

    International Nuclear Information System (INIS)

    This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution

  6. Breakdown in the pretext tokamak

    International Nuclear Information System (INIS)

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges

  7. Particle-vortex symmetric liquid

    CERN Document Server

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not requir...

  8. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  9. Axisymmetric electrostatic magnetohydrodynamic oscillations in tokamaks with general cross-sections and toroidal flow

    Science.gov (United States)

    Chu, M. S.; Guo, Wenfeng

    2016-06-01

    The frequency spectrum and mode structure of axisymmetric electrostatic oscillations [the zonal flow (ZF), sound waves (SW), geodesic acoustic modes (GAM), and electrostatic mean flows (EMF)] in tokamaks with general cross-sections and toroidal flows are studied analytically using the electrostatic approximation for magnetohydrodynamic modes. These modes constitute the "electrostatic continua." Starting from the energy principle for a tokamak plasma with toroidal rotation, we showed that these modes are completely stable. The ZF, the SW, and the EMF could all be viewed as special cases of the general GAM. The Euler equations for the general GAM are obtained and are solved analytically for both the low and high range of Mach numbers. The solution consists of the usual countable infinite set of eigen-modes with discrete eigen-frequencies, and two modes with lower frequencies. The countable infinite set is identified with the regular GAM. The lower frequency mode, which is also divergence free as the plasma rotation tends to zero, is identified as the ZF. The other lower (zero) frequency mode is a pure geodesic E×B flow and not divergence free is identified as the EMF. The frequency of the EMF is shown to be exactly 0 independent of plasma cross-section or its flow Mach number. We also show that in general, sound waves with no geodesic components are (almost) completely lost in tokamaks with a general cross-sectional shape. The exception is the special case of strict up-down symmetry. In this case, half of the GAMs would have no geodesic displacements. They are identified as the SW. Present day tokamaks, although not strictly up-down symmetric, usually are only slightly up-down asymmetric. They are expected to share the property with the up-down symmetric tokamak in that half of the GAMs would be more sound wave-like, i.e., have much weaker coupling to the geodesic components than the other half of non-sound-wave-like modes with stronger coupling to the geodesic

  10. Atomic physics in tokamak plasmas

    International Nuclear Information System (INIS)

    Tokamak discharges produce hydrogen-isotope plasmas in a quasi-steady state, with radial electron temperature, Tsub(e)(r), and density nsub(e)(r), distribution usually centrally peaked, with typical values Tsub(e)(0) approx.= 1 - 3 keV, nsub(e)(r) approx.= 1014 cm-3. Besides hydrogen, the plasma contains small quantities of carbon, oxygen, various construction or wall-conditioning materials such as Fe, Cr, Ni, Ti, Zr, Mo, and perhaps elements added for special diagnostic purposes, e.g., Si, Sc, Al, or noble gases. These elements are spatially fairly homogeneously distributed, with the different ionization states occurring near radial locations where Tsub(e)(r) approx.= Esub(i), the ionization potential. Thus, spectroscopic measurements of various plasma properties, such as ion temperatures, plasma motions or oscillations, radial transport rates, etc. are automatically endowed with spatial resolution. Furthermore the emitted spectra, even of heavier elements such as Fe or Ni, are fairly simple because only the ground levels are appreciably populated under the prevailing plasma conditions. Identification of near-ground transitions, including particularly magnetic dipole and intercombination transitions of ions with ionization potentials in the several keV range, and determination of their collisional and radiative transition probabilities will be required for development of appropriate diagnostics of tokamak-type plasma approaching the prospective fusion reactor conditions. (orig.)

  11. Forces on liquid lithium modules in a tokamak blanket due to the pulsed poloidal magnetic field

    International Nuclear Information System (INIS)

    This paper treats cylindrical modules filled with liquid lithium in the presence of a steady toroidal magnetic field and a time-dependent poloidal field. Solutions for liquid lithium flows and formulas for the forces on the modules are presented for both axial and transverse poloidal fields. Numerical examples are presented for the design in the ORNL/Westinghouse Tokamak Blanket Study. The initial analysis ignores the ends of the modules and treats infinitely long pipes, but the effects of the ends are also treated. Calculations and conclusions based on the solutions for infinitely long pipes are not significantly altered by end effects

  12. Control of a burning tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, R.E.; Mandrekas, J.; Stacey, W.M.

    1993-03-01

    This report is a review of the literature relevant to the control of the thermonuclear burn in a tokamak plasma. Some basic tokamak phenomena are reviewed, and then control by modulation of auxiliary heating and fueling is discussed. Other possible control methods such as magnetic ripple, plasma compression, and impurity injection as well as more recent proposed methods such as divertor biasing and L- to H-mode transition are also reviewed. The applications of modern control theory to the tokamak burn control problem are presented. The control results are summarized and areas of further research are identified.

  13. Shearfree Spherically Symmetric Fluid Models

    CERN Document Server

    Sharif, M

    2013-01-01

    We try to find some exact analytical models of spherically symmetric spacetime of collapsing fluid under shearfree condition. We consider two types of solutions: one is to impose a condition on the mass function while the other is to restrict the pressure. We obtain totally of five exact models, and some of them satisfy the Darmois conditions.

  14. Axiomatizations of symmetrically weighted solutions

    NARCIS (Netherlands)

    Kleppe, John; Reijnierse, Hans; Sudhölter, P.

    2013-01-01

    If the excesses of the coalitions in a transferable utility game are weighted, then we show that the arising weighted modifications of the well-known (pre)nucleolus and (pre)kernel satisfy the equal treatment property if and only if the weight system is symmetric in the sense that the weight of a su

  15. Tokamak Plasmas : Mirnov coil data analysis for tokamak ADITYA

    Indian Academy of Sciences (India)

    D Raju; R Jha; P K Kaw; S K Mattoo; Y C Saxena; Aditya Team

    2000-11-01

    The spatial and temporal structures of magnetic signal in the tokamak ADITYA is analysed using recently developed singular value decomposition (SVD) technique. The analysis technique is first tested with simulated data and then applied to the ADITYA Mirnov coil data to determine the structure of current peturbation as the discharge progresses. It is observed that during the current rise phase, current perturbation undergoes transition from = 5 poloidal structure to = 4 and then to = 3. At the time of current termination, = 2 perturbation is observed. It is observed that the mode frequency remains nearly constant (≈10 kHz) when poloidal mode structure changes from = 4 to = 2. This may be either an indication of mode coupling or a consequences of changes in the plasma electron temperature and density scale length.

  16. Tokamak research in the Soviet Union

    International Nuclear Information System (INIS)

    Important milestones on the way to the tokamak fusion reactor are recapitulated. Soviet tokamak research concentrated at the I.V. Kurchatov Institute in Moscow, the A.F. Ioffe Institute in Leningrad and the Physical-Technical Institute in Sukhumi successfully provides necessary scientific and technological data for reactor design. Achievments include, the successful operation of the first tokamak with superconducting windings (T-7) and the gyrotron set for microwave plasma heating in the T-10 tokamak. The following problems have intensively been studied: Various methods of additional plasma heating, heat and particle transport, and impurity control. The efficiency of electron-cyclotron resonance heating was demonstrated. In the Joule heating regime, both the heat conduction and diffusion rates are anomalously high, but the electron heat conduction rate decreases with increasing plasma density. Progress in impurity control makes it possible to obtain a plasma with effective charge approaching unity. (J.U.)

  17. Robust Sliding Mode Control for Tokamaks

    Directory of Open Access Journals (Sweden)

    I. Garrido

    2012-01-01

    Full Text Available Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

  18. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    This report discusses the following topics on the Aries-I Tokamak: Design description; systems studies and economics; reactor plasma physics; magnet engineering; fusion-power-ore engineering; and environmental and safety features

  19. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  20. D-D tokamak reactor studies

    International Nuclear Information System (INIS)

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated

  1. Simulating Plasma Turbulence in Tokamaks

    CERN Document Server

    Kepner, J V; Decyk, V; Kepner, Jeremy; Parker, Scott; Decyk, Viktor

    1997-01-01

    A challenging and fundamental research problem is the better understanding and control of the turbulent transport of heat in present-day tokamak fusion experiments. Recent developments in numerical methods along with enormous gains in computing power have made large-scale simulations an important tool for improving our understanding of this phenomena. Simulating this highly non-linear behavior requires solving for the perturbations of the phase space distribution function in five dimensions. We use a particle-in-cell approach to solve the equations. The code has been parallelized for a variety of architectures (C90, CM-5, T3D) using a 1-D domain decomposition along the toroidal axis, for which the number of particles in each cell remains approximately constant. The quasi-uniform distribution of particles, which minimizes load imbalance, coupled with the relatively small movement of particles across cells, which minimizes communications, makes this problem ideally suited to massively parallel architectures. We...

  2. Tokamak plasma interaction with limiters

    International Nuclear Information System (INIS)

    The importance of plasma purity is first discussed in terms of the general requirements of controlled thermonuclear fusion. The tokamak approach to fusion and its inherent problem of plasma contamination are introduced. A main source of impurities is due to the bombardment of the limiter by energetic particles and thus the three main aspects of the plasma-limiter interaction are reviewed, boundary plasma conditions, fuelling/recycling and impurity production. The experiments, carried out on the DITE tokamak at Culham Laboratory, UK, investigated these three topics and the results are compared with predicted behaviour; new physical phenomena are presented in all three areas. Simple one-dimensional fluid equations are found to adequately describe the SOL plasma, except in regard to the pre-sheath electric field and ambipolarity; that is, the electric field adjacent to the limiter surface appears to be weak and the associated plasma flow can be non-ambipolar. Recycling of fuel particles from the limiter is observed to be near unity at all times. The break-up behaviour of recycled and gas puffed D2 molecules is dependent on the electron temperature, as expected. Impurity production at the limiter is chemical erosion of graphite being negligible. Deposition of limiter and wall-produced impurities is found on the limiter. The spatial distributions of impurities released from the limiter are observed and are in good agreement with a sputtered atom transport code. Finally, preliminary experiments on the transport of impurity ions along field lines away from the limiter have been performed and compared with simple analytic theory. The results suggest that the pre-sheath electric field in the SOL is much weaker than the simple fluid model would predict

  3. Symmetric States Requiring System Asymmetry

    Science.gov (United States)

    Nishikawa, Takashi; Motter, Adilson E.

    2016-09-01

    Spontaneous synchronization has long served as a paradigm for behavioral uniformity that can emerge from interactions in complex systems. When the interacting entities are identical and their coupling patterns are also identical, the complete synchronization of the entire network is the state inheriting the system symmetry. As in other systems subject to symmetry breaking, such symmetric states are not always stable. Here, we report on the discovery of the converse of symmetry breaking—the scenario in which complete synchronization is not stable for identically coupled identical oscillators but becomes stable when, and only when, the oscillator parameters are judiciously tuned to nonidentical values, thereby breaking the system symmetry to preserve the state symmetry. Aside from demonstrating that diversity can facilitate and even be required for uniformity and consensus, this suggests a mechanism for convergent forms of pattern formation in which initially asymmetric patterns evolve into symmetric ones.

  4. Particle-vortex symmetric liquid

    OpenAIRE

    Mulligan, Michael

    2016-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed [Breznay et al., PNAS 113, 280 (2016)] to exhibit particle-vortex symmetric electrical response, and the metallic phase discovered earlier [Mason and Kapitulnik, Phys. Rev. Lett. 82, 5341 (1999)] in ...

  5. 07021 Abstracts Collection -- Symmetric Cryptography

    OpenAIRE

    Biham, Eli; Handschuh, Helena; Lucks, Stefan; Rijmen, Vincent

    2007-01-01

    From .. to .., the Dagstuhl Seminar 07021 ``Symmetric Cryptography'' automatically was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar to...

  6. Symmetric two-coordinate photodiode

    Directory of Open Access Journals (Sweden)

    Dobrovolskiy Yu. G.

    2008-12-01

    Full Text Available The two-coordinate photodiode is developed and explored on the longitudinal photoeffect, which allows to get the coordinate descriptions symmetric on the steepness and longitudinal resistance great exactness. It was shown, that the best type of the coordinate description is observed in the case of scanning by the optical probe on the central part of the photosensitive element. The ways of improvement of steepness and linear of its coordinate description were analyzed.

  7. The fractional symmetric rigid rotor

    OpenAIRE

    Herrmann, Richard

    2006-01-01

    Based on the Riemann fractional derivative the Casimir operators and multipletts for the fractional extension of the rotation group SO(n) are calculated algebraically. The spectrum of the corresponding fractional symmetric rigid rotor is discussed. It is shown, that the rotational, vibrational and $\\gamma$-unstable limits of the standard geometric collective models are particular limits of this spectrum. A comparison with the ground state band spectra of nuclei shows an agreement with experim...

  8. Symmetrical thalamic lesions in infants.

    OpenAIRE

    Eicke, M.; Briner, J; Willi, U; Uehlinger, J; Boltshauser, E

    1992-01-01

    Clinical observations and findings on imaging are reported in six newborns with symmetrical thalamic lesions (STL). In three cases the diagnosis was confirmed by postmortem examination. Characteristic observations in this series and 17 previously reported cases include no evidence of perinatal asphyxia, high incidence of polyhydramnios, absent suck and swallow, absent primitive reflexes, appreciable spasticity at or within days of birth, lack of psychomotor development, and death within days ...

  9. SELF-SIMILAR SOLUTIONS OF FRACTURE DYNAMICS PROBLEMS ON AXIALLY SYMMETRY

    Institute of Scientific and Technical Information of China (English)

    吕念春; 程靳; 程云虹; 屈德志

    2001-01-01

    By the theory of complex functions, a penny-shaped crack on axially symmetric propagating problems for composite materials was studied. The general representations of the analytical solutions with arbitrary index of self-similarity were presented for fracture elastodynamics problems on axially symmetry by the ways of self-similarity under the /addershaped loads. The problerns dealt with can be transformed into Riemann-Hilbert problems and their closed analytical solutions are obtained rather simple by this method. After those analytical solutions are utilized by using the method of rotational superposition theorem in conjunction with that of Smirnov-Sobolev, the solutions of arbitrary complicated problems can be obtained.

  10. ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation

    International Nuclear Information System (INIS)

    Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and in a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to B vector is assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in absolute value B along B vector are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that B vector . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybrid resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where B vector . delB approx. 0(1) naturally. 13 refs., 23 figs

  11. Automorphism group of exceptional symmetric domains RVI

    Institute of Scientific and Technical Information of China (English)

    许以超

    2000-01-01

    Here we give the definition of the exceptional symmetric Siegel domain RVI (27) in (?)27, and compute the exceptional symmetric domain .RvI(27) = r(RVI(27)), where τ is the Bergman mapping of the Siegel domain RVI(27). Moreover, we present the holomorphical automorphism group Aut(.RVI|(27)) of the exceptional symmetric domain .

  12. A note on obtaining symmetrical angular yield curves in MeV ion channeling

    Science.gov (United States)

    Ruan, J.; Townsend, J.; Choyke, W. J.

    1987-11-01

    Planar channeling effects can distort the angular yield (dip) curve measured about an axial channeling direction. Two methods for minimizing distortion due to planar channeling are discussed: 1) varying the angles θ and φ of a two-axis goniometer together during the angular scan, and 2) remounting the sample so that a scan of only θ produces an undistorted symmetric dip curve. In practice, remounting the sample is preferred in order to minimize effects due to the mechanical limitations of the goniometer.

  13. Non-Axisymmetric Equilibrium Reconstruction for Stellarators, Reversed Field Pinches and Tokamaks

    International Nuclear Information System (INIS)

    Full text: Equilibrium reconstruction is the process of minimizing the mismatch between modeled and observed signals by changing the parameters that specify the equilibrium. While stellarator equilibria are inherently non-axisymmetric, non-axisymmetric effects are also crucial for understanding stability and confinement of high-performance reversed field pinch and tokamak plasmas. Therefore, two-dimensional reconstruction tools are not adequate for fully exploring 3D plasmas. The V3FIT and STELLOPT codes are 3D equilibrium reconstruction codes, both based on the VMEC 3D equilibrium code. VMEC models field-period symmetric 3D flux surface geometry but does not treat magnetic islands and chaotic regions. VMEC requires the specification of the pressure and either rotational transform or toroidal current profiles, as functions of either the toroidal or poloidal flux. VMEC can treat both axisymmetric and non-axisymmetric configurations, both free- and fixed-boundary equilibria, and both stellarator-symmetric and non-stellarator-symmetric equilibria. Both V3FIT and STELLOPT can utilize signals from magnetic diagnostics, soft X-rays (SXR), Thomson scattering, and geometrical information from plasma limiters. STELLOPT can also utilize Motional Stark Effect (MSE) signals. Both calculate a finite difference approximation to a Jacobian for the signal-mismatch minimization. V3FIT and STELLOPT differ in the details of their minimization algorithms, their utilization of auxiliary profiles (like electron density and soft x-ray emissivity), and in their computation of model signals. V3FIT is currently in use on stellarators (HSX, CTH), reversed field pinches (RFX-mod) and tokamaks (DIII-D) for a wide variety of studies: interpretation of Pfirsch-Schliiter and bootstrap currents, design of new magnetic diagnostics, magnetic island generation, vertical instabilities, density-limit disruption activity, conformance of multiple data sources to a single set of flux surfaces, quasi

  14. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  15. A numerical study of Penrose-like inequalities in a family of axially symmetric initial data

    CERN Document Server

    Jaramillo, J L; Ansorg, M

    2007-01-01

    Our current picture of black hole gravitational collapse relies on two assumptions: i) the resulting singularity is hidden behind an event horizon -- weak cosmic censorship conjecture -- and ii) spacetime eventually settles down to a stationarity state. In this setting, it follows that the minimal area containing an apparent horizon is bound by the square of the total ADM mass (Penrose inequality conjecture). Following Dain et al. 2002, we construct numerically a family of axisymmetric initial data with one or several marginally trapped surfaces. Penrose and related geometric inequalities are discused for these data. As a by-product, it is shown how Penrose inequality can be used as a diagnosis for an apparent horizon finder numerical routine.

  16. Dispersion of axially symmetric waves in fluid-filled cylindrical shells

    DEFF Research Database (Denmark)

    Bao, X.L.; Überall, H.; Raju, P. K.;

    2000-01-01

    on such shells have been investigated for the case of aluminum shells, and their phase-velocity dispersion curves have been obtained for double fluid loading [Bao, Raju, and Überall, J. Acoust. Soc. Am. 105, 2704 (1999)]. Similar results were obtained for empty or fluid-filled brass shells [Kumar, Acustica 27......, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves...... circumferential waves determines the eigenfrequency spectrum of the shell....

  17. Singularities of axially symmetric time-like minimal submanifolds in Minkowski space

    CERN Document Server

    Wong, Willie Wai-Yeung

    2016-01-01

    We prove that there does not exist global-in-time axisymmetric solutions to the time-like minimal submanifold system in Minkowski space. We further analyze the limiting geometry as the maximal time of existence is approached.

  18. Influence of angular momentum in axially symmetric potentials with octupole deformation

    Institute of Scientific and Technical Information of China (English)

    JIN Hua; SUN Zhen-Wu; ZHENG Ren-Rong

    2009-01-01

    The chaotic classical single-particle motion in an oblate octupole deformed potential with a non-zero z-component of angular momentum Lz is investigated. The stability analysis of the trajectories shows that with increasing rotation of the system, the unstable negative curvature regions of the effective potential surface decrease, which converts the chaotic motion of the system into a regular one.

  19. An offset-fed reflector antenna with an axially symmetric main reflector

    Science.gov (United States)

    Chang, D.-C.; Rusch, W. V. T.

    1984-11-01

    A design method for an offset-fed, dual reflector antenna (Cassegrain type or Gregorian type) system with an axisymmetric main reflector is presented. Geometrical optics (GO) and the geometrical theory of diffraction (GTD) are used to find the surface-current density on the main reflector. A modified Jacobi-Bessel series (JBS) method is used to find the far-field pattern for the physical optics (PO) integral. In the defocused mode of operation, a new technique is developed to find the reflection point on the subreflector corresponding to the defocused feed and a general field point on the main reflector. Two sample systems are designed.

  20. On alternative methods for measuring the radius and propagation ratio of axially symmetric laser beams

    International Nuclear Information System (INIS)

    Based on the developed efficient numerical methods for calculating the propagation of light beams, the alternative methods for measuring the beam radius and propagation ratio proposed in the international standard ISO 11146 are analysed. The specific calculations of the alternative beam propagation ratios Mi2 performed for a number of test beams with a complicated spatial structure showed that the correlation coefficients ci used in the international standard do not establish the universal one-to-one relation between the alternative propagation ratios Mi2 and invariant propagation ratios Mσ2 found by the method of moments. (laser beams)

  1. C3-Symmetric Molecules with Axial Chirality and Handed Arrangement of Dipole Fields

    Institute of Scientific and Technical Information of China (English)

    XU Wei; JIN Lan; ZHOU Hui; LU Yin-xiang; LAN Bi-jian; ZOU Zhen-guang

    2007-01-01

    @@ Introduction Chirality is defined as the absence of inversion symmetry, however, it is actually a pseudo-scalar of objects or figures, and does not depend for its definition on any connection to the physical world[1-5]. Logically, chiral molecules may possess other inherent physical quantity that guarantees the connection to the physical world[6,7].

  2. Optical design for amateur reflecting telescopes based on tilted axial-symmetrical planoidal mirror

    Science.gov (United States)

    Chuprakov, Sergey A.

    2012-09-01

    Two-mirrors aplanatic optical design for amateur telescopes up to 0.5m class is described. The optical system is low cost, easy for adjusting, fast and large field of view can be used for visual and astrophotography. The method for calculation of baffles for straight light protection is described. The optical performances and sample shots for the builted device are presented. Keywords: two-mirrors system, all-reflecting schmidt system, aplanatic system, protection from straight light, baffles, obscuration, wide-field, telescopes for amateurs.

  3. Numerical relativity for D dimensional axially symmetric space-times: formalism and code tests

    CERN Document Server

    Zilhao, Miguel; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Nerozzi, Andrea

    2010-01-01

    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modelling black hole production in TeV gravity scenarios, analysis of the stability of exact solutions and tests of Cosmic Censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D\\ge 5, or SO(D-3) for D\\ge 6. Performing a dimensional reduction on a (D-4)-sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata and Nakamura (BSSN) formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions an...

  4. Comparison between formulas of rotational band for axially symmetric deformed nuclei

    Institute of Scientific and Technical Information of China (English)

    WU Xi; LEI Yi-An

    2008-01-01

    The experimental rotational spectra of the deformed nuclei available in even-even and odd-A nuclei in the rare-earth and actinide regions are systematically analyzed with several rotational spectra formulas,including Bohr-Mottelson's I(I+l)-expansion,Harris'w2-expansion,ab and abc formulas.It is shown that the simple 2-parameter ab formula is much better than the widely used 2-parameter Bohr-Mottelson's AB formula and Harris'αβ formula.The available data of the rotational spectra of both ground-state band in even-even nuclei and one-quaasiparticle band in odd-A nuclei can be conveniently and rather accurately reproduced by ab formula and abc formula.The moment of inertia and the variation with rotational frequency of angular momentum can be satisfactorily reproduced by ab and abc formulas.

  5. Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests

    Science.gov (United States)

    Zilhão, Miguel; Witek, Helvi; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo; Herdeiro, Carlos; Nerozzi, Andrea

    2010-04-01

    The numerical evolution of Einstein’s field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.

  6. Mechanism of Fast Axially--Symmetric Reversal of Magnetic Vortex Core

    OpenAIRE

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

    2012-01-01

    The magnetic vortex core in a nanodot can be switched by an alternating transversal magnetic field. We propose a simple collective coordinate model which describes comprehensive vortex core dynamics, including resonant behavior, weakly nonlinear regimes, and reversal dynamics. A chaotic dynamics of the vortex polarity is predicted. All analytical results were confirmed by micromagnetic simulations.

  7. Forced axial segregation in axially inhomogeneous rotating systems

    Science.gov (United States)

    González, S.; Windows-Yule, C. R. K.; Luding, S.; Parker, D. J.; Thornton, A. R.

    2015-08-01

    Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications.

  8. Singular Value Decomposition for Unitary Symmetric Matrix

    Institute of Scientific and Technical Information of China (English)

    ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda

    2003-01-01

    A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.

  9. The JT-60 tokamak machine

    International Nuclear Information System (INIS)

    JT-60 is a large tokamak experimental device under construction at JAERI with main device parameters of R=3.0m, a=0.95m, Bsub(t)=45kG, and Isub(p)=2.7Ma. Its basic aim is to produce and confine hydrogen plasmas of temperatures in a multi-keV range and of confinement times comparable to a second, and to study its plasma-physics properties as well as engineering problems associated with them. The JT-60 tokamak machine is mainly composed of a vacuum vessel, toroidal field (TF) coils, poloidal field (PF) coils, and support structures. The vacuum vessel is a high toroidal chamber with an egg-shaped crossection, consisting of sectorial rigid rings and parallel bellows made from Inconel 625. It is baked out at a maximum temperature up to 5000C. Several kinds of first walls made from molybdenum are bolt-jointed to the vacuum vessel for its protection. The vacuum vessel is almost completely finished with design and is deeply into manufacturing. The TF system consists of 18 unit coils located around a torus axis at regular intervals. The unit coil composed of two pancakes are wedge-shaped at the section close to a torus axis and encased in a high-manganese non-magnetic steel case. Fabrication of the TF coils will be finished in May 1981. The PF coils are composed of ohmic heating coils, vertical field coils, horizontal field coils, and quadrupole field coils located inside the TF coil bore and outside the vacuum vessel, and magnetic limiter coils placed in the vacuum vessel. Its mechanical and thermal design is almost completed are composed of the upper and lower support structures, support comuns of the vacuum vessel, and central column made from high-manganese non-magnetic steel. The structural analysis was completed including a seismic analysis and the fabrication is now in progress. The first plasma is expected to be produced in October 1984. (orig.)

  10. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  11. Magneto-Hydrodynamic High-n Ballooning Mode Instability of an Analytic Axi-Symmetric Toroidal Equilibrium with Arbitrary Aspect Ratio

    Institute of Scientific and Technical Information of China (English)

    SHI Bing-Ren; LI Ji-Quan

    2007-01-01

    An exact ballooning mode eigen-equation is derived to study stability of axi-symmetric toroidal plasma with arbitrary aspect ratio, including the tokamak, the finite aspect ratio and the spherical torus plasmas. For comparison with the widely used ( s - α) model, an analytic exact equilibrium configuration with circular magnetic surfaces is analysed in detail. It is indicated that the (s - α) model needs to be improved for more realistic configurations.

  12. A charged spherically symmetric solution

    Indian Academy of Sciences (India)

    K Moodley; S D Maharaj; K S Govinder

    2003-09-01

    We find a solution of the Einstein–Maxwell system of field equations for a class of accelerating, expanding and shearing spherically symmetric metrics. This solution depends on a particular ansatz for the line element. The radial behaviour of the solution is fully specified while the temporal behaviour is given in terms of a quadrature. By setting the charge contribution to zero we regain an (uncharged) perfect fluid solution found previously with the equation of state =+ constant, which is a generalisation of a stiff equation of state. Our class of charged shearing solutions is characterised geometrically by a conformal Killing vector.

  13. Spherically symmetric scalar field collapse

    Indian Academy of Sciences (India)

    Koyel Ganguly; Narayan Banerjee

    2013-03-01

    It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.

  14. Characteristics of Plasma Turbulence in the Mega Amp Spherical Tokamak

    CERN Document Server

    Ghim, Young-chul

    2013-01-01

    Turbulence is a major factor limiting the achievement of better tokamak performance as it enhances the transport of particles, momentum and heat which hinders the foremost objective of tokamaks. Hence, understanding and possibly being able to control turbulence in tokamaks is of paramount importance, not to mention our intellectual curiosity of it.

  15. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J.A.

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  16. Electron thermal transport in tokamak plasmas

    International Nuclear Information System (INIS)

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (108 K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called 'tokamak' this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high 'fusion' temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This 'anomalous transport' of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL)

  17. Registration of Alfvén resonances in TCABR tokamak by the scanning reflectometer at sideband frequencies.

    Science.gov (United States)

    Ruchko, L F; Elfimov, A G; Teixeira, C M; Elizondo, J I; Sanada, E; Galvão, R M O; Manso, M E; Silva, A

    2011-02-01

    A frequency scanning O-mode reflectometer was used for studies of plasma density oscillations during local Alfvén wave (LAW) excitation in the Tokamak Chauffage Alfvén Brésilien (TCABR) at the frequency f(A) = 5 MHz. It was found that the spectrum of the reflectometer output signal, which consists mainly of the "beat" frequency f(B), is modified by the LAW excitation, and two additional frequency peaks appear, which are symmetrical in relation to the LAW excitation frequency f = f(A) ± f(B). This result opens the possibility to improve the efficiency of studying the LAW induced density oscillations. The symmetry of these frequency peaks yields the possibility of finding the microwave frequency at which the reflectometer cutoff layer coincides with radial position of the LAW resonance zone in the TCABR tokamak.

  18. Registration of Alfvén resonances in TCABR tokamak by the scanning reflectometer at sideband frequencies

    Science.gov (United States)

    Ruchko, L. F.; Elfimov, A. G.; Teixeira, C. M.; Elizondo, J. I.; Sanada, E.; Galvão, R. M. O.; Manso, M. E.; Silva, A.

    2011-02-01

    A frequency scanning O-mode reflectometer was used for studies of plasma density oscillations during local Alfvén wave (LAW) excitation in the Tokamak Chauffage Alfvén Brésilien (TCABR) at the frequency fA = 5 MHz. It was found that the spectrum of the reflectometer output signal, which consists mainly of the "beat" frequency fB, is modified by the LAW excitation, and two additional frequency peaks appear, which are symmetrical in relation to the LAW excitation frequency f = fA ± fB. This result opens the possibility to improve the efficiency of studying the LAW induced density oscillations. The symmetry of these frequency peaks yields the possibility of finding the microwave frequency at which the reflectometer cutoff layer coincides with radial position of the LAW resonance zone in the TCABR tokamak.

  19. Simulation of burning tokamak plasmas

    International Nuclear Information System (INIS)

    To simulate dynamical behaviour of tokamak fusion reactors, a zero-dimensional time-dependent particle and power balance code has been developed. The zero-dimensional plasma model is based on particle and power balance equations that have been integrated over the plasma volume using prescribed profiles for plasma parameters. Therefore, the zero-dimensional model describes the global dynamics of a fusion reactor. The zero-dimensional model has been applied to study reactor start-up, and plasma responses to changes in the plasma confinement, fuelling rate, and impurity concentration, as well as to study burn control via fuelling modulation. Predictions from the zero-dimensional code have been compared with experimental data and with transport calculations of a higher dimensionality. In all cases, a good agreement was found. The advantage of the zero-dimensional code, as compared to higher-dimensional transport codes, is the possibility to quickly scan the interdependencies between reactor parameters. (88 refs., 58 figs., 6 tabs.)

  20. Microtearing modes in tokamak discharges

    Science.gov (United States)

    Rafiq, T.; Weiland, J.; Kritz, A. H.; Luo, L.; Pankin, A. Y.

    2016-06-01

    Microtearing modes (MTMs) have been identified as a source of significant electron thermal transport in tokamak discharges. In order to describe the evolution of these discharges, it is necessary to improve the prediction of electron thermal transport. This can be accomplished by utilizing a model for transport driven by MTMs in whole device predictive modeling codes. The objective of this paper is to develop the dispersion relation that governs the MTM driven transport. A unified fluid/kinetic approach is used in the development of a nonlinear dispersion relation for MTMs. The derivation includes the effects of electrostatic and magnetic fluctuations, arbitrary electron-ion collisionality, electron temperature and density gradients, magnetic curvature, and the effects associated with the parallel propagation vector. An iterative nonlinear approach is used to calculate the distribution function employed in obtaining the nonlinear parallel current and the nonlinear dispersion relation. The third order nonlinear effects in magnetic fluctuations are included, and the influence of third order effects on a multi-wave system is considered. An envelope equation for the nonlinear microtearing modes in the collision dominant limit is introduced in order to obtain the saturation level. In the limit that the mode amplitude does not vary along the field line, slab geometry, and strong collisionality, the fluid dispersion relation for nonlinear microtearing modes is found to agree with the kinetic dispersion relation.

  1. Modelling larval transport in a axial convergence front

    Science.gov (United States)

    Robins, P.

    2010-12-01

    Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval

  2. Conformally symmetric massive discrete fields

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Manoelito M. de

    2001-04-01

    Conformal symmetry is taken as an attribute of theories of massless fields in manifolds with specific dimensions. This paper shows that this is not an absolute truth; it is a consequence of the mathematical representation used for the physical interactions. It introduces a new kind of representation where the propagation of massive (invariant mass) and mass-less interactions are unifiedly described by a single conformally symmetric Green's function. Sources and fields are treated at a same footing, symmetrically, as discrete fields - the fields in this new representation - fields defined with support on straight lines embedded in a (3+1) - Minkowski manifold. The discrete field turns out to be a point in phase space. It is finite everywhere. With a finite number of degrees of freedom it does not share the well known problems faced by the standard continuous formalism which can be retrieved from the discrete one by an integration over a hypersurface. The passage from discrete to continuous fields illuminates the physical meaning and origins of their properties and problems. The price for having massive discrete field with conformal symmetry is of hiding its mass and timelike velocity behind its non-constant proper-time. (author)

  3. Schwarz Methods: To Symmetrize or Not to Symmetrize

    CERN Document Server

    Holst, Michael

    2010-01-01

    A preconditioning theory is presented which establishes sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive definite preconditioners. It allows for the analysis and use of non-variational and non-convergent linear methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured that enforcing minimal symmetry achieves the best results when combined with conjugate gradient acceleration. Also, it is shown that absence of symmetry in the linear preconditioner is advantageous when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are presented for two test problems which illustrate the theory and conjectures.

  4. Homoclinic tangle of the separatrix of the Symmetric Quartic Map

    Science.gov (United States)

    Settle, Talise; Jones, Bilal; Baldwin, Danielle; Ali, Halima; Punjabi, Alkesh

    2015-11-01

    The equilibrium separatrix of the Symmetric Quartic Map (SQM) is calculated in natural canonical coordinates (NCC) and the SQM is constructed in NCC. The map parameter of the SQM is used to represent the magnetic perturbation as in the Standard Map. The homoclinic tangle of the ideal separatrix of the SQM is calculated for different values of the map parameter. The parameters in the generating function of the SQM are so chosen that the height, the width, the elongation and the poloidal flux inside the separatrix is same as in the simple map. The purpose of this research is to compare the homoclinic tangle of the SQM with that of the simple map. The separatrix of the simple map is open and unbounded; while the separatrix of the SQM is closed and compact. Motivation is to see what role the topology of the separatrix plays in its homoclinic tangle in single-null divertor tokamaks. This work is supported by grants DE-FG02-01ER54624, DE-FG02-04ER54793, and DE-FG02-07ER54937.

  5. Gyrokinetic Studies of Microturbulence in the Madison Symmetric Torus

    Science.gov (United States)

    Williams, Zachary; Duff, James; Pueschel, M. J.; Terry, Paul

    2015-11-01

    Reversed-field pinches operating with Pulsed Poloidal Current Drive (PPCD) exhibit microturbulence that contributes to heat and particle transport. This work focuses on the analysis of high-frequency fluctuations in a recent 200 kA PPCD discharge in the Madison Symmetric Torus, for which strong experimental evidence of microturbulence exists. Local gyrokinetic simulations were performed at multiple radial positions outside the reversal surface using the Gene code. Linear analysis identifies the dominant instability at all positions to be a density-gradient-driven trapped electron mode. An accurate description of turbulence requires the inclusion of residual tearing mode fluctuations: though reduced in PPCD, large-scale tearing modes introduce non-negligible levels of magnetic perturbations. In simulations, they can be seen to weaken zonal flows and degrade confinement, increasing transport to experimentally observed levels. Importantly, imposed fluctuations appear to be self-consistently reinforced, contrary to the usual island-healing picture in tokamaks. Simulations also include B∥ fluctuations, which provide finite contributions to transport, particularly when artificially zeroing out tearing modes entirely.

  6. Effect of impurity radiation on tokamak equilibrium

    International Nuclear Information System (INIS)

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  7. Mass spectrometry instrumentation in TN (Novillo Tokamak)

    International Nuclear Information System (INIS)

    The mass spectrophotometry in the residual gases analysis in high vacuum systems, in particular in the Novillo Tokamak (TN), where pressures are required to be of the order 10-7 Torr, is carried out through an instrumental support with infrastructure configured in parallel to the experimental planning in this device. In the Novillo as well as other Tokamaks, it is necessary to condition the vacuum chamber for improving the main discharge parameters. At the present time, in this Tokamak the conditioning quality is presented determined by means of a mass spectrophotometer. A general instrumental description is presented associated with the Novillo conditioning, as well as the spectras obtained before and after operation. (Author)

  8. Tokamak equilibria with strong toroidal current density reversal

    Science.gov (United States)

    Ludwig, G. O.; Rodrigues, Paulo; Bizarro, João P. S.

    2013-05-01

    The equilibrium of large magnetic islands in the core of a tokamak under conditions of strong toroidal current density reversal is investigated by a new method. The method uses distinct spectral representations to describe each simply connected region as well as the containing shell geometry. This ideal conducting shell may substitute for the plasma edge region or take a virtual character representing the external equilibrium field effect. The internal equilibrium of the islands is solved within the framework of the variational moment method. Equivalent surface current densities are defined on the boundaries of the islands and on the thin containing shell, giving a straightforward formulation to the interaction between regions. The equilibrium of the island-shell system is determined by matching moments of the Dirichlet boundary conditions. Finally, the macroscopic stability against a class of tilting displacements is examined by means of an energy principle. It is found out that the up-down symmetric islands are stable to this particular perturbation and geometry but the asymmetric system presents a bifurcation in the equilibrium.

  9. Axial Force at the Vessel Bottom Induced by Axial Impellers

    OpenAIRE

    I. Fořt; P. Hasal; A. Paglianti; F. Magelli

    2008-01-01

    This paper deals with the axial force affecting the flat bottom of a cylindrical stirred vessel. The vessel is equipped with four radial baffles and is stirred with a four 45° pitched blade impeller pumping downwards. The set of pressure transducers is located along the whole radius of the flat bottom between two radial baffles. The radial distribution of the dynamic pressures indicated by the transducers is measured in dependence on the impeller off-bottom clearance and impeller speed.It fol...

  10. Golimumab for treatment of axial spondyloarthritis.

    Science.gov (United States)

    Rios Rodriguez, Valeria; Poddubnyy, Denis

    2016-02-01

    Axial spondyloarthritis comprises two forms: nonradiographic (nonradiographic axial spondyloarthritis) and radiographic (better known as ankylosing spondylitis), which are often considered as two stages of one disease. Historically, all currently available TNF-α inhibitors were first investigated in ankylosing spondylitis and later on in nonradiographic axial spondyloarthritis. This year, EMA has granted golimumab approval for the treatment of active nonradiographic axial spondyloarthritis based on the recently published data from the GO-AHEAD study. This article summarizes recent data on efficacy and safety of golimumab in the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis.

  11. The Spherical Tokamak MEDUSA for Mexico

    Science.gov (United States)

    Ribeiro, C.; Salvador, M.; Gonzalez, J.; Munoz, O.; Tapia, A.; Arredondo, V.; Chavez, R.; Nieto, A.; Gonzalez, J.; Garza, A.; Estrada, I.; Jasso, E.; Acosta, C.; Briones, C.; Cavazos, G.; Martinez, J.; Morones, J.; Almaguer, J.; Fonck, R.

    2011-10-01

    The former spherical tokamak MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R Mexican Fusion Network. Strong liaison within national and international plasma physics communities is expected. New activities on plasma & engineering modeling are expected to be developed in parallel by using the existing facilities such as a multi-platform computer (Silicon Graphics Altix XE250, 128G RAM, 3.7TB HD, 2.7GHz, quad-core processor), ancillary graph system (NVIDIA Quadro FE 2000/1GB GDDR-5 PCI X16 128, 3.2GHz), and COMSOL Multiphysics-Solid Works programs.

  12. Tokamak power systems studies, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  13. Electron cyclotron emission diagnostics on KSTAR tokamak.

    Science.gov (United States)

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  14. Electron cyclotron emission diagnostics on KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S. H. [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Daejeon 305-353 (Korea, Republic of); Lee, K. D.; Kwon, M. [National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333 (Korea, Republic of); Kogi, Y. [Fukuoka Institute of Technology, Higashiku, Fukuoka 811-0295 (Japan); Kawahata, K.; Nagayama, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Mase, A. [KASTEC, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  15. A method for tokamak neutronics calculations

    International Nuclear Information System (INIS)

    This paper presents a new method for neutron transport calculation in tokamak fusion reactors. The computational procedure is based on the solution of the even-parity transport equation in a toroidal geometry. The angular neutron distribution is treated by even-parity spherical harmonic expansion, while the spatial dependence is approximated by using R-function finite elements that are defined for regions of arbitrary geometric shape. In order to test the method, calculation of a simplified tokamak model is carried out. The results are compared with the results from the literature and for the same order of accuracy a reduction of the number of spatial unknowns is shown. (author)

  16. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  17. Multichannel submillimeter interferometer for tokamak density measurements

    International Nuclear Information System (INIS)

    A two-channel, submillimeter (SMM) laser, electron-density interferometer has been operated successfully on the ISX tokamak. The interferometer is the first phase of a diagnostic system to measure the tokamak plasma current density using the Faraday rotation of the polarization vector of SMM laser beams. Deuterated formic acid lasers (lambda = 0.381 mm) have produced cw power of 10 mW. The interferometer has performed successfully for line-averaged electron densities as high as 8 x 1013 cm-3

  18. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  19. Electron cyclotron emission diagnostics on KSTAR tokamak.

    Science.gov (United States)

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration. PMID:21033954

  20. Electronic system of TBR tokamak device

    International Nuclear Information System (INIS)

    The electronics developed as a part of the TBR project, which involves the construction of a small tokamak at the Physics Institute of the University of Sao Paulo, is described. On the basis of tokamak parameter values, the electronics for the toroidal field, ohmic/heating and vertical field systems is presented, including capacitors bank, switches, triggering circuits and power supplies. A controlled power oscilator used in discharge cleaning and pre-ionization is also described. The performance of the system as a function of the desired plasma parameters is discussed. (Author)

  1. Coupled dilaton and electromagnetic field in cylindrically symmetric spacetime

    Indian Academy of Sciences (India)

    A Banerjee; S Chatterjee; Tanwi Ghosh

    2000-03-01

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that with pure magnetic field. In the first case we have a curvature singularity at a finite distance from the axis indicating the existence of the boundary of a charged cylinder which may represent the source of the electric field. For the second case we have a singularity on the axis. When the dilaton field is absent the electromagnetic field disappears in both the cases. Whereas the contrary is not true. It is further shown that light rays except for those proceeding in the radial direction are either trapped or escape to infinity depending on the magnitudes of certain constant parameters as well as on the nature of the electromagnetic field. Nature of circular geodesics is also studied in the presence of dilaton field in the cylindrically symmetric spacetime.

  2. Time-Symmetrized Counterfactuals in Quantum Theory

    OpenAIRE

    Vaidman, L.

    1998-01-01

    Recently, several authors have criticized the time-symmetrized quantum theory originated by the work of Aharonov et al. (1964). The core of this criticism was a proof, appearing in various forms, which showed that the counterfactual interpretation of time-symmetrized quantum theory cannot be reconciled with standard quantum theory. I argue here that the apparent contradiction is due to a logical error. I analyze the concept of counterfactuals in quantum theory and introduce time-symmetrized c...

  3. Predicting the Coupling Properties of Axially-Textured Materials

    Directory of Open Access Journals (Sweden)

    María E. Fuentes-Montero

    2013-10-01

    Full Text Available A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  4. Fast imaging of mean, axial and radial diffusion kurtosis

    DEFF Research Database (Denmark)

    Hansen, Brian; Shemesh, Noam; Jespersen, Sune Nørhøj

    2016-01-01

    Abstract Diffusion kurtosis imaging (DKI) is being increasingly reported to provide sensitive biomarkers of subtle changes in tissue microstructure. However, DKI also imposes larger data requirements than diffusion tensor imaging (DTI), hence, the widespread adaptation and exploration of DKI would...... for the first time, and referred to as axially symmetric DKI. The second approach is applicable in tissues with a priori known principal diffusion direction, and does not require fitting of any kind. The approaches are evaluated in human brain in vivo as well as in fixed rat spinal cord, and are demonstrated...... benefit from more efficient acquisition and computational methods. To meet this demand, we recently developed a method capable of estimating mean kurtosis with only 13 diffusion weighted images. This approach was later shown to provide very accurate mean kurtosis estimates and to be more efficient...

  5. A Minimally Symmetric Higgs Boson

    CERN Document Server

    Low, Ian

    2014-01-01

    Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)xU(1) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal in all models where the Higgs arises as a pseudo-Nambu-Goldstone boson (PNGB). Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.

  6. Spherically symmetric elasticity in relativity

    Energy Technology Data Exchange (ETDEWEB)

    Carot, J [Departament de Fisica, Universitat de les Illes Balears, Cra Valldemossa pk 7.5, E-07122 Palma (Spain); Brito, I; Vaz, E G L R, E-mail: jcarot@uib.ca, E-mail: ireneb@mct.uminho.p, E-mail: evaz@mct.uminho.p

    2010-05-01

    The relativistic theory of elasticity is reviewed within the spherically symmetric context with a view towards the modelling of star interiors possessing elastic properties such as the ones expected in neutron stars. Emphasis is placed on generality in the main sections of the paper, and the results are then applied to specific examples. Along the way, a few general results for spacetimes admitting isometries are deduced, and their consequences are fully exploited in the case of spherical symmetry relating them next to the the case in which the material content of the spacetime is some elastic material. This paper extends and generalizes the pioneering work by Magli and Kijowski [1], Magli [2] and [3], and complements, in a sense, that by Karlovini and Samuelsson in their interesting series of papers [4], [5] and [6].

  7. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  8. Symmetric functions and Hall polynomials

    CERN Document Server

    MacDonald, Ian Grant

    1998-01-01

    This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and...

  9. Computing symmetric colorings of the dihedral group

    Science.gov (United States)

    Zelenyuk, Yuliya

    2016-06-01

    A symmetry on a group G is a mapping G ∋ x ↦ gx-1 g ∈ G, where g ∈ G. A subset A ⊆ G is symmetric if it is invariant under some symmetry, that is, A = gA-1g. The notion of symmetry has interesting relations to enumerative combinatorics. A coloring is symmetric if χ(gx-1g) = χ(x) for some g ∈ G. We discuss an approach how to compute the number of symmetric r-colorings for any finite group. Using this approach we derive the formula for the number of symmetric r-colorings of the dihedral group D3.

  10. Standard practice for strain-controlled axial-torsional fatigue testing with thin-walled tubular specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 The standard deals with strain-controlled, axial, torsional, and combined in- and out-of-phase axial torsional fatigue testing with thin-walled, circular cross-section, tubular specimens at isothermal, ambient and elevated temperatures. This standard is limited to symmetric, completely-reversed strains (zero mean strains) and axial and torsional waveforms with the same frequency in combined axial-torsional fatigue testing. This standard is also limited to characterization of homogeneous materials with thin-walled tubular specimens and does not cover testing of either large-scale components or structural elements. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Spontaneous generation of rotation in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Parra Diaz, Felix [Oxford University

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  12. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  13. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  14. UCLA Tokamak Program Close Out Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robert John [UCLA/retired

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.

  15. Toroidal Alfven wave stability in ignited tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  16. Advanced tokamak concepts and reactor designs

    NARCIS (Netherlands)

    Oomens, A. A. M.

    2000-01-01

    From a discussion of fusion reactor designs based on today's well-established experience gained in the operation of large tokamaks, it is concluded that such reactors are economically not attractive. The physics involved in the various options for concept improvement is described, some examples

  17. Tokamak fusion test reactor. Final design report

    International Nuclear Information System (INIS)

    Detailed data are given for each of the following areas: (1) system requirements, (2) the tokamak system, (3) electrical power systems, (4) experimental area systems, (5) experimental complex, (6) neutral beam injection system, (7) diagnostic system, and (8) central instrumentation control and data acquisition system

  18. Radioactivity evaluation for the KSTAR tokamak

    International Nuclear Information System (INIS)

    The deuterium-deuterium (D-D) reaction in the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak generates neutrons with a peak yield of 2.5 x 1016 s-1 through a pulse operation of 300 s. Since the structure material of the tokamak is irradiated with neutrons, this environment will restrict work around and inside the tokamak from a radiation protection physics point of view after shutdown. Identification of neutron-produced radionuclides and evaluation of absorbed dose in the structure material are needed to develop a guiding principle for radiation protection. The activation level was evaluated by MCNP4C2 and an inventory code, FISPACT. The absorbed dose in the working area decreased by 4.26 x 10-4 mrem h-1 in the inner vessel 1.5 d after shutdown. Furthermore, tritium strongly contributes to the contamination in the graphite tile. The amount of tritium produced by neutrons was 3.03 x 106 Bq kg-1 in the carbon graphite of a plasma-facing wall. (authors)

  19. Analysis of sawtooth relaxation oscillations in tokamaks

    International Nuclear Information System (INIS)

    Sawtooth relaxation oscillations are analyzed using the Kadomtsev's disruption model and a thermal relaxation model. The sawtooth period is found to be very sensitive to the thermal conduction loss. Qualitative agreement between these calculations and the sawtooth period observed in several tokamaks is demonstrated

  20. Tokamak Transport Studies Using Perturbation Analysis

    NARCIS (Netherlands)

    Cardozo, N. J. L.; Dehaas, J. C. M.; Hogeweij, G. M. D.; Orourke, J.; Sips, A.C.C.; Tubbing, B. J. D.

    1990-01-01

    Studies of the transport properties of tokamak plasmas using perturbation analysis are discussed. The focus is on experiments with not too large perturbations, such as sawtooth induced heat and density pulse propagation, power modulation and oscillatory gas-puff experiments. The approximations made

  1. CANONICAL EXTENSIONS OF SYMMETRIC LINEAR RELATIONS

    NARCIS (Netherlands)

    Sandovici, Adrian; Davidson, KR; Gaspar, D; Stratila, S; Timotin, D; Vasilescu, FH

    2006-01-01

    The concept of canonical extension of Hermitian operators has been recently introduced by A. Kuzhel. This paper deals with a generalization of this notion to the case of symmetric linear relations. Namely, canonical regular extensions of symmetric linear relations in Hilbert spaces are studied. The

  2. Generalized geometry and non-symmetric gravity

    OpenAIRE

    Jurco, Branislav; Khoo, Fech Scen; Schupp, Peter; Vysoky, Jan

    2015-01-01

    Generalized geometry provides the framework for a systematic approach to non-symmetric metric gravity theory and naturally leads to an Einstein-Kalb-Ramond gravity theory with totally anti-symmetric contortion. The approach is related to the study of the low-energy effective closed string gravity actions.

  3. Axial Vector $Z'$ and Anomaly Cancellation

    CERN Document Server

    Ismail, Ahmed; Tsao, Kuo-Hsing; Unwin, James

    2016-01-01

    Whilst the prospect of new $Z'$ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that the masses of these new states must generally be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.

  4. Mass Effect on Axial Charge Dynamics

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We studied effect of finite quark mass on the dynamics of axial charge using the D3/D7 model in holography. The mass term in axial anomaly equation affects both the fluctuation (generation) and dissipation of axial charge. We studied the dependence of the effect on quark mass and external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a non-monotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and magnetic field.

  5. The robust PT-symmetric chain

    CERN Document Server

    Joglekar, Yogesh N

    2010-01-01

    We study the properties of a parity- and time-reversal- (PT) symmetric tight-binding chain of size N with position-dependent hopping amplitude. In contrast to the fragile PT-symmetric phase of a chain with constant hopping and imaginary impurity potentials, we show that, under very general conditions, our model is {\\it always} in the PT-symmetric phase. We numerically obtain the energy spectrum and the density of states of such a chain, and show that they are widely tunable. By studying the size-dependence of inverse participation ratios, we show that although the chain is not translationally invariant, most of its eigenstates are extended. Our results indicate that tight-binding models with non-Hermitian PT-symmetric hopping have a robust PT-symmetric phase and rich dynamics.

  6. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  7. Symmetric Structure in Logic Programming

    Institute of Scientific and Technical Information of China (English)

    Jin-Zhao Wu; Harald Fecher

    2004-01-01

    It is argued that some symmetric structure in logic programs could be taken into account when implementing semantics in logic programming. This may enhance the declarative ability or expressive power of the semantics. The work presented here may be seen as representative examples along this line. The focus is on the derivation of negative information and some other classic semantic issues. We first define a permutation group associated with a given logic program. Since usually the canonical models used to reflect the common sense or intended meaning are minimal or completed models of the program, we expose the relationships between minimal models and completed models of the original program and its so-called G-reduced form newly-derived via the permutation group defined. By means of this G-reduced form, we introduce a rule to assume negative information termed G-CWA, which is actually a generalization of the GCWA. We also develop the notions of G-definite, G-hierarchical and G-stratified logic programs, which are more general than definite, hierarchical and stratified programs, and extend some well-known declarative and procedural semantics to them, respectively.

  8. Parity-time-symmetric teleportation

    Science.gov (United States)

    Ra'di, Y.; Sounas, D. L.; Alù, A.; Tretyakov, S. A.

    2016-06-01

    We show that electromagnetic plane waves can be fully "teleported" through thin, nearly fully reflective sheets, assisted by a pair of parity-time-symmetric lossy and active sheets in front and behind the screen. The proposed structure is able to almost perfectly absorb incident waves over a wide range of frequency and incidence angles, while waves having a specific frequency and incidence angle are replicated behind the structure in synchronization with the input signal. It is shown that the proposed structure can be designed to teleport waves at any desired frequency and incidence angle. Furthermore, we generalize the proposed concept to the case of teleportation of electromagnetic waves over electrically long distances, enabling full absorption at one surface and the synthesis of the same signal at another point located electrically far away from the first surface. The physical principle behind this selective teleportation is discussed, and similarities and differences with tunneling and cloaking concepts based on PT symmetry are investigated. From the application point of view, the proposed structure works as an extremely selective filter, both in frequency and spatial domains.

  9. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    Science.gov (United States)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  10. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  11. PERIODIC-ORBITS IN K-SYMMETRICAL DYNAMICAL-SYSTEMS

    NARCIS (Netherlands)

    BRANDS, H; LAMB, JSW; HOVEIJN, [No Value

    1995-01-01

    A map L is called k-symmetric if its kth iterate L(k) possesses more symmetry than L, for some value of k. In k-symmetric systems, there exists a notion of k-symmetric orbits. This paper deals with k-symmetric periodic orbits. We derive a relation between orbits that are k-symmetric with respect to

  12. The symmetric extendibility of quantum states

    Science.gov (United States)

    Nowakowski, Marcin L.

    2016-09-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states.

  13. Axial Coordination and Conformational Heterogeneity of Nickel(II) Tetraphenylporphyrin Complexes with Nitrogenous Bases.

    Science.gov (United States)

    Jia, Song-Ling; Jentzen, Walter; Shang, Mayou; Song, Xing-Zhi; Ma, Jian-Guo; Scheidt, W. Robert; Shelnutt, John A.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. By varying the pyrrolidine concentration in dichloromethane, distinct nu(4) Raman lines are found for the four-, five-, and six-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M(-)(1), respectively. The axial ligands and their orientations influence the type and magnitude of the calculated nonplanar distortion. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation of the axial ligands, narrow and symmetric nu(2) and nu(8) Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the five-coordinate complex with the plane of the axial ligand bisecting the Ni-N(pyrrole) bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N(pyrrole) bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the five-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group

  14. Characterization of the Tokamak Novillo in cleaning regime; Caracterizacion del Tokamak Novillo en regimen de limpieza

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, R.; Melendez L, L.; Valencia A, R.; Chavez A, E.; Colunga S, S.; Gaytan G, E

    1992-02-15

    In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ip{sub t} like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I{sub (p)}t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)

  15. First experiments on the TO-2 tokamak with a divertor

    International Nuclear Information System (INIS)

    Long stable discharges have been obtained in a recetrack tokamak with toroidal divertors in low plasma density regime. Divertors sharply limit plasma filament cross section, plasma density decreasing by an order at 1 cm length near the separatrix. 8 mm thick well formed flux of plasma appears at the divertor plate. Divertor power efficiency at different modes of operation is 50- 70 %. As compared to the TO-1 nondivertor tokamak some plasma filament hot zone expansion is recorded in the TO-2 tokamak

  16. Banana orbits in elliptic tokamaks with hole currents

    Science.gov (United States)

    Martin, P.; Castro, E.; Puerta, J.

    2015-03-01

    Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.

  17. Systems studies of high-field tokamak ignition experiments

    International Nuclear Information System (INIS)

    A study of the interaction between the physics of ignition and the engineering constraints in the design of compact, high-field tokamak ignition demonstration devices is presented. The studies investigate the effects the various electron and ion thermal diffusivities, which result from the many tokamak scaling laws, have on the design parameters of an ignition device and show the feasibility of building and igniting a compact tokamak (R<1m). The relevant machine technology is discussed

  18. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  19. Modelling of wall and SOL processes and contamination of ITER plasma after impurity injection with the tokamak code TOKES

    International Nuclear Information System (INIS)

    In the future tokamak ITER the damage to the wall after the disruptions can be mitigated using preventive massive gas injection (MGI) of noble gases into confined plasma during the thermal quench. The gas gets ionized in the plasma, and then the ions dump into the scrape-off layer (SOL) and impact on the target. The contamination of core plasma results in fast loss of plasma energy by radiation. The radiation distributes rather homogeneously over the wall. However, enhanced radiation load in e.g. vicinity of gas jet entry is an issue for ITER design that can be addressed numerically. For the modelling the tokamak code TOKES is applied, after upgrading it with toroidally symmetric 2D plasma model. This allowed detailed radiation fluxes and the expansion of noble ions both across and along the magnetic surfaces. In the work one- and two-dimensional (2D) MGI models are evaluated. 2D model is preliminary compared with the tokamak DIII-D. Substantial discrepancies were explained, and then predictive simulations for ITER performed, with the conclusion that after the radiation flush in front of jet entry the wall temperature can exceed the beryllium melting point.

  20. Symmetric cumulants and event-plane correlations

    CERN Document Server

    Giacalone, Giuliano; Noronha-Hostler, Jacquelyn; Ollitrault, Jean-Yves

    2016-01-01

    The ALICE Collaboration has recently measured the correlations between amplitudes of anisotropic flow in different Fourier harmonics, referred to as symmetric cumulants. We derive approximate relations between symmetric cumulants involving $v_4$ and $v_5$ and the event-plane correlations measured by ATLAS. The validity of these relations is tested using event-by-event hydrodynamic calculations. The corresponding results are in better agreement with ALICE data than existing hydrodynamic predictions. We make quantitative predictions for three symmetric cumulants which are not yet measured.

  1. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  2. Nonlinear symmetric stability of planetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.C. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Shepherd, T.G. [Toronto Univ., ON (Canada). Dept. of Physics

    1994-11-01

    The energy-Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Linear stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Nonlinear stability conditions are also obtained that, in addition to implying linear stability, provide an upper bound on a certain positive-definite measure of disturbance amplitude.

  3. Health and imaging outcomes in axial spondyloarthritis

    NARCIS (Netherlands)

    Machado, P.M.

    2016-01-01

    This thesis focuses on the assessment and monitoring of health and imaging outcomes in axial spondyloarthritis (SpA) and the relationship between these outcomes. Four major contributions to the understanding and management of axial SpA were made: 1) the improvement and facilitation of the assessment

  4. Numerical studies of edge localized instabilities in tokamaks

    International Nuclear Information System (INIS)

    A new computational tool, edge localized instabilities in tokamaks equilibria (ELITE), has been developed to help our understanding of short wavelength instabilities close to the edge of tokamak plasmas. Such instabilities may be responsible for the edge localized modes observed in high confinement H-mode regimes, which are a serious concern for next step tokamaks because of the high transient power loads which they can impose on divertor target plates. ELITE uses physical insight gained from analytic studies of peeling and ballooning modes to provide an efficient way of calculating the edge ideal magnetohydrodynamic stability properties of tokamaks. This paper describes the theoretical formalism which forms the basis for the code

  5. KTM Tokamak operation scenarios software infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V.; Baystrukov, K.; Golobkov, YU.; Ovchinnikov, A.; Meaentsev, A.; Merkulov, S.; Lee, A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Tazhibayeva, I.; Shapovalov, G. [National Nuclear Center (NNC), Kurchatov (Kazakhstan)

    2014-10-15

    One of the largest problems for tokamak devices such as Kazakhstan Tokamak for Material Testing (KTM) is the operation scenarios' development and execution. Operation scenarios may be varied often, so a convenient hardware and software solution is required for scenario management and execution. Dozens of diagnostic and control subsystems with numerous configuration settings may be used in an experiment, so it is required to automate the subsystem configuration process to coordinate changes of the related settings and to prevent errors. Most of the diagnostic and control subsystems software at KTM was unified using an extra software layer, describing the hardware abstraction interface. The experiment sequence was described using a command language. The whole infrastructure was brought together by a universal communication protocol supporting various media, including Ethernet and serial links. The operation sequence execution infrastructure was used at KTM to carry out plasma experiments.

  6. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  7. Boundary Plasma Turbulence Simulations for Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  8. The Spherical Tokamak MEDUSA for Costa Rica

    Science.gov (United States)

    Ribeiro, Celso; Vargas, Ivan; Guadamuz, Saul; Mora, Jaime; Ansejo, Jose; Zamora, Esteban; Herrera, Julio; Chaves, Esteban; Romero, Carlos

    2012-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R>=3.6, under design[2]) and also the ongoing activities in low temperature plasmas. Courses in plasma physics at undergraduate and post-graduate joint programme levels are regularly conducted. The scientific programme is intend to clarify several issues in relevant physics for conventional and mainly STs, including transport, heating and current drive via Alfv'en wave, and natural divertor STs with ergodic magnetic limiter[3,4]. [1] G.D.Garstka, PhD thesis, University of Wisconsin at Madison, 1997 [2] L.Barillas et al., Proc. 19^th Int. Conf. Nucl. Eng., Japan, 2011 [3] C.Ribeiro et al., IEEJ Trans. Electrical and Electronic Eng., 2012(accepted) [4] C.Ribeiro et al., Proc. 39^th EPS Conf. Contr. Fusion and Plasma Phys., Sweden, 2012

  9. Module description of TOKAMAK equilibrium code MEUDAS

    International Nuclear Information System (INIS)

    The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)

  10. Rapidly Moving Divertor Plates In A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  11. Module description of TOKAMAK equilibrium code MEUDAS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-01-01

    The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)

  12. Rapidly Moving Divertor Plates In A Tokamak

    International Nuclear Information System (INIS)

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ∼10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  13. A Compact Single-Feed Circularly Polarized Microstrip Antenna with Symmetric and Wide-Beamwidth Radiation Pattern

    OpenAIRE

    Xihong Ye; Mang He; Pingyuan Zhou; Houjun Sun

    2013-01-01

    A compact single-feed circularly polarized microstrip antenna is proposed to achieve symmetric radiation pattern over a wide range of observation angles. In order to reduce the radiation aperture and consequently broaden the circular polarization (CP) and the half power beamwidth (HPBW) of the antenna, a partially etched superstrate and a conducting cavity are employed in the design. Further, reasonable axial ratio (AR) and impedance bandwidths are realized within the compact structure by usi...

  14. EU Integrated Tokamak Modelling (ITM) Task Force

    Institute of Scientific and Technical Information of China (English)

    A Becoulet

    2007-01-01

    @@ At the end of 2003, the European Fusion Development Agreement (EFDA) structure set-up a long-term European task force (TF) in charge of "co-ordinating the development of a coherent set of validated simulation tools for the purpose of benchmarking on existing tokamak experiments, with the ultimate aim of providing a comprehensive simulation package for ITER plasmas" [http://www.efda-taskforce-itm.org/].

  15. Smaller coil systems for tokamak reactors

    International Nuclear Information System (INIS)

    Ripple reduction by ferro-magnetic iron shielding is used to reduce the size of the toroidal field coils down to 7.8 by 10.4 m bore for a commercial tokamak reactor design with plasma parameters similar to STARFIRE. For maximum effectiveness, it is found that the blocks of ferromagnetic iron shielding should have triangular cross section and should be placed as close to the plasma as possible

  16. Resistive interchange instability in reversed shear tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Masaru; Nakamura, Yuji; Wakatani, Masahiro [Graduate School of Energy Science, Kyoto University, Uji, Kyoto (Japan)

    1999-04-01

    Resistive interchange modes become unstable due to the magnetic shear reversal in tokamaks. In the present paper, the parameter dependences, such as q (safety factor) profile and the magnetic surface shape are clarified for improving the stability, using the local stability criterion. It is shown that a significant reduction of the beta limit is obtained for the JT-60U reversed shear configuration with internal transport barrier, since the local pressure gradient increases. (author)

  17. Tore Supra. Basic design Tokamak system

    International Nuclear Information System (INIS)

    This document describes the basic design for the main components of the Tokamak system of Tora Supra. As such, it focuses on the engineering problems, and refers to last year report on Tora Supra (EUR-CEA-1021) for objectives and experimental programme of the apparatus on one hand, and for qualifying tests of the main technical solutions on the other hand. Superconducting toroidal field coil system, vacuum vessels and radiation shields, poloidal field system and cryogenic system are described

  18. Self-Organized Stationary States of Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, S. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. [General Atomics, San Diego, CA (United States); Krebs, I. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Max-Plank-Institut fur Plasmaphysik, Garching, Germany

    2015-11-01

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  19. Self-Organized Stationary States of Tokamaks.

    Science.gov (United States)

    Jardin, S C; Ferraro, N; Krebs, I

    2015-11-20

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  20. Microtearing modes and anomalous transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Drake, J.F.; Gladd, N.T.; Liu, C.S.; Chang, C.L.

    1980-04-14

    Microtearing (high-m) modes driven by the electron temperature gradient are found to be unstable for present tokamak parameters. A self-consistent calculation of the nonlinear saturation of this instability yields magnetic fluctuations vertical-barBvertical-bar/B approx. = rho/sub e//L/sub T/. The associated crossfield electron thermal conductivity is shown to be inversely proportional to density, consistent with Alcator scaling, and comparable in magnitude with that inferred from experiments.

  1. Neoclassical transport in high [beta] tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high [beta] large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high [beta] large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low [beta] values by a factor ([var epsilon]/q[sup 2][beta])[sup [1/2

  2. SST and ADITYA tokamak research in India

    International Nuclear Information System (INIS)

    Steady state operation of tokamaks plays an important role in high temperature magnetically confined plasma research. Steady state Superconducting Tokamak (SST) programme in India deals with the development of various technologies in this direction. SST-1 machine has been engineered and is being fabricated at the Institute for Plasma Research. The objectives of the machine are to study physics of plasma processes under steady state condition and develop the technologies related to steady state operation. Various sub-systems are being prototyped and developed. SST-1 is a large aspect ratio machine with a major radius of 1.1 m and a plasma minor radius of 0.2 m with elongation of 1.7 to 1.9 and triangularity of 0.5 to 0.7. It has been designed for 1000 sec operation at 3 T toroidal magnetic eld. Neutral beam Injection and Radio frequency heating systems are being developed to heat the plasma. Lower hybrid Current Drive system would sustain 200 kA of plasma current during 1000 sec operation. ADITYA tokamak has been upgraded with new diagnostics and RF heating systems. Thomson Scattering and ECE diagnostics have been operated. 200 kW Ion Cyclotron Resonance Heating (ICRH) and 200 kW Electron Cyclotron Resonance Heating (ECRH) systems have been successfully commissioned. RF assisted initial breakdown experiments have been initiated with these systems. (author)

  3. ECH on the MTX [Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    The Microwave Tokamak Experiment (MTX) at LLNL is investigating the heating of high density Tokamak plasmas using an intense pulse FEL. Our first experiments, now beginning, will study the absorption and plasma heating of single FEL pulses (20 ns pulse length and peak power up to 2 GW) at a frequency of 140 GHz. A later phase of experiments also at 140 GHz will study FEL heating at 5 kHz rate for a pulse train up to 50 pulses (35 ns pulse length and peak power up to 4 GW). Future operations are planned at 250 GHz with an average power of 2 MW for a pulse train of 0.5 s. The microwave output of the FEL is transported quasi-optically to the tokamak through a window-less, evacuated pipe of 20 in. diameter, using a six mirror system. Computational modelling of the non-linear absorption for the MTX geometry predicts single-pass absorption of 40% at a density and temperature of 1.8 /times/ 1020m/sup /minus/3/ and 1 keV, respectively. To measure plasma microwave absorption and backscatter, diagnostics are available to measure forward and reflected power (parallel wire grid beam-splitter and mirror directional couplers) and power transmitted through the plasma (segmented calorimeter and waveguide detector). Other fast diagnostics include ECE, Thompson scattering, soft x-rays, and fast magnetic probes. 8 refs., 2 figs

  4. ADX - Advanced Divertor and RF Tokamak Experiment

    Science.gov (United States)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  5. SOL Width Scaling in the MAST Tokamak

    Science.gov (United States)

    Ahn, Joon-Wook; Counsell, Glenn; Connor, Jack; Kirk, Andrew

    2002-11-01

    Target heat loads are determined in large part by the upstream SOL heat flux width, Δ_h. Considerable effort has been made in the past to develop analytical and empirical scalings for Δh to allow reliable estimates to be made for the next-step device. The development of scalings for a large spherical tokamak (ST) such as MAST is particularly important both for development of the ST concept and for improving the robustness of scalings derived for conventional tokamaks. A first such scaling has been developed in MAST DND plasmas. The scaling was developed by flux-mapping data from the target Langmuir probe arrays to the mid-plane and fitting to key upstream parameters such as P_SOL, bar ne and q_95. In order to minimise the effects of co-linearity, dedicated campaigns were undertaken to explore the widest possible range of each parameter while keeping the remainder as fixed as possible. Initial results indicate a weak inverse dependence on P_SOL and approximately linear dependence on bar n_e. Scalings derived from consideration of theoretical edge transport models and integration with data from conventional devices is under way. The established scaling laws could be used for the extrapolations to the future machine such as Spherical Tokamak Power Plant (STPP). This work is jointly funded by Euratom and UK Department of Trade and Industry. J-W. Ahn would like to recognise the support of a grant from the British Foreign & Commonwealth Office.

  6. Relativistic runaway electrons in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R.E.

    1995-02-03

    Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP).

  7. Symmetrical parahiliar infiltrated, cough and dyspnoea

    International Nuclear Information System (INIS)

    It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated

  8. Functional Contractive Maps in Triangular Symmetric Spaces

    Directory of Open Access Journals (Sweden)

    Mihai Turinici

    2013-01-01

    Full Text Available Some fixed point results are given for a class of functional contractions acting on (reflexive triangular symmetric spaces. Technical connections with the corresponding theories over (standard metric and partial metric spaces are also being established.

  9. Martingale Rosenthal inequalities in symmetric spaces

    Energy Technology Data Exchange (ETDEWEB)

    Astashkin, S V [Samara State University, Samara (Russian Federation)

    2014-12-31

    We establish inequalities similar to the classical Rosenthal inequalities for sequences of martingale differences in general symmetric spaces; a central role is played here by the predictable quadratic characteristic of a martingale. Bibliography: 26 titles.

  10. Symmetric centres of braided monoidal categories

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper introduces the concept of‘symmetric centres' of braided monoidal categories. Let H be a Hopf algebra with bijective antipode over a field k. We address the symmetric centre of the Yetter-Drinfel'd module category HH(yD) and show that a left Yetter-Drinfel'd module M belongs to the symmetric centre of HH(yD) if and only if M is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of H(M) to induce the braid of (H(H)(A),(○)A,A,φ,l,r), or equivalently, the braid of (A#H(H),(○)A,A,φ,l,r), where A is a quantum commutative H-module algebra.

  11. Symmetric Lévy Type Operator

    Institute of Scientific and Technical Information of China (English)

    Jian WANG

    2009-01-01

    The study of symmetric property in the L2-sense for the non-positive definite operator is motivated by the theory of probability and analysis. This paper presents some sufficient conditions for the existence of symmetric measure for Lévy type operator. Some new examples are illustrated. The present study is an important step for considering various ergodic properties and functional inequalities of Lévy type operator.

  12. Generalized Symmetric Divergence Measures and Metric Spaces

    CERN Document Server

    da Costa, G A T F

    2011-01-01

    Recently, Taneja studied two one parameter generalizations of J-divergence, Jensen-Shannon divergence and Arithmetic-Geometric divergence. These two generalizations in particular contain measures like: Hellinger discrimination, symmetric chi-square divergence, and triangular discrimination. These measures are well known in the literature of Statistics and Information theory. In this paper our aim is to prove metric space properties for square root of these two symmetric generalized divergence measures.

  13. Symmetric states: Their nonlocality and entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)

    2014-12-04

    The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.

  14. Scattering properties of PT-symmetric objects

    CERN Document Server

    Miri, Mohammad-Ali; Facao, Margarida; Abouraddy, Ayman F; Bakry, Ahmed; Razvi, Mir A N; Alshahrie, Ahmed; Alù, Andrea; Christodoulides, Demetrios N

    2016-01-01

    We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Such structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.

  15. On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zenghai; Zhou, Feng; Vlieks, Arnold; Adolphsen, Chris; /SLAC

    2011-06-23

    The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun being jointly designed with LLNL, and X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.

  16. Mirror-Symmetric Matrices and Their Application

    Institute of Scientific and Technical Information of China (English)

    李国林; 冯正和

    2002-01-01

    The well-known centrosymmetric matrices correctly reflect mirror-symmetry with no component or only one component on the mirror plane. Mirror-symmetric matrices defined in this paper can represent mirror-symmetric structures with various components on the mirror plane. Some basic properties of mirror-symmetric matrices were studied and applied to interconnection analysis. A generalized odd/even-mode decomposition scheme was developed based on the mirror reflection relationship for mirror-symmetric multiconductor transmission lines (MTLs). The per-unit-length (PUL) impedance matrix Z and admittance matrix Y can be divided into odd-mode and even-mode PUL matrices. Thus the order of the MTL system is reduced from n to k and k+p, where p(≥0)is the conductor number on the mirror plane. The analysis of mirror-symmetric matrices is related to the theory of symmetric group, which is the most effective tool for the study of symmetry.

  17. Effect of Slip on Peristaltic Flow of Powell-Eyring Fluid in a Symmetric Channel

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2014-01-01

    Full Text Available Peristaltic flow of non-Newtonian fluid in a symmetric channel with partial slip effect is examined. The non-Newtonian behavior of fluid is characterized by the constitutive equations of Powell-Eyring fluid. The motion is induced by a sinusoidal wave traveling along the flexible walls of channel. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The equations governing the flow are solved by adopting lubrication approach. Series solutions for the stream function and axial pressure gradient are obtained. Impact of slip and other emerging flow parameters is plotted and analyzed graphically.

  18. Deposit of thin films for Tokamaks conditioning

    International Nuclear Information System (INIS)

    As a main objective of this work, we present some experimental results obtained from studying the process of extracting those impurities created by the interaction plasma with its vessel wall in the case of Novillo tokamak. Likewise, we describe the main cleaning and conditioning techniques applied to it, fundamentally that of glow discharge cleaning at a low electron temperature (-6 to 4.5 x 10-6 Ω-m, thus taking the Zef value from 3.46 to 2.07 which considerably improved the operational parameters of the machine. With a view to justifying the fact that controlled nuclear fusion is a feasible alternative for the energy demand that humanity will face in the future, we review in Chapter 1 some fundamentals of the energy production by nuclear fusion reactions while, in Chapter 2, we examine two relevant plasma wall interaction processes. Our experimental array used to produce both cleaning and intense plasma discharges is described in Chapter 3 along with the associated diagnostics equipment. Chapter 4 contains a description of the vessel conditioning techniques followed in the process. Finally, we report our results in Chapter 5 while, in Chapter 6, some conclusions and remarks are presented. It is widely known that tokamak impurities are generated mainly by the plasma-wall interaction, particularly in the presence of high potentials between the plasma sheath and the limiter or wall. Given that impurities affect most adversely the plasma behaviour, understanding and controlling the impurity extraction mechanisms is crucial for optimizing the cleaning and wall conditioning discharge processes. Our study of one impurity extraction mechanism for both low and high Z in Novillo tokamak was carried out though mass spectrometry, optical emission spectroscopy and plasma resistivity measurement. Such mechanism depends fundamentally on the mass of the ions that interact with the wall during the plasma current formation phase. The reaction products generated by the glow

  19. Minimal Residual Methods for Complex Symmetric, Skew Symmetric, and Skew Hermitian Systems

    OpenAIRE

    Sou-Cheng; Choi

    2013-01-01

    While there is no lack of efficient Krylov subspace solvers for Hermitian systems, there are few for complex symmetric, skew symmetric, or skew Hermitian systems, which are increasingly important in modern applications including quantum dynamics, electromagnetics, and power systems. For a large consistent complex symmetric system, one may apply a non-Hermitian Krylov subspace method disregarding the symmetry of $A$, or a Hermitian Krylov solver on the equivalent normal equation or an augmente...

  20. Symmetric Key Structural Residues in Symmetric Proteins with Beta-Trefoil Fold

    OpenAIRE

    Feng, Jianhui; Li, Mingfeng; Huang, Yanzhao; Xiao, Yi

    2010-01-01

    To understand how symmetric structures of many proteins are formed from asymmetric sequences, the proteins with two repeated beta-trefoil domains in Plant Cytotoxin B-chain family and all presently known beta-trefoil proteins are analyzed by structure-based multi-sequence alignments. The results show that all these proteins have similar key structural residues that are distributed symmetrically in their structures. These symmetric key structural residues are further analyzed in terms of inter...

  1. Axial force measurement for esophageal function testing

    Institute of Scientific and Technical Information of China (English)

    Flemming H Gravesen; Peter Funch-Jensen; Hans Gregersen; Asbjφrn Mohr Drewes

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.

  2. Axial force measurement for esophageal function testing.

    Science.gov (United States)

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-14

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  3. New Anomaly of the Axial-Vector Current

    Institute of Scientific and Technical Information of China (English)

    HE Han-Xin

    2001-01-01

    By computing the axial-vector current operator equation, we find the anomalous axial-vector curl equation besides the well-known anomalous axial-vector divergence equation (the Adler-Bell-Jackiw anomaly) and discuss its implication.``

  4. Soft-X-Ray Tomography Diagnostic at the Rtp Tokamak

    NARCIS (Netherlands)

    Da Cruz, D. F.; Donne, A. J. H.

    1994-01-01

    An 80-channel soft x-ray tomography system has been constructed for diagnosing the RTP (Rijnhuizen Tokamak Project) tokamak plasma. Five pinhole cameras, each with arrays of 16 detectors are distributed more or less homogeneously around a poloidal plasma cross section. The cameras are positioned clo

  5. Commercial feasibility of fusion power based on the tokamak concept

    International Nuclear Information System (INIS)

    The impact of plasma operating characteristics, engineering options, and technology on the capital cost trends of tokamak power plants is determined. Tokamak power systems are compared to other advanced energy systems and found to be economically competitive. A three-phase strategy for demonstrating commercial feasibility of fusion power, based on a common-site multiple-unit concept, is presented

  6. Fokker-Planck/Transport model for neutral beam driven tokamaks

    International Nuclear Information System (INIS)

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented

  7. Recent progress on the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule

  8. Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas

    NARCIS (Netherlands)

    Haverkort, J.W.

    2013-01-01

    One of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma rotation, primarily

  9. Experimental studies of tokamak plasma in IPP Prague

    International Nuclear Information System (INIS)

    A short survey is given of the experimental activities at the small Prague tokamak CASTOR during recent years. At present, investigation is primarily aimed at the anomalous transport and plasma-wall interaction in the tokamak under conditions of combined OH/LHCD regimes. Moreover, some New diagnostic methods were also developed and certain improvements in the CASTOR performance were achieved. (author). 41 refs

  10. Role of the tokamak ISTTOK on the EURATOM fusion programme

    International Nuclear Information System (INIS)

    This paper describes the role of the tokamak ISTTOK on the development of the portuguese fusion research team, in the frame of the EURATOM Fusion Programme. Main tasks on education and training, control and data acquisition, diagnostics and tokamak physics are summarized. Work carried out on ISTTOK in collaboration with foreign teams is also reported. (author)

  11. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  12. A simulation study of a controlled tokamak plasma

    Science.gov (United States)

    Fujii, N.; Niwa, Y.

    1980-03-01

    A tokamak circuit theory, including results of numerical simulation studies, is applied to a control system synthesized for a Joule heated tokamak plasma. The treatment is similar to that of Ogata and Ninomiya (1979) except that in this case a quadrupole field coil current is considered coexisting with image induced on a vacuum chamber.

  13. Design and construction of electronic components for a ''Novillo'' Tokamak

    International Nuclear Information System (INIS)

    The goal of this effort was to design, construct and make functional the electronic components for a ''Novillo'' Tokamak currently being experimentally investigated at the National Institute of Nuclear Research in Mexico. The problem was to develop programmable electronic switches capable of discharging high voltage kilowatt energies stored in capacitator banks onto the coils of the Tokamak. (author)

  14. Tokamak plasma self-organization-synergetics of magnetic trap plasmas

    NARCIS (Netherlands)

    Razumova, K. A.; Andreev, V. F.; Eliseev, L. G.; Kislov, A. Y.; La Haye, R. J.; Lysenko, S. E.; Melnikov, A. V.; Notkin, G. E.; Pavlov, Y. D.; Kantor, M. Y.

    2011-01-01

    Analysis of a wide range of experimental results in plasma magnetic confinement investigations shows that in most cases, plasmas are self-organized. In the tokamak case, it is realized in the self-consistent pressure profile, which permits the tokamak plasma to be macroscopically MHD stable. Existin

  15. Recent progress on the Compact Ignition Tokamak (CIT)

    Energy Technology Data Exchange (ETDEWEB)

    Ignat, D.W.

    1987-01-01

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  16. Experimental data base of Tokamak KTM physical diagnostics

    International Nuclear Information System (INIS)

    The process of software creation of experimental data storage of Tokamak KTM physical diagnostics based on analysis of storage methods of operating Tokamaks data is considered. Task of specific kinds of information storage is solved; experimental data base that is thr part of system providing information analysis performance in the post-start period is developed.(author)

  17. Desirable engineering features of the next-generation tokamak device

    International Nuclear Information System (INIS)

    Recent scoping studies examined a series of superconducting, long-pulse Driven Current Tokamak (DCT) devices. One class of options is an ignited, D-T burning device designated DCT-8. It was concluded that the DCT-8 is a most attracttive engineering option to adequately bridge the gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor

  18. Tokamak Plasmas : Measurement of temperature fluctuations and anomalous transport in the SINP tokamak

    Indian Academy of Sciences (India)

    R Kumar; S K Saha

    2000-11-01

    Temperature fluctuations have been measured in the edge region of the SINP tokamak. We find that these fluctuations have a comparatively high level (30–40%) and a broad spectrum. The temperature fluctuations show a quite high coherence with density and potential fluctuations and contribute considerably to the anomalous particle flux.

  19. The Experiments of the small Spherical Tokamak Gutta

    International Nuclear Information System (INIS)

    GUTTA is a small spherical tokamak (R = 16cm, a = 8cm, Ip = 150kA) operating at the St. Petersburg State University since 2004 in the scope of the IAEA CRP ''Joint Research using Small Tokamaks''. Main scientific activities on GUTTA include development of new and improvement of existing mathematical models of plasma control, relevant for application on large tokamaks and ITER and verification of them on GUTTA; studies on the ECRH/EBW assisted breakdown and non-solenoid plasma formation in low aspect ratio tokamak; development of diagnostics; training and education of students.In this paper design properties of Gutta will be presented. Regimes of operation of the tokamak and plasma shape parameters are described and first results of the plasma formation and start-up studied will be discussed

  20. Spin filter due to spin Hall effect with axially asymmetric potential

    Science.gov (United States)

    Yokoyama, Tomohiro; Eto, Mikio

    2010-02-01

    We examine a three-terminal spin filter including an artificial potential created by antidot, scanning tunnel microscope (STM) tip, etc., fabricated on semiconductor heterostructures with strong spin-orbit interaction. When the potential is attractive and its strength is properly tuned, the resonant scattering takes place, which enhances the extrinsic spin Hall effect. As a result, the efficiency of the spin filter can be more than 50% when the potential is axially symmetric. The efficiency becomes smaller when the symmetry is broken, but we still expect an efficient spin filter unless the degree of asymmetry is too large.

  1. Axial Thermal Rotation of Slender Rods

    Science.gov (United States)

    Li, Dichuan; Fakhri, Nikta; Pasquali, Matteo; Biswal, Sibani Lisa

    2011-05-01

    Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the presence of small kinks does not affect the chain’s axial diffusivity. Our system and measurements provide insights into fundamental axial diffusion processes of slender objects, which encompass a wide range of entities including biological filaments and linear polymer chains.

  2. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans;

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  3. Nonperturbative features of the axial current

    CERN Document Server

    Kopeliovich, B Z; Siddikov, M

    2013-01-01

    In this paper we study the nonperturbative structure of the axial current and evaluate the two-point distribution amplitudes $\\int d\\xi\\, e^{-iq...\\xi}$ in the framework of the instanton vacuum model in the leading order in $\\mathcal{O}(N_{c})$. We perform a direct numerical test of the relations between the axial current and the pion distribution amplitudes, imposed by PCAC, and found excellent agreement.

  4. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  5. Axial Vircator for Electronic Warfare Applications

    OpenAIRE

    L. Drazan; R. Vrana

    2009-01-01

    This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM) is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered b...

  6. A symmetric view hiding the ugly truth

    International Nuclear Information System (INIS)

    The general recommendation to use symmetry in Monte Carlo code keff calculations is questioned. A solution using a symmetric model provides less information and may hide serious errors that would be apparent when using a full model calculation. Convergence indicators such as dominance ratio and Shannon entropy have appropriate applications but they do not always give correct and reliable information about symmetric model calculations. Further, the methods do not see the symmetry in a full model, apparent to the user of the code. The user often accounts for symmetry in a full model by having the same material or geometry unit in the symmetric regions. If average tallies are requested, they can be obtained from the full model results. The integral values are the same but the differences between local reactions in symmetric regions are informative. The symmetry recommendation, together with false convergence indicators, encourages the user to believe that the symmetric model calculations are more reliable than full model calculations, when the same Monte Carlo statistics are applied. Examples are given in the paper, demonstrating the points made. The most basic example of symmetry is a calculation model for an infinite material. Another example is a cylinder with azimuthal symmetry. In both cases it is clear that more symmetry is not better. This is demonstrated for cubes with different dimensions and mirror reflection all around. Application of symmetry is necessary for a simulation of such geometry due to computer memory storage limitations (less than an infinite value). Better convergence is not a relevant point. (author)

  7. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  8. Simulation of the Propeller Disk Inside the Symmetrical Channel

    Directory of Open Access Journals (Sweden)

    Kyncl Martin

    2014-03-01

    Full Text Available We work with the system of equations describing non-stationary compressible turbulent fluid flow, and we focus on the numerical solution of these equations, and on the boundary conditions. The computational simulation of the propeller disk is a demanding and time-consuming task. Here the propeller disk is represented by the distribution of the vector of velocities along its radius. The main purpose is to describe the special compatible conditions used to simulate the propeller disk on the both its sides. In order to construct these conditions we analyze the equations in the close vicinity of the boundary. We use the analysis of the exact solution of the Riemann problem in order to solve this local boundary problem. The one-side modification of this problem has to be complemented with some other conditions. At the back side of the propeller disk, it is advantageous to use total density and the total pressure distribution, coming from the known distribution of axial velocities on the disk and the total state values at the inlet, and extra added velocities of rotation. At the front side of the disk, it is preferable to use the distribution of the flowing mass, known from the state values computed on the back side of the disk. We analyze the solution of these particular problems. We show the computational results of the flow around such propeller disk, obtained with the own-developed code for the solution of the 3D axis-symmetrical compressible turbulent gas flow.

  9. MHD stability of advanced tokamak scenarios

    International Nuclear Information System (INIS)

    Tokamak plasmas with a non-monotonic q-profile (current profile) and negative shear in the plasma centre have been associated with improved confinement and large pressure gradients in the region of negative shear. In JET, this regime, has been obtained with pellet injection (the PEP mode) and in DIII-D by ramping the plasma elongation. In JET, the phase of improved confinement is transient and usually ends in a collapse due to an MHD instability which leads to a redistribution of the current and a monotonic q-profile. The infernal mode, which is driven by a large pressure gradient in the region of low shear near the minimum in the q-profile, is the most likely candidate for the observed instability. To extend the transient phase to steady state, control of the shape of the current density profile is essential. The modelling of these advanced tokamak scenarios with a non-monotonic q-profile using non-inductive current drive of lower hybrid waves, fast waves, and neutral beams is discussed elsewhere. The aim is to find suitable initial states and to maintain MHD stability when the plasma β is built up. For this purpose, the robustness of the MHD stability of these configurations is studied with respect to changes in the position and in the depth of the minimum in q, and in the shape of the q and pressure profile. The classes of equilibria chosen for the analysis are based on the modelling of the current-drive schemes for advanced tokamak scenarios in JET. The toroidal ideal and resistive MHD stability code CASTOR is used for the stability calculations. (author) 7 refs., 4 figs

  10. Industry roles in the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    There are several distinguishing features of the Tokamak Physics Experiment (TPX) to be found in the TPX program and in the organizations for constructing and operating the machine. Programmatically, TPX addresses several issues critical to the viability of magnetic fusion power plants. Organizationally, it is a multi-institutional partnership to construct and operate the machine and carry out its program mission. An important part of the construction partnership is the integrated industrial responsibility for design, R ampersand D, and construction. The TPX physics design takes advantage of recent research on advanced tokamak operating modes achieved for time scales of the order of seconds that are consistent with continuous operation. This synergism of high performance (higher power density) modes with plasma current driven mostly by internal pressure (boot-strap effect) points toward tokamak power plants that will be cost-competitive and operate continuously. A large fraction of the project is subcontracted to industry. By policy, these contracts are at a high level in the project breakdown of work, giving contractors much of the overall responsibility for a given major system. That responsibility often includes design and R ampersand D in addition to the fabrication of the system in question. Each contract is managed through one of three national laboratories: PPPL, LLNL, and ORNL. Separate contracts for system integration and construction management round out the industry involvement in the project. This integrated, major responsibility attracts high-level corporate attention within each company, which are major corporations with long-standing interest in fusion. Through the contracts already established on the TPX project, a new standard for industry involvement in fusion has been set, and these industries will be well prepared for future fusion projects

  11. Differential and Integral Models of TOKAMAK

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Modeling of 3D electromagnetic phenomena in TOKAMAK with typically distributed main and additional coils is not an easy business. Evaluated must be not only distribution of the magnetic field, but also forces acting in particular coils. Use of differential methods (such as FDM or FEM for this purpose may be complicated because of geometrical incommensurability of particular subregions in the investigated area or problems with the boundary conditions. That is why integral formulation of the problem may sometimes be an advantages. The theoretical analysis is illustrated on an example processed by both methods, whose results are compared and discussed.

  12. Scaling studies of beam-heated tokamaks

    International Nuclear Information System (INIS)

    Parametric scaling of neutral beam-heated tokamaks is examined to determine the trade-off between beam energy and power. It is shown that over a wide range of plasma parameters and assumed transport properties, the center mean plasma temperature is a function of P/sub A/E/sub B//sup delta/, where E/sub B/ and P/sub A/ are the beam energy and power per unit area, respectively, and delta is a calculable constant of order unity

  13. Spherical tokamak research for fusion reactor

    International Nuclear Information System (INIS)

    Between ITER and the commercial fusion reactor, there are many technological problems to be solved such as cost, neutron and steady-state operation. In the conceptual design of VECTOR and Slim CS reactors it was shown that the key is 'low aspect ratio'. The spherical tokamak (ST) has been expected as the base for fusion reactors. In US, ST is considered as a non-superconducting reactor for use in the neutron irradiation facility. Conceptual design of the superconducting ST reactor is conducted in Japan and Korea independently. In the present article, the prospect of the ST reactor design is discussed. (author)

  14. Iron forbidden lines in tokamak discharges

    International Nuclear Information System (INIS)

    Several spectrum lines from forbidden transitions in the ground configurations of highly ionized atoms have been observed in the PLT tokamak discharges. Such lines allow localized observations, in the high-temperature regions of the plasma, of ion-temperatures, plasma motions, and spatial distributions of ions. Measured absolute intensities of the forbidden lines have been compared with simultaneous observations of the ion resonance lines and with model calculations in order to deduce the mechanism of level populaions by means of electron collisions and radiative transitions

  15. Profile control for an alternative spherical tokamak

    International Nuclear Information System (INIS)

    Magnetically driven plasma guns that are inserted around a flux conserver at definite angular intervals are considered. The creation and the control of plasma channels are examined. By means of the hybrid model developed, both a system analysis of the Alternative Spherical Tokamak (AST) and relevant computational experiments have been carried out. In addition, by using the results obtained from the numerical scheme, the complex non-inductive current drive mechanisms of bootstrap and helicity injection in the AST system are discussed in detail. (author). 2 refs, 2 figs

  16. DIII-D Advanced Tokamak Research Overview

    International Nuclear Information System (INIS)

    This paper reviews recent progress in the development of long-pulse, high performance discharges on the DIII-D tokamak. It is highlighted by a discharge achieving simultaneously βNH of 9, bootstrap current fraction of 0.5, noninductive current fraction of 0.75, and sustained for 16 energy confinement times. The physics challenge has changed in the long-pulse regime. Non-ideal MHD modes are limiting the stability, fast ion driven modes may play a role in fast ion transport which limits the stored energy and plasma edge behavior can affect the global performance. New control tools are being developed to address these issues

  17. Application of MDSplus on EAST Tokamak

    Institute of Scientific and Technical Information of China (English)

    QU Lianzheng; LUO Jiarong; LI lingling; ZHANG Mingxing; WANG Yong

    2007-01-01

    EAST is a fully superconducting Tokamak in China used for controlled fusion research. MDSplus, a special software package for fusion research, has been used successfully as a central repository for analysed data and PCS (Plasma Control System) data since the debugging experiment in the spring of 2006 . In this paper, the reasons for choosing MDSplus as the analysis database and the way to use it are presented in detail, along with the solution to the problem that part of the MDSplus library does not work in the multithread mode. The experiment showed that the data system based on MDSplus operated stably and it could provide a better performance especially for remote users.

  18. Bolometer measurement on HT-6B tokamak

    International Nuclear Information System (INIS)

    This paper discribes the structure, methods of calibration and measurement system of a metal foil resistor bolometer which is developed for measuring the radiation power of high temperature plasmas. The radiation loss and neutral flux loss in HT-6B tokamak have been measured by using the bolometer. The following results were obtained: (1) A large, nearly constant fraction (∼50%) of the input power was lost to the wall by radiation and energetic neutrals during the quasisteady phase of a normal discharges; (2) The power loss linearly increased with the discharge current Ip; (3) During disruption, most of the plasma energy was lost by radiation and neutrals

  19. Digital controlled pulsed electric system of the ETE tokamak. First report; Sistema eletrico pulsado com controle digital do Tokamak ETE (experimento Tokamak esferico). Primeiro relatorio

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1997-12-31

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.

  20. Symmetric cryptographic protocols for extended millionaires' problem

    Institute of Scientific and Technical Information of China (English)

    LI ShunDong; WANG DaoShun; DAI YiQi

    2009-01-01

    Yao's millionaires' problem is a fundamental problem in secure multiparty computation, and its solutions have become building blocks of many secure multiparty computation solutions. Unfortunately,most protocols for millionaires' problem are constructed based on public cryptography, and thus are inefficient. Furthermore, all protocols are designed to solve the basic millionaires' problem, that is,to privately determine which of two natural numbers is greater. If the numbers are real, existing solutions do not directly work. These features limit the extensive application of the existing protocols. This study introduces and refines the first symmetric cryptographic protocol for the basic millionaires' problem, and then extends the symmetric cryptographic protocol to privately determining which of two real numbers is greater, which are called the extended millionaires' problem, and proposes corresponding Constructed based on symmetric cryptography, these protocols are very efficient.

  1. Chiral light by symmetric optical antennas

    CERN Document Server

    Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre

    2014-01-01

    Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...

  2. Lower bounds for designs in symmetric spaces

    CERN Document Server

    Eidelstein, Noa

    2010-01-01

    We prove lower bounds on designs in spaces with a large group of symmetries. These spaces include globally symmetric Riemannian spaces (of any rank) and commutative association schemes with 1-transitive group of symmetries. Our bounds are, in general, implicit, relying on estimates on the spectral behavior of certain symmetry-invariant linear operators. They reduce to the first linear programming bound for designs in globally symmetric Riemannian spaces of rank 1 or in distance regular graphs. The proofs are different though, coming from viewpoint of abstract harmonic analysis in symmetric spaces. As a dividend we obtain the following geometric fact: a design is large because a union of "spherical caps" around its points "covers" the whole space.

  3. Revisiting the Optical PT-Symmetric Dimer

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2016-08-01

    Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.

  4. Radiative corrections in symmetrized classical electrodynamics

    Science.gov (United States)

    Van Meter JR; Kerman; Chen; Hartemann

    2000-12-01

    The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.

  5. Revisiting the optical $PT$-symmetric dimer

    CERN Document Server

    Morales, J D Huerta; López-Aguayo, S; Rodríguez-Lara, B M

    2016-01-01

    Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of $\\mathcal{PT}$-symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical $\\mathcal{PT}$-symmetric dimer, a two-waveguide coupler were the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar $N$-waveguide couplers that are the optical realization of Lorentz group in 2+1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of Ehrenfest theorem.

  6. INERTIA SETS OF SYMMETRIC SIGN PATTERN MATRICES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A sign pattern matrix is a matrixwhose entries are from the set {+ ,- ,0}. The symmetric sign pattern matrices that require unique inertia have recently been characterized. The purpose of this paper is to more generally investigate the inertia sets of symmetric sign pattern matrices. In particular, nonnegative fri-diagonal sign patterns and the square sign pattern with all + entries are examined. An algorithm is given for generating nonnegative real symmetric Toeplitz matrices with zero diagonal of orders n≥3 which have exactly two negative eigenvalues. The inertia set of the square pattern with all + off-diagonal entries and zero diagonal entries is then analyzed. The types of inertias which can be in the inertia set of any sign pattern are also obtained in the paper. Specifically, certain compatibility and consecutiveness properties are established.

  7. An alternative approach to symmetric systems

    Science.gov (United States)

    Véron, Alain

    2016-11-01

    We propose an alternative approach to treat problems with axial or spherical symmetry. Its main characteristic consists of using Cartesian coordinates instead of curvilinear coordinates as usual. To this end, we derive general mathematical expressions giving the spatial derivatives of tensors of arbitrary order along the direction normal to an arbitrary meridian plane for systems with axial symmetry, or along two orthogonal directions normal to an arbitrary radius for systems with spherical symmetry. These relations allow the reduction of the initial three-dimensional problem to a domain with a lower dimension (two for axial symmetry, one for spherical symmetry), while keeping Cartesian coordinates within this domain. The method is illustrated for the flow of a Newtonian fluid between two coaxial cylinders (Couette cell), the Weissenberg effect for viscoelastic fluids and the flow of complex fluids like liquid crystals.

  8. Synthesis of cyclically symmetric five-ports

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1994-01-01

    A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found......A class of matched, symmetric five-ports have been synthesized by solving the circular cylindrical wave equation. Among the solutions are chosen those for which the match condition is fulfilled over the broadest bandwidth. Bandwidths up to +/-20% have been found...

  9. PT-Symmetric Matrix Quantum Mechanics

    OpenAIRE

    Meisinger, Peter N.; Ogilvie, Michael C.

    2007-01-01

    Recently developed methods for PT-symmetric models are applied to quantum-mechanical matrix models. We consider in detail the case of potentials of the form $V=-(g/N^{p/2-1})Tr(iM)^{p}$ and show how the calculation of all singlet wave functions can be reduced to solving a one-dimensional PT-symmetric model. The large-N limit of this class of models exists, and properties of the lowest-lying singlet state can be computed using WKB. For $p=3,4$, the energy of this state for small values of $N$ ...

  10. Symmetry theorems via the continuous steiner symmetrization

    Directory of Open Access Journals (Sweden)

    L. Ragoub

    2000-06-01

    Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.

  11. On symmetric and upwind TVD schemes

    Science.gov (United States)

    Yee, H. C.

    1986-01-01

    The performance of the upwind and symmetric total variation diminishing (TVD) schemes in viscous and inviscid airfoil steady-state calculations is considered, and the extension of the implicit second-order-accurate TVD scheme for hyperbolic systems of conservative laws in curvilinear coordinates is discussed. For two-dimensional steady-state applications, schemes are implemented in a conservative noniterative alternating direction implicit form, and results illustrate that the algorithm produces a fairly good solution for an RAE2822 airfoil calculation. The study demonstrates that the symmetric TVD scheme is as accurate as the upwind TVD scheme, while requiring less computational effort than it.

  12. Fuzzy Symmetric Solutions of Fuzzy Matrix Equations

    OpenAIRE

    Xiaobin Guo; Dequan Shang

    2012-01-01

    The fuzzy symmetric solution of fuzzy matrix equation AX˜=B˜, in which A is a crisp m×m nonsingular matrix and B˜ is an m×n fuzzy numbers matrix with nonzero spreads, is investigated. The fuzzy matrix equation is converted to a fuzzy system of linear equations according to the Kronecker product of matrices. From solving the fuzzy linear system, three types of fuzzy symmetric solutions of the fuzzy matrix equation are derived. Finally, two examples are given to illustrate the proposed method....

  13. Active Sound Localization in a Symmetric Environment

    Directory of Open Access Journals (Sweden)

    Jordan Brindza

    2013-07-01

    Full Text Available Localization for humanoid robots becomes difficult when events that disrupt robot positioning information occur. This holds especially true in symmetric environments because landmark data may not be sufficient to determine orientation. We propose a system of localizing humanoid robots in a known, symmetric environment using a Rao-Blackwellized particle filter and a sound localization system. This system was used in the RoboCup Standard Platform League, and has been found to reduce the amount of own-goals scored as compared with the previously used localization system without sound.

  14. Benign symmetric lipomatosis of the knees

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Yin; Di Wu; Yixin Ge; Meihua Zhang; Zhigang Bi; Dan Luo

    2008-01-01

    Benign symmetric lipomatosis(BSL) is a rare disease characterized by the presence of multiple, symmetric and nonencapsulated fat masses in the face, neck and other areas. It is commonly seen in middle-aged Caucasian Mediterranean males, while its etiology is still not clear. The majority of the patients with BSL have a history of alcohol abuse and hepatopathy. BSL of the limbs is very rare. This article reports a unique case of a 60-year-old Chinese woman with involvement of the knees confirmed by the results of magnetic resonance imaging(MRI) and histopathology, which was not described previously in published literatures.

  15. Tokamak advanced pump limiter experiments and analysis

    International Nuclear Information System (INIS)

    Experiments with pump limiter modules on several operating tokamaks establish such limiters as efficient collectors of particles and has demonstrated the importance of ballistic scattering as predicted theoretically. Plasma interaction with recycling neutral gas appears to become important as the plasma density increases and the effective ionization mean free path within the module decreases. In limiters with particle collection but without active internal pumping, the neutral gas pressure is found to vary nonlinearly with the edge plasma density at the highest densities studies. Both experiments and theory indicate that the energy spectrum of gas atoms in the pump ducting is non-thermal, consistent with the results of Monte Carlo neutral atom transport calculations. The distribution of plasma power over the front surface of such modules has been measured and appears to be consistent with the predictions of simple theory. Initial results from the latest experiment on the ISX-B tokamak with an actively pumped limiter module demonstrates that the core plasma density can be controlled with a pump limiter and that the scrape-off layer plasma can partially screen the core plasma from gas injection. The results from module pump limiter experiments and from the theory and design analysis of advanced pump limiters for reactors are used to suggest the major features of a definitive, axisymmetric, toroidal belt pump limiter experiment

  16. Magnetic diagnostics for the lithium tokamak experiment.

    Science.gov (United States)

    Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L

    2008-10-01

    The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions. PMID:19044600

  17. Compact ignition tokamak physics and engineering basis

    International Nuclear Information System (INIS)

    The Compact Ignition Tokamak (CIT) is a high-field, compact tokamak design whose objective is the study of physics issues associated with burning plasmas. The toroidal and poloidal field coils employ a copper-steel laminate, manufactured by explosive-bonding techniques, to support the forces generated by the design fields: 10 T toroidal field at the plasma center; 21 T in the OH solenoid. A combination of internal and external PF coils provides control of the equilibrium and the ability to sweep the magnetic separatrix across the divertor plates during a pulse. At temperatures and βα levels characteristic of ITER designs, the fusion power in CIT approaches 800 MW and can be the limiting factor in the pulse length. Ignition requires that the confinement time exceed present L-mode scalings by about a factor of two, which is anticipated to occur as a result of the operational flexibility incorporated into the design. Conventional operating limits given by 20 e and qψ ≤ 3.2 have been chosen and, in the case of MHD limits, have been justified by ideal stability analysis. The power required for CIT ignition ranges from 10 MW to 40 MW or more, depending on confinement assumptions, and either ICRF or ECRF heating, or both, will be used. (author). 17 refs, 6 figs, 1 tab

  18. Physics evaluation of compact tokamak ignition experiments

    International Nuclear Information System (INIS)

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/2/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs

  19. Conceptual tokamak design at high neutron fluence

    International Nuclear Information System (INIS)

    For the future fusion reactor, it is important to design an experimental device that can be performed testing in-vessel components including tritium breeding modules relevant to the future fusion reactor with high neutron fluence. To realize this requirement, a conceptual tokamak design has been performed in accordance with plasma performance and shape at quasi-steady-state operation. One of the promising scenarios for this purpose is proposed to produce the plasma at the outward shifted radial position with a small minor radius for reasonable plasma parameters. From the analytical results, an appropriate space can be found for neutron shielding so that additional neutron shielding can be installed to protect the tokamak components from any neutron damages under the neutron fluence of 1 MWa m-2. Based on the structural analyses, a two-stage blanket module concept is proposed, i.e. one shielding block with the first wall assembly during high Q operation and two shielding blocks or additional tritium breeding modules during quasi-steady state operation

  20. Electromagnetic simulations of tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Michael; Mishchenko, Alexey [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2014-07-01

    A practical fusion reactor will require a plasma β of around 5%. In this range Alfvenic effects become important. Since a practical reactor will also produce energetic alpha particles, the interaction between Alfvenic instabilities and fast ions is of particular interest. We have developed a fluid electron, kinetic ion hybrid model that can be used to study this problem. Compared to fully gyrokinetic electromagnetic codes, hybrid codes offer faster running times and greater flexibility, at the cost of reduced completeness. The model has been successfully verified against the worldwide ITPA Toroidal Alfven Eigenmode (TAE) benchmark, and the ideal MHD code CKA for the internal kink mode in a tokamak. Use of the model can now be turned toward cases of practical relevance. Current work focuses on simulating fishbones in a tokamak geometry, which may be of relevance to ITER, and producing the first non-perturbative self-consistent simulations of TAE in a stellarator, which may be of relevance both to Wendelstein 7-X and any future stellarator reactor. Preliminary results of these studies are presented.

  1. Ion cyclotron system design for KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, B. G.; Hwang, C. K.; Jeong, S. H.; Yoony, J. S.; Bae, Y. D.; Kwak, J. G.; Ju, M. H

    1998-05-01

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs.

  2. Ion cyclotron system design for KSTAR tokamak

    International Nuclear Information System (INIS)

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs

  3. System studies of compact ignition tokamaks

    International Nuclear Information System (INIS)

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B2a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations

  4. Boronization of Russian tokamaks from carborane precursors

    International Nuclear Information System (INIS)

    A new and cheap boronization technique using the nontoxic and nonexplosive solid substance carborane has been developed and successfully applied to the Russian tokamaks T-11M, T-3M, T-10 and TUMAN-3. The glow discharge in a mixture of He and carborane vapor produced the amorphous B/C coating with the B/C ratio varied from 2.0-3.7. The deposition rate was about 150 nm/h. The primary effect of boronization was a significant reduction of the impurity influx and the plasma impurity contamination, a sharp decrease of the plasma radiated power, and a decrease of the effective charge. Boronization strongly suppressed the impurity influx caused by additional plasma heating. ECR- and ICR-heating as well as ECR current drive were more effective in boronized vessels. Boronization resulted in a significant extension of the Ne- and q-region of stable tokamak operation. The density limit rose strongly. In Ohmic H-mode energy confinement time increased significantly (by a factor of 2) after boronization. It rose linearly with plasma current Ip and was 10 times higher than Neo-Alcator time at maximum current. ((orig.))

  5. Thomson scattering on the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    Ruby laser Thomson scattering was performed on the PRETEXT tokamak. A 10 Joule Q-switched laser and a 1 meter 10 channel polychromator were used to diagnose the electron temperature and density profiles in the PRETEXT plasma. These parameters were measured as a function of time and radial position on a shot to shot basis. The density measurement was calibrated by Rayleigh and Raman scattering and by comparison with data from a 4 mm microwave interferometer. Electron densities ranging from 1 x 1012 cm-3 to 2 x 1013 cm-3 and temperatures ranging from 3 eV to 400 eV were observed. Detailed measurements were made throughout the 40 ms discharge with particular emphasis on the current rise phase. The Thomson scattering data was used as input to a one dimensional magnetic diffusion code. This code modelled the evolution of the current density and safety factor profiles. The results of this analysis were compared with existing theories of tokamak current penetration. The growth of resitive MHD tearing modes was proposed as a likely explanation for the anomalously rapid current penetration observed in PRETEXT

  6. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author)

  7. System studies of compact ignition tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.D.; Blackfield, D.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Selcow, E.

    1987-08-01

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B/sup 2/a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.

  8. Alfven wave studies on a tokamak

    International Nuclear Information System (INIS)

    The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made

  9. Anomalous transport in the tokamak edge

    International Nuclear Information System (INIS)

    The tokamak edge has been studied with arrays of Langmuir and magnetic probes on the DITE and COMPASS-C devices. Measurements of plasma parameters such as density, temperature and radial magnetic field were taken in order to elucidate the character, effect on transport and origin of edge fluctuations. The tokamak edge is a strongly-turbulent environment, with large electrostatic fluctuation levels and broad spectra. The observations, including direct correlation measurements, are consistent with a picture in which the observed magnetic field fluctuations are driven by the perturbations in electrostatic parameters. The propagation characteristics of the turbulence, investigated using digital spectral techniques, appear to be dominated by the variation of the radial electric field, both in limiter and divertor plasmas. A shear layer is formed, associated in each case with the last closed flux surface. In the shear layer, the electrostatic wavenumber spectra are significantly broader. The predictions of a drift wave model (DDGDT) and of a family of models evolving from the rippling mode (RGDT group), are compared with experimental results. RGDT, augmented by impurity radiation effects, is shown to be the most reasonable candidate to explain the nature of the edge turbulence, only failing in its estimate of the wavenumber range. (Author)

  10. Equilibrium reconstruction in the START tokamak

    Science.gov (United States)

    Appel, L. C.; Bevir, M. K.; Walsh, M. J.

    2001-02-01

    The computation of magnetic equilibria in the START spherical tokamak is more difficult than those in more conventional large aspect ratio tokamaks. This difficulty arises partly as a result of the use of induction compression to generate high current plasma, as this precludes the positioning of magnetic diagnostics close to the outboard side of the plasma. In addition, the effect of a conducting wall with a high, but finite, conductivity must be included. A method is presented for obtaining plasma equilibrium reconstructions based on the EFIT code. New constraints are used to relate isoflux surface locations deduced from radial profile measurements of electron temperature. A model of flux diffusion through the vessel wall is developed. It is shown that neglecting flux diffusion in the vessel wall can lead to a significant underestimate in the calculation of the plasma βt. Using a relatively sparse set of magnetic signals, βt can be obtained to within a fractional error of +/-10%. Using constraints to relate isoflux surface locations, the principle involved in determining the internal q profile is demonstrated.

  11. Elastic stars in general relativity: IV. Axial perturbations

    CERN Document Server

    Karlovini, M; Karlovini, Max; Samuelsson, Lars

    2007-01-01

    This is the fourth paper in a series that attempt to put forward a consistent framework for modelling solid regions in neutron stars. Here we turn our attention to axial perturbations of spherically symmetric spacetimes using a gauge invariant approach due to one of us. Using the formalism developed in the first paper in the series it turns out that the matter perturbations are neatly expressible in terms of a ``metric'' tensor field depending only on the speeds of shear wave propagation along the principal directions in the solid. The results are applicable to a wide class of elastic materials and does not assume material isotropy nor quasi-Hookean behaviour. The perturbation equations are then specialised to a static background and are given by two coupled wave equations. Our formalism is thus slightly simpler than the previously existing results of Shumaker & Thorne, where an additional initial value equation needs to be solved. The simplification is mainly due to the gauge invariance of our approach a...

  12. Numerical optimisation of an axial turbine; Numerische Optimierung einer Axialturbine

    Energy Technology Data Exchange (ETDEWEB)

    Welzel, B.

    1998-12-31

    The author presents a method for automatic shape optimisation of components with internal or external flow. The method combines a program for numerical calculation of frictional turbulent flow with an optimisation algorithm. Algorithms are a simplex search strategy and an evolution strategy. The shape of the component to be optimized is variable due to shape parameters modified by the algorithm. For each shape, a flow calculation is carried out on whose basis a functional value like performance, loss, lift or resistivity is calculated. For validation, the optimisation method is used in simple examples with known solutions. It is applied. It is applied to the components of a slow-running axial turbine. Components with accelerated and delayed rotationally symmetric flow and 2D blade profiles are optimized. [Deutsch] Es wird eine Methode zur automatischen Formoptimierung durchstroemter oder umstroemter Bauteile vorgestellt. Diese koppelt ein Programm zur numerischen Berechnung reibungsbehafteter turbulenter Stroemungen mit einem Optimierungsalgorithmus. Dabei kommen als Algorithmen eine Simplex-Suchstrategie und eine Evolutionsstrategie zum Einsatz. Die Form des zu optimierenden Koerpers ist durch Formparameter, die vom Algorithmus veraendert werden, variabel. Fuer jede Form wird eine Stroemungsberechnung durchgefuehrt und mit dieser ein Funktionswert wie Wirkungsgrad, Verlust, Auftrieb oder Widerstandskraft berechnet. Die Optimierungsmethode wird zur Validierung in einfachen Beispielen mit bekannter Loesung eingesetzt. Zur Anwendung kommt sie in den einzelnen Komponenten einer langsamlaeufigen Axialturbine. Es werden Bauteile mit beschleunigter und verzoegerter rotationssymmetrischer Stroemung und 2D-Schaufelprofile optimiert. (orig.)

  13. Soft x-ray tomography on tokamaks using flux coordinates

    International Nuclear Information System (INIS)

    Methods of inverting line integrated data using coordinates, which are adapted to problems arising from Hamiltonian flows, are presented. They are exemplified for measurements of soft x-rays on tokamaks with widely arbitrary poloidal cross section. Boundary conditions can be met and cause fewer 'ghosts' for most of the present day tokamaks. The soft x-ray measurements are then used to improve the flux function Ψ as obtained from codes using magnetic measurements as input. We investigate oscillatory phenomena such as sawtooth crash precursors on tokamaks by decomposing the profiles into space-like eigenfunctions and their time dependencies. (author)

  14. Ions Measurement at the Edge of HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Ling Bili; Wang Enyao; Gao wei; Wan Baonian; Li Jiangang

    2005-01-01

    A reliable method of measuring ions and ion temperature in tokamak plasma is necessary, for which an omegatron-like instrument has been developed on the HT-7 tokamak. The basic layout of the omegatron-like instrument is shown in this article. The measurement of working gas ion has been performed in the last experimental campaign on HT-7 tokamak. The relations among ion current, the electron repeller voltage and trap voltage have been investigated. This omegatron-like instrument has also provided the edge-plasma ion temperature.

  15. A systems assessment of the five Starlite tokamak power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, C.G.

    1996-07-01

    The ARIES team has assessed the power-plant attractiveness of the following five tokamak physics regimes: (1) steady state, first stability regime; (2) pulsed, first stability regime; (3) steady state, second stability regime; (4) steady state, reversed shear; and (5) steady state, low aspect ratio. Cost-based systems analysis of these five tokamak physics regimes suggests that an electric power plant based upon a reversed-shear tokamak is significantly more economical than one based on any of the other four physics regimes. Details of this comparative systems analysis are described herein.

  16. Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability

    Science.gov (United States)

    Zheng, Linjin; Horton, W.; Miura, H.; Shi, T. H.; Wang, H. Q.

    2016-08-01

    Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew-Goldburger-Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.

  17. Symmetric and Transitive Registration of Image Sequences

    Directory of Open Access Journals (Sweden)

    Oskar Škrinjar

    2008-01-01

    Full Text Available This paper presents a method for constructing symmetric and transitive algorithms for registration of image sequences from image registration algorithms that do not have these two properties. The method is applicable to both rigid and nonrigid registration and it can be used with linear or periodic image sequences. The symmetry and transitivity properties are satisfied exactly (up to the machine precision, that is, they always hold regardless of the image type, quality, and the registration algorithm as long as the computed transformations are invertable. These two properties are especially important in motion tracking applications since physically incorrect deformations might be obtained if the registration algorithm is not symmetric and transitive. The method was tested on two sequences of cardiac magnetic resonance images using two different nonrigid image registration algorithms. It was demonstrated that the transitivity and symmetry errors of the symmetric and transitive modification of the algorithms could be made arbitrary small when the computed transformations are invertable, whereas the corresponding errors for the nonmodified algorithms were on the order of the pixel size. Furthermore, the symmetric and transitive modification of the algorithms had higher registration accuracy than the nonmodified algorithms for both image sequences.

  18. Designing new symmetrical facial oligothiophene amphiphiles

    NARCIS (Netherlands)

    Janeliunas, Dainius; Eelkema, Rienk; Nieto-Ortega, Belén; Ramírez Aguilar, Francisco J; López Navarrete, Juan T; van der Mee, Lars; Stuart, Marc C A; Casado, Juan; van Esch, Jan H

    2013-01-01

    In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage intr

  19. A symmetric divergence measure and its bounds

    Directory of Open Access Journals (Sweden)

    K. C. Jain

    2011-12-01

    Full Text Available A new symmetric divergence measure is proposed which is useful in comparing two probability distributions. This non-parametric measure belongs to the Csiszar's $f$ divergence class. Its properties are studied and bounds are obtained in terms of some well known divergence measures. A numerical illustration based on the probability distribution is carried out.

  20. Realizability of stationary spherically symmetric transonic accretion

    CERN Document Server

    Ray, A K; Ray, Arnab K.

    2002-01-01

    The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.

  1. Tensor product in symmetric function spaces

    OpenAIRE

    Astashkin, S. V.

    1998-01-01

    A concept of multiplicator of symmetric function space concerning to projective tensor product is introduced and studied. This allows to obtain some concrete results. In particular, the well-known theorem of R. O'Neil about the boundedness of tensor product in the Lorentz spaces L_{p,q} is discussed.

  2. Spectrum generating algebra of the symmetric top

    CERN Document Server

    Bijker, R

    1997-01-01

    We consider an algebraic treatment of a three-body system. We develop the formalism for a system of three identical objects and show that it provides a simultaneous description of the vibrational and rotational excitations of an oblate symmetric top.

  3. Symmetric Distributions for Dependent Unit Vectors

    OpenAIRE

    Rivest, Louis-Paul

    1984-01-01

    This paper introduces several notions of symmetry for the joint distribution of two dependent unit vectors. Bivariate generalizations of $\\mathscr{L}$-symmetry (Rivest, 1984) and rotational symmetry are introduced. If the joint distribution of two unit vectors is at least $\\mathscr{L}$-symmetric the information matrix for the parameters indexing it is shown to have a simple shape.

  4. Symmetric, discrete fractional splines and Gabor systems

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the...

  5. Tautological Integrals on Symmetric Products of Curves

    Institute of Scientific and Technical Information of China (English)

    Zhi Lan WANG

    2016-01-01

    We propose a conjecture on the generating series of Chern numbers of tautological bundles on symmetric products of curves and establish the rank 1 and rank −1 case of this conjecture. Thus we compute explicitly the generating series of integrals of Segre classes of tautological bundles of line bundles on curves, which has a similar structure as Lehn’s conjecture for surfaces.

  6. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  7. Tokamak Plasmas : Internal magnetic field measurement in tokamak plasmas using a Zeeman polarimeter

    Indian Academy of Sciences (India)

    M Jagadeeshwari; J Govindarajan

    2000-11-01

    In a tokamak plasma, the poloidal magnetic field profile closely depends on the current density profile. We can deduce the internal magnetic field from the analysis of circular polarization of the spectral lines emitted by the plasma. The theory of the measurement and a detailed design of the Zeeman polarimeter constructed to measure the poloidal field profile in the ADITYA tokamak are presented. The Fabry-Perot which we have employed in our design, with photodiode arrays followed by lock-in detection of the polarization signal, allows the measurement of the fractional circular polarization. In this system He-II line with wavelength 4686 Å is adopted as the monitoring spectral line. The line emission used in the present measurement is not well localized in the plasma, necessiating the use of a spatial inversion procedure to obtain the local values of the field.

  8. Axial instability of rotating relativistic stars

    CERN Document Server

    Friedman, J L; Friedman, John L.; Morsink, Sharon M.

    1998-01-01

    Perturbations of rotating relativistic stars can be classified by their behavior under parity. For axial perturbations (r-modes), initial data with negative canonical energy is found with angular dependence $e^{im\\phi}$ for all values of $m\\geq 2$ and for arbitrarily slow rotation. This implies instability (or marginal stability) of such perturbations for rotating perfect fluids. This low $m$-instability is strikingly different from the instability to polar perturbations, which sets in first for large values of $m$. The timescale for the axial instability appears, for small angular velocity $\\Omega$, to be proportional to a high power of $\\Omega$. As in the case of polar modes, viscosity will again presumably enforce stability except for hot, rapidly rotating neutron stars. This work complements Andersson's numerical investigation of axial modes in slowly rotating stars.

  9. Axial flow positive displacement worm gas generator

    Science.gov (United States)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  10. Improving the lattice axial vector current

    CERN Document Server

    Horsley, R; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M

    2015-01-01

    For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order $O(a)$ effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.

  11. Tokamak Plasmas : Observation of floating potential asymmetry in the edge plasma of the SINP tokamak

    Indian Academy of Sciences (India)

    Krishnendu Bhattacharyya; N R Ray

    2000-11-01

    Edge plasma properties in a tokamak is an interesting subject of study from the view point of confinement and stability of tokamak plasma. The edge plasma of SINP-tokamak has been investigated using specially designed Langmuir probes. We have observed a poloidal asymmetry of floating potentials, particularly the top-bottom floating potential differences are quite noticeable, which in turn produces a vertical electric field (v). This v remains throughout the discharge but changes its direction at certain point of time which seems to depend on applied vertical magnetic field v).

  12. On the cylindrically symmetric wormholes WhCR^e: The motion of test particles

    CERN Document Server

    Aminova, Asya V; Chumarov, Pavel I; Shemakhin, Aleksandr Yu

    2016-01-01

    In this article we partially implement the program outlined in the previous paper of the authors [A. V. Aminova and P. I. Chumarov, Phys. Rev. D 88, 044005 (2013)]. The program owes its origins to the following comment in paper [M. Cveti\\v{c} and D. Youm, Nucl. Phys. B, 438, 182 (1995), Addendum-ibid. 449,146 (1995)], where a class of static spherically symmetric solutions in $(4+n)$-dimensional Kaluza--Klein theory was studied: "...We suspect that the same thing [as for spherical symmetry] will happen for axially symmetric stationary configurations, but it remains to be proven". We study the radial and non-radial motion of test particles in the cylindrically symmetric wormholes found in the authors'paper of type $\\rm WhCR^e$ in 6-dimensional reduced Kaluza--Klein theory with Abelian gauge field and two dilaton fields, with particular attention to the extent to which the wormhole is traversable. In the case of non-radial motion along a hypersurface z=const we show that, as in the Kerr and Schwarzschild geomet...

  13. Equilibrium reconstruction in the TCA/Br tokamak; Reconstrucao do equilibrio no tokamak TCA/BR

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Wanderley Pires de

    1996-12-31

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author) 68 refs., 31 figs., 16 tabs.

  14. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  15. Axial Stiffness of Multiwalled Carbon Nanotubes

    OpenAIRE

    Zavalniuk, Vladimir

    2011-01-01

    The axial stiffness of MWCNTs is demonstrated to be determined only by several external shells (usually 3-5 and up to 15 for the extremely large nanotubes and high elongations) what is in a good agreement with experimentally observed inverse relation between the radius and Young modulus (i.e., stiffness) of MWCNTs. This result is a consequence of the van der Waals intershell interaction. The interpolating formula is obtained for the actual axial stiffness of MWCNT as a function of the tube ex...

  16. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  17. Axial loaded MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Blease, S.; MacSweeney, E

    2003-09-01

    Magnetic resonance imaging is established as the technique of choice for assessment of degenerative disorders of the lumbar spine. However, it is routinely performed with the patient supine and the hips and knees flexed. The absence of axial loading and lumbar extension results in a maximization of spinal canal dimensions, which may in some cases, result in failure to demonstrate nerve root compression. Attempts have been made to image the lumbar spine in a more physiological state, either by imaging with flexion-extension, in the erect position or by using axial loading. This article reviews the literature relating to the above techniques.

  18. Development of tokamak reactor system analysis code NEW-TORSAC

    Science.gov (United States)

    Kasai, Masao; Ida, Toshio; Nishikawa, Masana; Kameari, Akihisa; Nishio, Satoshi; Tone, Tatsuzo

    1987-07-01

    A systems analysis code named NEW-TORSAC (TOkamak Reactor Systems Analysis Code) has been developed by modifying the TORSAC which had been already developed by us. The NEW-TORSAC is available for tokamak reactor designs and evaluations from experimental machines to commercial reactor plants. It has functions to design tokamaks automatically from plasma parameter setting to determining configurations of reactor equipments and calculating main characteristics parameters of auxiliary systems and the capital costs. In the case of analyzing tokamak reactor plants, the code can calculate busbar energy costs. In addition to numerical output, some output of this code such as a reactor configuration, plasma equilibrium, electro-magnetic forces, etc., are graphically displayed. The code has been successfully applied to the scoping studies of the next generation machines and commercial reactor plants.

  19. Engineering development aspects of the HL-2A tokamak

    International Nuclear Information System (INIS)

    The HL-2A tokamak (design values: major radius 1.65 m, minor radius 0.4 m, plasma current 0.48 MA and toroidal field 2.8 T) is the first tokamak with an operating divertor in China. It is characterized by a large closed divertor chamber. This unique feature will make significant contributions to enhance our understanding of complex divertor plasma physics and to help validating divertor physics modelings. The engineering design, development, testing and commissioning of the HL-2A tokamak are described in this paper. Preliminary results show that the HL-2A tokamak has been successfully operated in the divertor configuration. The major parameters: plasma current Ip=168 kA, toroidal field BT=1.4 T, plasma line average density ne=1.7 x 1019 m-3, limiting vacuum pv=4.6 x 10-6 Pa, were achieved at the end of 2003. (authors)

  20. HYFIRE: a tokamak- high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory is involved in a conceptual design study of a commercial nuclear power system which utilizes high-temperature electrolysis to produce synthetic fuels. The system is called HYFIRE. It includes a tokamak fusion power reactor supplying electrical and thermal energy to an array of electrolytes. The electrolytes produce hydrogen which can be used either directly as a fuel or in the production of hydrocarbons. The purpose of the study is to provide a mechanism for DOE to further assess the commercial potential of fusion using a tokamak reactor to produce synthetic fuel. The HYFIRE design is based on the tokamak commercial power reactor, STARFIRE. STARFIRE uses the deuterium/tritium/lithium fuel cycle. The HYFIRE study assumes the plasma shape and characteristics of STARFIRE study but uses a different blanket design. This study is particularly interested in the possibility of using the STARFIRE tokamak in the production of synthetic fuels

  1. Toroidicity Dependence of Tokamak Edge Safety Factor and Shear

    Institute of Scientific and Technical Information of China (English)

    SHIBingren

    2002-01-01

    In large tokamak device and reactor designs, the relationship between the toroidal current and the edge safety factor is very important because this will determine the eventual device or reactor size according to MHD stability requirements. In many preliminary

  2. Compact Ignition Tokamak Program: status of FEDC studies

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.

    1985-01-01

    Viewgraphs on the Compact Ignition Tokamak Program comprise the report. The technical areas discussed are the mechanical configuration status, magnet analysis, stress analysis, cooling between burns, TF coil joint, and facility/device layout options. (WRF)

  3. NEOCLASSICAL TRANSPORT IN A TOKAMAK WITH ELECTRIC SHEAR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neoclassical transport theory for a tokamak in the presence of a large radial electric field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both the plateau and banana regimes where the squeezing factor in coefficients can greatly affect diffusion at the plasma edge. Rotation speeds are calculated in the scrape-off region. They are in good agreement with the measurements on the TdeV tokamak.

  4. An emerging understanding of H-mode discharges in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the [upsilon][sub E][sup [yields

  5. Technique for plasma filament stabilization in a tokamak

    International Nuclear Information System (INIS)

    The invention is related to the field of automatic control of thermonuclear device processes and can be used in control systems of plasma filament stabilization by large radius in tokamak type thermolnuclear devices. The economic effect of the suggested technique is caused by improvement of stabilization of optimum (from the viewpoint of the decrease of plasma energy losses) plasma filament position in the tokamak-reactor which results in the decrease of power of additional plasma heating systems

  6. Design of a microwave calorimeter for the microwave tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marinak, M. (California Univ., Berkeley, CA (USA))

    1988-10-07

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs.

  7. Development of tokamak reactor systems analysis code 'TORSAC'

    International Nuclear Information System (INIS)

    This report describes Tokamak Reactor Systems Analysis Code ''TORSAC'' which has been developed in order to assess the impact of the design choises on reactor systems and to improve tokamak designs in wide parameter range. This computer code has following functions. (1) Systematic sensitivity analysis for a set of given design parameters, (2) Cost calculation of a new reactor concept designed automatically as a result of systematic sensitivity analysis. (author)

  8. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  9. Modeling of a poloidally symmetric toroidal field divertor in a reversed--field-pinch plasma machine

    International Nuclear Information System (INIS)

    Magnetic divertors have been shown to be successful in minimizing plasma-wall interactions and in leading to high confinement regimes in Tokamaks. This leads to the hope that similar benefits may occur in an Reversed-Field-Pinch (RPF) fitted with a divertor. Previous experiments using divertors in a RFP have used a poloidal field divertor configuration such as is used in Tokamaks. This study investigates another approach; namely a toroidal field divertor. In this study a simple model of a poloidally symmetric toroidal field divertor is developed and used in a study of stochastic effects due to the divertor and in a 3-D magnetohydrodynamic (MHD) code to study the response of the plasma to the large poloidal m = 0 perturbations caused by the divertor coils. It is found that the topology of the RFP-divertor system is much more complex than had been expected. Stochasticity is enhanced in the outer edge region of the plasma because of this geometrical complexity. The way of the RFP reaches an equilibrium in this complex system is investigated with the 3-D relaxation code, DEBS (authored by Dalton Schnack). This code showed that the divertor will not hinder the formation of a reversed toroidal field in the plasma, and that the dynamics of its formation is altered when toroidal effects are considered. The plasma develops flows and currents in the throat of the divertor in response to the vacuum-like divertor fields. These flows and currents help to restore the force free character of the plasma

  10. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  11. Cooldown of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs

  12. Beam-induced tensor pressure tokamak equilibria

    International Nuclear Information System (INIS)

    D-shaped tensor pressure tokamak equilibria induced by neutral-beam injection are computed. The beam pressure components are evaluated from the moments of a distribution function that is a solution of the Fokker-Planck equation in which the pitch-angle scattering operator is ignored. The level-psub(perpendicular) contours undergo a significant shift away from the outer edge of the device with respect to the flux surfaces for perpendicular beam injection into broad-pressure-profile equilibria. The psub(parallel) contours undergo a somewhat smaller inward shift with respect to the flux surfaces for both parallel and perpendicular injection into broad-pressure-profile equilibria. For peaked-pressure-profile equilibria, the level pressure contours nearly co-incide with the flux surfaces. (author)

  13. Cooldown of the Compact Ignition Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Keeton, D.C.

    1987-08-01

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs.

  14. Radiation power measurement on the ADITYA tokamak

    Science.gov (United States)

    Tahiliani, Kumudni; Jha, Ratneshwar; Gopalkrishana, M. V.; Doshi, Kalpesh; Rathod, Vipal; Hansalia, Chandresh; ADITYA Team

    2009-08-01

    The radiation power loss and its variation with plasma density and current are studied in the ADITYA tokamak. The radiation power loss varies from 20% to 40% of the input power for different discharges. The radiation fraction decreases with increasing plasma current but it increases with increasing line-averaged central density. The radiated power behavior has also been studied in discharges with short pulses of molecular beam injection (MBI) and gas puff (GP). The increase in radiation loss is limited to the edge chords in the case of GP, but it extends to the core region for MBI fueling. The MBI seems to indicate reduction in the edge recycling. It is observed that during the density limit disruption, the radiated power loss is more in the current quench phase as compared with the thermal quench phase and comes mainly from the plasma edge.

  15. Passive runaway electron suppression in tokamak disruptions

    International Nuclear Information System (INIS)

    Runaway electrons created in disruptions pose a serious problem for tokamaks with large current. It would be desirable to have a runaway electron suppression method which is passive, i.e., a method that does not rely on an uncertain disruption prediction system. One option is to let the large electric field inherent in the disruption drive helical currents in the wall. This would create ergodic regions in the plasma and increase the runaway losses. Whether these regions appear at a suitable time and place to affect the formation of the runaway beam depends on disruption parameters, such as electron temperature and density. We find that it is difficult to ergodize the central plasma before a beam of runaway current has formed. However, the ergodic outer region will make the Ohmic current profile contract, which can lead to instabilities that yield large runaway electron losses

  16. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  17. Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  18. Sliding Mode Control of a Tokamak Transformer

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. A.; Coda, S.; Felici, F.; Moret, J. M.; Paley, J.; Sevillano, G.; Garrido, I.; Le, H. B.

    2012-06-08

    A novel inductive control system for a tokamak transformer is described. The system uses the flux change provided by the transformer primary coil to control the electric current and the internal inductance of the secondary plasma circuit load. The internal inductance control is used to regulate the slow flux penetration in the highly conductive plasma due to the skin effect, providing first-order control over the shape of the plasma current density profile. Inferred loop voltages at specific locations inside the plasma are included in a state feedback structure to improve controller performance. Experimental tests have shown that the plasma internal inductance can be controlled inductively for a whole pulse starting just 30ms after plasma breakdown. The details of the control system design are presented, including the transformer model, observer algorithms and controller design. (Author) 67 refs.

  19. Low Z impurity transport in tokamaks

    International Nuclear Information System (INIS)

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed

  20. Instrumentation and controls of an ignited tokamak

    International Nuclear Information System (INIS)

    The instrumentation and controls (I and C) of an ignited plasma magnetically confined in a tokamak configuration needs increased emphasis in the following areas: (1) physics implications for control; (2) plasma shaping/position control; and (3) control to prevent disruptive instabilities. This document reports on the FY 1979 efforts in these and other areas. Also presented are discusssions in the areas of: (1) diagnostics suitable for the Engineering Test Facility (ETF); and (2) future research and development (R and D) needs. The appendices focus attention on some preliminary ideas about the measurement of the deuteron-triton (D-T) ratio in the plasma, synchrotron radiation, and divertor control. Finally, an appendix documenting the thermal consequences to the first wall of a MPD is presented