WorldWideScience

Sample records for axially symmetric model

  1. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  2. Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems

    Directory of Open Access Journals (Sweden)

    Maik Streblau

    2014-05-01

    Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.

  3. Report on the Dynamical Evolution of an Axially Symmetric Quasar ...

    Indian Academy of Sciences (India)

    retical arguments together with some numerical evidence. The evolution of the orbits is studied, as mass is transported from the disk to the nucleus. ... galaxies and non-axially symmetric quasar models (see Papadopoulos & Caranicolas.

  4. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  5. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  6. Beyond axial symmetry: An improved class of models for global data

    KAUST Repository

    Castruccio, Stefano

    2014-03-01

    An important class of models for data on a spherical domain, called axially symmetric, assumes stationarity across longitudes but not across latitudes. The main aim of this work is to introduce a new and more flexible class of models by relaxing the assumption of longitudinal stationarity in the context of regularly gridded climate model output. In this investigation, two other related topics are discussed: the lack of fit of an axially symmetric parametric model compared with a non-parametric model and to longitudinally reversible processes, an important subclass of axially symmetric models.

  7. Beyond axial symmetry: An improved class of models for global data

    KAUST Repository

    Castruccio, Stefano; Genton, Marc G.

    2014-01-01

    An important class of models for data on a spherical domain, called axially symmetric, assumes stationarity across longitudes but not across latitudes. The main aim of this work is to introduce a new and more flexible class of models by relaxing the assumption of longitudinal stationarity in the context of regularly gridded climate model output. In this investigation, two other related topics are discussed: the lack of fit of an axially symmetric parametric model compared with a non-parametric model and to longitudinally reversible processes, an important subclass of axially symmetric models.

  8. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    International Nuclear Information System (INIS)

    Sharif, M.; Manzoor, Rubab

    2016-01-01

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  9. Dynamics of axial symmetric system in self-interacting Brans-Dicke gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Manzoor, Rubab [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2016-06-15

    This paper investigates the dynamics of an axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using a time-dependent perturbation for both spin-dependent and spin-independent cases. The expressions of the frequency, the total energy density, and the equation of motion of the oscillating model are obtained. We study the instability of the oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter Γ = 1, collapses for Γ > 1, and becomes unstable for 0 < Γ < 1. (orig.)

  10. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    Schein, F.

    1997-11-01

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  11. The hidden symmetries and their algebraic structure of the static axially symmetric SDYM fields

    International Nuclear Information System (INIS)

    Hao Sanru

    1993-01-01

    A new explicit transformation about the static axially symmetric self-dual Yang-Mills (SDYM) fields is presented. The theory has proved that the new transformation is a symmetric one. For the two kinds of the Lie algebraic generators of the Lie group SL (N. R) /SO (N), the corresponding transformations are given. By making use of the Yang-Baxter equality and their square brackets, the loop and conformal algebraic structures of the symmetric transformations for the basic fields have been obtained. All the results obtained can be directly generalized to the other models

  12. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  13. The space-time outside a source of gravitational radiation: the axially symmetric null fluid

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)

    2016-11-15

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)

  14. A wide low-mass binary model for the origin of axially symmetric non-thermal radio sources

    International Nuclear Information System (INIS)

    Kool, M. de; Heuvel, E.P.J. van den

    1985-01-01

    An accreting binary model has been proposed by recent workers to account for the origin of the axially symmetric non-thermal radio sources. The authors show that the only type of binary system that can produce the observed structural properties, is a relatively wide neutron star binary, in which the companion of the neutron star is a low-mass giant. Binaries of this type are expected to resemble closely the eight brightest galactic bulge X-ray sources as well as the progenitors of the two wide radio pulsar binaries. (U.K.)

  15. first principles derivation of a stress function for axially symmetric

    African Journals Online (AJOL)

    HOD

    governing partial differential equations of linear isotropic elasticity were reduced to the solution of the biharmonic ... The stress function was then applied to solve the axially symmetric ..... [1] Borg S.K.: Fundamentals of Engineering Elasticity,.

  16. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  17. Static axially symmetric gravitational fields with shell sources

    International Nuclear Information System (INIS)

    McCrea, J.D.

    1976-01-01

    Israel's (Israel, W., 1966, Nuovo Cim., vol.44, 1-14) method for treating surface layers in general relativity is applied to construct shell sources for exterior static axially symmetric gravitational fields. Consideration is restricted to cases in which the 3-cylinder representing the history of the shell is an equipotential surface of the exterior field and consequently the space-time inside this 3-cylinder is flat. (author)

  18. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  19. On the axially symmetric non-rotating vacuum solutions of Rosen's equations

    International Nuclear Information System (INIS)

    Bozhkov, Y.

    1990-10-01

    It is shown that all axially symmetric nonrotating solutions of Rosen's field equations can be expressed in terms of two harmonic functions. It is also shown that the total energy of Rosen's metric is Mc 2 . (author). 8 refs

  20. On the axially symmetric equilibrium of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)

  1. EBQ code: Transport of space-charge beams in axially symmetric devices

    Science.gov (United States)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  2. EBQ code: transport of space-charge beams in axially symmetric devices

    International Nuclear Information System (INIS)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present

  3. Decay Properties of Axially Symmetric D-Solutions to the Steady Navier-Stokes Equations

    Science.gov (United States)

    Weng, Shangkun

    2018-03-01

    We investigate the decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations. The achievements of this paper are two folds. One is improved decay rates of u_{θ } and \

  4. Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields

    International Nuclear Information System (INIS)

    Baxter, Mathew; Van Gorder, Robert A

    2013-01-01

    We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)

  5. Geometric inequalities for axially symmetric black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2012-01-01

    A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)

  6. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  7. Axially symmetric stationary black-hole states of the Einstein gravitational theory

    International Nuclear Information System (INIS)

    Meinhardt, R.

    1976-01-01

    Some aspects of the thepry of black-hole states of the Einstein gravitational theory are reviewed in this paper. First explicit vacuum solutions of Einstein's field equations are searched for when the space-time admits 2 isometries (axially symmetric and stationary), which could be considered as candidates for black holes. Then the Liapounov stability of these solutions is studied. A generalization of the Ernst potential is introduced for solutions of Einstein's vacuum field equations with axial symmetry only, and this allows to construct a dynamical system. Using the theory of ''multiple integrals in the calculus of variations'' it is possible to show that the weakest casuality condition (chronology) is a necessary condition for the Liapounov stability. Finally, it is shown that the Kerr solution is Liapounov stable under a given topology

  8. Axially symmetric stationary black-hole states of the Einstein gravitational theory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhardt, R [Chile Univ., Santiago. Departamento de Fisica

    1976-01-01

    Some aspects of the theory of black-hole states of the Einstein gravitational theory are reviewed in this paper. First explicit vacuum solutions of Einstein's field equations are searched for when the space-time admits 2 isometries (axially symmetric and stationary), which could be considered as candidates for black holes. Then the Liapounov stability of these solutions is studied. A generalization of the Ernst potential is introduced for solutions of Einstein's vacuum field equations with axial symmetry only, and this allows to construct a dynamical system. Using the theory of ''multiple integrals in the calculus of variations'' it is possible to show that the weakest casuality condition (chronology) is a necessary condition for the Liapounov stability. Finally, it is shown that the Kerr solution is Liapounov stable under a given topology.

  9. Self-gravitating axially symmetric disks in general-relativistic rotation

    Science.gov (United States)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.

  10. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  11. Stationary axially symmetric exterior solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation

    International Nuclear Information System (INIS)

    Bruckman, W.

    1986-01-01

    The inverse scattering method of Belinsky and Zakharov is used to investigate axially symmetric stationary vacuum soliton solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation, where the scalar field of the theory is an element of a five-dimensional metric. The resulting equations for the spacetime metric are similar to those of solitons in general relativity, while the scalar field generated is the product of a simple function of the coordinates and an already known scalar field solution. A family of solutions is considered that reduce, in the absence of rotation, to the five-dimensional form of a well-known Weyl-Levi Civita axially symmetric static vacuum solution. With a suitable choice of parameters, this static limit becomes equivalent to the spherically symmetric solution of the Brans-Dicke theory. An exact metric, in which the Kerr-scalar McIntosh solution is a special case, is given explicitly

  12. The effect of axial loads on free vibration of symmetric frame structures using continuous system method

    Directory of Open Access Journals (Sweden)

    Elham Ghandi

    2016-09-01

    Full Text Available The free vibration of frame structures has been usually studied in literature without considering the effect of axial loads. In this paper, the continuous system method is employed to investigate this effect on the free flexural and torsional vibration of two and three dimensional symmetric frames. In the continuous system method, in approximate analysis of buildings, commonly, the structure is replaced by an equivalent beam which matches the dominant characteristics of the structure. Accordingly, the natural frequencies of the symmetric frame structures are obtained through solving the governing differential equation of the equivalent beam whose stiffness and mass are supposed to be uniformly distributed along the length. The corresponding axial load applied to the replaced beam is calculated based on the total weight and the number of stories of the building. A numerical example is presented to show the simplicity and efficiency of the proposed solution.

  13. Precession mode on high-K configurations: non-collective axially-symmetric limit of wobbling motion

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R; Matsuzaki, Masayuki; Matsuyanagi, Kenichi

    2006-01-01

    The precession mode, the rotational excitation built on the high-K isomeric state, in comparison with the recently identified wobbling mode has been studied. The random-phase-approximation (RPA) formalism, which has been developed for the nuclear wobbling motion, is invoked and the precession phonon is obtained by the non-collective axially symmetric limit of the formalism. The excitation energies and the electromagnetic properties of the precession bands in 178 W are calculated, and it is found that the results of RPA calculations well correspond to those of the rotor model; the correspondence can be understood by an adiabatic approximation to the RPA phonon. As a by-product, it is also found that the problem of too small out-of-band B(E2) in our previous RPA wobbling calculations can be solved by a suitable choice of the triaxial deformation which corresponds to the one used in the rotor model

  14. Meissner effect for axially symmetric charged black holes

    Science.gov (United States)

    Gürlebeck, Norman; Scholtz, Martin

    2018-04-01

    In our previous work [N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010 (2017), 10.1103/PhysRevD.95.064010], we have shown that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially symmetric uncharged black holes; this is called the Meissner effect for black holes. Here, we generalize this result in several directions. First, we allow that the black hole carries charge, which requires a generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not necessarily completely time independent. Moreover, we allow the horizon to be pierced by strings, thereby violating the usual assumption on the spherical topology made in the definition of the weakly isolated horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect is an inherent property of black holes even in full nonlinear theory.

  15. Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M., E-mail: martini.marco@gmail.com [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); CEA, DAM, DIF, F-91297 Arpajon (France); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); Péru, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-06-15

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.

  16. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  17. Shear-free axial model in massive Brans–Dicke gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: msharif.math@pu.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Manzoor, Rubab, E-mail: rubab.manzoor@umt.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Department of Mathematics, University of Management and Technology, Johar Town Campus, Lahore-54782 (Pakistan)

    2017-01-15

    This paper explores the influences of dark energy on the shear-free axially symmetric evolution by considering self-interacting Brans–Dicke gravity as a dark energy candidate. We describe energy source of the model and derive all the effective dynamical variables as well as effective structure scalars. It is found that scalar field is one of the sources of anisotropy and dissipation. The resulting effective structure scalars help to study the dynamics associated with dark energy in any axial configuration. In order to investigate shear-free evolution, we formulate a set of governing equations along with heat transport equation. We discuss consequences of shear-free condition upon different SBD fluid models like dissipative non-geodesic and geodesic models. For dissipative non-geodesic case, the rotational distribution turns out to be the necessary and sufficient condition for radiating model. The dissipation depends upon inhomogeneous expansion. The geodesic model is found to be irrotational and non-radiating. The non-dissipative geodesic model leads to FRW model for positive values of the expansion parameter.

  18. Efficient characterization of phase space mapping in axially symmetric optical systems

    Science.gov (United States)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  19. Modelling larval transport in a axial convergence front

    Science.gov (United States)

    Robins, P.

    2010-12-01

    Marine larvae exhibit different vertical swimming behaviours, synchronised by factors such as tidal currents and daylight, in order to aid retention near the parent populations and hence promote production, avoid predation, or to stimulate digestion. This paper explores two types of larval migration in an estuarine axial convergent front which is an important circulatory mechanism in many coastal regions where larvae are concentrated. A parallelised, three-dimensional, ocean model was applied to an idealised estuarine channel which was parameterised from observations of an axial convergent front which occurs in the Conwy Estuary, U.K. (Nunes and Simpson, 1985). The model successfully simulates the bilateral cross-sectional recirculation of an axial convergent front, which has been attributed to lateral density gradients established by the interaction of the lateral shear of the longitudinal currents with the axial salinity gradients. On the flood tide, there is surface axial convergence whereas on the ebb tide, there is (weaker) surface divergence. Further simulations with increased/decreased tidal velocities and with stronger/weaker axial salinity gradients are planned so that the effects of a changing climate on the secondary flow can be understood. Three-dimensional Lagrangian Particle Tracking Models (PTMs) have been developed which use the simulated velocity fields to track larvae in the estuarine channel. The PTMs take into account the vertical migrations of two shellfish species that are commonly found in the Conwy Estuary: (i) tidal migration of the common shore crab (Carcinus maenas) and (ii), diel (daily) migration of the Great scallop (Pecten maximus). These migration behaviours are perhaps the most widespread amongst shellfish larvae and have been compared with passive (drifting) particles in order to assess their relative importance in terms of larval transport. Preliminary results suggest that the net along-estuary dispersal over a typical larval

  20. Modular coils and finite-β operation of a quasi-axially symmetric tokamak

    International Nuclear Information System (INIS)

    Drevlak, M.

    1998-01-01

    Quasi-axially symmetric tokamaks (QA tokamaks) are an extension of the conventional tokamak concept. In these devices the magnetic field strength is independent of the generalized toroidal magnetic co-ordinate even though the cross-sectional shape changes. An optimized plasma equilibrium belonging to the class of QA tokamaks has been proposed by Nuehrenberg. It features the small aspect ratio of a tokamak while allowing part of the rotational transform to be generated by the external field. In this article, two particular aspects of the viability of QA tokamaks are explored, namely the feasibility of modular coils and the possibility of maintaining quasi-axial symmetry in the free-boundary equilibria obtained with the coils found. A set of easily feasible modular coils for the configuration is presented. It was designed using the extended version of the NESCOIL code (MERKEL, P., Nucl. Fusion 27 (1987) 867). Using this coil system, free-boundary calculations of the plasma equilibrium were carried out using the NEMEC code (HIRSHMAN, S.P., VAN RIJ, W.I., MERKEL, P., Comput. Phys. Commun. 43 (1986) 143). It is observed that the effects of finite β and net toroidal plasma current can be compensated for with good precision by applying a vertical magnetic field and by separately adjusting the currents of the modular coils. A set of fully three dimensional (3-D) auxiliary coils is proposed to exert control on the rotational transform in the plasma. Deterioration of the quasi-axial symmetry induced by the auxiliary coils can be avoided by adequate adjustment of the currents in the primary coils. Finally, the neoclassical transport properties of the configuration are examined. It is observed that optimization with respect to confinement of the alpha particles can be maintained at operation with finite toroidal current if the aforementioned corrective measures are used. In this case, the neoclassical behaviour is shown to be very similar to that of a conventional tokamak

  1. Periodicity effects of axial waves in elastic compound rods

    DEFF Research Database (Denmark)

    Nielsen, R. B.; Sorokin, S. V.

    2015-01-01

    Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin......Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase......-closure Principle, and their correspondence with stop band formation is shown. Steady-state and transient dynamics of a periodic rod of finite length are analysed numerically and the difference in structural response when excitation is done in either stop- or pass bands is demonstrated. A physical interpretation...

  2. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, P., E-mail: peter.andersson@physics.uu.se; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S. [Department of Physics and Astronomy, Division of Applied Nuclear Physics, Uppsala University, Lägerhyddsgatan 1, 751 20 Uppsala (Sweden)

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  3. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    Science.gov (United States)

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  4. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  5. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.

  6. Steady Stokes flow past dumbbell shaped axially symmetric body of revolution: An analytic approach

    Directory of Open Access Journals (Sweden)

    Srivastava Kumar Deepak

    2012-01-01

    Full Text Available In this paper, the problem of steady Stokes flow past dumbbell-shaped axially symmetric isolated body of revolution about its axis of symmetry is considered by utilizing a method (Datta and Srivastava, 1999 based on body geometry under the restrictions of continuously turning tangent on the boundary. The relationship between drag and moment is established in transverse flow situation. The closed form expression of Stokes drag is then calculated for dumbbell-shaped body in terms of geometric parameters b, c, d and a with the aid of this linear relation and the formula of torque obtained by (Chwang and Wu, part 1, 1974 with the use of singularity distribution along axis of symmetry. Drag coefficient and moment coefficient are defined in various forms in terms of dumbbell parameters. Their numerical values are calculated and depicted in respective graphs and compared with some known values.

  7. Finite element modelling of reinforced large-opening on the web of steel beam considering axial forces

    Science.gov (United States)

    Sukrawa, Made

    2017-11-01

    Experimental and analytical researches on the effect of web opening in steel beams have been repeatedly reported in literature because of the advantages gain from the many function of the opening. Most of the research on this area, however, did not consider deformation and stress in the beam due to axial force. In seismic design of steel structure, the axial force in the beam could be significantly high and therefore worth considering. In this study a beam extracted from a braced frame structure was analyzed using finite element models to investigate the effect of combined bending and axial forces on the deformation and stresses in the vicinity of the opening. Large size of square, rectangular, and circular openings of the same depth were reinforced and placed in pair, symmetrical to the concentrated load at mid span of the beam. Four types of reinforcement were used, all around (AA), short horizontal (SH), long horizontal (LH), and doubler plate (DP). The effect of axial load was also investigated using rigid frame model loaded vertically and laterally. Validation of the modelling technique was done prior to the parametric study. It was revealed that the axial force significantly contributes to the stress concentration near the hole. Stiffener of circular shape was effective to improve the stress distribution around the circular opening. For square and rectangular openings, however, the horizontal stiffener, extended beyond the edge of opening, performed better than the other type of stiffeners.

  8. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  9. Stationary axially symmetric perturbations of a rotating black hole. [Space-time perturbation, Newman-Penrose formalism

    Energy Technology Data Exchange (ETDEWEB)

    Demianski, M [California Inst. of Tech., Pasadena (USA)

    1976-07-01

    A stationary axially symmetric perturbation of a rotating black hole due to a distribution of test matter is investigated. The Newman-Penrose spin coefficient formalism is used to derive a general set of equations describing the perturbed space-time. In a linear approximation it is shown that the mass and angular momentum of a rotating black hole is not affected by the perturbation. The metric perturbations near the horizon are given. It is concluded that given a perturbing test fluid distribution, one can always find a corresponding metric perturbation such that the mass and angular momentum of the black hole are not changed. It was also noticed that when a tends to M, those perturbed spin coefficients and components of the Weyl tensor which determine the intrinsic properties of the incoming null cone near the horizon grow indefinitely.

  10. High-K precession modes: Axially symmetric limit of wobbling motion in the cranked random-phase approximation description

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.; Matsuzaki, Masayuki; Matsuyanagi, Kenichi

    2005-01-01

    The rotational band built on the high-K multi-quasiparticle state can be interpreted as a multi-phonon band of the precession mode, which represents the precessional rotation about the axis perpendicular to the direction of the intrinsic angular momentum. By using the axially symmetric limit of the random-phase approximation (RPA) formalism developed for the nuclear wobbling motion, we study the properties of the precession modes in 178 W: the excitation energies, B(E2) and B(M1) values. We show that the excitations of such a specific type of rotation can be well described by the RPA formalism, which gives new insight into the wobbling motion in the triaxial superdeformed nuclei from a microscopic viewpoint

  11. High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs

    International Nuclear Information System (INIS)

    Bachmann, B; Ekkert, K; Bachmann, J-P; Marques, J-L; Schein, J; Kozakov, R; Gött, G; Schöpp, H; Uhrlandt, D

    2013-01-01

    In this paper we introduce an experimental technique that allows for high-speed, three-dimensional determination of electron density and temperature in axially symmetric free-burning arcs. Optical filters with narrow spectral bands of 487.5–488.5 nm and 689–699 nm are utilized to gain two-dimensional spectral information of a free-burning argon tungsten inert gas arc. A setup of mirrors allows one to image identical arc sections of the two spectral bands onto a single camera chip. Two-different Abel inversion algorithms have been developed to reconstruct the original radial distribution of emission coefficients detected with each spectral window and to confirm the results. With the assumption of local thermodynamic equilibrium we calculate emission coefficients as a function of temperature by application of the Saha equation, the ideal gas law, the quasineutral gas condition and the NIST compilation of spectral lines. Ratios of calculated emission coefficients are compared with measured ones yielding local plasma temperatures. In the case of axial symmetry the three-dimensional plasma temperature distributions have been determined at dc currents of 100, 125, 150 and 200 A yielding temperatures up to 20000 K in the hot cathode region. These measurements have been validated by four different techniques utilizing a high-resolution spectrometer at different positions in the plasma. Plasma temperatures show good agreement throughout the different methods. Additionally spatially resolved transient plasma temperatures have been measured of a dc pulsed process employing a high-speed frame rate of 33000 frames per second showing the modulation of the arc isothermals with time and providing information about the sensitivity of the experimental approach. (paper)

  12. Characteristic function-based semiparametric inference for skew-symmetric models

    KAUST Repository

    Potgieter, Cornelis J.

    2012-12-26

    Skew-symmetric models offer a very flexible class of distributions for modelling data. These distributions can also be viewed as selection models for the symmetric component of the specified skew-symmetric distribution. The estimation of the location and scale parameters corresponding to the symmetric component is considered here, with the symmetric component known. Emphasis is placed on using the empirical characteristic function to estimate these parameters. This is made possible by an invariance property of the skew-symmetric family of distributions, namely that even transformations of random variables that are skew-symmetric have a distribution only depending on the symmetric density. A distance metric between the real components of the empirical and true characteristic functions is minimized to obtain the estimators. The method is semiparametric, in that the symmetric component is specified, but the skewing function is assumed unknown. Furthermore, the methodology is extended to hypothesis testing. Two tests for a hypothesis of specific parameter values are considered, as well as a test for the hypothesis that the symmetric component has a specific parametric form. A resampling algorithm is described for practical implementation of these tests. The outcomes of various numerical experiments are presented. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  13. METHOD OF DIMENSIONALITY REDUCTION IN CONTACT MECHANICS AND FRICTION: A USERS HANDBOOK. I. AXIALLY-SYMMETRIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Valentin L. Popov

    2014-04-01

    Full Text Available The Method of Dimensionality Reduction (MDR is a method of calculation and simulation of contacts of elastic and viscoelastic bodies. It consists essentially of two simple steps: (a substitution of the three-dimensional continuum by a uniquely defined one-dimensional linearly elastic or viscoelastic foundation (Winkler foundation and (b transformation of the three-dimensional profile of the contacting bodies by means of the MDR-transformation. As soon as these two steps are completed, the contact problem can be considered to be solved. For axial symmetric contacts, only a small calculation by hand is required which does not exceed elementary calculus and will not be a barrier for any practically-oriented engineer. Alternatively, the MDR can be implemented numerically, which is almost trivial due to the independence of the foundation elements. In spite of their simplicity, all the results are exact. The present paper is a short practical guide to the MDR.

  14. The nucleon axial isoscalar coupling constant and the Bjorken sum rule

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Ioffe, B.L.; Kogan, Ya.I.

    1984-01-01

    The nucleon coupling constant with the axial isoscalar current entering the Bjorken sum rule for the deep inelastic scattering of polarized electrons on a polarized target is calculated in nonperturbative QCD. The result, gsub(A)sup(s) approximately 0.5, is about a factor of two smaller as compared to that of the SU(6) symmetric quark model

  15. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  16. Introduction to left-right symmetric models

    International Nuclear Information System (INIS)

    Grimus, W.

    1993-01-01

    We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)

  17. Stochastic quantization for the axial model

    International Nuclear Information System (INIS)

    Farina, C.; Montani, H.; Albuquerque, L.C.

    1991-01-01

    We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process

  18. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  19. Second harmonic generation of off axial vortex beam in the case of walk-off effect

    Science.gov (United States)

    Chen, Shunyi; Ding, Panfeng; Pu, Jixiong

    2016-07-01

    Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.

  20. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  1. Metamorphosis of helical magnetorotational instability in the presence axial electric current

    OpenAIRE

    Priede, Jānis

    2014-01-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical ...

  2. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements

    Science.gov (United States)

    Li, ZhaoYu; Chen, Tao; Yan, GuangQing

    2016-10-01

    A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.

  3. Reactive control of subsonic axial fan noise in a duct.

    Science.gov (United States)

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  4. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  5. Approximate calculation of electronic energy levels of axially symmetric quantum dot and quantum ring by using energy dependent effective mass

    International Nuclear Information System (INIS)

    Yu-Min, Liu; Zhong-Yuan, Yu; Xiao-Min, Ren

    2009-01-01

    Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrödinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail. (general)

  6. Behaviour of a neutral particle with spin in an axial magnetic field

    International Nuclear Information System (INIS)

    Sorokin, S.V.; Ehpp, V.Ya.

    1982-01-01

    Proceeding from the Tamm-Good equation taking into account the spin influence on motion trajectory, the neutral particle motion tracjectory and vector turn of spin polarizition in axial magnetic field have been found. The behaviour of a neutral particle possessing its own magnetic moment in an axially-symmetric stationary magnetic field is considered

  7. Quasi-renormalization of the axial vector model

    International Nuclear Information System (INIS)

    Schweda, M.

    1979-01-01

    Using the regulator-free BPHZL renormalization scheme the problem of anomalies in a massive axial vector meson model is reinvestigated. The Adler-Bardeen-Bell-Jackiw anomaly introduces some impressive modifications: the nontrivial self-energy and the counterterm of the longitudinal part of the axial vector field depend on the anomaly via the anomalous Ward identity. The investigations are based on a Fermi-type gauge. (author)

  8. The Hall instability of unsteady inhomogeneous axially symmetric magnetized plasmas

    International Nuclear Information System (INIS)

    Shtemler, Yuri M.; Mond, Michael; Liverts, Edward

    2004-01-01

    The Hall instability in cylindrically symmetric resistive magnetized plasmas in vacuum is investigated. The unperturbed self-similar equilibrium solutions for imploding Z-pinches with time-dependent total current I t ∼t S ,S>1/3, are subjected by short-wave sausage perturbations. The instability criterion is derived in slow-time, frozen-radius approximation. In cylindrically symmetric configurations the instability is driven by the magnetic field curvature. The near-axis and near-edge branches of the neutral curve in the plane of the inverse Hall parameter and phase velocity with the frozen radial coordinate as a parameter are separated by the critical point, where the modified gradient from the unperturbed number density changes sign. The critical radius may be treated as a new characteristic size of the Z-pinch that emerges due to the instability: the pinch is envisaged restructured by the short-scale high-frequency Hall instability, in which a central stable core is surrounded by an outer shell. Such a modified equilibrium may explain the observed enhanced stability against magnetohydrodynamic modes

  9. Axial Crushing Behaviors of Thin-Walled Corrugated and Circular Tubes - A Comparative Study

    Science.gov (United States)

    Reyaz-Ur-Rahim, Mohd.; Bharti, P. K.; Umer, Afaque

    2017-10-01

    With the help of finite element analysis, this research paper deals with the energy absorption and collapse behavior with different corrugated section geometries of hollow tubes made of aluminum alloy 6060-T4. Literature available experimental data were used to validate the numerical models of the structures investigated. Based on the results available for symmetric crushing of circular tubes, models were developed to investigate corrugated thin-walled structures behavior. To study the collapse mechanism and energy absorbing ability in axial compression, the simulation was carried in ABAQUS /EXPLICIT code. In the simulation part, specimens were prepared and axially crushed to one-fourth length of the tube and the energy diagram of crushing force versus axial displacement is shown. The effect of various parameters such as pitch, mean diameter, corrugation, amplitude, the thickness is demonstrated with the help of diagrams. The overall result shows that the corrugated section geometry could be a good alternative to the conventional tubes.

  10. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  11. Alloy synthesis using the mach stem region in an axial symmetric implosive shock: Understanding the pressure strain-temperature contributions

    Energy Technology Data Exchange (ETDEWEB)

    Staudhammer, Karl P.

    2004-01-01

    The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  12. Axial and focal-plane diffraction catastrophe integrals

    International Nuclear Information System (INIS)

    Berry, M V; Howls, C J

    2010-01-01

    Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X 9 diffraction catastrophes. These representations reveal unexpected relations between the integrals.

  13. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that ...

  14. A summary view of the symmetric cosmological model

    International Nuclear Information System (INIS)

    Aldrovandi, R.

    1975-01-01

    A brief analysis of cosmological models is done, beginning with the standard model and following with the symmetric model of Omnes. Some attempts have been made for the phase transition in thermal radiation at high temperatures, to the annihilation period and to coalescence. One model with equal amounts of matter and antimatter seems to be reasonable [pt

  15. Szekeres Swiss-cheese model and supernova observations

    International Nuclear Information System (INIS)

    Bolejko, Krzysztof; Celerier, Marie-Noeelle

    2010-01-01

    We use different particular classes of axially symmetric Szekeres Swiss-cheese models for the study of the apparent dimming of the supernovae of type Ia. We compare the results with those obtained in the corresponding Lemaitre-Tolman Swiss-cheese models. Although the quantitative picture is different the qualitative results are comparable, i.e., one cannot fully explain the dimming of the supernovae using small-scale (∼50 Mpc) inhomogeneities. To fit successfully the data we need structures of order of 500 Mpc size or larger. However, this result might be an artifact due to the use of axial light rays in axially symmetric models. Anyhow, this work is a first step in trying to use Szekeres Swiss-cheese models in cosmology and it will be followed by the study of more physical models with still less symmetry.

  16. The 1/ N Expansion of Tensor Models with Two Symmetric Tensors

    Science.gov (United States)

    Gurau, Razvan

    2018-06-01

    It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.

  17. Exotic fermions in the left-right symmetric model

    International Nuclear Information System (INIS)

    Choi, J.; Volkas, R.R.

    1992-01-01

    A systematic study is made of non-standard fermion multiplets in left-right symmetric models with gauge group SU(3) x SU(2) L x SU(2) R x U(1) BL . Constraints from gauge anomaly cancellation and invariance of Yukawa coupling terms are used to define interesting classes of exotic fermions. The standard quark lepton spectrum of left-right symmetric models was identified as the simplest member of an infinite class. Phenomenological implications of the next simplest member of this class are then studied. Classes of exotic fermions which may couple to the standard fermions through doublet Higgs bosons were also considered, then shown that some of these exotics may be used to induce a generalised universal see-saw mechanism. 12 refs., 1 tab

  18. ABOUT MODELING COMPLEX ASSEMBLIES IN SOLIDWORKS – LARGE AXIAL BEARING

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2017-12-01

    Full Text Available In this paperwork is presented the modeling strategy used in SOLIDWORKS for modeling special items as large axial bearing and the steps to be taken in order to obtain a better design. In the paper are presented the features that are used for modeling parts, and then the steps that must be taken in order to obtain the 3D model of a large axial bearing used for bucket-wheel equipment for charcoal moving.

  19. Supersymmetric axial anomalies and the Wess-Zumino action

    International Nuclear Information System (INIS)

    Harada, K.; Shizuya, K.

    1988-01-01

    We derive, by an algebraic method, a manifestly supersymmetric extension of Bardeen's minimal form of axial anomalies, which obeys the Wess-Zumino consistency condition. The left-right symmetric form of the anomalies is also obtained by a reduction procedure. We construct the supersymmetric Wess-Zumino effective action and study its low-energy features. (orig.)

  20. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  1. Neutrinoless double-beta decay in left-right symmetric models

    International Nuclear Information System (INIS)

    Picciotto, C.E.; Zahir, M.S.

    1982-06-01

    Neutrinoless double-beta decay is calculated via doubly charged Higgs, which occur naturally in left-right symmetric models. We find that the comparison with known half-lives yields values of phenomenological parameters which are compatible with earlier analyses of neutral current data. In particular, we obtain a right-handed gauge-boson mass lower bound of the order of 240 GeV. Using this result and expressions for neutrino masses derived in a parity non-conserving left-right symmetric model, we obtain msub(νsub(e)) < 1.5 eV, msub(νsub(μ)) < 0.05 MeV and msub(νsub(tau)) < 18 MeV

  2. Effects of Wavenumber and Chirality on the Axial Compressive Behavior of Wavy Carbon Nanotubes: A Molecular Mechanics Study

    Directory of Open Access Journals (Sweden)

    Masaki Kawachi

    2014-01-01

    Full Text Available The effects of wavenumber and chirality on the axial compressive behavior and properties of wavy carbon nanotubes (CNTs with multiple Stone-Wales defects are investigated using molecular mechanics simulations with the adaptive intermolecular reactive empirical bond-order potential. The wavy CNTs are assumed to be point-symmetric with respect to their axial centers. It is found that the wavy CNT models, respectively, exhibit a buckling point and long wavelength buckling mode regardless of the wavenumbers and chiralities examined. It is also found that the wavy CNTs have nearly the same buckling stresses as their pristine straight counterparts.

  3. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  4. Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion

    Science.gov (United States)

    Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang

    2018-06-01

    Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.

  5. Hopf solitons in the Nicole model

    International Nuclear Information System (INIS)

    Gillard, Mike; Sutcliffe, Paul

    2010-01-01

    The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in the two theories.

  6. Assessment of the impact of modeling axial compression on PET image reconstruction.

    Science.gov (United States)

    Belzunce, Martin A; Reader, Andrew J

    2017-10-01

    To comprehensively evaluate both the acceleration and image-quality impacts of axial compression and its degree of modeling in fully 3D PET image reconstruction. Despite being used since the very dawn of 3D PET reconstruction, there are still no extensive studies on the impact of axial compression and its degree of modeling during reconstruction on the end-point reconstructed image quality. In this work, an evaluation of the impact of axial compression on the image quality is performed by extensively simulating data with span values from 1 to 121. In addition, two methods for modeling the axial compression in the reconstruction were evaluated. The first method models the axial compression in the system matrix, while the second method uses an unmatched projector/backprojector, where the axial compression is modeled only in the forward projector. The different system matrices were analyzed by computing their singular values and the point response functions for small subregions of the FOV. The two methods were evaluated with simulated and real data for the Biograph mMR scanner. For the simulated data, the axial compression with span values lower than 7 did not show a decrease in the contrast of the reconstructed images. For span 11, the standard sinogram size of the mMR scanner, losses of contrast in the range of 5-10 percentage points were observed when measured for a hot lesion. For higher span values, the spatial resolution was degraded considerably. However, impressively, for all span values of 21 and lower, modeling the axial compression in the system matrix compensated for the spatial resolution degradation and obtained similar contrast values as the span 1 reconstructions. Such approaches have the same processing times as span 1 reconstructions, but they permit significant reduction in storage requirements for the fully 3D sinograms. For higher span values, the system has a large condition number and it is therefore difficult to recover accurately the higher

  7. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  8. Generalized dynamic model and control of ambiguous mono axial vehicle robot

    Directory of Open Access Journals (Sweden)

    Frantisek Duchon

    2016-09-01

    Full Text Available This article deals with the novel concept of ambiguous mono axial vehicle robot. Such robot is a combination of Segway and dicycle, which utilizes the advantages of each chassis. The advantage of dicycle is lower energy consumption during the movement and the higher safety of carried payload. The movable platform inside the ambiguous mono axial vehicle allows using the various sensors or devices. This will change the ambiguous mono axial vehicle to the Segway type robot. Both these modes are necessary to control in the stable mode to ensure the safety of the ambiguous mono axial vehicle’s movement. The main contents of the article contain description of generalized dynamic model of ambiguous mono axial vehicle and related control of ambiguous mono axial vehicle. The proposal is unique in that the same controller is used for both modes. Several simulations verify proposed control schemes and identified parameters. Moreover, the dicycle type of platform has never been used in robotics and that is another novelty.

  9. Axial gravity, massless fermions and trace anomalies

    International Nuclear Information System (INIS)

    Bonora, L.; Cvitan, M.; Giaccari, S.; Stemberga, T.; Prester, P.D.; Pereira, A.D.; UFF-Univ. Federal Fluminense, Niteroi

    2017-01-01

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  10. Axial gravity, massless fermions and trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica

    2017-08-15

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  11. Mixed dark matter in left-right symmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher [Department of Physics, University of Chicago,Chicago, Illinois 60637 (United States); Fox, Patrick J. [Theoretical Physics Department, Fermilab,Batavia, Illinois 60510 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago,Chicago, Illinois 60637 (United States); Mohlabeng, Gopolang [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Physics and Astronomy, University of Kansas,Lawrence, Kansas 66045 (United States)

    2016-06-08

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.

  12. Development of Row of Vibration Insulators and its Mathematical Models on a Base of Common Multi-parameter Scheme of Element Axial Line

    Science.gov (United States)

    Ponomarev, Yury K.

    2018-01-01

    The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.

  13. Hysteretic Models Considering Axial-Shear-Flexure Interaction

    Science.gov (United States)

    Ceresa, Paola; Negrisoli, Giorgio

    2017-10-01

    Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.

  14. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  15. Thermocapillary Convection in Floating Zone with Axial Magnetic Fields

    Science.gov (United States)

    Liang, Ruquan; Yang, Shuo; Li, Jizhao

    2014-02-01

    Numerical simulations on the effects of axial magnetic fields on the thermocapillary convection in a liquid bridge of silicone-oil-based ferrofluid under zero gravity have been conducted. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the mass conserving level set approach is used to capture the free surface deformation of the liquid bridge. The obvious effects of the magnetic fields on the flow pattern as well as the velocity and temperature distributions in the liquid bridge can be detected. The axial magnetic fields suppress the thermocapillary convection and a stagnant flow zone is formed between the circulating flow and the symmetric axis as the magnetic fields increase. The axial magnetic fields affect not only the velocity level inside the liquid bridge but also the velocity level on the free surface. The temperature contours near the free surface illustrates conduction-type temperature profiles at moderate strength fields.

  16. Individual particle motion and the effect of scattering in an axially symmetric magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Garren, A; Riddell, R J; Smith, L; Henrich, L R [Radiation Laboratory, University of California, Berkeley, CA (United States); Bing, G; Northrop, T G; Roberts, J E [Radiation Laboratory, University of California, Livermore, CA (United States)

    1958-07-01

    The possibility of confining charged particles with magnetic mirrors has long been recognized. A mirror field has axial symmetry and a magnitude that increases along the axis away from a central region in which the particles are to be contained. Heretofore, the likelihood of confinement has been based on the approximate invariance of the magnetic moment as described by Alfven. If the magnetic moment of a particle with given energy is too small the particle escapes axially through the mirror. The moment can become small because it is not a rigorous constant of the motion or because of Coulomb scattering of the particle. Both these effects have been studied; the first by analytic and numerical methods and the second by numerical solution of the Fokker- Planck equation.

  17. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  18. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  19. HTS axial flux induction motor with analytic and FEA modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, S., E-mail: alexlee.zn@gmail.com; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-11-15

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested.

  20. HTS axial flux induction motor with analytic and FEA modeling

    International Nuclear Information System (INIS)

    Li, S.; Fan, Y.; Fang, J.; Qin, W.; Lv, G.; Li, J.H.

    2013-01-01

    Highlights: •A high temperature superconductor axial flux induction motor and a novel maglev scheme are presented. •Analytic method and finite element method have been adopted to model the motor and to calculate the force. •Magnetic field distribution in HTS coil is calculated by analytic method. •An effective method to improve the critical current of HTS coil is presented. •AC losses of HTS coils in the HTS axial flux induction motor are estimated and tested. -- Abstract: This paper presents a high-temperature superconductor (HTS) axial-flux induction motor, which can output levitation force and torque simultaneously. In order to analyze the character of the force, analytic method and finite element method are adopted to model the motor. To make sure the HTS can carry sufficiently large current and work well, the magnetic field distribution in HTS coil is calculated. An effective method to improve the critical current of HTS coil is presented. Then, AC losses in HTS windings in the motor are estimated and tested

  1. A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth

    Science.gov (United States)

    Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.

    2018-04-01

    A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).

  2. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    Science.gov (United States)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  3. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  4. Classically integrable boundary conditions for symmetric-space sigma models

    International Nuclear Information System (INIS)

    MacKay, N.J.; Young, C.A.S.

    2004-01-01

    We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model

  5. Influence of heat and chemical reactions on the Sisko fluid model for ...

    African Journals Online (AJOL)

    The present article studies the effects of heat and chemical reactions on the blood flow through tapered artery with a stenosis. The model incorporates Sisko fluid representation for the blood flow through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and ...

  6. Extended Hamiltonian formalism of the pure space-like axial gauge Schwinger model

    International Nuclear Information System (INIS)

    Nakawaki, Yuji; Mccartor, Gary

    2001-01-01

    We demonstrate that pure space-like axial gauge quantizations of gauge fields can be constructed in ways that are free from infrared divergences. To do so, we must extend the Hamiltonian formalism to include residual gauge fields. We construct an operator solution and an extended Hamiltonian of the pure space-like axial gauge Schwinger model. We begin by constructing an axial gauge formation in auxiliary coordinates, x μ =(x + , x - ), where x + =x 0 sinθ + x 1 cosθ, x - =x 0 cosθ - x 1 sinθ, and we take A=A 0 cosθ + A 1 sin θ=0 as the gauge fixing condition. In the region 0 - as the evolution parameter and construct a traditional canonical formulation of the temporal gauge Schwinger model in which residual gauge fields dependent only on x + are static canonical variables. Then we extrapolate the temporal gauge operator solution into the axial region, π / 4 + is taken as the evolution parameter. In the axial region we find that we have to take the representation of the residual gauge fields realizing the Mandelstam-Leibbrandt prescription in order for the infrared divergences resulting from (∂) -1 to be canceled by corresponding ones resulting from the inverse of the hyperbolic Laplace operator. We overcome the difficulty of constructing the Hamiltonian for the residual gauge fields by employing McCartor and Robertson's method, which gives us a term integrated over x - =constant. Finally, by taking the limit θ→π / 2 - 0, we obtain an operator solution and the Hamiltonian of the axial gauge (Coulomb gauge) Schwinger model in ordinary coordinates. That solution includes auxiliary fields, and the representation space is of indefinite metric, providing further evidence that 'physical' gauges are no more physical than 'unphysical' gauges. (author)

  7. Time-symmetric universe model and its observational implication

    Energy Technology Data Exchange (ETDEWEB)

    Futamase, T.; Matsuda, T.

    1987-08-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. We consider the observational consequences of such advanced waves, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase.

  8. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    Science.gov (United States)

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  9. Axial geometrical aberration correction up to 5th order with N-SYLC.

    Science.gov (United States)

    Hoque, Shahedul; Ito, Hiroyuki; Takaoka, Akio; Nishi, Ryuji

    2017-11-01

    We present N-SYLC (N-fold symmetric line currents) models to correct 5th order axial geometrical aberrations in electron microscopes. In our previous paper, we showed that 3rd order spherical aberration can be corrected by 3-SYLC doublet. After that, mainly the 5th order aberrations remain to limit the resolution. In this paper, we extend the doublet to quadruplet models also including octupole and dodecapole fields for correcting these higher order aberrations, without introducing any new unwanted ones. We prove the validity of our models by analytical calculations. Also by computer simulations, we show that for beam energy of 5keV and initial angle 10mrad at the corrector object plane, beam size of less than 0.5nm is achieved at the corrector image plane. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    International Nuclear Information System (INIS)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-01-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2. (paper)

  11. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    Science.gov (United States)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-04-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2.

  12. Time-invariant PT product and phase locking in PT -symmetric lattice models

    Science.gov (United States)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  13. On the equivalence between the Schwinger and axial models

    International Nuclear Information System (INIS)

    Souza Dutra, A. de.

    1991-01-01

    We show the equivalence between the Schwinger and axial models, in the sense that all Green's functions of one model can be obtained from those of the other, and that both models have the same effective Lagrangian density (and so they have equal partition functions associated with them). In particular, we show that the two models have the same chiral anomaly. Finally it is demonstrated that the Schwinger model can keep gauge invariance for an arbitrary mass, dispensing with an additional gauge group integration. (author)

  14. Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling

    Science.gov (United States)

    Gupta, Sunit K.; Wahi, Pankaj

    2018-01-01

    We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.

  15. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  16. Model-based analysis and control of axial and torsional stick-slip oscillations in drilling systems

    NARCIS (Netherlands)

    Besselink, B.; Wouw, van de N.; Nijmeijer, H.

    2011-01-01

    The mechanisms leading to torsional vibrations in drilling systems are considered in this paper. Thereto, a drill string model of the axial and torsional dynamics is proposed, where coupling is provided by a rate-independent bit-rock interaction law. Analysis of this model shows that the fast axial

  17. Propagation of Axially Symmetric Detonation Waves

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R L; Roeske, F; Souers, P C; Tarver, C M; Chow, C T S; Lee, R S; McGuire, E M; Overturf, G E; Vitello, P A

    2002-06-26

    We have studied the non-ideal propagation of detonation waves in LX-10 and in the insensitive explosive TATB. Explosively-driven, 5.8-mm-diameter, 0.125-mm-thick aluminum flyer plates were used to initiate 38-mm-diameter, hemispherical samples of LX-10 pressed to a density of 1.86 g/cm{sup 3} and of TATB at a density of 1.80 g/cm{sup 3}. The TATB powder was a grade called ultrafine (UFTATB), having an arithmetic mean particle diameter of about 8-10 {micro}m and a specific surface area of about 4.5 m{sup 2}/g. Using PMMA as a transducer, output pressure was measured at 5 discrete points on the booster using a Fabry-Perot velocimeter. Breakout time was measured on a line across the booster with a streak camera. Each of the experimental geometries was calculated using the Ignition and Growth Reactive Flow Model, the JWL++ Model and the Programmed Burn Model. Boosters at both ambient and cold (-20 C and -54 C) temperatures have been experimentally and computationally studied. A comparison of experimental and modeling results is presented.

  18. Republication of: New solutions to Einstein's equations of gravitation. B. Explicit determination of static, axially symmetric fields. By Rudolf Bach. With a supplement on the static two-body problem. By H. Weyl.

    Science.gov (United States)

    Bach, Rudolf; Weyl, Hermann

    2012-03-01

    This is the English translation of the third of a series of 3 papers by Hermann Weyl (the third one jointly with Rudolf Bach), first published in 1917-1922, in which the authors derived and discussed the now-famous Weyl two-body static axially symmetric vacuum solution of Einstein's equations. The English translations of the other two papers are published alongside this one. The papers have been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by Gernot Neugebauer, David Petroff and Bahram Mashhoon, and by a brief biography of R. Bach, written by H. Goenner.

  19. Resource Symmetric Dispatch Model for Internet of Things on Advanced Logistics

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2016-04-01

    Full Text Available Business applications in advanced logistics service are highly concurrent. In this paper, we propose a resource symmetric dispatch model for the concurrent and cooperative tasks of the Internet of Things. In the model, the terminals receive and deliver commands, data, and information with mobile networks, wireless networks, and sensor networks. The data and information are classified and processed by the clustering servers in the cloud service platform. The cluster service, resource dispatch, and load balance are cooperative for management and monitoring of every application case during the logistics service lifecycle. In order to support the high performance of cloud service, resource symmetric dispatch algorithm among clustering servers and load balancing method among multi-cores in one server, including NIO (Non-blocking Input/Output and RMI (Remote Method Invocation are utilized to dispatch the cooperation of computation and service resources.

  20. Metamorphosis of helical magnetorotational instability in the presence of axial electric current.

    Science.gov (United States)

    Priede, Jānis

    2015-03-01

    This paper presents numerical linear stability analysis of a cylindrical Taylor-Couette flow of liquid metal carrying axial electric current in a generally helical external magnetic field. Axially symmetric disturbances are considered in the inductionless approximation corresponding to zero magnetic Prandtl number. Axial symmetry allows us to reveal an entirely new electromagnetic instability. First, we show that the electric current passing through the liquid can extend the range of helical magnetorotational instability (HMRI) indefinitely by transforming it into a purely electromagnetic instability. Two different electromagnetic instability mechanisms are identified. The first is an internal pinch-type instability, which is due to the interaction of the electric current with its own magnetic field. Axisymmetric mode of this instability requires a free-space component of the azimuthal magnetic field. When the azimuthal component of the magnetic field is purely rotational and the axial component is nonzero, a new kind of electromagnetic instability emerges. The latter, driven by the interaction of electric current with a weak collinear magnetic field in a quiescent fluid, gives rise to a steady meridional circulation coupled with azimuthal rotation.

  1. Phenomenological model for coupled multi-axial piezoelectricity

    Science.gov (United States)

    Wei, Yuchen; Pellegrino, Sergio

    2018-03-01

    A quantitative calibration of an existing phenomenological model for polycrystalline ferroelectric ceramics is presented. The model relies on remnant strain and polarization as independent variables. Innovative experimental and numerical model identification procedures are developed for the characterization of the coupled electro-mechanical, multi-axial nonlinear constitutive law. Experiments were conducted on thin PZT-5A4E plates subjected to cross-thickness electric field. Unimorph structures with different thickness ratios between PZT-5A4E plate and substrate were tested, to subject the piezo plates to coupled electro-mechanical fields. Material state histories in electric field-strain-polarization space and stress-strain-polarization space were recorded. An optimization procedure is employed for the determination of the model parameters, and the calibrated constitutive law predicts both the uncoupled and coupled experimental observations accurately.

  2. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  3. Isomorphism and the #betta#-function of the non-linear sigma model in symmetric spaces

    International Nuclear Information System (INIS)

    Hikami, S.

    1983-01-01

    The renormalization group #betta#-function of the non-linear sigma model in symmetric spaces is discussed via the isomorphic relation and the reciprocal relation about a parameter α. The four-loop term is investigated and the symmetric properties of the #betta#-function are studied. The four-loop term in the #betta#-function is shown to be vanishing for the orthogonal Anderson localization problem. (orig.)

  4. A time-symmetric Universe model and its observational implication

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1987-01-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. The observational consequences of such advanced waves are considered, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase

  5. Two-photon anisotropy: Analytical description and molecular modeling for symmetrical and asymmetrical organic dyes

    International Nuclear Information System (INIS)

    Fu Jie; Przhonska, Olga V.; Padilha, Lazaro A.; Hagan, David J.; Van Stryland, Eric W.; Belfield, Kevin D.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2006-01-01

    One- and two-photon anisotropy spectra of a series of symmetrical and asymmetrical polymethine (PD) and fluorene molecules were measured experimentally and discussed theoretically within the framework of three-state and four-state models. For all the molecules discussed in this paper, the experimental two-photon anisotropy values, r 2PA , lie in the relatively narrow range from 0.47 to 0.57 and remain almost independent of wavelength over at least two electronic transitions. This is in contrast with their one-photon anisotropy, which shows strong wavelength dependence, typically varying from ∼0 to 0.38 over the same transitions. A detailed analysis of the two-photon absorption (2PA) processes allows us to conclude that a three-state model can explain the 2PA anisotropy spectra of most asymmetrical PDs and fluorenes. However, this model is inadequate for all the symmetrical molecules. Experimental values of r 2PA for symmetrical polymethines and fluorenes can be explained by symmetry breaking leading to the deviation of the orientation of the participating transition dipole moments from their 'classical' orientations

  6. The gravitational potential of axially symmetric bodies from a regularized green kernel

    Science.gov (United States)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  7. Spherically symmetric Einstein-aether perfect fluid models

    Energy Technology Data Exchange (ETDEWEB)

    Coley, Alan A.; Latta, Joey [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Sandin, Patrik, E-mail: aac@mathstat.dal.ca, E-mail: genly.leon@ucv.cl, E-mail: patrik.sandin@aei.mpg.de, E-mail: lattaj@mathstat.dal.ca [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-12-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.

  8. Plane symmetric cosmological model with thick domain walls in Brans-Dicke theory of gravitation

    International Nuclear Information System (INIS)

    Pawar, D.; Bayaskar, S.; Patil, V.

    2009-01-01

    We have investigated plane symmetric cosmological model in presence of thick domain walls in Brans-Dicke theory of gravitation, some geometrical and physical behavior of the model are discussed. (authors)

  9. Neutrino masses and leptogenesis in left-right symmetric models: a review from a model building perspective

    Science.gov (United States)

    Hati, Chandan; Patra, Sudhanwa; Pritimita, Prativa; Sarkar, Utpal

    2018-03-01

    In this review, we present several variants of left-right symmetric models in the context of neutrino masses and leptogenesis. In particular, we discuss various low scale seesaw mechanisms like linear seesaw, inverse seesaw, extended seesaw and their implications to lepton number violating process like neutrinoless double beta decay. We also visit an alternative framework of left-right models with the inclusion of vector-like fermions to analyze the aspects of universal seesaw. The symmetry breaking of left-right symmetric model around few TeV scale predicts the existence of massive right-handed gauge bosons W_R and Z_R which might be detected at the LHC in near future. If such signals are detected at the LHC that can have severe implications for leptogenesis, a mechanism to explain the observed baryon asymmetry of the Universe. We review the implications of TeV scale left-right symmetry breaking for leptogenesis.

  10. The Modelling of Axially Translating Flexible Beams

    Science.gov (United States)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  11. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations......-Raphson method, andsolutions converged to machine accuracy are found at small computing costs.The model has been validated against published measurementson various fan configurations,comprising two rotor-only fan stages, a counter-rotatingfan unit and a stator-rotor-stator stage.Comparisons of local...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...

  12. Analytical prediction model for non-symmetric fatigue crack growth in Fibre Metal Laminates

    NARCIS (Netherlands)

    Wang, W.; Rans, C.D.; Benedictus, R.

    2017-01-01

    This paper proposes an analytical model for predicting the non-symmetric crack growth and accompanying delamination growth in FMLs. The general approach of this model applies Linear Elastic Fracture Mechanics, the principle of superposition, and displacement compatibility based on the

  13. Spherical aberration correction with an in-lens N-fold symmetric line currents model.

    Science.gov (United States)

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji

    2018-04-01

    In our previous works, we have proposed N-SYLC (N-fold symmetric line currents) models for aberration correction. In this paper, we propose "in-lens N-SYLC" model, where N-SYLC overlaps rotationally symmetric lens. Such overlap is possible because N-SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC (N = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Triplet leptogenesis in left–right symmetric seesaw models

    International Nuclear Information System (INIS)

    Hällgren, Tomas; Konstandin, Thomas; Ohlsson, Tommy

    2008-01-01

    We discuss scalar triplet leptogenesis in a specific left–right symmetric seesaw model. We show that the Majorana phases that are present in the model can be effectively used to saturate the existing upper limit on the CP-asymmetry of the triplets. We solve the relevant Boltzmann equations and analyze the viability of triplet leptogenesis. It is known for this kind of scenario that the efficiency of leptogenesis is maximal if there exists a hierarchy between the branching ratios of the triplet decays into leptons and Higgs particles. We show that triplet leptogenesis typically favors branching ratios with not too strong hierarchies, since maximal efficiency can only be obtained at the expense of suppressed CP-asymmetries

  15. Effect of an axially-symmetric cyclonic vortex on the sea surface temperature in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, E.E.; Mendoza, V.M.; Adem, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: eevu@atmosfera.unam.mx

    2006-04-15

    A model for the mixed layer of the Gulf of Mexico has been used to determine the effect that an idealized cyclonic vortex has in the sea surface temperature. The model consists of the equations of conservation of thermal energy and this of balance between mechanical energy and thermal energy, last based on the Kraus-Turner theory; both equations are vertically integrated in the mixed layer. As atmospheric forcing, we prescribe the surface wind associated with an axially-symmetric cyclonic vortex characterized by two parameters: the maximum tangential velocity and the radius at which that velocity is reached. The values of these two parameters, which depend on the position of the vortex, correspond to two cases: hurricane Hilda, which crossed the central part of the Gulf of Mexico between September 29 and October 3, 1964 and hurricane Gilbert whose trajectory between 11 and 17 September, 1988 crossed the Caribbean Sea, the Yucatan Peninsula and the southwest Gulf of Mexico. The results show that a cyclonic vortex with such characteristics, produce during its passage by the sea vertical turbulent water transport through the thermocline (entrainment) that is able to cool down the mixed layer in several degrees and increases the thermocline depth in several meters, in agreement with the observations. [Spanish] Se aplica un modelo de capa de mezcla para el Golfo de Mexico con el objeto de determinar el efecto de un vortice ciclonico idealizado sobre la temperatura de la superficie del mar. El modelo consiste basicamente de dos ecuaciones, la de conservacion de energia termica y la de balance entre energia mecanica y energia termica, esta ultima derivada de la teoria de Kraus-Turner; ambas ecuaciones son verticalmente integradas y acopladas en la capa de mezcla. Como forzamiento atmosferico sobre la superficie del mar se prescribe el viento asociado a un vortice ciclonico axialmente simetrico caracterizado por dos parametros: la velocidad tangencial maxima y el radio al

  16. Ultraviolet and infrared aspects of the axial anomaly. I

    International Nuclear Information System (INIS)

    Horejsi, J.

    1992-01-01

    The paper is the first part of a brief review of some perturbative aspects of the Adler-Bell-Jackiw axial anomaly, described in terms of ultraviolet and infrared behavior of the famous VVA triangle graph. Apart from a general overview of the diversified role played by the anomaly in quantum field theory and particle physics, an elementary introduction is presented to the subject of the anomaly, comprehensible to an uninitiated reader with only a basic background in quantum field theory. The ultraviolet aspects of the anomaly are stressed and the topics covered are the following: vector and axial-vector Ward identities for the VVA triangle graph; the anomaly and several ways to derive it, namely the symmetric momentum cut-off and shifting the integration variables in linearly divergent integrals; the Adler-Rosenberg argument; the Pauli-Villars method; and dimensional regularization. (author) 2 figs., 34 refs

  17. Heterotic free fermionic and symmetric toroidal orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Athanasopoulos, P.; Faraggi, A.E. [Department of Mathematical Sciences, University of Liverpool,Liverpool L69 7ZL (United Kingdom); Nibbelink, S. Groot [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,80333 München (Germany); Mehta, V.M. [Institute for Theoretical Physics, University of Heidelberg,69120 Heidelberg (Germany)

    2016-04-07

    Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for ℤ{sub 2}×ℤ{sub 2} orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: we give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all ℤ{sub 2}×ℤ{sub 2} orbifold geometries in six dimensions.

  18. Cotangent bundles over all the Hermitian symmetric spaces

    International Nuclear Information System (INIS)

    Arai, Masato; Baba, Kurando

    2016-01-01

    We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. In order to construct them we use the projective superspace formalism which is an N = 2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N =1 superfields, once the Kähler potentials of the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric models by using the projective superspace formalism and derive the general formula for the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We apply to the formula for the non-compact Hermitian symmetric space E 7 /E 6 × U(1) 1 . (paper)

  19. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  20. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.; Zhang, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, D.H. [Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Z., E-mail: zhe.zhang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-06-15

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ{sub x} did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ{sub xa}. For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ{sub xa} and the internal pressure p{sub i}. The hoop ratcheting strain ɛ{sub θ} increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ{sub x} was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  1. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure

    International Nuclear Information System (INIS)

    Chen, G.; Zhang, X.; Xu, D.K.; Li, D.H.; Chen, X.; Zhang, Z.

    2017-01-01

    In this study, a series of uniaxial and multiaxial ratcheting tests were conducted at room temperature on zirconium alloy tubes. The experimental results showed that for uniaxial symmetrical cyclic test, the axial ratcheting strain ɛ x did not accumulate obviously in initial stage, but gradually increased up to 1% with increasing stress amplitude σ xa . For multiaxial ratcheting tests, the zirconium alloy tube was highly sensitive to both the axial stress amplitude σ xa and the internal pressure p i . The hoop ratcheting strain ɛ θ increased continuously with the increase of axial stress amplitude, whereas the evolution of axial ratcheting strain ɛ x was related to the axial stress amplitude. The internal pressure restricted the ratcheting accumulation in the axial direction, but promoted the hoop ratcheting strain on the contrary. The prior loading history greatly restrained the ratcheting behavior of subsequent cycling with a small internal pressure. - Highlights: •Uniaxial and multiaxial ratcheting behavior of the zirconium alloy tubes are investigated at room temperature. •The ratcheting depends greatly on the stress amplitude or internal pressure. •The interaction between the axial and hoop ratcheting mechanisms is greatly dependent on the internal pressure level. •The ratcheting is influenced significantly by the loading history of internal pressure.

  2. On the Decay of Correlations in Non-Analytic SO(n)-Symmetric Models

    Science.gov (United States)

    Naddaf, Ali

    We extend the method of complex translations which was originally employed by McBryan-Spencer [2] to obtain a decay rate for the two point function in two-dimensional SO(n)-symmetric models with non-analytic Hamiltonians for $.

  3. Optimization of inverse model identification for multi-axial test rig control

    Directory of Open Access Journals (Sweden)

    Müller Tino

    2016-01-01

    Full Text Available Laboratory testing of multi-axial fatigue situations improves repeatability and allows a time condensing of tests which can be carried out until component failure, compared to field testing. To achieve realistic and convincing durability results, precise load data reconstruction is necessary. Cross-talk and a high number of degrees of freedom negatively affect the control accuracy. Therefore a multiple input/multiple output (MIMO model of the system, capturing all inherent cross-couplings is identified. In a first step the model order is estimated based on the physical fundamentals of a one channel hydraulic-servo system. Subsequently, the structure of the MIMO model is optimized using correlation of the outputs, to increase control stability and reduce complexity of the parameter optimization. The identification process is successfully applied to the iterative control of a multi-axial suspension rig. The results show accurate control, with increased stability compared to control without structure optimization.

  4. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  5. Resource Symmetric Dispatch Model for Internet of Things on Advanced Logistics

    OpenAIRE

    Guofeng Qin; Lisheng Wang; Qiyan Li

    2016-01-01

    Business applications in advanced logistics service are highly concurrent. In this paper, we propose a resource symmetric dispatch model for the concurrent and cooperative tasks of the Internet of Things. In the model, the terminals receive and deliver commands, data, and information with mobile networks, wireless networks, and sensor networks. The data and information are classified and processed by the clustering servers in the cloud service platform. The cluster service, resource dispatch,...

  6. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.

    Science.gov (United States)

    Fathallah, F A; Marras, W S; Parnianpour, M

    1999-09-01

    Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.

  7. Analysis of axially symmetric wire antennas by the use of exact kernel of electric field integral equation

    Directory of Open Access Journals (Sweden)

    Krneta Aleksandra J.

    2016-01-01

    Full Text Available The paper presents a new method for the analysis of wire antennas with axial symmetry. Truncated cones have been applied to precisely model antenna geometry, while the exact kernel of the electric field integral equation has been used for computation. Accuracy and efficiency of the method has been further increased by the use of higher order basis functions for current expansion, and by selecting integration methods based on singularity cancelation techniques for the calculation of potential and impedance integrals. The method has been applied to the analysis of a typical dipole antenna, thick dipole antenna and a coaxial line. The obtained results verify the high accuracy of the method. [Projekat Ministarstva nauke Republike Srbije, br. TR-32005

  8. Aerodynamic modelling and optimization of axial fans

    Energy Technology Data Exchange (ETDEWEB)

    Noertoft Soerensen, Dan

    1998-01-01

    A numerically efficient mathematical model for the aerodynamics of low speed axial fans of the arbitrary vortex flow type has been developed. The model is based on a blade-element principle, whereby the rotor is divided into a number of annular stream tubes. For each of these stream tubes relations for velocity, pressure and radial position are derived from the conservation laws for mass, tangential momentum and energy. The equations are solved using the Newton-Raphson methods, and solutions converged to machine accuracy are found at small computing costs. The model has been validated against published measurements on various fan configurations, comprising two rotor-only fan stages, a counter-rotating fan unit and a stator-rotor stator stage. Comparisons of local and integrated properties show that the computed results agree well with the measurements. Optimizations have been performed to maximize the mean value of fan efficiency in a design interval of flow rates, thus designing a fan which operates well over a range of different flow conditions. The optimization scheme was used to investigate the dependence of maximum efficiency on 1: the number of blades, 2: the width of the design interval and 3: the hub radius. The degree of freedom in the choice of design variable and constraints, combined with the design interval concept, provides a valuable design-tool for axial fans. To further investigate the use of design optimization, a model for the vortex shedding noise from the trailing edge of the blades has been incorporated into the optimization scheme. The noise emission from the blades was minimized in a flow rate design point. Optimizations were performed to investigate the dependence of the noise on 1: the number of blades, 2: a constraint imposed on efficiency and 3: the hub radius. The investigations showed, that a significant reduction of noise could be achieved, at the expense of a small reduction in fan efficiency. (EG) 66 refs.

  9. Invariant Imbedding T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    Science.gov (United States)

    Pelissier, C.; Clune, T.; Kuo, K. S.; Munchak, S. J.; Adams, I. S.

    2017-12-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM & IITM+SOV software to the community under an open source license.

  10. Non-material finite element modelling of large vibrations of axially moving strings and beams

    Science.gov (United States)

    Vetyukov, Yury

    2018-02-01

    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  11. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  12. Superfield Lax formalism of supersymmetric sigma model on symmetric spaces

    International Nuclear Information System (INIS)

    Saleem, U.; Hassan, M.

    2006-01-01

    We present a superfield Lax formalism of the superspace sigma model based on the target space G/H and show that a one-parameter family of flat superfield connections exists if the target space G/H is a symmetric space. The formalism has been related to the existence of an infinite family of local and non-local superfield conserved quantities. A few examples have been given to illustrate the results. (orig.)

  13. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    Science.gov (United States)

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  14. Non-coaxial-based microwave ablation antennas for creating symmetric and asymmetric coagulation zones

    Science.gov (United States)

    Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader

    2018-06-01

    We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.

  15. Flavor-singlet axial-vector current in quark model within background field

    International Nuclear Information System (INIS)

    Chen Kun; Yan Mulin

    1993-01-01

    The flavor-singlet axial-vector current is calculated in a quark model within pseudoscalar background-field through the Seeley-DeWitt coefficients. This current is responsible for the quark spin content of proton and is of O(1) in the large-N e expansion

  16. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  17. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  18. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    Brasnarof, Daniel; Kyung Kyu-Hyung; Rivarola, Martin; Gonzalez Jose; Florido, Pablo; Orellano, Pablo; Bergallo, Juan

    2003-01-01

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  19. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...

  20. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the ...

  1. Dai Omega, a large solid angle axial focusing superconducting surface muon channel

    International Nuclear Information System (INIS)

    Miyadera, H.; Nagamine, K.; Shimomura, K.; Nishiyama, K.; Tanaka, H.; Fukuchi, K.; Makimura, S.; Ishida, K.

    2003-01-01

    An axial focusing surface muon channel, Dai Omega, was installed at KEK-MSL in the summer of 2001. Large aperture superconducting coils are utilized instead of quadrupole magnets. Dai Omega adopts an axial focusing beam path using symmetric magnetic fields from four coils. Computer simulations were performed on constructing Dai Omega, and the calculated solid angle acceptance of Dai Omega was larger than 1 sr at the optimum momentum. The momentum acceptance of Dai Omega was 6% FWHM. Dai Omega improved the solid angle acceptance by almost 20 times, in comparison with conventional muon channels. Beam tuning tests of Dai Omega have been carried out, and a beam intensity of 10 6 μ + /s was achieved at KEK-NML (500 MeV, 5 μA), which was almost comparable with that of RAL (800 MeV, 200 μA)

  2. Model for transversal turbulent mixing in axial flow in rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.

    1990-01-01

    The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)

  3. Axial turbomachine modelling with a 1D axisymmetric approach

    International Nuclear Information System (INIS)

    Tauveron, Nicolas; Saez, Manuel; Ferrand, Pascal; Leboeuf, Francis

    2007-01-01

    This work concerns the design and safety analysis of direct cycle gas cooled reactor. The estimation of compressor and turbine performances in transient operations is of high importance for the designer. The first goal of this study is to provide a description of compressor behaviour in unstable conditions with a better understanding than the models based on performance maps ('traditional' 0D approach). A supplementary objective is to provide a coherent description of the turbine behaviour. The turbomachine modelling approach consists in the solution of 1D axisymmetric Navier-Stokes equations on an axial grid inside the turbomachine: mass, axial momentum, circumferential momentum and total-enthalpy balances are written. Blade forces are taken into account by using compressor or turbine blade cascade steady correlations. A particular effort has been developed to generate or test correlations in low mass flow and negative mass flow regimes, based on experimental data. The model is tested on open literature cases of the gas turbine aircraft community. For compressor and turbine, steady situations are fairly described, especially for medium and high mass flow rate. The dynamic behaviour of compressor is also quite well described, even in unstable operation (surge): qualitative tendencies (role of plenum volume and role of throttle) and some quantitative characteristics (frequency) are in a good agreement with experimental data. The application to transient simulations of gas cooled nuclear reactors is concentrated on the hypothetical 10 in. break accident. The results point out the importance of the location of the pipe rupture in a hypothetical break event. In some detailed cases, compressor surge and back flow through the circuit can occur. In order to be used in a design phase, a simplified model of surge has also been developed. This simplified model is applied to the gas fast reactor (GFR) and compared quite favourably with 1D axisymmetric simulation results

  4. Simplifying numerical ray tracing for two-dimensional non circularly symmetric models of the human eye.

    Science.gov (United States)

    Jesus, Danilo A; Iskander, D Robert

    2015-12-01

    Ray tracing is a powerful technique to understand the light behavior through an intricate optical system such as that of a human eye. The prediction of visual acuity can be achieved through characteristics of an optical system such as the geometrical point spread function. In general, its precision depends on the number of discrete rays and the accurate surface representation of each eye's components. Recently, a method that simplifies calculation of the geometrical point spread function has been proposed for circularly symmetric systems [Appl. Opt.53, 4784 (2014)]. An extension of this method to 2D noncircularly symmetric systems is proposed. In this method, a two-dimensional ray tracing procedure for an arbitrary number of surfaces and arbitrary surface shapes has been developed where surfaces, rays, and refractive indices are all represented in functional forms being approximated by Chebyshev polynomials. The Liou and Brennan anatomically accurate eye model has been adapted and used for evaluating the method. Further, real measurements of the anterior corneal surface of normal, astigmatic, and keratoconic eyes were substituted for the first surface in the model. The results have shown that performing ray tracing, utilizing the two-dimensional Chebyshev function approximation, is possible for noncircularly symmetric models, and that such calculation can be performed with a newly created Chebfun toolbox.

  5. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  6. An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero-Sutherland Models

    Directory of Open Access Journals (Sweden)

    Martin Hallnäs

    2007-03-01

    Full Text Available We review a recent construction of an explicit analytic series representation for symmetric polynomials which up to a groundstate factor are eigenfunctions of Calogero-Sutherland type models. We also indicate a generalisation of this result to polynomials which give the eigenfunctions of so-called 'deformed' Calogero-Sutherland type models.

  7. An analytical drain current model for symmetric double-gate MOSFETs

    Science.gov (United States)

    Yu, Fei; Huang, Gongyi; Lin, Wei; Xu, Chuanzhong

    2018-04-01

    An analytical surface-potential-based drain current model of symmetric double-gate (sDG) MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson's equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson's equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.

  8. Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation.

    Science.gov (United States)

    Sahmani, S; Fattahi, A M

    2017-08-01

    New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ultrafast, superhigh gain visible-blind UV detector and optical logic gates based on nonpolar a-axial GaN nanowire

    Science.gov (United States)

    Wang, Xingfu; Zhang, Yong; Chen, Xinman; He, Miao; Liu, Chao; Yin, Yian; Zou, Xianshao; Li, Shuti

    2014-09-01

    Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (memory storage.Nonpolar a-axial GaN nanowire (NW) was first used to construct the MSM (metal-semiconductor-metal) symmetrical Schottky contact device for application as visible-blind ultraviolet (UV) detector. Without any surface or composition modifications, the fabricated device demonstrated a superior performance through a combination of its high sensitivity (up to 104 A W-1) and EQE value (up to 105), as well as ultrafast (memory storage. Electronic supplementary information (ESI) available: Details of the EDS and SAED data, supplementary results of the UV detector, and the discussion of the transport properties of the MSM Schottky contact devices. See DOI: 10.1039/c4nr03581j

  10. Caustic ring model of the Milky Way halo

    International Nuclear Information System (INIS)

    Duffy, L. D.; Sikivie, P.

    2008-01-01

    We present a proposal for the full phase-space distribution of the Milky Way halo. The model is axially and reflection symmetric and its time evolution is self-similar. It describes the halo as a set of discrete dark matter flows with stated densities and velocity vectors everywhere. We first discuss the general conditions under which the time evolution of a cold collisionless self-gravitating fluid is self-similar, and show that symmetry is not necessary for self-similarity. When spherical symmetry is imposed, the model is the same as described by Fillmore and Goldreich, and by Bertschinger, twenty-three years ago. The spherically symmetric model depends on one dimensionless parameter ε and two dimensionful parameters. We set ε=0.3, a value consistent with the slope of the power spectrum of density perturbations on galactic scales. The dimensionful parameters are determined by the galactic rotation velocity (220 km/s) at the position of the Sun and by the age of the Galaxy (13.7 Gyr). The properties of the outer caustics are derived in the spherically symmetric model. The structure of the inner halo depends on the angular momentum distribution of the dark matter particles. We assume that distribution to be axial and reflection symmetric, and dominated by net overall rotation. The inner caustics are rings whose radii are determined in terms of a single additional parameter j max . We summarize the observational evidence in support of the model. The evidence is consistent with j max =0.18 in Concordance cosmology, equivalent to j max,old =0.26 in Einstein-de Sitter cosmology. We give formulas to estimate the flow densities and velocity vectors anywhere in the Milky Way halo. The properties of the first 40 flows at the location of the Earth are listed.

  11. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  12. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    International Nuclear Information System (INIS)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S.

    2010-01-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  13. Characterization of axially-symmetric magnetic elds

    CERN Document Server

    AUTHOR|(CDS)2087237; Buzio, Marco

    In solenoids for particle accelerators, the magnetic field is usually mapped by means of 3D Hall-sensing systems through a burdensome and costly procedure. A further problem arises from a coherent treatment between the beam physics requirements, the qualification of numerical models, the design and manufacturing of the magnet, and the magnetic measurements. For example, when the magnet is misaligned with respect to the longitudinal direction of the mapper, the fringe field shows spurious components. A method was therefore developed for measuring the magnetic field of axisymmetric magnets by exploiting their inherent symmetry. The method yields a measurement of the magnetic flux linked with a pair of sensing coils as a function of their longitudinal position. An induction transducer, sensitive to the longitudinal and radial components of the solenoid under test, has been designed and constructed. A transport system moves the transducer along the magnet axis, covering the full length of the magnet and including...

  14. Crossing-symmetric solutions to low equations

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1985-01-01

    Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)

  15. Symmetric metamaterials based on flower-shaped structure

    International Nuclear Information System (INIS)

    Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.

    2013-01-01

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave

  16. Molecular Dynamics Modeling of the Effect of Axial and Transverse Compression on the Residual Tensile Properties of Ballistic Fiber

    Directory of Open Access Journals (Sweden)

    Sanjib C. Chowdhury

    2017-02-01

    Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.

  17. An Incidence Loss Model for Wave Rotors with Axially Aligned Passages

    Science.gov (United States)

    Paxson, Daniel E.

    1998-01-01

    A simple mathematical model is described to account for the losses incurred when the flow in the duct (port) of a wave rotor is not aligned with the passages. The model, specifically for wave rotors with axially aligned passages, describes a loss mechanism which is sensitive to incident flow angle and Mach number. Implementation of the model in a one-dimensional CFD based wave rotor simulation is presented. Comparisons with limited experimental results are consistent with the model. Sensitivity studies are presented which highlight the significance of the incidence loss relative to other loss mechanisms in the wave rotor.

  18. An analytical drain current model for symmetric double-gate MOSFETs

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2018-04-01

    Full Text Available An analytical surface-potential-based drain current model of symmetric double-gate (sDG MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson’s equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson’s equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.

  19. Quantum chaos in the two-center shell model

    Energy Technology Data Exchange (ETDEWEB)

    Milek, B; Noerenberg, W; Rozmej, P [Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.)

    1989-11-01

    Within an axially symmetric two-center shell model single-particle levels with {Omega}=1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos. (orig.).

  20. Quantum chaos in the two-center shell model

    Energy Technology Data Exchange (ETDEWEB)

    Milek, B; Noerenberg, W; Rozmej, P

    1989-03-01

    Within an axially symmetric two-center shell model single-particle levels with ..cap omega.. = 1/2 are analyzed with respect to their level-spacing distributions and avoided level crossings as functions of the shape parameters. Only for shapes sufficiently far from any additional symmetry, ideal Wigner distributions are found as signature for quantum chaos.

  1. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  2. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  3. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  4. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  5. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, Jan-Erik, E-mail: janerikscholtz@gmail.com; Wichmann, Julian L.; Kaup, Moritz; Fischer, Sebastian; Kerl, J. Matthias; Lehnert, Thomas; Vogl, Thomas J.; Bauer, Ralf W.

    2015-03-15

    Highlights: •Automatic segmentation and labeling of the thoracolumbar spine. •Automatically generated double-angulated and aligned axial images of spine segments. •High grade of accurateness for the symmetric depiction of anatomical structures. •Time-saving and may improve workflow in daily practice. -- Abstract: Objectives: To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. Material and methods: 77 patients (28 women, 49 men, mean age 65.3 ± 14.4 years) with known or suspected spinal disorders (degenerative spine disease n = 32; disc herniation n = 36; traumatic vertebral fractures n = 9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. Results: In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1 min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p < 0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p < 0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. Conclusion: The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time

  6. Magmatic controls on axial relief and faulting at mid-ocean ridges

    Science.gov (United States)

    Liu, Zhonglan; Buck, W. Roger

    2018-06-01

    Previous models do not simultaneously reproduce the observed range of axial relief and fault patterns at plate spreading centers. We suggest that this failure is due to the approximation that magmatic dikes open continuously rather than in discrete events. During short - lived events, dikes open not only in the strong axial lithosphere but also some distance into the underlying weaker asthenosphere. Axial valley relief affects the partitioning of magma between the lithosphere and asthenosphere during diking events. The deeper the valley, the more magma goes into lithospheric dikes in each event and so the greater the average opening rate of those dikes. The long-term rate of lithospheric dike opening controls faulting rate and axial depth. The feedback between axial valley depth D and lithospheric dike opening rate allows us to analytically relate steady-state values of D to lithospheric thickness HL and crustal thickness HC. A two-dimensional model numerical model with a fixed axial lithospheric structure illustrates the analytic model implications for axial faulting. The predictions of this new model are broadly consistent with global and segment-scale trends of axial depth and fault patterns with HL and HC.

  7. An alternative approach for modeling strength differential effect in sheet metals with symmetric yield functions

    Science.gov (United States)

    Kurukuri, Srihari; Worswick, Michael J.

    2013-12-01

    An alternative approach is proposed to utilize symmetric yield functions for modeling the tension-compression asymmetry commonly observed in hcp materials. In this work, the strength differential (SD) effect is modeled by choosing separate symmetric plane stress yield functions (for example, Barlat Yld 2000-2d) for the tension i.e., in the first quadrant of principal stress space, and compression i.e., third quadrant of principal stress space. In the second and fourth quadrants, the yield locus is constructed by adopting interpolating functions between uniaxial tensile and compressive stress states. In this work, different interpolating functions are chosen and the predictive capability of each approach is discussed. The main advantage of this proposed approach is that the yield locus parameters are deterministic and relatively easy to identify when compared to the Cazacu family of yield functions commonly used for modeling SD effect observed in hcp materials.

  8. Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity

    Directory of Open Access Journals (Sweden)

    Panigrahi U.K.

    2003-01-01

    Full Text Available In this paper, we have investigated an anisotropic homogeneous plane symmetric cosmological micro-model in the presence of massless scalar field in modified theory of Einstein's general relativity. Some interesting physical and geometrical aspects of the model together with singularity in the model are discussed. Further, it is shown that this theory is valid and leads to Ein­stein's theory as the coupling parameter λ →>• 0 in micro (i.e. quantum level in general.

  9. Conservative axial burnup distributions for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Kang, C.; Lancaster, D.

    1997-11-01

    Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit

  10. Crossing symmetric solution of the Chew-Low equation

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1982-01-01

    An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)

  11. Performance of a Low Speed Axial Compressor Rotor Blade Row under Different Inlet Distortions

    Directory of Open Access Journals (Sweden)

    R. Taghavi Zenouz

    2017-05-01

    Full Text Available Responses of an axial compressor isolated rotor blade row to various inlet distortions have been investigated utilizing computational fluid dynamic technique. Distortions have been imposed by five screens of different geometries, but with the same blockage ratio. These screens were embedded upstream of the rotor blade row. Flow fields are simulated in detail for compressor design point and near stall conditions. Performance curves for distorted cases are extracted and compared to the undisturbed case. Flow simulations and consequent performance characteristics show that the worst cases belong to non-symmetric blockages, i.e., those of partial circumferential configurations. These cases produce the largest wakes which can disturb the flow, considerably. Superior performances correspond to the inner and outer continuous circumferential distortion screens. Since, they produce no significant disturbances to the main flow in comparison to the non-symmetric screens.

  12. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  13. Two updating methods for dissipative models with non symmetric matrices

    International Nuclear Information System (INIS)

    Billet, L.; Moine, P.; Aubry, D.

    1997-01-01

    In this paper the feasibility of the extension of two updating methods to rotating machinery models is considered, the particularity of rotating machinery models is to use non-symmetric stiffness and damping matrices. It is shown that the two methods described here, the inverse Eigen-sensitivity method and the error in constitutive relation method can be adapted to such models given some modification.As far as inverse sensitivity method is concerned, an error function based on the difference between right hand calculated and measured Eigen mode shapes and calculated and measured Eigen values is used. Concerning the error in constitutive relation method, the equation which defines the error has to be modified due to the non definite positiveness of the stiffness matrix. The advantage of this modification is that, in some cases, it is possible to focus the updating process on some specific model parameters. Both methods were validated on a simple test model consisting in a two-bearing and disc rotor system. (author)

  14. Chaos synchronization in bi-axial magnets modeled by Bloch equation

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Nguenang, J.P.; Kofane, T.C.

    2005-10-01

    In this paper, we show that the bi-axial magnetic material modelled by Bloch equation admits chaotic solutions for a certain set of numerical values assigned to the system of parameters and initial conditions. Using the unidirectional linear and nonlinear feedback schemes, we demonstrate that two such systems can be synchronized together. The chaotic synchronization is discussed in the context of complete synchronization which means that the difference of the states of two relevant systems converge to zero. (author)

  15. Locally Rotationally Symmetric Bianchi Type-I Model with Time Varying Λ Term

    International Nuclear Information System (INIS)

    Tiwari, R. K.; Jha, Navin Kumar

    2009-01-01

    We investigate the locally rotationally symmetric (LRS) Bianchi type-I cosmological model for stiff matter and a vacuum solution with a cosmological term proportional to R −m (R is the scale factor and m is a positive constant). The cosmological term decreases with time. We obtain that for both the cases the present universe is accelerating with a large fraction of cosmological density in the form of a cosmological term

  16. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model

    International Nuclear Information System (INIS)

    Dong Qingshan; Shang Hongtao; Wu Wei; Chen Fulin; Zhang Junrui; Guo Jiaping; Mao Tianqiu

    2012-01-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. - Highlights: ► A modified arteriovenous loop (AVL) model in rabbit was developed in this study. ► Axial prevascularization was induced in a larger coral block by using the AVL. ► The prefabrication of axial vascularized coral bone is superior as vascular carrier.

  17. Two-dimensional gauge model with vector U(1) and axial-vector U(1) symmetries

    International Nuclear Information System (INIS)

    Watabiki, Y.

    1989-01-01

    We have succeeded in constructing a two-dimensional gauge model with both vector U(1) and axial-vector U(1) symmetries. This model is exactly solvable. The Schwinger term vanishes in this model as a consequence of the above symmetries, and negative-norm states appear. However, the norms of physical states are always positive semidefinite due to the gauge symmetries

  18. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    Science.gov (United States)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  19. Turbulence of high-beta plasma

    International Nuclear Information System (INIS)

    Khvesyuk, V.I.; Chirkov, A.Y.

    1999-01-01

    Principals of numerical modelling of turbulence in high-beta plasma (β > 0.1) are discussed. Creation of transport model for axial symmetric nonuniform confining magnetic field is considered. Numerical model of plasma turbulence in FRC is presented. The physical and mathematical models are formulated from nonuniform axial symmetric high-beta plasma. It is shown that influence of waves arise under this plasma conditions lead to chaotic motion of charged particles across magnetic field. (author)

  20. Axial Dispersion during Hanford Saltcake Washing

    International Nuclear Information System (INIS)

    Josephson, Gary B.; Geeting, John GH; Lessor, Delbert L.; Barton, William B.

    2006-01-01

    Clean up of Hanford salt cake wastes begins with dissolution retrieval of the sodium rich salts that make up the dominant majority of mass in the tanks. Water moving through the porous salt cake dissolves the soluble components and also displaces the soluble radionuclides (e.g. 137Cs and 99TcO4- ). The separation that occurs from this displacement, known as Selective dissolution, is an important component in Hanford?s pretreatment of low activity wastes for subsequent Supplemental treatment. This paper describes lab scale testing conducted to evaluate Selective dissolution of cesium from non-radioactive Hanford tank 241-S-112 salt cake simulant containing the primary chemicals found the actual tank. An modified axial dispersion model with increasing axial dispersion was developed to predict cesium removal. The model recognizes that water dissolves the salt cake during washing, which causes an increase in the axial dispersion during the wash. This model was subsequently compared with on-line cesium measurements from the retrieval of tank 241-S-112. The model had remarkably good agreement with both the lab scale and full scale data

  1. A study on multi-axial fatigue model based on structural stress

    International Nuclear Information System (INIS)

    Kim, Cheol; Kim, Jong Sung; Jin, Tae Eun; Dong, P.

    2004-01-01

    In nuclear components, cyclic loadings that cause complex states of stress are common. Through a reference review, four sources of the multi-axial fatigue data were collected from LBF, University of Illinois, EPRI, and TWI. All these tests were conducted using tube to flange specimens with a circumferential fillet welds. The loading conditions were mostly bending/ torsion combinations, except that TWI used tension/ torsion combinations. None of fatigue correlation parameters have been demonstrated to be satisfactory in correlating the multi-axial fatigue data outside of their own. In this paper, we proposed the characterizing multi-axial fatigue behavior in terms of the structural stress methods by using some of the well-known multi-axial fatigue data available in the references

  2. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment

    CERN Document Server

    Dev, P S Bhupal

    2014-01-01

    We study the Higgs mass spectrum as predicted by a Maximally Symmetric Two Higgs Doublet Model (MS-2HDM) potential based on the SO(5) group, softly broken by bilinear Higgs mass terms. We show that the lightest Higgs sector resulting from this MS-2HDM becomes naturally aligned with that of the Standard Model (SM), independently of the charged Higgs boson mass and $\\tan \\beta$. In the context of Type-II 2HDM, SO(5) is the simplest of the three possible symmetry realizations of the scalar potential that can naturally lead to the SM alignment. Nevertheless, renormalization group effects due to the hypercharge gauge coupling $g'$ and third-generation Yukawa couplings may break sizeably this SM alignment, along with the custodial symmetry inherited by the SO(5) group. Using the current Higgs signal strength data from the LHC, which disfavour large deviations from the SM alignment limit, we derive lower mass bounds on the heavy Higgs sector as a function of $\\tan\\beta$, which can be stronger than the existing limit...

  3. Predicting the Coupling Properties of Axially-Textured Materials

    Science.gov (United States)

    Fuentes-Cobas, Luis E.; Muñoz-Romero, Alejandro; Montero-Cabrera, María E.; Fuentes-Montero, Luis; Fuentes-Montero, María E.

    2013-01-01

    A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones. PMID:28788370

  4. Predicting the Coupling Properties of Axially-Textured Materials

    Directory of Open Access Journals (Sweden)

    María E. Fuentes-Montero

    2013-10-01

    Full Text Available A description of methods and computer programs for the prediction of “coupling properties” in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge’s symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

  5. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1984-01-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics

  6. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    Science.gov (United States)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  7. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  8. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  9. Renormalization of the axial-vector current in QCD

    International Nuclear Information System (INIS)

    Chiu, C.B.; Pasupathy, J.; Wilson, S.L.

    1985-01-01

    Following the method of Ioffe and Smilga, the propagation of the baryon current in an external constant axial-vector field is considered. The close similarity of the operator-product expansion with and without an external field is shown to arise from the chiral invariance of gauge interactions in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon and the hyperons are derived. The analysis of the sum rules is carried out by two independent methods, one called the ratio method and the other called the continuum method, paying special attention to the nondiagonal transitions induced by the external field between the ground state and excited states. Up to operators of dimension six, two new external-field-induced vacuum expectation values enter the calculations. Previous work determining these expectation values from PCAC (partial conservation of axial-vector current) are utilized. Our determination from the sum rules of the nucleon axial-vector renormalization constant G/sub A/, as well as the Cabibbo coupling constants in the SU 3 -symmetric limit (m/sub s/ = 0), is in reasonable accord with the experimental values. Uncertainties in the analysis are pointed out. The case of broken flavor SU 3 symmetry is also considered. While in the ratio method, the results are stable for variation of the fiducial interval of the Borel mass parameter over which the left-hand side and the right-hand side of the sum rules are matched, in the continuum method the results are less stable. Another set of sum rules determines the value of the linear combination 7F-5D to be roughly-equal0, or D/(F+D)roughly-equal(7/12). .AE

  10. Use of the reciprocity theorem for a closed form solution of scattering of the lowest axially symmetric torsional wave mode by a defect in a pipe.

    Science.gov (United States)

    Lee, Jaesun; Achenbach, Jan D; Cho, Younho

    2018-03-01

    Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Axial-Symmetry Numerical Approaches for Noise Predicting and Attenuating of Rifle Shooting with Suppressors

    Directory of Open Access Journals (Sweden)

    Shi-Wei Lo

    2011-01-01

    Full Text Available The moving bullet out of a rifle barrel is propelled by a fired explosive charge. Subsequently, a disturbed muzzle blast wave is initiated which lasts several milliseconds. In this study, axially symmetric, unsteady, Large Eddy Simulation (LES, and Ffowcs Williams and Hawkins (FWH equations were solved by the implicit-time formulation. For the spatial discretization, second order upwind scheme was employed. In addition, dynamic mesh model was used to where the ballistic domain changed with time due to the motion of bullet. Results obtained for muzzle flow field and for noise recorded were compared with those obtained from experimental data; these two batches of results were in agreement. Five cases of gunshot including one model of an unsuppressed rifle and four models of suppressors were simulated. Besides, serial images of species distributions and velocity vectors-pressure contours in suppressors and near muzzle field were displayed. The sound pressure levels (dB in far field that were post-processed by the fast Fourier transform (FFT were compared. The proposed physical model and the numerical simulations used in the present work are expected to be extended to solve other shooting weapon problems with three-dimensional and complex geometries.

  12. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  13. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  14. Nuclear reactor control method for maintaining an appreciably constant axial distribution of power with load variations

    International Nuclear Information System (INIS)

    Morita, Toshio.

    1975-01-01

    A nuclear reactor control method is described in which the power variations of the reactor are controlled partly by varying the concentration of the neutron absorbing element and partly by varying the positions of the control rods, in order to maintain the axial distribution of power appreciably symmetrical during the normal operation of the reactor. The control points are located in the upper and lower halves of the core. The controls are operated to maintain the output power difference between the upper and lower halves of the core, based on the total output power (axial deviation) significantly equal to a predetermined optimum figure during the entire running of the reactor, including when there are power variations. The optimum value is obtained by determining the axial deviation at full power with the xenon in balance and all the control rods withdrawn from the fuel area of the core. This optimum value is recalculated after a period appreciably equal to that of a month's operation at full power. This method applies in particular to PWR type reactors [fr

  15. Using axial magnetized permanent rings to build axial gradient magnetic field

    International Nuclear Information System (INIS)

    Peng Quanling

    2003-01-01

    Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed

  16. Modeling study on axial wetting length of meniscus in vertical rectangular microgrooves

    International Nuclear Information System (INIS)

    Nie, Xuelei; Hu, Xuegong; Tang, Dawei

    2013-01-01

    In this work, the traditional model for predicting axial wetting length of meniscus in vertical microgrooves is introduced firstly. The traditional model may cause inaccurate results in predicting wetting length in vertical microgrooves because of the assumption of round meniscus in cross sections of microgrooves and the way of calculating curvature. In order to develop this model and make it more accurate, a revised micro-PIV system is built to test the meniscus shapes in cross sections of vertical and horizontal microgrooves, and the experimental results prove that the real shapes of meniscus are parabolic other than round. The fitting formulas of meniscus shapes are obtained with software Origin 7.5. Based on experimental results and fitting formulas, the traditional model is revised by changing the way to calculate curvature. In the modified model, the curvature for calculating axial wetting length of meniscus equals average curvature of meniscus in cross section of vertical microgrooves minus the average curvature of meniscus in cross section of horizontal microgrooves. It is proved that the modified model can predict the wetting length in vertical microgrooves better than the original model. The average difference between experiment and modified model is 2.5% while that between experiment and traditional model is 174.2%. The disadvantage of the modified model is that using the new model to predict wetting length needs to know the real shapes of meniscus in vertical and horizontal microgrooves. -- Highlights: ► An experimental system is designed to test the shapes of meniscus in microgrooves. ► The real shapes of meniscus in microgrooves are obtained for first time. ► The shapes of meniscus in microgrooves is compared and analyzed. ► The model for predicting wetting length of meniscus in microgrooves is developed

  17. Stationary states of a PT symmetric two-mode Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria

    2012-01-01

    The understanding of nonlinear PT symmetric quantum systems, arising for example in the theory of Bose–Einstein condensates in PT symmetric potentials, is widely based on numerical investigations, and little is known about generic features induced by the interplay of PT symmetry and nonlinearity. To gain deeper insights it is important to have analytically solvable toy models at hand. In the present paper the stationary states of a simple toy model of a PT symmetric system previously introduced in [1, 2] are investigated. The model can be interpreted as a simple description of a Bose–Einstein condensate in a PT symmetric double well trap in a two-mode approximation. The eigenvalues and eigenstates of the system can be explicitly calculated in a straightforward manner; the resulting structures resemble those that have recently been found numerically for a more realistic PT symmetric double delta potential. In addition, a continuation of the system is introduced that allows an interpretation in terms of a simple linear matrix model. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  18. Separation of variables in anisotropic models and non-skew-symmetric elliptic r-matrix

    Science.gov (United States)

    Skrypnyk, Taras

    2017-05-01

    We solve a problem of separation of variables for the classical integrable hamiltonian systems possessing Lax matrices satisfying linear Poisson brackets with the non-skew-symmetric, non-dynamical elliptic so(3)⊗ so(3)-valued classical r-matrix. Using the corresponding Lax matrices, we present a general form of the "separating functions" B( u) and A( u) that generate the coordinates and the momenta of separation for the associated models. We consider several examples and perform the separation of variables for the classical anisotropic Euler's top, Steklov-Lyapunov model of the motion of anisotropic rigid body in the liquid, two-spin generalized Gaudin model and "spin" generalization of Steklov-Lyapunov model.

  19. Analyzing Supply Chain Uncertainty to Deliver Sustainable Operational Performance: Symmetrical and Asymmetrical Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Salam

    2017-11-01

    Full Text Available The purpose of this study is to analyze different types of supply chain uncertainties and suggest strategies to deal with unexpected contingencies to deliver superior operational performance (OP using symmetrical and asymmetrical modeling approaches. The data were collected through a survey given to 146 supply chain managers within the fast moving consumer goods industry in Thailand. Symmetrical modeling is applied via partial least squares structural equation modeling (PLS-SEM in order to assess the theoretical relationships among the latent variables, while asymmetrical modeling is applied via fuzzy set qualitative comparative analysis (fsQCA to emphasize their combinatory causal relation. The empirical results support the theory by highlighting the mediating effect of supply chain strategy (SCS in the relation between supply chain uncertainty (SCU and firms’ OP and, hence, deliver business sustainability for the firms, demonstrating that the choice of SCS should not be an “either-or” decision. This research contributes by providing an illustration of a PLS-SEM and fsQCA based estimation for the rapidly emerging field of sustainable supply chain management. This study provides empirical support for resource dependence theory (RDT in explaining the relation between SCU and SCS, which leads to sustainable OP. From a methodological standpoint, this study also illustrates predictive validation testing of models using holdout samples and testing for causal asymmetry.

  20. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  1. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.

    2008-01-01

    Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs

  2. Inverse axial mounting stiffness design for lithographic projection lenses.

    Science.gov (United States)

    Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang

    2014-09-01

    In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.

  3. Axial nonimaging characteristics of imaging lenses: discussion.

    Science.gov (United States)

    Siew, Ronian

    2016-05-01

    At observation planes away from the image plane, an imaging lens is a nonimaging optic. We examine the variation of axial irradiance with distance in image space and highlight the following little-known observation for discussion: On a per-unit-area basis, the position of the highest concentration in image space is generally not at the focal plane. This characteristic is contrary to common experience, and it offers an additional degree of freedom for the design of detection systems. Additionally, it would also apply to lenses with negative refractive index. The position of peak concentration and its irradiance is dependent upon the location and irradiance of the image. As such, this discussion also includes a close examination of expressions for image irradiance and explains how they are related to irradiance calculations beyond the image plane. This study is restricted to rotationally symmetric refractive imaging systems with incoherent extended Lambertian sources.

  4. Two-dimensional nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed

    International Nuclear Information System (INIS)

    Ghayesh, Mergen H.; Amabili, Marco; Farokhi, Hamed

    2013-01-01

    In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs)

  5. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  6. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  7. Tornado model for a magnetised plasma

    Science.gov (United States)

    Onishchenko, O. G.; Fedun, V.; Smolyakov, A.; Horton, W.; Pokhotelov, O. A.; Verth, G.

    2018-05-01

    A new analytical model of axially-symmetric magnetic vortices with both a twisted fluid flow and a magnetic field is proposed. The exact solution for the three-dimensional structure of the fluid velocity and the magnetic field is obtained within the framework of the ideal magnetohydrodynamic equations for an incompressible fluid in a gravitational field. A quasi-stationary localised vortex arises when the radial flow that tends to concentrate vorticity in a narrow column around the axis of symmetry is balanced by the vertical vortex advection in the axial direction. The explicit expressions for the velocity and magnetic field components are obtained. The proposed analytic model may be used to parameterise the observed solar tornadoes and can provide a new indirect way for estimating magnetic twist from the observed azimuthal velocity profiles.

  8. An Analysis of $B_{s}$ Decays in the Left-Right-Symmetric Model with Spontaneous CP Violation

    CERN Document Server

    Ball, Patricia; Ball, Patricia; Fleischer, Robert

    2000-01-01

    Non-leptonic B_s decays into CP eigenstates that are caused by \\bar b -> \\bar cc\\bar s quark-level transitions, such as B_s -> D_s^+D^-_s, J/psi eta^(') or J/psi phi, provide a powerful tool to search for ``new physics'', as the CP-violating effects in these modes are tiny in the Standard Model. We explore these effects for a particular scenario of new physics, the left-right-symmetric model with spontaneous CP violation. In our analysis, we take into account all presently available experimental constraints on the parameters of this model, i.e. those implied by K- and B-decay observables; we find that CP asymmetries as large as O(40%) may arise in the B_s channels, whereas the left-right-symmetric model favours a small CP asymmetry in the ``gold-plated'' mode B_d -> J/psi K_S. Such a pattern would be in favour of B-physics experiments at hadron machines, where the B_s modes are very accessible.

  9. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  10. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  11. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  12. Analysis of Three-dimension Viscous Flow in the Model Axial Compressor Stage K1002L

    Science.gov (United States)

    Tribunskaia, K.; Kozhukhov, Y. V.

    2017-08-01

    The main investigation subject considered in this paper is axial compressor model stage K1002L. Three simulation models were designed: Scheme 1 - inlet stage model consisting of IGV (Inlet Guide Vane), rotor and diffuser; Scheme 2 - two-stage model: IGV, first-stage rotor, first-stage diffuser, second-stage rotor, EGV (Exit Guide Vane); Scheme 3 - full-round model: IGV, rotor, diffuser. Numerical investigation of the model stage was held for four circumferential velocities at the outer diameter (Uout=125,160,180,210 m/s) within the range of flow coefficient: ϕ = 0.4 - 0.6. The computational domain was created with ANSYS CFX Workbench. According to simulation results, there were constructed aerodynamic characteristic curves of adiabatic efficiency and the adiabatic head coefficient calculated for total parameters were compared with data from the full-scale test received at the Central Boiler and Turbine Institution (CBTI), thus, verification of the calculated data was carried out. Moreover, there were conducted the following studies: comparison of aerodynamic characteristics of the schemes 1, 2; comparison of the sector and full-round models. The analysis and conclusions are supplemented by gas-dynamic method calculation for axial compressor stages.

  13. Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation

    Science.gov (United States)

    Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob

    2016-08-01

    Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different

  14. Molecular design for nonpolar chiral-axial quadratic nonlinear optics

    Science.gov (United States)

    Wiggers, Gregory A.

    In this thesis the hyperpolarizability of various multi-dimensional molecules is studied theoretically/computationally, with particular focus on the second-rank Kleinman-disallowed (KD) component of the hyperpolarizability. This component, which transforms as a second-rank traceless symmetric tensor, could be utilized in certain chiral-axial molecular alignment schemes to produce a bulk response. Nonpolar chiral-axial systems have been proposed in contrast to polar media, which utilize the vector component of the molecular hyperpolarizability and require parallel alignment of the molecular dipoles. Such parallel alignment of dipoles must be "frozen in" in order to overcome the natural tendency for dipoles to align anti-parallel. This limits the density of chromophores that can be loaded into a polar material. Nonpolar materials do not have such limits in theory. The two geometric classes of molecules that can most easily be incorporated into nonpolar chiral-uniaxial materials are propeller-shaped (C3 or D3 symmetry) and Λ-shaped (C2v symmetry). This work describes efforts to design molecules within these classes that would be suitable for bulk NLO materials. The sum-over-states (SOS) expression is used to model the molecular hyperpolarizability, and quantum chemical calculations, along with linear absorption data (when available) provide the necessary parameters to evaluate truncated forms of the SOS expression. A host of chemical and geometric modifications will be considered in order to elucidate important structure/function relationships. Also, the SOS model will be tested in some cases when experimental measurements (via Kleinman-disallowed hyper-Rayleigh scattering) are available. While a majority of this work focuses on multi-dimensional molecules, a small section deals with the question of optimizing the hyperpolarizability of a one-dimensional system. It is suggested that the recently-proposed idea of "modulated conjugation" as a means for improving

  15. MODELING OF SYMMETRIC THREE-PHASE ASYNCHRONOUS ELECTRIC MOTOR IN ASYMMETRIC CONNECTION TO NETWORK

    Directory of Open Access Journals (Sweden)

    V. I. Lukovnikov

    2005-01-01

    Full Text Available The paper shows how to solve the problem concerning reveal of changes in mathematical models and electric parameters of symmetric three-phase short-circuited asynchronous electric motors in case of their connection to single- or two-phase network in comparison with their connection to three-phase network. The uniform methodological approach permitting to generalize the known data and receive new results is offered in the paper.

  16. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  17. Spherically symmetric models with pressure: separating expansion from contraction and generalizing TOV condition

    CERN Document Server

    Mimoso, José Pedro; Mena, Filipe C

    2010-01-01

    We investigate spherically symmetric perfect fluid spacetimes and discuss the existence and stability of a dividing shell separating expanding and collapsing regions. We perform a 3+1 splitting and obtain gauge invariant conditions relating the intrinsic spatial curvature of the shells to the ADM mass and to a function of the pressure which we introduce and that generalises the Tolman-Oppenheimer-Volkoff equilibrium condition. We analyse the particular cases of the Lema\\^itre-Tolman-Bondi dust models with a cosmological constant as an example of a $\\Lambda$-CDM model and its generalization to contain a central perfect fluid core. These models provide simple, but physically interesting illustrations of our results.

  18. Axial holdup in pulsed perforated-plate column of pulser feeder type, (2)

    International Nuclear Information System (INIS)

    Ikeda, Hidematsu; Suzuki, Atsuyuki; Kiyose, Ryohei.

    1987-01-01

    In mathematical models for a pulsed perforated-plate column, the dispersed phase holdup has been considered to be uniform throughout the length of the column, but fairly recently it is treated as being nonuniform. In the previous paper, the axial holdup data were obtained in the dispersed aqueous and the dispersed organic modes. Experimental results showed that the axial holdup data become nonuniform throughout the column. It was also found that both of the plate type and the operation mode affected the axial holdup distribution. The present work is an attempt to formulate the axial holdup by means of a heuristic selforganization method that provides a nonlinear prediction model of complex system, since the holdup data did not directly show so significant trend as to formulate the axial holdup. The Group Method of Data Handling (GMDH) is used for this purpose. The GMDH can be used for selection and synthesis of input variables concerned with the axial holdup for the pulsed perforated-plate column. The axial holdup data have been successfully correlated and the identification models could be useful in discussing mathematical models. (author)

  19. Supersymmetry and cotangent bundle over non-compact exceptional Hermitian symmetric space

    International Nuclear Information System (INIS)

    Arai, Masato; Baba, Kurando

    2015-01-01

    We construct N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the non-compact exceptional Hermitian symmetric spaces M=E 6(−14) /SO(10)×U(1) and E 7(−25) /E 6 ×U(1). In order to construct them we use the projective superspace formalism which is an N=2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N=2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N=1 superfields, once the Kähler potentials of the base manifolds are obtained. We derive the N=1 supersymmetric nonlinear sigma models on the Kähler manifolds M. Then we extend them into the N=2 supersymmetric models with the use of the result in arXiv:1211.1537 developed in the projective superspace formalism. The resultant models are the N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the Hermitian symmetric spaces M. In this work we complete constructing the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces.

  20. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    Huffer, J.

    2004-01-01

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  1. The discrete dynamics of symmetric competition in the plane.

    Science.gov (United States)

    Jiang, H; Rogers, T D

    1987-01-01

    We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model.

  2. Temporal and Spatial Variability in the Geochemistry of Axial and CoAxial Segment Lavas and their Mantle Sources

    Science.gov (United States)

    Smith, M. C.; Perfit, M. R.; Davis, C.; Kamenov, G. D.

    2011-12-01

    Three spatially related volcanic eruptions along the CoAxial Segment of the Juan de Fuca Ridge (JdFR) have documented emplacements between 1981 and 1993. Two of the historic flows outcrop at the "Flow Site" and were emplaced within less than 12 years and 500 m from one another. The third was emplaced at the "Floc Site" to the south in the 1980s. Previous studies have documented that CoAxial lavas are among the most incompatible element and isotopically depleted lavas along the entire JdFR, whereas the Axial Seamount segment immediately south of CoAxial has erupted the most chemically enriched lavas south of the Endeavor Segment. Geochemical studies have shown little temporal change in the chemistry of recent Axial Seamount eruptives, whereas CoAxial lavas exhibit distinct chemical differences over short time periods. Significant chemical differences observed among depleted CoAxial lavas emplaced close to one another in space and time are in marked contrast to the relatively constant chemical characteristics of enriched lavas erupted at the magmatically more robust Axial segment only 10's of kilometers to the south and west. New trace element and isotopic (Sr, Nd, Pb) geochemical analyses of historic and older CoAxial lavas have resulted in better documentation of interflow and intraflow chemical variation providing an improved understanding of spatial/temporal chemical variability in lavas, and further insight into JdFR magmatic processes. Modeling of major and trace element abundances suggest that the observed intraflow chemical variation within CoAxial lavas is largely due to shallow-level fractional crystallization but that a single fractional crystallization model cannot account for all interflow chemical variation. In fact, elemental and isotopic data require different parental magmas for each of the three recent CoAxial Segment lava flows suggesting very short-term differences or changes in the chemical character of the mantle source region. In particular

  3. The collective model of nuclei and its applications

    International Nuclear Information System (INIS)

    Frank H, A.; Castanos G, O.H.

    1975-01-01

    The concepts of collective coordinates, the establishment of Hamiltonian collectives through the model of the drop of liquid or through the symmetry arguments and of the operators in these variables are discussed in this study. The passage of the laboratory system to the principal axis system is discussed thoroughly with the symmetries produced by this transformation, considering a drop in two dimensions. It is also observed that the deformed nuclei have some properties that can be described through the rotation-vibration and symmetric rotor models. The rotation-vibration model concerns the nuclei with axially symmetric deformations in the basic state and its importance is due to the fact that it can predict the nuclear spectrum at low energies. The asymmetric rotor model assumes the existence of triaxial nuclei and considers their collective movements. This model can be modified taking into consideration that vibrations β can also appear. Finally there is a comparison between the two models and the models are also compared with the experiment. (author)

  4. Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.

    Science.gov (United States)

    Sung, H W; Yoganathan, A P

    1990-01-01

    It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.

  5. Damped gyroscopic effects and axial-flexural-torsional coupling using spinning finite elements for wind-turbine blades characterization

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Renewable energy sources like wind are important technologies, useful to alleviate for the current fossil-fuel crisis. Capturing wind energy in a more efficient way has resulted in the emergence of more sophisticated designs of wind turbines, particularly Horizontal-Axis Wind Turbines (HAWTs). To promote efficiency, traditional finite element methods have been widely used to characterize the aerodynamics of these types of multi-body systems and improve their design. Given their aeroelastic behavior, tapered-swept blades offer the potential to optimize energy capture and decrease fatigue loads. Nevertheless, modeling special complex geometries requires huge computational efforts necessitating tradeoffs between faster computation times at lower cost, and reliability and numerical accuracy. Indeed, the computational cost and the numerical effort invested, using traditional FE methods, to reproduce dependable aerodynamics of these complex-shape beams are sometimes prohibitive. A condensed Spinning Finite Element (SFE) method scheme is presented in this study aimed to alleviate this issue by means of modeling wind-turbine rotor blades properly with tapered-swept cross-section variations of arbitrary order via Lagrangian equations. Axial-flexural-torsional coupling is carried out on axial deformation, torsion, in-plane bending and out-of-plane bending using super-convergent elements. In this study, special attention is paid for the case of damped yaw effects, expressed within the described skew-symmetric damped gyroscopic matrix. Dynamics of the model are analyzed by achieving modal analysis with complex-number eigen-frequencies. By means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) matrix condensation (order reduction), numerical analysis is carried out for several prototypes with different tapered, swept, and curved variation intensities, and for a practical range of spinning velocities at different rotation angles. A convergence study

  6. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  7. An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions

    International Nuclear Information System (INIS)

    Berlin, J.; Heller, U.M.

    1991-01-01

    We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)

  8. Characteristic function-based semiparametric inference for skew-symmetric models

    KAUST Repository

    Potgieter, Cornelis J.; Genton, Marc G.

    2012-01-01

    testing. Two tests for a hypothesis of specific parameter values are considered, as well as a test for the hypothesis that the symmetric component has a specific parametric form. A resampling algorithm is described for practical implementation

  9. Hubbard physics in the symmetric half-filled periodic anderson-hubbard model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-05-01

    Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.

  10. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    Wagner, J.C.; DeHart, M.D.

    2000-01-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  11. Magnetic field modeling and optimal operational control of a single-side axial-flux permanent magnet motor with center poles

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lee, S.-C.

    2006-01-01

    A detailed approach for analyzing magnetic field distributions of a single-sided axial-flux permanent magnet motor with center poles will be provided. Based on the devised flux model, the related position-dependent torque and axial force of the motor can be systematically developed. By incorporating adequate control designs, the optimal operational performance of the motor system can be conveniently achieved. Results showed that not only the motor structure is suitable for related military and transportation applications, but also the magnetic field model can provide appropriate mathematical basis for relative operational realizations

  12. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...

  13. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  14. Hamilton's equations for a fluid membrane: axial symmetry

    International Nuclear Information System (INIS)

    Capovilla, R; Guven, J; Rojas, E

    2005-01-01

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space

  15. Axial temperatures and fuel management models for a HTR system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1971-11-12

    In the HTR system, there is a large difference in temperature between different parts of the reactor core. The softer neutron spectrum in the upper colder core regions tends to shift the power productions in the fresh fuel upwards. As uranium 235 depletes and plutonium with its higher cross sections in the lower hot regions is built-up, an axial power flattening takes place. These effects have been studied in detail for a single column in an equilibrium environment. The aim of this paper is to relate these findings to a whole reactor core and to investigate the influence of axial temperatures on the overall performance and in particular, the fuel management scheme chosen for the reference design. A further objective has been to calculate the reactivity requirements for different part load conditions and for various daily and weekly load diagrams. As the xenon cross section changes significantly with temperature these investigations are performed for an equilibrium core with due representation of axial temperature zones.

  16. Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations

    Science.gov (United States)

    Hou, Thomas Y.; Liu, Pengfei; Wang, Fei

    2018-05-01

    We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.

  17. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  18. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  19. Robust numerical methods for boundary-layer equations for a model problem of flow over a symmetric curved surface

    NARCIS (Netherlands)

    A.R. Ansari; B. Hossain; B. Koren (Barry); G.I. Shishkin (Gregori)

    2007-01-01

    textabstractWe investigate the model problem of flow of a viscous incompressible fluid past a symmetric curved surface when the flow is parallel to its axis. This problem is known to exhibit boundary layers. Also the problem does not have solutions in closed form, it is modelled by boundary-layer

  20. Control of hole localization in magnetic semiconductors by axial strain

    Science.gov (United States)

    Raebiger, Hannes; Bae, Soungmin; Echeverría-Arrondo, Carlos; Ayuela, Andrés

    2018-02-01

    Mn and Fe-doped GaN are widely studied prototype systems for hole-mediated magnetic semiconductors. The nature of the hole states around the Mn and Fe impurities, however, remains under debate. Our self-interaction corrected density-functional calculations show that the charge neutral Mn 0 and positively charged Fe+ impurities have symmetry-broken d5+h ground states, in which the hole is trapped by one of the surrounding N atoms in a small polaron state. We further show that both systems also have a variety of other d5+h configurations, including symmetric, delocalized states, which may be stabilized by axial strain. This finding opens a pathway to promote long-range hole-mediated magnetic interactions by strain engineering and clarifies why highly strained thin-films samples often exhibit anomalous magnetic properties.

  1. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  2. Experimental technique of calibration of symmetrical air pollution ...

    Indian Academy of Sciences (India)

    Based on the inherent property of symmetry of air pollution models, a Symmetrical Air Pollution. Model ... process is in compliance with air pollution regula- ..... Ground simulation is achieved through MATLAB package which is based on least-.

  3. Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog

    Science.gov (United States)

    Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh

    2013-06-01

    In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.

  4. Naturally light Dirac neutrino in Left-Right Symmetric Model

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam-781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar-751005 (India)

    2017-06-01

    We study the possibility of generating tiny Dirac masses of neutrinos in Left-Right Symmetric Model (LRSM) without requiring the existence of any additional symmetries. The charged fermions acquire masses through a universal seesaw mechanism due to the presence of additional vector like fermions. The neutrinos acquire a one-loop Dirac mass from the same additional vector like charged leptons without requiring any additional discrete symmetries. The model can also be extended by an additional Z {sub 2} symmetry in order to have a scotogenic version of this scenario predicting a stable dark matter candidate. We show that the latest Planck upper bound on the effective number of relativistic degrees of freedom N {sub eff}=3.15 ± 0.23 tightly constrains the right sector gauge boson masses to be heavier than 3.548 TeV . This bound on gauge boson mass also affects the allowed values of right scalar doublet dark matter mass from the requirement of satisfying the Planck bound on dark matter relic abundance. We also discuss the possible implications of such a scenario in charged lepton flavour violation and generating observable electric dipole moment of leptons.

  5. Extended Hamiltonian formalism of the pure space-like axial gauge Schwinger model. II

    International Nuclear Information System (INIS)

    Nakawaki, Yuji; McCartor, Gary

    2004-01-01

    Canonical methods are not sufficient to properly quantize space-like axial gauges. In this paper, we obtain guiding principles that allow for the construction of an extended Hamiltonian formalism for pure space-like axial gauge fields. To do so, we clarify the general role that residual gauge fields play in the space-like axial gauge Schwinger model. In all the calculations, we fix the gauge using the rule n·A=0, where n is a space-like constant vector, and we refer to its direction as x - . Then, to begin with, we construct a formulation in which the quantization surface is space-like but not parallel to the direction of n. The quantization surface has a parameter that allows us to rotate it, but when we do so, we keep the gauge fixing direction fixed. In that formulation, we can use canonical methods. We bosonize the model to simplify the investigation. We find that the inverse differentiation, (∂ - ) -1 , is ill-defined whatever quantization coordinates we use, as long as the direction of n is space-like. We find that the physical part of the dipole ghost field includes infrared divergences. However, we also find that if we introduce residual gauge fields in such as way that the dipole ghost field satisfies the canonical commutation relations, then the residual gauge fields are determined so as to regularize the infrared divergences contained in the physical part. The propagators then take the form prescribed by Mandelstam and Leibbrandt. We make use of these properties to develop guiding principles that allow us to construct consistent operator solutions in the pure space-like case, in which the quantization surface is parallel to the direction of n, and canonical methods do not suffice. (author)

  6. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  7. Mass generation for Abelian spin-1 particles via a symmetric tensor

    International Nuclear Information System (INIS)

    Dalmazi, D.; Mendonça, E.L.

    2012-01-01

    In the topologically massive BF model (TMBF) the photon becomes massive via coupling to an antisymmetric tensor, without breaking the U(1) gauge symmetry. There is no need of a Higgs field. The TMBF model is dual to a first-order (in derivatives) formulation of the Maxwell-Proca theory where the antisymmetric field plays the role of an auxiliary field. Since the Maxwell-Proca theory also admits a first-order version which makes use of an auxiliary symmetric tensor, we investigate here a possible generalization of the TMBF model where the photon acquires mass via coupling to a symmetric tensor. We show that it is indeed possible to build up dual models to the Maxwell-Proca theory where the U(1) gauge symmetry is manifest without Higgs field, but after a local field redefinition the vector field eats up the trace of the symmetric tensor and becomes massive. So the explicit U(1) symmetry can be removed unlike the TMBF model.

  8. Bi-axial M-. Phi. analyses of RC columns using fiber model and comparison with experimental results. 2 jikumage wo ukeru hashirabuzai no M-. Phi. kankei eno fiber model no tekigosei

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Y.; Tokuyama, S.; Furuichi, K. (Kajima Corp., Tokyo (Japan))

    1991-10-31

    In order to examine the accuracy of a fiber model for analyzing the stability of towers of a cable-stayed bridge subjected to biaxial bending force due to earthquake, experimental results of column test specimens were compared with analytical results. The relation between biaxial bending moment and curvature (M-{Phi}) was measured in biaxial bending model experiment using a reinforcement ratio, axial compressive force and loading pattern as parameters. Since the relation was greatly affected by axial modeling of a reinforcing material, the parameter analysis was conducted by paying particular attention to reinforcement models (bilinear model, cubic one and Ramberg-Osgood one). As a result, the Ramberg-Osgood model was suitable for columns with a large longitudinal reinforcement ratio and large axial tension such as seen in highrise buildings, while the cubic model was more suitable for columns with a small ratio such as seen in cable-stayed bridges. 4 refs., 10 figs., 1 tab.

  9. U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J1-J2 Heisenberg model

    Science.gov (United States)

    Haghshenas, R.; Sheng, D. N.

    2018-05-01

    We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1place at J2c2/J1=0.610 (2 ) to the conventional Stripe phase. We compare our results with earlier DMRG and PEPS studies and suggest future directions for resolving remaining issues.

  10. Factored Facade Acquisition using Symmetric Line Arrangements

    KAUST Repository

    Ceylan, Duygu

    2012-05-01

    We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.

  11. Modelling of a plasma column sustained by a travelling circularly polarized electromagnetic wave (m=1 mode) in the presence of a constant axial magnetic field

    International Nuclear Information System (INIS)

    Benova, E.; Staikov, P.; Zhelyazkov, I.

    1992-01-01

    A set of equations modelling a low-pressure plasma column sustained by a travelling electromagnetic wave in the dipolar mode in the presence of a constant external magnetic field is presented. It is shown that, from a practical point of view, only the m = 1 mode (the right-hand-polarized wave) can sustain plasma columns in a wide region of gas-discharge conditions: plasma radius R, wave frequency ω, magnetic field B 0 and low pressures, irrespective of the nature of the gas. The main result of this study is that the magnetic field makes it possible to sustain a plasma column for values of σ smaller than σ cr = 0.3726, below which, in the absence of a magnetic field, the dipolar wave cannot produce a plasma. Moreover, at a fixed wave power, the magnetic field - in contrast with the case of plasma columns sustained by azimuthally symmetric waves - increases the plasma density and its axial gradient. The limit of an infinite external magnetic field (Ω → ∞) is also considered. A three-dimensional wave structure is obtained, and it indicates that the wave can be a generalized surface mode, a pure surface or a pseudosurface one. (author)

  12. Numerical study of extreme-ultra-violet generated plasmas in hydrogen

    OpenAIRE

    Astakhov, Dmitry

    2016-01-01

    In this thesis, we present the development and study a numerical model of EUV-induced plasma. Understanding of behavior of low pressure low density plasmas is of industrial relevance, because of their potential use for on-line removal of different forms of contaminations from multilayer mirrors, which will help increase the throughput of EUV lithography. The model is 2D axially symmetric particle-in-cell code, hence it allows the full geometry of an axially symmetric chamber to be taken into...

  13. A see-saw scenario of an $A_4$ flavour symmetric standard model

    CERN Document Server

    Dinh, Dinh Nguyen; Văn, Phi Quang; Vân, Nguyen Thi Hông

    2016-01-01

    A see-saw scenario for an $A_4$ flavour symmetric standard model is presented. As before, the see-saw mechanism can be realized in several models of different types depending on different ways of neutrino mass generation corresponding to the introduction of new fields with different symmetry structures. In the present paper, a general desription of all these see-saw types is made with a more detailed investigation on type-I models. As within the original see-saw mechanism, the symmetry structure of the standard model fields decides the number and the symmetry structure of the new fields. In a model considered here, the scalar sector consists of three standard-model-Higgs-like iso-doublets ($SU_L(2)$-doublets) forming an $A_4$ triplet. The latter is a superposition of three mass-eigen states, one of which could be identified with the recently discovered Higgs boson. A possible relation to the still-deliberated 750 GeV diphoton resonance at the 13 TeV LHC collisions is also discussed. In the lepton sector, the ...

  14. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  15. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  16. The symmetric extendibility of quantum states

    International Nuclear Information System (INIS)

    Nowakowski, Marcin L

    2016-01-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)

  17. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel

    Directory of Open Access Journals (Sweden)

    Luis Pallarés-Santasmartas

    2018-03-01

    Full Text Available The present study consists of a theoretical and experimental investigation of the effect of axial mean stresses on the high cycle fatigue behaviour of DIN 34CrNiMo6 high strength steel in quenched and tempered conditions. The axial S-N curves under 4 different stresses ratios were obtained. Experimental results show that increasing the value of the tension mean stresses gradually reduces the axial stress amplitude the material can withstand without failure. Moreover, the compressive mean stresses show a beneficial effect in terms of the axial fatigue strength, resulting in a non-symmetrical Haigh diagram. A historic review of the axial mean stress effect is presented, showing the shape of the Haigh diagrams for ductile metals and presenting the most-known empirical and physical theories. The results for this steel are compared with the physical theories of Findley based on the critical plane; the Froustey’s and Marin’s methods, based on energetic theories; and the Crossland invariants method based on the Gough’s theory of fatigue damage. Taking into account the experimental results, a physical fatigue function based on energetic considerations is proposed. Its application to the fatigue case with mean stresses can be interpreted in terms of a balance of elastic energies of distortion and volume change. Macro-analyses of specimen fracture appearance were conducted in order to obtain the fracture characteristics for different mean stress values.

  18. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    International Nuclear Information System (INIS)

    Shen, Z H; Pan, Z Y

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%

  19. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    Science.gov (United States)

    Shen, Z. H.; Pan, Z. Y.

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.

  20. Extended partially conserved axial-vector current hypothesis and model-dependent results

    International Nuclear Information System (INIS)

    Dominguez, C.A.

    1977-01-01

    The corrections to Goldberger-Treiman relations for ΔS = 0 and vertical-bardeltaSvertical-bar = 1 β decays (Δ/sub π/and Δ/sub K/, respectively) are estimated from a Veneziano-type model for three-point functions. The effect of unitarizing the model is also discussed, and it turns out that Δ/sub π/and Δ/sub K/ are almost insensitive to a variation in the widths of the pseudoscalar-meson daughters. Moreover, the predictions for Δ/sub π/and Δ/sub K/ are in close agreement with experiment. Finally, on-mass-shell extrapolation factors for chiral anomalies in eta → γγ and eta → π + π - γ are also derived, and agreement with experiment is found without the need for invoking eta-eta' mixing. In summary, the model discussed here seems to be a suitable implementation of the recently proposed extended partially conserved axial-vector current hypothesis

  1. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  2. An Analysis and Modelling of Spinning Process without Wall-Thickness Reduction

    Directory of Open Access Journals (Sweden)

    Jurković, M.

    2006-01-01

    Full Text Available Through the spinning process it is made the different axial-symmetrical parts by acting spinning roller on blank of sheet metal, which is shaped through a chuck. In the paper is shown an analyse of stressed and strained state, as well as forming force components of spinning process. On the ground of experimental results it is made mathematical modelling of spinning forming force. The obtained mathematical model describes enough accurate and reliable (P = 0,98 the spinning forming force.

  3. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  4. Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.

    Science.gov (United States)

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.

  5. Overcoming the Subject-Object Dichotomy in Urban Modeling: Axial Maps as Geometric Representations of Affordances in the Built Environment

    Directory of Open Access Journals (Sweden)

    Lars Marcus

    2018-04-01

    Full Text Available The world is witnessing unprecedented urbanization, bringing extreme challenges to contemporary practices in urban planning and design. This calls for improved urban models that can generate new knowledge and enhance practical skill. Importantly, any urban model embodies a conception of the relation between humans and the physical environment. In urban modeling this is typically conceived of as a relation between human subjects and an environmental object, thereby reproducing a humans-environment dichotomy. Alternative modeling traditions, such as space syntax that originates in architecture rather than geography, have tried to overcome this dichotomy. Central in this effort is the development of new representations of urban space, such as in the case of space syntax, the axial map. This form of representation aims to integrate both human behavior and the physical environment into one and the same description. Interestingly, models based on these representations have proved to better capture pedestrian movement than regular models. Pedestrian movement, as well as other kinds of human flows in urban space, is essential for urban modeling, since increasingly flows of this kind are understood as the driver in urban processes. Critical for a full understanding of space syntax modeling is the ontology of its' representations, such as the axial map. Space syntax theory here often refers to James Gibson's “Theory of affordances,” where the concept of affordances, in a manner similar to axial maps, aims to bridge the subject-object dichotomy by neither constituting physical properties of the environment or human behavior, but rather what emerges in the meeting between the two. In extension of this, the axial map can be interpreted as a representation of how the physical form of the environment affords human accessibility and visibility in urban space. This paper presents a close examination of the form of representations developed in space syntax

  6. The spin of the proton and the axial anomaly

    International Nuclear Information System (INIS)

    Hatsuda, T.; Zahed, I.

    1989-01-01

    We show that a consistent treatment of the abelian axial anomaly in a two-phase model of the proton yields a flavor singlet axial current that is saturated by the anomaly at Q 2 =0 in the chiral limit. This result suggests that at Q 2 =0 the matrix element of the flavor singlet axial current in a polarized proton state is small while the proton spin is still one-half. Modulo the QCD evolution equation, this result is in fair agreement with the recent EMC data. (orig.)

  7. Light-front view of the axial anomaly

    International Nuclear Information System (INIS)

    Ji, C.; Rey, S.

    1996-01-01

    Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of Hornbostel close-quote s interpolating quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit. copyright 1996 The American Physical Society

  8. Exploring plane-symmetric solutions in f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)

    2016-02-15

    The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.

  9. Integrability and symmetric spaces. II- The coset spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1987-01-01

    It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt

  10. An axially averaged-radial transport model of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Prinja, A.K.; Conn, R.W.

    1984-01-01

    A two-zone axially averaged-radial transport model for edge plasmas is described that incorporates parallel electron and ion conduction, localized recycling, parallel electron pressure gradient effects and sheath losses. Results for high recycling show that the radial electron temperature profile is determined by parallel electron conduction over short radial distances (proportional 3 cm). At larger radius where Tsub(e) has fallen appreciably, convective transport becomes equally important. The downstream density and ion temperature profiles are very flat over the region where electron conduction dominates. This is seen to result from a sharply decaying velocity profile that follows the radial electron temperature. A one-dimensional analytical recycling model shows that at high neutral pumping rates, the plasma density at the plate, nsub(ia), scales linearly with the unperturbed background density, nsub(io). When ionization dominates nsub(ia)/nsub(io) proportional exp(nsub(io)) while in the intermediate regime nsub(ia)/nsub(io) proportional exp(proportional nsub(io)). Such behavior is qualitatively in accord with experimental observations. (orig.)

  11. Precautions against axial fan stall in reactor building to Tianwan NPP

    International Nuclear Information System (INIS)

    Liu Chunlong; Pei Junmin

    2011-01-01

    The paper introduces the mechanism and harm of rotating stall of axial fans, analyzes the necessity for prevention against axial fan stall in reactor building of Tianwan NPP, introduces the precautions, and then makes an assessment on anti-stall effect of flow separators. It can provide reference for model-selection or reconstruction of similar fans in power stations, and for operation and maintenance of axial fans. (authors)

  12. SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS

    Directory of Open Access Journals (Sweden)

    Jan Schnabel

    2017-12-01

    Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.

  13. Nilpotent orbits in real symmetric pairs and stationary black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Heiko [School of Mathematical Sciences, Monash University, VIC (Australia); De Graaf, Willem A. [Department of Mathematics, University of Trento, Povo (Italy); Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Sezione di Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino (Italy)

    2017-02-15

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL{sub 2}(R)){sup 4} acting on the fourth tensor power of the natural 2-dimensional SL{sub 2}(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Nilpotent orbits in real symmetric pairs and stationary black holes

    International Nuclear Information System (INIS)

    Dietrich, Heiko; De Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario

    2017-01-01

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL 2 (R)) 4 acting on the fourth tensor power of the natural 2-dimensional SL 2 (R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Modelling the air flow in symmetric and asymmetric street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F. [Research Center for Energy, Environment and Technology (CIEMAT), Madrid (Spain). Fossil Fuels Dept., Numerical Simulation and Modelling Program

    2004-07-01

    In recent years a large amount of research has been conducted on urban scale and street canyon. Control of air quality inside cities is important for human health. To achieve this objective, street canyon modelling plays a significant role. Pollutant dispersion inside canyons are determined by wind flow around this complex geometry. Experimental investigations have been made by means of field measurements such as Vachon, G. et al. or wind tunnel experiences as Meroney, R.N. et al. or Kastner-Klein, P. and E.J. Plate. In many of these researches, they have used CFD models in several configurations, for instance Assimakopoulos, V.D. et al. or Sini, J.-F. et al. These models are based on a numerical resolution of Navier-Stokes equations with a turbulence closure. In this study, the aim is contribute to the understanding of air circulation inside street canyons. In order to achieve this purpose, several configurations of canyons are investigated. Two-dimensional sequences of real-scale street canyons (order to obstacles height is meters) with different features (symmetric canyons and asymmetric canyons forming step-up and step-down notch configurations) are simulated. These general configurations are modified to investigate some parameters such as aspect ratio, W/H, where W is the width of street and H is the height of buildings. Flows with high Reynolds numbers are modelling. FLUENT CFD software is used. (orig.)

  16. Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet.

    Science.gov (United States)

    Scott, Gregory G; Margulies, Susan S; Coats, Brittany

    2016-10-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. To help understand and better predict TBI, researchers have developed complex finite element (FE) models of the head which incorporate many biological structures such as scalp, skull, meninges, brain (with gray/white matter differentiation), and vasculature. However, most models drastically simplify the membranes and substructures between the pia and arachnoid membranes. We hypothesize that substructures in the pia-arachnoid complex (PAC) contribute substantially to brain deformation following head rotation, and that when included in FE models accuracy of extra-axial hemorrhage prediction improves. To test these hypotheses, microscale FE models of the PAC were developed to span the variability of PAC substructure anatomy and regional density. The constitutive response of these models were then integrated into an existing macroscale FE model of the immature piglet brain to identify changes in cortical stress distribution and predictions of extra-axial hemorrhage (EAH). Incorporating regional variability of PAC substructures substantially altered the distribution of principal stress on the cortical surface of the brain compared to a uniform representation of the PAC. Simulations of 24 non-impact rapid head rotations in an immature piglet animal model resulted in improved accuracy of EAH prediction (to 94 % sensitivity, 100 % specificity), as well as a high accuracy in regional hemorrhage prediction (to 82-100 % sensitivity, 100 % specificity). We conclude that including a biofidelic PAC substructure variability in FE models of the head is essential for improved predictions of hemorrhage at the brain/skull interface.

  17. [Myopia: frequency of lattice degeneration and axial length].

    Science.gov (United States)

    Martín Sánchez, M D; Roldán Pallarés, M

    2001-05-01

    To evaluate the relationship between lattice retinal degeneration and axial length of the eye in different grades of myopia. A sample of 200 eyes from 124 myopic patients was collected by chance. The average age was 34.8 years (20-50 years) and the myopia was between 0.5 and 20 diopters (D). The eyes were grouped according to the degree of refraction defect, the mean axial length of each group (Scan A) and the frequency of lattice retinal degeneration and the relationship between these variables was studied. The possible influence of age on our results was also considered. For the statistical analysis, the SAS 6.07 program with the variance analysis for quantitative variables, and chi(2) test for qualitative variables with a 5% significance were used. A multivariable linear regression model was also adjusted. The highest frequency of lattice retinal degeneration occurred in those myopia patients having more than 15 D, and also in the group of myopia patients between 3 and 6 D, but this did not show statistical significance when compared with the other myopic groups. If the axial length is assessed, a greater frequency of lattice retinal degeneration is also found when the axial length is 25-27 mm and 29-30 mm, which correspond, respectively, to myopias between 3-10 D and more than 15 D. When the multivariable linear regression model was adjusted, the axial length showed the existence of lattice retinal degeneration (beta 0.41 mm; p=0.08) adjusted by the number of diopters (beta 0.38 mm; plattice retinal degeneration was found for myopias with axial eye length between 29-30 mm (more than 15 D), and 25-27 mm (between 3-10 D).

  18. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  19. Comparative analysis of Bouc–Wen and Jiles–Atherton models under symmetric excitations

    Energy Technology Data Exchange (ETDEWEB)

    Laudani, Antonino, E-mail: alaudani@uniroma3.it; Fulginei, Francesco Riganti; Salvini, Alessandro

    2014-02-15

    The aim of the present paper is to validate the Bouc–Wen (BW) hysteresis model when it is applied to predict dynamic ferromagnetic loops. Indeed, although the Bouc–Wen model has had an increasing interest in last few years, it is usually adopted in mechanical and structural systems and very rarely for magnetic applications. Thus, for addressing this goal the Bouc–Wen model is compared with the dynamic Jiles–Atherton model that, instead, was ideated exactly for simulating magnetic hysteresis. The comparative analysis has involved saturated and symmetric hysteresis loops in ferromagnetic materials. In addition in order to identify the Bouc–Wen parameters a very effective recent heuristic, called Metric-Topological and Evolutionary Optimization (MeTEO) has been utilized. It is based on a hybridization of three meta-heuristics: the Flock-of-Starlings Optimization, the Particle Swarm Optimization and the Bacterial Chemotaxis Algorithm. Thanks to the specific properties of these heuristic, MeTEO allow us to achieve effective identification of such kind of models. Several hysteresis loops have been utilized for final validation tests with the aim to investigate if the BW model can follow the different hysteresis behaviors of both static (quasi-static) and dynamic cases.

  20. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  1. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  2. A continuum membrane model for small deformations of a spider orb-web

    Science.gov (United States)

    Morassi, Antonino; Soler, Alejandro; Zaera, Ramón

    2017-09-01

    In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.

  3. On symmetric structures of order two

    Directory of Open Access Journals (Sweden)

    Michel Bousquet

    2008-04-01

    Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.

  4. Low energy restrictions for a flipped left-right symmetric model

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J.O. (Oslo Univ. (Norway). Fysisk Inst.)

    1990-05-01

    I consider some low energy restrictions for a 'flipped' left-right symmetric model containing exotic fermions of E{sub 6} and a right-handed W-boson, all with odd R-parity. The new interactions due to W{sub R}-exchange have no significant impact on rare kaon decays, because the W{sub R} does not couple to d, s, b quarks. On the other hand, W{sub R} exchanges might induce rare processes like D-anti D mixing, D{sup 0}{yields}{mu}anti {mu}, D{sup 0}{yields}{mu}anti e, {mu}{yields}e{gamma}, {mu}{yields}3e, and {mu}N{yields}eN. It turns out that the strongest bound is obtained from D-anti D mixing. With reasonable extra assumptions, it is found that the exotic right-handed W-boson is likely to be heavier than 500 to 1500 GeV. (orig.).

  5. Axial asymmetry for improved sensitivity in MEMS piezoresistors

    International Nuclear Information System (INIS)

    Shuvra, Pranoy Deb; McNamara, Shamus; Lin, Ji-Tzuoh; Alphenaar, Bruce; Walsh, Kevin; Davidson, Jim

    2016-01-01

    The strain induced resistance change is compared for asymmetric, symmetric and diffused piezoresistive elements. Finite element analysis is used to simulate the performance of a T-shaped piezoresistive MEMS cantilever, including a lumped parameter model to show the effect of geometric asymmetry on the piezoresistor sensitivity. Asymmetric piezoresistors are found to be much more sensitive to applied load than the typical symmetric design producing about two orders of magnitude higher resistance change. This is shown to be due to the difference in the stress distribution in the symmetric and asymmetric geometries resulting in less resistance change cancellation in the asymmetric design. Although still less sensitive than diffused piezoresistors, asymmetric piezoresistors are sensitive enough for many applications, and are much easier to fabricate and integrate into MEMS devices. (paper)

  6. Coronary Artery Stent Evaluation Using a Vascular Model at 64-Detector Row CT: Comparison between Prospective and Retrospective ECG-Gated Axial Scans

    International Nuclear Information System (INIS)

    Suzuki, Shigeru; Furui, Shigeru; Kaminaga, Tatsuro; Miyazawa, Akiyoshi; Ueno, Yasunari; Konno, Kumiko; Kuwahara, Sadatoshi; Mehta, Dhruv

    2009-01-01

    We wanted to evaluate the performance of prospective electrocardiogram (ECG)-gated axial scans for assessing coronary stents as compared with retrospective ECG-gated helical scans. As for a vascular model of the coronary artery, a tube of approximately 2.5-mm inner diameter was adopted and as for stents, three (Bx-Velocity, Express2, and Micro Driver) different kinds of stents were inserted into the tube. Both patent and stenotic models of coronary artery were made by instillating different attenuation (396 vs. 79 Hounsfield unit [HU]) of contrast medium within the tube in tube model. The models were scanned with two types of scan methods with a simulated ECG of 60 beats per minute and using display field of views (FOVs) of 9 and 18 cm. We evaluated the in-stent stenosis visually, and we measured the attenuation values and the diameter of the patent stent lumen. The visualization of the stent lumen of the vascular models was improved with using the prospective ECG-gated axial scans and a 9-cm FOV. The inner diameters of the vascular models were underestimated with mean measurement errors of -1.10 to -1.36 mm. The measurement errors were smaller with using the prospective ECG-gated axial scans (Bx-Velocity and Express2, p < 0.0001; Micro Driver, p = 0.0004) and a 9-cm FOV (all stents: p < 0.0001), as compared with the other conditions, respectively. The luminal attenuation value was overestimated in each condition. For the luminal attenuation measurement, the use of prospective ECG-gated axial scans provided less measurement error compared with the retrospective ECG-gated helical scans (all stents: p < 0.0001), and the use of a 9-cm FOV tended to decrease the measurement error. The visualization of coronary stents is improved by the use of prospective ECG-gated axial scans and using a small FOV with reduced blooming artifacts and increased spatial resolution

  7. Deformation and collapse of zircaloy fuel rod cladding into plenum axial gaps

    International Nuclear Information System (INIS)

    Pfennigwerth, P.L.; Gorscak, D.A.; Selsley, I.A.

    1983-01-01

    To minimize support structure, blanket and reflector fuel rods of the thoria urania-fueled Light Water Breeder Reactor (LWBR) were designed with non-freestanding Zircaloy-4 cladding. An analytical model was developed to predict deformation of unirradiated cladding into axial gaps of fuel rod plenum regions where it is unsupported. This model uses the ACCEPT finite element computer program to calculate elastic-plastic deformation of cladding due to external pressure. The finite element is 20-node, triquadratic, isoparametric, and 3-dimensional. Its curved surface permits accurate modeling of the tube geometry, including geometric nonuniformities such as circumferential wall thickness variation and initial tube out-of-roundness. Progressive increases in axial gap length due to cladding elongation and fuel stack shrinkage are modeled, as are deformations of fuel pellets and stainless steel support sleeves which bound plenum axial gaps in LWBR type blanket fuel rods. Zircaloy-4 primary and secondary thermal creep representations were developed from uniaxial creep testing of fuel rod tubing. Creep response to multi-axial loading is modeled with a variation of Hill's formulation for anisotropic materials. Coefficients accounting for anisotropic thermal creep in Zircaloy-4 tubes were developed from creep testing of externally pressurized tubes having fixed axial gaps in the range 2.5 cm to 5.7 cm and radial clearances over simulated fuel pellets ranging from zero to 0.089 mm. (orig./RW)

  8. A new model for spherically symmetric charged compact stars of embedding class 1

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Department of Physics, Howrah, West Bengal (India)

    2017-01-15

    In the present study we search for a new stellar model with spherically symmetric matter and a charged distribution in a general relativistic framework. The model represents a compact star of embedding class 1. The solutions obtained here are general in nature, having the following two features: first of all, the metric becomes flat and also the expressions for the pressure, energy density, and electric charge become zero in all the cases if we consider the constant A = 0, which shows that our solutions represent the so-called 'electromagnetic mass model' [17], and, secondly, the metric function ν(r), for the limit n tending to infinity, converts to ν(r) = Cr{sup 2}+ ln B, which is the same as considered by Maurya et al. [11]. We have investigated several physical aspects of the model and find that all the features are acceptable within the requirements of contemporary theoretical studies and observational evidence. (orig.)

  9. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  10. Random matrix ensembles for PT-symmetric systems

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew

    2015-01-01

    Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)

  11. Symmetrical and overloaded effect of diffusion in information filtering

    Science.gov (United States)

    Zhu, Xuzhen; Tian, Hui; Chen, Guilin; Cai, Shimin

    2017-10-01

    In physical dynamics, mass diffusion theory has been applied to design effective information filtering models on bipartite network. In previous works, researchers unilaterally believe objects' similarities are determined by single directional mass diffusion from the collected object to the uncollected, meanwhile, inadvertently ignore adverse influence of diffusion overload. It in some extent veils the essence of diffusion in physical dynamics and hurts the recommendation accuracy and diversity. After delicate investigation, we argue that symmetrical diffusion effectively discloses essence of mass diffusion, and high diffusion overload should be published. Accordingly, in this paper, we propose an symmetrical and overload penalized diffusion based model (SOPD), which shows excellent performances in extensive experiments on benchmark datasets Movielens and Netflix.

  12. Prediction of velocity distributions in rod bundle axial flow, with a statistical model (K-epsilon) of turbulence

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da.

    1978-12-01

    Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt

  13. Axial level-specific regulation of neuronal development: lessons from PITX2.

    Science.gov (United States)

    Waite, Mindy R; Martin, Donna M

    2015-02-01

    Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions. © 2014 Wiley Periodicals, Inc.

  14. Mesotherapy for benign symmetric lipomatosis.

    Science.gov (United States)

    Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku

    2010-04-01

    Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.

  15. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  16. The Nucleon Axial Form Factor and Staggered Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron Scott [Chicago U.

    2017-01-01

    The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very same nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum dependence

  17. Computational analysis of a multistage axial compressor

    Science.gov (United States)

    Mamidoju, Chaithanya

    Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.

  18. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

    OpenAIRE

    Li, Guohui; Zhang, Songling; Yang, Hong

    2017-01-01

    Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed ...

  19. Quantitative analysis of disc degeneration using axial T2 mapping in a percutaneous annular puncture model in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jee Won; Kim, Su Jin [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Kang, Heung Sik; Lee, Joon Woo [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-02-15

    To evaluate T2 relaxation time change using axial T2 mapping in a rabbit degenerated disc model and determine the most correlated variable with histologic score among T2 relaxation time, disc height index, and Pfirrmann grade. Degenerated disc model was made in 4 lumbar discs of 11 rabbits (n = 44) by percutaneous annular puncture with various severities of an injury. Lumbar spine lateral radiograph, MR T2 sagittal scan and MR axial T2 mapping were obtained at baseline and 2 weeks and 4 weeks after the injury in 7 rabbits and at baseline and 2 weeks, 4 weeks, and 6 weeks after the injury in 4 rabbits. Generalized estimating equations were used for a longitudinal analysis of changes in T2 relaxation time in degenerated disc model. T2 relaxation time, disc height index and Pfirrmann grade were correlated with the histologic scoring of disc degeneration using Spearman's rho test. There was a significant difference in T2 relaxation time between uninjured and injured discs after annular puncture. Progressive decrease in T2 relaxation time was observed in injured discs throughout the study period. Lower T2 relaxation time was observed in the more severely injured discs. T2 relaxation time showed the strongest inverse correlation with the histologic score among the variables investigated (r = -0.811, p < 0.001). T2 relaxation time measured with axial T2 mapping in degenerated discs is a potential method to assess disc degeneration.

  20. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Kaup, Moritz; Fischer, Sebastian; Kerl, J Matthias; Lehnert, Thomas; Vogl, Thomas J; Bauer, Ralf W

    2015-03-01

    To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. 77 patients (28 women, 49 men, mean age 65.3±14.4 years) with known or suspected spinal disorders (degenerative spine disease n=32; disc herniation n=36; traumatic vertebral fractures n=9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (pquality with excellent inter-observer agreement. The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time-saving when reconstructions of 2 and more vertebrae are performed. Checking results of automatic labeling is necessary to prevent errors in labeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Studies of axial-leakage simulations for homogeneous and heterogeneous EBR-II core configurations

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1985-08-01

    When calculations of flux are done in less than three dimensions, leakage-absorption cross sections are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. Since the neutron flux is axially dependent, the leakages, and hence the leakage-absorption cross sections, are also axially dependent. Therefore, to obtain axial flux profiles (or reaction rates) for individual subassemblies, an XY-geometry calculation delineating each subassembly has to be done at several axial heights with space- and energy-dependent leakage-absorption cross sections that are appropriate for each height. This report discusses homogeneous and heterogeneous XY-geometry calculations at various axial locations and using several differing assumptions for the calculation of the leakage-absorption cross section. The positive (outward) leakage-absorption cross sections are modeled as actual leakage absorptions, but the negative (inward) leakage-absorption cross sections are modeled as either negative leakage absorptions (+-B 2 method) or positive downscatter cross sections [the Σ/sub s/(1 → g) method]. 3 refs., 52 figs., 10 tabs

  2. Right-handed quark mixings in minimal left-right symmetric model with general CP violation

    International Nuclear Information System (INIS)

    Zhang Yue; Ji Xiangdong; An Haipeng; Mohapatra, R. N.

    2007-01-01

    We solve systematically for the right-handed quark mixings in the minimal left-right symmetric model which generally has both explicit and spontaneous CP violations. The leading-order result has the same hierarchical structure as the left-handed Cabibbo-Kobayashi-Maskawa mixing, but with additional CP phases originating from a spontaneous CP-violating phase in the Higgs vacuum expectation values. We explore the phenomenology entailed by the new right-handed mixing matrix, particularly the bounds on the mass of W R and the CP phase of the Higgs vacuum expectation values

  3. Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)

    2017-06-15

    The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.

  4. NUMERICAL PREDICTION OF COMPOSITE BEAM SUBJECTED TO COMBINED NEGATIVE BENDING AND AXIAL TENSION

    Directory of Open Access Journals (Sweden)

    MAHESAN BAVAN

    2013-08-01

    Full Text Available The present study has investigated the finite element method (FEM techniques of composite beam subjected to combined axial tension and negative bending. The negative bending regions of composite beams are influenced by worsen failures due to various levels of axial tensile loads on steel section especially in the regions near internal supports. Three dimensional solid FEM model was developed to accurately predict the unfavourable phenomenon of cracking of concrete and compression of steel in the negative bending regions of composite beam due to axial tensile loads. The prediction of quasi-static solution was extensively analysed with various deformation speeds and energy stabilities. The FEM model was then validated with existing experimental data. Reasonable agreements were observed between the results of FEM model and experimental analysis in the combination of vertical-axial forces and failure modes on ultimate limit state behaviour. The local failure modes known as shear studs failure, excess yielding on steel beam and crushing on concrete were completely verified by extensive similarity between the numerical and experimental results. Finally, a proper way of modelling techniques for large FEM models by considering uncertainties of material behaviour due to biaxial loadings and complex contact interactions is discussed. Further, the model is suggested for the limit state prediction of composite beam with calibrating necessary degree of the combined axial loads.

  5. Non-symmetric approach to single-screw expander and compressor modeling

    Science.gov (United States)

    Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.

    2017-08-01

    Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.

  6. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  7. 3D micro-particle image modeling and its application in measurement resolution investigation for visual sensing based axial localization in an optical microscope

    International Nuclear Information System (INIS)

    Wang, Yuliang; Li, Xiaolai; Bi, Shusheng; Zhu, Xiaofeng; Liu, Jinhua

    2017-01-01

    Visual sensing based three dimensional (3D) particle localization in an optical microscope is important for both fundamental studies and practical applications. Compared with the lateral ( X and Y ) localization, it is more challenging to achieve a high resolution measurement of axial particle location. In this study, we aim to investigate the effect of different factors on axial measurement resolution through an analytical approach. Analytical models were developed to simulate 3D particle imaging in an optical microscope. A radius vector projection method was applied to convert the simulated particle images into radius vectors. With the obtained radius vectors, a term of axial changing rate was proposed to evaluate the measurement resolution of axial particle localization. Experiments were also conducted for comparison with that obtained through simulation. Moreover, with the proposed method, the effects of particle size on measurement resolution were discussed. The results show that the method provides an efficient approach to investigate the resolution of axial particle localization. (paper)

  8. Description and Features of UX-Analyze

    Science.gov (United States)

    2009-02-01

    POB model and GUI for EM63 Inversion The full Pasion -Oldenburg-Billings (POB) analysis assumes an axially symmetric (axial and transverse) tensor...output from the EM63 inversion. 1 Pasion , L.R., and Oldenburg, D.W., 2001, Locating and

  9. New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation.

    Science.gov (United States)

    Baran, Timothy M; Foster, Thomas H

    2011-08-01

    We present a new Monte Carlo model of cylindrical diffusing fibers that is implemented with a graphics processing unit. Unlike previously published models that approximate the diffuser as a linear array of point sources, this model is based on the construction of these fibers. This allows for accurate determination of fluence distributions and modeling of fluorescence generation and collection. We demonstrate that our model generates fluence profiles similar to a linear array of point sources, but reveals axially heterogeneous fluorescence detection. With axially homogeneous excitation fluence, approximately 90% of detected fluorescence is collected by the proximal third of the diffuser for μ(s)'∕μ(a) = 8 in the tissue and 70 to 88% is collected in this region for μ(s)'∕μ(a) = 80. Increased fluorescence detection by the distal end of the diffuser relative to the center section is also demonstrated. Validation of these results was performed by creating phantoms consisting of layered fluorescent regions. Diffusers were inserted into these layered phantoms and fluorescence spectra were collected. Fits to these spectra show quantitative agreement between simulated fluorescence collection sensitivities and experimental results. These results will be applicable to the use of diffusers as detectors for dosimetry in interstitial photodynamic therapy.

  10. Source-rock maturation characteristics of symmetric and asymmetric grabens inferred from integrated analogue and numerical modeling: The southern Viking Graben (North Sea)

    NARCIS (Netherlands)

    Corver, M.P.; Doust, H.; van Wees, J.D.A.M.; Cloetingh, S.A.P.L.

    2011-01-01

    We present the results of an integrated analogue and numerical modeling study with a focus on structural, stratigraphic and thermal differences between symmetric and asymmetric grabens. These models enable fault interpretation and subsidence analyses in studies of active rifting and graben

  11. Computerised Axial Tomography (CAT)

    Science.gov (United States)

    1990-06-01

    Ministry of’ Defence, Defence Research Information Centre, UK. Computerised Axial Tomography ( CAT ) Report Secufty C"uMiauion tide Onadtiicadon (U. R, Cor S...DRIC T 8485 COMPUTERISED AXIAL TOMOGRAPHY ( CAT ) F.P. GENTILE, F. SABETTA, V. TRO1* ISS R 78/4.Rome, 1.5 Mlarch 1978 (from Italian) B Distribution(f...dello Radiazioni ISSN 0390--6477 F.P. GENTILE, F. SABETTA. V. TROI Computerised Axial Tomography ( CAT ) March 15, 1978). This paper is a review of

  12. Axial Hall effect and universality of holographic Weyl semi-metals

    Energy Technology Data Exchange (ETDEWEB)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl [Instituto de Física Teórica UAM/CSIC,c/ Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid (Spain)

    2017-02-28

    The holographic Weyl semimetal is a model of a strongly coupled topological semi-metal. A topological quantum phase transition separates a topological phase with non-vanishing anomalous Hall conductivity from a trivial state. We investigate how this phase transition depends on the parameters of the scalar potential (mass and quartic self coupling) finding that the quantum phase transition persists for a large region in parameter space. We then compute the axial Hall conductivity. The algebraic structure of the axial anomaly predicts it to be 1/3 of the electric Hall conductivity. We find that this holds once a non-trivial renormalization effect on the external axial gauge fields is taken into account. Finally we show that the phase transition also occurs in a top-down model based on a consistent truncation of type IIB supergravity.

  13. CAMDYN: a new model to describe the axial motion of molten fuel inside the pin of a fast breeder reactor during accident conditions

    International Nuclear Information System (INIS)

    Peter, G.

    1991-01-01

    The new in-pin fuel motion model CAMDYN (Cavity Material Dynamics) describes the axial motion of both partially and fully molten fuel inside the pin of a fast breeder reactor during accident conditions. The motion of the two types of molten fuel and the imbedded fission gas bubbles is treated both before and after cladding failure. The basic modelling approach consists of the treatment of two one-dimensional flows which are coupled by interaction terms. Each of these flows is treated compressively and with axially variable flow cross sections. The mass and energy equations of both fields are solved explicitly using upwind differencing on a fixed Eulerian grid. The two momentum equations are solved simultaneously, using the convective momentum fluxes of the previous timestep. Both partially and fully molten fuel can move axially into a central hole extending to the plenum in the case of certain hollow pellet designs. The fuel temperature calculation includes the determination of a radial temperature profile. A simple conduction freezing model is included. After cladding failure, ejection into the coolant channel is modeled

  14. Meson exchange corrections to nuclear weak axial charge density in hard pion model and O+ reversible O- transition in A = 16 nuclei

    International Nuclear Information System (INIS)

    Jager, H.U.; Kirchbach, M.; Truhlik, E.

    1982-01-01

    Starting with the hard pion model based on a minimal chiral invariant phenomenological Lagrangian, the two-particle part of the time component of the weak axial-vector current is constructed in the tree-approximation. Pion, rho- and A 1 -meson exchanges are considered. The mesonic exchange operator obtained is applied to describe the purely weak axial 0 + reversible 0 - , ΔT=1 transition in the nuclear A=16 system the muon reaction μ - + 16 O(0 1 + ; T=0) → 16 N(0 1 - ; T=1) + γsub(μ) and beta decay 16 N(0 1 - ; T=1) → 16 O(0 1 + ; T=0) + e - + anti νsub(e). In order to treat nufar structure correlation efects explicit use of shell model wave functions with configuration mixing is made. The large enhancement of the nuclear weak axial charge density with respect to impulse approximation is established

  15. Axial focusing of energy from a hypervelocity impact on earth

    International Nuclear Information System (INIS)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-01-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes

  16. Symmetric scrolled packings of multilayered carbon nanoribbons

    Science.gov (United States)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  17. Axial force in a superconductor magnet journal bearing

    Science.gov (United States)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  18. Holographic estimate of the meson cloud contribution to nucleon axial form factor

    Science.gov (United States)

    Ramalho, G.

    2018-04-01

    We use light-front holography to estimate the valence quark and the meson cloud contributions to the nucleon axial form factor. The free couplings of the holographic model are determined by the empirical data and by the information extracted from lattice QCD. The holographic model provides a good description of the empirical data when we consider a meson cloud mixture of about 30% in the physical nucleon state. The estimate of the valence quark contribution to the nucleon axial form factor compares well with the lattice QCD data for small pion masses. Our estimate of the meson cloud contribution to the nucleon axial form factor has a slower falloff with the square momentum transfer compared to typical estimates from quark models with meson cloud dressing.

  19. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  20. Closed Form Aliasing Probability For Q-ary Symmetric Errors

    Directory of Open Access Journals (Sweden)

    Geetani Edirisooriya

    1996-01-01

    Full Text Available In Built-In Self-Test (BIST techniques, test data reduction can be achieved using Linear Feedback Shift Registers (LFSRs. A faulty circuit may escape detection due to loss of information inherent to data compaction schemes. This is referred to as aliasing. The probability of aliasing in Multiple-Input Shift-Registers (MISRs has been studied under various bit error models. By modeling the signature analyzer as a Markov process we show that the closed form expression derived for aliasing probability previously, for MISRs with primitive polynomials under q-ary symmetric error model holds for all MISRs irrespective of their feedback polynomials and for group cellular automata signature analyzers as well. If the erroneous behaviour of a circuit can be modelled with q-ary symmetric errors, then the test circuit complexity and propagation delay associated with the signature analyzer can be minimized by using a set of m single bit LFSRs without increasing the probability of aliasing.

  1. Hamilton's equations for a fluid membrane: axial symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2005-09-23

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.

  2. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  3. Bessel beam CARS of axially structured samples

    Science.gov (United States)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  4. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    Science.gov (United States)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  5. A Hybrid Lumped Parameters/Finite Element/Boundary Element Model to Predict the Vibroacoustic Characteristics of an Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Shaogan Ye

    2017-01-01

    Full Text Available Low noise axial piston pumps become the rapid increasing demand in modern hydraulic fluid power systems. This paper proposes a systematic approach to simulate the vibroacoustic characteristics of an axial piston pump using a hybrid lumped parameters/finite element/boundary element (LP/FE/BE model, and large amount of experimental work was performed to validate the model. The LP model was developed to calculate the excitation forces and was validated by a comparison of outlet flow ripples. The FE model was developed to calculate the vibration of the pump, in which the modeling of main friction pairs using different spring elements was presented in detail, and the FE model was validated using experimental modal analysis and measured vibrations. The BE model was used to calculate the noise emitted from the pump, and a measurement of sound pressure level at representative field points in a hemianechoic chamber was conducted to validate the BE model. Comparisons between the simulated and measured results show that the developed LP/FE/BE model is effective in capturing the vibroacoustic characteristics of the pump. The presented approach can be extended to other types of fluid power components and contributes to the development of quieter fluid power systems.

  6. Propagation of symmetric and anti-symmetric surface waves in aself-gravitating magnetized dusty plasma layer with generalized (r, q) distribution

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-05-01

    The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.

  7. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  8. Stability model for one-dimensional FRCs

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Hewitt, T.G.; Lewis, H.R.; Seyler, C.E.; Symon, K.R.

    1982-01-01

    The subject of transport near the separatrix in FRC devices is important for determining the performance to be expected from an FRC reactor or from FRC experiments. A computer code was constructed for studying the micro-stability properties of FRCs near the separatrix as a first step in obtaining quasilinear transport coefficients that can be used in a transport code. We consider collisionless ions and electrons, without an expansion in powers of a parameter, like the electron or ion gyroradius, and we approximate the equilibrium with an infinitely long axially and translationally symmetric equilibrium. Thus, in our equilibria, there are only an axial magnetic field and a radial electric field. Our equilibria are collisionless, two-species, diffuse-profile, one-dimensional, theta-pinch equilibria. We allow the possibility that there be a magnetic field null in order to be able to model FRC devices more realistically

  9. PT-symmetric ladders with a scattering core

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambroise, J. [Department of Mathematics, Amherst College, Amherst, MA 01002-5000 (United States); Lepri, S. [CNR – Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305 (United States)

    2014-08-01

    We consider a PT-symmetric chain (ladder-shaped) system governed by the discrete nonlinear Schrödinger equation where the cubic nonlinearity is carried solely by two central “rungs” of the ladder. Two branches of scattering solutions for incident plane waves are found. We systematically construct these solutions, analyze their stability, and discuss non-reciprocity of the transmission associated with them. To relate the results to finite-size wavepacket dynamics, we also perform direct simulations of the evolution of the wavepackets, which confirm that the transmission is indeed asymmetric in this nonlinear system with the mutually balanced gain and loss. - Highlights: • We model a PT-symmetric ladder system with cubic nonlinearity on two central rungs. • We examine non-reciprocity and stability of incident plane waves. • Simulations of wavepackets confirm our results.

  10. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  11. The Relation Between Plate Spreading Rate, Crustal Thickness and Axial Relief at Mid-Ocean Ridges

    Science.gov (United States)

    Liu, Z.; Buck, W. R.

    2017-12-01

    Variations in axial valley relief and in faulting at plate spreading centers are clearly related to magma supply and axial lithospheric structure. Previous models that consider the interaction of magmatic dikes with lithospheric stretching do not successfully reproduce both of these trends. We present the first model that reproduces these trends by making simple assumptions about the partitioning of magma between dikes, gabbros and extrusives. A key concept is that dikes open not only in the brittle axial lithosphere but also into the underlying ductile crust, where they cool to form gabbro. The amount of gabbro so intruded depends on magma pressure that is related to axial relief. The deeper the valley the less magma goes into gabbros and the more magma is available for dikes to accommodate plate separation. We define the fraction of plate separation rate accommodated by dikes as M. If Mreasonable. Finally, we describe themo-mechanical models that allow us to relate plate spreading rate and crustal thickness and to axial valley depth.

  12. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  13. Signatures for axial chromodynamics

    International Nuclear Information System (INIS)

    Pati, J.C.

    1978-07-01

    Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 10 4 -10 6 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e - e + experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted

  14. Probabilistic cloning of three symmetric states

    International Nuclear Information System (INIS)

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  15. Axially modulated arch resonator for logic and memory applications

    KAUST Repository

    Hafiz, Md Abdullah Al

    2018-01-17

    We demonstrate reconfigurable logic and random access memory devices based on an axially modulated clamped-guided arch resonator. The device is electrostatically actuated and the motional signal is capacitively sensed, while the resonance frequency is modulated through an axial electrostatic force from the guided side of the microbeam. A multi-physics finite element model is used to verify the effectiveness of the axial modulation. We present two case studies: first, a reconfigurable two-input logic gate based on the linear resonance frequency modulation, and second, a memory element based on the hysteretic frequency response of the resonator working in the nonlinear regime. The energy consumptions of the device for both logic and memory operations are in the range of picojoules, promising for energy efficient alternative computing paradigm.

  16. Efficient Propulsion Structure with an Axial Flux Rotary Converter for HEV Drive Unit

    Directory of Open Access Journals (Sweden)

    Ales Havel

    2011-01-01

    Full Text Available This paper describes an efficient axial flux arrangement of the four quadrant rotary converter for hybrid electric vehicles. The design of the axial flux wound stator and both axial flux squirrel cage rotors is based on the arrangement of radial air gap induction motor and permanent magnet synchronous motor. The method of constant magnetic circuit volume is utilized for dimensions conversion, which results into basic dimensions of stator and rotor discs in axial flux conception. This allows the creation of real 3D models in the CAD application. Finally, the finite element simulations of electromagnetic induction in the axial flux stator pack are presented in the concluding part of this paper.

  17. Design and Modeling of Symmetric Three Branch Polymer Planar Optical Power Dividers

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2013-04-01

    Full Text Available Two types of polymer-based three-branch symmetric planar optical power dividers (splitters were designed, multimode interference (MMI splitter and triangular shape-spacing splitter. By means of modeling the real structures were simulated as made of Epoxy Novolak Resin on silicon substrate, with silica buffer layer and polymethylmethacrylate as protection cover layer. The design of polymer waveguide structure was done by Beam Propagation Method. After comparing properties of both types of the splitters we have demonstrated that our new polymer based triangular shaped splitter can work simultaneously in broader spectrum, the only condition would be that the waveguides are single-mode guiding. It practically means that, what concerns communication wavelengths, it can on principle simultaneously operate at two mainly used wavelengths, 1310 and 1550 nm.

  18. Perspectives for detecting lepton flavour violation in left-right symmetric models

    International Nuclear Information System (INIS)

    Bonilla, Cesar; Krauss, Manuel E.; Opferkuch, Toby; Porod, Werner

    2017-01-01

    We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as μ−e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating τ-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.

  19. Perspectives for detecting lepton flavour violation in left-right symmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, Cesar [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València,Edificio de Institutos de Paterna, C/Catedratico José Beltrán 2,E-46980 Paterna (València) (Spain); Krauss, Manuel E.; Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Am Hubland, 97074 Würzburg (Germany)

    2017-03-06

    We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as μ−e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating τ-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.

  20. A new strategy of axial power distribution control based on three axial offsets concept

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    2009-01-01

    We have proposed a very simple control procedure for axial xenon oscillation control based on a characteristic trajectory. The trajectory is drawn by three offsets of power distributions, namely, AOp, AOi and AOx. They are defined as the offset of axial power distribution, the offset of the power distribution under which the current iodine distribution is obtained as the equilibrium and that for xenon distribution, respectively. When these offsets are plotted on X-Y plane for (AOp-AOx, AOi-AOx) the trajectory draws a quite characteristic ellipse (or an elliptic spiral). On the other hands, Constant Axial Offset Control (CAOC) procedure is adopted as axial power distribution control strategy during both base load and load following operations in domestic PWRs. In the previous paper, we have presented an innovative procedure of axial power distribution control during load following in PWRs based on this trajectory such that the AOp-AOx is to be controlled to zero when the value deviates the pre-determined limiting values. In this paper we propose a modified control strategy to get more stability of axial power distributions. In this strategy, we control the trajectory to be close to the major axis of the ellipse when the power distribution reaches the limiting values. In other words, the plot is not controlled only to reduce AOp-AOx but also AOi-AOx is taken into account at the same time. It is known that when the plot is controlled to the major axis, it means that the point gives the peak position of axial xenon oscillation. Therefore xenon oscillation will not increase its amplitude any more. Thus more stable axial power distribution control is attained. This kind of design concept is quite important especially for the future PWRs with elongated fuel length and longer core life. Because in a longer effective core and also the longer core life, it has been known that the stability of axial xenon oscillation becomes more unstable. In this paper, some simulation

  1. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  2. Modernity: A new axial (era culture?

    Directory of Open Access Journals (Sweden)

    Wolfgang Schluchter

    2017-10-01

    Full Text Available The proposition of an axial age, lasting roughly from 800 to 200 B.C. and occurring in major civilizations (China, India, Near East independent of each other, first introduced by Alfred Weber and Karl Jaspers, then further developed by Robert Bellah and S. N. Eisenstadt among others, implied from the outset the question whether there has been a second axial age, leading to modernity, and if so, whether this second axial age consists in a secularization of the achievements of the first axial age. In this article it is argued that the notion of a second axial age is meaningful, but that the emergence of modernity can›t be accounted for in terms of secularization of the achievements of the first axial age. Rather, a new axial principle was institutionalized which separates the modern from the premodern world. This new principle is spelled out with reference to Hans Blumenberg, Charles Taylor and especially Max Weber. The emphasis is on the dialectics of disenchantment and the place of religion in a secular age

  3. Parametric modeling and stagger angle optimization of an axial flow fan

    International Nuclear Information System (INIS)

    Li, M X; Zhang, C H; Liu, Y; Zheng, S Y

    2013-01-01

    Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%

  4. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli

    2015-01-01

    The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.

  5. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  6. The spectral appearance of solar-type collapsing protostellar clouds

    International Nuclear Information System (INIS)

    Bertout, C.; Yorke, H.W.

    1978-04-01

    In this paper, we review the spectral properties of collapsing protostellar clouds, based on radiative transfer computations in hydrodynamic protostar models. In the first section, the basic results of protostar evolution computations in spherically symmetric and axially symmetry geometries, as they pertain to the appearance of protostars, are briefly reviewed. In the second section, we discuss the continuum appearance of spherically symmetric protostars with various masses. Also, we present recent results for the continuum appearance of an axially symmetric protostellar cloud. The third section deals with the line formation problem and describes preliminary results for a OH molecule in an axially symmetric collapsing cloud. Then we review recent theoretical and observational results obtained for the last evolutionary phase of protostars, known as the YY Orionis phase, when the stellar core first becomes visible in the optical range. Some of the new results and conclusions presented here can be summarized as follows: Rotating collapsing clouds are in general less luminous and cooler than corresponding non-rotating clouds - due to the longer evolutionary time scale. Nevertheless, high resolution studies (resolution [de

  7. Non-hermitian symmetric N = 2 coset models, Poincare polynomials, and string compactification

    International Nuclear Information System (INIS)

    Fuchs, J.; Schweigert, C.

    1994-01-01

    The field identification problem, including fixed point resolution, is solved for the non-hermitian symmetric N = 2 superconformal coset theories. Thereby these models are finally identified as well-defined modular invariant conformal field theories. As an application, the theories are used as subtheories in N = 2 tensor products with c = 9, which in turn are taken as the inner sector of heterotic superstring compactifications. All string theories of this type are classified, and the chiral ring as well as the number of massless generations and anti-generations are computed with the help of the extended Poincare polynomial. Several equivalences between a priori different non-hermitian coset theories show up; in particular there is a level-rank duality for an infinite series of coset theories based on C-type Lie algebras. Further, some general results for generic N = 2 coset theories are proven: a simple formula for the number of identification currents is found, and it is shown that the set of Ramond ground states of any N = 2 coset model is invariant under charge conjugation. (orig.)

  8. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  9. Connecting Dirac and Majorana neutrino mass matrices in the minimal left-right symmetric model.

    Science.gov (United States)

    Nemevšek, Miha; Senjanović, Goran; Tello, Vladimir

    2013-04-12

    Probing the origin of neutrino mass by disentangling the seesaw mechanism is one of the central issues of particle physics. We address it in the minimal left-right symmetric model and show how the knowledge of light and heavy neutrino masses and mixings suffices to determine their Dirac Yukawa couplings. This in turn allows one to make predictions for a number of high and low energy phenomena, such as decays of heavy neutrinos, neutrinoless double beta decay, electric dipole moments of charged leptons, and neutrino transition moments. We also discuss a way of reconstructing the neutrino Dirac Yukawa couplings at colliders such as the LHC.

  10. Triply coupled vibrational band gap in a periodic and nonsymmetrical axially loaded thin-walled Bernoulli-Euler beam including the warping effect

    International Nuclear Information System (INIS)

    Yu Dianlong; Fang Jianyu; Cai Li; Han Xiaoyun; Wen Jihong

    2009-01-01

    The propagation of triply coupled vibrations in a periodic, nonsymmetrical and axially loaded thin-walled Bernoulli-Euler beam composed of two kinds of materials is investigated with the transfer matrix method. The cross-section of the beam lacks symmetrical axes, and bending vibrations in the two perpendicular directions are coupled with torsional vibrations. Furthermore, the effect of warping stiffness is included. The band structures of the periodic beam, both including and excluding the warping effect, are obtained. The frequency response function of the finite periodic beam is simulated with the finite element method. These simulations show large vibration-based attenuation in the frequency range of the gap, as expected. By comparing the band structure of the beam with plane wave expansion method calculations that are available in the literature, one finds that including the warping effect leads to a more accurate simulation. The effects of warping stiffness and axial force on the band structure are also discussed.

  11. Loss reduction in axial-flow compressors through low-speed model testing

    Science.gov (United States)

    Wisler, D. C.

    1984-01-01

    A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.

  12. On the analytical flux distribution modeling of an axial-flux surface-mounted permanent magnet motor for control applications

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-C.; Chiang, T.-S.

    2004-01-01

    By combining the recoil line characteristics of permanent magnet and the equivalent operational magnetic circuits at various rotor positions, a systematic procedure for developing the desired analytical model of an axial-flux surface-mounted permanent magnet motor can be devised. Supported by detailed three-dimensional finite element analysis results and statistical evaluations, accuracies of the developed analytical model can be guaranteed. With such well developed system model, the relative high-precision controls and operations of the motor can then be conveniently realized

  13. Constraining vectors and axial-vectors in walking technicolour by a holographic principle

    DEFF Research Database (Denmark)

    D. Dietrich, Dennis; Kouvaris, Christoforos

    2008-01-01

    We use a holographic principle to study the low-energy spectrum of walking technicolour models. In particular, we predict the masses of the axial vectors as well as the decay constants of vectors and axial vectors as functions of the mass of the techni-rho. Given that there are very few...

  14. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  15. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  16. Generalization of a global model for reinforced concrete beams under combined axial force and bending moments

    International Nuclear Information System (INIS)

    Bairrao, R.; Millard, A.; Barbe, B.

    1991-01-01

    A large set of numerical data was obtained using a program recently developed. From the various results achieved, new analytical expressions for the definition of damage and plasticity criteria are being derived. The importance of taking into account the presence of general bending was highlighted. The extension to 3D bending, of the previous global models for reinforced concrete beams under combined axial force and bending, is under development. (author)

  17. 3D simulations of axially confined heavy ion beams in round and square pipes

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Haber, I.

    1990-01-01

    We have been using the 3d PIC code WARP6 to model the behavior of beams in a heavy ion induction accelerator; such linacs are candidates for an ICF driver. Improvements have been added to the code to model an axially confined beam using comoving axial electric fields to simulate the confining ''ears'' applied to the accelerating pulses in a real system. We have also added a facility for modeling a beam in a round pipe, applying a capacity matrix to each axial Fourier mode in turn. These additions are described along with results, such as the effect of pipe shape on the beam quality degradation from quadrupole misalignments. 4 refs., 6 figs., 1 tab

  18. 3D simulations of axially confined heavy ion beams in round and square pipes

    International Nuclear Information System (INIS)

    Grote, D.P.; Friedman, A.; Haber, I.

    1991-01-01

    We have been using the 3d PIC code WARP6 to model the behavior of beams in a heavy ion induction accelerator; such linacs are candidates for an ICF driver. Improvements have been added to the code to model an axially confined beam using comoving axial electric fields to simulate the confining ''ears'' applied to the accelerating pulses in a real system. We have also added a facility for modeling a beam in a round pipe, applying a capacity matrix to each axial Fourier mode in turn. These additions are described along with results, such as the effect of pipe shape on the beam quality degradation from quadrupole misalignments. 5 refs., 6 figs., 1 tab

  19. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model*

    Directory of Open Access Journals (Sweden)

    Matsui Toshinori

    2018-01-01

    Full Text Available Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  20. Super-symmetric informationally complete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huangjun, E-mail: hzhu@pitp.ca

    2015-11-15

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  1. Stall inception and warning in a single-stage transonic axial compressor with axial skewed slot casing treatment

    International Nuclear Information System (INIS)

    Lim, Byeung Jun; Kwon, Se Jin; Park, Tae Choon

    2014-01-01

    Characteristic changes in the stall inception in a single-stage transonic axial compressor with an axial skewed slot casing treatment were investigated experimentally. A rotating stall occurred intermittently in a compressor with an axial skewed slot, whereas spike-type rotating stalls occurred in the case of smooth casing. The axial skewed slot suppressed stall cell growth and increased the operating range. A mild surge, the frequency of which is the Helmholtz frequency of the compressor system, occurred with the rotating stall. The irregularity in the pressure signals at the slot bottom increased decreasing flow rate. An autocorrelation-based stall warning method was applied to the measured pressure signals. Results estimate and warn against the stall margin in a compressor with an axial skewed slot.

  2. Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations

    Science.gov (United States)

    Roy, Sthitadhi; Kolodrubetz, Michael; Goldman, Nathan; Grushin, Adolfo G.

    2018-04-01

    In this work, we describe a toolbox to realize and probe synthetic axial gauge fields in engineered Weyl semimetals. These synthetic electromagnetic fields, which are sensitive to the chirality associated with Weyl nodes, emerge due to spatially and temporally dependent shifts of the corresponding Weyl momenta. First, we introduce two realistic models, inspired by recent cold-atom developments, which are particularly suitable for the exploration of these synthetic axial gauge fields. Second, we describe how to realize and measure the effects of such axial fields through center-of-mass observables, based on semiclassical equations of motion and exact numerical simulations. In particular, we suggest realistic protocols to reveal an axial Hall response due to the axial electric field \

  3. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang

    2014-01-01

    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  4. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  5. Anomalous resonance of the symmetric single-impurity Anderson model in the presence of pairing fluctuations

    International Nuclear Information System (INIS)

    Guang-Ming Zhang; Lu Yu

    1998-10-01

    We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renormalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization. (author)

  6. Left--right symmetric gauge theories of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Sidhu, D.P.

    1978-01-01

    We review the recent progress in spontaneously broken left-right symmetric gauge theories of weak and electromagnetic interactions. Recently gauge theories based on the group SU(2)/Sub L/ x SU(2)/sub R/ x U(1) have been proposed as serious candidates for a unified description of the weak and electromagnetic interactions. Such theories have a number of attractive features which are not shared by the standard SU(2) x U(1) theories. Parity violation as well as CP-violation are spontaneous in origin and, therefore, theories are parity conserving before spontaneous breakdown of the symmetry and also afterwards at asymptotic energies. The asymmetry in low energy charged current weak interaction, i.e., predominance of left-handed charged current interactions over the right-handed ones, is a consequence of the symmetry breaking thus leading to a conceptually different picture of weak interaction at low energies. Another appealing feature of these theories is the beauty and richness of the structure of weak neutral current interactions. One can have a parity conserving structure of the neutral currents (one neutral boson (Z/sub V/) has pure vector and the other (Z/sub A/) pure axial vector coupling to quarks and leptons) which is natural in the technical sense of the word. Models of this type provide the most elegant explanation of the failure to find parity violation in atoms at the level predicted on the basis of the Weinberg-Salam model. In spite of manifestly parity conserving neutral current interactions, ν/sub μ/N and anti ν/sub μ/N (also ν/sub μ/e and anti ν/sub μ/e) neutral current cross-sections have to be unequal in these theories because of the definite parity and charge conjugation of the Z-bosons

  7. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  8. Non Newtonian Behavior of Blood in Presence of Arterial Occlusion

    OpenAIRE

    Dr.Arun Kumar Maiti

    2016-01-01

    The objective of the present numerical model is to investigate the effect of shape of stenosis on blood flow through an artery using Bingham plastic fluid model. Blood is modeled as Bingham plastic fluid in a uniform circular tube with an axially symmetric but radially non symmetric stenosis. The expressions for flux, dimensionless resistance to flow with stenosis shape parameter, stenosis length and stenosis size have been shown graphically

  9. Algebraic stress model for axial flow in a bare rod-bundle

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1987-01-01

    The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-ε model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term

  10. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  11. Transverse Vibration of Axially Moving Functionally Graded Materials Based on Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Suihan Sui

    2015-01-01

    Full Text Available The transverse free vibration of an axially moving beam made of functionally graded materials (FGM is investigated using a Timoshenko beam theory. Natural frequencies, vibration modes, and critical speeds of such axially moving systems are determined and discussed in detail. The material properties are assumed to vary continuously through the thickness of the beam according to a power law distribution. Hamilton’s principle is employed to derive the governing equation and a complex mode approach is utilized to obtain the transverse dynamical behaviors including the vibration modes and natural frequencies. Effects of the axially moving speed and the power-law exponent on the dynamic responses are examined. Some numerical examples are presented to reveal the differences of natural frequencies for Timoshenko beam model and Euler beam model. Moreover, the critical speed is determined numerically to indicate its variation with respect to the power-law exponent, axial initial stress, and length to thickness ratio.

  12. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?

    Directory of Open Access Journals (Sweden)

    Leili Shahriyari

    Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.

  13. Numerical investigations on axial and radial blade rubs in turbo-machinery

    Science.gov (United States)

    Abdelrhman, Ahmed M.; Tang, Eric Sang Sung; Salman Leong, M.; Al-Qrimli, Haidar F.; Rajamohan, G.

    2017-07-01

    In the recent years, the clearance between the rotor blades and stator/casing had been getting smaller and smaller prior improving the aerodynamic efficiency of the turbomachines as demand in the engineering field. Due to the clearance reduction between the blade tip and the rotor casing and between rotor blades and stator blades, axial and radial blade rubbing could be occurred, especially at high speed resulting into complex nonlinear vibrations. The primary aim of this study is to address the blade axial rubbing phenomenon using numerical analysis of rotor system. A comparison between rubbing caused impacts of axial and radial blade rubbing and rubbing forces are also aims of this study. Tow rotor models (rotor-stator and rotor casing models) has been designed and sketched using SOILDSWORKS software. ANSYS software has been used for the simulation and the numerical analysis. The rubbing conditions were simulated at speed range of 1000rpm, 1500rpm and 2000rpm. Analysis results for axial blade rubbing showed the appearance of blade passing frequency and its multiple frequencies (lx, 2x 3x etc.) and these frequencies will more excited with increasing the rotational speed. Also, it has been observed that when the rotating speed increased, the rubbing force and the harmonics frequencies in x, y and z-direction become higher and severe. The comparison study showed that axial blade rub is more dangerous and would generate a higher vibration impacts and higher blade rubbing force than radial blade rub.

  14. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    Science.gov (United States)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  15. Development of axial tomography technique for the study of steam explosion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Seo, S. W.; You, S. [Handong Golbal Univ., Pohang (Korea, Republic of)

    2006-05-15

    In this report, axial tomography applying to steam explosion is implemented. When steam explosion experiment is performed, we have seen the difficulty with physical modeling due to the complex phenomena of generated steam, propagation of shock wave and bubble breakup and coalescence. Hence, the uncertainty due to these phenomena is occurred. The fast and global measurement of the steam distribution is imperative to understand the complex phenomena performed during the steam explosion, KAERI have developed the fast and global measuring instrument to monitor such phenomena of axial steam distribution. Generally, X-ray is used as measuring method, but this method is very expensive and has limited measurement area. So we need new method that can substitute X-ray method and in this research, ECT method is replaced. The research is performed dividing within two parts: Software and Hardware. In the software part, the electric field analysis code and algorithm for inverse projection were developed. And, in the hardware part, capacitance measurement circuit is developed to measure up to fF level. Operable axial tomography was analyzed with concept design of axial tomography appropriate to steam explosion accident and analysis code for axial electric field analysis and inverse algorithm were developed, moreover, designing signal analysis system for axial tomography was performed.

  16. Output characteristics of a series three-port axial piston pump

    Science.gov (United States)

    Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei

    2012-05-01

    Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made

  17. On the random geometry of a symmetric matter antimatter universe

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Goto, M.

    1977-05-01

    A statistical analysis is made of the randon geometry of an early symmetric matter-antimatter universe model. Such a model is shown to determine the total number of the largest agglomerations in the universe, as well as of some special configurations. Constraints on the time development of the protoagglomerations are also obtained

  18. A benchmark study of procedures for analysis of axial crushing of bulbous bows

    DEFF Research Database (Denmark)

    Yamada, Yasuhira; Pedersen, Preben Terndrup

    2008-01-01

    Simplified methods to estimate mean axial crushing forces of plated structures are reviewed and applied to a series of experimental results for axial crushing of large-scale bulbous bow models. Methods based on intersection unit elements such as L-, T- and X-type elements as well as methods based...

  19. Stability management of high speed axial flow compressor stage through axial extensions of bend skewed casing treatment

    Directory of Open Access Journals (Sweden)

    DilipkumarBhanudasji Alone

    2016-09-01

    Full Text Available This paper presents the experimental results to understand the performance of moderately loaded high speed single stage transonic axial flow compressor subjected to various configurations of axial extensions of bend skewed casing treatment with moderate porosity. The bend skewed casing treatment of 33% porosity was coupled with rectangular plenum chamber of depth equal to the slots depth. The five axial extensions of 20%, 40%, 60%, 80% and 100% were used for the experimental evaluations of compressor performance. The main objective was to identify the optimum extension of the casing treatment with reference to rotor leading edge which results in maximum stall margin improvements with minimum loss in the stage efficiency. At each axial extension the compressor performance is distinctive. The improvement in the stall margin was very significant at some axial extensions with 4%–5% penalty in the stage efficiency. The compressors stage shows recovery in terms of efficiency at lower axial extensions of 20% and 40% with increase in the peak stage efficiency. Measurements of flow parameters showed the typical behaviors at near stall flow conditions. Hot wire sensor was placed at the rotor upstream in the tip region to capture the oscillations in the inlet axial and tangential velocities at stall conditions. In the absence of casing treatment the compressor exhibit abrupt stall with very high oscillations in the inlet axial and tangential velocity of the flow. The extents of oscillations reduce with bend skewed casing treatment. Few measurements were also performed in the plenum chamber and salient results are presented in this paper.

  20. Plasticity around an Axial Surface Crack in a Cylindrical Shell

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    of the yield zone. The model is used to analyse published test data on surface cracked pressurised pipes. The analysis consists in COD evaluation and estimate of failure as a consequence of plastic instability. A method is proposed which deals with the problem by simultaneous analysis of a number of cracks......This paper presents a plasticity model for deep axial surface cracks in pressurised pipes. The model is used in an investigation of the relative merits of fracture criteria based on COD and plastic instability. Recent investigations have shown that the inconsistency of the singular bending stress...... on the bending stresses is considerable. In the case of surface cracks moments are induced due to the eccentricity of the crack and transverse shear effects should therefore be included. A plasticity model for a rectangular axial surface crack is developed. Like a previous surface crack model by Erdogen...

  1. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    Science.gov (United States)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  2. Some analyses on the plasma motion in the space active region of the axial symmetry

    International Nuclear Information System (INIS)

    Li Zhongyuan; Hu Wenrui.

    1986-04-01

    In general, the potential magnetic field may gradually be twisted into the force-free magnetic field with the current produced by plasma rotation. In this paper, it is pointed out that if the magnetic field has no singularity on the symmetric axis, then the potential magnetic field cannot be twisted into the force-free magnetic field. Namely, it is not a perfect approach that the energy storage is only caused by the pure azimuthal motion in the active region. Besides the pure spiral motion, the unsteady coupling process between the magnetic field and both the toroidal and the poloidal velocity components should be analyzed. Finally, in the present note, some features of the kinematical force-free magnetic field of the axial symmetry are presented by the authors. (author)

  3. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    Efremov, A.V.; Teryaev, O.V.

    1989-01-01

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  4. Modeling and Design of a Nano Scale CMOS Inverter for Symmetric Switching Characteristics

    Directory of Open Access Journals (Sweden)

    Joyjit Mukhopadhyay

    2012-01-01

    Full Text Available This paper presents a technique for the modeling and design of a nano scale CMOS inverter circuit using artificial neural network and particle swarm optimization algorithm such that the switching characteristics of the circuit is symmetric, that is, has nearly equal rise and fall time and equal output high-to-low and low-to-high propagation delay. The channel width of the transistors and the load capacitor value are taken as design parameters. The designed circuit has been implemented at the transistor-level and simulated using TSPICE for 45 nm process technology. The PSO-generated results have been compared with SPICE results. A very good accuracy has been achieved. In addition, the advantage of the present approach over an existing approach for the same purpose has been demonstrated through simulation results.

  5. Rodrigues formulas for the non-symmetric multivariable polynomials associated with the BCN-type root system

    International Nuclear Information System (INIS)

    Nishino, Akinori; Ujino, Hideaki; Komori, Yasushi; Wadati, Miki

    2000-01-01

    The non-symmetric Macdonald-Koornwinder polynomials are joint eigenfunctions of the commuting Cherednik operators which are constructed from the representation theory for the affine Hecke algebra corresponding to the BC N -type root system. We present the Rodrigues formula for the non-symmetric Macdonald-Koornwinder polynomials. The raising operators are derived from the realizations of the corresponding double affine Hecke algebra. In the quasi-classical limit, the above theory reduces to that of the BC N -type Sutherland model which describes many particles with inverse-square long-range interactions on a circle with one impurity. We also present the Rodrigues formula for the non-symmetric Jacobi polynomials of type BC N which are eigenstates of the BC N -type Sutherland model

  6. An Explanation of Jupiter's Equatorially Symmetric Gravitational Field using a Four-layer, Non-spheroidal Model with Zonal Flow

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John

    2017-10-01

    The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.

  7. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  8. The Design Method of Axial Flow Runners Focusing on Axial Flow Velocity Uniformization and Its Application to an Ultra-Small Axial Flow Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2016-01-01

    Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.

  9. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  10. Pion Condensation and Alternating Layer Spin Model in Symmetric Nuclear Matter : Use of Extended Effective Nuclear Forces : Nuclear Physics

    OpenAIRE

    Teiji, KUNIHIRO; Tatsuyuki, TAKATSUKA; Ryozo, TAMAGAKI; Department of National Sciences, Ryukoku University; College of Humanities and Social Sciences, Iwate University; Department of Physics, Kyoto University

    1985-01-01

    Pion condensation in the symmetric nuclear matter is investigated on the basis of the ALS (alternating-layer-spin) model which provides a good description for the π^0 condensation. We perform energy calculations in a realistic way where the isobar (Δ)-mixing, the short range effects and the exchange energy of the interaction are taken into account. The Δ-mixing effect is built in the model state as previously done in the neutron matter. We preferentially employ G-0 force of Sprung and Banerje...

  11. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    Science.gov (United States)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  12. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    Sugisaki, K.

    1975-12-01

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  13. Hydrologically induced orientation variations of a tri-axial Earth's principal axes based on satellite-gravimetric and hydrological models

    Directory of Open Access Journals (Sweden)

    Shen Wenbin

    2013-05-01

    Full Text Available The Earth is a tri-axial body, with unequal principal inertia moments, A, B and C. The corresponding principal axes a, b and c are determined by the mass distribution of the Earth, and their orientations vary with the mass redistribution. In this study, the hydrologically induced variations are estimated on the basis of satellite gravimetric data, including those from satellite laser ranging (SLR and gravity recovery and climate experiment (GRACE, and hydrological models from global land data assimilation system (GLDAS. The longitude variations of a and b are mainly related to the variations of the spherical harmonic coefficients C¯22 and S¯22, which have been estimated to be consisting annual variations of about 1. 6 arc seconds and 1. 8 arc seconds, respectively, from gravity data. This result is confirmed by land surface water storage provided by the GLDAS model. If the atmospheric and oceanic signals are removed from the spherical harmonic coefficients C¯21 and S¯21, the agreement of the orientation series for c becomes poor, possibly due to the inaccurate background models used in pre-processing of the satellite gravimetric data. Determination of the orientation variations may provide a better understanding of various phenomena in the study of the rotation of a tri-axial Earth.

  14. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  15. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  16. On large N fixed points of a U(N) symmetric (phisup(*)xphi)3sub(D=3) model coupled to fermions

    International Nuclear Information System (INIS)

    Nissimov, E.R.; Pacheva, S.J.

    1984-01-01

    The three-dimensional U(N) symmetric eta(phisup(*) x phi) 3 model coupled to N component fermions is considered within the 1/N expansion. In contrast to the purely bosonic case, here we find in the large N limit only a (nonperturbative) ultraviolet fixed point at eta=etasup(*) approx.= 179, whereas infrared fixed points are absent. (orig.)

  17. Axial charges of octet and decuplet baryons in a perturbative chiral quark model

    Science.gov (United States)

    Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.

    2018-05-01

    Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.

  18. Perturbation solutions for flow through symmetrical hoppers with inserts and asymmetrical wedge hoppers

    Science.gov (United States)

    Cox, G. M.; Mccue, S. W.; Thamwattana, N.; Hill, J. M.

    Under certain circumstances, an industrial hopper which operates under the "funnel-flow" regime can be converted to the "mass-flow" regime with the addition of a flow-corrective insert. This paper is concerned with calculating granular flow patterns near the outlet of hoppers that incorporate a particular type of insert, the cone-in-cone insert. The flow is considered to be quasi-static, and governed by the Coulomb-Mohr yield condition together with the non-dilatant double-shearing theory. In two-dimensions, the hoppers are wedge-shaped, and as such the formulation for the wedge-in-wedge hopper also includes the case of asymmetrical hoppers. A perturbation approach, valid for high angles of internal friction, is used for both two-dimensional and axially symmetric flows, with analytic results possible for both leading order and correction terms. This perturbation scheme is compared with numerical solutions to the governing equations, and is shown to work very well for angles of internal friction in excess of 45°.

  19. Computer Code for Interpreting 13C NMR Relaxation Measurements with Specific Models of Molecular Motion: The Rigid Isotropic and Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model

    Science.gov (United States)

    2017-01-01

    top rotor superimposes an effective correlation time, τe, onto a symmetric top rotor to account for internal motion. 2. THEORY The purpose...specifically describe how simple 13C relaxation theory is used to describe quantitatively simple molecular 3 motions. More-detailed accounts ...of nuclear magnetic relaxation can be found in a number of basic textbooks (i.e., Farrar and Becker, 1971; Fukushima and Roeder, 1981; Harris, 1986

  20. Symmetric imaging findings in neuroradiology

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2015-01-01

    Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in

  1. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  2. Two color interferometric electron density measurement in an axially blown arc

    Science.gov (United States)

    Stoller, Patrick; Carstensen, Jan; Galletti, Bernardo; Doiron, Charles; Sokolov, Alexey; Salzmann, René; Simon, Sandor; Jabs, Philipp

    2016-09-01

    High voltage circuit breakers protect the power grid by interrupting the current in case of a short circuit. To do so an arc is ignited between two contacts as they separate; transonic gas flow is used to cool and ultimately extinguish the arc at a current-zero crossing of the alternating current. A detailed understanding of the arc interruption process is needed to improve circuit breaker design. The conductivity of the partially ionized gas remaining after the current-zero crossing, a key parameter in determining whether the arc will be interrupted or not, is a function of the electron density. The electron density, in turn, is a function of the detailed dynamics of the arc cooling process, which does not necessarily occur under local thermodynamic equilibrium (LTE) conditions. In this work, we measure the spatially resolved line-integrated index of refraction in a near-current-zero arc stabilized in an axial flow of synthetic air with two nanosecond pulsed lasers at wavelengths of 532 nm and 671 nm. Generating a stable, cylindrically symmetric arc enables us to determine the three-dimensional index of refraction distribution using Abel inversion. Due to the wavelength dependence of the component of the index of refraction related to the free electrons, the information at two different wavelengths can be used to determine the electron density. This information allows us to determine how important it is to take into account non-equilibrium effects for accurate modeling of the physics of decaying arcs.

  3. Localizing gravity on Maxwell gauged CP1 model in six dimensions

    International Nuclear Information System (INIS)

    Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki

    2008-01-01

    We shall consider a 3-brane embedded in six-dimensional space-time with a negative bulk cosmological constant. The 3-brane is constructed by a topological soliton solution living in two-dimensional axially symmetric transverse subspace. Similar to most previous works of six-dimensional soliton models, our Maxwell gauged CP 1 brane model can also achieve localizing gravity around the 3-brane. The CP 1 field is described by a scalar doublet and derived from the O(3) sigma model by projecting it onto two-dimensional complex space. In that sense, our framework is more effective than other solitonic brane models concerning gauge theory. We shall also discuss the linear stability analysis for our new model by fluctuating all fields.

  4. Decoupling of parity- and SU(2)/sub R/-breaking scales: A new approach to left-right symmetric models

    International Nuclear Information System (INIS)

    Chang, D.; Mohapatra, R.N.; Parida, M.K.

    1984-01-01

    A new approach to left-right symmetric models is proposed, where the left-right discrete-symmetry- and SU(2)/sub R/-breaking scales are decoupled from each other. This changes the spectrum of physical Higgs bosons which leads to different patterns for gauge hierarchies in SU(2)/sub L/xSU(2)/sub R/xSU(4)/sub C/ and SO(10) models. Most interesting are two SO(10) symmetry-breaking chains with an intermediate U(1)/sub R/ symmetry. These are such as to provide new motivation to search for ΔB = 2 and right-handed current effects at low energies

  5. Looking for symmetric Bell inequalities

    OpenAIRE

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...

  6. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  7. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    Science.gov (United States)

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  8. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  9. Three-Dimensional Adaptive Mesh Refinement Simulations of Point-Symmetric Nebulae

    NARCIS (Netherlands)

    Rijkhorst, E.-J.; Icke, V.; Mellema, G.; Meixner, M.; Kastner, J.H.; Balick, B.; Soker, N.

    2004-01-01

    Previous analytical and numerical work shows that the generalized interacting stellar winds model can explain the observed bipolar shapes of planetary nebulae very well. However, many circumstellar nebulae have a multipolar or point-symmetric shape. With two-dimensional calculations, Icke showed

  10. 99mTc-MDP bone scanning of patients with diffuse metastatic carcinoma of the axial skeleton

    International Nuclear Information System (INIS)

    Morita, Seiichiro; Ishibashi, Masatoshi; Takahashi, Kazuyuki; Funatsu, Kazuhiro; Yoshii, Toshiaki; Shirabe, Ichiju; Nomura, Yasushi; Ohtake, Hisashi

    1990-01-01

    Fifteen bone scintigrams in patients with diffuse bone metastases were reviewed because of the diffuse radionuclide accumulation in the axial skeleton. Diagnoses were gastric cancer in 6 patients, prostatic cancer in 5, breast cancer in 3, and renal pelvic tumor in one. In 5 patients with gastric cancer, one with prostatic cancer, and one with renal pelvic tumor, initial bone scintigraphy showed diffuse accumulation. In one gastric cancer patient and two breast cancer patients, the multiple bone metastases had altered the diffuse bone metastasis. All patients had no lung or liver metastasis morphologically at the course of diagnosed diffuse bone metastasis. Overall, the diffuse bone metastases were classified into two groups: diffuse symmetrical accumulation in proportion to bone marrow demonstrated in the gastric cancer, and diffuse accumulation centering the axial skeleton with asymmetrical accumulation in the rib and extremities demonstrated in cancer of the prostate. The finding of X ray films were consistent to common bone metastases in proportion to the primary tumor. Diffuse bone metastases did not show the characteristic finding. During the period from the diagnosed time to the death of patients, the patients with gastric cancer died extremely earlier in comparison to the patients with breast cancer and with prostatic cancer. (author)

  11. Reconstruction of core axial power shapes using the alternating conditional expectation algorithm

    International Nuclear Information System (INIS)

    Lee, Eun Ki; Kim, Yong Hee; Cha, Kune Ho; Park, Moon Ghu

    1999-01-01

    We have introduced the alternating conditional expectation (ACE) algorithm in reconstructing 20-node axial core power shapes from five-level in-core detector powers. The core design code, Reactor Operation and Control Simulation (ROCS), calculates 3-dimensional power distributions for various core states, and the reference core-averaged axial power shapes and corresponding simulated detector powers are utilized to synthesize the axial power shape. By using the ACE algorithm, the optimal relationship between a dependent variable, the plane power, and independent variables, five detector powers, is determined without any preprocessing. A total of ∼3490 data sets per each cycle of YongGwang Nuclear (YGN) power plant units 3 and 4 is used for the regression. Continuous analytic function corresponding to each optimal transformation is calculated by simple regression model. The reconstructed axial power shapes of ∼21,200 cases are compared to the original ROCS axial power shapes. Also, to test the validity and accuracy of the new method, its performance is compared with that of the Fourier fitting method (FFM), a typical method of the deterministic approach. For a total of 21,204 data cases, the averages of root mean square (rms) error, axial peak error (ΔF z ), and axial shape index error (ΔASI) of new method are calculated as 0.81%, 0.51% and 0.00204, while those of FFM are 2.29%, 2.37% and 0.00264, respectively. We also evaluated the wide range of axial power profiles from the xenon-oscillation. The results show that the newly developed method is far superior to FFM; average rms and axial peak error are just ∼35 and ∼20% of those of FFM, respectively

  12. The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma

    International Nuclear Information System (INIS)

    Zhang Yang

    2005-01-01

    A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)

  13. Investigation of axial power gradients near a control rod tip

    Energy Technology Data Exchange (ETDEWEB)

    Loberg, John, E-mail: John.Loberg@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Osterlund, Michael, E-mail: Michael.Osterlund@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Bejmer, Klaes-Hakan, E-mail: Klaes-Hakan.Bejmer@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Blomgren, Jan, E-mail: Jan.Blomgren@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Kierkegaard, Jesper, E-mail: Jesper.Kierkegaar@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden)

    2011-07-15

    Highlights: > Pin power gradients near BWR control rod tips have been investigated. > A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. > Small nodes increases pin power gradients; standard nodes underestimates gradients. > The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, {approx}15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  14. Investigation of axial power gradients near a control rod tip

    International Nuclear Information System (INIS)

    Loberg, John; Osterlund, Michael; Bejmer, Klaes-Hakan; Blomgren, Jan; Kierkegaard, Jesper

    2011-01-01

    Highlights: → Pin power gradients near BWR control rod tips have been investigated. → A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. → Small nodes increases pin power gradients; standard nodes underestimates gradients. → The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, ∼15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  15. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    Science.gov (United States)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  16. Proposed Model of Predicting the Reduced Yield Axial Load of Reinforced Concrete Columns Due to Casting Deficiency Effect

    Directory of Open Access Journals (Sweden)

    Achillopoulou Dimitra

    2014-12-01

    Full Text Available The study deals with the investigation of the effect of casting deficiencies- both experimentally and analytically on axial yield load or reinforced concrete columns. It includes 6 specimens of square section (150x150x500 mm of 24.37 MPa nominal concrete strength with 4 longitudinal steel bars of 8 mm (500 MPa nominal strength with confinement ratio ωc=0.15. Through casting procedure the necessary provisions defined by International Standards were not applied strictly in order to create construction deficiencies. These deficiencies are quantified geometrically without the use of expensive and expertise non-destructive methods and their effect on the axial load capacity of the concrete columns is calibrated trough a novel and simplified prediction model extracted by an experimental and analytical investigation that included 6 specimens. It is concluded that: a even with suitable repair, load reduction up to 22% is the outcome of the initial construction damage presence, b the lower dispersion is noted for the section damage index proposed, c extended damage alters the failure mode to brittle accompanied with longitudinal bars buckling, d the proposed model presents more than satisfying results to the load capacity prediction of repaired columns.

  17. Kinetic Energy Losses and Efficiency of an Axial Turbine Stage in Numerical Modeling of Unsteady Flows

    Directory of Open Access Journals (Sweden)

    A. S. Laskin

    2015-01-01

    Full Text Available The article presents the results of numerical investigation of kinetic energy (KE loss and blading efficiency of the single-stage axial turbine under different operating conditions, characterized by the ratio u/C0. The calculations are performed by stationary (Stage method and nonstationary (Transient method methods using ANSYS CFX. The novelty of this work lies in the fact that the numerical simulation of steady and unsteady flows in a turbine stage is conducted, and the results are obtained to determine the loss of KE, both separately by the elements of the flow range and their total values, in the stage efficiency as well. The results obtained are compared with the calculated efficiency according to one-dimensional theory.To solve these problems was selected model of axial turbine stage with D/l = 13, blade profiles of rotor and stator of constant cross-section, similar to tested ones in inverted turbine when = 0.3. The degree of reactivity ρ = 0.27, the rotor speed was varied within the range 1000 ÷ 1800 rev/min.Results obtained allow us to draw the following conclusions:1. The level of averaged coefficients of total KE losses in the range of from 0.48 to 0.75 is from 18% to 21% when calculating by the Stage method and from 21% to 25% by the Transient one.2. The level of averaged coefficients of KE losses with the output speed of in the specified range is from 9% to 13%, and almost the same when in calculating by Stage and Transient methods.3. Levels of averaged coefficients of KE loss in blade tips (relative to the differential enthalpies per stage are changed in the range: from 4% to 3% (Stage and are stored to be equal to 5% (Transient; from 5% to 6% (Stage and from 6% to 8% (Transient.4. Coefficients of KE losses in blade tips GV and RB are higher in calculations of the model stage using the Transient method than the Stage one, respectively, by = 1.5 ÷ 2.5% and = 4 ÷ 5% of the absolute values. These are values to characterize the KE

  18. Dynamic interaction between rotor and axially-magnetized passive magnetic bearing considering magnetic eccentricity

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar

    2014-01-01

    with a multibody system composed of rigid rotor and flexible foundation. The magnetic eccentricities of the shaft magnets are modelled using the distances (amplitudes) and directions (phase angles) between the shaft axis and the centre of the magnetic fields generated. A perturbation method, i.e. harmonic......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...... is considerably lower, nevertheless they allow for asymmetric stiffness mounting, and it could be beneficial for rotor stabilization. A theoretical model is proposed to describe the non-linear rotor-bearing dynamics. It takes into account non-linear behaviour of the magnetic forces and their interaction...

  19. Vector and axial constants of the baryon decuplet

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Blok, B.Y.; Kogan, Y.I.

    1985-01-01

    On the basis of the QCD sum rules for the polarization operator in external axial and vector fields we determine the vector and axial transition constants in the 3/2 + baryon decuplet. We show that the renormalization of the axial constant is due to the interaction of the external axial field with the quark condensate

  20. Bifurcation and chaos of an axially accelerating viscoelastic beam

    International Nuclear Information System (INIS)

    Yang Xiaodong; Chen Liqun

    2005-01-01

    This paper investigates bifurcation and chaos of an axially accelerating viscoelastic beam. The Kelvin-Voigt model is adopted to constitute the material of the beam. Lagrangian strain is used to account for the beam's geometric nonlinearity. The nonlinear partial-differential equation governing transverse motion of the beam is derived from the Newton second law. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. By use of the Poincare map, the dynamical behavior is identified based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented in the case that the mean axial speed, the amplitude of speed fluctuation and the dynamic viscoelasticity is respectively varied while other parameters are fixed. The Lyapunov exponent is calculated to identify chaos. From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially accelerating viscoelastic beam

  1. Axial gap rotating electrical machine

    Science.gov (United States)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  2. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  3. Axial focusing of impact energy in the Earth's interior: Proof-of-principle tests of a new hypothesis

    Science.gov (United States)

    Boslough, M. B.; Chael, E. P.; Trucano, T. G.; Kipp, M. E.; Crawford, D. A.

    1994-01-01

    A causal link between major impact events and global processes would probably require a significant change in the thermal state of the Earth's interior, presumably brought about by coupling of impact energy. One possible mechanism for such energy coupling from the surface to the deep interior would be through focusing due to axial symmetry. Antipodal focusing of surface and body waves from earthquakes is a well-known phenomenon which has previously been exploited by seismologists in studies of the Earth's deep interior. Antipodal focusing from impacts on the Moon, Mercury, and icy satellites has also been invoked by planetary scientists to explain unusual surface features opposite some of the large impact structures on these bodies. For example, 'disrupted' terrains have been observed antipodal to the Caloris impact basis on Mercury and Imbrium Basin on the Moon. Very recently there have been speculations that antipodal focusing of impact energy within the mantle may lead to flood basalt and hotspot activity, but there has not yet been an attempt at a rigorous model. A new hypothesis was proposed and preliminary proof-of-principle tests for the coupling of energy from major impacts to the mantle by axial focusing of seismic waves was performed. Because of the axial symmetry of the explosive source, the phases and amplitudes are dependent only on ray parameter (or takeoff angle) and are independent of azimuthal angle. For a symmetric and homogeneous Earth, all the seismic energy radiated by the impact at a given takeoff angle will be refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Mantle material near the axis of symmetry will experience more strain cycles with much greater amplitude than elsewhere and will therefore experience more irreversible heating. The situation is very different than for a giant earthquake, which in addition to having less energy, has an asymmetric focal

  4. Influence of the axial anomaly on the decay N (1535 )→N η

    Science.gov (United States)

    Olbrich, Lisa; Zétényi, Miklós; Giacosa, Francesco; Rischke, Dirk H.

    2018-01-01

    The decay width of N (1535 )→N η is as large as that of N (1535 )→N π . This is in evident conflict with simple expectations based on flavor symmetry and phase space. Similarly, the decay width of Λ (1670 )→Λ (1116 )η is larger than predicted by flavor symmetry. In this work, we propose that the axial U (1 )A anomaly is responsible for an enhanced coupling of (some) excited baryons to the η meson. We test this idea by including a new, chirally symmetric but U (1 )A anomalous, term in an effective hadronic model describing baryons and their chiral partners in the mirror assignment. This term enhances the decay of the chiral partners into baryons and an η meson, such as N (1535 )→N η . Moreover, a strong coupling of N (1535 ) to N η' emerges (this is important for studies of η' production processes). Our approach shows that N (1535 ) is predominantly the chiral partner of N (939 ), and Λ (1670 ) the chiral partner of Λ (1116 ). Finally, our formalism can be used to couple the pseudoscalar glueball G ˜ to baryons. We expect a large cross section for the reaction p ¯ p →G ˜ →p ¯ p (1535 ) , which can be experimentally tested in the future PANDA experiment.

  5. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.

    Science.gov (United States)

    Espinoza Orías, Alejandro A; Malhotra, Neil R; Elliott, Dawn M

    2009-03-01

    Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior to evaluate changes after model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Cadaveric biomechanical study. Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. The apparent torsional modulus was higher in the lumbar region than in the caudal region: 0.081+/-0.026 (MPa/degrees, mean+/-SD) for lumbar axially loaded; 0.066+/-0.028 for caudal axially loaded; 0.091+/-0.033 for lumbar in pure torsion; and 0.056+/-0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/degrees. Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics.

  6. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  7. Bifurcation of cubic nonlinear parallel plate-type structure in axial flow

    International Nuclear Information System (INIS)

    Lu Li; Yang Yiren

    2005-01-01

    The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)

  8. Intrinsic carpal ligaments on MR and multidetector CT arthrography: comparison of axial and axial oblique planes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ryan K.L.; Griffith, James F.; Ng, Alex W.H.; Law, Eric K.C. [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince Of Wales Hospital, Hong Kong (China); Tse, W.L.; Wong, Clara W.Y.; Ho, P.C. [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince Of Wales Hospital, Hong Kong (China)

    2017-03-15

    To compare axial and oblique axial planes on MR arthrography (MRA) and multidetector CT arthrography (CTA) to evaluate dorsal and volar parts of scapholunate (SLIL) and lunotriquetral interosseous (LTIL) ligaments. Nine cadaveric wrists of five male subjects were studied. The visibility of dorsal and volar parts of the SLIL and LTIL was graded semi-quantitatively (good, intermediate, poor) on MRA and CTA. The presence of a ligament tear was determined on arthrosocopy and sensitivity, specificity and accuracy of tear detection were calculated. Oblique axial imaging was particularly useful for delineating dorsal and volar parts of the LTIL on MRA with overall 'good' visibility increased from 11 % to 78 %. The accuracy of MRA and CTA in revealing SLIL and LTIL tear was higher using the oblique axial plane. The overall accuracy for detecting SLIL tear on CTA improved from 94 % to 100 % and from 89 % to 94 % on MRA; the overall accuracy of detecting LTIL tear on CTA improved from 89 % to 100 % and from 72 % to 89 % on MRA Oblique axial imaging during CT and MR arthrography improves detection of tears in the dorsal and volar parts of both SLIL and LTIL. (orig.)

  9. Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information

    DEFF Research Database (Denmark)

    Wei, Jie; Govindan, Kannan; Li, Yongjian

    2015-01-01

    . The optimal strategies in closed form are given under the decision scenarios with symmetric information; moreover, the first order conditions that the optimal retail price, optimal wholesale price, and optimal collection rate satisfy are given under the decision scenarios with asymmetric information......The optimal decision problem of a closed-loop supply chain with symmetric and asymmetric information structures is considered using game theory in this paper. The paper aims to explore how the manufacturer and the retailer make their own decisions about wholesale price, retail price, and collection...... rate under symmetric and asymmetric information conditions. Four game models are established, which allow one to examine the strategies of each firm and explore the role of the manufacturer and the retailer in four different game scenarios under symmetric and asymmetric information structures...

  10. On the harmonic starlike functions with respect to symmetric ...

    African Journals Online (AJOL)

    In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...

  11. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    International Nuclear Information System (INIS)

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-01-01

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed

  12. Installation, test and non-linear vibratory analysis of an experiment with four fuel assembly models under axial flow

    International Nuclear Information System (INIS)

    Clement, Simon

    2014-01-01

    The present study is in the scope of pressurized water reactors (PWR) core response to earthquakes. The goal of this thesis is to measure the coupling between fuel assemblies caused an axial water flow. The design, production and installation a new test facility named ICARE EXPERIMENTAL are presented. ICARE EXPERIMENTAL was built in order to measure simultaneously the vibrations of four fuel assemblies (2 x 2) under an axial flow. Vibrations are produced by imposing the dynamic of one of the fuel assemblies and the displacements of the three others, induced by the fluid, are measured in the horizontal plane at grids level. A new data analysis method combining time-frequency analysis and orthogonal mode decomposition (POD) is described. This method, named Sliding Window POD (SWPOD), allows analysing multicomponent data, of which spatial repartition of energy and frequency content are time dependent. In the case of mechanical systems (linear and nonlinear), the link between the proper orthogonal modes obtained through SWPOD and the normal modes (linear and nonlinear) is studied. The SWPOD is applied to experimental tests of a steam generators U-tube, showing the appearance of internal resonances. The method is also applied to dynamic experimental tests of a fuel assembly under axial flow, the evolution of its normal modes is obtained as a function of the fluid velocity. The measures acquired with the ICARE EXPERIMENTAL installation are analysed using the SWPOD. The first results show characteristic behavior of the free fuel assemblies at their resonances. The coupling between fuel assemblies, induced by the fluid, is reproduced by simulations performed using the COEUR3D code. This code is based on a porous media model in order to simulate a fuel assemblies network under axial flow. (author) [fr

  13. Non-Euclidean stress-free configuration of arteries accounting for curl of axial strips sectioned from vessels.

    Science.gov (United States)

    Takamizawa, Keiichi; Nakayama, Yasuhide

    2013-11-01

    It is well known that arteries are subject to residual stress. In earlier studies, the residual stress in the arterial ring relieved by a radial cut was considered in stress analysis. However, it has been found that axial strips sectioned from arteries also curled into arcs, showing that the axial residual stresses were relieved from the arterial walls. The combined relief of circumferential and axial residual stresses must be considered to accurately analyze stress and strain distributions under physiological loading conditions. In the present study, a mathematical model of a stress-free configuration of artery was proposed using Riemannian geometry. Stress analysis for arterial walls under unloaded and physiologically loaded conditions was performed using exponential strain energy functions for porcine and human common carotid arteries. In the porcine artery, the circumferential stress distribution under physiological loading became uniform compared with that without axial residual strain, whereas a gradient of axial stress distribution increased through the wall thickness. This behavior showed almost the same pattern that was observed in a recent study in which approximate analysis accounting for circumferential and axial residual strains was performed, whereas the circumferential and axial stresses increased from the inner surface to the outer surface under a physiological condition in the human common carotid artery of a two-layer model based on data of other recent studies. In both analyses, Riemannian geometry was appropriate to define the stress-free configurations of the arterial walls with both circumferential and axial residual strains.

  14. Radial and axial compression of pure electron

    International Nuclear Information System (INIS)

    Park, Y.; Soga, Y.; Mihara, Y.; Takeda, M.; Kamada, K.

    2013-01-01

    Experimental studies are carried out on compression of the density distribution of a pure electron plasma confined in a Malmberg-Penning Trap in Kanazawa University. More than six times increase of the on-axis density is observed under application of an external rotating electric field that couples to low-order Trivelpiece-Gould modes. Axial compression of the density distribution with the axial length of a factor of two is achieved by controlling the confining potential at both ends of the plasma. Substantial increase of the axial kinetic energy is observed during the axial compression. (author)

  15. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  16. Smooth Gowdy-symmetric generalized Taub–NUT solutions

    International Nuclear Information System (INIS)

    Beyer, Florian; Hennig, Jörg

    2012-01-01

    We study a class of S 3 -Gowdy vacuum models with a regular past Cauchy horizon which we call smooth Gowdy-symmetric generalized Taub–NUT solutions. In particular, we prove the existence of such solutions by formulating a singular initial value problem with asymptotic data on the past Cauchy horizon. We prove that also a future Cauchy horizon exists for generic asymptotic data, and derive an explicit expression for the metric on the future Cauchy horizon in terms of the asymptotic data on the past horizon. This complements earlier results about S 1 ×S 2 -Gowdy models. (paper)

  17. Symmetric waterbomb origami.

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  18. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  19. Performance limitations of translationally symmetric nonimaging devices

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  20. A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses

    International Nuclear Information System (INIS)

    Hristov, Dimitre; Maltz, Jonathan

    2008-01-01

    A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy

  1. Canonical quantization of some midi-superspace models in 2+1 and 3+1 dimensions

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, P A; Melas, E; Grammenos, T H; Papadopoulos, G O; Spanou, A

    2009-01-01

    A proposal is put forward which enables the canonical quantization of a family of axially symmetric geometries in 2+1 dimensions and a corresponding spherically symmetric family in 3+1 dimensions. The proposal consists of a particular renormalization assumption and an accompanying requirement and results in a Wheeler-DeWitt equation which is based on a renormalized manifold parametrized by three smooth scalar functionals. The aforementioned equation is analytically solved for both the 2+1 and 3+1 case.

  2. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  3. A Novel Geometry for Shear Test Using Axial Tensile Setup

    Directory of Open Access Journals (Sweden)

    Sibo Yuan

    2018-05-01

    Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.

  4. Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings

    Science.gov (United States)

    Leger, C. A.; Chan, W. S.

    1993-04-01

    A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.

  5. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Budi [ORNL; Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  6. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  7. Axial contraction in etched optical fiber due to internal stress reduction.

    Science.gov (United States)

    Lim, Kok-Sing; Yang, Hang-Zhou; Chong, Wu-Yi; Cheong, Yew-Ken; Lim, Chin-Hong; Ali, Norfizah M; Ahmad, Harith

    2013-02-11

    When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.

  8. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  9. Vibrational motion in a symmetric, double minimum potential

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2015-01-01

    Molecular vibrational motion in a symmetric, double minimum potential is treated by means of a quartic model potential, by reference to the tables published by Jaan Laane and the results of harmonic analyses for the stationary points. The inversion vibration of ammonia is treated in detail. - Not...... on the harmonic approximation for polyatomic molecules are appended. - Presented at a NORFA Workshop in Hirtshals, Denmark, August 1997....

  10. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2009-03-01

    Full Text Available In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predicting negative and positive erosive burning, and transient, frequency-dependent combustion response, in conjunction with pressure-dependent and acceleration-dependent burning, is applied to the investigation of instability-related behaviour in a small cylindrical-grain motor. Pertinent key factors, like the initial pressure disturbance magnitude and the propellant's net surface heat release, are evaluated with respect to their influence on the production of instability symptoms. Two traditional suppression techniques, axial transitions in grain geometry and inert particle loading, are in turn evaluated with respect to suppressing these axial instability symptoms.

  11. Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions

    Directory of Open Access Journals (Sweden)

    Derek K. Wise

    2009-08-01

    Full Text Available Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern-Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern-Simons action. In 4 dimensions the main model of interest is MacDowell-Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra so(3,1 and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any 'gauge theory of geometry'.

  12. First step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1984-09-01

    The first step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code is presented. This step consists of the introduction of a simplified model for simulating the steam generator. This model is the GEVAP computer code, integrant part of LOOP code, which simulates the primary coolant circuit of PWR nuclear power plants during transients. The ALMOD3 computer code has a model for the steam generator, called UTSG, which is very detailed. This model has spatial dependence, correlations for 2-phase flow, distinguished correlations for different heat transfer process. The GEVAP model has thermal equilibrium between phases (gaseous and liquid homogeneous mixture), no spatial dependence and uses only one generalized correlation to treat several heat transfer processes. (Author) [pt

  13. Mutual control of axial and equatorial ligands: model studies with [Ni]-bacteriochlorophyll-a.

    Science.gov (United States)

    Yerushalmi, Roie; Noy, Dror; Baldridge, Kim K; Scherz, Avigdor

    2002-07-17

    Modification of the metal's electronic environment by ligand association and dissociation in metalloenzymes is considered cardinal to their catalytic activity. We have recently presented a novel system that utilizes the bacteriochlorophyll (BChl) macrocycle as a ligand and reporter. This system allows for charge mobilization in the equatorial plane and experimental estimate of changes in the electronic charge density around the metal with no modification of the metal's chemical environment. The unique spectroscopy, electrochemistry and coordination chemistry of [Ni]-bacteriochlorophyll ([Ni]-BChl) enable us to follow directly fine details and steps involved in the function of the metal redox center. This approach is utilized here whereby electro-chemical reduction of [Ni]-BChl to the monoanion [Ni]-BChl(-) results in reversible dissociation of biologically relevant axial ligands. Similar ligand dissociation was previously detected upon photoexcitation of [Ni]-BChl (Musewald, C.; Hartwich, G.; Lossau, H.; Gilch, P.; Pollinger-Dammer, F.; Scheer, H.; Michel-Beyerle, M. E. J. Phys. Chem. B 1999, 103, 7055-7060 and Noy, D.; Yerushalmi, R.; Brumfeld, V.; Ashur, I.; Baldridge, K. K.; Scheer, H.; Scherz, A. J. Am. Chem. Soc. 2000, 122, 3937-3944). The electrochemical measurements and quantum mechanical (QM) calculations performed here for the neutral, singly reduced, monoligated, and singly reduced, monoligated [Ni]-BChl suggest the following: (a) Electroreduction, although resulting in a pi anion [Ni]-BChl(-) radical, causes electron density migration to the [Ni]-BChl core. (b) Reduction of nonligated [Ni]-BChl does not change the macrocycle conformation, whereas axial ligation results in a dramatic expansion of the metal core and a flattening of the highly ruffled macrocycle conformation. (c) In both the monoanion and singly excited [Ni]-BChl ([Ni]-BChl*), the frontier singly occupied molecular orbital (SOMO) has a small but nonnegligible metal character. Finally, (d

  14. Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model

    International Nuclear Information System (INIS)

    Li Min; Xu Tao; Meng Dexin

    2016-01-01

    In this paper, via the generalized Darboux transformation, rational soliton solutions are derived for the parity-time-symmetric nonlocal nonlinear Schrödinger (NLS) model with the defocusing-type nonlinearity. We find that the first-order solution can exhibit the elastic interactions of rational antidark-antidark, dark-antidark, and antidark-dark soliton pairs on a continuous wave background, but there is no phase shift for the interacting solitons. Also, we discuss the degenerate case in which only one rational dark or antidark soliton survives. Moreover, we reveal that the second-order rational solution displays the interactions between two solitons with combined-peak-valley structures in the near-field regions, but each interacting soliton vanishes or evolves into a rational dark or antidark soliton as |z| → ∞. In addition, we numerically examine the stability of the first- and second-order rational soliton solutions. (author)

  15. A Model of Dust-like Spherically Symmetric Gravitational Collapse without Event Horizon Formation

    Directory of Open Access Journals (Sweden)

    Piñol M.

    2015-10-01

    Full Text Available Some dynamical aspects of gravitational collapse are explored in this paper. A time- dependent spherically symmetric metric is proposed and the corresponding Einstein field equations are derived. An ultrarelativistic dust-like stress-momentum tensor is considered to obtain analytical solutions of these equations, with the perfect fluid con- sisting of two purely radial fluxes — the inwards flux of collapsing matter and the outwards flux of thermally emitted radiation. Thermal emission is calculated by means of a simplistic but illustrative model of uninteracting collapsing shells. Our results show an asymptotic approach to a maximal space-time deformation without the formation of event horizons. The size of the body is slightly larger than the Schwarzschild radius during most of its lifetime, so that there is no contradiction with either observations or previous theorems on black holes. The relation of the latter with our results is scruti- nized in detail.

  16. Filtering microfluidic bubble trains at a symmetric junction.

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif A

    2012-02-07

    We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.

  17. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-11-15

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  18. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    International Nuclear Information System (INIS)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza

    2017-01-01

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  19. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.

  20. Initial value formulation for the spherically symmetric dust solution

    International Nuclear Information System (INIS)

    Liu, H.

    1990-01-01

    An initial value formulation for the dust solution with spherical symmetry is given explicitly in which the initial distributions of dust and its velocity on an initial surface are chosen to be the initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are derived

  1. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  2. Axial Force Analysis and Roll Contour Configuration of Four-High CVC Mill

    Directory of Open Access Journals (Sweden)

    Guang-ming Liu

    2018-01-01

    Full Text Available In order to analyze the influence of technical parameters on work roll axial force of four-high continuous variable crown (CVC mill, the deformation analyzing model with top roll system and strip was established based on influence function method. Then a CVC work roll curve designing scheme was proposed and it was carried out on some cold rolling mill considering the requirement of comprehensive work roll axial force minimization. The status of comprehensive work roll axial force is improved considering the rolling schedule that is beneficial to the roller bearing. Corresponding to the newly designed work roll contour, the backup roll end chamfer was designed considering comprehensive performance of interroll stress concentration, comprehensive work roll axial force, and strip shape control ability. The distribution of roll wear with newly designed backup roll contour is more even according to the field application data. The newly established roll configuration scheme is beneficial to four-high CVC mill.

  3. Bright Solitons in a PT-Symmetric Chain of Dimers

    Directory of Open Access Journals (Sweden)

    Omar B. Kirikchi

    2016-01-01

    Full Text Available We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT- symmetric coupler composed by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.

  4. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  5. Axial vector mass spectrum and mixing angles

    International Nuclear Information System (INIS)

    Caffarelli, R.V.; Kang, K.

    1976-01-01

    Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)

  6. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  7. Automatic measurement of axial length of human eye using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Watanabe, Masaki; Kiryu, Tohru

    2011-01-01

    The measurement of axial length and the evaluation of three dimensional (3D) form of an eye are essential to evaluate the mechanism of myopia progression. We propose a method of automatic measurement of axial length including adjustment of the pulse sequence of short-term scan which could suppress influence of eyeblink, using a magnetic resonance imaging (MRI) which acquires 3D images noninvasively. Acquiring T 2 -weighted images with 3.0 tesla MRI device and eight-channel phased-array head coil, we extracted left and right eye ball images, and then reconstructed 3D volume. The surface coordinates were calculated from 3D volume, fitting the ellipsoid model coordinates with the surface coordinates, and measured the axial length automatically. Measuring twenty one subjects, we compared the automatically measured values of axial length with the manually measured ones, then confirmed significant elongation in the axial length of myopia compared with that of emmetropia. Furthermore, there were no significant differences (P<0.05) between the means of automatic measurements and the manual ones. Accordingly, the automatic measurement process of axial length could be a tool for the elucidation of the mechanism of myopia progression, which would be suitable for evaluating the axial length easily and noninvasively. (author)

  8. Centrioles in Symmetric Spaces

    OpenAIRE

    Quast, Peter

    2011-01-01

    We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.

  9. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  10. Topologically protected bound states in photonic parity-time-symmetric crystals.

    Science.gov (United States)

    Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A

    2017-04-01

    Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.

  11. Synthesis & Characterization of New bis-Symmetrical Adipoyl ...

    African Journals Online (AJOL)

    Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...

  12. Looking for symmetric Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)

    2010-09-24

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  13. Looking for symmetric Bell inequalities

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  14. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  15. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  16. Two-dimensional analysis of axial segregation in batchwise and continuous Czochralski process

    Science.gov (United States)

    Hoe Wang, Jong; Hyun Kim, Do; Yoo, Hak-Do

    1999-03-01

    Transient two-dimensional convection-diffusion model has been developed to simulate the segregation phenomena in batchwise and continuous Czochralski process. Numerical simulations have been performed using the finite element method and implicit Euler time integration. The mesh deformation due to the change of the melt depth in batchwise Czochralski process was considered. Experimental values of the growth and system parameters for Czochralski growth of boron-doped, 4-in silicon single crystal were used in the numerical calculations. The experimental axial segregation in batchwise Czochralski process can be described successfully using convection-diffusion model. It has been demonstrated with this model that silicon single crystal with uniform axial dopant concentration can be grown and radial segregation can be suppressed in the continuous Czochralski process.

  17. Commutative curvature operators over four-dimensional generalized symmetric

    Directory of Open Access Journals (Sweden)

    Ali Haji-Badali

    2014-12-01

    Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

  18. Study of axial injection of polarized protons into the grenoble cyclotron; Contribution a l'etude de l'injection axiale pour protons polarises sur le cyclotron de Grenoble

    Energy Technology Data Exchange (ETDEWEB)

    Pabot, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    By injecting ions axially into a cyclotron, it is possible to accelerate particles (polarized particles, heavy ions, etc...) obtainable only with difficulty when an internal ion source is used. In this work, after justifying the choice of an axial injection device equipped with a 'pseudo-cylindrical' deflector for the Grenoble cyclotron, we study theoretically the principle of such a detector, the choice of its parameters, and the effect of this choice on the conditions of acceleration of the beam by the cyclotron. From the experimental point of view, this report describes two operations which made it possible to check that the chosen injection device operated satisfactorily, qualitatively initially (electron model), then quantitatively (proton model). In conclusion, we believe that the Grenoble cyclotron thus equipped will be able to provide a relatively dense beam of polarized protons. (author) [French] L'injection axiale d'ions dans un cyclotron permet d'accelerer des particules (particules polarisees, ions lourds... ) difficiles a obtenir avec une source interne d'ions. Dans ce travail, apres avoir justifie le choix d'un dispositif d'injection axiale equipe d'un deflecteur 'pseudo-cylindrique' pour le cyclotron de Grenoble, nous avons etudie, du point de vue theorique, le principe d'un tel deflecteur, le choix de ses parametres, et l'incidence de ce choix sur les conditions d'acceleration du faisceau par le cyclotron. Du point de vue experimental, ce rapport decrit deux manipulations qui ont permis de verifier le bon fonctionnement du dispositif d'injection retenu, qualitativement d'abord (modele a electrons), quantitativement ensuite (maquette a protons). En conclusion, nous estimons que le cyclotron de Grenoble ainsi equipe, peut fournir un faisceau relativement intense de protons polarises. (auteur)

  19. ${ \\mathcal P }{ \\mathcal T }$-symmetric interpretation of unstable effective potentials

    CERN Document Server

    Bender, Carl M.; Mavromatos, Nick E.; Sarkar, Sarben

    2016-01-01

    The conventional interpretation of the one-loop effective potentials of the Higgs field in the Standard Model and the gravitino condensate in dynamically broken supergravity is that these theories are unstable at large field values. A ${ \\mathcal P }{ \\mathcal T }$-symmetric reinterpretation of these models at a quantum-mechanical level eliminates these instabilities and suggests that these instabilities may also be tamed at the quantum-field-theory level.

  20. Is a charmed axial-vector meson already found

    International Nuclear Information System (INIS)

    Matsuda, S.

    1976-12-01

    A calculation is presented of the production rate via e + e - annihilation for a charmed p-wave meson of Jsup(P) = 1 + , based on a non-relativistic quark model of charmed hadrons. The results strongly suggest that the charmed axial-vector meson should be found copiously in association with a ground-state charmed meson. (author)