WorldWideScience

Sample records for axially deformed transition

  1. Finite Amplitude Method for Charge-Changing Transitions in Axially-Deformed Nuclei

    CERN Document Server

    Mustonen, M T; Zenginerler, Z; Engel, J

    2014-01-01

    We describe and apply a version of the finite amplitude method for obtaining the charge-changing nuclear response in the quasiparticle random phase approximation. The method is suitable for calculating strength functions and beta-decay rates, both allowed and forbidden, in axially-deformed open-shell nuclei. We demonstrate the speed and versatility of the code through a preliminary examination of the effects of tensor terms in Skyrme functionals on beta decay in a set of spherical and deformed open-shell nuclei. Like the isoscalar pairing interaction, the tensor terms systematically increase allowed beta-decay rates. This finding generalizes previous work in semimagic nuclei and points to the need for a comprehensive study of time-odd terms in nuclear density functionals.

  2. Angular and axial deformities of the legs of children.

    Science.gov (United States)

    McDonough, M W

    1984-12-01

    Age is often a determining factor in establishing a treatment program for these axial and angular problems. As can be seen, the deformities of torsion are noticeable from early life. Any tibial torsion should be treated early, but an excessive medial range of motion in the infant leg with a corresponding adequate lateral range of motion of the limb may be cautiously observed. Medial femoral torsion is a normal early finding in the infant thigh. The problem becomes evident as the child matures without the corresponding reduction in femoral torsion, leading to a persistence of fetal or infantile alignment. The gait consequences are usually noticed at 4 to 8 years of age. The angular changes generally are a delayed finding noticed in stance. The bowleg may be associated with marked tibial torsion and picked up early but the Blount's patient has been traditionally definable at 2 years of age. Levin and Drennan may hasten the time of diagnosis with their radiographic criteria. Knock-knee is an alignment disturbance noticed during the early to mid-childhood years, age 4 to 8 years. The diagnosis is important, differentiating physiologic from torsion-related deformities, and treatment, if warranted, should not be delayed. Generally the earlier these problems are discovered, the more optimistic the prognosis. Since the pediatric limb is in a constant state of transition, there will be a perpetual argument as to the need or efficacy of various approaches to the problems of knock-knee and bowleg. If observation is the treatment of choice, the percentage of cases which go on to osteotomies and epiphyseal stapling will continue. For those with axial or angular deformities, degenerative arthritis of the knee may be forthcoming. Swanson, Greene, and Allis warned of problems becoming "unphysiologic." If we consider the epiphyseal malleability, not only to deformity but to correction, we can appreciate Lenoir's comment of "every day the problem goes untreated is a golden

  3. Effect of Radial and Axial Deformation on Electron Transport Properties in a Semiconducting Si-C Nanotube

    Directory of Open Access Journals (Sweden)

    S. Choudhary

    2011-01-01

    Full Text Available We study the bias voltage dependent current characteristic in a deformed (8, 0 silicon carbide nanotube by applying self consistent non-equilibrium Green’s function formalism in combination with the density-functional theory to a two probe molecular junction constructed from deformed nanotube. The transmission spectra and electron density of states at zero bias shows a significant reduction in threshold in the case of both radially compressed and axially elongated nanotube. However, semiconductor to metal transition was not observed, though the results show large differences in current characteristic compared to a perfect nanotube.

  4. Magnetic and axial-vector transitions of the baryon antidecuplet

    CERN Document Server

    Kim, H -Ch; Göke, K

    2007-01-01

    We report the recent results of the magnetic transitions and axial-vector transitions of the baryon antidecuplet within the framework of the chiral quark-soliton model. The dynamical model parameters are fixed by experimental data for the magnetic moments of the baryon octet, for the hyperon semileptonic decay constants, and for the singlet axial-vector constant. The transition magnetic moments $\\mu_{\\Lambda\\Sigma}$ and $\\mu_{N\\Delta}$ are well reproduced and other octet-decuplet and octet-antidecuplet transitions are predicted. In particular, the present calculation of $\\mu_{\\Sigma\\Sigma^*}$ is found to be below the upper bound $0.82\\mu_N$ that the SELEX collaboration measured very recently. The results explains consistently the recent findings of a new $N^*$ resonance from the GRAAL and Tohoku LNS group. We also obtain the transition axial-vector constants for the $\\Theta^+\\to KN$ from which the decay width of the $\\Theta^{+}$ pentaquark baryon is determined as a function of the pion-nucleon sigma term $\\Si...

  5. Computation of liquid drop deformation energy for axial symmetric nuclei

    International Nuclear Information System (INIS)

    Computation methods for deformation dependent terms of the nuclear potential energy in the Myers-Swiatecki's and Krappe-Nix's variants of the liquid-drop model are presented. Also, an extension of the Krappe-Nix integral, surface and Coulomb energies formulas in case of reflection asymmetric deformations leading to fragments with different charge-to-mass ratio is introduced. (author)

  6. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  7. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    International Nuclear Information System (INIS)

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  8. A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations

    CERN Document Server

    Brousseau, D; Parent, J; Ruel, H J; Borra, Ermanno F.; Brousseau, Denis; Parent, Jocelyn; Ruel, Hubert-Jean

    2006-01-01

    We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

  9. Symmetries and Supersymmetries of the Dirac Hamiltonian with Axially-Deformed Scalar and Vector Potentials

    CERN Document Server

    Leviatan, A

    2009-01-01

    We consider several classes of symmetries of the Dirac Hamiltonian in 3+1 dimensions, with axially-deformed scalar and vector potentials. The symmetries include the known pseudospin and spin limits and additional symmetries which occur when the potentials depend on different variables. Supersymmetries are observed within each class and the corresponding charges are identified.

  10. Skyrme random-phase-approximation description of lowest Kπ=2γ+ states in axially deformed nuclei

    Science.gov (United States)

    Nesterenko, V. O.; Kartavenko, V. G.; Kleinig, W.; Kvasil, J.; Repko, A.; Jolos, R. V.; Reinhard, P.-G.

    2016-03-01

    The lowest quadrupole γ -vibrational Kπ=2+ states in axially deformed rare-earth (Nd, Sm, Gd, Dy, Er, Yb, Hf, W) and actinide (U) nuclei are systematically investigated within the separable random-phase-approximation (SRPA) based on the Skyrme functional. The energies Eγ and reduced transition probabilities B (E 2 ) of 2γ+ states are calculated with the Skyrme forces SV-bas and SkM*. The energies of two-quasiparticle configurations forming the SRPA basis are corrected by using the pairing blocking effect. This results in a systematic downshift of Eγ by 0.3-0.5 MeV and thus in a better agreement with the experiment, especially in Sm, Gd, Dy, Hf, and W regions. For other isotopic chains, a noticeable overestimation of Eγ and too weak collectivity of 2γ+ states still persist. It is shown that domains of nuclei with low and high 2γ+ collectivity are related to the structure of the lowest two-quasiparticle states and conservation of the Nilsson selection rules. The description of 2γ+ states with SV-bas and SkM* is similar in light rare-earth nuclei but deviates in heavier nuclei. However SV-bas much better reproduces the quadrupole deformation and energy of the isoscalar giant quadrupole resonance. The accuracy of SRPA is justified by comparison with exact RPA. The calculations suggest that a further development of the self-consistent calculation schemes is needed for a systematic satisfactory description of the 2γ+ states.

  11. Analyses of axial, lateral and circumferential deformations of rock specimen in triaxial compression

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin

    2008-01-01

    The axial, lateral and circumferential strains were analyzed for a rock specimen subjected to shear failure in the form of a shear band bisecting the specimen in triaxial compression. Plastic deformation of the specimen stemmed from shear strain localization initiated at the peak shear stress. Beyond the onset of strain localization, the axial, lateral and circumferential strains were decomposed into two parts, respectively. One is the elas-tic strain described by general Hooke's law. The other is attributable to the plastic shear slips along shear band with a certain thickness dependent on the internal length of rock.The post-peak circumferential strain-axial strain curve of longer specimen is steeper than that of shorter specimen, as is consistent with the previous experiments. In elastic stage,the circumferential strain-axial strain curve exhibits nonlinear characteristic, as is in agreement with the previous experiment since confining pressure is loaded progressively until a certain value is reached. When the confining pressure is loaded completely, the circumferential strain-axial strain curve is linear in elastic and strain-softening stages. The predicted circumferential strain-axial strain curve in elastic and strain- softening stages agrees with the previous experiment.

  12. On axisymmetric/diamond-like mode transitions in axially compressed core-shell cylinders

    Science.gov (United States)

    Xu, Fan; Potier-Ferry, Michel

    2016-09-01

    Recent interests in curvature- and stress-induced pattern formation and pattern selection motivate the present study. Surface morphological wrinkling of a cylindrical shell supported by a soft core subjected to axial compression is investigated based on a nonlinear 3D finite element model. The post-buckling behavior of core-shell cylinders beyond the first bifurcation often leads to complicated responses with surface mode transitions. The proposed finite element framework allows predicting and tracing these bifurcation portraits from a quantitative standpoint. The occurrence and evolution of 3D instability modes including sinusoidally deformed axisymmetric patterns and non-axisymmetric diamond-like modes will be highlighted according to critical dimensionless parameters. Besides, the phase diagram obtained from dimensional analyses and numerical results could be used to guide the design of core-shell cylindrical systems to achieve the desired instability patterns.

  13. Strength and Deformation of Axially Loaded Fiber-Reinforced Polymer Sheet Confined Concrete Columns

    Institute of Scientific and Technical Information of China (English)

    李静; 钱稼茹; 蒋剑彪

    2004-01-01

    Experimental results of 29 axially loaded fiber-reinforced polymer sheet (FS) confined concrete columns and two reference plain concrete columns are introduced. Twenty four column specimens were confined with carbon fiber sheet (CFS) and five column specimens were hybrid confined with both CFS and glass fiber sheet (GFS). The influence of aspect ratio, FS material, initial axial force ratio, and FS confinement degree on the strength and deformation of columns were studied. Based on the experimental results, the equations of complete stress-strain curve of CFS confined concrete are proposed. These equations are suitable for the nonlinear analysis of square and rectangular section columns. Suggestions of applying FS to confine concrete columns are presented.

  14. Watson's theorem and the $N\\Delta(1232)$ axial transition

    CERN Document Server

    Alvarez-Ruso, L; Nieves, J; Vacas, M J Vicente

    2016-01-01

    We present a new determination of the $N\\Delta$ axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al., Phys. Rev. D76, 033005 (2007) is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger $C_5^A(0)$, in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.

  15. Mott-superfluid transition of q-deformed bosons

    Energy Technology Data Exchange (ETDEWEB)

    Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl

    2015-10-16

    The effect of q-deformation of the bosonic algebra on the Mott-superfluid transition for interacting lattice bosons described by the Bose–Hubbard model is studied using mean-filed theory. It has been shown that the Mott state proliferates and the initial periodicity of the Mott lobes as a function of the chemical potential disappears as the q-deformation increases. The ground state phase diagram as a function of the q-parameter exhibits superfluid order, which intervenes in narrow regions between Mott lobes, demonstrating the new concept of statistically induced quantum phase transition. - Highlights: • We study the effect of q-deformed bosons on superfluid transition. • A mean-field theory is employed. • Bosons can change statistics due to deformation of the commutation rules. • Statistically induced quantum phase transition is found.

  16. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a bi-axial Box

    OpenAIRE

    Imole, O.I.; Kumar, N; Magnanimo, V.; S. Luding

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the effects of friction and polydispersity on our simulations and present the second stress response namely the deviatoric stress as a function of the deviatoric strain.

  17. Effect of Deformation Condition on Axial CompressivePrecision Forming Process of Tube with Curling Die

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rρ/d0, little on tube material properties and friction condition; the relative gap Δ/2rρ of double-walled tubes obtained decreases with increasing rρ/d0, and there is a parameter k for a given t0/d0 or rρ/t0, when rρ,/d0>k, Δ/2rρ<1,otherwise Δ/2rρ>1.

  18. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  19. Multi-axial load application and DIC measurement of advanced composite beam deformation behavior

    Directory of Open Access Journals (Sweden)

    Berggreen C.

    2010-06-01

    Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during

  20. Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis

    Science.gov (United States)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Vavruch, Ludvig; Tropp, Hans; Knutsson, Hans

    2013-03-01

    Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.

  1. Transition in Deformation Mechanism of AZ31 Magnesium Alloy during High-Temperature Tensile Deformation

    Directory of Open Access Journals (Sweden)

    Masafumi Noda

    2011-01-01

    Full Text Available Magnesium alloys can be used for reducing the weight of various structural products, because of their high specific strength. They have attracted considerable attention as materials with a reduced environmental load, since they help to save both resources and energy. In order to use Mg alloys for manufacturing vehicles, it is important to investigate the deformation mechanism and transition point for optimizing the material and vehicle design. In this study, we investigated the transition of the deformation mechanism during the high-temperature uniaxial tensile deformation of the AZ31 Mg alloy. At a test temperature of 523 K and an initial strain rate of 3×10−3 s-1, the AZ31 Mg alloy (mean grain size: ~5 μm exhibited stable deformation behavior and the deformation mechanism changed to one dominated by grain boundary sliding.

  2. Skyrme Random-Phase-Approximation description of lowest $K^{\\pi}=2^+_{\\gamma}$ states in axially deformed nuclei

    CERN Document Server

    Nesterenko, V O; Kleinig, W; Jolos, R V; Kvasil, J; Reinhard, P -G

    2015-01-01

    The lowest quadrupole $\\gamma$-vibrational $K^{\\pi}=2^+$ states in axially deformed rare-earth (Nd, Sm, Gd, Dy, Er, Yb, Hf, W) and actinide (U) nuclei are systematically investigated within the fully self-consistent separable random-phase-approximation (SRPA) based on the Skyrme functional. The energies $E_{\\gamma}$ and reduced transition probabilities $B(E2)$ of $2^+_{\\gamma}$-states are calculated with the Skyrme forces SV-mas10 and SkM$^*$. We demonstrate that the blocking effect in pairing plays an important role. It leads to a systematic downshift of $E_{\\gamma}$ by 0.3-0.5 MeV and thus to a significant improvement of agreement with the experiment, especially in Sm, Gd, Dy, Hf, and W regions. For other isotopic chains, a noticeable overestimation of $E_{\\gamma}$ and too weak collectivity of $2^+_{\\gamma}$-states still persist. It is shown that domains of nuclei with a low and high $2^+_{\\gamma}$-collectivity are related with the structure of the lowest 2-quasiparticle states and maintenance of the Nilsso...

  3. Structure of collective modes in transitional and deformed nuclei

    OpenAIRE

    Caprio, M. A.

    2005-01-01

    The collective structure of atomic nuclei intermediate between spherical and quadrupole deformed structure presents challenges to theoretical understanding. However, models have recently been proposed in terms of potentials which are soft with respect to the quadrupole deformation variable beta. To test these models, information is needed on low-spin states of transitional nuclei. The present work involves measurement of electromagnetic decay properties of low-spin states for nuclei in the A=...

  4. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube

    Indian Academy of Sciences (India)

    Sudhanshu Choudhary; S Qureshi

    2012-10-01

    We investigate electron transport properties in a deformed (8, 0) silicon carbide nanotube by applying self consistent non-equilibrium Green’s function formalism in combination with the density-functional theory to a two-probe molecular junction constructed from deformed nanotube. The results suggest significant reduction in threshold voltage in the case of both radially compressed and axially elongated (8, 0) SiCNTs, a large difference in current–voltage characteristics was observed. Analysis of frontier molecular orbitals (FMO) and transmission spectrum show bandgap reduction in deformed nanotubes. Deformation introduces electronic states near the Fermi level, enhancing the conduction properties of (8, 0) SiCNT. The FMOs and the orbitals corresponding to peaks in () around Fermi level obviously has some major contributions from the deformed site. However, localization of the electronic state near the Fermi level is weak in (8, 0) SiCNT, possibly because of its large bandgap.

  5. C sub 6 sub 0 fullerene and its molecular complexes under axial and shear deformation

    CERN Document Server

    Spitsina, N G; Bashkin, I V; Meletov, K P

    2002-01-01

    We have studied the pristine C sub 6 sub 0 and its molecular complexes with the organic donors bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) and tetramethyltetraselenafulvalene (TMTSF) by means of ESR and Raman spectroscopy at high pressure. The important changes in the ESR signal of C sub 6 sub 0 were observed under axial pressure combined with shear deformation. It is shown that the treatment at a anisotropic pressure of 4 GPa results in a reduction in the symmetry of the C sub 6 sub 0 molecule and the formation of radicals. Treatment of the molecular complex of (ET) sub 2 centre dot C sub 6 sub 0 at a pressure of approx 4.5 GPa and a temperature of 150 deg. C leads to the formation of C sub 6 sub 0 dimers. The Raman spectra of the molecular complex C sub 6 sub 0 centre dot TMTSF centre dot 2(CS sub 2) were measured in situ at ambient temperature and pressures up to 9.5 GPa. The pressure behaviour of the Raman peaks reveals singularity at 5.0 +- 0.5 GPa related to the softening and splitting of so...

  6. The Deformation Behavior of TiNi Shape Memory Alloy under Axial Dynamic Compression

    Institute of Scientific and Technical Information of China (English)

    HUANG Xue-wen; DONG Guang-neng; ZHOU Zhong-rong; XIE You-bai

    2004-01-01

    The deformation behavior of Ti-50.9at%Ni shape memory alloy under axial compression dynamic loads was investigated by an MTS 858Mini Bionix test machine. The alloy were aged at 500℃ for an hour before being machined into specimens. The compression experiments were conducted at 20℃ and the variety of dynamic loads were controlled by the strain rate, which was 3mm/min, 15mm/min, 30mm/min and 50mm/min, respectively. The experimental results indicate that in the case of 3mm/min, stress-induced martensitic transformation occurs at about 350MPa when loading and reverse transformation at about 200MPa when unloading, during which the aged Ti-50.9at%Ni alloy shows the recoverable nonlinear pseudoelastic strain of 4.3% with the residual strain of 1.2% reserved. With the strain rate increasing, the area encloses by loading-curve and unloading-curve, i.e stress (strain) hysteresis becomes smaller and smaller and the residual strain also decreases, while critical stress for inducing martensitic transformation rises. At a higher strain rate the alloy exhibits linear-like pseudoelasticity, which is up to 4.5%.

  7. Axial Nucleon to Delta transition form factors on 2+1 flavor hybrid lattices

    CERN Document Server

    Alexandrou, C; Leontiou, Th; Negele, J W; Tsapalis, A; 10.1103/PhysRevD.80.099901

    2009-01-01

    We correct the values of the dominant nucleon to Delta axial transition form factors CA_5 and CA_6 published in C. Alexandrou et.al., Phys. Rev. D 76,094511 (2007). The analysis error affects only the values obtained when using the hybrid action in the low Q^2 regime bringing them into agreement with those obtained with Wilson fermions.

  8. Chiral perturbation theory study of the axial $N\\to\\Delta(1232)$ transition

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We have performed a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in covariant baryon chiral perturbation theory within a formalism in which the unphysical spin-1/2 components of the $\\Delta$ fields are decoupled.

  9. Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei

    CERN Document Server

    Ring, P; Lalazissis, G A

    1997-01-01

    A Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the relativistic framework is presented. In this relativistic mean field (RMF) approach a set of coupled differential equations namely the Dirac equation with potential terms for the nucleons and the Glein-Gordon type equations with sources for the meson and the electromagnetic fields are to be solved self-consistently. The well tested basis expansion method is used for this purpose. Accordingly a set of harmonic oscillator basis generated by an axially deformed potential are used in the expansion. The solution gives the nucleon spinors, the fields and level occupancies, which are used in the calculation of the ground state properties.

  10. Influence of axial deformation of pipe string on down-hole operation%管柱轴向变形对井下作业的影响

    Institute of Scientific and Technical Information of China (English)

    李旭阳

    2016-01-01

    This paper reviews the impact of axial deformation of string on different down-hole operating conditions along with the importance of the calculation on axial deformation for the establishment of calculation model of down-hole string axial deformation theory.%综合分析了管柱轴向变形对井下不同作业工况的影响,阐述了计算井下作业管柱轴向变形的重要性,为建立井下作业管柱轴向变形理论计算模型做了很好的铺垫。

  11. Correction of the axial and appendicular deformities in a patient with Silver-Russel syndrome

    Directory of Open Access Journals (Sweden)

    Ali Al Kaissi

    2015-01-01

    Full Text Available Background: Scoliosis and limb length discrepancy are the major orthopaedic abnormalities in patients with Silver-Russel syndrome (SRS. In this paper, we describe a series of orthopaedic interventions in an attempt to overcome the progressive pathologic mechanism in a 7-year-old girl who manifested the full phenotypic features of SRS. Materials and Methods: Unilateral hip dislocation, progressive scoliosis and limb length discrepancy have been dealt with through Pemberton osteotomy, spinal fusion and Taylor-Spatial-Frame respectively. Results: In order to correct the axial and the appendicular deformities a sum of seven operations were performed (between the age of 7 years and 13 years. Pemberton osteotomy was performed to treat dislocation of her right hip because of developmental dysplasia of the hip. Spinal fusion (spondylodesis of segments Th3-L5 was done to correct her scoliosis. And, to overcome the limb length discrepancy of 15-cm we used Taylor-Spatial-Frame with percutaneous distal corticotomy of the femur, and the proximal tibia, as well as the foot, were performed. We were able to minimize the limb length discrepancy to 5 cm. The girl became able to walk with the aid of a below knee orthosis and through lifting the left limb with 5-cm height shoe. Conclusion: Limb lengthening surgery in patients with multiple malformation complex as in SRS is associated with high recurrence risk because of; muscular hypotonia, overtubulation of the long bones, and the poor bone regenerative quality. Our interventions were principally directed towards improving the cosmetic outlook, functions and the biomechanics.

  12. Deformation Behavior across the Zircon-Scheelite Phase Transition

    Science.gov (United States)

    Yue, Binbin; Hong, Fang; Merkel, Sébastien; Tan, Dayong; Yan, Jinyuan; Chen, Bin; Mao, Ho-Kwang

    2016-09-01

    The pressure effects on plastic deformation and phase transformation mechanisms of materials are of great importance to both Earth science and technological applications. Zircon-type materials are abundant in both nature and the industrial field; however, there is still no in situ study of their deformation behavior. Here, by employing radial x-ray diffraction in a diamond anvil cell, we investigate the dislocation-induced texture evolution of zircon-type gadolinium vanadate (GdVO4 ) in situ under pressure and across its phase transitions to its high-pressure polymorphs. Zircon-type GdVO4 develops a (001) compression texture associated with dominant slip along ⟨100 ⟩{001 } starting from 5 GPa. This (001) texture transforms into a (110) texture during the zircon-scheelite phase transition. Our observation demonstrates a martensitic mechanism for the zircon-scheelite transformation. This work will help us understand the local deformation history in the upper mantle and transition zone and provides fundamental guidance on material design and processing for zircon-type materials.

  13. Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.

  14. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo;

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found...

  15. Transitional DDES computations of the NREL Phase-VI rotor in axial flow conditions

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Schreck, Scott

    2014-01-01

    In the present article we describe CFD simulations of the well known NREL Phase-VI rotor in axial flow conditions using a newly developed technique of combining turbulence modeling by the Delayed Detached Eddy Simulation (DDES) technique with laminar/turbulent transition modeling by a correlation...... based method. We demonstrate how the power production around the onset of stall is very dependent on the turbulence intensity in the inflow. Additionally, we compare with measurements and illustrate how the unsteady loads from the DDES simulations can provide valuable insight in the transient behavior...

  16. Comparison of axial and radial electron beam-breakup transit-time oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, T.J.T. [Los Alamos National Lab., NM (United States); Mostrom, M.A. [Mission Research Corporation, Albuquerque, NM (United States)

    1995-08-01

    Comparison of two configurations of a novel high-power microwave generator is presented in this article. Coupling the beam-breakup instability with the transit-time effect of the electron beam in the cavity, rapid energy exchange between the electrons and cavity modes can occur. The dominant cavity modes in the axial and radial configurations are different but their growth rates are comparable. We found that the radial configuration can have a beam impedance less than 10 {Omega} and therefore more suitable for low-voltage and high power operation. Good agreements have been obtained between linear theory and simulation for both configurations.

  17. Axial vector transition form factors of N \\rightarrow \\Delta in QCD

    CERN Document Server

    Kucukarslan, A; Ozpineci, A

    2015-01-01

    The isovector axial vector form factors of N \\rightarrow \\Delta transition are calculated by employing Light-cone QCD sum rules. The analytical results are analysed by both the conventional method, and also by a Monte Carlo based approach which allows one to scan all of the parameter space. The predictions are also compared with the results in the literature, where available. Although the Monte Carlo analysis predicts large uncertainties in the predicted results, the predictions obtained by the conventional analysis are in good agreement with other results in the literature.

  18. Global description of beta-minus decay in even-even nuclei with the axially-deformed Skyrme finite amplitude method

    CERN Document Server

    Mustonen, M T

    2015-01-01

    We use the finite amplitude method for computing charge-changing Skyrme-QRPA transition strengths in axially-deformed nuclei together with a modern Skyrme energy-density functional to fit several previously unconstrained parameters in the charge-changing time-odd part of the functional. With the modified functional we then calculate rates of beta-minus decay for all medium-mass and heavy even-even nuclei between the valley of stability and the neutron drip line. We fit the Skyrme parameters to a limited set of beta-decay rates, a set of Gamow-Teller resonance energies, and a set of spin-dipole resonance energies, in both spherical and deformed nuclei. Comparison to available experimental beta-decay rates shows agreement at roughly the same level as in other global QRPA calculations. We estimate the uncertainty in our rates all the way to the neutron drip line through a construction that extrapolates the errors of known beta-decay rates in nuclei with intermediate Q values to less stable isotopes with higher Q...

  19. Concrete-Filled-Large Deformable FRP Tubular Columns under Axial Compressive Loading

    Directory of Open Access Journals (Sweden)

    Omar I. Abdelkarim

    2015-10-01

    Full Text Available The behavior of concrete-filled fiber tubes (CFFT polymers under axial compressive loading was investigated. Unlike the traditional fiber reinforced polymers (FRP such as carbon, glass, aramid, etc., the FRP tubes in this study were designed using large rupture strains FRP which are made of recycled materials such as plastic bottles; hence, large rupture strain (LRS FRP composites are environmentally friendly and can be used in the context of green construction. This study performed finite element (FE analysis using LS-DYNA software to conduct an extensive parametric study on CFFT. The effects of the FRP confinement ratio, the unconfined concrete compressive strength ( , column size, and column aspect ratio on the behavior of the CFFT under axial compressive loading were investigated during this study. A comparison between the behavior of the CFFTs with LRS-FRP and those with traditional FRP (carbon and glass with a high range of confinement ratios was conducted as well. A new hybrid FRP system combined with traditional and LRS-FRP is proposed. Generally, the CFFTs with LRS-FRP showed remarkable behavior under axial loading in strength and ultimate strain. Equations to estimate the concrete dilation parameter and dilation angle of the CFFTs with LRS-FRP tubes and hybrid FRP tubes are suggested.

  20. Deformation transition of intact coal induced by gas injection

    Institute of Scientific and Technical Information of China (English)

    Wang Chunguang; Wang Changsheng; Wei Mingyao; Gong Bin; Tan Yuling

    2014-01-01

    Gas migration in coal bed is a multiple-physical process, of which not only includes gas desorption/diffusion through coal matrix and gas Darcy flow through the cleat system, but also results in deforma-tion of solid coal. Especially for enhanced coal bed methane (ECBM) and CO2 capture and sequestration (CCS), gas injection is mainly controlled by the gas diffusivity in the coal matrix and coal permeability. Although the relevant coal permeability models have been frequently developed, how the dual-porosity system of coal affects gas adsorption/diffusion is still poorly understood. In this paper, a series of experiments were carried out in order to investigate deformation evolution of intact coal subjected to hydrostatic pressure of different gases (including pure H2, N2 and CO2) under isotherm injection. In the testing process, the coal strain and injected gas pressure were measured simultaneously. The results show that the pressure of non-adsorptive helium remained unchanged throughout the isothermal injection process, in which the volumetric strain of the coal shrinked firstly and maintained unchanged at lower isobaric pressure. With the injected pressure increasing, the coal volume underwent a transition from shrinking to recovery (still less than initial volume of the coal). In contrast, N2 injection caused the coal to shrink firstly and then recover with decreasing gas pressure. The recovery volume was larger than the initial volume due to adsorption-induced swelling. For the case of CO2 injection, although the stronger adsorption effect could result in swelling of the solid coal, the presence of higher gas pressure appears to contribute the swelling coal to shrink. These results indicate that the evolution of coal defor-mation is time dependent throughout the migration of injected gas. From the mechanical characteristics of poroelastical materials, distribution of pore pressure within the coal is to vary with the gas injection, during which the pore pressure

  1. Influence of angular momentum in axially symmetric potentials with octupole deformation

    Institute of Scientific and Technical Information of China (English)

    JIN Hua; SUN Zhen-Wu; ZHENG Ren-Rong

    2009-01-01

    The chaotic classical single-particle motion in an oblate octupole deformed potential with a non-zero z-component of angular momentum Lz is investigated. The stability analysis of the trajectories shows that with increasing rotation of the system, the unstable negative curvature regions of the effective potential surface decrease, which converts the chaotic motion of the system into a regular one.

  2. Large strain bulk deformation and brittle tough transitions in polyethylenes

    CERN Document Server

    Hillmansen, S

    2001-01-01

    Some tough, crystalline polymers can fail by fast brittle fracture. This thesis explores the role of ductile 'shear lips', which form at the fracture surface verges, in brittle-tough transitions. A new laboratory method was used to isolate this region, and to test its ability to draw rapidly, in polyethylenes. The test uses a conventional Charpy type specimen that is deeply notched and impact loaded in three-point bending by a single striker. The ligament, rapidly loaded in almost pure tension, first yields, and then necks down until failure. Initial results are encouraging and correlate well with the in-service performance. A fundamental study of large strain deformation, that avoids the complexity associated with impact tests, was then conducted with the aim of isolating the dominating influences that furnish a polymer with the ability to sustain rapid large strain deformation. True stress vs. true strain curves have been interpreted using the one dimensional spring dashpot model of Haward and Thackray (H-T...

  3. Timing and Style of Deformation in the Floresta Massif, Axial Eastern Cordillera, Colombia

    Science.gov (United States)

    Saylor, J.; Stockli, D. F.; Mora, A.

    2009-12-01

    The Floresta Massif is one of the largest exposures of Paleozoic and Pre-Cambrian rocks in the Eastern Cordillera. Estimates for the age of onset of shortening-related deformation in the Eastern Cordillera range from late Cretaceous to late Miocene (e.g., Hoorn et al., 1995; Bayona et al., 2008; Parra et al., 2009). The massif is typically interpreted as being exhumed along a high-angle reverse fault (the Soapaga fault) that reactivated Mesozoic extensional structures (e.g., Kammer and Sanchez, 2006). We examined these dual linked issued with new zircon U/Th-He (ZHe) data, new geological mapping and previously published apatite fission track (AFT) data from the Floresta Massif and the associated footwall strata. Previously, an overturned Paleozoic - Cretaceous sequence was mapped emplaced on Tertiary strata along the Soapaga fault. However, new geologic mapping identifies two previously unrecognized thrusts which place, from west to east, Paleozoic strata on Jurassic strata (Fault 3), Jurassic strata on Cretaceous strata (Fault 2) and Cretaceous strata on Tertiary strata (along the previously identified Fault 1). These results are confirmed by AFT and ZHe data. ZHe ages show no resetting in the Tertiary footwall strata, but show partial resetting in the Cretaceous strata and full resetting in the Jurassic and Paleozoic strata. Similarly, AFT data show older ages in the Cretaceous strata than in the Jurassic or Paleozoic strata. Fully reset ZHe ages from Jurassic strata show that exhumation of the Floresta Massif was ongoing by at least the early Oligocene (~ 30 Ma). However, this deformation post-dates an older episode of deformation associated with partially reset ZHe ages in the Cretaceous strata. Based on a decrease in lag time in detrital ZHe data, we infer that the earlier episode of deformation occurred in the mid - late Eocene (45 - 35 Ma).

  4. Observations of Seafloor Vertical Deformation on Axial Seamount with the Self-Calibrating Pressure Recorder

    Science.gov (United States)

    Cook, M. J.; Sasagawa, G. S.; Zumberge, M. A.

    2015-12-01

    A geodetic pressure gauge, the Self-Calibrating Pressure Recorder (SCPR), was deployed on Axial Seamount on September 7, 2013. The device performs in situ pressure calibrations every 10 days by applying a time-invariant reference pressure from a piston gauge (also known as a deadweight calibrator) to continuously recording quartz pressure gauges through a hydraulic valve. The reference pressure measurements are then used to estimate and correct for the inherent drift in the quartz resonant seafloor pressure gauges. Pressure data are collected at 100 s integration intervals. A small subset of a year-long data set was recovered via an acoustic modem in August 2014. Using three epoch measurements, the pressure rate of change from September 2013 to August 2014 was -4.1 to -4.2 kPa/year, equivalent to uplift of 41- 42 cm/year. Other pressure time series and micro-bathymetric repeat surveys are in rough agreement with this SCPR rate. The instrument is scheduled for recovery in August 2015; the anticipated data collection interval spans the eruption on April 24, 2015. We present the drift-corrected pressure series and constraints estimated for magma supply rates during the inflation, eruption, and post-eruptive phases.

  5. Comparison between formulas of rotational band for axially symmetric deformed nuclei

    Institute of Scientific and Technical Information of China (English)

    WU Xi; LEI Yi-An

    2008-01-01

    The experimental rotational spectra of the deformed nuclei available in even-even and odd-A nuclei in the rare-earth and actinide regions are systematically analyzed with several rotational spectra formulas,including Bohr-Mottelson's I(I+l)-expansion,Harris'w2-expansion,ab and abc formulas.It is shown that the simple 2-parameter ab formula is much better than the widely used 2-parameter Bohr-Mottelson's AB formula and Harris'αβ formula.The available data of the rotational spectra of both ground-state band in even-even nuclei and one-quaasiparticle band in odd-A nuclei can be conveniently and rather accurately reproduced by ab formula and abc formula.The moment of inertia and the variation with rotational frequency of angular momentum can be satisfactorily reproduced by ab and abc formulas.

  6. Nuclear shape phase transition within a conjonction of {\\gamma}-rigid and {\\gamma}-stable collective behaviours in deformation dependent mass formalism

    CERN Document Server

    Chabab, M; Lahbas, A; Oulne, M

    2016-01-01

    In this paper, we present a theoretical study of a conjonction of $\\gamma$-rigid and $\\gamma$-stable collective motions in critical point symmetries of the phase transitions from spherical to deformed shapes of nuclei using exactly separable version of the Bohr Hamiltonian with deformation-dependent mass term. The deformation-dependent mass is applied simultaneously to $\\gamma$-rigid and $\\gamma$-stable parts of this famous collective Hamiltonian. Moreover, the $\\beta$ part of the problem is described by means of Davidson potential, while the $\\gamma$-angular part corresponding to axially symmetric shapes is treated by a Harmonic Osillator potential. The energy eigenvalues and normalized eigenfunctions of the problem are obtained in compact forms by making use of the asymptotic iteration method. The combined effect of the deformation-dependent mass and rigidity as well as harmonic oscillator stiffness parameters on the energy spectrum and wave functions is duly investigated. Also, the electric quadrupole tran...

  7. Effect of biquadratic exchange on the axial Heisenberg model: Application to the magnetic phase transitions in UNi2Si2

    International Nuclear Information System (INIS)

    The influence of biquadratic exchange on the Heisenberg model with strong axial anisotropy is examined for the case of spins on a body-centered tetragonal lattice with competing bilinear exchange interactions along the c axis. Contrary to the usual axial next-nearest-neighbor Ising model with third-neighbor exchange also included, a low-temperature spin-wave calculation reveals that biquadratic exchange can stabilize the sequence of phases period 3→period 2. Mean-field analysis, with support from Monte Carlo simulations, suggests a higher-temperature transition to an incommensurate state. This sequence of phase transitions has recently been observed in UNi2Si2. The importance of fluctuations is emphasized

  8. Multipolar correlations and deformation effect on nuclear transition matrix elements of double-$\\beta $ decay

    CERN Document Server

    Chandra, R; Rath, P K; Raina, P K; Hirsch, J G

    2009-01-01

    The two neutrino and neutrinoless double beta decay of $^{94,96}$Zr, $^{98,100}$Mo, $^{104}$Ru, $^{110}$Pd, $^{128,130}$Te and $^{150}$Nd isotopes for the $0^{+}\\to 0^{+}$ transition is studied within the PHFB framework along with an effective two-body interaction consisting of pairing, quadrupole-quadrupole and hexadecapole-hexadecapole correlations. It is found that the effect of hexadecapolar correlations can be assimilated substantially as a renormalization of the quadrupole-quadrupole interaction. The effect of deformation on nuclear transition matrix elements is investigated by varying the strength of quadrupolar correlations in the parent and daughter nuclei independently. The variation of the nuclear transition matrix elements as a function of the difference in deformation parameters of parent and daughter nuclei reveals that in general, the former tend to be maximum for equal deformation and they decrease as the difference in deformation parameters increases, exhibiting a very similar trend for the $...

  9. Temperature dependant polycrystal model application to bainitic steel behavior under tri-axial loading in the ductile-brittle transition

    International Nuclear Information System (INIS)

    A polycrystal finite element (FE) model describing the temperature evolution of low carbon steel is proposed in order to forecast the local mechanical fields as a function of temperature, for bainitic microstructure submitted to tri-axial loading. The model is designed for finite strains, large lattice rotations and temperatures ranging into the brittle-ductile transition domain. The dislocation densities are the internal variables. At low temperature in Body Centred Cubic (BCC) materials, plasticity is governed by double kink nucleation of screw dislocations, whereas at high temperature, plasticity depends on interactions between mobile dislocations and the forest dislocations. In this paper, the constitutive law and the evolution of the dislocation densities are written as a function of temperature and describe low and high temperature mechanisms. The studied aggregates are built from Electron Back Scattering Diffraction (EBSD) images of real bainitic steel. The aggregate is submitted to a tri-axial loading in order to describe the material at a crack tip. Mechanical parameters are deduced from mechanical tests. The local strain and stress fields, computed for different applied loadings, present local variations which depend on temperature and on tri-axial ratio. The distribution curves of the maximal principal stresses show that heterogeneities respectively increase with temperature and decrease with tri-axial ratio. A direct application of this model provides the evaluation of the rupture probability within the aggregate, which is treated as the elementary volume in the weak link theory. A comparison with the Beremin criterion calibrated on experimental data, shows that the computed fracture probability dispersion induced by the stress heterogeneities is of the same order than the measured dispersion. Temperature and stress tri-axiality ratio effects are also investigated. It is shown that these two parameters have a strong effect on fracture owing to their

  10. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun, E-mail: jun.song2@mcgill.ca [Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Guo, Yinsheng [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Mi, Zetian [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 0E9 (Canada)

    2015-11-09

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX{sub 2} (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated.

  11. Systematics of Absolute Gamma Ray Transition Probabilities in Deformed Odd-A Nuclei

    International Nuclear Information System (INIS)

    All known experimentally determined absolute gamma ray transition probabilities between different intrinsic states of deformed odd-A nuclei in the rare earth, region (153 < A < 181) and in the actinide region (A ≥ 227) are compared with transition probabilities (Weisskopf and Nilsson estimate). Systematic deviations from the theoretical values are found. Possible explanations for these deviations are given. This discussion includes Coriolis coupling, ΔK =±2 band-mixing effects and pairing interaction

  12. Observing the Transition from Equatorial to Axial CO Chemisorption: Infrared Photodissociation Spectroscopy of Yttrium Oxide-Carbonyls.

    Science.gov (United States)

    Xie, Hua; Liu, Zhiling; Zhao, Zhi; Kong, Xiangtao; Fan, Hongjun; Tang, Zichao; Jiang, Ling

    2016-06-01

    A series of yttrium oxide-carbonyls are prepared via a laser vaporization supersonic cluster source in the gas phase and identified by mass-selected infrared photodissociation (IRPD) spectroscopy in the C-O stretching region and by comparing the observed IR spectra with those from quantum chemical calculations. For YO(CO)4(+), all four CO ligands prefer to occupy the equatorial site of the YO(+) unit, leading to a quadrangular pyramid with C4v symmetry. Two energetically nearly degenerate isomers are responsible for YO(CO)5(+), in which the fifth CO ligand is either inserted into the equatorial plane of YO(CO)4(+) or coordinated opposite the oxygen on the C4 axis. YO(CO)6(+) has a pentagonal bipyramidal structure with C5v symmetry, which includes five equatorial CO ligands and one axial CO ligand. The present IRPD spectroscopic and theoretical study of YO(CO)n(+) extends the first shell coordination number of CO ligands in metal monoxide carbonyls to six. The transition from equatorial to axial CO chemisorption in these yttrium oxide-carbonyls is fortunately observed at n = 5, providing new insight into ligand interactions and coordination for the transition metal oxides. PMID:27158889

  13. Defect structures and phase transitions of FeRh alloys deformed at high speed deformation

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro; Hori, Fuminobu; Kibata, Yasunori; Komatsu, Masao; Kiritani, Michio

    2003-06-15

    Fe-Rh alloys of Rh concentrations ranging from 40 to 50at.% and of B2 phase were deformed by use of a compression machine capable of running tests at high speeds of impact. Induced complicated substructures and phases were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), and positron annihilation spectroscopy (PAS). A characteristic arrangement of L1{sub 0} domains was observed, along with very small transformed A1 domains and dispersed in the residual B2 matrix. On the basis of the experimental results, we suggest a coupling of a pair of shears along {l_brace}112{r_brace}<11-1>{sub B2} for the transformation mechanisms from B2 to L1{sub 0} and A1 phases.

  14. Correction of static axial alignment in children with knee varus or valgus deformities through guided growth: Does it also correct dynamic frontal plane moments during walking?

    Science.gov (United States)

    Böhm, Harald; Stief, Felix; Sander, Klaus; Hösl, Matthias; Döderlein, Leonhard

    2015-09-01

    Malaligned knees are predisposed to the development and progression of unicompartmental degenerations because of the excessive load placed on one side of the knee. Therefore, guided growth in skeletally immature patients is recommended. Indication for correction of varus/valgus deformities are based on static weight bearing radiographs. However, the dynamic knee abduction moment during walking showed only a weak correlation to malalignment determined by static radiographs. Therefore, the aim of the study was to measure the effects of guided growth on the normalization of frontal plane knee joint moments during walking. 15 legs of 8 patients (11-15 years) with idiopathic axial varus or valgus malalignment were analyzed. 16 typically developed peers served as controls. Instrumented gait analysis and clinical assessment were performed the day before implantation and explantation of eight-plates. Correlation between static mechanical tibiofemoral axis angle (MAA) and dynamic frontal plane knee joint moments and their change by guided growth were performed. The changes in dynamic knee moment in the frontal plane following guided growth showed high and significant correlation to the changes in static MAA (R=0.97, pknee moment before treatment showed a more pathological one after treatment. In conclusion, the changes in the dynamic load situation during walking can be predicted from the changes in static alignment. If pre-surgical gait analysis reveals a natural load situation, despite a static varus or valgus deformity, the intervention must be critically discussed.

  15. Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow

    Science.gov (United States)

    Santhosh, R.; Miglani, Ankur; Basu, Saptarshi

    2013-08-01

    This paper reports the first observations of transition from a pre-vortex breakdown (Pre-VB) flow reversal to a fully developed central toroidal recirculation zone in a non-reacting, double-concentric swirling jet configuration and its response to longitudinal acoustic excitation. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure as the centre jet penetration is suppressed by the growing outer roll-up eddy; resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Rom) which appears to describe the spreading of the zone of swirl influence in different flow regimes. Further, the time-mean global acoustic response of pre-VB and VBB is measured as a function of pulsing frequency using the relative aerodynamic blockage factor (i.e., maximum radial width of the inner recirculation zone). It is observed that all flow modes except VBB are structurally unstable as they exhibit severe transverse radial shrinkage (˜20%) at the burner Helmholtz resonant modes (100-110 Hz). In contrast, all flow regimes show positional instability as seen by the large-scale, asymmetric spatial shifting of the vortex core centres. Finally, the mixing transfer function M (f) and magnitude squared coherence λ2(f) analysis is presented to determine the natural coupling modes of the system dynamic parameters (u', p'), i.e., local acoustic response. It is seen that the pre-VB flow mode exhibits a narrow-band, low pass filter behavior with a linear response window of 100-105 Hz. However, in the VBB structure, presence of critical regions such as the opposed flow stagnation region

  16. Plastic Deformation of Transition Zone Minerals: Effect of Temperature on Dislocation Mobility

    Science.gov (United States)

    Ritterbex, S.; Carrez, P.; Gouriet, K.; Cordier, P.

    2014-12-01

    Mantle convection is the fundamental process by which the Earth expels its internal heat. It is controlled at the microscopic scale by the motion of crystal defects responsable for plastic deformation at high temperature and pressure conditions of the deep Earth. In this study we focus on dislocations which are usually considered as the most efficient defects contributing to intracrystalline deformation. The influence of temperature is a key parameter in determining the behaviour of dislocations. We propose a model to describe the temperature-dependent mobility of dislocations based on a computational materials science approach, connecting the atomic to the grain scale. This provides elementary knowledge to both interpret seismic anisotropy and to improve geodynamic modelling. Here we focus on plastic deformation of the transition zone minerals wadsleyite and ringwoodite, dominating the boundary separating the upper from the lower mantle, a region over which the viscosity is thought to increase rapidly. Using the Peierls-Nabarro-Galerkin model enabled us to select potential glide planes, to predict the dislocation core structures and fundamental properties of both Mg2SiO4 high-pressure polymorphs integrating the non-elastic nature of dislocations from atomic scale based calculations. Macroscopic deformation results from the mobility of these distinct dislocations. High finite mantle temperatures activates unstable double-kink configurations on the dislocation line which allow the dislocation to move under stress. The original contribution of the present work is the formulation of a mobility law for dissociated dislocations as they occur in wadsleyite and ringwoodite. This permits us to predict the critical activation enthalpy required to overcome lattice friction associated to the onset of glide. From this, the effective glide velocities can be derived as a function of stress and temperature leading to the first lower bound estimates of transition zone viscosities

  17. Deformation-induced structural transition in body-centred cubic molybdenum.

    Science.gov (United States)

    Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X

    2014-03-07

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original -oriented body-centred cubic structure to a -oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into -oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.

  18. Correction of static axial alignment in children with knee varus or valgus deformities through guided growth: Does it also correct dynamic frontal plane moments during walking?

    Science.gov (United States)

    Böhm, Harald; Stief, Felix; Sander, Klaus; Hösl, Matthias; Döderlein, Leonhard

    2015-09-01

    Malaligned knees are predisposed to the development and progression of unicompartmental degenerations because of the excessive load placed on one side of the knee. Therefore, guided growth in skeletally immature patients is recommended. Indication for correction of varus/valgus deformities are based on static weight bearing radiographs. However, the dynamic knee abduction moment during walking showed only a weak correlation to malalignment determined by static radiographs. Therefore, the aim of the study was to measure the effects of guided growth on the normalization of frontal plane knee joint moments during walking. 15 legs of 8 patients (11-15 years) with idiopathic axial varus or valgus malalignment were analyzed. 16 typically developed peers served as controls. Instrumented gait analysis and clinical assessment were performed the day before implantation and explantation of eight-plates. Correlation between static mechanical tibiofemoral axis angle (MAA) and dynamic frontal plane knee joint moments and their change by guided growth were performed. The changes in dynamic knee moment in the frontal plane following guided growth showed high and significant correlation to the changes in static MAA (R=0.97, p<0.001). Contrary to the correlation of the changes, there was no correlation between static and dynamic measures in both sessions. In consequence two patients that had a natural knee moment before treatment showed a more pathological one after treatment. In conclusion, the changes in the dynamic load situation during walking can be predicted from the changes in static alignment. If pre-surgical gait analysis reveals a natural load situation, despite a static varus or valgus deformity, the intervention must be critically discussed. PMID:26159802

  19. DEFORMATION SUBSTRUCTURES AND THEIR TRANSITIONS IN LASER SHOCK-COMPRESSED COPPER-ALUMINUM ALLOYS

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, M A; Schneider, M S; Jarmakani, H; Kad, B; Remington, B A; Kalantar, D H; McNaney, J; Cao, B; Wark, J

    2007-10-17

    It is shown that the short pulse durations (0.1-10 ns) in laser shock compression ensure a rapid decay of the pulse and quenching of the shocked sample in times that are orders of magnitude lower than in conventional explosively driven plate impact experiments. Thus, laser compression, by virtue of a much more rapid cooling, enables the retention of a deformation structure closer to the one existing during shock. The smaller pulse length also decreases the propensity for localization. Copper and copper aluminum (2 and 6 wt% Al) with orientations [001] and [{bar 1}34] were subjected to high intensity laser pulses with energy levels of 70 to 300 J delivered in an initial pulse duration of approximately 3 ns. The [001] and [{bar 1}34] orientations were chosen since they respectively maximize and minimize the number of slip systems with highest resolved shear stresses. Systematic differences of the defect substructure were observed as a function of pressure, stacking-fault energy and crystalline orientation. The changes in the mechanical properties for each condition were compared using micro- and nano-hardness measurements and correlated well with observations of the defect substructure. Three regimes of plastic deformation were identified and their transitions modeled: dislocation cells, stacking-faults, and twins. An existing constitutive description of the slip to twinning transition, based on the critical shear stress, was expanded to incorporate the effect of stacking-fault energy. A new physically-based criterion accounting for stacking-fault energy was developed that describes the transition from perfect loop to partial loop homogeneous nucleation, and consequently from cells to stacking-faults. These calculations predict transitions that are in qualitative agreement with the effect of SFE.

  20. Effect of biquadratic exchange on the axial Heisenberg model: Application to the magnetic phase transitions in UNi sub 2 Si sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Mailhot, A.; Plumer, M.L.; Caille, A. (Centre de Recherche en Physique du Solide et Departement de Physique, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)); Azaria, P. (Laboratoire de Physique Theorique des Liquides, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris CEDEX 05 (France))

    1992-05-01

    The influence of biquadratic exchange on the Heisenberg model with strong axial anisotropy is examined for the case of spins on a body-centered tetragonal lattice with competing bilinear exchange interactions along the {ital c} axis. Contrary to the usual axial next-nearest-neighbor Ising model with third-neighbor exchange also included, a low-temperature spin-wave calculation reveals that biquadratic exchange can stabilize the sequence of phases period 3{r arrow}period 2. Mean-field analysis, with support from Monte Carlo simulations, suggests a higher-temperature transition to an incommensurate state. This sequence of phase transitions has recently been observed in UNi{sub 2}Si{sub 2}. The importance of fluctuations is emphasized.

  1. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  2. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    Science.gov (United States)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  3. First evidence for linking transitions between the superdeformed yrast band and the normal deformed states in Gd-149

    NARCIS (Netherlands)

    Finck, C; Stezowski, O; Kintz, N; Vivien, JP; Zuber, K; Nourreddine, A; Appelbe, DE; Beausang, CW; Beck, FA; Byrski, T; Courtin, S; Curien, D; de France, G; Duchene, G; Erturk, S; Gall, BJP; Haas, B; Khadiri, N; Pachoud, E; Rigollet, C; Smith, M; Theisen, C; Twin, PJ

    1999-01-01

    Double step resolved gamma-ray transitions linking the yrast superdeformed (SD) band of Gd-149 to the normal deformed (ND) level scheme have been observed using the EUROGAM phase II spectrometer. The excitation energy of the 47/2(-) SD state above the 7/2(-) ground state has thus been determined to

  4. Inflationary spectra from near $\\Omega$-deformed space-time transition point in Loop Quantum Cosmology

    CERN Document Server

    Chen, Long

    2016-01-01

    Anomaly-free perturbations of loop quantum cosmology with holonomy corrections reveal a $\\Omega$ -deformed space-time structure, $\\Omega:=1-2\\rho/\\rho_c$, where $\\Omega0$ means a Lorentz-like space. It would be reasonable to give the initial value at the space-time transition point, $\\rho=\\rho_c/2$, but we find it is impossible to define a Minkowski-like vacuum even for large $k$-modes at that time. However if we loose the condition and give the initial value near after $\\Omega=0$, e.g. $\\Omega\\simeq 0.2$, the vacuum state can be well defined and furthermore the slow roll approximation also works well in that region. Both scalar and tensor spectra are considered in the framework of loop quantum cosmology with holonomy corrections. We find that if the energy density is not too small compared with $\\rho_c/2$ when the considered $k$-mode crossing the horizon, effective theory can give a much smaller scalar power spectrum than classical theory and the spectrum of tensor perturbations could blue shift. But when co...

  5. Numerical Modeling of Ti Deformation for the Development of a Titanium and Stainless Steel Transition Joint

    Science.gov (United States)

    Mukherjee, A. B.; Kapoor, R.; Thota, M. K.; Chakravartty, J. K.

    2016-07-01

    Finite element analysis (FEA) was used to model the joining of titanium grade 2 (Ti) to AISI 321 stainless steel (SS) transition joint of lap configuration with grooves at the interface on SS side. The hot forming of Ti for filling the grooves without defects was simulated. FEA involving large plastic flow with sticking friction condition was initially validated using compression test on cylindrical specimen at 900 °C. The barreled shape and a no-deformation zone in the sample predicted by FEA matched with those of the compression experiments. For the joining process, FEA computed the distribution of strain and hydrostatic stress in Ti and the minimum ram load required for a defect-free joint. The hot forming parameters for Ti to fill the grooves without defects and any geometrical distortion of the die were found to be 0.001 s-1 at 900 °C. Using these conditions a defect-free Ti-SS joint was experimentally produced.

  6. Large epitaxial bi-axial strain induces a Mott-like phase transition in VO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kittiwatanakul, Salinporn [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei, E-mail: jl5tk@virginia.edu [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-08-18

    The metal insulator transition (MIT) in vanadium dioxide (VO{sub 2}) has been an important topic for recent years. It has been generally agreed upon that the mechanism of the MIT in bulk VO{sub 2} is considered to be a collaborative Mott-Peierls transition, however, the effect of strain on the phase transition is much more complicated. In this study, the effect of the large strain on the properties of VO{sub 2} films was investigated. One remarkable result is that highly strained epitaxial VO{sub 2} thin films were rutile in the insulating state as well as in the metallic state. These highly strained VO{sub 2} films underwent an electronic phase transition without the concomitant Peierls transition. Our results also show that a very large tensile strain along the c-axis of rutile VO{sub 2} resulted in a phase transition temperature of ∼433 K, much higher than in any previous report. Our findings elicit that the metal insulator transition in VO{sub 2} can be driven by an electronic transition alone, rather the typical coupled electronic-structural transition.

  7. Transient creep, aseismic damage and slow failure in Carrara marble deformed across the brittle-ductile transition

    Science.gov (United States)

    Schubnel, A.; Walker, E.; Thompson, B. D.; Fortin, J.; Guéguen, Y.; Young, R. P.

    2006-09-01

    Two triaxial compression experiments were performed on Carrara marble at high confining pressure, in creep conditions across the brittle-ductile transition. During cataclastic deformation, elastic wave velocity decrease demonstrated damage accumulation (microcracks). Keeping differential stress constant and reducing normal stress induced transient creep events (i.e., fast accelerations in strain) due to the sudden increase of microcrack growth. Tertiary creep and brittle failure followed as damage came close to criticality. Coalescence and rupture propagation were slow (60-200 seconds with ~150 MPa stress drops and millimetric slips) and radiated little energy in the experimental frequency range (0.1-1 MHz). Microstructural analysis pointed out strong interactions between intra-crystalline plastic deformation (twinning and dislocation glide) and brittle deformation (microcracking) at the macroscopic level. Our observations highlight the dependence of acoustic efficiency on the material's rheology, at least in the ultrasonic frequency range, and the role played by pore fluid diffusion as an incubation process for delayed failure triggering.

  8. Ferro-deformation and shape phase transitions over the nuclear chart: 50 < protons (Z) < 82 and 50 < neutrons (N) < 126

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We study a global nuclear structure in the framework of experimental observables. With the aid of large nuclear structure data at the national nuclear data center, NNDC, we present the distinctive systematic patterns emerged in the first 2+ excited energies, E(2+) and their energy ratios to the first 4+ levels, R = E(4+)/E(2+), in the even-even nuclei, over 50 < Z < 82 for protons, and 50 < N < 126 for neutrons. We introduce the so-called pseudo-shell configurations from the subshells mixture in order to explain a semi-double shell closure, a shape phase transition, and a reinforced deformation. It is found that the reinforced deformation arises when Z = 64 or 66 correlates with N = 90 and reaches its maximum, indicating R = 3.3. Such a saturated reinforced deformation spans over Z = 58 to 72 and N = 100 to 106 as showing its center at Z = 64 or 66 and at N = 102 or 104. We define this reinforced deformation 'a ferro-deformation' like a ferro-magnetism in condensed matter physics. The shape coexis...

  9. 圆柱轴类零件径向与轴向热变形异常现象研究%Study on Abnormal Phenomena of Radial and Axial Thermal Deformation of Cylindrical Parts

    Institute of Scientific and Technical Information of China (English)

    罗哉; 陆艺; 郭斌; 范伟军

    2012-01-01

    A phenomenon was found by experimental results that the same size of cylindrical parts had different radial and axial thermal deformations under the same conditions. And the traditional therodynamic theory could not explain this phenomenon. The relationship between volume expansion coefficient and linear expansion coefficient of crystal was built up by using the Lattice vibration theory of solid--state physics. Based on this relationship, a radial thermal deformation of cylindrical model was set up. The model was different with the traditional model. The experimental results show that the value which calculated by the model is closer to the experimental results than that by the tradition- al model, and cylindrical parts have different radial and axial thermal expansion coefficient. Tradition- al model of axial thermal deformation can not be used in micro--field when calculating the radial thermal deformation of cylindrical parts.%通过实验发现了直径和长度相同的轴在径向和轴向具有不同的热变形量,传统的热力学理论不能解释这一现象。利用固体物理学晶格振动理论,推导了晶体体积膨胀系数与线膨胀系数之间的关系;将金属材料近似为晶体材料,利用线膨胀系数与体积膨胀系数的关系并结合对材料线膨胀系数研究的成果,建立了轴类零件径向热变形模型,理论分析证实了轴类零件径向热膨胀系数与轴向热膨胀系数不同。实验结果表明:轴类零件径向热变形模型计算结果较传统热力学计算结果更接近实验结果,且径向和轴向具有不同的热膨胀系数,在高精度领域,轴类零件的径向热变形不能使用轴向热膨胀系数进行计算。

  10. Nuclear shape phase transition within a conjonction of {\\gamma}-rigid and {\\gamma}-stable collective behaviours in deformation dependent mass formalism

    OpenAIRE

    Chabab, M.; Batoul, A. El; Lahbas, A.; Oulne, M.

    2016-01-01

    In this paper, we present a theoretical study of a conjonction of $\\gamma$-rigid and $\\gamma$-stable collective motions in critical point symmetries of the phase transitions from spherical to deformed shapes of nuclei using exactly separable version of the Bohr Hamiltonian with deformation-dependent mass term. The deformation-dependent mass is applied simultaneously to $\\gamma$-rigid and $\\gamma$-stable parts of this famous collective Hamiltonian. Moreover, the $\\beta$ part of the problem is ...

  11. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    Science.gov (United States)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  12. Calculation of axially bearing capacity of a batter pile based on mechanism of deformation compatibility%基于变形协调的斜桩轴向承载力计算方法

    Institute of Scientific and Technical Information of China (English)

    张麒蛰; 卓卫东; 范立础

    2013-01-01

    In order to obtain the axial bearing capacity of a batter pile , the calculation formula for the axially bearing capacity of a batter pile was deduced based on the non-uniform distribution char-acteristics of the friction resistance around the batter pile shaft and the mechanism of pile -soil deformation compatibility .The results calculated by the proposed formula and the method given by the design code of pile were compared to explore the influence of the factors , such as pile inclina-tion, diameter, length and utmost friction resistance around pile shaft , on axial bearing capacity. The calculated results showed that the value of the pile axially bearing capacity calculated by the proposed formula decreased with the increase of pile inclination .For different pile diameters , the pile axially bearing capacity was 7%smaller than that calculated by the code's formula.The shorter of the pile length or the lesser of the utmost friction resistance of the pile was , the smaller bearing capacity calculated by the code's formula was than the values calculated by the proposed formula . Finally , with the increase of the pile length or utmost friction resistance , the value of bearing capaci-ty calculated by this proposed formula was greater than the value calculated by the code's formula. The proposed formula also takes into account of the influence of pile inclination and the mechanism of pile-soil deformation compatibility .It can be a reference to calculate axial bearing capacity of bat-ter piles.%为进一步研究斜桩轴向承载力计算方法,基于斜桩的桩周摩阻力不均匀分布的特性和桩-土受力变形协调的原则,推导了斜桩轴向承载力计算公式,通过对比本文公式与规范公式的计算结果,揭示了桩身倾角、桩径、桩长和桩侧极限摩阻力等因素对斜桩轴向容许承载力的影响规律。结果表明:鉴于规范公式未考虑斜桩桩身倾角对承载力的影响,本文公式计算得

  13. Search for and study of linking transitions between super- and normal deformed wells in the {sup 151}Tb nucleus; Recherche et etude de transitions de liaison entre les puits super- et normalement deformes dans le noyau {sup 151}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Robin, J

    2003-12-01

    While the superdeformation phenomenon has been observed many times in different mass regions, the excitation energy and angular momentum are not known for most of the superdeformed bands, mainly in the A {approx} 150 mass region. We have thus undertaken the search for and study of linking transitions between super and normal deformed potential wells in the Tb{sup 151} nucleus with the EUROBALL-IV spectrometer based at the subatomic research institute of Strasbourg. This nucleus presents the peculiarity of having an excited superdeformed band identical to the yrast one of Dy{sup 152}, which has recently been linked to normal deformed states. As the Dy{sup 152} nucleus exhibits a shape coexistence in the first potential well, we have also searched for collective rotational bands with prolate but moderate shape, coexisting with the oblate structure of Tb{sup 151}. The discovery of new superdeformed bands in the Tb{sup 151,152} isotopes, the extension to lower and higher spins of the previously known bands, and mean field calculations with a deformed Woods-Saxon potential have contributed to improve our knowledge as well as raise new questions on the orbitals configuration assignments of these bands. (author)

  14. Micro- and submicrostructural evidence for high-temperature brittle-ductile transition deformation of hornblende: Case study of high-grade mylonites from Diancangshan, western Yunnan

    Institute of Scientific and Technical Information of China (English)

    CAO; ShuYun; LIU; JunLai; HU; Ling

    2007-01-01

    OM (optical microscope)/TEM (transmission electron microscope) micro- and submicrostructural analysis of hornblende rocks sheared at high temperatures from the Diancangshan area, western Yunnan reveals evidence for deformation in the brittle-ductile transition of hornblende at middle crustal level (about 637℃ and 0.653 GPa) and mechanisms of deformation in the transitional regime are further discussed. Sheared hornblende rocks at middle crustal level have typical mylonitic microstructures, shown by coarse porphyroclasts and fine matrix grains. Different mineral phases in the rocks show distinct deformation characteristics. Hornblende and feldspar grains are intensely deformed with obvious grainsize reduction, but quartz grains are recrystallized dominantly by grain growth. Hornblende grains show typical brittle-ductile transition nature. Initial crystallographic orientations of porphyroclasts have strong effects on the behavior of grains during deformation. There are mainly two types of porphyroclasts, type I "hard" porphyroclasts and type II "soft" porphyroclasts, with [001] perpendicular and parallel to external shear stresses respectively. "Hard" porphyroclasts generally occur as competent grains that are rarely deformed or sometimes deformed by fracturing and dislocation tangling. "Soft" porphyroclasts are highly deformed primarily by dislocation tangling (as shown in the cores of the porphyroclasts), but twinning, dislocation glide and climb probably due to hydrolytic weakening also contribute to dynamic recrystallization of the porphyroclasts into fine grains in the matrix. The micro- and submicrostructures of the two types of porphyroclasts and fine-grained matrix provide powerful evidence for the behavior of brittle-ductile transition of hornblende grains. It is concluded that twinning nucleation is one of the most important processes that operate during dynamic recrystallization of hornblende crystals at the brittle-ductile transition. (100) [001] twin

  15. Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

    International Nuclear Information System (INIS)

    Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point. (authors)

  16. Quantum shape phase transitions from spherical to deformed for Bose-Fermi systems: the effect of the odd particle around the critical point

    Directory of Open Access Journals (Sweden)

    Böyükata M.

    2014-03-01

    Full Text Available Quantum phase transitions in odd-nuclei are investigated within the framework of the interacting boson-fermion model with a description based on the concept of intrinsic states. We consider the case of a single j=9/2 odd-particle coupled to an even-even boson core that performs a transition from spherical to deformed prolate and to deformed gamma-unstable shapes varying a control parameter in the boson Hamiltonian. The effect of the coupling of the odd particle to this core is discussed along the shape transition and, in particular, at the critical point.

  17. First-Principles Study of the γAngle Deformation Path in the Wurtzite-to-Rocksalt Phase Transition in Aluminum Nitride

    Institute of Scientific and Technical Information of China (English)

    CAI Ying-Xiang; XU Rui

    2010-01-01

    @@ A new transition path(γangle deformation path)is put forward and used to characterize the wurtzite-rocksalt transition in AlN.The enthalpy surface and the contour plot of enthalpy difference at equilibrium pressure are obtained by first-principles pseudopotential method within the generalized gradient approximation.The phase transition is needed to overcome two barriers and a metaphase arises between them.The total barrier height is0.26eV.

  18. A concept for energy harvesting from quasi-static structural deformations through axially loaded bilaterally constrained columns with multiple bifurcation points

    Science.gov (United States)

    Lajnef, N.; Burgueño, R.; Borchani, W.; Sun, Y.

    2014-05-01

    A major obstacle limiting the development of deployable sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading using piezoelectric scavengers is a possible solution. Most of the previously developed research focused on vibration-based piezoelectric harvesters which are typically characterized by a response with a narrow natural frequency range. Several techniques were used to improve their effectiveness. These methods focus only on the transducer’s properties and configurations, but do little to improve the stimuli from the source. In contrast, this work proposes to focus on the input deformations generated within the structure, and the induction of an amplified amplitude and up-converted frequency toward the harvesters’ natural spectrum. This paper introduces the concept of using mechanically-equivalent energy converters and frequency modulators that can transform low-amplitude and low-rate service deformations into an amplified vibration input to the piezoelectric transducer. The introduced concept allows energy conversion within the unexplored quasi-static frequency range (≪1 Hz). The post-buckling behavior of bilaterally constrained columns is used as the mechanism for frequency up-conversion. A bimorph cantilever polyvinylidene fluoride (PVDF) piezoelectric beam is used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept and the levels of extractable power were evaluated for different cases under varying input frequencies. Finally, finite element simulations are reported to provide insight into the scalability and performance of the developed concept.

  19. Topological strings and large N phase transitions I: Nonchiral expansion of q-deformed Yang-Mills theory

    Science.gov (United States)

    Caporaso, Nicola; Cirafici, Michele; Griguolo, Luca; Pasquetti, Sara; Seminara, Domenico; Szabo, Richard J.

    2006-01-01

    We examine the problem of counting bound states of BPS black holes on local Calabi-Yau threefolds which are fibrations over a Riemann surface by computing the partition function of q-deformed Yang-Mills theory on the Riemann surface. We study in detail the genus zero case and obtain, at finite N, the instanton expansion of the gauge theory. It can be written exactly as the partition function for U(N) Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. The correspondence between two and three dimensional gauge theories is elucidated by an explicit mapping between two-dimensional Yang-Mills instantons and flat connections on the Lens space. In the large N limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces exactly to the trivial flat connection sector with instanton contributions exponentially suppressed, and the topological string partition function on the resolved conifold is reproduced in this regime. At a certain critical point all non-trivial vacua contribute, instantons are enhanced and the theory appears to undergo a phase transition into a strong coupling regime. We rederive these results by performing a saddle-point approximation to the exact partition function. We obtain a q-deformed version of the Douglas-Kazakov equation for two-dimensional Yang-Mills theory on the sphere, whose one-cut solution below the transition point reproduces the resolved conifold geometry. Above the critical point we propose a two-cut solution that should reproduce the chiral-antichiral dynamics found for black holes on the Calabi-Yau threefold and the Gross-Taylor string in the undeformed limit. The transition from the strong coupling phase to the weak coupling phase appears to be of third order.

  20. Studies of the electric dipole transitions of deformed rare-earth nuclei

    OpenAIRE

    Ji, Hua Ying; Long, Gui Lu; Zhao, En Guang; Xu, Shu Wei

    1999-01-01

    Spectrum and electric dipole transition rates and relative intensities in $^{152-154}$Sm, $^{156-160}$Gd, $^{160-162}$Dy are studied in the framework of the interacting boson model with s,p,d,f bosons. It is found that E1 transition data among the low-lying levels are in good agreement with the SU(3) dynamical symmetry of the spdf interacting boson model proposed by Engel and Iachello to describe collective rotation with octupole vibration. These results show that these nuclei have SU(3) dyna...

  1. Superposed deformation straddling the continental-oceanic transition in deep-water Angola

    Energy Technology Data Exchange (ETDEWEB)

    Cramez, C. [TotalFina Elf Exploration and Production, Paris La Defense (France); Jackson, M.P.A. [Texas Univ., Austin, TX (United States). Bureau of Economic Geology

    2000-12-01

    The Angolan margin is the type area for raft tectonics. New seismic data reveal the contractional buffer for this thin-skinned extension. A 200-km-long composite section from the Lower Congo Basin and Kwanza Basin illustrates a complex history of superposed deformation caused by: (1) progradation of the margin; and (2) episodic Tertiary epeirogenic uplift. Late Cretaceous tectonics was driven by a gentle slope created by thermal subsidence; extensional rafting took place updip, contractional thrusting and buckling downdip; some distal folds were possibly unroofed to form massive salt walls. Oligocene deformation was triggered by gentle kinking of the Atlantic Hinge Zone as the shelf and coastal plain rose by 2 or 3 km; relative uplift stripped Paleogene cover off the shelf, provided space for Miocene progradation, and steepened the continental slope, triggering more extension and buckling. In the Neogene, a subsalt half graben was inverted or reactivated, creating keystone faults that may have controlled the Congo Canyon; a thrust duplex of seaward-displaced salt jacked up the former abyssal plain, creating a plateau of salt 3-4 km thick on the present lower slope. The Angola Escarpment may be the toe of the Angola thrust nappe, in which a largely Cretaceous roof of gently buckled strata, was transported seawards above the thickened salt by up to {approx}20 km. (author)

  2. Phase transitions in the $sdg$ interacting boson model

    OpenAIRE

    P. Van Isacker(Ganil, Caen, France;); Bouldjedri, A.; Zerguine, S.

    2010-01-01

    19 pages, 5 figures, submitted to Nuclear Physics A A geometric analysis of the $sdg$ interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole ($\\beta_2$), axial hexadecapole ($\\beta_4$) and triaxial ($\\gamma_2$). The phase-transitional structure is established for a schematic $sdg$ hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical ${\\rm U}(5)\\otimes{\\rm U}(9)$, the (prolate and ...

  3. Simultaneous Boundary-Layer Transition, Tip Vortex, and Blade Deformation Measurements of a Rotor in Hover

    Science.gov (United States)

    Heineck, James; Schairer, Edward; Ramasamy, Manikandan; Roozeboom, Nettie

    2016-01-01

    This paper describes simultaneous optical measurements of a sub-scale helicopter rotor in the U.S. Army Hover Chamber at NASA Ames Research Center. The measurements included thermal imaging of the rotor blades to detect boundary layer transition; retro-reflective background-oriented schlieren (RBOS) to visualize vortices; and stereo photogrammetry to measure displacements of the rotor blades, to compute spatial coordinates of the vortices from the RBOS data, and to map the thermal imaging data to a three-dimensional surface grid. The test also included an exploratory effort to measure flow near the rotor tip by tomographic particle image velocimetry (tomo PIV)an effort that yielded valuable experience but little data. The thermal imaging was accomplished using an image-derotation method that allowed long integration times without image blur. By mapping the thermal image data to a surface grid it was possible to accurately locate transition in spatial coordinates along the length of the rotor blade.

  4. Quantum Phase Transitions in Odd-Mass Nuclei

    CERN Document Server

    Leviatan, A; Iachello, F

    2011-01-01

    Quantum shape-phase transitions in odd-even nuclei are investigated in the framework of the interacting boson-fermion model. Classical and quantum analysis show that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially near the critical point. Experimental evidence for the occurrence of spherical to axially-deformed transitions in odd-proton nuclei Pm, Eu and Tb (Z=61, 63, 65) is presented.

  5. Transition in magnetic fabric types in progressively deformed, fine-grained sedimentary rocks of Central Armorica (Brittany, France)

    Science.gov (United States)

    Haerinck, Tom; Hirt, Ann M.; Debacker, Timothy N.; Sintubin, Manuel

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) of progressively deformed, fine-grained sedimentary rocks is determined for different tectonometamorphic settings in Central Armorica (Brittany, France). Low-temperature AMS and high-field torque magnetometry on a representative selection of samples indicate that the magnetic fabric is dominantly paramagnetic and the ferromagnetic (s.l.) contribution can be neglected. The AMS documents a progressive transition of intermediate fabrics to tectonic fabrics and increasingly stronger developed tectonic fabrics. An integrated magnetic-mineralogical approach is performed in order to assess whether we can use this evolution as a quantitative indicator for the intensity of cleavage development in Central Armorica. During the magnetic fabric transition, the maximum susceptibility axis (K1) remains stationary oriented parallel to the bedding - cleavage intersection, whereas the minimum susceptibility axis (K3) orientation distribution changes from a moderate girdle distribution in the intermediate fabric types, to a strongly clustered distribution parallel to the cleavage pole for the tectonic fabric types. A Woodcock two-axis ratio plot is used to evaluate this change in K3 distribution. This shows a regional pattern with intermediate fabrics in the southern part of Central Armorica and tectonic fabrics in the northern part of Central Armorica. Quantitative analysis of the observed magnetic fabrics shows that the fabric transition described above is accompanied by an evolution from prolate susceptibility ellipsoids with a relatively low degree of anisotropy to oblate ellipsoid with an increasingly higher degree of anisotropy. In a graph of the shape parameter T against the corrected degree of anisotropy PJ, this evolution has a hockey-stick shaped pattern with the vertical branch reflecting the actual transition from intermediate to tectonic fabric type and the horizontal branch reflecting progressively stronger developed

  6. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    Science.gov (United States)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  7. Transition from elastic to inelastic deformation identified by a change in trend of seismic attenuation, not seismic velocity - A laboratory study

    Science.gov (United States)

    Barnhoorn, Auke; Verheij, Jeroen; Frehner, Marcel; Zhubayev, Alimzhan; Houben, Maartje

    2016-04-01

    The transition from elastic to inelastic deformation occurs at the yield point in a stress-strain diagram. This yield point expresses the moment when a material undergoes permanent deformation and is marked by the onset of fracturing in the brittle field at relatively low pressures and temperatures or the onset of dislocation and/or diffusional creep processes in the ductile field at higher temperatures and pressures. Detection of this transition in materials under stress using an indirect measurement technique is crucial to predict imminent failure, loss of material integrity, or of approaching release of energy by seismic rupture. Here we use a pulse transmission method at ultrasonic frequencies to record the change in acoustic wave form across the transition from elastic to inelastic deformation in a rock-fracturing experiment. In particular, we measure both the acoustic wave velocity and attenuation with increasing strain from the elastic regime all the way to macroscopic failure. Our results show that the transition from elastic to inelastic deformation coincides with a minimum in attenuation. Below this minimum, pre-existing microfractures close, leading to a reduction of attenuation. Above this minimum, formation of new microfractures occurs and attenuation increases until peak stress conditions, at which larger fractures are formed and the rock starts to lose its strength and integrity. At the same time, the acoustic wave velocity continues to increase across the transition from elastic to inelastic deformation; hence the acoustic velocity is not a valid indicator for this elastic to inelastic transition. We propose that analysis of attenuation, not velocity, of acoustic waves through stressed materials may thus be used, for example, to detect imminent failure in materials, onset of crack formation in pipes or the cement casing in boreholes, or onset of fracturing in the near wellbore area. On a larger scale, attenuation monitoring may help predict the

  8. Primary transitions between the yrast superdeformed band and low-lying normal deformed states in {sup 194}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, K.; Bernstein, L.A.; Becker, J.A. [Lawrence Livermore National Lab., CA (United States)] [and others

    1996-12-31

    The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.

  9. Absolute El Transition Probabilities in the Deformed Nuclei 177Yb and Hf179

    International Nuclear Information System (INIS)

    The absolute E1-transition probabilities have been measured for two 7/2- (514) levels populated from the short-lived isomers 177mYb (6.4 sec) and 179mHf (18.6 sec), a delayed coincidence set up being used for the purpose. This gave a half life of T1/2 = (4.48 ± 0.08)x10-9 sec for the 104 keV level in 177Yb and T1/2 = (1.86 ± 0.05)x10-9 sec for the 217 keV level in 179Hf. The result has been compared with the calculations made by Nilsson. The effect of the pairing correlation has also been taken into account. An agreement with the experimental values to within a factor of three is obtained. An extrapolated estimate of the half life for the 408.9 keV 7/2- (514) level in 181W gives 3x10-11 sec

  10. Inverse problem for axial-deformed potentials

    International Nuclear Information System (INIS)

    In the literature about Inverse Problems there are no tractable methods for construction of nonspherical potentials from the asymptotic wave function. This problem turned out to be solved in special cases. The methods of reconstruction from scattering data are given for the class of potentials admitting the separation of variables in spheroidal coordinates. This is the first case when the agorithms of the inverse problem solution for spherically-nonsymmetrical local potentials can practically be realised. The modifications of the formalisms of Regge-Newton-Sabatier and finite-difference approximation of Hooshyar-Rasavy are considered

  11. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  12. On $Z \\to \\gamma \\gamma$ decay and cancellation of axial anomaly in $Z \\to \\gamma \\gamma$ transition amplitude for massive fermions

    OpenAIRE

    Zhemchugov, E. V.

    2014-01-01

    $Z \\to \\gamma \\gamma$ decay amplitude is considered and proven to be zero due to properties of polarization vectors and Bose statistics. Triangular diagrams for a pseudoscalar $\\to \\gamma \\gamma$ and $Z \\to \\gamma \\gamma$ processes with massive fermions in the loop are explicitely calculated. In the Standard Model axial anomaly vanishes in the sum of these diagrams as Z boson is mixed with one of the Goldstone bosons.

  13. Narrowing of hysteresis of cubic-tetragonal martensitic transformation by weak axial stressing of ferromagnetic shape memory alloy

    Science.gov (United States)

    Kosogor, Anna

    2016-06-01

    An influence of axial mechanical stress on the hysteresis of martensitic transformation and ordinary magnetostriction of ferromagnetic shape memory alloy has been described in the framework of a Landau-type theory of phase transitions. It has been shown that weak stress can noticeably reduce the hysteresis of martensitic transformation. Moreover, the anhysteretic deformation can be observed when the applied mechanical stress exceeds a critical stress value. The main theoretical results were compared with recent experimental data. It is argued that shape memory alloys with extremely low values of shear elastic modulus are the candidates for the experimental observation of large anhysteretic deformations.

  14. Quantum phase transitions in Bose-Fermi systems

    CERN Document Server

    Petrellis, D; Iachello, F

    2011-01-01

    Quantum phase transitions in a system of N bosons with angular momentum L=0,2 (s,d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  15. Continuous quantum phase transitions in the one-dimensional spin-1/2 axial next-nearest-neighbour Ising model in two orthogonal magnetic fields

    Indian Academy of Sciences (India)

    Kunle Adegoke; Helmut Büttner

    2010-02-01

    We have investigated the one-dimensional spin-1/2 axial next-nearest-neighbour Ising (ANNNI) model in two orthogonal magnetic fields at zero temperature. There are four different possible ground state configurations for the ANNNI model in a longitudinal field, in the thermodynamic limit. The inclusion of a transverse field introduces quantum fluctuations which destroy the existing spin order along certain critical lines. The effects of the fluctuations in three of the four ordered regions were investigated using the finite-size scaling technique. The phase boundaries of the ANNNI model in two orthogonal magnetic fields were thus determined numerically. For certain limits of the Hamiltonian we compared the obtained results with the existing literature and our results were in good agreement with the results in the existing literature.

  16. ANALYSIS OF DEFORMED STATE STRUCTURES OF THE KYIV METRO RUNNING TUNNELS ON A TRANSITION ZONE FROM SPONDYLOV’S CLAY TO BUCHATSKIY SANDS

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2014-07-01

    Full Text Available Purpose. In the section of changes geotechnical conditions of spondylov’s clay to buchatskiy sands may have significant structural deformation of running tunnels. It is necessary to identify the cause of deformities develop ways to minimize and based modeling and calculations to prove the effectiveness of measures to reduce deformation.Methodology. To solve the analysis problem of the stress-strain state (SSS of the system «structure array» it was conducted the numerical simulation using the finite element method (FEM. On the basis of the obtained results the graphs were constructed and the dependencies were determined. Findings. The presence of weak water-saturated soils in tray of the tunnel on an area of transition from spondylov’s clay to buchatskiy sand causes significant increasing in strain construction of tunnels and general vibration liquefaction in soil basis. Also change the physical and mechanical characteristics of soils within the frames of tunnels influences on the level of strain state of most frames. Improved strain state settings of tunnels in areas of change soil characteristics of the array (especially at the bottom of casing can be achieved by chemical consolidation of weak soils. Composition of solutions for fixing the weak soils should be determined based on the study of grain size, porosity, and other parameters of physical and mechanical and physical and chemical characteristics of soils.Originality.The basic cause significant strain on transition zone from spondylov’s clay to buchatskiy sands is found, that is explained by saturated phenomenon vibration liquefaction basis under the tunnel.Practical value.The approaches to reduce the strain in the construction of running tunnels in the transition zone from spondylov’s clay to buchatskiy sands are developed, as well as in the area ofthe station «Glybochytska»the Kyiv Metro.

  17. The effect of shear deformations on the transition onset pressure of the bcc to hcp pressure induced martensitic phase transformation in iron.

    Science.gov (United States)

    Caspersen, K.; Lew, A.; Ortiz, M.; Carter, E.

    2003-12-01

    At a pressure of approximately 13 GPa iron undergoes a martensitic phase transition from ground state ferro-magnetic bcc to a non-magnetic hcp structure. The exact transformation varies between experiments and is postulated to have a strong dependence on shear stresses during the loading process. To study this shear dependence we have developed a multi-scale model of iron, in which we employ a quantum mechanics based free energy, a kinematically compatible spinodal decomposition of phases, and a dependence on the bcc{}hcp transition path(s). Using this model we see that that the predicted transformation pressure for pure hydrostatic compression is much higher than expected, however with the inclusion of small initial shear deformations we see the predicted transformation pressure drop considerably and into the experimentally determined pressure range.

  18. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    Science.gov (United States)

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-05-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.

  19. Phase transitions in the $sdg$ interacting boson model

    CERN Document Server

    Van Isacker, P; Zerguine, S

    2009-01-01

    A geometric analysis of the $sdg$ interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole ($\\beta_2$), axial hexadecapole ($\\beta_4$) and triaxial ($\\gamma_2$). The phase-transitional structure is established for a schematic $sdg$ hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical ${\\rm U}(5)\\otimes{\\rm U}(9)$, the (prolate and oblate) deformed ${\\rm SU}_\\pm(3)$ and the $\\gamma_2$-soft SO(15) limits. For realistic choices of the hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the $sd$ version of the model and, in particular, no transition towards a stable triaxial shape is found.

  20. Measurement of Local Deformations in Steel Monostrands Using Digital Image Correlation

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2014-01-01

    The local deformation mechanisms in steel monostrands have a significant influence on their fatigue life and failure mode. However, the observation and quantification of deformations in monostrands experiencing axial and transverse deformations is challenging because of their complex geometry, di...

  1. Axial force measurement for esophageal function testing

    Institute of Scientific and Technical Information of China (English)

    Flemming H Gravesen; Peter Funch-Jensen; Hans Gregersen; Asbjφrn Mohr Drewes

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.

  2. Axial force measurement for esophageal function testing.

    Science.gov (United States)

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-14

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  3. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans;

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  4. Deformation and topography above the lateral transition from continental to oceanic subduction in three-dimensional laboratory models: what can we learn on the Hellenic subduction?

    Science.gov (United States)

    Guillaume, B.; Funiciello, F.; Faccenna, C.; Husson, L.; Royden, L. H.

    2012-04-01

    We use three-dimensional dynamically self-consistent laboratory models to analyze relationships between surface evolution and deep dynamics at convergent margins. Our models are setup with a viscous plate of silicone (lithosphere) subducting under negative buoyancy in a viscous layer of glucose syrup (upper mantle). We focus on the subduction of a laterally heterogeneous lithosphere characterized by an abrupt transition of density using negatively and positively buoyant silicone to reproduce oceanic and continental subduction, respectively. We quantify and establish relationships between the subduction dynamics and resulting slab geometry, trench kinematics and pattern of horizontal/vertical deformation for both the overriding plate and the upper mantle. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compare them to the Neogene to Quaternary evolution of the Hellenic subduction zone. We more particularly focus on the deformation and topography of the Hellenic upper plate, which may have been influenced by the difference in subduction dynamics north and south of the Kephalonia Transform Zone, with a slowly subducting Adriatic continental lithosphere in the north and a rapidly subducting Ionian oceanic lithosphere in the south.

  5. Characterization of the matrix glass transition in carbon-epoxy laminates using the CSD test geometry. [centro-symmetric deformation

    Science.gov (United States)

    Sternstein, S. S.; Yang, P.

    1983-01-01

    A new test geometry, referred to as centro-symmetric deformation (CSD), is proposed for characterizing the viscoelastic behavior of the matrix of carbon-epoxy laminates. The sample consists of a thin disk, typically 6-14 plies thick, having a nominal diameter of 30 mm. The disk is freely supported on a circular anvil; the load is applied to the center of the disk using an 8-mm-diameter ball bearing nosepiece. The CSD test geometry provides viscoelastic dispersion data which are independent of the angular orientation of the sample. The test geometry is sufficiently sensitive to matrix changes to allow its use for postcuring, humidity, crosslink density, and other matrix change studies. Test results are presented for a carbon-epoxy laminate.

  6. Topological strings and large $\\mbf N$ phase transitions I: Nonchiral expansion of $\\mbf q$-deformed Yang-Mills theory

    CERN Document Server

    Caporaso, N; Griguolo, L; Pasquetti, S; Seminara, D; Szabó, R J; Caporaso, Nicola; Cirafici, Michele; Griguolo, Luca; Pasquetti, Sara; Seminara, Domenico; Szabo, Richard J.

    2006-01-01

    We examine the problem of counting bound states of BPS black holes on local Calabi-Yau threefolds which are fibrations over a Riemann surface by computing the partition function of $q$-deformed Yang-Mills theory on the Riemann surface. We study in detail the genus zero case and obtain, at finite $N$, the instanton expansion of the gauge theory. It can be written exactly as the partition function for $U(N)$ Chern-Simons gauge theory on a Lens space, summed over all non-trivial vacua, plus a tower of non-perturbative instanton contributions. The correspondence between two and three dimensional gauge theories is elucidated by an explicit mapping between two-dimensional Yang-Mills instantons and flat connections on the Lens space. In the large $N$ limit we find a peculiar phase structure in the model. At weak string coupling the theory reduces exactly to the trivial flat connection sector with instanton contributions exponentially suppressed, and the topological string partition function on the resolved conifold ...

  7. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  8. Axial static mixer

    Science.gov (United States)

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  9. Surface nanoscale axial photonics

    OpenAIRE

    Sumetsky, M.; Fini, J. M.

    2011-01-01

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger e...

  10. The Welding Process and Deformation Control of Large Axial-Flow Compressor Casing%大型轴流压缩机机壳焊接工艺及变形控制

    Institute of Scientific and Technical Information of China (English)

    徐金; 梁彦荣; 杨建伟; 张璞姚刚

    2013-01-01

    In this paper, the structure features of large type axial compressor welding casing was analyzed. The welding process method of (Ar) 80% + (CO2) 20%argon-rich mixed gas shielded arc welding was selected, then relative process testing was carried out according to standards. Finally the casing welding distortion was effective controlled by logical sequence of welding, and the performance indexes after welding all met the design requirements.%  分析了大型轴流压缩机焊接机壳的结构特点,选择(Ar)80%+(CO2)20%富氩混合气体保护焊的焊接工艺方法,并按标准进行了相关工艺试验,通过合理的拼装顺序有效控制了机壳的焊接变形,焊后各项指标达到设计要求。

  11. Triaxial projected shell model study of transition probabilities for 134Pr nucleus

    International Nuclear Information System (INIS)

    The quest to establish stable triaxial shapes in nuclei is being pursued with keen interest during the last about half-a-century. In the initial phases for it, the structures of energy levels at relatively low angular momenta were considered. Generally, the deviations from axially symmetric shape are expected at high spins since the rotational effects are strong for high-j orbitals. The loss of axial symmetry affects a number of observables. For a nucleus having a stable triaxial shape, different moments of inertia are associated with each of the principal axes and the rotational motion is possible about all the three axes. Therefore, the rotational spectra are expected to be richer for stable triaxial nuclei as compared to that for axially symmetric deformed nuclei. There are several empirical observations indicating that axial symmetry is broken in transitional regions and therefore the nuclei in these regions have triaxial shapes

  12. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    Science.gov (United States)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  13. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    Science.gov (United States)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-06-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  14. FINITE ELEMENT ANALYSIS OF AXIAL FEED BAR ROLLING

    Institute of Scientific and Technical Information of China (English)

    C.G. Xu; G.H. Liu; G.S. Ren; Z. Shen; C.P. Ma; W. W. Ren

    2007-01-01

    A flexible technique of hot working of bars by axial feed rolling was introduced. The processdeformation, strain field, stress field, and temperature field of the parts are analyzed by finite elementmethod (FEM)-simulation software DEFORM-3D. The material flow rule and tool load have beeninvestigated.

  15. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  16. Fragmentation of an axially impacted slender rod

    Science.gov (United States)

    Ji, W.; Waas, A. M.

    2010-02-01

    Motivated by experimental results on the dynamic buckling and fragmentation of a vertical column impacted by a falling mass, results from an analytical model for dynamic buckling which considers the dynamic interaction between the axial column deformation and the out-of-plane buckling displacements are used to interpret the fragmentation process and the resulting fragment lengths. It is shown that a critical time exists for the rod to undergo fragmentation. At this critical time, the rod deforms in a modulated pattern of waves, setting up the stage for the ensuing fragmentation as a result of induced large curvatures that exceed the critical bending strain of the rod material. The resulting fragment length distributions, which show two characteristics peaks at \\frac{\\lambda}{2} and \\frac{\\lambda}{4} , where λ is a characteristic half-wavelength, are found to compare favorably with the experimental results.

  17. Insitu observation of shear stress-induced perovskite to post-perovskite phase transition in CaIrO3 and the development of its deformation texture in a diamond-anvil cell up to 30 GPa

    Science.gov (United States)

    Niwa, Ken; Miyajima, Nobuyoshi; Seto, Yusuke; Ohgushi, Kenya; Gotou, Hirotada; Yagi, Takehiko

    2012-03-01

    The perovskite (Pv) to post-perovskite (PPv) phase transition and the deformation texture of the PPv phase were investigated on the basis of a high-pressure X-ray diffraction (XRD) study of CaIrO3 using a diamond-anvil cell in a pressure range up to 31 GPa. The development of a crystallographic preferred orientation (CPO) in the PPv phase was observed after the plastic deformation from 8 or 9 GPa to 31 GPa at both room and high (˜1500 K) temperatures. The observed CPOs in the present study indicate that the (0 1 0) plane worked as an active slip plane in the PPv phase over the entire pressure and temperature range of the present experiment. We also confirmed that the Pv to PPv phase transition proceeds at room temperature under high-stress conditions. The phase transition under high-stress condition is in stark contrast to the results of a previous hydrostatic experiment in which the Pv-CaIrO3 remained stable in a helium media at 31 GPa and room temperature. This indicates that shear stress plays an important role in the Pv to PPv phase transition, and this effect should be taken into account when the thermal structure at the D″ layer is discussed on the basis of the high-pressure experiments.

  18. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  19. Variable focal length deformable mirror

    Science.gov (United States)

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  20. Helium release during shale deformation: Experimental validation

    Science.gov (United States)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  1. The effect of dynamic recrystallization and LPO formation on deformation mechanisms in experimentally deformed plagioclase aggregates

    Science.gov (United States)

    Meyers, C. D.; Hirth, G.; Cross, A. J.; Prior, D. J.

    2013-12-01

    We performed a series of deformation experiments on intermediate plagioclase aggregates (An60) that explored the role of dynamic recrystallization and LPO formation on the deformation mechanisms active and their effect on the mechanical strength of the aggregates. Our experiments were executed using a molten salt cell in a Tullis-modified Griggs Rig at 1 GPa, temperatures between 950-1100 C. These experiments were run in both axial compression and general shear geometries at both constant strain rates and with strain rate steps. The imposed strain rates ranged from 10^-4 to 5*10^-7 s^-1. The sample aggregates were prepared by sintering powders ranging from 20-45 micron at experimental P-T conditions prepared from pulverized single crystals of labradorite. We observed a strong dependence of strength on the strain-rate history of the experiment. Initially the samples weaken dramatically as the grain-size is reduced in the sample aggregate. During strain-rate stepping experiments, used to calculate the stress exponent, we observe variation in the strain-rate dependence of the strength related to whether there is an increasing or decreasing strain rate. Increasing the strain-rate tends to show stress exponent close to n=3, consistent with deformation by dislocation creep. Decreasing the strain-rate tends to decrease the stress exponent towards n=1, consistent with deformation by diffusion creep. Further, analysis using electron backscatter diffraction (EBSD) revealed distinctive LPOs that were different between larger relict porphryclast grains (>20 micron) and smaller recrystallized grains (1-4 micron). Larger relict grains have an LPO with {001} poles perpendicular to the shear plane, while smaller recrystallized grains have an LPO with {010} poles perpendicular to the shear plane. This is evidence that the processes that facilitate deformation are different between the relict and recrystallized grains. We also observe grain scale shear bands oriented roughly 30

  2. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  3. Electric quadrupole transitions of the Bohr Hamiltonian with Manning-Rosen potential

    CERN Document Server

    Chabab, M; Lahbas, A; Oulne, M

    2016-01-01

    Analytical expressions of the wave functions are derived for a Bohr Hamiltonian with the Manning{Rosen potential in the cases of {\\gamma}-unstable nuclei and axially symmetric prolate deformed ones with {\\gamma}=0. By exploiting the results we have obtained in a recent work on the same theme Ref. [1], we have calculated the B(E2) transition rates for 34 {\\gamma}-unstable and 38 rotational nuclei and compared to experimental data, revealing a qualitative agreement with the experiment and phase transitions within the ground state band and showing also that the Manning-Rosen potential is more appropriate for such calculations than other potentials.

  4. Electric quadrupole transitions of the Bohr Hamiltonian with Manning-Rosen potential

    Science.gov (United States)

    Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.

    2016-09-01

    Analytical expressions of the wave functions are derived for a Bohr Hamiltonian with the Manning-Rosen potential in the cases of γ-unstable nuclei and axially symmetric prolate deformed ones with γ ≈ 0. By exploiting the results we have obtained in a recent work on the same theme Ref. [1], we have calculated the B (E 2) transition rates for 34 γ-unstable and 38 rotational nuclei and compared to experimental data, revealing a qualitative agreement with the experiment and phase transitions within the ground state band and showing also that the Manning-Rosen potential is more appropriate for such calculations than other potentials.

  5. Extremal black hole initial data deformations

    Science.gov (United States)

    Aceña, Andrés; Gabach Clément, María E.

    2016-06-01

    We study deformations of axially symmetric initial data for Einstein-Maxwell equations satisfying time-rotation (t-ϕ) symmetry and containing one asymptotically cylindrical end and one asymptotically flat end. We find that the t-ϕ symmetry implies the existence of a family of deformed data having the same horizon structure. This result allows us to measure how close the solutions are to the Lichnerowicz equation when arising from nearby free data.

  6. Extremal black hole initial data deformations

    CERN Document Server

    Aceña, Andrés

    2015-01-01

    We study deformations of axially symmetric initial data for Einstein-Maxwell equations within the positive Yamabe class, containing one asymptotically cylindrical end and one asymptotically flat end. We find that the Yamabe condition implies the existence of a family of deformed data having the same horizon structure. This result allows us to measure how close solutions to Lichnerowicz equation are when arising from nearby free data.

  7. Large deformation dynamic bending of composite beams

    OpenAIRE

    Derian, Edward J.

    1985-01-01

    The large deformation response of composite beams subjected to a dynamic axial load was studied. The beams were loaded with a moderate amount of eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied in order to determine the difference between the static and dynamic failure. Twelve different la...

  8. Effect of a low axial magnetic field on the primary Al 2 Cu phase growth in a directionally solidified Al-Cu hypereutectic alloy

    Science.gov (United States)

    Shen, Yu; Ren, Zhongming; Li, Xi; Ren, Weili; Xi, Yan

    2011-12-01

    Effect of a low axial magnetic field on the growth behavior of the primary Al 2Cu phase in the Al-40 wt% Cu hypereutectic alloy during directional solidification at a low growth speed has been investigated experimentally. The results show that the application of a low magnetic field (≤1 T) causes the primary Al 2Cu phase to become deformed and irregular opposed to the well developed strip-like primary phase in the absence of the field. The deformation of the primary phase is maximum when a 0.5 T magnetic field is applied. Moreover, it has been found that the magnetic field promotes a transition of the primary phase morphology from faceted growth to irregular cellular structure and makes the primary phase spacing decrease with the increase of the magnetic field intensity. From the macroscopic scale, the magnetic field causes the occurrence of a considerable radial macrosegregation. These experimental results may be attributed to the effects of thermoelectric magnetic force (TEMF) in the solid and thermoelectromagnetic convection (TEMC) in the liquid. Further, the model of these effects is presented and evaluated numerically. The results indicate that the numerical magnitude of the TEMF during directional solidification under a 0.5 T low axial magnetic field can be of the order of 10 3 N/m 3. The force causes TEMC at different scales to modify the distribution of solute at the interface and should be responsible for the deformation, fracture and deflection of the primary phase.

  9. Microscopic description of octupole shape-phase transitions in light actinides and rare-earth nuclei

    CERN Document Server

    Nomura, K; Niksic, T; Lu, Bing-Nan

    2014-01-01

    A systematic analysis of low-lying quadrupole and octupole collective states is presented, based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the $sdf$ interacting boson model (IBM), that is, onto the energy expectation value in the boson condensate state, the Hamiltonian parameters are determined. The study is based on the global relativistic energy density functional DD-PC1. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in four isotopic chains characteristic for two regions of octupole deformation and collectivity: Th, Ra, Sm and Ba. Consistent with the empirical trend, the microscopic calculation based on the systematics of $\\beta_{2}$-$\\beta_{3}$ energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition be...

  10. Extra-axial brain tumors.

    Science.gov (United States)

    Rapalino, Otto; Smirniotopoulos, James G

    2016-01-01

    Extra-axial brain tumors are the most common adult intracranial neoplasms and encompass a broad spectrum of pathologic subtypes. Meningiomas are the most common extra-axial brain tumor (approximately one-third of all intracranial neoplasms) and typically present as slowly growing dural-based masses. Benign meningiomas are very common, and may occasionally be difficult to differentiate from more aggressive subtypes (i.e., atypical or malignant varieties) or other dural-based masses with more aggressive biologic behavior (e.g., hemangiopericytoma or dural-based metastases). Many neoplasms that typically affect the brain parenchyma (intra-axial), such as gliomas, may also present with primary or secondary extra-axial involvement. This chapter provides a general and concise overview of the common types of extra-axial tumors and their typical imaging features. PMID:27432671

  11. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  12. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-01-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  13. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  14. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  15. Axial gap rotating electrical machine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  16. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  17. Development of fluid veins during deformation of fluid-rich rocks close to the brittle-ductile transition: comparison between experimental and physical models.

    Science.gov (United States)

    Michel, Rabinowicz; Micha, Bystricky; Martin, Schmocker; Michael, Toplis; Alexis, Rigo; Hugo, Perfettini

    2010-05-01

    Laboratory experiments generally show that high temperature shear deformation of rocks rich in interstitial fluid leads to the development of long fluid veins parallel to R1 and R2 Riedel directions. This contradicts results of numerous mathematical models suggesting that deformation of a rock with a purely viscous solid rheology triggers fluid banding on planes orthogonal to the direction of maximal extension . High-temperature shear laboratory experiments on a sub-micron flint conducted in an internally heated Paterson apparatus with torsion capabilities (Schmocker et al. 2003; Schmocker 2002) reveal that: (i) flint deforms by grain boundary sliding and dissolution precipitation processes, leading to the development of fluid banding orthogonal to up to a strain of about 0.1-0.2; (ii) R1 and R2 fluid veins form beyond these strains, crossing the first generation of bands formed at low , (iii) during the whole deformation process, the strain rate remains perfectly uniform through the entire sample. In order to understand and rationalize these observations, one dimensional numerical modelling of fluid-rock separation during shear has been performed. The model assumes a constant strain rate and uses the interstitial fluid dependence of pressure-solution viscosity of quartz. When shearing is initiated, fluid and solid pressures are equal (pf = ps). Thereafter in zones of compaction, i.e. zones from which fluid is expelled, pf drops and the solid viscosity rises sharply. Although strain rate is uniform across the bulk sample, local stress sharply rises in the compaction bands but remains low in zones of fluid segregation. Indeed, the model shows that, in the zones of compaction, both the deviatoric stress and the excess pressure (pf - ps) have the same amplitude. Their value exceeds the bulk shear stress necessary to maintain the strain rate constant through the entire sample by a factor of about 5. To maintain a high strain rate during shear, laboratory experiments

  18. Axial clamp for nuclear reactor head penetration conoseal joints

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, T.A.

    1987-03-31

    A method is described for forming a sealed coupling between two bodies, each body presenting an annular abutment surface. The respective bodies are arranged so that their respective annular abutment surfaces are axially adjacent one another, defining a space therebetween, wherein a deformable gasket is disposed within the space. The method comprises: providing one of the bodies with an annular projection; providing the other body with threads for receiving an annular locknut which can be tightened to bear against the annular projection of the one body; applying an external axial forced to the bodies for compressing the abutment surfaces together against the gasket to form a seal between the bodies; immobilizing the bodies relative to one another while the external force is being applied to the bodies by hand-tightening an annular locknut via the threads of the other body until the locknut abuts the annular projection of the one body, substantially preventing relative axial movement between the bodies when the external axial force is withdrawn; and withdrawing the external axial force applied to the bodies, leaving the two bodies coupled together via the seal.

  19. Bond deformation paths and electronic instabilities of ultraincompressible transition metal diborides: Case study of OsB2 and IrB2

    Science.gov (United States)

    Zhang, R. F.; Legut, D.; Wen, X. D.; Veprek, S.; Rajan, K.; Lookman, T.; Mao, H. K.; Zhao, Y. S.

    2014-09-01

    The energetically most stable orthorhombic structure of OsB2 and IrB2 is dynamically stable for OsB2 but unstable for IrB2. Both diborides have substantially lower shear strength in their easy slip systems than their metal counterparts. This is attributed to an easy sliding facilitated by out-of-plane weakening of metallic Os-Os bonds in OsB2 and by an in-plane bond splitting instability in IrB2. A much higher shear resistance of Os-B and B-B bonds than Os-Os ones is found, suggesting that the strengthened Os-B and B-B bonds are responsible for hardness enhancement in OsB2. In contrast, an in-plane electronic instability in IrB2 limits its strength. The electronic structure of deformed diborides suggests that the electronic instabilities of 5d orbitals are their origin of different bond deformation paths. Neither IrB2 nor OsB2 can be intrinsically superhard.

  20. Microscopic spin-distortion model for switchable molecular solids: Spatiotemporal study of the deformation field and local stress at the thermal spin transition

    Science.gov (United States)

    Slimani, Ahmed; Boukheddaden, Kamel; Varret, François; Oubouchou, Hassane; Nishino, Masamichi; Miyashita, Seiji

    2013-01-01

    We design a microscopic model for switchable molecular solids (e.g., spin crossover), based on the elastic properties of a discrete lattice made of switchable sites, denoted high spin (HS) or low spin (LS). The elastic interactions and equilibrium distances between sites are written as explicit functions of their HS or LS states. The model was solved by Monte Carlo technique, alternatively running on the electronic and position variables. In the present work we investigate the thermal transition in the case of a square two-dimensionsal lattice, including short-range interactions up to the second neighbors in order to maintain the stability of the lattice. The input values of the elastic parameters are selected so as to lead to realistic values of the bulk modulus and Debye temperature. We show that the elastic interactions act as effective Ising interactions, leading to the expected transition and phase diagram, in terms of transition temperature vs elastic interaction parameter. We study the domain growth of the LS or HS species at different temperatures along the thermal loop and obtain features consistent with the experimental data. We also follow the mechanical properties of the system by calculating the displacement field and the internal stresses produced by the domain growth process. The resulting maps evidence the leading role of the HS/LS interface and the crucial effect of the edges of the lattice, thus paving the way to a real understanding of the shape effects in spin transition nanocrystals.

  1. Quadrupole Deformation of Barium Isotopes

    CERN Document Server

    Sugita, M; Furuno, K

    1998-01-01

    The B(E2:0_1^+ -> 2_1^+) values of the Ba isotopes (Z=56) exhibit a sharp increase in deformation as the neutron numbers approach the mid-shell value of N=66. This behavior is anomalous because the 2_1^+ level energies are very similar to those of the neighboring isotopes. By means of the axially-symmetric deformed Woods-Saxon (WS) hamiltonian plus the BCS method, we investigated the systematics of B(E2) of the Ba isotopes. We showed that 15% of the B(E2) values at N=66 was due to the level crossing, occurring at the deformation with beta being nearly 0.3, between the proton orbits originating from the orbits Omega=1/2^-(h11/2) and 9/2^+(g9/2) at zero deformation. The latter of these two was an intruder orbit originating from below the energy gap at Z=50, rising higher in energy with the deformation and intruding the Z=50-82 shell. These two orbits have the largest magnitude of the quadrupole moment with a different sign among the orbits near and below the Fermi surface. Occupancy and non-occupancy of these o...

  2. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales of...

  3. Multi-mode fission mechanisms correlated to deformation of the fragments and transition of the characteristics in relation to excitation energy of the fissioning system

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Inoue, Takakazu; Nakanishi, Kiyoshi [Osaka Univ., Toyonaka (Japan). Faculty of Science] [and others

    1997-03-01

    Aiming to conduct a measurement under further higher resolution, a TOF measurement of the fission fragment of {sup 235}U(n{sub th},f) was conducted by using a thin-film scintillator excellent in time responsibility. By TOF measurement, the fission fragment mass after emitting the prompt neutron and the numbers of the prompt neutron could be obtained. And, double energy measurement at the different incident proton energy was conducted for {sup 238}U(p,f) to investigate the to investigate the energy dependency of the nuclear fission. As a result of investigating the nuclear fission mechanism in multi face and due to the obtained data, it was found that degree of deformation of the fission fragment played an important role. However, as data on the prompt neutron numbers was not obtained this time, more detailed investigation could not be conducted. (G.K.)

  4. Structure of the Anayet Permian basin (Axial Zone, Central Pyrenees)

    Science.gov (United States)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    The Anayet Permian basin was generated by strike-slip tectonics that opened subsident basins with pull-apart geometries in the western Spanish Axial Zone (between the Aragon and Tena valleys). A continental succession of Permian age, that represents the first post-variscan deposits in the area, fills the basin and covers discordantly Devonian to Carboniferous limestones, sandstones and slates. Permian deposits have been classically divided in four main detrital groups, with three basic volcanic episodes interbedded (Gisbert, 1984, Bixel, 1987): the Grey Unit (50-120 m, Estefanian to Kungurian) with slates, conglomerates, tobaceous slates, coal and pyroclastic deposits, the Transition Unit (50 m maximum) showing grey and red sandstones and lutites with oolitic limestones intercalated, the Lower Red Unit (250 m) composed of cross-bedded red sandstones and andesitic volcanic rocks at the top, and finally the Upper Red Unit (400 m minimum, top eroded) formed by three fining up megasequences of carbonates, red sandstones and lutites with lacustrine carbonates intercalated and alkali basalts at the top. Increasingly older rocks are found towards the western part of the basin, where its depocenter is located. South-vergent angular folds deform the Permian sedimentary succession. Fold axes are N115 °E-trending, almost horizontal and are characterized by a remarkably constant orientation. Folds exhibit a long limb dipping slightly to the north and a short vertical limb, occasionally reversed. In the Anayet basin four main folds, with a wavelength of 400 m, can be distinguished, two anticlines and two synclines, with minor folds associated. Related to the angular folds an axial plane foliation, E-trending and dipping 40 to 60° to the north, is developed in the lutites. The more competent rocks, conglomerates and breccias, only locally show a spaced fracture cleavage. No main thrusts have been detected in Permian rocks. However, minor scale decollements, usually low angle

  5. Evaluation of various Deformable Image Registrations for Point and Volume Variations

    CERN Document Server

    Han, Su Chul; Park, Seungwoo; Lee, Soon Sung; Jung, Haijo; Kim, Mi-Sook; Yoo, Hyung Jun; Ji, Young Hoon; Yi, Chul Young; Kim, Kum Bae

    2015-01-01

    The accuracy of deformable image registration (DIR) has a significant dosimetric impact in radiation treatment planning. We evaluated accuracy of various DIR algorithms using variations of the deformation point and volume. The reference image (Iref) and volume (Vref) was first generated with virtual deformation QA software (ImSimQA, Oncology System Limited, UK). We deformed Iref with axial movement of deformation point and Vref depending on the types of deformation that are the deformation1 is to increase the Vref (relaxation) and the deformation 2 is to decrease . The deformed image (Idef) and volume (Vdef) acquired by ImSimQA software were inversely deformed to Iref and Vref using DIR algorithms. As a result, we acquired deformed image (Iid) from Idef and volume (Vid) from Vdef. The DIR algorithms were the Horn Schunk optical flow (HS), Iterative Optical Flow (IOF), Modified Demons (MD) and Fast Demons (FD) with the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART) of MATLAB. The imag...

  6. Simulation of an Axial Vircator

    CERN Document Server

    Tikhomirov, V V

    2013-01-01

    An algorithm of particle-in-cell simulations is described and tested to aid further the actual design of simple vircators working on axially symmetric modes. The methods of correction of the numerical solution, have been chosen and jointly tested, allow the stable simulation of the fast nonlinear multiflow dynamics of virtual cathode formation and evolution, as well as the fields generated by the virtual cathode. The selected combination of the correction methods can be straightforwardly generalized to the case of axially nonsymmetric modes, while the parameters of these correction methods can be widely used to improve an agreement between the simulation predictions and the experimental data.

  7. Deformed suq(2) with deformed Coriolis effect description of superdeformed nuclei in A ~ 190 region

    Science.gov (United States)

    Alharbi, Hamoud; Alhendi, Hamad; Aloyayd, Turki

    2015-04-01

    The deformed suq(2) model with Coriolis effect is applied to 79 superdeformed bands in the region A ~ 190. The transition energies and the moments of inertia are calculated within the model and their validity is investigated by comparing them with the experimental data. The effect of deformation of Coriolis effect in the transition energies and the moments of inertia was investigated. A comparison between the suq(2) with and without deformed Coriolis effect is made and shows significant improvements in fitting the experimental data. It was shown that deformation of improve the standard deviation of the transition energies up to 80%. Correlation between the deformation parameter ? and the excesses of neutrons over protons, S, has been observed. This correlation shows a decaying behavior. As a result, the deformation of Coriolis effect becomes weak with the increase of S.

  8. Gamow-Teller Strengths in 26Mg, 76Ge, 82Se, 90Zr, and 92Zr from the Deformed Quasi-particle RPA (DQRPA)

    CERN Document Server

    Ha, Eunja

    2012-01-01

    We developed the deformed quasi-particle random phase approximation (DQRPA) to describe various properties of deformed nuclei and applied to the evaluation of the Gamow-Teller (GT) transition strength distribution which can be extracted from the experiment of charge exchange reactions (CEXR). Our calculations are started with the single-particle states calculated by the deformed axially symmetric Woods-Saxon potential. Pairing correlations of nucleons, neutron-neutron and proton-proton as well as neutron-proton pairing correlations, are explicitly taken into account at the deformed Bardeen Cooper Schriffer (BCS) theory leading to the quasi-particle concept. The ground state correlations by the many-particle and many-hole mixing states are included by the deformed QRPA. In this work, we use a realistic two-body interaction given by the Brueckner G-matrix based on the Bonn potential to reduce the ambiguity on the nucleon-nucleon interactions inside nuclei. We applied our formalism to the GT transition strengths...

  9. Relativistic description of deformed nuclei

    International Nuclear Information System (INIS)

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  10. Evolution of E2 transition strength in deformed hafnium isotopes from new measurements on $^{172}$Hf, $^{174}$Hf, and $^{176}$Hf

    CERN Document Server

    Rudigier, M; Dannhoff, M; Gerst, R-B; Jolie, J; Saed-Samii, N; Stegemann, S; Régis, J-M; Robledo, L M; Rodríguez-Guzmán, R; Blazhev, A; Fransen, Ch; Warr, N; Zell, K O

    2015-01-01

    The available data for E2 transition strengths in the region between neutron-deficient Hf and Pt isotopes are far from complete. More and precise data are needed to enhance the picture of structure evolution in this region and to test state-of-the-art nuclear models. In a simple model, the maximum collectivity is expected at the middle of the major shell. However, for actual nuclei, this picture may no longer be the case, and one should use a more realistic nuclear-structure model. We address this point by studying the spectroscopy of Hf. We remeasure the 2^+_1 half-lives of 172,174,176Hf, for which there is some disagreement in the literature. The main goal is to measure, for the first time, the half-lives of higher-lying states of the rotational band. The new results are compared to a theoretical calculation for absolute transition strengths. The half-lives were measured using \\gamma-\\gamma and conversion-electron-\\gamma delayed coincidences with the fast timing method. For the determination of half-lives i...

  11. Axial compression physical testing of traditional and bird beak SHS T-joints

    Institute of Scientific and Technical Information of China (English)

    陈誉; 王江

    2015-01-01

    The static tests of nine traditional and bird beak square hollow structure (SHS) T-joints with differentβ values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load−vertical displacement curves, jack load−deformation of chord and strain intensity distribution curves of joints were presented. The effects ofβ and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values ofβ. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. Asβ increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase asβincreases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase asβ increases, but the ductility of the traditional SHS T-joints decreases asβ increases.

  12. Discrete element simulations of gravitational volcanic deformation. 1; Deformation structures and geometries

    Science.gov (United States)

    Morgan, Julia K.; McGovern, Patrick J.

    2005-01-01

    We have carried out two-dimensional particle dynamics simulations of granular piles subject to frictional Coulomb failure criteria to gain a first-order understanding of different modes of gravitational deformation within volcanoes. Under uniform basal and internal strength conditions, granular piles grow self-similarly, developing distinctive stratigraphies, morphologies, and structures. Piles constructed upon cohesive substrates exhibit particle avalanching, forming outward dipping strata and angle of repose slopes. Systematic decreases in basal strength lead to progressively deeper and steeper internal detachment faults and slip along a basal decollement; landslide forms grade from shallow slumps to deep-seated landslide and, finally, to axial subsidence and outward flank displacements, or volcanic spreading. Surface slopes decrease and develop concave up morphologies with decreasing decollement strength; depositional layers tilt progressively inward. Spatial variations in basal strength cause lateral transitions in pile structure, stratigraphy, and morphology. This approximation of volcanoes as Coulomb granular piles reproduces the richness of deformational structures and surface morphologies in many volcanic settings. The gentle slopes of Hawaiian volcanoes and Olympus Mons on Mars suggest weak basal decollements that enable volcanic spreading. High-angle normal faults, favored above weak decollements, are interpreted in both settings and may explain catastrophic sector collapse in Hawaii and broad aureole deposits surrounding Olympus Mons. In contrast, steeper slopes and shallow detachment faults predominate in the Canary Islands, thought to lack a weak decollement, favoring smaller, more frequent slope failures than predicted for Hawaii. The numerical results provide a useful predictive tool for interpreting dynamic behavior and associated geologic hazards of active volcanoes.

  13. Forced axial segregation in axially inhomogeneous rotating systems

    Science.gov (United States)

    González, S.; Windows-Yule, C. R. K.; Luding, S.; Parker, D. J.; Thornton, A. R.

    2015-08-01

    Controlling segregation is both a practical and a theoretical challenge. Using a novel drum design comprising concave and convex geometry, we explore, through the application of both discrete particle simulations and positron emission particle tracking, a means by which radial size segregation may be used to drive axial segregation, resulting in an order of magnitude increase in the rate of separation. The inhomogeneous drum geometry explored also allows the direction of axial segregation within a binary granular bed to be controlled, with a stable, two-band segregation pattern being reliably and reproducibly imposed on the bed for a variety of differing system parameters. This strong banding is observed to persist even in systems that are highly constrained in the axial direction, where such segregation would not normally occur. These findings, and the explanations provided of their underlying mechanisms, could lead to radical new designs for a broad range of particle processing applications but also may potentially prove useful for medical and microflow applications.

  14. Plasticity around an Axial Surface Crack in a Cylindrical Shell

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    field in an axially cracked cylindrical shell arising from use of classical eighth order shallow shell theory is removed when use is made of a tenth order shell theory which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence...... and Ratwani,3–5 it generalises Dugdale's assumption of a concentrated yield zone in the plane of the crack but, contrary to that model, transverse shear effects are included and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory...

  15. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  16. Axially symmetric rotating traversable wormholes

    CERN Document Server

    Kuhfittig, P K F

    2003-01-01

    This paper generalizes the static and spherically symmetric traversable wormhole geometry to a rotating axially symmetric one with a time-dependent angular velocity by means of an exact solution. It was found that the violation of the weak energy condition, although unavoidable, is considerably less severe than in the static spherically symmetric case. The radial tidal constraint is more easily met due to the rotation. Similar improvements are seen in one of the lateral tidal constraints. The magnitude of the angular velocity may have little effect on the weak energy condition violation for an axially symmetric wormhole. For a spherically symmetric one, however, the violation becomes less severe with increasing angular velocity. The time rate of change of the angular velocity, on the other hand, was found to have no effect at all. Finally, the angular velocity must depend only on the radial coordinate, confirming an earlier result.

  17. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  18. Quantum fluctuations and stability of tetrahedral deformations in atomic nuclei

    CERN Document Server

    Zberecki, K; Magierski, P; Schunck, N

    2006-01-01

    The possible existence of stable axial octupole and tetrahedral deformations is investigated in $^{80}$Zr and $^{98}$Zr. HFBCS calculations with parity projection have been performed for various parametrizations of the Skyrme energy functional. The correlation and excitation energies of negative parity states associated with shape fluctuations have been obtained using the generator coordinate method (GCM). The results indicate that in these nuclei both the axial octupole and tetrahedral deformations are of dynamic character and possess similar characteristics. Various Skyrme forces give consistent results as a function of these two octupole degrees of freedom both at the mean-field level as well as for configuration mixing calculations.

  19. Simulation of an Axial Vircator

    OpenAIRE

    Tikhomirov, V. V.; Siahlo, S. E.

    2013-01-01

    An algorithm of particle-in-cell simulations is described and tested to aid further the actual design of simple vircators working on axially symmetric modes. The methods of correction of the numerical solution, have been chosen and jointly tested, allow the stable simulation of the fast nonlinear multiflow dynamics of virtual cathode formation and evolution, as well as the fields generated by the virtual cathode. The selected combination of the correction methods can be straightforwardly gene...

  20. Hot Quark Matter with an Axial Chemical Potential

    CERN Document Server

    Gatto, Raoul

    2011-01-01

    We analyze the phase diagram of hot quark matter in presence of an axial chemical potential, $\\mu_5$. The latter is introduced to mimic the chirality transitions induced, in hot Quantum Chromodynamics, by the strong sphaleron configurations. In particular, we study the curvature of the critical line at small $\\mu_5$, the effects of a finite quark mass and of a vector interaction. Moreover, we build the mixed phase at the first order phase transition line, and draw the phase diagram in the chiral density and temperature plane. We finally compute the full topological susceptibility in presence of a background of topological charge.

  1. EFFECTIVE STRESS AND STRAIN IN FINITE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    周喆; 秦伶俐; 黄文彬; 王红卫

    2004-01-01

    Whether the concept of effective stress and strain in elastic-plastic theory is still valid under the condition of finite deformation was mainly discussed. The uni-axial compression experiments in plane stress and plane strain states were chosen for study. In the two kinds of stress states, the stress- strain curve described by logarithm strain and rotated Kirchhoff stress matches the experiments data better than the curves defined by other stressstrain description.

  2. An exact dynamic stiffness matrix for axially loaded double-beam systems

    Indian Academy of Sciences (India)

    Li Xiaobin; Xu Shuangxi; Wu Weiguo; Li Jun

    2014-06-01

    An exact dynamic stiffness method is presented in this paper to determine the natural frequencies and mode shapes of the axially loaded double-beam systems,which consist of two homogeneous and prismatic beams with a distributed spring in parallel between them.The effects of the axial force, shear deformation and rotary inertia are considered, as shown in the theoretical formulation. The dynamic stiffness influence coefficients are formulated from the governing differential equations of the axially loaded double-beam system in free vibration by using the Laplace transform method. An example is given to demonstrate the effectiveness of this method, in which ten boundary conditions are investigated and the effect of the axial force on the natural frequencies and mode shapes of the double-beam system are further discussed.

  3. Skyrme RPA for spherical and axially symmetric nuclei

    CERN Document Server

    Repko, Anton; Nesterenko, V O; Reinhard, P -G

    2015-01-01

    Random Phase Approximation (RPA) is the basic method for calculation of excited states of nuclei over the Hartree-Fock ground state, suitable also for energy density functionals (EDF or DFT). We developed a convenient formalism for expressing densities and currents in a form of reduced matrix elements, which allows fast calculation of spectra for spherical nuclei. All terms of Skyrme functional were taken into account, so it is possible to calculate electric, magnetic and vortical/toroidal/compression transitions and strength functions of any multipolarity. Time-odd (spin) terms in Skyrme functional become important for magnetic M1 and isovector toroidal E1 transitions. It was also found that transition currents in pygmy region (low-lying part of E1 resonance) exhibit isoscalar toroidal flow, so the previously assumed picture of neutron-skin vibration is not the only mechanism present in pygmy transitions. RPA calculations with heavy axially-symmetric nuclei now become feasible on ordinary PC. Detailed formul...

  4. Nonaxial hexadecapole deformation effects on the fission barrier

    Science.gov (United States)

    Kardan, A.; Nejati, S.

    2016-06-01

    Fission barrier of the heavy nucleus 250Cf is analyzed in a multi-dimensional deformation space. This space includes two quadrupole (ɛ2,γ) and three hexadecapole deformation (ɛ40,ɛ42,ɛ44) parameters. The analysis is performed within an unpaired macroscopic-microscopic approach. Special attention is given to the effects of the axial and non-axial hexadecapole deformation shapes. It is found that the inclusion of the nonaxial hexadecapole shapes does not change the fission barrier heights, so it should be sufficient to minimize the energy in only one degree of freedom in the hexadecapole space ɛ4. The role of hexadecapole deformation parameters is also discussed on the Lublin-Strasbourg drop (LSD) macroscopic and the Strutinsky shell energies.

  5. Axial Force at the Vessel Bottom Induced by Axial Impellers

    OpenAIRE

    I. Fořt; P. Hasal; A. Paglianti; F. Magelli

    2008-01-01

    This paper deals with the axial force affecting the flat bottom of a cylindrical stirred vessel. The vessel is equipped with four radial baffles and is stirred with a four 45° pitched blade impeller pumping downwards. The set of pressure transducers is located along the whole radius of the flat bottom between two radial baffles. The radial distribution of the dynamic pressures indicated by the transducers is measured in dependence on the impeller off-bottom clearance and impeller speed.It fol...

  6. Golimumab for treatment of axial spondyloarthritis.

    Science.gov (United States)

    Rios Rodriguez, Valeria; Poddubnyy, Denis

    2016-02-01

    Axial spondyloarthritis comprises two forms: nonradiographic (nonradiographic axial spondyloarthritis) and radiographic (better known as ankylosing spondylitis), which are often considered as two stages of one disease. Historically, all currently available TNF-α inhibitors were first investigated in ankylosing spondylitis and later on in nonradiographic axial spondyloarthritis. This year, EMA has granted golimumab approval for the treatment of active nonradiographic axial spondyloarthritis based on the recently published data from the GO-AHEAD study. This article summarizes recent data on efficacy and safety of golimumab in the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis.

  7. Deformability evaluation of high-strength reinforced concrete columns

    OpenAIRE

    Ho, JCM; Pam, HJ

    2010-01-01

    Plastic hinge length and ultimate curvature are the crucial parameters that enable inelastic deformability (deflection and rotation) of reinforced concrete columns to be evaluated. Prediction of deformability beyond the elastic range is important in the performance-based design of earthquake-resistant structures. Although large numbers of tests have been conducted in the past by numerous researchers on reinforced concrete columns subjected to simultaneous axial load and large inelastic displa...

  8. Free vibration of functionally graded beams based on both classical and first-order shear deformation beam theories

    Institute of Scientific and Technical Information of China (English)

    李世荣; 万泽青; 张静华

    2014-01-01

    The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma-tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen-cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.

  9. SU-E-J-104: Evaluation of Accuracy for Various Deformable Image Registrations with Virtual Deformation QA Software

    International Nuclear Information System (INIS)

    Purpose: The accuracy of deformable image registration (DIR) has a significant dosimetric impact in radiation treatment planning. We evaluated accuracy of various DIR algorithms using virtual deformation QA software (ImSimQA, Oncology System Limited, UK). Methods: The reference image (Iref) and volume (Vref) was first generated with IMSIMQA software. We deformed Iref with axial movement of deformation point and Vref depending on the type of deformation that are the deformation1 is to increase the Vref (relaxation) and the deformation 2 is to decrease the Vref (contraction) .The deformed image (Idef) and volume (Vdef) were inversely deformed to Iref and Vref using DIR algorithms. As a Result, we acquired deformed image (Iid) and volume (Vid). The DIR algorithms were optical flow (HS, IOF) and demons (MD, FD) of the DIRART. The image similarity evaluation between Iref and Iid was calculated by Normalized Mutual Information (NMI) and Normalized Cross Correlation (NCC). The value of Dice Similarity Coefficient (DSC) was used for evaluation of volume similarity. Results: When moving distance of deformation point was 4 mm, the value of NMI was above 1.81 and NCC was above 0.99 in all DIR algorithms. Since the degree of deformation was increased, the degree of image similarity was decreased. When the Vref increased or decreased about 12%, the difference between Vref and Vid was within ±5% regardless of the type of deformation. The value of DSC was above 0.95 in deformation1 except for the MD algorithm. In case of deformation 2, that of DSC was above 0.95 in all DIR algorithms. Conclusion: The Idef and Vdef have not been completely restored to Iref and Vref and the accuracy of DIR algorithms was different depending on the degree of deformation. Hence, the performance of DIR algorithms should be verified for the desired applications

  10. An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy

    Science.gov (United States)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    2010-01-01

    Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions

  11. Axial Coordination and Conformational Heterogeneity of Nickel(II) Tetraphenylporphyrin Complexes with Nitrogenous Bases.

    Science.gov (United States)

    Jia, Song-Ling; Jentzen, Walter; Shang, Mayou; Song, Xing-Zhi; Ma, Jian-Guo; Scheidt, W. Robert; Shelnutt, John A.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. By varying the pyrrolidine concentration in dichloromethane, distinct nu(4) Raman lines are found for the four-, five-, and six-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M(-)(1), respectively. The axial ligands and their orientations influence the type and magnitude of the calculated nonplanar distortion. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation of the axial ligands, narrow and symmetric nu(2) and nu(8) Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the five-coordinate complex with the plane of the axial ligand bisecting the Ni-N(pyrrole) bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N(pyrrole) bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the five-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group

  12. Axial Vector $Z'$ and Anomaly Cancellation

    CERN Document Server

    Ismail, Ahmed; Tsao, Kuo-Hsing; Unwin, James

    2016-01-01

    Whilst the prospect of new $Z'$ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that the masses of these new states must generally be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.

  13. Mass Effect on Axial Charge Dynamics

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We studied effect of finite quark mass on the dynamics of axial charge using the D3/D7 model in holography. The mass term in axial anomaly equation affects both the fluctuation (generation) and dissipation of axial charge. We studied the dependence of the effect on quark mass and external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a non-monotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and magnetic field.

  14. Service stresses in expansion transitions of heat-exchanger U-tube joints

    International Nuclear Information System (INIS)

    The purpose of this paper is to present and discuss the results of stress analyses within the expansion transition zones including the local discontinuity and transition geometry effects mainly from the operating stress point of view. The local stress calculations were simplified by assuming axisymmetric loads and axisymmetric geometry; these stresses were superimposed on the non-axisymmetric bending stresses due to the overall (global) structural deformations resulting in peak stress values. The local stress evaluation consisted of elasto-static, thermal-structural analysis using finite elements; four models were analyzed to examine the effects of (a) proximity of transition zone relative to the top of the tubesheet and (b) the profile of transition zone itself (including thickness variations). Pressure and thermal conditions included (a) hot leg and cold leg, (b) fouled and clean surfaces, and (c) sludge-pile effect. The local stresses are mainly of the wall bending type with comparable magnitudes in both the hoop and the axial directions and with steep gradients in axial as well as through-wall directions. Generally, the secondary side stress magnitudes were found to be higher than on the primary side. The tube-to-tubesheet discontinuity effect was found to dominate the resultant stresses more than either the effect of zone profile or zone location (from the point of view of operating loads). Significance of these factors and the resultant stresses are briefly discussed in relation to the local corrosion failures of the tubes. (orig.)

  15. Deformation and fatigue behaviors of carburized automotive gear steel and predictions

    Directory of Open Access Journals (Sweden)

    Bonglae Jo

    2016-07-01

    Full Text Available The fatigue behavior of carburized components such as automotive transmission gears is very complex due to hardness and microstructure difference, residual stresses and multi-axial stress states developed between the case and the core. In addition, automotive gears in service, commonly used in helical type, are actually subjected to complex stress conditions such as bending, torsion, and contact stress states. This study presents experimental and analytical results on deformation behavior of carburized steels, widely used in automotive gears, under cyclic stress conditions including axial and torsion loadings. Axial fatigue tests and rotating bending fatigue tests are also included. Predictions of cyclic deformation and fatigue behaviors of the carburized steel with two-layer model are compared with experimental results. The carburized steel investigated in this study exhibited cyclic softening under both axial loading and torsional loading. Predicted results with simple two-layer model for the cyclic deformation and fatigue behaviors were comparatively similar to the experimental data.

  16. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  17. Single Crystal Deformation Experiments for Validation of Dislocation Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lassila, D H; LeBlanc, M M; Rhee, M

    2003-11-04

    A new experimental apparatus has been developed for performing compression deformation experiments on high-purity Mo single crystals. These experiments provide data that can validate 3-D dislocation dynamics (DD) simulations. The experiments are performed under conditions that allow unconstrained deformation; thus, a relatively uniform state of axial stress is maintained during deformation. In the following sections, we describe the new experimental apparatus and our results from experiments performed at ambient temperature at a strain rate of s{sup -1}. Validation criteria based on the Mo experiments may include comparing the stress-strain response using 3-D strain information, the predicted slip-system yield, and work-hardening behavior.

  18. Soft deformable self-propelled particles

    OpenAIRE

    Menzel, Andreas M.; Ohta, Takao

    2012-01-01

    In this work we investigate the collective behavior of self-propelled particles that deform due to local pairwise interactions. We demonstrate that this deformation alone can induce alignment of the velocity vectors. The onset of collective motion is analyzed. Applying a Gaussian-core repulsion between the particles, we find a transition to disordered non-collective motion under compression. We here explain that this reflects the reentrant fluid behavior of the general Gaussian-core model now...

  19. Study of link transitions between superdeformed well and normally deformed well in Hg{sup 192} and research and development for a new concept of {gamma} photons detection: the Agata array; Etude des liens entre puits superdeforme et puits normalement deforme dans {sup 192}Hg et recherche et developpement pour un nouveau concept de detection de photons {gamma}: le multidetecteur AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J

    2006-07-15

    The atomic nucleus can adopt a very elongated shape with an axis ratio 2:1, this is the superdeformation phenomenon. Nowadays more than 300 superdeformed bands have been identified at high spin, but the determination of excitation energies, spins and parities of the associated states have been established for only one tenth of these bands. The former quantities (E{sup *}, I, {pi}) can only be determined via the linking gamma-transitions between the superdeformed (sd) and the normally deformed (nd) states. Within the framework of this thesis, we have investigated the Hg{sup 192} nucleus in order to establish E{sup *}, I and {pi}. This nucleus is predicted to be doubly magic at superdeformation and hence is taken as a reference in the mass {approx} 190 region. The experiment was carried out at Strasbourg using the Euroball-IV array and the vivitron accelerator. The obtained results are not convincing and seem to be at the limit of the performances of Euroball. Next generation of arrays will abandon the Compton-shields and use tracking concept to reconstruct the trajectories of incident photons, and therefore we expect a huge increase of efficiency. The second part of this work was focused on the research and development work for the AGATA (Advanced GAmma Tracking Array) project. We have performed simulations with the GEANT-4 code and developed tracking methods to reconstruct pair-creation events. The full AGATA will be operational around 2015 and will enhance by around two orders of magnitude the observational limits. (author)

  20. Simultaneous analysis of matter radii, transition probabilities, and excitation energies of Mg isotopes by angular-momentum-projected configuration-mixing calculations

    CERN Document Server

    Shimada, Mitsuhiro; Tagami, Shingo; Matsumoto, Takuma; Shimizu, Yoshifumi R; Yahiro, Masanobu

    2016-01-01

    We perform simultaneous analysis of (1) matter radii, (2) $B(E2; 0^+ \\rightarrow 2^+ )$ transition probabilities, and (3) excitation energies, $E(2^+)$ and $E(4^+)$, for $^{24-40}$Mg by using the beyond mean-field (BMF) framework with angular-momentum-projected configuration mixing with respect to the axially symmetric $\\beta_2$ deformation with infinitesimal cranking. The BMF calculations successfully reproduce all of the data for $r_{\\rm m}$, $B(E2)$, and $E(2^+)$ and $E(4^+)$, indicating that it is quite useful for data analysis, particularly for low-lying states. We also discuss the absolute value of the deformation parameter $\\beta_2$ deduced from measured values of $B(E2)$ and $r_{\\rm m}$. This framework makes it possible to investigate the effects of $\\beta_2$ deformation, the change in $\\beta_2$ due to restoration of rotational symmetry, $\\beta_2$ configuration mixing, and the inclusion of time-odd components by infinitesimal cranking. Under the assumption of axial deformation and parity conservation,...

  1. Simultaneous analysis of matter radii, transition probabilities, and excitation energies of Mg isotopes by angular-momentum-projected configuration-mixing calculations

    Science.gov (United States)

    Shimada, Mitsuhiro; Watanabe, Shin; Tagami, Shingo; Matsumoto, Takuma; Shimizu, Yoshifumi R.; Yahiro, Masanobu

    2016-06-01

    We perform simultaneous analysis of (1) matter radii, (2) B (E 2 ;0+→2+) transition probabilities, and (3) excitation energies, E (2+) and E (4+) , for Mg-4024 by using the beyond-mean-field (BMF) framework with angular-momentum-projected configuration mixing with respect to the axially symmetric β2 deformation with infinitesimal cranking. The BMF calculations successfully reproduce all of the data for rm,B (E 2 ) , and E (2+) and E (4+) , indicating that it is quite useful for data analysis; particularly for low-lying states. We also discuss the absolute value of the deformation parameter β2 deduced from measured values of B (E 2 ) and rm. This framework makes it possible to investigate the effects of β2 deformation, the change in β2 due to restoration of rotational symmetry, β2 configuration mixing, and the inclusion of time-odd components by infinitesimal cranking. Under the assumption of axial deformation and parity conservation, we clarify which effect is important for each of the three measurements and propose the kinds of BMF calculations that are practical for each of the three kinds of observables.

  2. Health and imaging outcomes in axial spondyloarthritis

    NARCIS (Netherlands)

    Machado, P.M.

    2016-01-01

    This thesis focuses on the assessment and monitoring of health and imaging outcomes in axial spondyloarthritis (SpA) and the relationship between these outcomes. Four major contributions to the understanding and management of axial SpA were made: 1) the improvement and facilitation of the assessment

  3. Axial range of conjugate adaptive optics in two-photon microscopy

    CERN Document Server

    Paudel, Hari P; Mertz, Jerome; Bifano, Thomas

    2015-01-01

    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy.

  4. Axial loading verification method for small bones using carrier fringes in speckle pattern interferometry

    Science.gov (United States)

    Dávila, A.; Márquez, S.; Landgrave, E.; Vázquez, Z.; Vera, K.; Caudillo, C.

    2015-06-01

    A computerized system for real-time displacement visualization using carrier fringes in an electronic speckle in-plane sensitive interferometer allows force calibration for micro-displacement analysis of rat bones and verification of axial loading conditions. Once the force has been calibrated and the load is applied along the bone axis, the difference-of-phase method is used to obtain the phase map, which after phase unwrapping, allows the evaluation of the displacements produced by the bone deformation. The proposed method avoids common loading mistakes using first carrier fringes to assure that the loads are within the measuring capabilities of the in-plane interferometer and the Carré phase-stepping method to compensate for linear phase step miscalibration. The experimental results obtained with the calibration of loading forces and axial loading verification show the advantages of the system proposed here over a system which uses a cantilever configuration to make a similar bone deformation analysis.

  5. A microscopic derivation of nuclear collective rotation-vibration model, axially symmetric case

    OpenAIRE

    Gulshani, Parviz

    2015-01-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed the to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on th...

  6. Numerical investigation of blade dynamic characteristics in an axial flow pump

    OpenAIRE

    Zhang Desheng; Pan Dazhi; Xu Yan; Shao Peipei; Wang Guotao

    2013-01-01

    The unsteady numerical simulation of fluid field and structural transient dynamic analysis of axial flow pump were carried out at three operating conditions based on fluid-structure interaction method. Numerical results show that the maximum equivalent stress of impeller occurs at the joint region of the impeller blade root and the hub, and the maximum deformation of impeller occurs at the tips of blade leading edges. The frequency-domain of the maximum equ...

  7. No spreading across the southern Juan de Fuca ridge axial cleft during 1994-1996

    Science.gov (United States)

    Chadwell, C.D.; Hildebrand, J.A.; Spiess, Fred N.; Morton, J.L.; Normark, W.R.; Reiss, C.A.

    1999-01-01

    Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40' N and 130??20' W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (~1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5??7 mm/yr) between the 1994 and 1996 surveys.Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40 minutes N and 130??20 minutes W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (approx. 1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5 ?? 7 mm/yr) between the 1994 and 1996 surveys.

  8. Nonlinear flap-lag axial equations of a rotating beam

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1977-01-01

    It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.

  9. Axial dependence of optical weak measurements in the critical region

    CERN Document Server

    Araujo, Manoel P; Maia, Gabriel G

    2015-01-01

    The interference between optical beams of different polarizations plays a fundamental role in reproducing the optical analog of the electron spin weak measurement. The extraordinary point in optical weak measurements is represented by the possibility to estimate with great accuracy the Goos-Haenchen (GH) shift by measuring the distance between the peak of the outgoing beams for two opposite rotation angles of the polarizers located before and after the dielectric block. Starting from the numerical calculation of the GH shift, which clearly shows a frequency crossover for incidence near to the critical angle, we present a detailed study of the interference between s and p polarized waves in the critical region. This allows to determine in which conditions it is possible to avoid axial deformations and reproduce the GH curves. In view of a possible experimental implementation, we give the expected weak measurement curves for Gaussian lasers of different beam waist sizes propagating through borosilicate (BK7) an...

  10. Axially-symmetric Neutron stars: Implication of rapid rotation

    CERN Document Server

    Sharma, B K

    2009-01-01

    Models of relativistic rotating neutron star composed of hyperon rich matter is constructed in the framework of an effective field theory in the mean-field approach. The gross properties of compact star is calculated at both static and the mass-shedding limit in the axially symmetric basis. The effect of appearance and abundance of hyperons on equation of state of dense matter and stellar properties is lineated with particular emphasis on the underlying nuclear interactions. We find that the models can explain fast rotations, which supports the existence of millisecond pulsars. An important offshoot of the present investigation is that, irrespective of the model parameters and interaction taken, the star seems to sustain faster rotations (an increase in rotational frequency up to $\\approx$ 50%) without any further deformation.

  11. Energy harvesting efficiency of piezoelectric flags in axial flows

    CERN Document Server

    Michelin, Sebastien

    2012-01-01

    Self-sustained oscillations resulting from fluid-solid instabilities, such as the flutter of a flexible flag in axial flow, can be used to harvest energy if one is able to convert the solid energy into electricity. Here, this is achieved using piezoelectric patches attached to the surface of the flag that convert the solid deformation into an electric current powering purely resistive output circuits. Nonlinear numerical simulations in the slender-body limit, based on an explicit description of the coupling between the fluid-solid and electric systems, are used to determine the harvesting efficiency of the system, namely the fraction of the flow kinetic energy flux effectively used to power the output circuit, and its evolution with the system's parameters. The role of the tuning between the characteristic frequencies of the fluid-solid and electric systems is emphasized, as well as the critical impact of the piezoelectric coupling intensity. High fluid loading, classically associated with destabilization by ...

  12. Study on Constitutive Model for Root System of Korshinsk peashrub in Axial Tension

    Directory of Open Access Journals (Sweden)

    Guo-jian Feng

    2015-12-01

    Full Text Available Constitutive model for root system of Korshinsk peashrub (Caragana korshinskii Kom. in axial tension is an important tool for analyzing the mechanism of soil reinforcement of root system. This model enables a mechanical analysis on strength and deformation of root system and root-soil complex. We carried out axial tension test of root system of Korshinsk peashrub in this paper and discussed the stress-strain relation. Based on the experimental results, the constitutive model for root system of Korshinsk peashrub in axial tension was established. Results showed that: (1 When the strain was smaller than 4%, the stress-strain relation was linear for single root, corresponding to linear elastic deformation; when the strain was larger than 4%, the single root underwent plastic deformation; (2 Elastic modulus of the root system was related to root diameter by a power function. The smaller the root diameter, the higher the elastic modulus was; (3 Root diameter was related to the ultimate tensile strength of root also by a power function. The smaller the root diameter, the higher the ultimate tensile strength of root was; (4 The tensile stress-strain curve of the root system divided into ascending segment and descending segment, which was fitted by parabola and curvilinear model, respectively.

  13. Computational Study of Axial Fatigue for Peripheral Nitinol Stents

    Science.gov (United States)

    Meoli, Alessio; Dordoni, Elena; Petrini, Lorenza; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2014-07-01

    Despite their success as primary treatment for vascular diseases, Nitinol peripheral stents are still affected by complications related to fatigue failure. Hip and knee movements during daily activities produce large and cyclic deformations of the superficial femoral artery, that concomitant to the effects of pulsatile blood pressure, may cause fatigue failure in the stent. Fatigue failure typically occurs in cases of very extended lesions, which often require the use of two or more overlapping stents. In this study, finite element models were used to study the fatigue behavior of Nitinol stents when subjected to cyclic axial compression in different conditions. A specific commercial Nitinol stent was chosen for the analysis and subjected to cyclic axial compression typical of the femoral vascular region. Three different configurations were investigated: stent alone, stent deployed in a tube, and two overlapping stents deployed in a tube. Results confirm that stent oversizing has an influence in determining both the mean and amplitude strains induced in the stent and plays an important role in determining the fatigue response of Nitinol stents. In case of overlapping stents, numerical results suggest higher amplitude strains concentrate in the region close to the overlapping portion where the abrupt change in stiffness causes higher cyclic compression. These findings help to explain the high incidence of stent fractures observed in various clinical trials located close to the overlapping portion.

  14. New Anomaly of the Axial-Vector Current

    Institute of Scientific and Technical Information of China (English)

    HE Han-Xin

    2001-01-01

    By computing the axial-vector current operator equation, we find the anomalous axial-vector curl equation besides the well-known anomalous axial-vector divergence equation (the Adler-Bell-Jackiw anomaly) and discuss its implication.``

  15. Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile

    Science.gov (United States)

    Auchter, Neal C.; Romans, Brian W.; Hubbard, Stephen M.

    2016-07-01

    Slope sediments on passive and active margins deform and fail across a broad range of scales ranging from loading and sediment remobilization near the sediment-water interface to submarine landslides and mass movements that incorporate significant volumes of slope deposits. Deformational styles are characterized by updip extension and downdip compressional features that occur above a detachment surface. Conditions for failure and deformation include the presence of weak layer(s) that serve as a detachment surface, competency contrasts that allow for detachment and downslope movement, deformation above a detachment surface, and a triggering mechanism(s) that initiates failure. Slope failure processes and products are well documented at scales resolvable by seismic-reflection surveys and in instances of extensive downslope failure, but the processes and products associated with intermediate-scale slope deformation are poorly understood. Intrastratal deformation is defined as stratigraphically isolated zones of deformation bounded above and below by concordant and undeformed strata. In this study, outcrop examples of intrastratal deformation from the Upper Cretaceous Tres Pasos Formation are used to elucidate the influence of depositional architecture on slope deformation. The facies distribution associated with compensational stacking of lobe deposits is shown to have a first-order control on the location and style of deformation. Detachment planes that form in mudstone deposits associated with lobe fringe and interlobe deposits are spatially limited and deformation is restricted to interbedded sandstone and mudstone associated with off-axial lobe positions. Downslope translation was arrested by stratigraphic buttresses associated with more sandstone-prone axial deposits. Emplacement of a regionally extensive mass transport deposit is interpreted as the triggering mechanism for contemporaneous intrastratal deformation of > 60 m of underlying stratigraphy. A vertical

  16. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion.

    Science.gov (United States)

    MacTaggart, Jason N; Phillips, Nicholas Y; Lomneth, Carol S; Pipinos, Iraklis I; Bowen, Robert; Baxter, B Timothy; Johanning, Jason; Longo, G Matthew; Desyatova, Anastasia S; Moulton, Michael J; Dzenis, Yuris A; Kamenskiy, Alexey V

    2014-07-18

    High failure rates of femoropopliteal artery reconstruction are commonly attributed to complex 3D arterial deformations that occur with limb movement. The purpose of this study was to develop a method for accurate assessment of these deformations. Custom-made stainless-steel markers were deployed into 5 in situ cadaveric femoropopliteal arteries using fluoroscopy. Thin-section CT images were acquired with each limb in the straight and acutely bent states. Image segmentation and 3D reconstruction allowed comparison of the relative locations of each intra-arterial marker position for determination of the artery's bending, torsion and axial compression. After imaging, each artery was excised for histological analysis using Verhoeff-Van Gieson staining. Femoropopliteal arteries deformed non-uniformly with highly localized deformations in the proximal superficial femoral artery, and between the adductor hiatus and distal popliteal artery. The largest bending (11±3-6±1 mm radius of curvature), twisting (28±9-77±27°/cm) and axial compression (19±10-30±8%) were registered at the adductor hiatus and the below knee popliteal artery. These deformations were 3.7, 19 and 2.5 fold more severe than values currently reported in the literature. Histology demonstrated a distinct sub-adventitial layer of longitudinally oriented elastin fibers with intimal thickening in the segments with the largest deformations. This endovascular intra-arterial marker technique can quantify the non-uniform 3D deformations of the femoropopliteal artery during knee flexion without disturbing surrounding structures. We demonstrate that 3D arterial bending, torsion and compression in the flexed lower limb are highly localized and are substantially more severe than previously reported.

  17. Wobbling excitations in strongly deformed Hf nuclei?

    International Nuclear Information System (INIS)

    Two Gammasphere experiments have been performed in order to establish the possible triaxial nature of strongly deformed (SD) bands in 174Hf. A lifetime measurement, using the Doppler-shift attenuation method, confirmed the large deformation of the four previously observed bands in this nucleus with transition quadrupole moments ranging from 12.6 to 13.8 b. These values are significantly larger than those predicted for triaxial minima by ultimate cranker (UC) calculations. A thin-target, high-statistics experiment was also carried out to search for linking transitions between the SD bands. No such transitions, which represent an experimental signature for wobbling modes, were observed. Four additional SD bands were found in 174Hf together with a single SD band in 173Hf. These results indicate that the strongly deformed sequences of N∼102 Hf isotopes behave differently than the triaxial strongly deformed (TSD) bands found in Lu nuclei near N=92. The interpretation of these bands in terms of possible stable triaxial deformation is confronted with the experimental findings and UC predictions

  18. Octupole deformation properties of the Barcelona-Catania-Paris energy density functionals

    CERN Document Server

    Robledo, L M; Schuck, P; Viñas, X

    2010-01-01

    We discuss the octupole deformation properties of the recently proposed Barcelona-Catania-Paris (BCP) energy density functionals for two sets of isotopes, those of radium and barium, where it is believed that octupole deformation plays a role in the description of the ground state. The analysis is carried out in the mean field framework (Hartree- Fock- Bogoliubov approximation) by using the axially symmetric octupole moment as a constraint. The main ingredients entering the octupole collective Hamiltonian are evaluated and the lowest lying octupole eigenstates are obtained. In this way we restore, in an approximate way, the parity symmetry spontaneously broken by the mean field and also incorporate octupole fluctuations around the ground state solution. For each isotope the energy of the lowest lying $1^{-}$state and the $B(E1)$ and $B(E3)$ transition probabilities have been computed and compared to both the experimental data and the results obtained in the same framework with the Gogny D1S interaction, which...

  19. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  20. NUMERICAL PREDICTION OF COMPOSITE BEAM SUBJECTED TO COMBINED NEGATIVE BENDING AND AXIAL TENSION

    Directory of Open Access Journals (Sweden)

    MAHESAN BAVAN

    2013-08-01

    Full Text Available The present study has investigated the finite element method (FEM techniques of composite beam subjected to combined axial tension and negative bending. The negative bending regions of composite beams are influenced by worsen failures due to various levels of axial tensile loads on steel section especially in the regions near internal supports. Three dimensional solid FEM model was developed to accurately predict the unfavourable phenomenon of cracking of concrete and compression of steel in the negative bending regions of composite beam due to axial tensile loads. The prediction of quasi-static solution was extensively analysed with various deformation speeds and energy stabilities. The FEM model was then validated with existing experimental data. Reasonable agreements were observed between the results of FEM model and experimental analysis in the combination of vertical-axial forces and failure modes on ultimate limit state behaviour. The local failure modes known as shear studs failure, excess yielding on steel beam and crushing on concrete were completely verified by extensive similarity between the numerical and experimental results. Finally, a proper way of modelling techniques for large FEM models by considering uncertainties of material behaviour due to biaxial loadings and complex contact interactions is discussed. Further, the model is suggested for the limit state prediction of composite beam with calibrating necessary degree of the combined axial loads.

  1. Gamow–Teller strength distributions in {sup 76}Ge, {sup 76,82}Se, and {sup 90,92}Zr by the deformed proton–neutron QRPA

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Eunja, E-mail: ejha@ssu.ac.kr; Cheoun, Myung-Ki, E-mail: cheoun@ssu.ac.kr

    2015-02-15

    The deformed proton–neutron quasiparticle random phase approximation (QRPA) has been developed and applied to evaluate Gamow–Teller (GT) transition strength distributions, including high-lying excited states. The data of high-lying excited states are recently available beyond one or two nucleon threshold by charge exchange reactions using hundreds of MeV projectiles. Our calculations started with single-particle states calculated using a deformed, axially symmetric Woods–Saxon potential. The neutron–neutron and proton–proton pairing correlations are explicitly taken into account at the deformed Bardeen–Cooper–Schriffer theory. Additionally, the ground state correlations and two-particle and two-hole mixing states were included in the deformed QRPA. In this work, we used a realistic two-body interaction, given by the Brueckner G-matrix based on the CD Bonn potential to reduce the ambiguity on the nucleon–nucleon interactions inside nuclei. We applied our formalism to the GT transition strengths for {sup 76}Ge, {sup 76,82}Se, and {sup 90,92}Zr, and compared the results with the available experimental data. The GT strength distributions were sensitive to the deformation parameter as well as its sign, i.e., oblate or prolate. The Ikeda sum rule, which is usually thought to be satisfied under the one-body current approximation, regardless of nucleon models, was used to test our numerical calculations and shown to be satisfied without introducing the quenching factor, if high-lying GT excited states were properly taken into account. Most of the GT strength distributions of the nuclei considered in this work have the high-lying GT excited states beyond one-nucleon threshold, which are shown to be consistent with the available experimental data.

  2. Axial Thermal Rotation of Slender Rods

    Science.gov (United States)

    Li, Dichuan; Fakhri, Nikta; Pasquali, Matteo; Biswal, Sibani Lisa

    2011-05-01

    Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the presence of small kinks does not affect the chain’s axial diffusivity. Our system and measurements provide insights into fundamental axial diffusion processes of slender objects, which encompass a wide range of entities including biological filaments and linear polymer chains.

  3. Nonperturbative features of the axial current

    CERN Document Server

    Kopeliovich, B Z; Siddikov, M

    2013-01-01

    In this paper we study the nonperturbative structure of the axial current and evaluate the two-point distribution amplitudes $\\int d\\xi\\, e^{-iq...\\xi}$ in the framework of the instanton vacuum model in the leading order in $\\mathcal{O}(N_{c})$. We perform a direct numerical test of the relations between the axial current and the pion distribution amplitudes, imposed by PCAC, and found excellent agreement.

  4. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  5. Axial Vircator for Electronic Warfare Applications

    OpenAIRE

    L. Drazan; R. Vrana

    2009-01-01

    This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM) is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered b...

  6. Relationship between water activity, deformation speed, and crispness characterization

    NARCIS (Netherlands)

    Castro Prada, E.M.; Primo Martin, C.; Meinders, M.B.J.; Hamer, R.J.; Vliet, van T.

    2009-01-01

    Very little is known on the rate dependency of the fracture behavior of crispy products as a function of water activity (Aw). Therefore, the effect of deformation speed on instrumental and sensory crispness was studied as a function of Aw. Deformation speed clearly affects the transition Aw range fr

  7. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  8. An Unbroken Axial Vector Current Conservation Law

    CERN Document Server

    Sharafiddinov, Rasulkhozha S

    2015-01-01

    The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space i...

  9. Deformable Nanolaminate Optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  10. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to accommodate strain via dissolution precipitation creep. The transition from dominantly brittle, to dominantly viscous

  11. Permanent Deformation of Highway Subgrade Soils

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Based on a comprehensive review of the literature and preliminary testing performed on a subgrade soil, a testing methodology for repeated load testing was established. This testing protocol was verified using data from subgrade soil. The successful application of this testing protocol on the two subgrade soils proves that it can provide consistent, reliable results. A power model was used to fit the accumulated axial strain over load repetitions with the first hundred cycles excluded from the data set. A number of factors influencing the accumulation of permanent deformation were investigated. The results indicate that confining pressure, load frequency and density are relatively minor contributors to deformation accumulation. Moisture content, deviator stress and first cycle freeze-thaw are major factors governing permanent deformation. The effects of stress history resulting from staged loading are dependent upon the level of applied deviator stress. The interpretation of the rich and consistent deformation data derived from this testing protocol provide valuable insights for transportation engineers relative to the design, construction, operation and maintenance strategy of highway subgrades as well as railway roadbeds.

  12. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  13. Historical overview of spinal deformities in ancient Greece

    Directory of Open Access Journals (Sweden)

    Kaspiris Angelos

    2009-02-01

    Full Text Available Abstract Little is known about the history of spinal deformities in ancient Greece. The present study summarizes what we know today for diagnosis and management of spinal deformities in ancient Greece, mainly from the medical treatises of Hippocrates and Galen. Hippocrates, through accurate observation and logical reasoning was led to accurate conclusions firstly for the structure of the spine and secondly for its diseases. He introduced the terms kyphosis and scoliosis and wrote in depth about diagnosis and treatment of kyphosis and less about scoliosis. The innovation of the board, the application of axial traction and even the principle of trans-abdominal correction for correction of spinal deformities have their origin in Hippocrates. Galen, who lived nearly five centuries later impressively described scoliosis, lordosis and kyphosis, provided aetiologic implications and used the same principles with Hippocrates for their management, while his studies influenced medical practice on spinal deformities for more than 1500 years.

  14. Self-deformation in a direct current driven helium jet micro discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks and Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  15. Self-deformation in a direct current driven helium jet micro discharge

    International Nuclear Information System (INIS)

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode

  16. Nonaxial octupole deformations in light N = Z nuclei at high spins

    CERN Document Server

    Tanaka, T; Iwasawa, K; Tanaka, Takeshi; Nazmitdinov, Rashid G.; Iwasawa, Kazuo

    2001-01-01

    High spin states of ^{32}S$ and ^{56}Ni are investigated by means of the cranking Hartree-Fock method with the Gogny interaction without imposing a restriction on the axial reflection symmetry. It was found that a non-axial octupole deformation of the Y_{31} type becomes important in the yrast states of ^{32}S. A similar effect is predicted for the nucleus ^{56}Ni.

  17. LONGER: a computer program for longitudinal ridging and axial collapse assessment of CANDU fuel

    International Nuclear Information System (INIS)

    CANDU® fuel element sheath is designed to be thin and flexible for the benefit of enhanced heat transfer from the pellet to the coolant through the sheath. The flexibility of the sheath may allow the formation of longitudinal ridges on the sheath or collapse of the sheath into an axial gap under certain conditions. For both cases of deformations, the sheath may experience significant strains, and may result in sheath failure. To ensure the sheath mechanical integrity, the fuel element design needs to be assessed to preclude the conditions for longitudinal ridging and sheath collapse into the axial gap. The AECL developed LONGER computer program is used in fuel design analysis for such purpose. The LONGER code contains a number of models derived based on measurements (empirical models) and based on analytical equations, to predict the following parameters related to the deformations of CANDU nuclear fuel element sheaths. For longitudinal ridging: The critical diametral clearance for sheath longitudinal ridging, and The critical pressure for longitudinal ridging of the sheath. For axial collapse: The critical pressure for instantaneous sheath collapse into an axial gap. For circumferential collapse: The critical pressure for elastic collapse of the sheath, and The effective circumferential collapse pressure of the sheath by taking into account the axial and radial loads and the ovality of the sheath. The LONGER code has been qualified in accordance with the CSA standard N286.7-99 compliant AECL Software Quality Assurance (SQA) program. This paper describes the features and capabilities of the LONGER code that are used in CANDU fuel design analysis. (author)

  18. LONGER: a computer program for longitudinal ridging and axial collapse assessment of CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Paul, U.K.; Xu, Z.; Xu, S.; Wang, X.; Chakraborty, K. [Atomic Energy of Canada Limited, Mississauga (Canada)

    2010-07-01

    CANDU® fuel element sheath is designed to be thin and flexible for the benefit of enhanced heat transfer from the pellet to the coolant through the sheath. The flexibility of the sheath may allow the formation of longitudinal ridges on the sheath or collapse of the sheath into an axial gap under certain conditions. For both cases of deformations, the sheath may experience significant strains, and may result in sheath failure. To ensure the sheath mechanical integrity, the fuel element design needs to be assessed to preclude the conditions for longitudinal ridging and sheath collapse into the axial gap. The AECL developed LONGER computer program is used in fuel design analysis for such purpose. The LONGER code contains a number of models derived based on measurements (empirical models) and based on analytical equations, to predict the following parameters related to the deformations of CANDU nuclear fuel element sheaths. For longitudinal ridging: The critical diametral clearance for sheath longitudinal ridging, and The critical pressure for longitudinal ridging of the sheath. For axial collapse: The critical pressure for instantaneous sheath collapse into an axial gap. For circumferential collapse: The critical pressure for elastic collapse of the sheath, and The effective circumferential collapse pressure of the sheath by taking into account the axial and radial loads and the ovality of the sheath. The LONGER code has been qualified in accordance with the CSA standard N286.7-99 compliant AECL Software Quality Assurance (SQA) program. This paper describes the features and capabilities of the LONGER code that are used in CANDU fuel design analysis. (author)

  19. Remarks on the U(1) axial symmetry in QCD at zero and non-zero temperature

    CERN Document Server

    Meggiolaro, E

    2002-01-01

    This paper is organized in two parts. The first part (Sections 2-5) is dedicated to the theory at T=0 and contains a pedagogical review of some fundamental aspects related with the chiral symmetries of QCD, the U(1) problem and its solution proposed by 'tHooft, Witten and Veneziano. In the second part (Sections 6-14) we discuss the role of the U(1) axial symmetry for the phase structure of QCD at finite temperature. One expects that, above a certain critical temperature, also the U(1) axial symmetry will be restored. We will try to see if this transition has (or has not) anything to do with the usual chiral transition: various possible scenarios are discussed. In particular, we analyse a scenario in which the U(1) axial symmetry is still broken above the chiral transition. We will show that this scenario can be consistently reproduced in the full respect of the relevant QCD Ward Identities and also using an effective Lagrangian model. A new order parameter is introduced for the U(1) axial symmetry.

  20. A Solvable Model for Nuclear Shape Phase Transitions

    International Nuclear Information System (INIS)

    There has been considerable interest recently in phase transitions that occur between some well-defined nuclear shapes, e.g. the spherical vibrator, the axially deformed rotor and the γ-unstable rotor, which are assigned to the U(5), SU(3) and 0(6) symmetries. These shape phase transitions occur through critical points of the IBM phase diagram and correspond to rapid structural changes. The first transition of this type describes transition form the spherical to the γ-unstable phase and has been associated with an E(5) symmetry. Later further critical point symmetries e.g. X(5) and Y(5) have also been proposed for transitions between other nuclear shape phases. In another application the chain of even Ru isotopes was considered from A 98 to 112 [2]. The parameters were extracted from a fit to the low-lying energy spectrum of each nucleus and were used to plot the corresponding potential. It was found that up to A =102 the potential is essentially an harmonic oscillator, while at A =104 a rather flat potential was seen, in accordance with the expected phase transition and E(5) symmetry there. With increasing A then the minimum got increasingly deeper and moved away from β = 0. We discuss the possibility of generalizing the formalism in two ways: first by including dependence on the 7 variable allowing for the approximate description of nuclei close to the X(5) symmetry, and second, including higher-lying energy levels in the quasi-exactly solvable formalism

  1. Shapeable sheet without plastic deformation

    Science.gov (United States)

    Oppenheimer, Naomi; Witten, Thomas A.

    2015-11-01

    Randomly crumpled sheets have shape memory. In order to understand the basis of this form of memory, we simulate triangular lattices of springs whose lengths are altered to create a topography with multiple potential energy minima. We then deform these lattices into different shapes and investigate their ability to retain the imposed shape when the energy is relaxed. The lattices are able to retain a range of curvatures. Under moderate forcing from a state of local equilibrium, the lattices deform by several percent but return to their retained shape when the forces are removed. By increasing the forcing until an irreversible motion occurs, we find that the transitions between remembered shapes show cooperativity among several springs. For fixed lattice structures, the shape memory tends to decrease as the lattice is enlarged; we propose ways to counter this decrease by modifying the lattice geometry. We survey the energy landscape by displacing individual nodes. An extensive fraction of these nodes proves to be bistable; they retain their displaced position when the energy is relaxed. Bending the lattice to a stable curved state alters the pattern of bistable nodes. We discuss this shapeability in the context of other forms of material memory and contrast it with the shapeability of plastic deformation. We outline the prospects for making real materials based on these principles.

  2. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  3. Scattering of particles by deformed non-rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Guancheng [Department of Physics, Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai (China); Bambi, Cosimo, E-mail: bambi@fudan.edu.cn [Department of Physics, Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai (China); Theoretical Astrophysics, Eberhard-Karls Universität Tübingen, 72076, Tübingen (Germany)

    2015-11-27

    We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution.

  4. Scattering of particles by deformed non-rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Guancheng [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)

    2015-11-15

    We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution. (orig.)

  5. Lean-rich axial stage combustion in a can-annular gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Laster, Walter R.; Szedlacsek, Peter

    2016-06-14

    An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.

  6. Deformation Effect on the Center-of-Mass Correction Energy in Nuclei Ranging from Oxygen to Calcium

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng-Wei; SUN Bao-Yuan; MENG Jie

    2009-01-01

    The microscopic c.m. correction energies for nuclei ranging from oxygen to calcium are systematically calculated by both spherical and axially deformed relativistic mean-field (RMF) models with the effective interaction PK1. The microscopic c.m. correction energies strongly depend on the isospin as well as deformation and deviate from the phenomenological ones. The deformation effect is discussed in detail by comparing the deformed with the spherical RMF calculation. It is found that the direct and exchange terms of the c.m. correction energies are strongly correlated with the density distribution of nuclei and are suppressed in the deformed case.

  7. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  8. Polarization converters based on axially symmetric twisted nematic liquid crystal.

    Science.gov (United States)

    Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien

    2010-02-15

    An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369

  9. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  10. -Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  11. Deformations and Nonlinear Systems

    OpenAIRE

    Man'ko, V. I.; Marmo, G.; F. Zaccaria

    1997-01-01

    The q-deformation of harmonic oscillators is shown to lead to q-nonlinear vibrations. The examples of q-nonlinearized wave equation and Schr\\"odinger equation are considered. The procedure is generalized to broader class of nonlinearities related to other types of deformations. The nonlinear noncanonical transforms used in the deformation procedure are shown to preserve in some cases the linear dynamical equations, for instance, for the harmonic oscillators. The nonlinear coherent states and ...

  12. Solution of deformed Einstein equations and quantum black holes

    CERN Document Server

    Dil, Emre

    2016-01-01

    Recently one and two-parameter deformed Einstein equations have been studied for extremal quantum black holes which have been proposed to obey deformed statistics by Strominger. In this study, we give a deeper insight to the deformed Einstein equations and consider the solutions of these equations for the extremal quantum black holes. We then represent the implications of the solutions, such that the deformation parameters lead the charged black holes to have a smaller mass than the usual Reissner-Nordstr\\"om black holes. This reduction in mass of a usual black hole can be considered as a transition from classical to quantum black hole regime.

  13. Deformation and strength of a cyclically bent threaded connection

    OpenAIRE

    Juchnevičius, Žilvinas

    2012-01-01

    Industry equipment such as pressure vessels, mining equipment, heat exchang-ers, steam generators and other structures are provided with bolted closures for the purpose of in-service inspection and maintenance of internal components. Threaded connections often experience variable cyclic loads due to temperature, inner pressure and variation in the deformation of connection fittings. Often, studs and screws are not only affected by an axial load, but also by bending moments. More sophistic...

  14. Fluctuations as stochastic deformation

    Science.gov (United States)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  15. Deformed discrete symmetries

    Science.gov (United States)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  16. Axial instability of rotating relativistic stars

    CERN Document Server

    Friedman, J L; Friedman, John L.; Morsink, Sharon M.

    1998-01-01

    Perturbations of rotating relativistic stars can be classified by their behavior under parity. For axial perturbations (r-modes), initial data with negative canonical energy is found with angular dependence $e^{im\\phi}$ for all values of $m\\geq 2$ and for arbitrarily slow rotation. This implies instability (or marginal stability) of such perturbations for rotating perfect fluids. This low $m$-instability is strikingly different from the instability to polar perturbations, which sets in first for large values of $m$. The timescale for the axial instability appears, for small angular velocity $\\Omega$, to be proportional to a high power of $\\Omega$. As in the case of polar modes, viscosity will again presumably enforce stability except for hot, rapidly rotating neutron stars. This work complements Andersson's numerical investigation of axial modes in slowly rotating stars.

  17. Axial flow positive displacement worm gas generator

    Science.gov (United States)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement engine has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first, second, and third sections of a core assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. The first twist slopes are less than the second twist slopes and the third twist slopes are less than the second twist slopes. A combustor section extends axially downstream through at least a portion of the second section.

  18. Improving the lattice axial vector current

    CERN Document Server

    Horsley, R; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M

    2015-01-01

    For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order $O(a)$ effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.

  19. Axial offset as measure of stability of light water nuclear reactor during capacity maneuvering

    Directory of Open Access Journals (Sweden)

    Mark V. Nikolsky

    2015-03-01

    Full Text Available High reliability and security of power unit are required during operation of power unit while maneuvering. They depend on the stability of reactor when transition from one power level to another. The axial offset is a quantitative measure of the reactor stability. It is shown that change of the active core inlet coolant temperature yields an uncontrollable disturbance affecting the axial offset and therefore the reactor stability. To insure the reactor stability the compromise-combined power control method is proposed. Analysis of the influence of temperature of coolant at the magnitude of the axial offset for different regulatory programs is carried out. The change in the depth of immersion of regulators in the active zone for different regulatory programs when the reactor plant daily capacity maneuver is studied.

  20. Modelling the steady state deformation stress under various deformation conditions using a single irreversible thermodynamics based formulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Mingxin, E-mail: mingxin.huang@arcelormittal.com [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Rivera-Diaz-del-Castillo, Pedro E.J. [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Bouaziz, Olivier [ArcelorMittal Research, Voie Romaine-BP30320, 57283 Maizieres-les-Metz Cedex (France); Zwaag, Sybrand van der [Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2009-07-15

    A new unified description for the steady state deformation stress in single and polycrystalline metals and for various deformation conditions is presented. The new formulation for dislocation controlled deformation stems from the field of irreversible thermodynamics. The model applies to conditions of dynamic recovery as well as dynamic recrystallization and has been validated for constant strain rate and creep loading conditions. Unlike existing approaches, the new model captures transitions between deformation mechanisms within a single formulation. For conditions of dynamic recrystallization, the average dislocation density is found to be a function of the shear strain rate and a term combining the dislocation climb velocity and the grain boundary velocity.

  1. Axial Stiffness of Multiwalled Carbon Nanotubes

    OpenAIRE

    Zavalniuk, Vladimir

    2011-01-01

    The axial stiffness of MWCNTs is demonstrated to be determined only by several external shells (usually 3-5 and up to 15 for the extremely large nanotubes and high elongations) what is in a good agreement with experimentally observed inverse relation between the radius and Young modulus (i.e., stiffness) of MWCNTs. This result is a consequence of the van der Waals intershell interaction. The interpolating formula is obtained for the actual axial stiffness of MWCNT as a function of the tube ex...

  2. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  3. Axial loaded MRI of the lumbar spine

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Blease, S.; MacSweeney, E

    2003-09-01

    Magnetic resonance imaging is established as the technique of choice for assessment of degenerative disorders of the lumbar spine. However, it is routinely performed with the patient supine and the hips and knees flexed. The absence of axial loading and lumbar extension results in a maximization of spinal canal dimensions, which may in some cases, result in failure to demonstrate nerve root compression. Attempts have been made to image the lumbar spine in a more physiological state, either by imaging with flexion-extension, in the erect position or by using axial loading. This article reviews the literature relating to the above techniques.

  4. Soft-impact dynamics of deformable bodies

    Science.gov (United States)

    Andreaus, Ugo; Chiaia, Bernardino; Placidi, Luca

    2013-03-01

    Systems constituted by impacting beams and rods of non-negligible mass are often encountered in many applications of engineering practice. The impact between two rigid bodies is an intrinsically indeterminate problem due to the arbitrariness of the velocities after the instantaneous impact and implicates an infinite value of the contact force. The arbitrariness of after-impact velocities is solved by releasing the impenetrability condition as an internal constraint of the bodies and by allowing for elastic deformations at contact during an impact of finite duration. In this paper, the latter goal is achieved by interposing a concentrate spring between a beam and a rod at their contact point, simulating the deformability of impacting bodies at the interaction zones. A reliable and convenient method for determining impact forces is also presented. An example of engineering interest is carried out: a flexible beam that impacts on an axially deformable strut. The solution of motion under a harmonic excitation of the beam built-in base is found in terms of transverse and axial displacements of the beam and rod, respectively, by superimposition of a finite number of modal contributions. Numerical investigations are performed in order to examine the influence of the rigidity of the contact spring and of the ratio between the first natural frequencies of the beam and the rod, respectively, on the system response, namely impact velocity, maximum displacement, spring stretching and contact force. Impact velocity diagrams, nonlinear resonance curves and phase portraits are presented to determine regions of periodic motion with impacts and the appearance of chaotic solutions, and parameter ranges where the functionality of the non-structural element is at risk.

  5. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley

    Science.gov (United States)

    Cannat, Mathilde; Mangeney, Anne; OndréAs, HéLèNe; Fouquet, Yves; Normand, Alain

    2013-04-01

    Axial valleys are found along most slow-spreading mid-ocean ridges and are one of the most prominent topographic features on Earth. In this paper, we present the first deep-tow swath bathymetry for the axial valley walls of the Mid-Atlantic Ridge. These data allow us to analyze axial valley wall morphology with a very high resolution (0.5 to 1 m compared to ≥ 50 m for shipboard multibeam bathymetry), revealing the role played by landslides. Slow-spreading ridge axial valleys also commonly expose mantle-derived serpentinized peridotites in the footwalls of large offset normal faults (detachments). In our map of the Ashadze area (lat. 13°N), ultramafic outcrops have an average slope of 18° and behave as sliding deformable rock masses, with little fragmentation. By contrast, the basaltic seafloor in the Krasnov area (lat. 16°38'N) has an average slope of 32° and the erosion of the steep basaltic rock faces leads to extensive fragmentation, forming debris with morphologies consistent with noncohesive granular flow. Comparison with laboratory experiments suggests that the repose angle for this basaltic debris is > 25°. We discuss the interplay between the normal faults that bound the axial valley and the observed mass wasting processes. We propose that, along axial valley walls where serpentinized peridotites are exposed by detachment faults, mass wasting results in average slopes ≤ 20°, even in places where the emergence angle of the detachment is larger.

  6. Dynamics of axially localized states in Taylor-Couette flows.

    Science.gov (United States)

    Lopez, Jose M; Marques, Francisco

    2015-05-01

    We present numerical simulations of the flow confined in a wide gap Taylor-Couette system, with a rotating inner cylinder and variable length-to-gap aspect ratio. A complex experimental bifurcation scenario differing from the classical Ruelle-Takens route to chaos has been experimentally reported in this geometry. The wavy vortex flow becomes quasiperiodic due to an axisymmetric very low frequency mode. This mode plays a key role in the dynamics of the system, leading to the occurrence of chaos via a period-doubling scenario. Further increasing the rotation of the inner cylinder results in the appearance of a new flow pattern which is characterized by large amplitude oscillations localized in some of the vortex pairs. The purpose of this paper is to study numerically the dynamics of these axially localized states, paying special attention to the transition to chaos. Frequency analysis from time series simultaneously recorded at several points has been applied in order to identify the flow transitions taking place. It has been found that the very low frequency mode is essential to explain the behavior associated with the different transitions towards chaos including localized states. PMID:26066253

  7. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  8. Deformations of Superconformal Theories

    CERN Document Server

    Cordova, Clay; Intriligator, Kenneth

    2016-01-01

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in $d \\geq 3$ dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformat...

  9. Shape coexistence near the neutron number N=20: First identification of the E0 decay from the deformed 0^+_2 state in 30Mg

    CERN Document Server

    Schwerdtfeger, W; Wimmer, K; Habs, D; Mach, H; Rodriguez, T R; Bildstein, V; Egido, J L; Fraile, L M; Gernhäuser, R; Hertenberger, R; Heyde, K; Hoff, P; Hübel, H; Köster, U; Kröll, T; Krücken, R; Lutter, R; Morgan, T; Ring, P

    2008-01-01

    The 1789 keV level in 30Mg was identified as the first excited 0^+ state by measuring its E0 transition to the ground state. The measured small value of rho^2(E0,0^+_2 --> 0^+_1) = 5.7(14) x 10^-3 implies a very small mixing of competing configurations with largely different intrinsic quadrupole deformation near N=20. Axially symmetric Beyond-Mean-Field configuration mixing calculations identify the ground state of 30Mg to be based on neutron configurations below the N=20 shell closure, while the excited 0^+ state mainly consists of a two neutrons excitated into the nu1 f_{7/2} orbital. Using a two-level model, a mixing amplitude of 0.08(4) can be derived.

  10. Knowledge Based Design of Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Dinesh kumar.R

    2015-05-01

    Full Text Available In the aerospace industry with highly competitive market the time to design and delivery is shortening every day. Pressure on delivering robust product with cost economy is in demand in each development. Even though technology is older, it is new for each customer requirement and highly non-liner to fit one in another place. Gas turbine is considered one of a complex design in the aircraft system. It involves experts to be grouped with designers of various segments to arrive the best output. The time is crucial to achieve a best design and it needs knowledge automation incorporated with CAD/CAE tools. In the present work an innovative idea in the form of Knowledge Based Engineering for axial compressor is proposed, this includes the fundamental design of axial compressor integrated with artificial intelligence in the form of knowledge capturing and programmed with high level language (Visual Basis.Net and embedded into CATIA v5. This KBE frame work eases out the design and modeling of axial compressor design and produces 3D modeling for further flow simulation with fluid dynamic in Ansys-Fluent. Most of the aerospace components are developed through simulation driven product development and in this case it is established for axial compressor.

  11. The Axial Current in Electromagnetic Interaction

    CERN Document Server

    Cheoun, M K; Cheon, I T; Cheoun, Myung Ki; Cheon, Il-Tong

    1998-01-01

    We discussed the possibility that the charged axial currents of matter fields could be non-conserved in electromagnetic interaction at $O(e) $ order. It means that chiral symmetry is broken explicitly by electromagnetic interaction. This explicit symmetry breaking of chiral symmetry is shown to lead the mass differences between the charged and neutral particles of matter fields.

  12. Primitive axial algebras of Jordan type

    OpenAIRE

    Hall, J I; Rehren, F; Shpectorov, S.

    2014-01-01

    An axial algebra over the field $\\mathbb F$ is a commutative algebra generated by idempotents whose adjoint action has multiplicity-free minimal polynomial. For semisimple associative algebras this leads to sums of copies of $\\mathbb F$. Here we consider the first nonassociative case, where adjoint minimal polynomials divide $(x-1)x(x-\\eta)$ for fixed $0\

  13. Axially symmetric SU(3) gravitating skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora [Maths Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: ti3@auth.gr; Kleihaus, Burkhard [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)]. E-mail: kleihaus@theorie.physik.uni-oldenburg.de; Zakrzewski, Wojtek [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)]. E-mail: w.j.zakrzewski@durham.ac.uk

    2004-10-21

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  14. Axially symmetric SU(3) Gravitating Skyrmions

    CERN Document Server

    Ioannidou, T A; Zakrzewski, W J; Ioannidou, Theodora; Kleihaus, Burkhard; Zakrzewski, Wojtek

    2004-01-01

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [1]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  15. Axially symmetric SU(3) gravitating skyrmions

    International Nuclear Information System (INIS)

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail

  16. Chiral dynamics and heavy-fermion formalism in nuclei; 1, exchange axial currents

    CERN Document Server

    Park, T S; Rho, M; Park, Tae-Sun; Min, Dong-Pil; Rho, Mannque

    1993-01-01

    Chiral perturbation theory in heavy-fermion formalism is developed for meson-exchange currents in nuclei and applied to nuclear axial- charge transitions. Calculation is performed to the next-to-leading order in chiral expansion which involves graphs up to one loop. The result turns out to be very simple. The previously conjectured notion of "chiral filter mechanism" in the time component of the nuclear axial current and the space component of the nuclear electromagnetic current is verified to that order. As a consequence, the phenomenologically observed soft-pion dominance in the nuclear process is given a simple interpretation in terms of chiral symmetry in nuclei. In this paper, we focus on the axial current, relegating the EM current which can be treated in a similar way to a separate paper. We discuss the implication of our result on the enhanced axial-charge transitions observed in heavy nuclei and clarify the relationship between the phenomenological meson-exchange description and the chiral Lagrangian...

  17. LOAD CARRYING CAPABILITY OF LIQUID FILLED CYLINDRICAL SHELL STRUCTURES UNDER AXIAL COMPRESSION

    Directory of Open Access Journals (Sweden)

    QASIM H. SHAH

    2011-08-01

    Full Text Available Empty and water filled cylindrical Tin (Sn coated steel cans were loaded under axial compression at varying loading rates to study their resistance to withstand accidental loads. Compared to empty cans the water filled cans exhibit greater resistance to axially applied compression loads before a complete collapse. The time and load or stroke and load plots showed three significant load peaks related to three stages during loading until the cylinder collapse. First peak corresponds to the initial structural buckling of can. Second peak occurs when cylindrical can walls gradually come into full contact with water. The third peak shows the maximum load carrying capability of the structure where pressurized water deforms the can walls into curved shape until can walls fail under peak pressure. The collapse process of water filled cylindrical shell was further studied using Smooth Particle Hydrodynamics (SPH technique in LSDYNA. Load peaks observed in the experimental work were successfully simulated which substantiated the experimental work.

  18. Predicting the time-temperature dependent axial failure of B/A1 composites

    Science.gov (United States)

    Dicarlo, J. A.

    1980-01-01

    Experimental and theoretical studies were conducted in order to understand and predict the effects of time, temperature, and stress on the axial failure modes of boron fibers and B/A1 composites. Due to the anelastic nature of boron fiber deformation, it was possible to determine simple creep functions which can be employed to accurately describe creep and fracture stress of as-produced fibers. Analysis of damping and strength data for B/6061 A1 composites indicates that fiber creep effects of creep on fiber fracture are measurably reduced by the composite fabrication process. The creep function appropriate for fibers with B/Al composites was also determined. A fracture theory is presented for predicting the time-temperature dependence of the axial tensile strength for metal matrix composites in general and B/A1 composites in particular.

  19. Influence of transverse shear on plasticity around an axial crack in a cylindrical shell

    International Nuclear Information System (INIS)

    The paper presents a plasticity model for deep axial surface cracks in pressurized pipes. The model is used in an investigation of the relative merits of fracture criteria based on COD and plastic instability. Recent investigations have shown that the inconsistency of the singular bending stress field in an axially cracked cylindrical shell arising from use of classical 8th order shallow shell theory is removed, when use is made of a 10th order shell theory, which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence on the bending stresses is considerable. In the case of surface cracks moments are induced to the eccentricity of the crack, and transverse shear effects should therefore be included. (Auth.)

  20. Study on Interaction Relationship for Submarine Pipeline with Axial Corrosion Defects

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-fei; LI Xin; ZHOU Jing; GUAN Jiong

    2008-01-01

    Corrosion is one of the main reasons to cause the operation accident of submarine oil and gas transmission pipelines. As the major corrosion pattern in submarine pipelines, the effects of corrosion clusters consisting of the adjacent corrosion defects on failure pressure are investigated through non-linear large-deformation finite element method. Typically, the failure behavior and limit strength of submarine pipeline with axial groove-groove corrosion defect pair exposed to internal pressure are analyzed. The effects of corrosion depth and axial spacing between a pair of corrosion defects on failure pressure are concluded. An interaction relationship for corrosion defects in pipelines, as well as prediction formulations for assessing the remaining strength of corroded pipelines are proposed. The expressions based on the proposed interaction relationship give more accurate results than the methods used in the existing design guidelines.

  1. Strength of dislocational compounds and strain strengthening of alloys with L12 superstructure at high extents of deformation

    International Nuclear Information System (INIS)

    The resistance to slippage of single dislocations, due to their interaction with the reacting superdislocations, was calculated, and the parameters of the deformation strengthening of alloys with a L12 supperlattice at high extent of deformations were evaluated. A numerical solution is presented for the Ni3Fe alloy. It was shown that the transition of the predominance in the plastic deformation from plane sources of deformation to space ones should necessarily involve a sharp decrease in the coefficient of deformation strengthening

  2. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact.

    Science.gov (United States)

    Yeow, C H; Lee, P V S; Goh, J C H

    2010-01-19

    Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70 degrees flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8 degrees . There was a moderate linear relationship (Y=0.16X; R(2)=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior-posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.

  3. Deformable Simplicial Complexes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof

    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method, the ....... One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects....

  4. Deforming regular black holes

    CERN Document Server

    Neves, J C S

    2015-01-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  5. SU(3)-flavour breaking in octet baryon masses and axial couplings

    OpenAIRE

    Carrillo-Serrano, Manuel E.; Cloët, Ian C.; Thomas, Anthony W.(CSSM and ARC Centre of Excellence for Particle Physics at the Tera-scale, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia 1 1 http://www.physics.adelaide.edu.au/cssm .)

    2014-01-01

    The lightest baryon octet is studied within a covariant and confining Nambu--Jona-Lasinio model. By solving the relativistic Faddeev equations including scalar and axialvector diquarks, we determine the masses and axial charges for \\Delta S = 0 transitions. For the latter the degree of violation of SU(3) symmetry arising because of the strange spectator quark(s) is found to be up to 10%.

  6. Snap-through of the system for a shallow axially symmetric bimetallic shell using non-linear theory

    OpenAIRE

    Kosel, Tadej; Batista, Milan; Jakomin, Marko; Kosel, Franc

    2015-01-01

    The paper deals with the stresses, strains and buckling conditions in thin, axially symmetric, shallow, bimetallic shells. Based on third-order theory, which takes into account the equilibrium state of the forces and moments that are acting on the deformed system, the paper presents a model with a mathematical description of the geometry of the system, the stresses, the thermoelastic strains and the displacements. The mathematical formulation is based on the theory of large displacements. As ...

  7. U(5)-SU(3) nuclear shape transition within the interacting boson model applied to dysprosium isotopes

    Science.gov (United States)

    Kotb, M.

    2016-07-01

    In the framework of the interacting boson model (IBM) with intrinsic coherent state, the shape Hamiltonian from spherical vibrator U(5) to axially symmetric prolate deformed rotator SU(3) are examined. The Hamiltonian used is composed of a single boson energy term and quadrupole term. The potential energy surfaces (PES' s) corresponding to the U(5)-SU(3) transition are calculated with variation of a scaling and control parameters. The model is applied to 150-162Dy chain of isotopes. In this chain a change from spherical to well deformed nuclei is observed when moving from the lighter to heavier isotopes. 156Dy is a good candidate for the critical point symmetry X(5). The parameters of the model are determined by using a computer simulated search program in order to minimize the deviation between our calculated and some selected experimental energy levels, B(E2) transition rates and the two neutron separation energies S2n. We have also studied the energy ratios and the B(E2) values for the yrast state of the critical nucleus. The nucleon pair transfer intensities between ground-ground and ground-beta states are examined within IBM and boson intrinsic coherent framework.

  8. The Analysis of Fluid Pressure Impact on String Force and Deformation in Oil and Gas Wells

    Directory of Open Access Journals (Sweden)

    Gao Baokui

    2015-01-01

    Full Text Available Fluid pressure is a crucial factor to tubular string strength and deformation in oil and gas wells, and it is the most difficult factor to deal with. When the string constrained by downhole tools, such as packers, action pattern of fluid on string is changed. Calculation methods of string stress and deformation given by engineering handbooks doesn’t distinguish these issues in detail. So mistakes are often made when these methods are used. Tangled concepts lead to large calculation error. In this paper, the influence of fluid pressure on string axial force and deformation, buoyancy treatment in packed condition, are discussed roundly both in vertical wells and directional wells. Practical calculating method of string axial force through the hook load is presented, and element buoyancy in different borehole trajectory is given. It is found that the traditional simplified buoyancy coefficient method, which is used to calculate string axial force and axial extension, can only be used in vertical wells with tubular string suspended freely, because in this condition buoyancy acts on the bottom of string. If the string is constrained by downhole tools, such as packer or anchor, buoyancy could not be treated as usual. In directional well the buoyancy not only changes string axial force but induces shear stress in string cross section. When calculating the influence of fluid on string, operation sequence and constraints from borehole and downhole tools should be considered comprehensively.

  9. Cassini State Transitions with a Fossil Figure

    Science.gov (United States)

    Matsuyama, Isamu; Tuttle Keane, James

    2016-10-01

    The Moon has experienced large obliquity variations during Cassini state transitions which greatly impact tidal heating, and the long-term stability of polar volatiles. It has been known for centuries that the lunar rotational and tidal bulges are much larger than expected. The South Pole-Aitken basin can explain a large fraction of the excess deformation. Accounting for the contribution of this basin (and other large basins), the remaining excess deformation arises due to a fossil figure established when the Moon orbited much closer to Earth than it does today. Previous studies assume that the present, excess deformation is entirely preserved throughout Cassini state transitions. This ignores basin contributions to the excess deformation, and requires an interior with infinite rigidity. We consider Cassini state transition models that take into account basin contributions to the excess deformation, and the effect of finite rigidity on the fossil figure.

  10. Distribution of wire deformation within strands of wire ropes

    Institute of Scientific and Technical Information of China (English)

    MA Jun; GE Shi-rong; ZHANG De-kun

    2008-01-01

    Using ANSYS software, we developed a modeling program for several kinds of wire ropes with metal cores and built a geometric model for the 6x19 IWS wire rope. Through proper grid partitioning, a finite element model for calculating the deformation of wire rope was obtained. Completely constraining one end of the wire rope and applying an axial force to the other end, we established the boundary conditions for solving the model. In addition, we numerically simulated the stress and deformation of the wire, obtaining the deformation distribution of each wire within the wire rope under different laying directions.At the end, a tensile test of the 6x19 IWS wire rope was carried out and the results of simulation and experiment compared.

  11. Predicting the time-temperature dependent axial failure of B/Al composites

    Science.gov (United States)

    Dicarlo, J. A.

    1980-01-01

    Theoretical and experimental studies are reviewed whose objective was to gain insight into and predict the effects of time, temperature, and stress on the axial failure modes of boron fibers and B/Al composites. Owing to the inelastic nature of boron fiber deformation, it proved possible to develop simple creep functions which can be used to describe accurately the creep and fracture stress of as-produced fibers. Analysis of damping and stress data for B/6061 Al composites indicates that fiber creep and the effects of creep of fiber fracture are measurably reduced by the composite fabrication process.

  12. Nonlinear Constitutive Equation for Green Sand Considering the Tri-axial Compression Behavior

    Institute of Scientific and Technical Information of China (English)

    曾攀; 孔劲

    2004-01-01

    The compression characteristics of green sand were investigated experimentally, including the squeezing and yielding during deformation. An expression was developed for the transient compression modulus of sand during compression. Based on the hypothesis put forward of the compression state, the differential equation for the nonlinear constitutive equation was deduced by introducing a move-yield potential function. The state constitutive equation under the tri-axial experiment is further studied according to the sand attributes, considering the differential form of Hooke's law and the Mohr-Coulomb condition. The related experiment data are applied to verify the proposed constitutive model of sand.

  13. A Constitutive Model for Uni-axial Compaction of Non-adhesive Corn Stalk Powder

    Institute of Scientific and Technical Information of China (English)

    Zhao Dong; Sun Yanling

    2004-01-01

    In order to study mechanical behaviors of corn stalk powder during the compaction, the yield criterion for corn stalk powder is proposed with a plasticity theory. From the stress-strain curves of uni-axial compaction test for corn stalk powder, the constitutive model, in which the equations are modified by experiments on corn stalk powder, is adopted to describe plastic behaviors of powder, and is discussed based on the incremental theory and deformation theory. The numerical results agree well with the experimental ones.

  14. Numerical investigation of blade dynamic characteristics in an axial flow pump

    Directory of Open Access Journals (Sweden)

    Zhang Desheng

    2013-01-01

    Full Text Available The unsteady numerical simulation of fluid field and structural transient dynamic analysis of axial flow pump were carried out at three operating conditions based on fluid-structure interaction method. Numerical results show that the maximum equivalent stress of impeller occurs at the joint region of the impeller blade root and the hub, and the maximum deformation of impeller occurs at the tips of blade leading edges. The frequency-domain of the maximum equivalent stress and outlet pressure fluctuation of impeller are mainly affected by the impeller blade passing frequency.

  15. Spatial fluctuations in transient creep deformation

    Science.gov (United States)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  16. Comprehensive modeling approach of axial ultrasonic vibration grinding force

    Institute of Scientific and Technical Information of China (English)

    HE Yu-hui; ZHOU Qun; ZHOU Jian-jie; LANG Xian-jun

    2016-01-01

    The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.

  17. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  18. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  19. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  20. On the problem of axial anomaly in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    The explicit relation is found between the axial current obeying the Adler-Bardeen theorem and the supersymmetric one belonging to a supermultiplet. It is shown that the axial and superconformal anomalies are consistent in all orders of perturbation theory

  1. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    of fan efficiency in a design interval of flow rates,thus designinga fan which operates well over a range of different flow conditions.The optimization scheme was used to investigate the dependence ofmaximum efficiency on1: the number of blades,2: the width of the design interval and3: the hub radius.......The degree of freedom in the choice of design variables andconstraints, combined with the design interval concept, providesa valuable design-tool for axial fans.To further investigate the use of design optimization, a modelfor the vortex shedding noise from the trailing edge of the bladeshas been......A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations...

  2. Proto-I axial-focusing experiments

    International Nuclear Information System (INIS)

    The time-integrated axial (z) focus of the 4.5-cm-radius Proto I (1.5 MV, 500 kA) radial proton diode is presently limited to approx. 3 mm FWHM. This result is obtained with current neutralized beam transport in a gas cell with 6 Torr argon. If the vertical local divergence were the same (10 or less) as the horizontal divergence, the local divergence alone would produce a 1.5 mm FWHM focus. The axial focal size is evidently limited by time-dependent effects. These are studied by observing the beam incident upon various targets with two time-resolved pinhole cameras. The first camera observes Rutherford-scattered protons from gold targets with an array of 11 siicon PIN detectors. The second camera observes K/sub α/-fluorescence from aluminum targets with 4 independently-gated microchannel plates imaging tubes

  3. Microwave axial dielectric properties of carbon fiber

    Science.gov (United States)

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-10-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity.

  4. Axial flow positive displacement worm compressor

    Science.gov (United States)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement compressor has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first and second sections of a compressor assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first and second twist slopes in the first and second sections respectively. The first twist slopes are less than the second twist slopes. An engine including the compressor has in downstream serial flow relationship from the compressor a combustor and a high pressure turbine drivingly connected to the compressor by a high pressure shaft.

  5. The deformation and fracture of thick thermal barrier coatings

    Science.gov (United States)

    Gao, Husheng

    Plasma-sprayed thick thermal barrier coatings (TTBCs) are being developed for thermal protection of diesel engine components in high temperature service. Comparing to thin thermal barrier coatings used in gas turbine industry, increased thickness causes some TTBCs failure to occur within the bulk of the coating materials and away from the interface. This necessitated the study of mechanical properties of the coating materials independent of the substrate. In order to enhance the performance and to predict the life of TTBCs, we have to understand the materials response under multiaxial stress states, the deformation mechanisms, failure criteria, and the constitutive relations. In this study, the deformation behavior, the deformation mechanisms, and the failure criteria were investigated. The results shows that under combined axial and shear loading, thin walled tubular specimens of ceramic coatings failed in one of two modes, a tensile failure perpendicular to the maximum principal stress when s1≥sTf or a shear failure through the thickness when s3≤sCf . Two apparatuses for in situ SEM torsion and compression testing were developed for deformation mechanisms investigation. The deformation mechanisms were identified as tensile microcracking, crack closing, and crack sliding. A model has been developed for the constitution relation of functionally graded TTBCs. It is shown that with a few simple experiments, this model can be used to predict the cyclic deformation behavior of the functionally graded TTBCs.

  6. Extra-Axial Medulloblastoma in the Cerebellar Hemisphere

    OpenAIRE

    Chung, Eui Jin; Jeun, Sin Soo

    2014-01-01

    Extra-axial medulloblastoma is a rare phenomenon. We report a case in a 5-year-old boy who presented with nausea, vomiting, and gait disturbance. He was treated with total removal of the tumor. This is the first case of an extra-axially located medulloblastoma occurring in the cerebellar hemisphere posteriolateral to the cerebellopontine angle in Korea. Although the extra-axial occurrence of medulloblastoma is rare, it should be considered in the differential diagnosis of extra-axial lesions ...

  7. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  8. Axial force measurement for esophageal function testing

    OpenAIRE

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure o...

  9. Multimode interaction in axially excited cylindrical shells

    OpenAIRE

    Silva F. M. A.; Rodrigues L.; Gonçalves P. B.; Del Prado Z. J. G. N

    2014-01-01

    Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural fr...

  10. Numerical simulation of an axial blood pump.

    Science.gov (United States)

    Chua, Leok Poh; Su, Boyang; Lim, Tau Meng; Zhou, Tongming

    2007-07-01

    The axial blood pump with a magnetically suspended impeller is superior to other artificial blood pumps because of its small size. In this article, the distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2). The main focus was on the flow field of the blood pump. The numerical results showed that the axial blood pump could produce 5.14 L/min of blood at 100 mm Hg through the outlet when rotating at 11,000 rpm. However, there was a leakage flow of 1.06 L/min in the gap between the rotor cylinder and the pump housing, and thus the overall flow rate the impeller could generate was 6.2 L/min. The numerical results showed that 75% of the scalar shear stresses (SSs) were less than 250 Pa, and 10% were higher than 500 Pa within the whole pump. The high SS region appeared around the blade tip where a large variation of velocity direction and magnitude was found, which might be due to the steep angle variation at the blade tip. Because the exposure time of the blood cell at the high SS region within the pump was relatively short, it might not cause serious damage to the blood cells, but the improvement of blade profile should be considered in the future design of the axial pump. PMID:17584481

  11. Axially evoked postural reflexes: influence of task

    OpenAIRE

    Govender, Sendhil; Dennis, Danielle L.; Colebatch, James G.

    2014-01-01

    Postural reflexes were recorded in healthy subjects (n = 17) using brief axial accelerations and tap stimuli applied at the vertebra prominens (C7) and manubrium sterni. Short latency (SL) responses were recorded from the soleus, hamstrings and tibialis anterior muscles and expressed as a percentage of the background EMG prior to stimulus onset. In the majority of postural conditions tested, subjects were recorded standing erect and leaning forward with their feet together. The SL response wa...

  12. Consistent formulation of the spacelike axial gauge

    Energy Technology Data Exchange (ETDEWEB)

    Burnel, A.; Van der Rest-Jaspers, M.

    1983-12-15

    The usual formulation of the spacelike axial gauge is afflicted with the difficulty that the metric is indefinite while no ghost is involved. We solve this difficulty by introducing a ghost whose elimination is such that the metric becomes positive for physical states. The technique consists in the replacement of the gauge condition nxA = 0 by the weaker one partial/sub 0/nxAroughly-equal0.

  13. Large deformation of spherical vesicle studied by perturbation theory and Surface evolver

    CERN Document Server

    Zhou, J; Zhou, X; Zhong Can Ou Yang; Zhou, Jianjun; Zhang, Yong; Zhou, Xin; Zhong-can, Ou-Yang

    2001-01-01

    With tangent angle perturbation approach the axial symmetry deformation of a spherical vesicle in large under the pressure changes is studied by the elasticity theory of Helfrich spontaneous curvature model.Three main results in axial symmetry shape: biconcave shape, peanut shape, and one type of myelin are obtained. These axial symmetry morphology deformations are in agreement with those observed in lipsome experiments by dark-field light microscopy [Hotani, J. Mol. Biol. 178, (1984) 113] and in the red blood cell with two thin filaments (myelin) observed in living state (see, Bessis, Living Blood Cells and Their Ultrastructure, Springer-Verlag, 1973). Furthermore, the biconcave shape and peanut shape can be simulated with the help of a powerful software, Surface Evolver [Brakke, Exp. Math. 1, 141 (1992) 141], in which the spontaneous curvature can be easy taken into account.

  14. Golimumab for the treatment of axial spondyloarthritis.

    Science.gov (United States)

    Gelfer, Gita; Perry, Lisa; Deodhar, Atul

    2016-01-01

    Axial spondyloarthritis (axSpA) is a chronic, immune-mediated inflammatory disease of the axial skeleton that includes ankylosing spondylitis (AS) and non-radiographic axial spondyloarthritis (nr-axSpA). Patients with AS experience chronic pain due to sacroiliac joint and spinal inflammation, and may develop spinal ankylosing with syndesmophyte formation. Tumor necrosis factor α inhibitors (TNFi) have shown promise in the management of AS and axSpA by targeting the underlying inflammatory process, and providing symptomatic relief. Whether they alter the progression of the disease is uncertain. Golimumab is a fully human IgG1 monoclonal antibody that targets and downregulates the pro-inflammatory cytokine TNF-α. The use of golimumab has been shown to reduce the signs and symptoms of axSpA as well as improve patient function and quality reported outcomes. This review focuses on the biological rationale and the results of clinical trials with golimumab for the treatment of axSpA.

  15. Turbulence Effects of Axial Flow Hydrokinetic Turbines

    Science.gov (United States)

    Hill, C.; Chamorro, L. P.; Neary, V. S.; Morton, S.; Sotiropoulos, F.

    2011-12-01

    Axial flow hydrokinetic turbines provide a method for extracting the kinetic energy available in unidirectional (river), bidirectional (tidal) and marine currents; however, a deep understanding of the wake dynamics, momentum recovery, geomorphologic effects, and ecological interaction with these hydrokinetic turbines is required to guarantee their economical and environmental viability. The St. Anthony Falls Laboratory (SAFL) at the University of Minnesota (UMN) has performed physical modeling experiments using a 1:10 scale axial flow tidal turbine in the SAFL Main Channel, a 2.75m x 1.8m x 80m open channel test facility. A sophisticated control system allows synchronous measurements of turbine torque and rotational speed along with high resolution 3-D velocity measurements within the channel. Using acoustic Doppler velocimeters (ADVs), high resolution 3-D velocity profile data were collected up to 15 turbine diameters downstream of the turbine location. These data provide valuable information on the wake characteristics (turbulence, Reynolds stresses, etc.) resulting from a rotating axial flow hydrokinetic machine. Regions of high turbulence and shear zones that persist in the near wake regions are delineated along with the velocity deficit and momentum recovery within the wake downstream of the device. Synchronous ADV data shed light on the rotational and meandering characteristics of the wake and its potential impacts on the local geomorphology and hydrodynamic environment. This dataset on single hydrokinetic turbine flow characteristics is the basis for further work on the optimal arrangement and performance environment for arrays of similar hydrokinetic devices.

  16. DYNAMIC RESPONSES OF VISCOELASTIC AXIALLY MOVING BELT

    Institute of Scientific and Technical Information of China (English)

    李映辉; 高庆; 蹇开林; 殷学纲

    2003-01-01

    Based on the Kelvin viscoelastic differential constitutive law and the motion equation of the axially moving belt, the nonlinear dynamic model of the viscoelastic axial moving belt was established. And then it was reduced to be a linear differential system which the analytical solutions with a constant transport velocity and with a harmonically varying transport velocity were obtained by applying Lie group transformations. According to the nonlinear dynamic model, the effects of material parameters and the steady-state velocity and the perturbed axial velocity of the belt on the dynamic responses of the belts were investigated by the research of digital simulation. The result shows: 1 ) The nonlinear vibration frequency of the belt will become small when the relocity of the belt increases. 2 ) Increasing the value of viscosity or decreasing the value of elasticity leads to a deceasing in vibration frequencies. 3 ) The most effects of the transverse amplitudes come from the frequency of the perturbed velocity when the belt moves with harmonic velocity.

  17. Triaxial dynamics in the quadrupole-deformed rotor

    CERN Document Server

    Li, Qiu-Yue; Zuo, Yan; Zhang, Yu; Pan, Feng

    2015-01-01

    The triaxial dynamics of the quadrupole-deformed rotor model of both the rigid and the irrotational type have been investigated in detail. The results indicate that level patterns and E2 transitional characters of the two types of the model can be matched with each other to the leading order of the deformation parameter $\\beta$. Especially, it is found that the dynamical structure of the irrotational type with most triaxial deformation ($\\gamma=30^\\circ$) is equivalent to that of the rigid type with oblate deformation ($\\gamma=60^\\circ$), and the associated spectrum can be classified into the standard rotational bands obeying the rotational $L(L+1)$-law or regrouped into a new ground- and $\\gamma$-band with odd-even staggering in the new $\\gamma$-band commonly recognized as a signature of the triaxiality. The differences between the two types of the model in this case are emphasized especially on the E2 transitional characters.

  18. Measurement of conversion coefficients in normal and triaxial strongly deformed bands in {sup 167}Lu.

    Energy Technology Data Exchange (ETDEWEB)

    Gurdal, G.; Beausang, C. W.; Brenner, D. S.; Ai, H.; Casten, R. F.; Crider, B.; Heinz, A.; Williams, E.; Hartley, D. J.; Carpenter, M. P.; Hecht, A. A.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Raabe, R.; Seweryniak, D.; Zhu, S.; Saladin, J. X.; Physics; Yale Univ.; Clark Univ.; Univ. of Richmond; United States Naval Academy; Univ. of Maryland; Univ. of Pittsburgh

    2008-01-01

    Internal conversion coefficients have been measured for transitions in both normal deformed and triaxial strongly deformed bands in {sup 167}Lu using the Gammasphere and ICE Ball spectrometers. The results for all in-band transitions are consistent with E2 multipolarity. Upper limits are determined for the internal conversion coefficients for linking transitions between TSD Band 2 and TSD Band 1, the n{sub w} = 1 and n{sub w} = 0 wobbling bands, respectively.

  19. Role of deformation on giant resonances within the QRPA approach and the Gogny force

    CERN Document Server

    Peru, S

    2008-01-01

    Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed $^{26-28}$Si and $^{22-24}$Mg nuclei as well as in the spherical $^{30}$Si and $^{28}$Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.

  20. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K. [Niigata Univ. (Japan); Matsuo, M.

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  1. Axial Symmetric Solutions to Einstein's Field Equations for Deformed Neutron Stars

    Science.gov (United States)

    Zubairi, Omair; Weber, Fridolin

    2016-03-01

    Traditional models of neutron stars are constructed under of assumption that they are perfect spheres. This is not correct, however, if the matter inside of neutron stars is described by an non-isotropic model for the equation of state. Examples of such stars are magnetars and neutron stars that would contain color-superconducting quark matter. In this work, we derive the stellar structure equations which describe the properties of non-isotropic neutron stars. The equations are solved numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure and density profiles and investigate any changes from conventional spherically symmetric neutron stars. This work was supported through the National Science Foundation under Grants PHYS-1411708 and DUE-1259951. Additional computing resources were provided by the CSRC at SDSU and the Department of Sciences at Wentworth Institute of Technology.

  2. Advances in the theory of deformation and recrystallization texture formation

    Energy Technology Data Exchange (ETDEWEB)

    Smallman, R.E. (School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)); Lee, C.S. (School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom))

    1994-08-15

    The development of the formation of texture in both rolled and annealed f.c.c. metals has been reviewed and limitation in the present understanding identified. Special attention is given to the problems of the deformation texture transition in f.c.c. materials and to the development of cube texture during recrystallization. Inadequacies in the current deformation models are discussed and recent experimental results based on metallographic studies of highly deformed metals presented. The work demonstrates the importance of deformation banding as a mechanism of deformation which significantly influences both the development of the deformation texture and the subsequent recrystallization process. Consideration of the additional deformation modes enables a new deformation model to be developed which gives results in better agreement with experiment. Experiments on cube texture formation in relation to previous recrystallization studies and to the role played by both the oriented-nucleation and the oriented-growth theories in recrystallization is briefly reviewed. Recent work on the role of deformation banding in the formation of cube-oriented volumes having a special orientation relationship with their neighbours is presented, leading to a generalized theory of the cube recrystallization texture formation. ((orig.))

  3. Suppressing unstable deformation of nanocolloidal crystals with atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Di [Department of Mechanical Engineering, Villanova University, Villanova, PA 19085 (United States); Zhang, Lei; Lee, Daeyeon [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Cheng, Xuemei [Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010 (United States); Feng, Gang, E-mail: gang.feng@villanova.edu [Department of Mechanical Engineering, Villanova University, Villanova, PA 19085 (United States)

    2015-07-15

    Despite their useful photonic properties, poor mechanical robustness hinders the application of nanocolloidal crystals (NCCs). Understanding the mechanical behavior of NCCs is critical to propose effective reinforcement techniques. We find that as-assembled NCCs exhibit unstable deformation, manifested as pop-ins upon nanoindentation. By deepening indentation, the unstable deformation mode transitions from NC dislodging to shear band (SB) formation. We find that alumina atomic layer deposition (ALD) significantly suppresses NC dislodging and SB formations in NCCs by increasing interparticle bonding.

  4. A new strategy of axial power distribution control based on three axial offsets concept

    International Nuclear Information System (INIS)

    We have proposed a very simple control procedure for axial xenon oscillation control based on a characteristic trajectory. The trajectory is drawn by three offsets of power distributions, namely, AOp, AOi and AOx. They are defined as the offset of axial power distribution, the offset of the power distribution under which the current iodine distribution is obtained as the equilibrium and that for xenon distribution, respectively. When these offsets are plotted on X-Y plane for (AOp-AOx, AOi-AOx) the trajectory draws a quite characteristic ellipse (or an elliptic spiral). On the other hands, Constant Axial Offset Control (CAOC) procedure is adopted as axial power distribution control strategy during both base load and load following operations in domestic PWRs. In the previous paper, we have presented an innovative procedure of axial power distribution control during load following in PWRs based on this trajectory such that the AOp-AOx is to be controlled to zero when the value deviates the pre-determined limiting values. In this paper we propose a modified control strategy to get more stability of axial power distributions. In this strategy, we control the trajectory to be close to the major axis of the ellipse when the power distribution reaches the limiting values. In other words, the plot is not controlled only to reduce AOp-AOx but also AOi-AOx is taken into account at the same time. It is known that when the plot is controlled to the major axis, it means that the point gives the peak position of axial xenon oscillation. Therefore xenon oscillation will not increase its amplitude any more. Thus more stable axial power distribution control is attained. This kind of design concept is quite important especially for the future PWRs with elongated fuel length and longer core life. Because in a longer effective core and also the longer core life, it has been known that the stability of axial xenon oscillation becomes more unstable. In this paper, some simulation

  5. Might axial myofascial properties and biomechanical mechanisms be relevant to ankylosing spondylitis and axial spondyloarthritis?

    Science.gov (United States)

    Masi, Alfonse T

    2014-01-01

    Ankylosing spondylitis and axial spondyloarthropathy have characteristic age- and sex-specific onset patterns, typical entheseal lesions, and marked heritability, but the integrative mechanisms causing the pathophysiological and structural alterations remain largely undefined. Myofascial tissues are integrated in the body into webs and networks which permit transmission of passive and active tensional forces that provide stabilizing support and help to control movements. Axial myofascial hypertonicity was hypothesized as a potential excessive polymorphic trait which could contribute to chronic biomechanical overloading and exaggerated stresses at entheseal sites. Such a mechanism may help to integrate many of the characteristic host, pathological, and structural features of ankylosing spondylitis and axial spondyloarthritis. Biomechanical stress and strain were recently documented to correlate with peripheral entheseal inflammation and new bone formation in a murine model of spondyloarthritis. Ankylosing spondylitis has traditionally been classified by the modified New York criteria, which require the presence of definite radiographic sacroiliac joint lesions. New classification criteria for axial spondyloarthritis now include patients who do not fulfill the modified New York criteria. The male-to-female sex ratios clearly differed between the two patient categories - 2:1 or 3:1 in ankylosing spondylitis and 1:1 in non-radiographic axial spondyloarthritis - and this suggests a spectral concept of disease and, among females, milder structural alterations. Magnetic resonance imaging of active and chronic lesions in ankylosing spondylitis and axial spondyloarthritis reveals complex patterns, usually interpreted as inflammatory reactions, but shows similarities to acute degenerative disc disease, which attributed to edema formation following mechanical stresses and micro-damage. A basic question is whether mechanically induced microinjury and immunologically mediated

  6. Deformation quantization of principal bundles

    CERN Document Server

    Aschieri, Paolo

    2016-01-01

    We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles, and more in general to the deformation of Hopf-Galois extensions. First we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next we twist deform a subgroup of the group of authomorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations we obtain noncommutative principal bundles with noncommutative fiber and base space as well.

  7. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Experimental study on PVC-CFRP confined reinforced concrete short column under axial compression%PVC-CFRP管钢筋混凝土轴压短柱试验研究

    Institute of Scientific and Technical Information of China (English)

    于峰; 牛荻涛

    2013-01-01

    This paper presents the results of experimental investigations on 10 PVC-CFRP confined reinforced concrete columns.The influences of the hoop spacing of CFRP strips and the axial reinforcement on the load-carrying capacity,deformation and failure mode of PVC-CFRP confined reinforced concrete columns were studied.Test results show that the load-carrying capacity and ultimate compressive strain of axially reinforced members with reinforced ratio 1.8% respectively increase about 24% and 16% compared with those of members without axial reinforcement; the loadcarrying capacity and ultimate compressive strain decrease with the increase of the hoop spacing of CFRP strips; when the axially reinforced members fail,multiple CFRP strips fracture and longitudinal reinforcement buckle at the middle height of the specimens.The stress-strain relationship curves of PVC-CFRP confined reinforced concrete column may be divided into three stages:at the first segment,the stress-strain relationship curves is parabola; at the second segment,the stress-strain relationship exhibits an obvious transition segment ; at the third segment,before the failure of the axially reinforced members,the axial stress and strain is in the increasing state.The slope tangent of the hardening segment of axially reinforced members is larger than that of members without axial reinforcement.Based on the static equilibrium and limit equilibrium,a calculating formula of the bearing capacity of PVC-FRP confined concrete column was derived.The calculated values of the proposed formula agree well with the experimental results.%通过10根PVC-CFRP管钢筋混凝土短柱轴压试验,分析CFRP条带环箍间距和轴向配筋等因素对PVC-CFRP管钢筋混凝土短柱承载力、变形以及破坏形态的影响.试验研究表明:与无筋试件相比,配筋率为1.8%的配筋试件的承载力和轴向极限压应变分别提高约24%和16%;随着CFRP条带环箍间距的增大,配筋试件的承载

  9. GPS monitoring of temporal deformation of the Xianshuihe fault

    Institute of Scientific and Technical Information of China (English)

    TERUYUKI; Kato

    2008-01-01

    Highly precise (σ ~1 mm) temporal deformation measurements are taken across the Xianshuihe fault from two pairs of continuous GPS stations straddling the fault. Baseline vector changes of the two pairs of stations show clearly the difference in deformation behavior between the Qianning and Daofu segments of the fault: the former deforms steadily, and the latter deforms with a strong transient component. The transient deformation across the Daofu segment is possibly related to its irregular geometry, where the fault splits into two branches, that is, the east and west branches. An attempt is made to interpret the baseline vector changes using a kinematic fault model composed of a brittle layer in the upper crust, a ductile layer in the lower crust, and a transition zone in between. The slip in the transition zone of the south segment of the Xianshuihe fault is steady. The slips in the transition zones of the north and Daofu segments of the Xianshuihe fault, however, are not steady, and the average slip rates there are higher than that of the south segment. The difference in deformation behavior is probably associated with the rheological properties of the fault interface, suggesting that the overall fault strength of the south segment is greater than those of the north and Daofu segments, corresponding to longer earthquake recurrence time.

  10. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al. Th...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes.......In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al...... manifold and that the distance between two deformations are given by the metric introduced by the L2-norm in the parameter space. The chosen L2-norm is shown to have a clear and intuitive interpretation on the usual nonlinear manifold. Our model is validated on a set of MR images of corpus callosum...

  11. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  12. CFD Simulation of Casing Treatment of Axial Flow Compressors

    Science.gov (United States)

    DeWitt, Kenneth

    2005-01-01

    A computational study is carried out to understand the physical mechanism responsible for the improvement in stall margin of an axial flow rotor due to the circumferential casing grooves. It is shown that the computational tool used predicts an increase in operating range of the rotor when casing grooves are present. A budget of the axial momentum equation is carried out at the rotor casing in the tip gap in order to uncover the physical process behind this stall margin improvement. It is shown that for the smooth casing the net axial pressure force . However in the presence of casing grooves the net axial shear stress force acting at the casing is augmented by the axial force due to the radial transport of axial momentum, which occurs across the grooves and power stream interface. This additional force adds to the net axial viscous sheer force and thus leads to an increase in the stall margin of the rotor.

  13. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  14. Vaporization of Deforming Droplets

    Science.gov (United States)

    Wang, Yanxing; Chen, Xiaodong; Ma, Dongjun; Yang, Vigor

    2012-11-01

    Droplet deformation is one of the most important factors influencing the evaporation rate. In the present study, high-fidelity numerical simulations of single evaporating droplets with deformation are carried out over a wide range of the Reynolds and Weber numbers. The formulation is based on a complete set of conservation equations for both the liquid and surrounding gas phases. A modified volume-of-fluid (VOF) technique that takes into account heat and mass transfer is used to track the behavior of the liquid/gas interface. Special attention is given to the property conservation, which can be realized by using an iterative algorithm that enforces a divergence constraint in cells containing the interface. The effect of the ambient flow on droplet dynamics and evaporation are investigated systematically. Various underlying mechanisms dictating the droplet characteristics in different deformation regimes are identified. Correlations for the droplet evaporation rate are established in terms of the Reynolds and Weber numbers.

  15. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  16. APPROXIMATE EXPRESSION FOR ELASTO-PLASTIC CURVE OF AXIAL FORCE AND AXIAL DISPLACEMENT OF COMPRESSED BAR%压杆轴力与轴向位移全过程曲线的近似表达式

    Institute of Scientific and Technical Information of China (English)

    杨洋; 童根树; 张磊

    2012-01-01

    考虑了几何缺陷、残余应力和材料塑性,采用大变形理论自编程序3D-Steel-Struct对工字形压杆屈曲前后的变形曲线进行了研究。对非完善双轴对称工字形截面压杆进行了二阶弹性和二阶刚塑性的理论分析,推导了相应阶段的轴压力与变形之间的关系,构造了轴压力与跨中挠度和轴压力与轴向位移之间的解析表达式,并与数值解非常吻合。研究了压杆轴压延性随长细比的变化规律,提出了一个延性与长细比的近似表达式,并具有良好的精度。%This paper investigates the deformation of compressed bars with I-section. A finite-element program of 3D-Steel-Struct developed by authors is used in the analysis. Initial geometric crookedness, residual stress and material inelasticity are considered in the investigation. Second order elastic and second order rigid-plastic analysis are carried out for imperfect members, and relations between axially compressive force and deformation are deduced. Analytical expression for axially compressive force and deflection at mid-span are presented, as well as that for axially compressive force and axial shortening. A comparison shows the excellent agreement between the proposed explicit expressions and the numerical results. The axial ductility of compressed member is also studied in the paper. A formula relating the ductility to the slenderness is proposed.

  17. Numerical study on air-structure coupling dynamic characteristics of the axial fan blade

    International Nuclear Information System (INIS)

    In order to understand the dynamic characteristics of the axial-flow fan blade due to the effect of rotating stress and the action of unsteady aerodynamic forces caused by the airflow, a numerical simulation method for air-structure coupling in an axial-flow fan with fixed rear guide blades was performed. The dynamic characteristics of an axial-flow fan rotating blade were studied by using the two-way air-structure coupling method. Based on the standard k-ε turbulence model, and using weak coupling method, the preceding six orders modal parameters of the rotating blade were obtained, and the distributions of stress and strain on the rotating blade were presented. The results show that the modal frequency from the first to the sixth order is 3Hz higher than the modal frequency without considering air-structure coupling interaction; the maximum stress and the maximum strain are all occurred in the vicinity of root area of the blade no matter the air-structure coupling is considered or not, thus, the blade root is the dangerous location subjected to fatigue break; the position of maximum deformation is at the blade tip, so the vibration of the blade tip is significant. This study can provide theoretical references for the further study on the strength analysis and mechanical optimal design

  18. Analysis of blade vibration response induced by rotating stall in axial compressor

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    An experimental and numerical study was conducted to investigate the forced response of blade vibration induced by rotating stall in a low speed axial compressor.Measurements have been made of the transient stalling process in a low speed axial compressor stage.The CFD study was performed using solution of 3-dimensional Navier-Stokes equations,coupled with structure finite element models for the blades to identify modal shapes and structural deformations simultaneously.Interactions between fluid and structure were managed in a coupled manner,based on the interface information exchange until convergence in each time step.Based on the rotating stall measurement data obtained from a low speed axial compressor,the blade aeroelastic response induced by the rotating stall flow field was analyzed to study the vibration characteristics and the correlation between the phenomena.With this approach,good agreement between the numerical results and the experimental data was observed.The flow phenomena were well captured,and the results indicate that the rotating field stall plays a significant role in the blade vibration and stress affected by the flow excitation.

  19. Theoretical Analysis on Mechanical Behavior of Axially Loaded Recycled Aggregate Concrete Filled Steel Tubes

    Directory of Open Access Journals (Sweden)

    Yijie Huang

    2015-01-01

    Full Text Available A new mechanical model for analysing the behaviour of axially loaded recycled aggregate concrete filled steel tubes (RACFSTs stub columns is presented in this study. The model is derived from the typical elastoplasticity, the nonlinear elastic mechanics, and the properties of materials. Based on the mechanical model, a novel numerical program is developed. The mechanical model and the numerical program are adopted to study the effect of recycled coarse aggregate (RCA replacement percentage on RACFST mechanical behaviour. The complete load-deformation relationship of specimens, the steel tube axial and circumferential stresses, and the performance of the confined core concrete and the variation of interaction are also investigated. The analytical results indicate that this model is able to capture the mechanical behaviour of RACFST. It is also found that the axial and circumferential stresses of steel tube change nonlinearly during the loading stages. It is concluded that the behaviour of the confined core concrete is significantly influenced by the confining pressure. The steel tube confinement could improve the mechanical behaviour of RAC effectively and the RCA replacement percentage slightly changes the response of core concrete. Finally, the relations between confined core concrete and confining pressure are analysed.

  20. Single Band Helical Antenna in Axial Mode

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2012-11-01

    Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications

  1. Shaped charge with an axial channel

    Science.gov (United States)

    Malygin, A. V.; Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.

    2011-05-01

    A shaped charge with an axial channel is considered. The charge is initiated by an impact of an annular plate. As a result, the shaped charge is initiated at all points of the domain shaped as a ring. The impact plate material and parameters (velocity, thickness, width, and distance covered by the plate) that ensure stable penetration of the shaped charge are determined. The results obtained can be used to develop a composite (e.g., "tandem") shaped charge of the "base-head" type (the charge located farther from the target is first initiated, followed by initiation of the charge located closer to the target).

  2. Thermophoretic motion of bodies with axial symmetry

    International Nuclear Information System (INIS)

    Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen number, K n. The study is made in the limit where the typical length of the immersed body is small compared with the mean free path. It is shown that in this case, in contrast to what is the case for spherical bodies, the arising thermal force on the body is not in general anti-parallel to the temperature gradient. It is also shown that the gas exerts a torque on the body, which in magnitude and direction depends on the body geometry. Equations of motion describing the body movement are derived. Stationary solutions are studied

  3. Cervical Spine Axial Rotation Goniometer Design

    Directory of Open Access Journals (Sweden)

    Emin Ulaş Erdem

    2012-06-01

    Full Text Available To evaluate the cervical spine rotation movement is quiet harder than other joints. Configuration and arrangement of current goniometers and devices is not always practic in clinics and some methods are quiet expensive. The cervical axial rotation goniometer designed by the authors is consists of five pieces (head apparatus, chair, goniometric platform, eye pads and camera. With this goniometer design a detailed evaluation of cervical spine range of motion can be obtained. Besides, measurement of "joint position sense" which is recently has rising interest in researches can be made practically with this goniometer.

  4. Resonances in axially symmetric dielectric objects

    CERN Document Server

    Helsing, Johan

    2016-01-01

    A high-order convergent and robust numerical solver is constructed and used to find complex eigenwavenumbers and electromagnetic eigenfields of dielectric objects with axial symmetry. The solver is based on Fourier--Nystr\\"om discretization of M\\"uller's combined integral equations for the transmission problem and can be applied to demanding resonance problems at microwave, terahertz, and optical wavelengths. High achievable accuracy, even at very high wavenumbers, makes the solver ideal for benchmarking and for assessing the performance of general purpose commercial software.

  5. Axial electron-channelling analysis of perovskite

    International Nuclear Information System (INIS)

    The orientation dependence of characteristic X-ray emission (the Borrmann effect) under near-zone-axis diffraction conditions has been used to identify the site preferences of strontium, zirconium and uranium impurities within a CaTiO3 (perovskite) host structure. As characteristic emission lines from these impurities occur at both higher and lower energies than the calcium or titanium K-shell excitations, effects of delocalization are clearly measureable, and are used as a tool in axial electron channeling or ALCHEMI analysis. It is found that strontium and uranium strongly partition into calcium sites, whereas zirconium occupies titanium sites. (author)

  6. Nail Deformities and Injuries.

    Science.gov (United States)

    Tucker, James Rory J

    2015-12-01

    A variety of nail deformities commonly presents in the primary care office. An understanding of nail anatomy coupled with inspection of the nails at routine office visits can reveal undetected disorders. Some problems are benign, and treatment should be attempted by the primary care provider, such as onychomycosis, paronychia, or ingrown toenails. For conditions such as benign melanonychia, longitudinal ridges, isolated Beau lines, and onycholysis, clinicians may offer reassurance to patients who are concerned about the change in their nails. For deformities such as early pterygium or clubbing, a thorough evaluation and referral to an appropriate specialist may be warranted. PMID:26612379

  7. Lobster claw deformity.

    Science.gov (United States)

    Agrawal, Ashish; Agrawal, Rahul; Singh, Rajat; Agrawal, Romi; Agrawal, Seema

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form). In this article, describes a rare case report of lobster claw deformity patient. PMID:24992861

  8. Lobster claw deformity

    Directory of Open Access Journals (Sweden)

    Ashish Agrawal

    2014-01-01

    Full Text Available Endogenous erythroid colony (EEC syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-syndromic form. In this article, describes a rare case report of lobster claw deformity patient.

  9. Deformation in nanocrystalline metals

    Directory of Open Access Journals (Sweden)

    Helena Van Swygenhoven

    2006-05-01

    Full Text Available It is now possible to synthesize polycrystalline metals made up of grains that average less than 100 nm in size. Such nanocrystalline metals contain a significant volume fraction of interfacial regions separated by nearly perfect crystals. The small sizes involved limit the conventional operation of dislocation sources and thus a fundamental question arises: how do these materials deform plastically? We review the current views on deformation mechanisms in nanocrystalline, face-centered cubic metals based on insights gained by atomistic computer simulations. These insights are discussed with reference to recent striking experimental observations that can be compared with predictions made by the simulations.

  10. GBT pre-buckling and buckling analyses of thin-walled members under axial and transverse loads

    Science.gov (United States)

    Taig, Gerard; Ranzi, Gianluca; Luongo, Angelo

    2016-03-01

    This paper presents an analytical approach for pre-buckling and buckling analyses of thin-walled members implemented within the framework of the Generalised Beam Theory (GBT). With the proposed GBT cross-sectional analysis, the set of deformation modes used in the analysis is represented by the dynamic modes obtained for an unrestrained frame representing the cross-section. In this manner, it is possible to account for the deformability of the cross-section in both pre-buckling and buckling analyses. Different loading conditions, including both axial and transverse arrangements, are considered in the applications to highlight under which circumstances the use of the GBT deformation modes is required for an adequate representation of the pre-buckling and buckling response. The numerical results have been validated against those determined using a shell element model developed in the finite element software ABAQUS.

  11. Reexamination of Nuclear Shape Transitions in Gadolinium and Dysprosium Isotopes Chains by Using the Geometric Collective Model

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2014-01-01

    Full Text Available The critical points of potential energy surface (PES’s of the limits of nuclear struc- ture harmonic oscillator, axially symmetric rotor and deformed -soft and discussed in framework of the general geometric collective model (GCM. Also the shape phase transitions linking the three dynamical symmetries are studied taking into account only three parameters in the PES’s. The model is tested for the case of 238 92 U , which shows a more prolate behavior. The optimized model parameters have been adjusted by fit- ting procedure using a simulated search program in order to reproduce the experimental excitation energies in the ground state band up to 6 + and the two neutron separation energies.

  12. Large axial actuation of pre-stretched tubular dielectric elastomer and use of oil encapsulation to enhance dielectric breakdown strength

    Science.gov (United States)

    Lau, Gih-Keong; Di-Teng Tan, Desmond; La, Thanh-Giang

    2015-04-01

    Rolled dielectric elastomer actuators (DEAs) are subjected to necking and non-uniform deformation upon pre-stress relaxation. Though rolled up from flat DEAs, they performed much poorer than the flat ones. Their electrically induced axial strains were previously reported as not more than 37.3%, while the flat ones produced greater than 100% strain. Often, the rolled DEAs succumb to premature breakdown before they can realize the full actuation potential like the flat ones do. This study shows that oil encapsulation, together with large hoop pre-stretch, helps single-wound rolled DEAs, which are also known as tubular DEAs, suppress premature breakdown. Consequently, the oil-encapsulated tubular DEAs can sustain higher electric fields, and thus produce larger isotonic strain and higher isometric stress change. Under isotonic testing, they sustained very high electric fields of up to 712.7 MV m-1, which is approximately 50% higher than those of the dry tubular DEAs. They produced up to 55.4% axial isotonic strain despite axially stiffening by the passive oil capsules. In addition, due to the use of large hoop pre-stretch, even the dry tubular DEAs without oil encapsulation achieved a very large axial strain of up to 84.2% compared to previous works. Under isometric testing, the oil-encapsulated tubular DEA with enhanced breakdown strength produced an axial stress change of up to nearly 0.6 MPa, which is 114% higher than that produced by the dry ones. In conclusion, the oil encapsulation and large pre-stretch help realize fuller actuation potential of tubular dielectric elastomer, which is subjected to initially non-uniform deformation.

  13. Static and dynamic response of a sandwich structure under axial compression

    Science.gov (United States)

    Ji, Wooseok

    This thesis is concerned with a combined experimental and theoretical investigation of the static and dynamic response of an axially compressed sandwich structure. For the static response problem of sandwich structures, a two-dimensional mechanical model is developed to predict the global and local buckling of a sandwich beam, using classical elasticity. The face sheet and the core are assumed as linear elastic orthotropic continua in a state of planar deformation. General buckling deformation modes (periodic and non-periodic) of the sandwich beam are considered. On the basis of the model developed here, validation and accuracy of several previous theories are discussed for different geometric and material properties of a sandwich beam. The appropriate incremental stress and conjugate incremental finite strain measure for the instability problem of the sandwich beam, and the corresponding constitutive model are addressed. The formulation used in the commercial finite element package is discussed in relation to the formulation adopted in the theoretical derivation. The Dynamic response problem of a sandwich structure subjected to axial impact by a falling mass is also investigated. The dynamic counterpart of the celebrated Euler buckling problem is formulated first and solved by considering the case of a slender column that is impacted by a falling mass. A new notion, that of the time to buckle, "t*" is introduced, which is the corresponding critical quantity analogous to the critical load in static Euler buckling. The dynamic bifurcation buckling analysis is extended to thick sandwich structures using an elastic foundation model. A comprehensive set of impact test results of sandwich columns with various configurations are presented. Failure mechanisms and the temporal history of how a sandwich column responds to axial impact are discussed through the experimental results. The experimental results are compared against analytical dynamic buckling studies and finite

  14. Calculation of rotational deformity in pediatric supracondylar humerus fractures

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Eric R.; Egol, Kenneth A.; Bosse, Harold J.P. van; Schweitzer, Mark E.; Pettrone, Sarah K. [NYU Hospital for Joint Diseases, New York, NY (United States); Feldman, David S. [NYU Hospital for Joint Diseases, New York, NY (United States); NYU Hospital for Joint Diseases, Pediatric Orthopaedic Surgery, Center for Children, New York, NY (United States)

    2007-03-15

    Supracondylar humerus fractures (SCHF) are common in the pediatric population. Cubitus varus deformity (CVD) is the most common long-term complication of SCHFs and may lead to elbow instability and deficits in throwing or extension. Distal fragment malrotation in the axial plane disposes to fragment tilt and CVD; however, no simple method of assessing fracture malrotation exists. This study tested a mathematical method of measuring axial plane malrotation in SCHFs based on plain radiographs. A pediatric SCHF model was made, and x-rays were taken at known intervals of rotation. Five independent, blinded observers measured these films. Calculated rotation for each data set was compared to the known rotation. The identical protocol was performed for an aluminum phantom. The reliability and agreement of the rotation values were good for both models. This method is a reliable, accurate, and cost-effective means of calculating SCHF distal fragment malrotation and warrants clinical application. (orig.)

  15. Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror

    Science.gov (United States)

    Costa, Christopher; Bradu, Adrian; Rogers, John; Phelan, Pauline; Podoleanu, Adrian

    2015-01-01

    We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented.

  16. Effects of experimental deformation on the remanent magnetization of sediments

    Science.gov (United States)

    Pozzi, Jean-Pierre; Aïfa, Tahar

    1989-12-01

    Changes in direction and in intensity of the remanent magnetization of sediments were studied during experimental deformation leading to an axial shortening of 20-30%. The remanence was produced before shortening by anhysteretic magnetization in an alternating field of 90 mT superimposed on a parallel steady field of 1 mT at various inclinations with respect to the sample. The samples were sandstones, marls and volcanic sediments. The results show that the direction of magnetization is stable during the deformation within the experimental precision. The intensity of magnetization decreases during shortening by an amount which depends on the type of rock: about 30% for sandstones and about 5% for marls and volcanic sediments. The March model does not account for the data and a discontinuous deformation must be invoked. The evolution of the Young modulus of sandstones during cyclic loading and unloading shows first a decrease in relation to crack density growth, then an increase showing a localization of the fracturation and finally a deformation by displacement of microblocks. An interpretation is given after a discussion of the results obtained by other authors with plasticine and artificial clays. The amplitude of the decrease and of the rotation of the remanent magnetization could be a function of the size of the magnetic grains compared with the scale of the fracturation during non-homogeneous processes of deformation.

  17. Activity classification using a single chest mounted tri-axial accelerometer.

    Science.gov (United States)

    Godfrey, A; Bourke, A K; Olaighin, G M; van de Ven, P; Nelson, J

    2011-11-01

    Accelerometer-based activity monitoring sensors have become the most suitable means for objective assessment of mobility trends within patient study groups. The use of minimal, low power, IC (integrated circuit) components within these sensors enable continuous (long-term) monitoring which provides more accurate mobility trends (over days or weeks), reduced cost, longer battery life, reduced size and weight of sensor. Using scripted activities of daily living (ADL) such as sitting, standing, walking, and numerous postural transitions performed under supervised conditions by young and elderly subjects, the ability to discriminate these ADL were investigated using a single tri-axial accelerometer, mounted on the trunk. Data analysis was performed using Matlab® to determine the accelerations performed during eight different ADL. Transitions and transition types were detected using the scalar (dot) product technique and vertical velocity estimates on a single tri-axial accelerometer was compared to a proven discrete wavelet transform method that incorporated accelerometers and gyroscopes. Activities and postural transitions were accurately detected by this simplified low-power kinematic sensor and activity detection algorithm with a sensitivity and specificity of 86-92% for young healthy subjects in a controlled setting and 83-89% for elderly healthy subjects in a home environment. PMID:21636308

  18. Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives.

    Science.gov (United States)

    Sarigul, Sevgi; Dogan, Ilknur

    2016-07-15

    Nonracemic axially chiral thiohydantoins were synthesized atroposelectively by the reaction of o-aryl isothiocyanates with amino acid ester salts in the presence of triethylamine (TEA). The synthesis of the nonaxially chiral derivatives, however, gave thiohydantoins racemized at C-5 of the heterocyclic ring. The micropreparatively resolved enantiomers of the nonaxially chiral derivatives from the racemic products were found to be optically stable under neutral conditions. On formation of the 5-methyl-3-arylthiohydantoin ring, bulky o-aryl substituents at N3 were found to suppress the C-5 racemization and in this way enabled the transfer of chirality from the α-amino acid to the products. The corresponding 5-isopropylthiohydantoins turned out to be more prone to racemization at C-5 during the ring formation. The isomer compositions of the synthesized axially chiral thiohydantoins have been determined through HPLC analyses with chiral stationary phases. In most cases a high prevalence of the P isomers over the M isomers has been obtained. The barriers to rotation determined around the Nsp(2)-Caryl chiral axis were found to be dependent upon the size of the o-halo aryl substituents. PMID:27322739

  19. Single Rod Vibration in Axial Flow

    Science.gov (United States)

    Weichselbaum, Noah; Wang, Shengfu; Bardet, Philippe

    2013-11-01

    Fluid structure interaction of a single rod in axial flow is a coupled dynamical system present in many application including nuclear reactors, steam generators, and towed antenna arrays. Fluid-structure response can be quantified thanks to detailed experimental data where both structure and fluid responses are recorded. Such datum deepen understanding of the physics inherent to the system and provide high-dimensionality quantitative measurements to validate coupled structural and CFD codes with various level of complexity. In this work, single rods fixed on both ends in a concentric pipe, are subjected to an axial flow with Reynolds number based on hydraulic diameter of Re =4000. Rods of varying material stiffness and diameter are utilized in the experiment resulting in a range of dimensionless U between 0.5 and 1, where U = (ρA/EI)1/2uL. Experimental measurements of the velocity field around the rod are taken with PIV from time-resolved Nd:YLF laser and a high speed CMOS camera. Three-dimensional and temporal vibration and deflection of the rod is recorded with shadowgraphy utilizing two sets of pulsed high power LED and dedicated CMOS camera. Through integration of these two diagnostics, it is possible to reconstruct the full FSI domain providing unique validation data.

  20. The failure of axially loaded steel columns

    International Nuclear Information System (INIS)

    Slender compression steel members fail by elastic bucking, and short compression members may be loaded until the steel yields. In the majority of usual situations, failure occurs by inelastic buckling after a portion of the cross section has yielded. Residual stresses are the primary cause of the nonlinear protion of the average stress strain curve of axially loaded compression members (huber and Beedle, 1954). A number of theories tackled the problem of inelastic bucking. The LRFD Code ended with adopting an empirical parabolic equation that is stitched to the Euler hyperbola at the column slenderness value of λ C =2 square root and is believed to provide a reasonable approximation for column strength curves. The analysis of steel sections used in this paper defines an explicit from of failure to define the failure load of axially loaded columns in the inelastic range. inelastic bucking is defined in terms of the elaSTIC bucking of transformed sections. Two examples are used to clarify the method of analysis that accounts for residual stresses. (author). 9 refs., 5 figs

  1. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    Science.gov (United States)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  2. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco;

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  3. Cutting in deformable objects

    NARCIS (Netherlands)

    Nienhuys, Han-Wen

    2003-01-01

    Virtual reality simulations of surgical procedures allow such procedures to be practiced on computers instead of patients and test-animals. The core of such a system is a soft tissue simulation, that has to react very quickly but be realistic at the same time. This thesis discusses how deformable

  4. New constraints on the Pan-African tectonics and the role of the Mwembeshi Zone in Central Zambia: Deformation style and timing of two orthogonal shortening events

    Science.gov (United States)

    Naydenov, Kalin; Lehmann, Jeremie; Saalmann, Kerstin; Milani, Lorenzo; Kinnaird, Judith; Charlesworth, Guy; Rankin, William; Frei, Dirk

    2014-05-01

    In Central Zambia the Mwembeshi Zone (MwZ) separates two branches of the Late Neoproterozoic - Cambrian Pan-African Orogen: the NE-convex Lufilian Arc and the E-W trending Zambezi Belt whose distinct features emphasize the role of the zone as a regional structural and metamorphic boundary. North of the MwZ, the Hook Batholith was emplaced within the low metamorphic grade Neoproterozoic metasedimentary rocks, and represents the largest Pan-African intrusion in Southern Africa. The granitoids and their host-rocks were affected by two deformation events. During the D1 deformation of E-W shortening, two high-strained zones developed in the batholith. To the NE, the Nalusanga Zone (NZ) is a ~3 km wide NW-striking subvertical sinistral strike-slip shear zone. To the SW, a ~2.5 km wide N-S trending subvertical pure-shear Itezhi-Tezhi Zone (ITZ) formed. In both structures, the granitoids show a smooth transition from weakly deformed rocks to porphyroclastic mylonites. Microstructural analysis defined them as medium metamorphic grade zones, deforming the granitoids at temperatures between 500 and 550°C. The lower greenschist facies metamorphism in the country rocks indicates that the deformation occurred during the cooling of the granitoids. D1 in the metasedimentary rocks east of the Hook batholith formed tight, upright folds with subvertical axial-planar cleavage and NNW-SSE trending axis consistent with the E-W shortening. U-Pb zircon geochronology and cross-cutting relationships between granites bracket D1 deformation between 549 ± 2 Ma and 541 ± 3 Ma in the NZ and in the SE part of the batholith. In the ITZ, the 533 ± 3 Ma age on a deformed granite indicates prolonged E-W shortening during granite emplacement and cooling history. D2 represents a stage of N-S shortening. Airborne geophysical data revealed bending of the N-S trending ITZ and rotation to the east. The D1 structures in the granitoids are cut by D2 north-vergent thrusts and subvertical NW trending

  5. Prediction of Permanent Deformation of Pavement's Unbounded Layers Based on Cyclic Triaxial Tests

    Directory of Open Access Journals (Sweden)

    B. Žlender

    2008-01-01

    Full Text Available This research presents an analytical model for determining permanent deformation of pavement's sub grade and unbound granular base and sub-base material due to cyclic traffic loading. The model is given for interpreting results of repeated load triaxial tests. It considers long term elastoplastic behavior and resilient behavior of sub-grade and unbound granular material. Permanent deformations are expressed as a function of the number of loading cycles and the spherical component and the deviatoric component of the repeated loading. The permanent axial deformation is given as a function of the resilient modulus and the secant modulus for different states of spherical and distortional stresses, and number of loading cycles. By analytical derivation it is presented that the normalized permanent axial strain can be expressed with the modulus values and the parameter D. The moduli are expressed as the functions of the spherical stress component and the distortional stress component. The magnitude of normalized permanent axial strain depends on the limit value of the resilient modulus and ratios between resilient and secant modulus. The parameter D gives the shape of the change of the normalized permanent axial strain with the number of cycles, and is a function of the change of modules with the number of cycles. The applicability of the presented model is demonstrated on the practical example of a repeated load triaxial test of sub-base granular material.

  6. On the effect of excited states in lattice calculations of the nucleon axial charge

    CERN Document Server

    Hansen, Maxwell T

    2016-01-01

    Excited-state contamination is one of the dominant uncertainties in lattice calculations of the nucleon axial-charge, $g_A$. Recently published results in leading-order chiral perturbation theory (ChPT) predict the excited-state contamination to be independent of the nucleon interpolator and positive. However, empirical results from numerical lattice calculations show negative contamination (downward curvature), indicating that present-day calculations are not in the regime where the leading-order ChPT predictions apply. In this paper we show that, under plausible assumptions, one can reproduce the behavior of lattice correlators by taking into account final-state $N \\pi$ interactions, in particular the effect of the Roper resonance, and by postulating a sign change in the infinite-volume $N \\to N \\pi$ axial-vector transition amplitude.

  7. Oscillatory athermal quasistatic deformation of a model glass

    Science.gov (United States)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2013-08-01

    We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is observed for large system sizes, without, however, affecting qualitative aspects of the transition.

  8. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  9. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Science.gov (United States)

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  10. Axial stress corrosion cracking forming method to metal tube

    International Nuclear Information System (INIS)

    Generally, it is more difficult in a metal tube, to intentionally cause a stress corrosion cracking in axial direction than in circumferential direction. In the present invention, a bevel is formed on a metal tube and welding is conducted in circumferential direction along the bevel, and welding is conducted in axial direction partially to the portion welded in circumferential direction. Namely, a bevel is formed in circumferential direction to an abutting portion of thick-walled metal tubes with each other, welding is conducted in circumferential direction along the bevel, and welding is conducted in axial direction partially to a portion welded in circumferential direction. With such procedures, since tensile stress in the circumferential direction is increased partially at a portion welded in axial direction, stress corrosion cracking is caused in axial direction at the portion. Then, stress corrosion cracking in axial direction can thus be formed on the thick-walled metal tube. (N.H.)

  11. Dynamics and statics of flexible axially symmetric shallow shells

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In this work, we propose the method for the investigation of stochastic vibrations of deterministic mechanical systems represented by axially symmetric spherical shells. These structure members are widely used as sensitive elements of pressure measuring devices in various branches of measuring and control industry, machine design, and so forth. The proposed method can be easily extended for the investigation of shallow spherical shells, goffer-type membranes, and so on. The so-called charts of control parameters for a shell subjected to a transversal uniformly distributed and local harmonic loading force and resistance moment are constructed. The scenarios of the transition of vibration of shallow-type system into chaotic state are investigated with the use of the theory of differential equations and the theory of nonlinear dynamics. The method of the control of chaotic vibrations of flexible spherical shells subjected to a transversal harmonic load through a synchronized action of either harmonic resistance moment or force is proposed, illustrated, and discussed.

  12. Deformation of olivine at high pressures using the Deformation-DIA

    Science.gov (United States)

    Mei, S.; Durham, W. B.; Wang, Y.

    2003-12-01

    The rheological behavior of olivine, the most abundant component of the Earth's upper mantle, under high pressures is essential for understanding the dynamic processes occurring within the Earth's interior. Conventional gas- and solid-medium experiments to date have been limited to pressures of about 3 GPa. We report here results from recent tests on olivine using the Deformation-DIA (D-DIA). The D-DIA is capable of constant-pressure deformation tests at pressures to 15 GPa and is configured to allow operation at a synchrotron x-ray beam line in order to provide in-situ measurement of pressure, differential stress, and sample length as a function of time. Experiments have been conducted on polycrystalline olivine samples cold-pressed from mixtures of olivine plus 5% enstatite powder. A 1 mm long x 1.1 mm diameter sample is encapsulated with 0.025-mm thick Ni foil, and assembled along with fully-densified Al2O3 or MgO pistons, a boron nitride sleeve, and graphite resistance heater into a 6-mm edge length cubic pressure medium of boron-epoxy resin. During experiments, the cell is first pressurized isotropically to desired levels and then deformed in compression at constant pressure. Experiments have been conducted at constant displacement rates of ˜ 0.5 - 8 x 10-5 s-1 over axial strains of 10 -20% at temperatures of 773 -1473 K and pressures of ˜ 5 - 6 GPa. The oxygen fugacity and silica activity of the olivine sample are buffered by Ni/NiO and the presence of enstatite, respectively. Using x-ray diffraction, we determine pressure (i.e., mean stress) and differential stress from the strain of various lattice planes measured as a function of orientation with respect to the stress field. At this point we are able to measure elastic strains from several prominent reflections in the olivine, and they indicate qualitatively that the in situ environment is significantly nonhydrostatic. For polycrystalline olivine deformed at high temperature and a constant rate of

  13. Universal Axial Algebras and a Theorem of Sakuma

    OpenAIRE

    Hall, J I; Rehren, F; Shpectorov, S.

    2013-01-01

    In the first half of this paper, we define axial algebras: nonassociative commutative algebras generated by axes, that is, semisimple idempotents---the prototypical example of which is Griess' algebra [C85] for the Monster group. When multiplication of eigenspaces of axes is controlled by fusion rules, the structure of the axial algebra is determined to a large degree. We give a construction of the universal Frobenius axial algebra on $n$ generators with a specified fusion rules, of which all...

  14. Modular functional organisation of the axial locomotor system in salamanders.

    Science.gov (United States)

    Cabelguen, Jean-Marie; Charrier, Vanessa; Mathou, Alexia

    2014-02-01

    Most investigations on tetrapod locomotion have been concerned with limb movements. However, there is compelling evidence that the axial musculoskeletal system contributes to important functions during locomotion. Adult salamanders offer a remarkable opportunity to examine these functions because these amphibians use axial undulations to propel themselves in both aquatic and terrestrial environments. In this article, we review the currently available biological data on axial functions during various locomotor modes in salamanders. We also present data showing the modular organisation of the neural networks that generate axial synergies during locomotion. The functional implication of this modular organisation is discussed.

  15. Transverse vibration characteristics of axially moving viscoelastic plate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yin-feng; WANG Zhong-min

    2007-01-01

    The dynamic characteristics and stability of axially moving viscoelastic rectangular thin plate are investigated. Based on the two dimensional viscoelastic differential constitutive relation, the differential equations of motion of the axially moving viscoelastic plate are established. Dimensionless complex frequencies of an axially moving viscoelastic plate with four edges simply supported, two opposite edges simply supported and other two edges clamped are calculated by the differential quadrature method. The effects of the aspect ratio, moving speed and dimensionless delay time of the material on the transverse vibration and stability of the axially moving viscoelastic plate are analyzed.

  16. Composite Axial Flow Propulsor for Small Aircraft

    Directory of Open Access Journals (Sweden)

    R. Poul

    2005-01-01

    Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail. 

  17. Axially symmetric static sources of gravitational field

    CERN Document Server

    Hernandez-Pastora, J L; Martin, J

    2016-01-01

    A general procedure to find static and axially symmetric, interior solutions to the Einstein equations is presented. All the so obtained solutions, verify the energy conditions for a wide range of values of the parameters, and match smoothly to some exterior solution of the Weyl family, thereby representing globally regular models describing non spherical sources of gravitational field. In the spherically symmetric limit, all our models converge to the well known incompressible perfect fluid solution.The key stone of our approach is based on an ansatz allowing to define the interior metric in terms of the exterior metric functions evaluated at the boundary source. Some particular sources are obtained, and the physical variables of the energy-momentum tensor are calculated explicitly, as well as the geometry of the source in terms of the relativistic multipole moments. The total mass of different configurations is also calculated, it is shown to be equal to the monopole of the exterior solution.

  18. Dynamics of Flapping Flag in Axial Flow

    Science.gov (United States)

    Abderrahmane, Hamid Ait; Fayed, Mohamed; Gunter, Amy-Lee; Paidoussis, Michael P.; Ng, Hoi Dick

    2010-11-01

    We investigate experimentally the phenomenon of the flapping of a flag, placed within a low turbulent axial flow inside a small scale wind tunnel test section. Flags of different sizes and flexural rigidities were used. Image processing technique was used and the time series of a given point on the edge of the flag was analyzed. The stability condition of the flag was obtained and compared to the recent theoretical models and numerical simulations. Afterwards, the nonlinear dynamics of the flapping was investigated using nonlinear time series method. The nonlinear dynamics is depicted in phase space and the correlation dimension of the attractors is determined. On the basis of observations made in this study, some conclusions on the existing models were drawn.

  19. Axial flux data for fuel measurement

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, R.P.

    1964-02-11

    A survey of the PITA-18 nonpoisonous spline program was conducted in conjunction with a study to determine the best method of eliminating the variability of axial flux on the fuel performance parameter, q. The results of this survey and the conclusions reached in the rupture coefficient study were found to be inter-dependent such that both are presented in this report. The data from the PITA-18 nonpoisonous spline program, as received, is the output of the NOLA-2 computer program. One quantity of interest is the rupture potential relative to a cosine, commonly referred to as the relative rupture potential. As programmed, the relative rupture potential, which was derived by applying the rupture model to individual fuel elements, might be expected to vary linearly with the rupture rate. The use of the relative rupture potential was studied over the period of July 1962 through December 1963. The results of this study are presented.

  20. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  1. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  2. Deformation quantization of bosonic strings

    International Nuclear Information System (INIS)

    Deformation quantization of bosonic strings is considered. We show that the light-cone gauge is the most convenient classical description to perform the quantization of bosonic strings in the deformation quantization formalism. Similar to the field theory case, the oscillator variables greatly facilitates the analysis. The mass spectrum, propagators and the Virasoro algebra are finally described within this deformation quantization scheme. (author)

  3. Rotational Deformation of Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    WEN De-Hua; CHEN Wei; LIU Liang-Gang

    2005-01-01

    @@ The rotational deformations of two kinds of neutron stars are calculated by using Hartle's slow-rotation formulism.The results show that only the faster rotating neutron star gives an obvious deformation. For the slow rotating neutron star with a period larger than hundreds of millisecond, the rotating deformation is very weak.

  4. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  5. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  6. METABALL-BASED TRANSITION SURFACES

    Institute of Scientific and Technical Information of China (English)

    Li Lingfeng; Tan Jianrong; Chen Yuanpeng

    2005-01-01

    Metaball-based constraint deformation technique is used to change the definition of r, the straight-line distance from a space point to a constraint center in the original calculation of the potential function. By replacing the parameter of the parametrized surface w with the straight-line distance r, a method of building transition surfaces according to connected boundary curves and skeleton curves is proposed. The method has no restrictions on boundary curves that control the space shapes of transition surfaces or on types of skeleton curves, thus transition surfaces, which reach C1 continuity and are more abundant in shapes and natural, can be obtained.

  7. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option. PMID:19857299

  8. Probing deformed quantum commutators

    Science.gov (United States)

    Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.

    2016-07-01

    Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.

  9. Experimental study on rheological deformation and stress properties of limestone

    Institute of Scientific and Technical Information of China (English)

    唐明明; 王芝银

    2008-01-01

    The systematic experiment regarding the general uniaxial compression test and the creep deformations of the typical limestones from the surrounding rock of the highway tunnels were made.The relationship between the axial stress and the delayed deformation steady value was obtained from the creep tests under low loading stresses.By the least square method,the parameters of Nishihara creep model were calculated from the creep curves.The results indicate that the strain change always lags behind the increase of stress,and the long-term strength of the limestone is about 80.6% of the stress at the volumetric strain reversal which is obtained from the conventional uniaxial compression test.

  10. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  11. Lobster claw deformity

    OpenAIRE

    Ashish Agrawal; Rahul Agrawal; Rajat Singh; Romi Agrawal; Seema Agrawal

    2014-01-01

    Endogenous erythroid colony (EEC) syndrome comprise of three cardinal features, i.e. ectrodactyly, ectodermal dysplasia and cleft lip. EEC itself has three different forms. Ectrodactyly (absence of one or more digits) can be present with clefting in the proximal portion of hand or foot known as split hand foot malformation (SHFM) or lobster claw deformity. SHFM can be of four types depending upon the different responsible chromosomal loci. SHFM-4 can be present as pure limb malformation (non-...

  12. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m2) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  13. Lp shape deformation

    Institute of Scientific and Technical Information of China (English)

    GAO Lin; ZHANG GuoXin; LAI YuKun

    2012-01-01

    Shape deformation is a fundamental tool in geometric modeling.Existing methods consider preserving local details by minimizing some energy functional measuring local distortions in the L2 norm.This strategy distributes distortions quite uniformly to all the vertices and penalizes outliers.However,there is no unique answer for a natural deformation as it depends on the nature of the objects.Inspired by recent sparse signal reconstruction work with non L2 norm,we introduce general Lp norms to shape deformation; the positive parameter p provides the user with a flexible control over the distribution of unavoidable distortions.Compared with the traditional L2 norm,using smaller p,distortions tend to be distributed to a sparse set of vertices,typically in feature regions,thus making most areas less distorted and structures better preserved. On the other hand,using larger p tends to distribute distortions more evenly across the whole model.This flexibility is often desirable as it mimics objects made up with different materials.By specifying varying p over the shape,more flexible control can be achieved.We demonstrate the effectiveness of the proposed algorithm with various examples.

  14. Green's Functions in Axial and Lorentz-type Gauges and Application to The Axial Pole Prescription and The Wilson Loop

    OpenAIRE

    Joglekar, Satish D.

    2000-01-01

    We summarize the work done in connecting Green's functions in a different classes of gauges and its applications to the problems in the axial gauges.The procedure adopted uses finite field-dependent BRS [FFBRS] transformations to connect axial and the Lorentz type gauges.These transformations preserve the vacuum expectation of gauge-invariant observables explicitly. We discuss the applications of these ideas to the axial gauge pole problem and to the preservation of the Wilson loop and the th...

  15. Thermal destruction of erythrocyte spectrin: Rheology, deformability, and stability with respect to detergents

    Science.gov (United States)

    Yamaikina, M. V.; Mansurov, V. A.; Ivashkevich, É. V.

    1996-05-01

    By means of blood heating in the region of the thermal denaturation transition of spectrin (50°C) the relationship between the stability of erythrocytes with respect to detergents and their deformability and rheological parameters of blood was studied.

  16. Deformation of a polydomain, smectic Liquid Crystalline Elastomer

    NARCIS (Netherlands)

    Ortiz, C; Bhargava, N; Ober, CK; Kramer, EJ

    1998-01-01

    A main-chain, polydomain, smectic liquid crystalline elastomer (LCE) was prepared by reacting the LC epoxy monomer, diglycidyl ether of 4,4'-dihydroxy-alpha-methylstilbene, with the aliphatic diacid, sebacic acid. When deformed in uniaxial tension, a "polydomain-to-monodomain" transition took place

  17. Molecular Dynamics ofa Coulomb System with Deformable Periodic Boundary Conditions

    OpenAIRE

    Totsuji, Hiroo; Shirokoshi, Hideki; Nara, Shigetoshi

    1991-01-01

    Variable shape molecular dynamics is formulated for the one-component plasma and the structural transition from the fcc lattice to the bcc lattice has been observed. It is emphasized that the condition of constant volume should be imposed when deformations of periodic boundary conditions are taken into account.

  18. Effective field theory for deformed atomic nuclei

    Science.gov (United States)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  19. Effective field theory for deformed atomic nuclei

    OpenAIRE

    Papenbrock, T.; Weidenmüller, H. A.

    2015-01-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalen...

  20. Effective field theory for deformed atomic nuclei

    CERN Document Server

    Papenbrock, T

    2015-01-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  1. Anelastic deformation processes in metallic glasses and activation energy spectrum model

    NARCIS (Netherlands)

    Ocelik, [No Value; Csach, K; Kasardova, A; Bengus, VZ; Ocelik, Vaclav

    1997-01-01

    The isothermal kinetics of anelastic deformation below the glass transition temperature (so-called 'stress induced ordering' or 'creep recovery' deformation) was investigated in Ni-Si-B metallic glass. The relaxation time spectrum model and two recently developed methods for its calculation from the

  2. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    CERN Document Server

    Kononova, Olga; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2015-01-01

    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the $FX$ curves for spherical virus particles --- CCMV, TrV, and AdV.

  3. Deformation Twinning of a Silver Nanocrystal under High Pressure.

    Science.gov (United States)

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Lu, Ming; Chu, Yong S; Robinson, Ian K; Mao, Ho-Kwang

    2015-11-11

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials. PMID:26484941

  4. Deformation Twinning of a Silver Nanocrystal under High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  5. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  6. Anisotropy of strength and deformability of fractured rocks

    Institute of Scientific and Technical Information of China (English)

    Majid Noorian Bidgoli; Lanru Jing

    2014-01-01

    Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con-taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu-merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  7. Nanoscale Deformable Optics

    Science.gov (United States)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  8. Deformation Mechanisms of Carrara Marble Under Increasing Temperatures from 300℃ to 550℃

    Institute of Scientific and Technical Information of China (English)

    Ma Lijie; Liu Junlai; Li Haifeng; Wang Xiaoyong; Zhong Xinyong

    2000-01-01

    Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃~550℃ , confining pressure 0.5Mpa, strain - rate 5 × 10- 6 s-1). The experiments reveal that calcite rocks show different deformation behaviors and corresponding microstructural characteristics under different temperatures. By analyzing microstructural characteristics, preferred grain shape orientation variation of the primary rocks and deformed specimen, the deformation features of Carrara marble are summarized: twinning, fracturing dominates deformation of the rocks at temperatures between300℃ and 450℃; dynamic recrystallization occurs in the temperature range of 450~550℃; the brittle to crystalline plasticity transition deformation is observed at around 450℃, twinning and crystal - plastic deformation become dominant with further increasing temperature.

  9. Study of solid-liquid phase transition using the modified weighted density approximation of inhomogeneous hard sphere systems

    Directory of Open Access Journals (Sweden)

    M. Farhad Rahimi

    2007-09-01

    Full Text Available  The energy levels of deformed nuclei could be determined by Nilsson model. In this model the deformation of a nucleus has an axial symmetry, but we have considered the energy levels of a non-spherical nucleus as an elliptic form, and solved it by a degenerate first order perturbation method. The original Hamiltonian is a mixture of Spherical Shell Model Hamiltonian and a perturbation term. We have solved this Hamiltonian with the quantum numbers corresponding to Nilsson model-parameters and deformed 3-axial model for the values of , then we obtained the corresponding energy levels and plot them.

  10. Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field

    Science.gov (United States)

    Arani, A. Ghorbanpour; Haghparast, E.; BabaAkbar Zarei, H.

    2016-08-01

    In the present research, vibration and instability of axially moving single-layered graphene sheet (SLGS) subjected to magnetic field is investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. Third order shear deformation theory (TSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Motion equations are obtained by means of Hamilton's principle and solved analytically. Influences of various parameters such as axially moving speed, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of SLGS on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving SLGS is strongly dependent on the moving speed. Therefore, the critical speed of moving SLGS can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of marine vessels in nanoscale.

  11. Forced Axial and Torsional Vibrations of a Shaft Line Using the Transfer Matrix Method Related to Solution Coefficients

    Institute of Scientific and Technical Information of China (English)

    Kandouci Chahr-Eddine; Adjal Yassine

    2014-01-01

    This present paper deals with a mathematical description of linear axial and torsional vibrations. The normal and tangential stress tensor components produced by axial-torsional deformations and vibrations in the propeller and intermediate shafts, under the influence of propeller-induced static and variable hydrodynamic excitations are also studied. The transfer matrix method related to the constant coefficients of differential equation solutions is used. The advantage of the latter as compared with a well-known method of transfer matrix associated with state vector is the possibility of reducing the number of multiplied matrices when adjacent shaft segments have the same material properties and diameters. The results show that there is no risk of buckling and confirm that the strength of the shaft line depends on the value of the static tangential stresses which is the most important component of the stress tensor.

  12. Improved axial position detection in optical tweezers measurements

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kisbye; Berg-Sørensen, Kirstine; Oddershede, Lene

    2004-01-01

    We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial...

  13. Through flow analysis within axial flow turbomachinery blade rows

    Science.gov (United States)

    Girigoswami, H.

    1986-09-01

    Using Katsanis' Through Flow Code, inviscid flow through an axial flow compressor rotor blade as well as flow through inlet guide vanes are analyzed and the computed parameters such as meridional velocity distribution, axial velocity distribution along radial lines, and velocity distribution over blade surfaces are presented.

  14. Test Setup for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test setup for testing axially static and cyclic loaded piles in sand is described in the following. The purpose for the tests is to examine the tensile capacity of axially loaded piles in dense fully saturated sand. The pile dimensions are chosen to resemble full scale dimension of piles used...... in offshore pile foundations today....

  15. Axial electron channeling statistical method of site occupancy determination

    Institute of Scientific and Technical Information of China (English)

    YE; Jia

    2001-01-01

    [1]Johnson, W., Sowerby, R., Venter, R. D., Plane Strain Slip Line Fields for Metal Deformation Processes——A Source Book and Bibliography, New York: Pergamon Press, 1982.[2]Hill, R., The Mathematical Theory of Plasticity, Oxford: Oxford University Press, 1950.[3]Sokolovsky, V. V., Theory of Plasticity(in Russia), Moskow: Nat. Tech. Press, 1950.[4]Kachanov, L. M., Foundations Theory of Plasticity, London: North-Holland, 1975.[5]Shield, R. T., On the plastic flow of metal condition of axial symmetry, Proc. Roy. Soc., 1955, 233A: 267.[6]Lippmann, H., IUTAM Symposium on Metal Forming Plasticity, New York: Springer-Verlag, 1979.[7]Spencer, A. J. M., The approximate solution of certain problem of axially-symmetric plastic flow, J. Mech. Phys. Solids, 1964, 12: 231.[8]Wang, R., Xiong, Z. H., Wang, W. B., Foundation of Plasticity (in Chinese), Beijing: Science Press, 1982.[9]Collins, I. E., Dewhurst, P., A slip line field analysis of asymmetrical hot rolling, International Journal of Mechanical Science, 1975, 17: 643.[10]Collins, I. F., Slip line field analysis of forming processes in plane strain and axial symmetry, Advanced Technology of Plasticity, 1984, 11: 1074.[11]Yu, M. H., Yang, S. Y., Liu, C. Y. et al., Unified plane-strain slip line field theory system, J. Civil Engineering (in Chinese), 1997, 30(2): 14[12]Simmons, J. A., Hauser, F., Dorn, E., Mathematical Theories of Plastic Deformation Under Impulsive Loading, Berkeley-Los Angeles: University of California Press, 1962.[13]Lin, C. C., On a perturbation theory based on the method of characteristies, J. Math. Phys., 1954, 33: 117—134.[14]Hopkins, H. G., The method of characteristics and its applications to the theory of stress waver in solids, in Engineering Plasticity, Combridge: Combridge University Press, 1968, 277—315.[15]Shield, R. T., The plastic indentation of a layer by a flat punch, Quart. Appl. Math., 1955, 13: 27.[16]Haar, A., von

  16. Stiffness matrix for beams with shear deformation and warping torsion

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, K.; Pilkey, W. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-12-31

    A beam model which considers the warping effect in beams with arbitrary cross sections is discussed. This model takes into account bending, shear, and warping torsion. The derivation builds on a result in beam theory that, if shear is considered, for arbitrary cross sections the deflections in the different coordinate directions are not uncoupled as has been widely assumed. This conclusion follows from the calculation of the shear coefficients from an elasticity solution using an energy formulation. The shear coefficients form a symmetric tensor. The principal axes for this tensor are called principal shear axes. In Reference 2 structural matrices for the shear problem are derived using these shear coefficients. This paper extends these matrices to warping torsion. St. Venant`s semi-inverse method is applied to calculate warping shear stresses. The usual assumptions of the beam theory are made. The material is linear elastic. The loads may consist of shear forces, axial loads and twisting moments. Small deformations are considered. The cross section of the beam can be of arbitrary shape, thin-walled or solid. A deformation coefficient matrix is calculated which describes the relations between the deformations and the different load cases such as shear, torsion, and warping torsion. Numerical results for warping shear stresses and deformations are given. Also, a method to derive a stiffness matrix for a beam of arbitrary cross section under combined loading including warping torsion is presented.

  17. Vertebral deformities in hatchery-reared and wild-caught juvenile Japanese flounder, Paralichthys olivaceus

    Science.gov (United States)

    Lü, Hongjian; Zhang, Xiumei; Fu, Mei; Xi, Dan; Su, Shengqi; Yao, Weizhi

    2015-01-01

    The present study compared vertebral deformities of hatchery-reared and wild-caught juvenile Japanese flounder, Paralichthys olivaceus. A total of 362 hatchery-reared flounder (total length 122.5-155.8 mm) were collected from three commercial hatcheries located in Yantai, East China, and 89 wild fish (total length 124.7-161.3 mm) were caught off Yangma Island near Yantai City (37°27'N, 121°36'E). All the fish were dissected, photographed, and images of the axial skeleton were examined for vertebral deformities. Compared with wild-caught flounder in which no deformed vertebrae were detected, 48 (13.3%) hatcheryreared fish had deformed vertebrae. The deformities were classified as compression, compression-ankylosis, and dislocation-ankylosis. The vertebral deformities were mainly localized between post-cranial vertebra 1 and 3, with vertebrae number 1 as the most commonly deformed. The causative factors leading to vertebral deformities in reared Japanese flounder may be related to unfavorable temperature conditions, inflammation, damage, or rupture to the intervertebral ligaments under rearing conditions. Furthermore, no significant difference in the total number of vertebral bodies was observed between wild-caught (38.8±0.4) and hatchery-reared flounder (38.1±0.9) ( P>0.05). However, the number of vertebral bodies of hatchery-reared and wild-caught flounder ranged from 35 to 39 and from 38 to 39, respectively.

  18. On Stationary Axially Symmetric Solutions in Brans-Dicke Theory

    CERN Document Server

    Kirezli, Pınar

    2015-01-01

    Stationary axially symmetric Brans-Dicke-Maxwell solutions are re-examined in the framework of the Brans-Dicke theory. We see that, employing a particular parametrization of the standard axially symmetric metric simplifies the procedure of obtaining the Ernst equations for axially symmetric electro-vacuum space-times for this theory. This analysis also permit us to construct a two parameter extension in both Jordan and Einstein frames of an old solution generating technique frequently used to construct axially symmetric solutions for Brans-Dicke theory from a seed solution of General Relativity. As applications of this technique, several known and new solutions are constructed including a general axially symmetric BD-Maxwell solution of Plebanski-Demianski with vanishing cosmological constant, i.e. the Kinnersley solution and general magnetized Kerr-Newman type solutions. Some physical properties and circular motion of test particles for a particular subclass of Kinnersley solution, i.e. Kerr-Newman-NUT type ...

  19. Quantizing Earth surface deformations

    Directory of Open Access Journals (Sweden)

    C. O. Bowin

    2015-03-01

    Full Text Available The global analysis of Bowin (2010 used the global 14 absolute Euler pole set (62 Myr history from Gripp and Gordon (1990 and demonstrated that plate tectonics conserves angular momentum. We herein extend that analysis using the more detailed Bird (2003 52 present-day Euler pole set (relative to a fixed Pacific plate for the Earth's surface, after conversion to absolute Euler poles. Additionally, new analytical results now provide new details on upper mantle mass anomalies in the outer 200 km of the Earth, as well as an initial quantizing of surface deformations.

  20. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  1. Computerized axial tomography in clinical pediatrics.

    Science.gov (United States)

    McCullough, D C; Kufta, C; Axelbaum, S P; Schellinger, D

    1977-02-01

    Computerized axial tomography (CAT), a noninvasive radiologie method, provides a new dimension in screening and diagnosis of intracranial pathology. Evaluation of 725 scans in infants and children demonstrates that CAT may be performed with negligible risk, although sedation and restraint are essential to the successful performance of studies in children under 6 years of age. CAT is the preferred initial diagnostic method in suspected hydrocephalls and is accurate in the detection and precise localization of brain tumors. The management of hydrocephalus and brain tumors has been significantly altered by the availability of CAT. Few invasive neuroradiologic procedures are required and pneumography is especially curtailed. Serial scanning is the best available method of monitoring ventricular alterations in hydrocephalus, tumor size during radiotherapy or chemotherapy, and postoperative recurrence of benign neoplasms. Complex intracranial anomalies are detectable with computerized tomography, but complete definition of pathology often requires angiography and air studies. Limited clinical experience in detecting neonatal intraventricular hemorrhage suggests that CAT will be a valuable tool for futlre investigations of that problem.

  2. Influence of deformation temperature on texture evolution in HPT deformed NiAl

    Science.gov (United States)

    Tränkner, C.; Chulist, R.; Skrotzki, W.; Beausir, B.; Lippmann, T.; Horky, J.; Zehetbauer, M.

    2014-08-01

    NiAl is an intermetallic compound with a brittle-to-ductile transition temperature at about 300°C and ambient pressure. At standard conditions, it is very difficult to deform, but fracture stress and fracture strain are increased under high hydrostatic pressure. On account of this, deformation at low temperatures is only possible at high hydrostatic pressure, as for instance used in high pressure torsion. In order to study the influence of temperature on texture evolution, small discs of polycrystalline NiAl were deformed by high pressure torsion at temperatures ranging from room temperature to 500°C. At room temperature, a typical shear texture of body centred cubic metals is found, while at 500°C a strong oblique cube component dominates. These textures can be well simulated with the viscoplastic self-consistent polycrystal deformation model using the primary and secondary slip systems activated at low and high temperatures. The oblique cube component is a dynamic recrystallization component.

  3. Numerical simulation of stress and deformation of in-service welding onto gas pipeline

    Institute of Scientific and Technical Information of China (English)

    Chen Yuhua; Wang Yong; Han Bin; Wang Zhengfang

    2006-01-01

    SYSWELD was used to simulate in-service welding process of gas pipeline of X70 pipeline steel. Welding thermal cycle, stress and deformation of in-service welded joint were studied. The results show that peak temperature of coarse grain heat-affected zone (CGHAZ) of in-service welding onto gas pipeline is the same with routine welding, but t8/5 ,t8/3 and t8/1 decrease at certain degree. For the zone near welded seam, axial stress and hoop stress in the inner pipe wall are compressive stress when welding source passes through the cross-section that is studied, but residual axial stress and residual hoop stress after welded are all tensile stress. Transient deformation and residual deformation are all convex deformation compared with the original pipe diameter size. Deformation achieves maximum when welding thermal source passes through the cross-section that is studied and then decreases during the cooling process after welding.

  4. Validity of Using Tri-Axial Accelerometers to Measure Human Movement - Part I: Posture and Movement Detection

    OpenAIRE

    Lugade, Vipul; Fortune, Emma; Morrow, Melissa; Kaufman, Kenton

    2013-01-01

    A robust method for identifying movement in the free-living environment is needed to objectively measure physical activity. The purpose of this study was to validate the identification of postural orientation and movement from acceleration data against visual inspection from video recordings. Using tri-axial accelerometers placed on the waist and thigh, static orientations of standing, sitting, and lying down, as well as dynamic movements of walking, jogging and transitions between postures w...

  5. Computing the effect of plastic deformation of piping on pressure transient propagation

    International Nuclear Information System (INIS)

    The computer program PTA-1 performs pressure-transient analysis of large piping networks using the one-dimensional method of characteristics applied to a fluid-hammer formulation. The effect of elastic-plastic deformation of piping on pulse propagation is included in the computation. Each pipe is modeled as a series of rings, neglecting axial effects, bending moments, and inertia. The fluid wave speed is a function of pipe deformation and, consequently, of position and time. Comparison with existing experimental data indicate that this simple fluid-structure interaction model gives suprisingly accurate results for both pressure histories in the fluid and strain histories in the piping

  6. Influence of Transverse Shear on an Axial Crack in a Cylindrical Shell

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    An axial crack in a cylindrical shell is investigated by use of a 10th order shell theory, which accounts for transverse shear deformations as well as a special kind of orthotropy. The symmetric problem is formulated in terms of two coupled singular integral equations, which are solved numerically....... The asymptotic membrane and bending stress fields ahead of the crack are found to be self similar. Stress intensity factors are given as a function of the shell parameter for various values of the ratio shell radius to shell thickness. Considerable differences from 8th order shell theory results are found...... for the bending stresses, while the membrane stresses of the 8th order theory seems to be a lower limit reached for very thin shells....

  7. Simulating of marble subjected to uni-axial loading using index-parabola damage model

    Institute of Scientific and Technical Information of China (English)

    温世游; 李夕兵; 骆达成

    2001-01-01

    The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead to the development and confirmation of a new index-parabola damage model. The new model is divided into two parts, fictitious damage and real damage and bordered by the critical damage point. In fictitious damage, the damage variable follows the index distribution, while in the real damage a parabolic distribution is used. Thus, the so-called index-parabola damage model is derived. The proposed damage model is applied to simulate the damage procedure of marble under uni-axial loading. The results of the tests show that the proposed model is in excellent agreement with experimental data, in particular the nonlinear characteristic of rock deformation is adequately represented.

  8. Wilson Loop Area Law for 2D Yang-Mills in Generalized Axial Gauge

    CERN Document Server

    Nguyen, Timothy

    2016-01-01

    We prove that Wilson loop expectation values for arbitrary simple closed contours obey an area law up to second order in perturbative two-dimensional Yang-Mills theory. Our analysis occurs within a general family of axial-like gauges, which include and interpolate between holomorphic gauge and the Wu-Mandelstam-Liebrandt light cone gauge. Our methods make use of the homotopy invariance properties of iterated integrals of closed one-forms, which allows us to evaluate the nontrivial integrals occurring at second order. We close with a discussion on complex gauge-fixing and deformation of integration cycles for holomorphic path integrals to shed light on some of the quantum field-theoretic underpinnings of our results.

  9. Parametric analysis of thermal effect on hydrostatic slipper bearing capacity of axial piston pump

    Institute of Scientific and Technical Information of China (English)

    汤何胜; 訚耀保; 张阳; 李晶

    2016-01-01

    Hydrostatic slipper was often used in friction bearing design, allowing improvement of the latter’s dynamic behavior. The influence of thermal effect on hydrostatic slipper bearing capacity of axial piston pump was investigated. A set of lumped parameter mathematical models were developed based on energy conservation law of slipper/ swash plate pair. The results show that thermal equilibrium clearance due to solid thermal deformation periodically changes with shaft rotational angle. The slipper bearing capacity increases dramatically with decreasing thermal equilibrium clearance. In order to improve the slipper bearing capacity, length-to-diameter ratio of fixed damper varies from 3.5 to 8.75 and radius ratio of slipper varies from 1.5 to 2.0. In addition, the higher slipper thermal conductivity is useful to improve slipper bearing capability, but the thermal equilibrium clearance is not compromised.

  10. The Isotropic Semicircle Law and Deformation of Wigner Matrices

    CERN Document Server

    Knowles, Antti

    2011-01-01

    We analyse the spectrum of additive finite-rank deformations of $N \\times N$ Wigner matrices $H$. The spectrum of the deformed matrix undergoes a transition, associated with the creation or annihilation of an outlier, when an eigenvalue $d_i$ of the deformation crosses a critical value $\\pm 1$. This transition happens on the scale $|d_i| - 1 \\sim N^{-1/3}$. We allow the eigenvalues $d_i$ of the deformation to depend on $N$ under the condition $|\\abs{d_i} - 1| \\geq (\\log N)^{C \\log \\log N} N^{-1/3}$. We make no assumptions on the eigenvectors of the deformation. In the limit $N \\to \\infty$, we identify the law of the outliers and prove that the non-outliers close to the spectral edge have a universal distribution coinciding with that of the extremal eigenvalues of a Gaussian matrix ensemble. A key ingredient in our proof is the \\emph{isotropic local semicircle law}, which establishes optimal high-probability bounds on the quantity $$, where $m(z)$ is the Stieltjes transform of Wigner's semicircle law and $v, w...

  11. Análisis de la fuerza axial en un transportador de sinfín // Analysis of axial force in a screw conveyor.

    Directory of Open Access Journals (Sweden)

    F. Aguilar Parés

    1999-01-01

    Full Text Available Durante el movimiento de un material en un transportador de sinfín surge una fuerza en dirección axial que influye en laselección de uno de los cojinetes de apoyo del equipo. En el artículo aparecen algunas soluciones constructivas que tienen encuentan la fuerza axial. Por otro lado se establece la relación entre la fuerza axial y el empuje axial y se precisa de quiendepende el sentido del empuje axial. Por último se propone un modelo matemático que relaciona la fuerza axial con la potenciarequerida por el equipo.Palabras claves: Transportador de sinf in, fuerza axial , empuje axial ._________________________________________________________________________AbstractDuring the movement of material in a screw conveyor surge a force in axial direction that influence in the selection of one ofthe equipment support bearings. Some constructive solutions appear in the article for considering the axial force. In the otherhand it is established the relation between axial force and axial thurst and it is precised whose direction thurst axial depend of.Finally it is proposed a mathematic model that relates the axial force with the power required by the equipment.Key words: Screw conveyor, axial force, axial thurst .

  12. Effect of creep and α-Zr ↔ (α + β)-Zr transition in Zr1Nb cladding on texture analyzed by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Vetvicka, Ivan, E-mail: nunatak@centrum.cz

    2014-10-15

    Zr1Nb alloy tubes used as nuclear fuel cladding in VVER reactors were deformed by isothermal creep under a temperature comprised between 350 °C and 850 °C and constant tensile stress of 5–200 MPa in axial direction (AD). Deformation texture was analyzed by neutron diffraction. Two types of texture were found. For the final type of texture, the test temperature was the decisive factor. Within the temperature range up to 600 °C, the effect of creep or plastic deformation dominates and the texture changes continuously with increasing deformation. The influence of the ratio of wall thickness reduction to diameter reduction (R{sub w}/R{sub d}) on texture originated by plastic deformation by compression of seamless tubes made of elemental zirconium or Zircaloy described by Tenckhoff (2005), was verified for textures formed by creep of cladding tubes made of Zr1Nb alloy (E110) by constant tensile stress at the 350–600 °C range. At 700 °C temperature or higher, the texture was formed mainly by reversible α-Zr ↔ (α + β)-Zr phase transition of significant proportion of zirconium crystals and the formation of a new texture was observed: The highest pole density in the TD have been observed for the pyramid (101{sup ¯}1) followed by the prism (101{sup ¯}0), which can be the effect of {112"¯1}〈1{sup ¯}1{sup ¯}26〉 twining. The prism (112{sup ¯}0) rotates preferentially perpendicular to AD, while the pole density of prism (101{sup ¯}0) is markedly low.

  13. Effect of creep and α-Zr ↔ (α + β)-Zr transition in Zr1Nb cladding on texture analyzed by neutron diffraction

    Science.gov (United States)

    Vetvicka, Ivan

    2014-10-01

    Zr1Nb alloy tubes used as nuclear fuel cladding in VVER reactors were deformed by isothermal creep under a temperature comprised between 350 °C and 850 °C and constant tensile stress of 5-200 MPa in axial direction (AD). Deformation texture was analyzed by neutron diffraction. Two types of texture were found. For the final type of texture, the test temperature was the decisive factor. Within the temperature range up to 600 °C, the effect of creep or plastic deformation dominates and the texture changes continuously with increasing deformation. The influence of the ratio of wall thickness reduction to diameter reduction (Rw/Rd) on texture originated by plastic deformation by compression of seamless tubes made of elemental zirconium or Zircaloy described by Tenckhoff (2005), was verified for textures formed by creep of cladding tubes made of Zr1Nb alloy (E110) by constant tensile stress at the 350-600 °C range. At 700 °C temperature or higher, the texture was formed mainly by reversible α-Zr ↔ (α + β)-Zr phase transition of significant proportion of zirconium crystals and the formation of a new texture was observed: The highest pole density in the TD have been observed for the pyramid (1 0 1bar 1) followed by the prism (1 0 1bar 0), which can be the effect of {1 1 2bar 1} twining. The prism (1 12bar 0) rotates preferentially perpendicular to AD, while the pole density of prism (1 0 1bar 0) is markedly low.

  14. Deformation of coherent structures

    NARCIS (Netherlands)

    Fledderus, E.R.; Groesen, van E.

    1996-01-01

    In this review we investigate the mathematical description of the distortion of clearly recognisable structures in phenomenological physics. The coherent structures we will explicitly deal with are surface waves on a layer of fluid, kink transitions in magnetic material, plane vortices, swirling flo

  15. Effect of Austenite Deformation on Continuous Cooling Transformation Microstructures for 22CrSH Gear Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-xin; JIANG Ying-tian; XU Xu-dong; LIU Xiang-hua; WANG Guo-dong

    2007-01-01

    The effect of compressive deformation of austenite on continuous cooling transformation microstructures for 22CrSH gear steel has been investigated using a Gleeble 1500 thermal simulator. The experimental results show that the deformation of austenite promotes the formation of proeutectoid ferrite and pearlite, and leads to the increase of critical cooling rate of proeutectoid ferrite plus pearlite microstructure. The grain boundary allotriomorphic ferrite occupies the austenite grain surfaces when the prior deformation takes place or the cooling rate is decreased, which causes a transition from bainite to acicular ferrite. The deformation enhances the stability of transformation from austenite to acicular ferrite, which results in an increase of M/A constituent.

  16. Experimental studies on deformation at high pressures using the deformation-DIA

    Science.gov (United States)

    Mei, S.; Durham, W. B.; Li, L.; Weidner, D. J.; Wang, Y.

    2003-04-01

    -situ is <1 micronmeter and ~100 MPa, respectively. We are optimistic that stress resolution can be improved by an order of magnitude in the near future. To date we have carried out constant displacement rate compression tests at rates of ~1 x 10-5 to 4 x 10-4/s over shortening strains of 10 - 30% at temperatures of 773 - 1473 K and pressures of 5 - 2 GPa. With the success of these preliminary experi-ments, there is promise that the D-DIA can be used to conduct quantitative deformation experiments at P-T conditions approaching those of Earth's transition zone.

  17. The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands

    International Nuclear Information System (INIS)

    The differences in thermal contraction of the composite materials in a cable in conduit conductor (CICC) for the International Thermonuclear Experimental Reactor (ITER), in combination with electromagnetic charging, cause axial, transverse contact and bending strains in the Nb3Sn filaments. These local loads cause distributed strain alterations, reducing the superconducting transport properties. The sensitivity of ITER strands to different strain loads is experimentally explored with dedicated probes. The starting point of the characterization is measurement of the critical current under axial compressive and tensile strain, determining the strain sensitivity and the irreversibility limit corresponding to the initiation of cracks in the Nb3Sn filaments for axial strain. The influence of spatial periodic bending and contact load is evaluated by using a wavelength of 5 mm. The strand axial tensile stress–strain characteristic is measured for comparison of the axial stiffness of the strands. Cyclic loading is applied for transverse loads following the evolution of the critical current, n-value and deformation. This involves a component representing a permanent (plastic) change and as well as a factor revealing reversible (elastic) behavior as a function of the applied load. The experimental results enable discrimination in performance reduction per specific load type and per strand type, which is in general different for each manufacturer involved. Metallographic filament fracture studies are compared to electromagnetic and mechanical load test results. A detailed multifilament strand model is applied to analyze the quantitative impact of strain sensitivity, intrastrand resistances and filament crack density on the performance reduction of strands and full-size ITER CICCs. Although a full-size conductor test is used for qualification of a strand manufacturer, the results presented here are part of the ITER strand verification program. In this paper, we present an

  18. Nonlinear Analysis of Shear Deformable Beam-Columns Partially Supported on Tensionless Winkler Foundation

    OpenAIRE

    Sapountzakis, E; Kampitsis, A

    2010-01-01

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary conditions. The beam-column is subjected to the combined action of arbitrarily distributed or concentrated transverse loading and bending moments in both directions as well as to axial...

  19. Buckling and postbuckling analysis of stiffened composite panels in axial compression

    Science.gov (United States)

    Park, Oung

    The major objective of this study is to analyze buckling and delamination behavior of composite stiffened panels subjected to axial compression. First, a combined analytical and experimental study of a blade stiffened composite panel subjected to axial compression was conducted. The effects of the differences between a simple model used to design the panel and the actual experimental conditions were examined. It was found that in spite of many simplifying assumptions the design model did reasonably well in that the experimental failure load was only 10% higher than the design load. Several structural analysis programs, including PANDA2, STAGS, and ABAQUS, were used to obtain high fidelity analysis results. The buckling loads from STAGS agreed well with the experimental failure loads. However, substantial differences were found in the out-of-plane displacements of the panel. Efforts were made to identify the source of these differences. Implementing non-uniform load introduction with general contact definition in the STAGS finite element model improved correlation between the measured and predicted out-of-plane deformations. Next, a new method called Crack Tip Force Method (CTFM) is derived for computing point-wise energy release rate along the delamination front in delaminated plates. The CTFM is computationally simple as the G is computed using the forces transmitted at the crack-tip between the top and bottom sub-laminates and the sub-laminate properties. Finally, buckling and postbuckling of a blade-stiffened composite panel under axial compression with a partial skin-stiffener debond are investigated. Two different finite element models, where nodes of the panel skin and the stiffener flange are located on the mid-plane or at the interface between skin and flange, are used. Linear buckling analysis is conducted using both STAGS and ABAQUS. Postbuckling analysis is conducted with STAGS. Comparison between the present results and previous buckling analysis

  20. Effect of height of rock specimen on strain localization, precursor to failure and entire deformational characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin

    2006-01-01

    Patterns of shear band, precursors to shear failure occurring in strain-softening stage, axial, lateral and volumetric strains as well as Poisson's ratio of plane strain rock specimens in compression for different heights were investigated by use of Fast Lagrangian Analysis of Continua(FLAC). A material imperfection closer to the lower-left comer of the specimen was prescribed. For finer mesh, the imperfection was modeled by four null elements, while it was modeled by a null element for coarser mesh. FISH functions were written to calculate the entire deformational characteristics of the specimen. In elastic stage, the adopted constitutive relation was linear elastic; in strain-softening stage, a composite Mohr-Coulomb criterion with tension cut-off and a post-peak linear constitutive relation were adopted. Height of rock specimen does not influence shear band's pattern (including the thickness and inclination angle of shear band). The slopes of the post-peak stress-axial strain curve, stress-lateral strain curve,lateral strain-axial strain curve, Poisson's ratio-axial strain curve and volumetric strain-axial strain curve depend on the height. Hence, the slopes of these curves cannot be considered as material properties. Nonlinear deformation prior to the peak stress is a kind of precursors to shear failure, which is less apparent for shorter specimen. For the same axial strain, lower lateral expansion is reached for shorter specimen, leading to lower Poisson's ratio and higher volumetric strain. The maximum volumetric strain of longer specimen is less than that of shorter specimen. The conclusions drawn from numerical results using finer mesh qualitatively agree with those using coarser mesh.

  1. Nonlinear stability of cylindrical shells subjected to axial flow: Theory and experiments

    Science.gov (United States)

    Karagiozis, K. N.; Païdoussis, M. P.; Amabili, M.; Misra, A. K.

    2008-01-01

    This paper, is concerned with the nonlinear dynamics and stability of thin circular cylindrical shells clamped at both ends and subjected to axial fluid flow. In particular, it describes the development of a nonlinear theoretical model and presents theoretical results displaying the nonlinear behaviour of the clamped shell subjected to flowing fluid. The theoretical model employs the Donnell nonlinear shallow shell equations to describe the geometrically nonlinear structure. The clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions and the circumferential continuity condition exactly. The fluid is assumed to be incompressible and inviscid, and the fluid-structure interaction is described by linear potential flow theory. The partial differential equation of motion is discretized using the Galerkin method and the final set of ordinary differential equations are integrated numerically using a pseudo-arclength continuation and collocation techniques and the Gear backward differentiation formula. A theoretical model for shells with simply supported ends is presented as well. Experiments are also described for (i) elastomer shells subjected to annular (external) air-flow and (ii) aluminium and plastic shells with internal water flow. The experimental results along with the theoretical ones indicate loss of stability by divergence with a subcritical nonlinear behaviour. Finally, theory and experiments are compared, showing good qualitative and reasonable quantitative agreement.

  2. Superconvergent Finite Element for Coupled Torsional-Flexural-Axial Vibration Analysis of Rotating Blades

    Science.gov (United States)

    Pal Singh Chhabra, Param; Ganguli, Ranjan

    2010-01-01

    A new two-noded, twelve degree of freedom finite element is developed for rotating blades. The shape functions are derived from the exact solutions of the governing static homogenous differential equations for the rotating blades. Such an approach leads to superconvergent elements. These differential equations include out-of-plane bending, in-plane bending, axial deformation, and torsion. The axial and torsion equations yield exact solutions and the flap and lag equations are solved by assuming a constant centrifugal force within the element. Differing from the conventional polynomial shape functions, the new shape functions account for the centrifugal stiffening effect as they depend upon the rotation speed, material properties, and the element position along the length of the blade. The finite element formulation is derived from the energy expressions using the Hamilton's principle. A convergence study for the natural frequencies is performed using the new shape functions and the polynomial shape functions for a coupled and an uncoupled blade. It is observed that the new shape functions lead to much more rapid convergence than the conventional polynomial shape functions for the first few modes at higher rotation speeds, where the effect of centrifugal stiffening is higher. The basis functions can also be used for finite element analysis of rotating rods and beams, and for energy methods.

  3. Chronic animal health assessment during axial ventricular assistance: importance of hemorheologic parameters.

    Science.gov (United States)

    Kameneva, M V; Watach, M J; Litwak, P; Antaki, J F; Butler, K C; Thomas, D C; Taylor, L P; Borovetz, H S; Kormos, R L; Griffith, B P

    1999-01-01

    Chronic testing of the Nimbus/UOP Axial Flow Pump was performed on 22 calves for periods of implantation ranging from 27 to 226 days (average, 74 days). The following parameters were measured: plasma free hemoglobin, blood and plasma viscosity, erythrocyte deformability and mechanical fragility, oxygen delivery index (ODI), blood cell counts, hematocrit, hemoglobin, blood urea nitrogen, creatinine, bilirubin, total protein, fibrinogen, and plasma osmolality. Most of the above parameters were stable during the full course of support. Compared with baseline, statistically significant differences during the entire period of implantation were only found in: hematocrit (p0.2). After the first 2 weeks of the postoperative period, pump performing parameters for all animals were consistent and stable. In general, the Nimbus/UOP Axial Flow Pump demonstrated basic reliability and biocompatibility and did not produce significant alterations in the mechanical properties of blood or animal health status. The pump provided adequate hemodynamics and was well tolerated by the experimental animal for periods as long as 7.5 months. Monitoring rheologic parameters of blood is very helpful for evaluation of health during heart-assist device application.

  4. Piezoelectric ZnO-CNT nanotubes under axial strain and electrical voltage

    Science.gov (United States)

    Zhang, Jin; Wang, Ruijie; Wang, Chengyuan

    2012-09-01

    This paper aims to study the mechanical responses of a piezoelectric composite nanotube subject to an axial strain and electrical voltage. The nanotubes are fabricated by coating carbon nanotubes (CNTs) with zinc oxide (ZnO) nanocrystal. The axial buckling of the ZnO-CNTs nanotubes (ZCNTs) is investigated by using a composite Euler beam model accounting for the piezoelectricity of the coating layer. Particular attention is paid to the strengthening effect of the core CNT and the effect of the piezoelectricity of the outer ZnO layer. Pre-buckling analysis is also conducted to study the static deformation prior to the buckling. Analytical solutions are obtained based on the theory of three-dimensional elasticity and piezoelectricity. In particular, a tensile radial stress is achieved at the ZnO-CNT interface, which tends to separate the ZnO layer from core CNT and may generate delamination in composite ZCNTs. The size-dependence and physical basis of such an interface stress is thus discussed in details for ZCNTs.

  5. Fluid Structural Modal Coupled Numerical Investigation of Transonic Fluttering Of Axial Flow Compressor Blades

    Directory of Open Access Journals (Sweden)

    Rio Melvin Aro.T

    2015-05-01

    Full Text Available Flutter is an unstable oscillation which can lead to destruction. Flutter can occur on fixed surfaces, such as blades, wing or the stabilizer. By self-excited aeroelastic instability, flutter can lead to mechanical or structural failure of aircraft engine blades. The modern engines have been designed with increased pressure ratio and reduced weight in order to improve aerodynamic efficiency, resulting in severe aeroelastic problems. Particularly flutter in axial compressors with transonic flow can be characterized by a number of aerodynamic nonlinear effects such as shock boundary layer interaction, rotating stall, and tip vortex instability. Rotating blades operating under high centrifugal forces may also encounter structural nonlinearities due to friction damping and large deformations. In the future work a standard axial flow compressor blade will be taken for analysis, both Subsonic and Transonic range are taken for analysis. Fluid and Structure are two different domains which will be coupled by full system coupling technique to predict the fluttering effect on the compressor blade. ANSYS is a commercial simulation tool, which will be deployed in this work to perform FSI (Fluid Structure Interaction and FSI coupled Modal to predict the flutter in the compressor blades

  6. Applications of numerical optimization techniques to design of axial compressor blades

    Institute of Scientific and Technical Information of China (English)

    Choon-Man Jang; Kwang-Yong Kim

    2007-01-01

    This paper describes the shape optimization of NASA rotor 37 and rotor and stator blades in a single-stage transonic axial compressor.Shape optimization of the blades operating at the design flow condition has been performed using the response surface method and three-dimensional Navier-Stokes analysis.Thin-layer approximation is introduced to the Navier-Stokes equations,and an explicit Runge-Kutta scheme is used to solve the governing equations.The three design variables,blade sweep,lean and skew,are introduced to optimize the three-dimensional stacking line of the blades.The objective function of the shape optimization is an adiabatic efficiency.Throughout the optimization of rotor and stator blades, optimal blade shape can be obtained.It is noted the increase of adiabatic efficiency by optimization of the blade shape with the stacking line in the single-stage transonic axial compressor is more effective in a rotor blade rather than a stator blade because of the large deformation of blade shape in the stator blade.

  7. An update on biomarkers in axial spondyloarthritis.

    Science.gov (United States)

    Prajzlerová, Klára; Grobelná, Kristýna; Pavelka, Karel; Šenolt, Ladislav; Filková, Mária

    2016-06-01

    Axial spondyloarthritis is a chronic inflammatory disease with the onset at a young age, and, if undiagnosed and untreated, it may result in permanent damage and lifelong disability. Rates of early diagnosis have improved, due in particular to the addition of magnetic resonance imaging into the diagnostic armamentaria; however, it is costly, not widely available, and requires experienced readers to interpret the findings. In addition to clinical measures and imaging techniques, biomarkers that will be described in this review may represent useful tools for diagnosis, monitoring disease activity and outcomes as well as therapeutic responses. Currently, HLA-B27 remains the best genetic biomarker for making a diagnosis, while CRP currently appears to be the best circulating measure for assessing disease activity, predicting structural progression and therapeutic response. Interestingly, key molecules in the pathogenesis of the disease and essential therapeutic targets, such as tumour necrosis factor (TNF)α, interleukin (IL)-17 and IL-23, show only limited association with disease characteristics or disease progression. Some genetic biomarkers and particularly anti-CD74 antibodies, may become a promising tool for the early diagnosis of axSpA. Further biomarkers, such as matrix metalloproteinases (MMP)-3, calprotectin (S100A8/9), vascular endothelial growth factor (VEGF), C-terminal telopeptide of type II collagen (CTX-II) or dickkopf-1 (DKK-1), are not sufficient to reflect disease activity, but may predict spinal structural progression. In addition, recent data have shown that monitoring calprotectin might represent a valuable biomarker of therapeutic response. However, all of these results need to be confirmed in large cohort studies prior to use in daily clinical practice. PMID:26851549

  8. Deformation T-Cup: A new Kawai-style deformation device capable of controlled strain-rate deformation at pressures in excess of 20 GPa

    Science.gov (United States)

    Hunt, S. A.; Dobson, D. P.; Santangeli, J. R.; McCormack, R.; Li, L.; Whitaker, M. L.; Vaughan, M. T.; Weidner, D. J.

    2012-12-01

    A significant proportion of our understanding of the rheological properties of mantle minerals is gained by analysing the data from, both offline and synchrotron based, controlled strain-rate deformation experiments. However, controlled strain-rate deformation experiments at in-situ conditions have been limited by the current generation of deformation apparatus (the deformation-DIA and the Rotational Drickamer) to about 15 GPa. Being limited to 15 GPa means that in situ deformation experiments are limited to phases stable in the upper mantle and the upper parts of the transition-zone. Therefore, deformation experiments on mantle composition ringwoodite and majorite have not been performed in significant numbers and there are no measurements at controlled strain-rates of the lower-mantle perovskites. Here, we report the capabilities of a new device the DT-cup or deformation T-Cup, which is capable for deformation experiments at pressures in excess of 20 GPa, and with continued development in excess of 25 GPa. The two instances of the DT-Cup press at University College London and the X17B2 beamline at the NSLS, consist of 400 tonne, Paris-Edinburgh style, load frames into which split-cylinder 6-8 multi-anvil tooling is inserted, with the axis of the inner cube set aligned with the action of the press. The 'top' and 'bottom' anvils of the cube set are replaced by hexagonal rods, cut so the end of the rods are the same shape as the inner faces of the 10 (X17B2 device) or 14 mm (UCL device) edge length cubes they replace. Controlled strain-rate deformation of the sample is undertaken by differential pistons pushing on the two hexagonal rams and advancing the two anvils along the aligned axis of the inner cube set. As the pistons advance the main ram adjusts in order that the confining pressure exerted on the sample remains constant. The differences between the standard Kawai-style split cylinder devices and the DT-Cup are analogous to the differences between the cubic

  9. Dynamic Analysis of Axial Magnetic Forces for DVD Spindle Motors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.

  10. Gravitational waves from the axial perturbations of hyperon stars

    Institute of Scientific and Technical Information of China (English)

    Wen De-Hua; Yan Jing; Liu Xue-Mei

    2012-01-01

    The eigen-frequencies of the axial w-mode oscillations of hyperon stars are examined.It is shown that as the appearance of hyperons softens the equation of state of the super-density matter,the frequency of gravitational waves from the axial w-mode of hyperon star becomes smaller than that of a traditional neutron star at the same stellar mass.Moreover,the eigenfrequencies of hyperon stars also have scaling universality.It is shown that the EURO thirdgeneration gravitational-wave detector has the potential to detect the gravitational-wave signal emitted from the axial w-mode oscillations of a hyperon star.

  11. Tensile Property of Bi-axial Warp Knitted Structure

    Institute of Scientific and Technical Information of China (English)

    沈为

    2003-01-01

    The tensile property of bi-axial warp knitted fabrics is tested and compared with that of the plain weave fabric. The results show that there are obvious differences between the tensile property of a bi-axial warp knitted fabric and that of a plain weave fabric.The former can give fuller play to the property of a high modulus yarn than the latter. The tensile strength of a bi-axial warp knitted fabric is linear with the number of yarns in the direction of force.

  12. The axial charges of the hidden-charm pentaquark states

    CERN Document Server

    Wang, Guang-Juan; Zhu, Shi-Lin

    2016-01-01

    With the chiral quark model, we have calculated the axial charges of the pentaquark states with $(I,I_3)=(\\frac{1}{2},\\frac{1}{2})$ and $J^{P}=\\frac{1}{2}^{\\pm},\\frac{3}{2}^{\\pm},\\frac{5}{2}^{\\pm}$. The $P_c$ states with the same $J^P$ quantum numbers but different color-spin-flavor configurations have very different axial charges, which encode important information on their underlying structures. For some of the $J^{P}=\\frac{3}{2}^{\\pm}$ or $\\frac{5}{2}^{\\pm}$ pentaquark states, their axial charges are much smaller than that of the proton.

  13. A non-integral, axial-force measuring element

    Science.gov (United States)

    Ringel, M.; Levin, D.; Seginer, A.

    1989-10-01

    A new approach to the measurement of the axial force is presented. A nonintegral axial-force measuring element, housed within the wind-tunnel model, avoids the interactions that are caused by nonlinear elastic phenomena characteristic of integral balances. The new design overcomes other problems, such as friction, misalignment and relative motion between metric elements, that plagued previous attempts at separate measurement of the axial force. Calibration and test results prove the ability of the new approach to duplicate and even surpass the results of much more complicated and expensive integral balances. The advantages of the new design make it the best known solution for particular measurement problems.

  14. Effects of external axial magnetic field on fast electron propagation

    International Nuclear Information System (INIS)

    A scheme employing an external axial magnetic field is proposed to diagnose the intrinsic divergence of laser-generated fast electron beams, and this is studied numerically with hybrid simulations. The maximum beam radius of fast electrons increases with the initial divergence and decreases with the amplitude of the axial magnetic field. It is indicated that the intrinsic divergence of fast electrons can be inferred from measurements of the beam radius at different depth under the axial field. The proposed scheme here may be useful for future fast ignition experiments and in other applications of laser-generated fast electron beams.

  15. Investigation of the Permanent Deformation Characteristics of Overlaid Pavement Incorporating Stress Absorbing Membrane Interlayers

    Institute of Scientific and Technical Information of China (English)

    Olumide Moses Ogundipe[1; Nicholas H. Thom[2; Andrew C. Collop[3

    2014-01-01

    This study was carried out to evaluate the resistance of overlaid pavement incorporating stress absorbing membrane interlayers to permanent deformation. In this study, the permanent deformation of the interlayer mixtures was determined using the RLAT (repeated load axial text) carried out in the Nottingham Asphalt Tester. Also, a test pavement was constructed in the laboratory to assess the resistance to permanent deformation of overlaid pavement incorporating SAMIs (stress absorbing membrane interlayers). The test pavement was divided into two along the centre line. Each of the divisions has three sections--two having SAMIs and one without SAMIs. The pavement was instrumented and trafficked. Trafficking was stopped when the pavement was deemed to have failed. The results showed that the measured permanent deformation values of the control sections were less than the sections having SAMIs. The increased permanent deformation values indicate that the introduction of SAMIs causes more vertical/horizontal deformation of the pavement. It was also found that the permanent deformation values varied depending on the composition and thickness of the SAMIs.

  16. Static multipole deformations in nuclei

    International Nuclear Information System (INIS)

    The physics of static multipole deformations in nuclei is reviewed. Nuclear static moments result from the delicate balance between the vibronic Jahn-Teller interaction (particle-vibration coupling) and the residual interaction (pairing force). Examples of various permanent nuclear deformations are discussed

  17. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...

  18. ANALYSIS OF PULSATILE BLOOD FLOW IN AXIALLY MOVING ARTERIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to study motional properties of pulsatile blood flow in axially moving arteries, the authors derived some expressions of the pulsatile blood flow from the basic equations of motion for blood and vascular walls, including an axial blood velocity equation, a flow rate equation and a wall shear stress equation, which described not only the overall axial movement of the arteries but also the elastic properties of the vascular walls, discussed the effects of the arterial wall elasticity on the wall shear stress in coronary arteries in terms of these expressions, and analyzed changes of motional properties of pulsatile blood flow between an elastic arterial tube model and a rigid tube model. The results proved the inference by J.E. Moore Jr. et al. (1994) that the axial movement of arteries be as important in determining coronary artery hemodynamics as the elastic property of the vascular wall.

  19. Effect of axial heat flux distribution on CHF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    2000-10-01

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations.

  20. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  1. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  2. Axial Stringy System of the Kerr Spinning Particle

    CERN Document Server

    Burinskii, A

    2004-01-01

    The structure of classical spinning particle based on the Kerr-Newman black hole (BH) solution is investigated. For large angular momentum, $|a|>>m$, the BH horizons disappear exposing a naked ringlike source which is a circular relativistic string. It was shown recently that electromagnetic excitations of this string lead to the appearance of an extra axial stringy system which consists of two half-infinite strings of opposite chirality. In this paper we consider the relation of this stringy system to the Dirac equation. We also show that the axial strings are the Witten superconducting strings and describe their structure by the Higgs field model where the Higgs condensate is used to regularize axial singularity. We argue that this axial stringy system may play the role of a classical carrier of the wave function.

  3. Aerodynamics and combustion of axial swirlers

    Science.gov (United States)

    Fu, Yongqiang

    A multipoint lean direct injection (LDI) concept was introduced recently in non-premixed combustion to obtain both low NOx emissions and good combustion stability. In this concept, a key feature is the injection of finely atomized fuel into the high-swirling airflow at the combustor dome that provides a homogenous, lean fuel-air mixture. In order to achieve the fine atomization and mixing of the fuel and air quickly and uniformly, a good swirler design should be studied. The focus of this dissertation is to investigate the aerodynamics and combustion of the swirling flow field in a multipoint Lean Direct Injector combustor. A helical axial-vaned swirler with a short internal convergent-divergent venturi was used. Swirlers with various vane angles and fuel nozzle insertion lengths have been designed. Three non-dimensional parameter effects on non-reacting, swirling flow field were studied: swirler number, confinement ratio and Reynolds number. Spray and combustion characteristics on the single swirler were studied to understand the mechanism of fuel-air mixing in this special configuration. Multi-swirler interactions were studied by measuring the confined flow field of a multipoint swirler array with different configurations. Two different swirler arrangements were investigated experimentally, which include a co-swirling array and a counter-swirling array. In order to increase the range of stability of multipoint LDI combustors, an improved design were also conducted. The results show that the degree of swirl and the level of confinement have a clear impact on the mean and turbulent flow fields. The swirling flow fields may also change significantly with the addition of a variety of simulated fuel nozzle insertion lengths. The swirler with short insertion has the stronger swirling flow as compared with the long insertion swirler. Reynolds numbers, with range of current study, will not alter mean and turbulent properties of generated flows. The reaction of the spray

  4. PRELIMINARY DESIGN ANALYSIS OF AXIAL FLOW TURBINES

    Science.gov (United States)

    Glassman, A. J.

    1994-01-01

    A computer program has been developed for the preliminary design analysis of axial-flow turbines. Rapid approximate generalized procedures requiring minimum input are used to provide turbine overall geometry and performance adequate for screening studies. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Gas properties are assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in the value of inlet flow angle. The velocity diagram shape depends upon the stage work factor value and the specified type of velocity diagram. Velocity diagrams can be specified as symmetrical, zero exit swirl, or impulse; or by inputting stage swirl split. Exit turning vanes can be included in the design. The 1991 update includes a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for airbreathing engine turbines. Input design requirements include power or pressure ratio, mass flow rate, inlet temperature and pressure, and rotative speed. The design variables include inlet and exit diameters, stator angle or exit radius ratio, and number of stages. Gas properties are input as gas constant, specific heat ratio, and viscosity. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, blading angles, and last stage absolute and relative Mach numbers. This program is written in FORTRAN 77 and can be ported to any computer with a standard FORTRAN compiler which supports NAMELIST. It was originally developed on an IBM 7000 series computer running VM and has been implemented on IBM PC computers and compatibles running MS-DOS under Lahey FORTRAN, and

  5. Curved Space-Times from Strict Deformations?

    CERN Document Server

    Much, Albert

    2016-01-01

    We use a deformed differential structure and the Rieffel deformation to obtain a curved metric by deforming the flat space-time. In particular, a deformed Friedmann-Robertson-Walker and an ultra-static space-time emerge from this strict deformation scheme.

  6. Low-Temperature Plasticity of Naturally Deformed Calcite Rocks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted onfour groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and afractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes ofrock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) andmicroscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kinkbands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials areof extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation andcrystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformedclasts, while dislocation walls form in the transitions to the fine-grained matrix materials and free dislocations, dislocationloops and dislocation dipoles are observed both in the deformed clasts and in the fine-grained matrix materials. Dynamicrecrystallization grains from subgrain rotation recrystallization and subsequent grain boundary migration constitute themajor parts of the matrix materials. Statistical measurements of densities of free dislocations, grain sizes of subgrains anddynamically recrystallized grains suggest an unsteady state of the rock deformation. Microstructural andcathodoluminescence analyses prove that fluid activity is one of the major parts of faulting processes. Low-temperatureplasticity, and thereby induced co-existence of macroscopic brittle and microscopic ductile microstmctures are attributedto hydrolytic weakening due to the involvement of fluid phases in deformation and subsequent variation of rock rheology.During hydrolytic weakening, fluid phases, e.g. water, enhance the rate of dislocation slip and climb, and

  7. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  8. Nuclear Axial Currents in Chiral Effective Field Theory

    OpenAIRE

    Baroni, A.; Girlanda, L.; Pastore, S.; Schiavilla, R.; Viviani, M

    2015-01-01

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and...

  9. Design and Simulation of Axial Flow Maglev Blood Pump

    OpenAIRE

    Huachun Wu; Ziyan Wang; Xujun Lv

    2011-01-01

    The axial flow maglev blood pump (AFMBP) has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element an...

  10. Axial Anomaly in Lattice Abelian Gauge Theory in Arbitrary Dimensions

    CERN Document Server

    Fujiwara, T; Wu, K; Fujiwara, Takanori; Suzuki, Hiroshi; Wu, Ke

    1999-01-01

    Axial anomaly of lattice abelian gauge theory in hyper-cubic regular lattice in arbitrary even dimensions is investigated by applying the method of exterior differential calculus. The topological invariance, gauge invariance and locality of the axial anomaly determine the explicit form of the topological part. The anomaly is obtained up to a multiplicative constant for finite lattice spacing and can be interpreted as the Chern character of the abelian lattice gauge theory.

  11. Volume Dependence of the Axial Charge of the Nucleon

    OpenAIRE

    Hall, N. L.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia); Zanotti, J. M.

    2012-01-01

    It is shown that the strong volume-dependence of the axial charge of the nucleon seen in lattice QCD calculations can be understood quantitatively in terms of the pion-induced interactions between neighbouring nucleons. The associated wave function renormalization leads to an increased suppression of the axial charge as the strength of the interaction increases, either because of a decrease in lattice size or in pion mass.

  12. Passive axial stabilization of a magnetic radial bearing by superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu, M.; Marinescu, N. (Ing.-Buro f. Magnettechnik, Mailander Str.19, D-6000 Frankfurt/M. 70 (DE)); Tenbrink, J.; Krauth, H. (Vacuumschmelze GmbH, Gruner Weg 37, D-6450 Hanau (DE))

    1989-09-01

    Contactless bearings for high-speed operation can be constructed using passive magnet systems, which inherently need a second, active bearing for their stabilization. Completely passive bearings only can be obtained using diamagnetic materials. This study deals with the axial stabilization of magnetic radial bearings using a permanent magnet/superconductor system. Using finite element calculation procedures it is shown that axial forces of up 3000 N and stiffnesses of up to 400 N/mm may be achieved.

  13. Testing of Axially Loaded Bucket Foundation with Applied Overburden Pressure

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    This report analyses laboratory testing data performed with a bucket foundation model subjected to axial loading. The examinations were conducted at the Geotechnical laboratory of Aalborg University. The report aims at showing and discussing the results of the static and cyclic axial loading tests...... on the bucket foundation model. Finally, a cyclic loading interaction diagram is given that can be applied for a full-scale bucket foundation design....

  14. Axial myopia in computed and magnetic resonance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Beyer-Enke, S.A.; Goerich, J.; Gamroth, A.

    1987-08-01

    The case of a 44-year old woman suffering from amblyopia on the left eye with unilateral proptosis caused by axial (progressive) myopia is presented. The clinical and radiological findings were discussed in reference to the literature. The diagnosis was established by ruling out neoplastic, inflammatory or endocrine causes for the exophtalmos. CT and MR scans revealed an enlarged left globe without evidence of orbital masses. The findings were regarded as typical for the diagnosis at axial myopia.

  15. Axial Non-linear Dynamic Soil-Pile Interaction - Keynote

    OpenAIRE

    Holeyman A.; Whenham V.

    2014-01-01

    This keynote lecture describes recent analytical and numerical advances in the modeling of the axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus degradation is evaluated over a range of parameters and compared with those obtained...

  16. Particle simulation of an improved axially extracted vircator

    International Nuclear Information System (INIS)

    An axially extracted virtual cathode oscillator (vircator) with a feedback annulus is proposed and configured through particle-in-cell (PIC) simulation. In this paper, the effects of the feedback mechanism are studied through PIC method. The simulated results indicate that the improved new vircator can increase the output power twice large than that of the axially-extracted conventional vircator under the same condition. On the other hand, it can narrow the bandwidth and purify the modes

  17. Particle Simulation of an Improved Axially Extracted Vircator

    Institute of Scientific and Technical Information of China (English)

    刘振祥; 舒挺; 张建德; 钱宝良

    2003-01-01

    An axially extracted virtual cathode oscillator (vircator) with a feedback annulusis proposed and configured through particle-in-cell (PIC) simulation in Ref. [1]. In this paper,the effects of the feedback mechanism are studied through PIC method. The simulated resultsindicate that the improved new vircator can increase the output power twice large than that ofthe axially-extracted conventional vircator under the same condition. On the other hand, it cannarrow the bandwidth and purify the modes.

  18. Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery

    OpenAIRE

    Chakraborty, Jeevanjyoti; Please, Colin P.; Goriely, Alain; Chapman, S. Jonathan

    2014-01-01

    A general framework to study the mechanical behaviour of a cylindrical silicon anode particle in a lithium ion battery as it undergoes lithiation is presented. The two-way coupling between stress and concentration of lithium in silicon, including the possibility of plastic deformation, is taken into account and two particular cases are considered. First, the cylindrical particle is assumed to be free of surface traction and second, the axial deformation of the cylinder is prevented. In both c...

  19. Deformation in 2CrMo-1/2CrMoV pressure vessel weldments at elevated temperature

    International Nuclear Information System (INIS)

    The elastic and creep deformation occurring in low alloy ferritic steel pipe to pipe weldments has been studied in pressure vessel experiments carried out at 838 K and a range of internal steam pressures. The welds were made in heavy section 1/2CrMoV parent pipe, using 2CrMo weld metal and tested in either the as-welded or stress relieved condition. The results obtained are analysed in terms of the deformations that occur in the hoop and axial direction of the parent pipe and weld metals. Elastically the parent pipe and weld metals behave identically, and both exhibit primary and steady state creep. The steady state behaviour of the parent pipe agrees with that expected from multi-axial creep deformation theory. The stress relieved welds behave similarly to the parent pipe in the hoop direction, but not in the axial direction. This is considered to be due to offloading of stress predominantly in the hoop direction. In the as-welded condition, the hoop and axial creep strains and strain rates are greater than in the parent pipe or stress relieved welds. The reasons for this are discussed in terms of welding residual stresses. (author)

  20. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Stachiv, Ivo, E-mail: stachiv@fzu.cz [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China); Institute of Physics, Czech Academy of Sciences, Prague (Czech Republic); Fang, Te-Hua; Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)

    2015-11-15

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  1. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    International Nuclear Information System (INIS)

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions

  2. Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations

    International Nuclear Information System (INIS)

    The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transverse axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.

  3. Axial Myopia and its Influence on Diabetic Retinopathy

    International Nuclear Information System (INIS)

    Objective: To evaluate the correlation between axial myopia and diabetic retinopathy. Study Design: Cross-sectional study. Place and Duration of Study: Eye Department of Postgraduate Medical Institute, Lahore General Hospital, from August 2012 to February 2013. Methodology: A total of 258 participants suffering from type-2 diabetic retinopathy were included. Axial length was measured by two optometrists using contact type ultrasound biometer. Colored retinal photographs, red free retinal photographs and Fundus Fluorescein Angiography (FFA) were performed on all patients using standard fundus camera. All fundus photographs and angiograms were independently reviewed and graded by two qualified vitreoretinal fellows. Results: Out of 258 patients, 163 were males (63.2%) and 95 (36.8%) were females. Average age of patients was 56.30 +- 7.57 years. Average axial length of right and left eyes were 23.16 mm and 23.15 mm respectively. There was statistically significant negative correlation between axial length and severity of diabetic retinopathy in the right eye, (Spearman correlation = -0.511, p = 0.0001) as well as the left eye (Spearman correlation = -0.522, p = 0.0001). Conclusion: There is a protective influence of longer axial length of globe on the stage and severity of diabetic retinopathy. This study may help in modifying the screening protocol for diabetic retinopathy amongst patients of differing axial lengths. (author)

  4. Axial blanket for 16NGF Angra 1 fuel type

    Energy Technology Data Exchange (ETDEWEB)

    Sadde, Luciano Martins; Faria, Eduardo Fernandes [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)]. E-mails: sadde@inb.gov.br; faria@inb.gov.br; Sang-Keun You [Korea Nuclear Fuel Co. Ltd. (KNFC), Taejon (Korea, Republic of)]. E-mail: skyou@knfc.co.kr

    2007-07-01

    Angra-1, Kori-2 and Krsko are nuclear power plants with the same design. However, the fuel assemblies have some differences in design due to the countries strategies and the differences in the fabrication process. The 16NGF (16x16 Next Generation Fuel) was developed by INB, KNFC and Westinghouse in order to be used in these three nuclear power plants and the 'Axial Blanket' is one of the new features for the 16NGF design. The main purpose of the Axial Blanket Optimization study is to determine which axial blanket enrichment and length would provide the better fuel cycle cost benefit. All of the calculations were performed using Gadolinium as Burnable Absorber and solid pellets type for Axial Blanket. The results indicate 1.8 w/o U235 enrichment and 8 inches length as the best option of Axial Blanket from the fuel cycle cost benefit standpoint. The economy is about 1.8%. The difference in the reload cost in the range between 1.5 and 2.6 w/o U235 enrichment and for the 6 and 8 inches length is not so significant. Due that, from the Fq limit standpoint and also for longer cycle length requirements, a higher axial blanket enrichment (2.6 w/o) and shorter length (6 inches) is recommended. (author)

  5. Axial design of nuclear fuel using path relinking; Diseno axial de combustible nuclear utilizando path relinking

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, A.; Torres, M.; Ortiz, J. J.; Perusquia, R.; Hernandez, J. L.; Montes, J. L. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2008-07-01

    In the present work the preliminary results were obtained with the zoctli system whose purpose is the axial design of assembly of nuclear fuel under certain considerations. For the mentioned design well-know cells were already used and that they have been proven in diverse cycles of operation in the nuclear power plant of Laguna Verde. The design contemplates fuels assemblies of 10x10 and with 2 water channels. The assembly was distributed in 6 axial zones according to its structure. In order to take to end the optimization is was used the well-known technique like Path relinking and to find the group of previous solutions required by this technique uses the technical Taboo search. In order to work with Path relinking, 5 trajectories was taken in to account from a set of 5 previous solutions generated with theTaboo search, the update of the group of solutions is carried out in dynamic form. In the case of the Taboo search it was used a list of variable size, it was implement an aspiration approach, it was used the vector of frequencies and due to the cost of the evaluation of the objective function, only it was review 5% of the vicinity. For the objective function was considered the limit thermal, the axial profile of power, the effective multiplication factor and the margin of having turned off in cold. In order to prove the design system, it was used a balance cycle with a value of reference of 0.9928 for the effective multiplication factor that is equivalent to a produced energy of 10896 MWd/TU at the end of operation to full power. The designed assemblies were placed both in one of lots different from fresh assemblies on which it counts the referred cycle. At the end one a comparison with the results obtained with other techniques and under similar conditions is made. The results obtained until the moment show an appropriate performance of the system. It is possible to indicate that a small inconvenient is the amount of consumed resources of calculation during

  6. Axial Creeping Flow in the Gap between a Rigid Cylinder and a Concentric Elastic Tube

    CERN Document Server

    Elbaz, Shai B

    2015-01-01

    We examine transient axial creeping flow in the annular gap between a rigid cylinder and a concentric elastic tube. The gap is initially filled with a thin fluid layer. The study focuses on viscous-elastic time-scales for which the rate of solid deformation is of the same order-of-magnitude as the velocity of the fluid. We employ an elastic shell model and the lubrication approximation to obtain a forced nonlinear diffusion equation governing the viscous-elastic interaction. In the case of an advancing liquid front into a configuration with a negligible film layer (compared with the radial deformation of the elastic tube), the governing equation degenerates into a forced porous medium equation, for which several closed-form solutions are presented. In the case where the initial film layer is non-negligible, self-similarity is used to devise propagation laws for a pressure driven liquid front. When advancing external forces are applied on the tube, the formation of dipole structures is shown to dominate the in...

  7. Dynamic Behaviours of a Single Soft Rock-Socketed Shaft Subjected to Axial Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Ben-jiao Zhang

    2016-01-01

    Full Text Available The soft rock was simulated by cement, plaster, sand, water, and concrete hardening accelerator in this paper. Meanwhile, uniaxial compressive strength tests and triaxial compression tests were conducted to study the mechanical properties of simulated soft rock samples. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted by using a device which combined test apparatus with a GCTS dynamic triaxial system. Test results show that the optimal mix ratio is cement : plaster : medium sand : water : concrete hardening accelerator = 4.5% : 5.0% : 84.71% : 4.75% : 1.04%. The static load ratio (SLR, cyclic load ratio (CLR, and the number of cycles affect the accumulated deformation and cyclic secant modulus of the pile head. The accumulated deformation increases with increasing numbers of cycles. However, the cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles and finally remains stable after 50 cycles. According to the test results, the development of accumulated settlement was analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio, and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to traffic loading.

  8. Diagnosis of fetal congenital limb deformities by MRI

    International Nuclear Information System (INIS)

    Objective: To explore the diagnostic value of MRI on fetal congenital limb deformities. Methods: Sixteen pregnant women, aged from 22 to 40 years (average 29 years) and with gestation from 22 to 39 weeks (average 29 weeks) were studied with a 1.5 T superconductive MR unit within 24 to 48 hours after ultrasound studies. Acquisitions consisted of coronal, sagittal, and axial slices relative to the fetal brain, spine, thorax, abdomen, especially limbs using 2D FIESTA sequences. Prenatal US and MR imaging findings were compared with postnatal diagnoses (4 fetuses) or autopsy (12 pregnant women, 13 fetuses). Postnatal evaluation included US, MR imaging, computed tomography, and physical examination. Results: Of the sixteen pregnant women (15 with a single fetus and 1 with twin fetuses), 17 fetuses were found. Those limb deformities of sixteen pregnant women included congenital both upper extremities amelia (1 case), sirenomelia sequence (1 case), micromelia (5 cases, 1 of which were twins), bilateral clenched hands (2 cases), right polydactyly (1 case), simple right ectrodactyly (1 case), right dactylolysis(1 case), simple club foot (2 cases), hydrocele spinalis with club foot (2 cases), 1 of the 2 cases with bilateral clinodactyly. In 14 of 16 cases, the diagnoses established by MR imaging were correct when compared with postnatal diagnosis, and prenatal MR diagnosis was inaccurate in 2 cases. Conclusion: Prenatal MRI is effective in the assessment of congenital limb deformities of fetuses, it can yield information additional to that obtained with US, and further correct US diagnosis. (authors)

  9. Dynamic measurement of deformation using Fourier transform digital holographic interferometry

    Science.gov (United States)

    Gao, Xinya; Wu, Sijin; Yang, Lianxiang

    2013-10-01

    Digital holographic interferometry (DHI) is a well-established optical technique for measurement of nano-scale deformations. It has become more and more important due to the rapid development of applications in aerospace engineering and biomedicine. Traditionally, phase shift technique is used to quantitatively measure the deformations in DHI. However, it cannot be applied in dynamic measurement. Fourier transform phase extraction method, which can determine the phase distribution from only a single hologram, becomes a promising method to extract transient phases in DHI. This paper introduces a digital holographic interferometric system based on 2D Fourier transform phase extraction method, with which deformations of objects can be measured quickly. In the optical setup, the object beam strikes a CCD via a lens and aperture, and the reference beam is projected on the CCD through a single-mode fiber. A small inclination angle between the diverging reference beam and optical axial is introduced in order to physically separate the Fourier components in frequency domain. Phase maps are then obtained by the utilization of Fourier transform and windowed inverse Fourier transform. The capability of the Fourier transform DHI is discussed by theoretical discussion as well as experiments.

  10. Deformation in Thin Glassy Polymer Films from Surface towards Interior

    Science.gov (United States)

    Chowdhury, Mithun; de Silva, Johann P.; Cross, Graham L. W.

    Polymer thin glassy films occupy an important place in last two decades of condensed matter research, concerning its surprising surface mobility and spatially dependent structural relaxation. However, ranges of cleverly designed indirect measurements on confined polymer glassy films already probed its mechanical properties; it is still a challenging task to directly probe such small confined volume through conventional mechanical testing. We have designed confined layer compression testing with a precisely designed and aligned flat probe during nanoindentation, which was further accompanied with atomic force microscopy. Due to natural confinement from the surrounding material, we show that a state of `uniaxial strain' is created beneath the probe under small axial strains. By this methodology we are able to directly probe uniaxial flows under both anelastic and plastic conditions while doing controlled creep studies at different positions in the film starting from surface towards interior. Depending on the extent of deformation, we found ranges of effects, such as densification, anelastic yield, and plastic yield. Enhanced creep rate upon deformation supports the idea of `deformation induced mobility'. Work performed at Trinity College Dublin.

  11. Advanced materials characterization based on full field deformation measurements

    Science.gov (United States)

    Carpentier, A. Paige

    approximation must be independent of the deformation measurements, independent of the material properties (geometric stress approximation), and be simple for use in the industry. A remarkable benefit of the full-field deformation measurement is that it lets us observe the physical phenomena of the deformation which enables the derivation of simple and accurate geometric stress approximations. In particular, linear axial through the thickness strain distributions consistently measured in composite short-beam specimens allow a rigorous derivation of extremely simple stress approximations. The observation of linear through the thickness axial strain distributions has become the basis for eliminating the need of using Bernoulli-Euler kinematic assumptions of the rigid cross sections remaining perpendicular to the beam neutral axis throughout the deformation. Such assumptions are not consistent with the deformation mechanisms and therefore are arguable as a rigorous basis for stress approximation. Simple stress approximations are derived in this work based on the observations from the full-field deformation measurements; accuracy of such approximations are verified; and their limitations determined.

  12. Deformed $sd$-shell nuclei from first principles

    CERN Document Server

    Jansen, G R; Hagen, G; Navrátil, P

    2015-01-01

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to deformed open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei $^{20}$Ne and $^{24}$Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory for deformed nuclei, thereby demonstrating that collective phenomena in $sd$-shell nuclei emerge from complex ab initio calculations.

  13. Strong Deformation Effects in Hot Rotating 46Ti

    CERN Document Server

    Kmiecik, M; Brekiesz, M; Mazurek, K; Bednarczyk, P; Grebosz, J; Meczynski, W; Styczen, J; Zieblinski, M; Zuber, K; Papka, P; Beck, C; Curien, D; Haas, F; Rauch, V; Rousseau, M; Dudek, J; Schunck, N; Bracco, A; Camera, F; Benzoni, G; Wieland, O; Herskind, B; Farnea, E; De Angelis, G

    2007-01-01

    Exotic-deformation effects in 46Ti nucleus were investigated by analysing the high-energy gamma-ray and the alpha-particle energy spectra. One of the experiments was performed using the charged-particle multi-detector array ICARE together with a large volume (4"x4") BGO detector. The study focused on simultaneous measurement of light charged particles and gamma-rays in coincidence with the evaporation residues. The experimental data show a signature of very large deformations of the compound nucleus in the Jacobi transition region at the highest spins. These results are compared to data from previous experiments performed with the HECTOR array coupled to the EUROBALL array, where it was found that the GDR strength function is highly fragmented, strongly indicating a presence of nuclei with very large deformation.

  14. Influence of Quantal and Statistical Fluctuations on Phase Transitions in Finite Nuclei

    Institute of Scientific and Technical Information of China (English)

    G. Kanthimathi; N. Boomadevi; T.R. Rajasekaran

    2011-01-01

    Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature statistical approach with main emphasis to fluctuations. The occurrence of a peak structure in the specific heat predicted as signals of the pairing-phase and shape-phase transitions are reviewed and it is found that they are not actually true phase transitions and it is only an artifact of the mean field models. Since quantal number and spin fluctuations and statistical fluctuations in pair gap, deformation degrees of freedom and energy when incorporated, it wash out the pairing-phase transition and smooth out the shape-phase transition. Phase transitions due to collapse of pair gap and deformation is discussed and a clear picture of pairing-phase transition in light nuclei is presented in which pairing transition is reconciled.

  15. Involvement of valgus hindfoot deformity in hallux valgus deformity in rheumatoid arthritis.

    Science.gov (United States)

    Yamada, Shutaro; Hirao, Makoto; Tsuboi, Hideki; Akita, Shosuke; Matsushita, Masato; Ohshima, Shiro; Saeki, Yukihiko; Hashimoto, Jun

    2014-09-01

    The involvement of valgus hindfoot deformity in hallux valgus deformity was confirmed in a rheumatoid arthritis case with a destructive valgus hindfoot deformity. Correction of severe valgus, calcaneal lateral offset, and pronated foot deformity instantly normalized hallux valgus deformities postoperatively. Thus, careful hindfoot status evaluation is important when assessing forefoot deformity, including hallux valgus, in rheumatoid arthritis cases.

  16. Inelastic deformation in crystalline rocks

    Science.gov (United States)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  17. Numerical-analytical investigation into impact pipe driving in soil with dry friction. Part II: Deformable external medium

    CERN Document Server

    Aleksandrova, Nadezhda

    2013-01-01

    Under analysis is travel of P-waves in an elastic pipe partly embedded in soil with dry friction. The mathematical formulation of the problem on impact pipe driving in soil is based on the model of axial vibration of an elastic bar, considering lateral resistance described using the law of solid dry friction. The author solves problems on axial load on pipe in interaction with external elastic medium, and compares the analytical and numerical results obtained with and without accounting for the external medium deformability.

  18. Collective properties of octupole-deformed atomic nuclei

    International Nuclear Information System (INIS)

    Collective properties of even-even nuclei in the radium region are studied theoretically. Energy of the lowest collective states and reduced probabilities B(E2) and B(E3) of electromagnetic transitions between these states are mainly analysed. The excited states are treated as large-amplitude quadrupole and octupole vibrations coupled with each other. A large anharmonicity of the spectrum and a large value B(E3) of the transition from the first octupole excited state to the ground state are obtained, for octupole-deformed nuclei. A strong dependence of the results on the shape of the potential energy of a nucleus, treated as a function of its deformation, is stressed. (author)

  19. Strain localization in carbonate rocks experimentally deformed in the ductile field

    Science.gov (United States)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  20. Human red blood cells deformed under thermal fluid flow.

    Science.gov (United States)

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  1. Shell-structure of one-particle resonances in deformed potentials

    CERN Document Server

    Hamamoto, Ikuko

    2016-01-01

    Shell structure of low-lying neutron resonant levels in axially-symmetric quadrupole-deformed potentials is discussed, which seems analogous to that of weakly-bound neutrons. As numerical examples, nuclei slightly outside the neutron-drip-line, $^{39}_{12}$Mg$_{27}$ and $^{21}_{6}$C$_{15}$, are studied. For the lowest resonance I obtain $I^{\\pi}$ = $\\Omega^{\\pi}$ = 5/2$^{-}$ for $^{39}$Mg which is likely to be prolately deformed, while $I^{\\pi}$ = $\\Omega^{\\pi}$ = 1/2$^{+}$ may be assigned to the nucleus $^{21}$C which may be oblately deformed. Consequently, $^{21}$C will not be observed as a recognizable resonant state, in agreement with the experimental information.

  2. Study on deformation and microstructure characterizations of mild steel joints by continuous drive friction welding

    Institute of Scientific and Technical Information of China (English)

    Li Wenya; Yu Min; Li Jinglong; Gao Dalu

    2009-01-01

    Macro-deformation characteristics of continuous drive friction welded mild steel joints were examined by using one deformable workpiece (objective) and the other undeformable one (rigid). The microstructure evolution and hardness change across the joint were studied. The results show that the axial shortening and radial increment of joints increase with increasing the friction time at 1 200rpm. The cementite particles of pearlites in the weld center are uniformly distributed on the ferrite matrix, while the cementites of the pearlite in the thermal-mechanically affected zone are broken and discontinuously dispersed in the pearlite. The hardness decreases rapidly from the weld center to the parent metal under the coupled effects of heat and deformation during the rapid heating and cooling processes.

  3. CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION

    Directory of Open Access Journals (Sweden)

    Dávid Halabuk

    2015-12-01

    Full Text Available The elementary parts of every fuel assembly, and thus of the reactor core, are fuel rods. The main function of cladding is hermetic separation of nuclear fuel from coolant. The fuel rod works in very specific and difficult conditions, so there are high requirements on its reliability and safety. During irradiation of fuel rods, a state may occur when fuel pellet and cladding interact. This state is followed by changes of stress and deformations in the fuel cladding. The article is focused on stress and deformation analysis of fuel cladding, where two fuels are compared: a fresh one and a spent one, which is in contact with cladding. The calculations are done for 4 different shapes of fuel pellets. It is possible to evaluate which shape of fuel pellet is the most appropriate in consideration of stress and deformation forming in fuel cladding, axial dilatation of fuel, and radial temperature distribution in the fuel rod, based on the obtained results.

  4. Experimental Investigation on Creep Deformation Behavior of Medium-strength Marble Rock

    Directory of Open Access Journals (Sweden)

    Li Yong

    2014-01-01

    Full Text Available The creep deformation behavior of rocks has significant effect on the stability of underground structures. This study presents the short-term and creep deformation behavior of medium-strength marble rock using a conventional uniaxial compression testing machine and a servo-controlled rheology testing machine. The uniaxial compressive strength is obtained by the uniaxial compression testing machine. During the creep behavior test, two types of rock specimens (dry and water-saturated are specified to be used to perform the uniaxial creep tests. Two rheological failure modes and the relationship curves between axial/circumferential strain and stress levels of marble specimens are also obtained from the creep test results. Eventually, the creep deformation behaviors are compared with those of typical soft rocks. These creep curves combined with a given creep constitutive model would provide accurate parameters for long-term stability analyses of actual projects.

  5. Impact between deformable bodies

    International Nuclear Information System (INIS)

    The bodies are represented by constant strain finite elements so that the element internal forces can most easily be calculated, especially after yielding has taken place when the stress and strain increments are related in accordance with the Prandtl-Reuss theory. In the case of axisymmetrical problems triangular axisymmetrical elements are used whose properties are approximately calculated by sampling at the centroid of the cross-section. The external applied forces arise from the impact and contact forces at the interfaces, and the inertia forces are obtained from lumped mass matrices. The equation of motion is solved by a central difference explicit scheme in small incremental time steps. This enables the stress propagation as well as the history of plastic deformation in the bodies to be traced throughout the duration of impact. The material law is idealised to be piecewise linear, with an initial elastic portion followed by one linear hardening segment. Perfect plasticity (zero hardening) can also be allowed. A simple procedure deals with the case of loading from an elastic initial state to a final plastic state in one time step. The program has been applied to the investigation of a number of axisymmetrical problems. The three dimensional version of the program is now being coded. Examples: impact of a falling fuel stringer in a storage tube; impact of a cylinder on a rigid boundary; supported circular plate loaded by uniformly distributed impulses; impact of a non-return valve in a pipe rupture; impact of a cylindrical fuel-waste flask; impact of a conical missile on a rigid surface. (orig./HP)

  6. Large N behavior of mass deformed ABJM theory

    Science.gov (United States)

    Nosaka, Tomoki; Shimizu, Kazuma; Terashima, Seiji

    2016-03-01

    In this paper, using the localization technique we analyze the large N limit of the mass deformed Aharony-Bergman-Jafferis-Maldacena (ABJM) theory on the three sphere with a finite mass parameter and finite Chern-Simons levels. We find two different solutions of the saddle point equations in the large N limit. With these solutions we compute the free energy limit and find that there is a first order phase transition. Our results may predict a phase transition in the dual gravity theory.

  7. Large N behavior of mass deformed ABJM theory

    CERN Document Server

    Nosaka, Tomoki; Terashima, Seiji

    2015-01-01

    In this paper, using the localization technique we analyze the large N limit of the mass deformed Aharony-Bergman-Jafferis-Maldacena (ABJM) theory on the three sphere with a finite mass parameter and finite Chern-Simons levels. We find two different solutions of the saddle point equations in the large N limit. With these solutions we compute the free energy and find that there is a first order phase transition. Our results may predict a phase transition in the dual gravity theory.

  8. View-Dependent Streamline Deformation and Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung

    2016-07-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.

  9. How granular materials deform in quasistatic conditions

    Science.gov (United States)

    Roux, J.-N.; Combe, G.

    2010-05-01

    Based on numerical simulations of quasistatic deformation of model granular materials, two rheological regimes are distinguished, according to whether macroscopic strains merely reflect microscopic material strains within the grains in their contact regions (type I strains), or result from instabilities and contact network rearrangements at the microscopic level (type II strains). We discuss the occurrence of regimes I and II in simulations of model materials made of disks (2D) or spheres (3D). The transition from regime I to regime II in monotonic tests such as triaxial compression is different from both the elastic limit and from the yield threshold. The distinction between both types of response is shown to be crucial for the sensitivity to contact-level mechanics, the relevant variables and scales to be considered in micromechanical approaches, the energy balance and the possible occurrence of macroscopic instabilities.

  10. Interactive Streamline Exploration and Manipulation Using Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Xin; Chen, Chun-Ming; Shen, Han-Wei; Wong, Pak C.

    2015-01-12

    Occlusion presents a major challenge in visualizing three-dimensional flow fields with streamlines. Displaying too many streamlines at once makes it difficult to locate interesting regions, but displaying too few streamlines risks missing important features. A more ideal streamline exploration model is to allow the viewer to freely move across the field that has been populated with interesting streamlines and pull away the streamlines that cause occlusion so that the viewer can inspect the hidden ones in detail. In this paper, we present a streamline deformation algorithm that supports such user-driven interaction with three-dimensional flow fields. We define a view-dependent focus+context technique that moves the streamlines occluding the focus area using a novel displacement model. To preserve the context surrounding the user-chosen focus area, we propose two shape models to define the transition zone for the surrounding streamlines, and the displacement of the contextual streamlines is solved interactively with a goal of preserving their shapes as much as possible. Based on our deformation model, we design an interactive streamline exploration tool using a lens metaphor. Our system runs interactively so that users can move their focus and examine the flow field freely.

  11. Nuclear deformation of lutetium isotopes

    CERN Document Server

    Ekström, C

    1974-01-01

    For odd-A lutetium isotopes the ground-state equilibrium deformations ( epsilon , epsilon /sub 4/) and the Nilsson model Z=71 single proton levels in an ( epsilon , epsilon /sub 4/)-representation are considered.

  12. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  13. ROCK DEFORMATION. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  14. Deformation of Honeycomb with Finite Boundary Subjected to Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Dai-Heng Chen

    2013-11-01

    Full Text Available In this paper, the crushing behavior of hexagonal honeycomb structures with finite boundaries (finite width and height subjected to in-plane uniaxial compressive loading is studied based on the nonlinear finite element analysis. It is found that stress-strain responses for the honeycombs with finite boundaries can be classified into two types: Type I and Type II. Such a characteristic is affected by the wall thickness, the work-hardening coefficient and the yield stress for the honeycombs. Furthermore, a transition from the symmetric to asymmetric deformation mode can be observed in Type I, and these deformed cells were localized in a horizontal layer. However, for the case of Type II response, the symmetric and asymmetric deformation modes can be observed simultaneously, and the region of the asymmetric mode was formed by the cell layer along the diagonal direction. As a result, the shear deformation behavior was developed along that direction. Moreover, the effect of work-hardening on the deformation behavior for the honeycombs with finite boundaries can be explained from that for infinite honeycombs.

  15. Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in high-low labyrinth seals over a range of seal clearances and inlet swirl velocities. A well-established CFD-perturbation model was employed to predict the rotordynamic coefficients. A surprisingly large effect was detected for rotordynamic characteristics due to rotor shifting. It was also found that a less destabilizing effect arose from rotor axial shifting in the leakage flow direction, whereas a more destabilizing effect arose from shifting against the leakage flow direction. Further, a tentative explanation was proposed for the large sensitivities of dynamic forces to rotor axial shifting.

  16. Design and Simulation of Axial Flow Maglev Blood Pump

    Directory of Open Access Journals (Sweden)

    Huachun Wu

    2011-03-01

    Full Text Available The axial flow maglev blood pump (AFMBP has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element analysis, and puts forward a method to design the magnetic suspension and impeller of axial flow blood pump, which tacks into account the small volume of axial blood pump. The magnetic bearing’s characteristics are evaluated by electromagnetic finite element analysis. The Blades have been designed by calculating aerofoil bone line, and make simulation analysis for different thicken ways of blade by Fluent software, and make a conclusion that the blade thickened with certain rules has better characteristics in the same conditions. The results will provide some guidance for design of axial flow maglev blood pump, and establish theoretical basis for application of the implantable artificial heart pump.

  17. An Axial Vector Photon in a Mirror World

    CERN Document Server

    Sharafiddinov, Rasulkhozha S

    2015-01-01

    The unity of symmetry laws emphasizes, in the case of a mirror CP-even Dirac Lagrangian, the ideas of the left- and right-handed axial-vector photons referring to long- and short-lived bosons of true neutrality, respectively. Such a difference in lifetimes expresses the unidenticality of masses, energies and momenta of axial-vector photons of the different components. They define the unified field theory equation of C-odd particles with an integral spin. Together with a new equation of a theory of truly neutral particles with the half-integral spin, the latter reflects the availability in their nature of the second type of the local axial-vector gauge transformation responsible for origination in the Lagrangian of C-oddity of an interaction Newton component giving an axial-vector mass to all the interacting particles and fields. The mirror axial-vector mass, energy and momentum operators constitute a CP-invariant equation of quantum mechanics, confirming that each of them can individually influence on matter ...

  18. Light Weakly Coupled Axial Forces: Models, Constraints, and Projections

    CERN Document Server

    Kahn, Yonatan; Mishra-Sharma, Siddharth; Tait, Tim M P

    2016-01-01

    We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevan...

  19. An Axial-Vector Photon in a Mirror World

    Science.gov (United States)

    Sharafiddinov, Rasulkhozha S.

    2016-03-01

    The unity of symmetry laws emphasizes, in the case of a mirror CP-even Dirac Lagrangian, the ideas of the left- and right-handed axial-vector photons referring to long- and short-lived bosons of true neutrality, respectively. Such a difference in lifetimes expresses the unidenticality of masses, energies and momenta of axial-vector photons of the different components. They define the unified field theory equation of C-odd particles with an integral spin. Together with a new equation of a theory of truly neutral particles with the half-integral spin, the latter reflects the availability in their nature of the second type of the local axial-vector gauge transformation responsible for origination in the Lagrangian of C-oddity of an interaction Newton component giving an axial-vector mass to all the interacting particles and fields. The mirror axial-vector mass, energy and momentum operators constitute a CP-invariant equation of quantum mechanics, confirming that each of them can individually influence on matter field. Thereby, findings suggest at the level of the mass-charge structure of gauge invariance a new equation for the C-noninvariant Lagrangian.

  20. Deformed Mittag-Leffler Polynomials

    OpenAIRE

    Miomir S. Stankovic; Marinkovic, Sladjana D.; Rajkovic, Predrag M.

    2010-01-01

    The starting point of this paper are the Mittag-Leffler polynomials introduced by H. Bateman [1]. Based on generalized integer powers of real numbers and deformed exponential function, we introduce deformed Mittag-Leffler polynomials defined by appropriate generating function. We investigate their recurrence relations, differential properties and orthogonality. Since they have all zeros on imaginary axes, we also consider real polynomials with real zeros associated to them.