International Nuclear Information System (INIS)
The strange axial-vector mesons K1 (1270) and K1 (1400) are reanalyzed in the light of the updated experimental information and compared with the recent result on the Kππ production in τ decay. The mixing angle between the strange mesons of 3P1 and 1P1 is determined by the partial decay rates, and, independently, by the masses. They lead to θK∼33 degree or 57 degree. The observed K1 (1400) production dominance in the τ decay favors θK∼33 degree. Flavor-SU(3) breaking of 20% or so in the production amplitudes can explain quantitatively the observed production ratio
Pseudocalar meson and vector meson interactions and dynamically generated axial-vector mesons
Zhou, Yu; Ren, Xiu-Lei; Chen, Hua-Xing; Geng, Li-Sheng
2014-01-01
The axial-vector mesons $a_1(1260)$, $b_1(1235)$, $f_1(1285)$, $h_1(1170)$, $h_1(1380)$, and $K_1(1270)$ are dynamically generated in the unitized chiral perturbation theory. Such a picture has been tested extensively in the past few years. In this work, we calculate the interaction kernel up to $\\mathcal{O}(p^2)$ and study the impact on the dynamically generated axial-vector states. In anticipation of future lattice QCD simulations, we calculate the scattering lengths and the pole positions ...
Scalar and axial-vector mesons
Van Beveren, E; Beveren, Eef van; Rupp, George
2007-01-01
Nowadays, there exists an abundance of theoretical approaches towards the mesonic spectrum, ranging from confinement models of all kinds, i.e., glueballs, and quark-antiquark, multiquark and hybrid configurations, to models in which only mesonic degrees of freedom are taken into account. Nature seems to come out somewhere in the middle, neither preferring pure bound states, nor effective meson-meson physics with only coupling constants and possibly form factors. As a matter of fact, apart from a few exceptions, like pions and kaons, Nature does not allow us to study mesonic bound states of any kind, which is equivalent to saying that such states do not really exist. Hence, instead of extrapolating from pions and kaons to the remainder of the meson family, it is more democratic to consider pions and kaons mesonic resonances that happen to come out below the lowest threshold for strong decay. Nevertheless, confinement is an important ingredient for understanding the many regularities observed in mesonic spectra...
Scalar mesons in a linear sigma model with (axial-)vector mesons
Parganlija, D; Wolf, Gy; Giacosa, F; Rischke, D H
2012-01-01
The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for $\\bar{q}q$ states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar $\\bar{q}q$ states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as $\\bar{q}q$ states.
Observation of a New Narrow Axial-Vector Meson alpha(1)(1420)
Czech Academy of Sciences Publication Activity Database
Adolph, C.; Akhunzyanov, R.; Alexeev, M.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlák, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Chang, W.-C.; Chiosso, M.; Choi, I.; Chung, S. U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, E.; Hinterberger, F.; Horikawa, N.; d´Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jarý, V.; Jörg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.; Marchand, C.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W. D.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schmeing, S.; Schmidt, K.; Schlüter, T.; Selyunin, A.; Schmieden, H.; Schönning, K.; Schopferer, S.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Šulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2015-01-01
Roč. 115, č. 8 (2015), 082001:1-6. ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : COMPASS * pion-nucleon scattering * hadron spectroscopy * light-meson spectrum * axial-vector mesons * exotic mesons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.512, year: 2014
Eser, Jürgen; Rischke, Dirk H
2015-01-01
The transition in quantum chromodynamics (QCD) from hadronic matter to the quark-gluon plasma (QGP) at high temperatures and/or net-baryon densities is associated with the restoration of chiral symmetry and can be investigated in the laboratory via heavy-ion collisions. We study this chiral transition within the functional renormalization group (FRG) approach applied to the two-flavor version of the extended Linear Sigma Model (eLSM). The eLSM is an effective model for the strong interaction and features besides scalar and pseudoscalar degrees of freedom also vector and axial- vector mesons. We discuss the impact of the quark masses and the axial anomaly on the order of the chiral transition. We also confirm the degeneracy of the masses of chiral partners above the transition temperature. We find that the mass of the $a_1$ meson ($\\rho$ meson) decreases (increases) towards the chiral transition.
Eser, Jürgen; Grahl, Mara; Rischke, Dirk H.
2015-11-01
The transition in quantum chromodynamics from hadronic matter to the quark-gluon plasma at high temperatures and/or net-baryon densities is associated with the restoration of chiral symmetry and can be investigated in the laboratory via heavy-ion collisions. We study this chiral transition within the functional renormalization group approach applied to the two-flavor version of the extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction and features besides scalar and pseudoscalar degrees of freedom also vector and axial-vector mesons. We discuss the impact of the quark masses and the axial anomaly on the order of the chiral transition. We also confirm the degeneracy of the masses of chiral partners above the transition temperature. We find that the mass of the a1 meson (ρ meson) decreases (increases) towards the chiral transition.
QCD sum rule analysis for light vector and axial-vector mesons in vacuum and nuclear matter
Leupold, Stefan
2001-01-01
Extending previous work we study the constraints of QCD sum rules on mass and width of light vector and axial-vector mesons in vacuum and in a medium with finite nuclear density. For the latter case especially the effect of nuclear pions leading to vector-axial-vector mixing is included in the analysis.
A U(4)r x U(4)l linear sigma model with (axial-)vector mesons
International Nuclear Information System (INIS)
We present a linear sigma model with U(4)r x U(4)l global chiral symmetry, which in addition to scalar and pseudoscalar mesons also includes vector and axial-vector mesons. Apart from three new parameters pertaining to the charm degree of freedom, the parameters of the model are fixed from the Nf = 3 flavor sector. Our results for the charmed meson masses and weak decay constants are in surprisingly good agreement with experimental data, with the marked exception of the scalar degrees of freedom, providing an indication that these states may not adhere to the standard quark-antiquark picture of a meson.
Coupled-channel study of axial-vector mesons with realistic t- and u-channel exchanges
Energy Technology Data Exchange (ETDEWEB)
Hofmann, Julian
2010-02-17
In this thesis, the significance of t- and u-channel exchange processes in the formation of axial-vector mesons is studied. The analysis is based on a chiral Lagrangian for light vector mesons. A non-linear integral equation based on unitarity and causality is used to unitarize the scattering amplitude. This leads to the formation of axial-vector molecules. (orig.)
Pseudoscalar glueball, the axial-vector anomaly, and the mixing problem for pseudoscalar mesons
Energy Technology Data Exchange (ETDEWEB)
Rosenzweig, C.; Salomone, A.; Schechter, J.
1981-11-01
If the G(1440) observed in psi..--> gamma..G is a pseudoscalar glueball its relationship with other pseudoscalar mesons must be understood. We present a simple, unified picture of these mesons in which there must be mixing between glue matter and quark matter. Our model, an extension of an effective Lagrangian which solved the U(1) problem by incorporating the axial-vector anomaly, dictates a relationship between eta' and G. We are readily able to explain why the quark-matter meson eta' is at least as prominent as the glueball G in the gluon-dominated reaction psi..--> gamma..X.
On the Reduction of Vector and Axial-Vector Fields in a Meson Effective Action at O(p4)
International Nuclear Information System (INIS)
Starting from an effective NJL-type quark interaction we have derived an effective meson action for the pseudoscalar sector. The vector and axial-vector degrees of freedom have been integrated out, applying the static equations of motion. As the results we have found a (reduced) pseudoscalar meson Lagrangian of the Gasser-Leutwyler type with modified structure coefficients Li. This method has been also used to construct the reduced weak and electromagnetic-weak currents. The application of the reduced Lagrangian and currents has been considered in physical processes. 36 refs., 1 fig., 1 tab
Pion as a Longitudinal Axial-Vector Meson $q\\bar{q}$ Bound State
Pham, T N
2013-01-01
The success of the Adler-Bell-Jackiw(ABJ) chiral anomaly prediction for $\\pi^{0}\\to \\gamma\\gamma$ decay rate shows that non-anomaly terms would make a negligible contribution to the decay rate, in agreement with the Sutherland-Veltman theorem. Thus the conventional $q\\bar{q}$ bound-state description of the pion could not be valid since it would produce a $\\pi^{0}\\to \\gamma\\gamma$ decay amplitude not suppressed in the soft pion limit, in contradiction with the Sutherland-Veltman theorem. Therefore, if the pion is to be treated as a $q\\bar{q}$ bound state, this bound state would be a longitudinal axial-vector meson. In this paper, we consider the pion to be a longitudinal axial-vector meson $q\\bar{q}$ state with derivative coupling for the pion-$q\\bar{q}$ Bethe-Salpeter(BS) amplitude. We shall show that, the longitudinal axial-vector meson solution for the pion $q\\bar{q}$ Bethe-Salpeter wave function could produce a suppressed $\\pi^{0}\\to \\gamma\\gamma$ decay amplitude in the soft pion limit, in agreement with t...
Thermal Spectrum of Heavy Vector and Axial Vector Mesons in the Framework of QCD Sum Rules Method
Yazici, Enis
2016-01-01
The masses and the leptonic decay constants of vector and axial vector heavy-heavy mesons are calculated using the thermal QCD sum rules approach. While obtaining the QCD sum rules, additional operators in the Wilson expansion and also temperature dependency of the continuum threshold are taken into account. The masses and the decay constants remained unchanged up to $T\\simeq100~MeV$. After that point, they start to diminish. At the critical temperature, the masses decreased about $3\\%$, $5\\%$ and $14\\%$ for the vector mesons $\\Upsilon$, $B_{c}$ and $J/\\psi$; $6\\%$, $7\\%$ and $22\\%$ for the axial vector mesons $\\chi_{b1}$, $B_{c}$ and $\\chi_{c1}$, respectively. The decay constants reached about less than $20\\%$ of their vacuum values. The obtained results of the thermal mass and decay constant calculations at zero temperature are in a very good agreement with the other non-perturbative calculations at vacuum as well as with the experimental data.
Vector meson dominance, axial anomaly and the thermal behavior of gρωπ(T)
International Nuclear Information System (INIS)
By using a thermal Finite Energy QCD Sum Rule, we are able to establish the temperature dependence of the gωρπ(T) strong coupling. It turns out that this coupling decreases as a function of temperature, vanishing at the critical temperature. This corresponds to a possible deconfining phenomenological signal. This result, together with the Vector Meson Dominance (VMD) expression for the amplitude π0 → γγ, allows us to establish that this amplitude also vanishes at the critical temperature, in agreement with previous independent analysis. This results supports, once again, the validity of VMD at finite temperature. Several possible scenarios are discussed. However, if VMD would not hold at finite temperature, then we will not be able to find a prediction for the thermal behavior of the π0 → γγ amplitude
Indian Academy of Sciences (India)
Gy Wolf
2006-04-01
One consequence of the chiral restoration is the mixing of parity partners. We look for a possible signature of the mixing of vector and axial vector mesons in heavy-ion collisions. We suggest an experimental method for its observation. The dynamical evolution of the heavy-ion collision is described by a transport equation of QMD-type evolving nucleons, * and resonances, ’s and $\\sum$ baryons, and furthermore, ’s, ’s ’s ’s ’s and kaons with their isospin degrees of freedom. The input cross-sections and resonance parameters of the model are fitted to the available nucleon–nucleon and pion–nucleon cross-sections.
Magnetic moments of vector, axial, and tensor mesons in lattice QCD
Lee, F X; Wilcox, W
2008-01-01
We present a calculation of magnetic moments for selected spin-1 mesons using the techniques of lattice QCD. This is carried out by introducing progressively small static magnetic field on the lattice and measuring the linear response of a hadron's mass shift. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method where available.
Observation of a New Narrow Axial-Vector Meson a1(1420).
Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Azevedo, C; Badełek, B; Balestra, F; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Chang, W-C; Chiosso, M; Choi, I; Chung, S U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dünnweber, W; Duic, V; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Gnesi, I; Gorzellik, M; Grabmüller, S; Grasso, A; Grosse-Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; von Harrach, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Horikawa, N; d'Hose, N; Hsieh, C-Yu; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jörg, P; Joosten, R; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kuchinski, N; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Nagaytsev, A; Nagel, T; Nerling, F; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schmeing, S; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schlüter, T; Selyunin, A; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Wallner, S; Weisrock, T; Wilfert, M; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A
2015-08-21
The COMPASS Collaboration at CERN has measured diffractive dissociation of 190 GeV/c pions into the π(-)π(-)π(+) final state using a stationary hydrogen target. A partial-wave analysis (PWA) was performed in bins of 3π mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88 waves. A narrow peak is observed in the f0(980)π channel with spin, parity and C-parity quantum numbers J(PC)=1(++). We present a resonance-model study of a subset of the spin-density matrix selecting 3π states with J(PC)=2(++) and 4(++) decaying into ρ(770)π and with J(PC)=1(++) decaying into f0(980)π. We identify a new a1 meson with mass (1414(-13)(+15)) MeV/c2 and width (153(-23)(+8)) MeV/c2. Within the final states investigated in our analysis, we observe the new a1(1420) decaying only into f0(980)π, suggesting its exotic nature. PMID:26340182
Observation of a new narrow axial-vector meson $a_1(1420)$
Adolph, C; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dunnweber, W.; Duic, V.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse-Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Yu; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rocco, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schluter, T.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2015-01-01
The COMPASS collaboration at CERN has measured diffractive dissociation of 190 GeV$/c$ pions into the $\\pi^-\\pi^-\\pi^+$ final state using a stationary hydrogen target. A partial-wave analysis (PWA) was performed in bins of $3\\pi$ mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88~waves. A narrow $J^{PC} = 1^{++}$ signal is observed in the $f_0(980)\\,\\pi$ channel. We present a resonance-model study of a subset of the spin-density matrix selecting $3\\pi$ states with $J^{PC} = 2^{++}$ and $4^{++}$ decaying into $\\rho(770)\\,\\pi$ and with $J^{PC} = 1^{++}$ decaying into $f_0(980)\\,\\pi$. We identify a new $a_1$ meson with mass $(1414^{+15}_{-13})$ MeV$/c^2$ and width $(153^{+8}_{-23})$ MeV$/c^2$. Within the final states investigated in our analysis, we observe the new $a_1(1420)$ decaying only into $f_0(980)\\,\\pi$, suggesting its exotic nature. To our knowledge, such a state has never been predicted.
Vector-meson dominance revisited
Directory of Open Access Journals (Sweden)
Terschlüsen Carla
2012-12-01
Full Text Available The interaction of mesons with electromagnetism is often well described by the concept of vector-meson dominance (VMD. However, there are also examples where VMD fails. A simple chiral Lagrangian for pions, rho and omega mesons is presented which can account for the respective agreement and disagreement between VMD and phenomenology in the sector of light mesons.
Vector meson-vector meson interaction and dynamically generated resonances
International Nuclear Information System (INIS)
We report upon 11 composite meson states, dynamically generated from the vector meson–vector meson interaction using the local hidden gauge formalism within a unitary approach. Six of these states are associated to the f0(1370), f0(1710), f2(1270), f'2(1525), a2(1320) and K*2(1430) resonances. At the same time we predict five other states with the quantum numbers of h1, a0, b1, K*0, and K1 which could be tested by future experiments.
Glueballs and vector mesons at NICA
Parganlija, Denis
2016-01-01
Two interconnected fields of interest are suggested for NICA. Firstly, existence of glueballs is predicted by the theory of strong interaction but -- even after decades of research -- glueball identification in the physical spectrum is still unclear. NICA can help to ascertain experimental glueball candidates via J/Psi decays whose yield is expected to be large. Importance of glueballs is not limited to vacuum: since they couple to other meson states, glueballs can also be expected to influence signatures of chiral-symmetry restoration in the high-energy phase of strong dynamics. Mass shifting or in-medium broadening of vector and axial-vector mesons may occur there but the extent of such phenomena is still uncertain. Additionally, glueball properties could also be modified in medium. Exploration of these issues is the second suggested field of interest that can be pursued at NICA.
An improved model of vector mesons in holographic QCD
Alvares, Raul; Karch, Andreas
2011-01-01
We analyze the sector of dimension-three vector meson operators in the "hard wall" model of holographic QCD, including the vector and axial currents, dual to gauge fields in the bulk, and the tensor operator $\\bar{\\psi}\\sigma^{\\mu\
Vector meson electroproduction in QCD
International Nuclear Information System (INIS)
Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and φ meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+, 2++, decay width Γt ≈ 100 MeV, and mass of mG=2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model. (authors)
Vector meson electroproduction in QCD
Institute of Scientific and Technical Information of China (English)
LU Juan; CAI Xian-Hao; ZHOU Li-Juan
2012-01-01
Based on the generalized QCD vector meson dominance model,we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model.Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for p,ω and φ meson electroproduction in this paper.Since gluons interact among themselves (self-interaction),two gluons can form a glueball with quantum numbers IG,JPC =0+,2++,decay width Γt ≈ 100 MeV,and mass of mG=2.23 GeV.The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C =-1,called the Odderon.The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon.Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully,which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton.It should be emphasized that our mechanism is different from the theoretical framework of Block et al.We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies,as well as for searching for new particles such as tensor glueballs and Odderons,which have been predicted by QCD and the color glass condensate model (CGC).Therefore,in return,it can test the validity of QCD and the CGC model.
Improved model of vector mesons in holographic QCD
International Nuclear Information System (INIS)
We analyze the sector of dimension-three vector meson operators in the 'hard-wall' model of holographic QCD, including the vector and axial currents, dual to gauge fields in the bulk, and the tensor operator ψσμνψ, dual to a two-form field satisfying a complex self-duality condition. The model includes the effect of chiral symmetry breaking on vector mesons, that involves a coupling between the dual gauge field and the two-form field. We compute the leading logarithmic terms in the operator product expansion of two-point functions and the leading nonperturbative contribution to the tensor-vector correlator. The result is consistent with the operator product expansion of QCD. We also study the spectrum of vector mesons numerically.
Vector and axial anomaly in the Thirring-Wess model
International Nuclear Information System (INIS)
We study the two dimensional vector meson model introduced by Thirring and Wess, that is to say the Schwinger model with massive photon and massless fermion. We prove, with a renormalization group approach, that the vector and axial Ward identities are broken by the Adler-Bell-Jackiw anomaly; and we rigorously establish three widely believed consequences: (a) the interacting meson-meson correlation equals a free boson propagator, although the mass is additively renormalized by the anomaly; (b) the anomaly is quadratic in the charge, in agreement with the Adler-Bardeen formula; (c) the fermion-fermion correlation has an anomalous long-distance decay.
Photoproduction of vector mesons in nuclei
International Nuclear Information System (INIS)
The mass of vector mesons in the nuclear medium is of great interest in strong interaction dynamics because vector meson masses could decrease with increasing baryonic density as a consequence of chiral symmetry restoration. The purpose of this work is to define an observable sensitive to vector meson masses at nuclear matter density. This short paper reports some preliminary results which suggest that the quantum interference between (e+e-) pairs emitted in the photoproduction of ρ- and ω- mesons near threshold in heavy nuclei could be such quantity. (J.S.). 4 refs., 2 figs
Vector meson mixing and charge symmetry violation
International Nuclear Information System (INIS)
We discuss the consistency of the traditional vector meson dominance (VMD) model for photons coupling to matter with the vanishing of vector meson-meson- and meson-photon mixing self-energies at q2 = O. This vanishing of vector mixing has been demonstrated in the context of rho-omega mixing for a large class of effective theories. As a further constraint on these models, we here apply them to a study of photon-meson mixing and VMD. We compare the predicted momentum dependence of two models with that extracted experimentally. We find that one model produces a momentum-dependence which is consistent with the data, while the other does not. Hence we conclude that comparison with VMD phenomenology provides a powerful constraint on such models. (author). 34 refs., 1 fig
Light Vector Mesons in the Nuclear Medium
Energy Technology Data Exchange (ETDEWEB)
Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen
2008-07-01
The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff
Chiral Quark-Meson model of N and DELTA with vector mesons
International Nuclear Information System (INIS)
Vector mesons rho, A1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)
Axial Vector $Z'$ and Anomaly Cancellation
Ismail, Ahmed; Tsao, Kuo-Hsing; Unwin, James
2016-01-01
Whilst the prospect of new $Z'$ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that the masses of these new states must generally be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.
Exclusive vector meson production at HERMES
Directory of Open Access Journals (Sweden)
Movsisyan Aram
2014-06-01
Full Text Available Exclusive electroproduction of vector mesons has been measured on hydrogen and deuterium targets at HERMES using the 27.6 GeV electron/positron beam of HERA. From this process, more information can be obtained about generalized parton distributions (GPDs, which provide a unified description of the structure of hadrons embedding longitudinal-momentum distributions (ordinary PDFs and transverse-position information (form factors. The study of the azimuthal distribution of the decay products via spin-density matrix elements provide constraints on helicity-amplitudes used to describe exclusive vector-meson production. Recent results from the HERMES experiment on the production of rho, omega and phi mesons will be presented.
Exclusive vector meson production at HERMES
Movsisyan, Aram
2014-06-01
Exclusive electroproduction of vector mesons has been measured on hydrogen and deuterium targets at HERMES using the 27.6 GeV electron/positron beam of HERA. From this process, more information can be obtained about generalized parton distributions (GPDs), which provide a unified description of the structure of hadrons embedding longitudinal-momentum distributions (ordinary PDFs) and transverse-position information (form factors). The study of the azimuthal distribution of the decay products via spin-density matrix elements provide constraints on helicity-amplitudes used to describe exclusive vector-meson production. Recent results from the HERMES experiment on the production of rho, omega and phi mesons will be presented.
Euclidean fields: vector mesons and photons
International Nuclear Information System (INIS)
Free transverse vector fields of mass >= 0 are studied. The model is related to the usual free vector meson and electromagnetic quantum field theories by extension of the field operators from transverse to arbitrary test functions. The one-particle states in transverse gauge and their localization are described. Reflexion positivity is proved and derived are free Feynman-Kac-Nelson formulas. An Euclidean approach to a photon field in a spherical world using dilatation covariance and inversions is given
Vector meson contributions in ε'/ε
International Nuclear Information System (INIS)
The CP-violating parameter -bar '/-bar is computed using the low-energy dynamics of the chiral theory supplemented by vector resonances. The divergent contributions coming from strong π-π scattering are tamed by vector-meson exchange terms. This amounts to softening the fast growing high-energy behaviour of π-π scattering. The final result for ε'/ε shows a smooth dependence on the cut-off where low energy dynamics is matched with that of QCD
Terschlüsen, Carla
2016-01-01
The contributions of one-loop diagrams with dynamical vector mesons to masses and decay constants of pseudoscalar mesons are determined. Hereby, a relativistic Lagrangian for both the pseudoscalar-meson octet and the vector-meson nonet is used. The vector mesons are given in the antisymmetric tensor representation. Both the differences between static and dynamical vector mesons and the differences between calculations with and without vector mesons are studied as functions of the light quark mass.
Light Vector Mesons in the Nuclear Medium
Wood, M H; Weygand, D P; Djalali, C; Tur, C; Mosel, U; Mühlich, P; Adams, G; Amaryan, M J; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Casey, L; Chen, S; Cheng, L; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Crannell, H; Credé, V; Cummings, J P; Dashyan, N; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dickson, R; Dodge, G E; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Feldman, G; Feuerbach, R J; Fradi, A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gordon, C I O; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hanretty, C; Hardie, J; Hassall, N; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Jüngst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Khetarpal, P; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Krahn, Z; Kramer, L H; Kubarovski, V; Kühn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Ji, Li; Livingston, K; Lu, H Y; MacCormick, M; Markov, N; Mattione, P; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Moriya, K; Morrow, S A; Moteabbed, M; Müller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabati, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S; Stepanyan, S S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Tkabladze, A; Tkachenko, S; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Williams, M; Wolin, E; Yegneswaran, A; Zana, L; Zhang, B; Zhang, J; Zhao, B; Zhao, Z W
2008-01-01
The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional...
Vector mesons in strongly interacting matter
Indian Academy of Sciences (India)
Volker Metag
2010-08-01
Properties of hadrons in strongly interacting matter provide a link between quantum chromodynamics in the strong coupling regime and experimental observables. QCD sum rules show that changes in chiral and higher-order condensates, partially associated with a restoration of chiral symmetry in the nuclear medium, will lead to significant changes in the low-energy spectrum of hadrons. Heavy-ion collisions and reactions with elementary probes have been used to extract experimental information on in-medium properties of hadrons. Results on the light vector mesons ρ, , and , are summarized and compared. Almost all experiments report a softening of the spectral functions with increases in width depending on the density and temperature of the hadronic environment. No evidence for mass shifts is found in majority of the experiments. Remaining inconsistencies among experimental results demonstrate the need for further measurements with higher statistics and inrceased acceptance in particular for low-momentum vector mesons.
New Anomaly of the Axial-Vector Current
Institute of Scientific and Technical Information of China (English)
HE Han-Xin
2001-01-01
By computing the axial-vector current operator equation, we find the anomalous axial-vector curl equation besides the well-known anomalous axial-vector divergence equation (the Adler-Bell-Jackiw anomaly) and discuss its implication.``
Chiral phase transition in the vector meson extended linear sigma model
Kovács, Péter; Wolf, György
2015-01-01
In the framework of an SU(3) (axial)vector meson extended linear sigma model with additional constituent quarks and Polyakov loops, we investigate the effects of (axial)vector mesons on the chiral phase transition. The parameters of the Lagrangian are set at zero temperature and we use a hybrid approach where in the effective potential the constituent quarks are treated at one-loop level and all the mesons at tree-level. We have four order parameters, two scalar condensates and two Polyakov loop variables and their temperature and baryochemical potential dependence are determined from the corresponding field equations. We also investigate the changes of the tree-level scalar meson masses in the hot and dense medium.
Nonperturbative Aspects of Axial Vector Vertex
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang
2002-01-01
It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.
Composite vector mesons and string models
International Nuclear Information System (INIS)
The author discusses the general question of gauge mesons in extended supergravities, and whether such theories can produce the gauge mesons corresponding to a group at least as large as SU(3) x SU(2) x U(1). An exciting conjecture in this direction was made a few years ago by previous authors, who suggested that there might be composite SU(8) gauge mesons in a supergravity model known as the N=8 model. Until we have a consistent, renormalizable theory of supergravity we cannot really obtain any indication of the truth or falseness of that conjecture. One form of the Neveu-Schwarz string model has been shown to be a theory of supergravity; it is finite at the one-loop level and probably in any order of perturbation theory. The discussion is within the framework of this model. The author questions whether massive vector mesons can possibly lose their mass due to interactions. Arguments have been given on both sides of this question, and the author believes that this can occur under certain circumstances. Our conclusions is that the FNNS mechanism will create a gauge symmetry in addition to the rigid symmetry
Scattering of vector mesons off nucleons
International Nuclear Information System (INIS)
We construct a relativistic and unitary approach to 'high' energy pion- and photon-nucleon reactions taking the πN, πΔ, ρN, ωN, ηN, K Λ, KΣ final states into account. Our scheme dynamically generates the s- and d-wave nucleon resonances N(1535), N(1650) and N(1520) and isobar resonances Δ(1620) and δ(1700) in terms of quasi-local interaction vertices. The description of photon-induced processes is based on a generalized vector-meson dominance assumption which directly relates the electromagnetic quasi-local 4-point interaction vertices to the corresponding vertices involving the ρ and ω fields. We obtain a satisfactory description of the elastic and inelastic pion- and photon-nucleon scattering data in the channels considered. The resulting s-wave ρ- and ω-nucleon scattering amplitudes are presented. Using these amplitudes we compute the leading density modification of the ρ and ω mass distributions in nuclear matter. We find a repulsive mass shift for the ω meson at small nuclear density but predict considerable strength in resonance-hole like ω-meson modes. Compared to previous calculations our result for the ρ-meson spectral function shows a significantly smaller in-medium effect. This reflects a not too large coupling strength of the N(1520) resonance to the ρN channel. (orig.)
An Unbroken Axial Vector Current Conservation Law
Sharafiddinov, Rasulkhozha S
2015-01-01
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space i...
The projected chiral soliton model with vector mesons
International Nuclear Information System (INIS)
We investigate the solitonic sector of the massive Yang-Mills Lagrangian including σ-, π-, ω-, ρ-, A-mesons as well as valence quarks and apply it to the calculation of some baryonic properties. We perform the canonical quantization which requires the explicit elimination of the time-like components of the vector fields. A mean-field Fock state with hedgehog symmetry is defined as a product of a Slater determinant for the quarks in a 1s-state and coherent states for the mesons. We project this mean-field Fock state onto good spin and isospin by means of Peierls-Yoccoz operators and obtain, after fitting the nucleon mass, a NΔ splitting which is about 80% of the experimental value. A good description of electromagnetic and axial static properties as well as form factors of the nucleon is achieved. Furthermore, the spin content of the nucleon is analyzed in terms of the flavor singlet axial vector coupling constant giving g0A similar 0.44 independently of the input parameters. Finally, the proton-neutron hadronic mass spitting is estimated in the model giving Mn-Mp=2.38±0.55 MeV, the errors reflecting the uncertainty in the up and down quark masses. (orig.)
Holographic Picture of Heavy Vector Meson Melting
Braga, Nelson R F; Diles, Saulo
2016-01-01
The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton proton collision, serves as an important indication of the formation of a thermal medium, the quark gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one fla...
\\(\\tau\\) vector and axial-vector spectral functions in the extended linear sigma model
Habersetzer, A
2015-01-01
The extended linear sigma model describes the vacuum phenomenology of scalar, pseudoscalar, vector and axial-vector mesons at energies \\(\\simeq 1\\text{ GeV}\\). We combine the chiral \\(U(2)_L\\times U(2)_R\\) symmetry of this model with a local \\(SU(2)_L\\times U(1)_Y\\) symmetry and obtain a gauge invariant effective description for electroweak interaction of hadrons in the vacuum. Vector and axial-vector spectral functions can be described well by two intermediate resonances \\(\\rho\\) and \\(a_1\\). They are implemented into this model as chiral partners and yield the predominant contributions to both spectral functions. However, the contributions that arise from the non-resonant decay channels of the weak charged \\(W\\) bosons are essential for reproducing the lineshapes of the spectral functions.
Asymmetric vector mesons produced in nuclear collisions
Dremin, I M
2016-01-01
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further detalized in quantum mechanics as the interference of direct and continuum states in Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction ...
Improving the lattice axial vector current
Horsley, R; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M
2015-01-01
For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order $O(a)$ effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.
Valid QCD sum rules for vector mesons in nuclear matter
International Nuclear Information System (INIS)
QCD sum rules for vector mesons (ρ, ω, φ) in nuclear matter are re-examined with an emphasis on the reliability of various sum rules. Monitoring the continuum contribution and the convergence of the operator product expansion plays crucial role in determining the validity of a sum rule. The uncertainties arising from less than precise knowledge of the condensate values and other input parameters are analyzed via a Monte Carlo error analysis. Our analysis leaves no doubt that vector-meson masses decrease with increasing density. This resolves the current debate over the behavior of the vector-meson masses and the sum rules to be used in extracting vector meson properties in nuclear matter. We find a ratio of ρ-meson masses of mρ*/mρ = 0.78 ± 0.08 at nuclear matter saturation density. (author). 37 refs., 6 figs
Strong decays of vector mesons to pseudoscalar mesons in the relativistic quark model
Ebert, D; Galkin, V O
2014-01-01
Strong decays of vector ($^3S_1$) mesons to the pair of pseudoscalar ($^1S_0$) mesons are considered in the framework of the microscopic decay mechanism and the relativistic quark model based on the quasipotential approach. The quark-antiquark potential, which was previously used for the successful description of meson spectroscopy and electroweak decays, is employed as the source of the $q\\bar q$ pair creation. The relativistic structure of the decay matrix element, relativistic contributions and boosts of the meson wave functions are comprehensively taken into account. The calculated rates of strong decays of light, heavy-light mesons and heavy quarkonia agree well with available experimental data.
Chiral structure of vector and axial-vector tetraquark currents
International Nuclear Information System (INIS)
We investigate the chiral structure of local vector and axial-vector tetraquark currents, and study their chiral transformation properties. We consider the charge-conjugation parity and classify all the isovector vector and axial-vector local tetraquark currents of quantum numbers IG JPC =1-1-+, IG JPC =1+1--, IG JPC = 1-1++ and IG JPC = 1+1+-. We find that there is a one to one correspondence among them. Using these currents, we perform QCD sum rule analyses. Our results suggest that there is a missing b1 state having IG JPC =1+1+- and a mass around 1.47-1.66 GeV. (orig.)
Beauty vector meson decay constants from QCD sum rules
International Nuclear Information System (INIS)
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity
Beauty Vector Meson Decay Constants from QCD Sum Rules
Lucha, Wolfgang; Simula, Silvano
2016-01-01
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
Beauty vector meson decay constants from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2016-01-01
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
Beauty vector meson decay constants from QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Lucha, Wolfgang [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); Melikhov, Dmitri [Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, A-1050 Vienna (Austria); D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146, Roma (Italy)
2016-01-22
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
Existence of the critical endpoint in the vector meson extended linear sigma model
Kovács, Peter; Wolf, György
2016-01-01
The chiral phase transition of the strongly interacting matter is investigated at nonzero temperature and baryon chemical potential mu_B within an extended (2+1) flavor Polyakov constituent quark-meson model which incorporates the effect of the vector and axial vector mesons. The effect of the fermionic vacuum and thermal fluctuations computed from the grand potential of the model is taken into account in the curvature masses of the scalar and pseudoscalar mesons. The parameters of the model are determined by comparing masses and tree-level decay widths with experimental values in a chi^2-minimization procedure which selects between various possible assignments of scalar nonet states to physical particles. We examine the restoration of the chiral symmetry by monitoring the temperature evolution of condensates and the chiral partners' masses and of the mixing angles for the pseudoscalar eta-eta' and the corresponding scalar complex. We calculate the pressure and various thermodynamical observables derived from...
The Effect of Vector Meson Decays on Dihadron Fragmentation Functions
Matevosyan, Hrayr H; Bentz, Wolfgang
2014-01-01
Dihadron Fragmentation Functions (DFF) provide a vast amount of information on the intricate details of the parton hadronization process. Moreover, they provide a unique access to the "clean" extraction of nucleon transversity parton distribution functions in semi inclusive deep inelastic two hadron production process with a transversely polarised target. On the example of the u \\to \\pi^+ \\pi^-, we analyse the properties of unpolarised DFFs using their probabilistic interpretation. We use both the NJL-jet hadronization model and PYTHIA 8.1 event generator to explore the effect of the strong decays of the vector mesons produced in the quark hadronization process on the pseudoscalar DFFs. Our study shows that, even though it is less probable to produce vector mesons in the hadronization process than pseudo scalar mesons of the same charge, the products of their strong decays drastically affect the DFFs for pions because of the large combinatorial factors. Thus, an accurate description of both vector meson produ...
Massive Yang-Mills for vector and axial-vector spectral functions at finite temperature
Hohler, Paul M.; Rapp, Ralf
2016-05-01
The hadronic mechanism which leads to chiral symmetry restoration is explored in the context of the ρπa1 system using Massive Yang-Mills, a hadronic effective theory which governs their microscopic interactions. In this approach, vector and axial-vector mesons are implemented as gauge bosons of a local chiral gauge group. We have previously shown that this model can describe the experimentally measured vector and axial-vector spectral functions in vacuum. Here, we carry the analysis to finite temperatures by evaluating medium effects in a pion gas and calculating thermal spectral functions. We find that the spectral peaks in both channels broaden along with a noticeable downward mass shift in the a1 spectral peak and negligible movement of the ρ peak. The approach toward spectral function degeneracy is accompanied by a reduction of chiral order parameters, i.e., the pion decay constant and scalar condensate. Our findings suggest a mechanism where the chiral mass splitting induced in vacuum is burned off. We explore this mechanism and identify future investigations which can further test it.
Quantum chromodynamics with infinite number of vector mesons
International Nuclear Information System (INIS)
It is supposed that families of vector mesons ρ, ψ, Υ contain an infinite number of resonances with gradually increasing widths. The asymptotic freedom requirement involves a relationship between the electronic width of a resonance and its mass derivative over the number. Using of this relationship it is shown that for the families of ψ and Υ mesons the moment from experimental function R(s)is egual to the sum of the moment from a bare quark loop and the edge term which arised from replacing of summation by integration. These equalities are fulfilled up to 1% for 60 moments in the ψ-meson family and up to 2% for 96 moments in the Υ-meson family. The electronic widths of the considered resonances and the ρ-meson mass are calculated
Interaction of vector mesons with baryons and nuclei
International Nuclear Information System (INIS)
After some short introductory remarks on particular issues on the vector mesons in nuclei, in this paper, we present a short review of recent developments concerning the interaction of vector mesons with baryons and with nuclei from a modern perspective using the local hidden gauge formalism for the interaction of vector mesons. We present results for the vector–baryon interaction and in particular for the resonances which appear as composite states, dynamically generated from the interaction of vector mesons with baryons, taking also the mixing of these states with pseudoscalars and baryons into account. We then venture into the charm sector, reporting on hidden charm baryon states around 4400 MeV, generated from the interaction of vector mesons and baryons with charm, which have a strong repercussion on the properties of the J/ΨN interaction. We also address the interaction of K* with nuclei and make suggestions to measure the predicted huge width in the medium by means of transparency ratio. The formalism is extended to study the phenomenon of J/ψ suppression in nuclei via J/ψ photo-production reactions. (author)
Two-phase model with vector-meson stabilization
International Nuclear Information System (INIS)
We present a topological chiral two-phase model for baryons with isoscalar vector meson stabilizing term in the soliton sector instead of the usual Skyrme stabilizing term and compare with a closely related model where the omega meson has been eliminated in the limit of infinite mass and coupling constant. In both cases the static properties come out well and the energy is insensitive to changes in the bag radius, as in other nonperturbative two-phase models. (orig.)
Puzzle of vector mesons: solution with account of multiquark states
International Nuclear Information System (INIS)
Strong decays of vector mesons above 1 GeV are discussed in the framework of the quark model. A scenario is proposed to resolve the situation with branching ratios by means of the concept of q2q2 states coupled to qantiq mesons. The branching ratios of ρ(1450) and ρ(1700) as well as ρ1(1270) and C(1480) may be qualitatively explained in the presented picture
Sum rule analysis of vector and axial-vector spectral functions with excited states in vacuum
Hohler, Paul M.; Rapp, Ralf
2012-01-01
We simultaneously analyze vector and axial-vector spectral functions in vacuum using hadronic models constrained by experimental data and the requirement that Weinberg-type sum rules are satisfied. Upon explicit inclusion of an excited vector state, viz. rho', and the requirement that the perturbative continua are degenerate in vector and axial-vector channels, we deduce the existence of an excited axial-vector resonance state, a1', in order that the Weinberg sum rules are satisfied. The resu...
Properties of strange vector mesons in dense and hot matter
International Nuclear Information System (INIS)
We investigate the in-medium properties of strange vector mesons (K⁎ and K¯⁎) in dense and hot nuclear matter based on chirally motivated models of the meson self-energies. We parameterise medium effects as density or temperature dependent effective masses and widths, obtain the vector meson spectral functions within a Breit–Wigner prescription (as often used in transport simulations) and study whether such an approach can retain the essential features of full microscopic calculations. For μB≠0 the medium corrections arise from K¯⁎(K⁎)N scattering and the K¯⁎(K⁎)→K¯(K)π decay mode (accounting for in-medium K¯(K) dynamics). We calculate the scattering contribution to the K⁎ self-energy based on the hidden local symmetry formalism for vector meson nucleon interactions, whereas for the K¯⁎ self-energy we implement recent results from a self-consistent coupled-channel determination within the same approach. For μB≃0 and finite temperature we rely on a phenomenological approach for the kaon self-energy in a hot pionic medium consistent with chiral symmetry, and evaluate the K¯⁎(K⁎)→K¯(K)π decay width. The emergence of a mass shift at finite temperature is studied with a dispersion relation over the imaginary part of the vector meson self-energy
Vector meson production from a polarized nucleon
International Nuclear Information System (INIS)
We provide a framework to analyze the electroproduction process ep→epρ with a polarized target, writing the angular distribution of the ρ decay products in terms of spin density matrix elements that parameterize the hadronic subprocess γ*p → ρp. Using the helicity basis for both photon and meson, we find a representation in which the expressions for a polarized and unpolarized target are related by simple substitution rules. (orig.)
SU(3)--Breaking Effects in Axial--Vector Couplings of Octet Baryons
Gensini, P M; Gensini, Paolo M.; Violini, Galileo
1993-01-01
Present evidence on baryon axial--vector couplings is reviewed, the main emphasis being on internal consistency between asymmetry and rate data. A complete account of all {\\sl small} terms in the Standard Model description of these latter leads to {\\sl both} consistency {\\sl and} evidence for breaking of flavour SU(3) in the axial couplings of octet baryons. Talk presented at "5th Int. Sympos. on Meson--Nucleon Physics and the Structure of the Nucleon", Boulder, CO, sept. 1993. To be published in $\\pi N$ Newsletter.
Quark fragmentation into vector and pseudoscalar mesons at LEP
International Nuclear Information System (INIS)
Some data on the ratio of the ratio of vector + pseudoscalar mesons, V/(V + P), and the probability of helicity 0 vector states, poo (V), are now available from LEP. A possible relation between such two quantities and their interpretation in terms of polarized fragmentation functions are discussed; numerical estimates are given for the relative occupancies of K0 and K0*, D and D*, B and B* states. (author)
Relativistic bound states: a mass formula for vector mesons
International Nuclear Information System (INIS)
In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained
High-energy exclusive leptoproduction of vector mesons
International Nuclear Information System (INIS)
The physics of diffractive vector meson production in virtual photon nucleon scattering at NMC energies is reviewed. A particular attention is paid to the physical aspects of the reaction and how they influence the observables. The reaction is a good probe to investigate both soft exchange mechanisms and hadronic wave functions. Extension to either HERA or ELFE kinematics is sketched out. (orig.)
Inclusive spectra of vector mesons in the dual parton model
Energy Technology Data Exchange (ETDEWEB)
Batunin, A.V.; Likhoded, A.K.; Tolstenkov, A.N.
1985-08-01
The dual parton model is used to calculate the inclusive spectra of vector mesons, which are then compared to the experimental data on the Kp interaction. It is proposed that the hadron distribution in the string be described by an expression which explicitly includes the valence nature of the quarks forming the string.
Vector-meson mass generation in the chiral Schwinger model
International Nuclear Information System (INIS)
It is shown that an arbitrary mass is generated for the vector meson in the chiral Schwinger model, a model which has caused some controversy. Our arguments are based on ambiguities in the dimensional regularization of quantum field theory with γ5. (orig.)
Magnetic Moment of Vector Mesons in the Background Field Method
Lee, F X; Wilcox, Walter
2007-01-01
We report some results for the magnetic moments of vector mesons extracted from mass shifts in the presence of static external magnetic fields. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method.
An Unbroken Axial-Vector Current Conservation Law
Sharafiddinov, Rasulkhozha S.
2016-04-01
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space in which a neutrino is characterized by left as well as by right space-time coordinates. Therefore, it is not surprising that whatever the main purposes experiments about a quasielastic axial-vector mass say in favor of an axial-vector mirror Minkowski space-time.
Vector meson production in the Golec-Biernat Wuesthoff model
International Nuclear Information System (INIS)
We apply the Golec-Biernat Wuesthoff model in the calculation of vector meson photo- and electroproduction. Starting from very simple non-relativistic wave functions we show that the model provides a good description of J/Ψ cross sections in wide Q2 and W ranges. For the light mesons one obtains the approximately correct W-dependence and ratio of longitudinal to transverse cross sections, although in this case the normalization, affected mainly by the wave function employed, is not in good agreement with data
Electromagnetic production of vector mesons at low energies
International Nuclear Information System (INIS)
The authors have investigated exclusive photoproduction of light vector mesons (ω, ρ and φ) on the nucleon at low energies. In order to explore the questions concerning the so-called missing nucleon resonances, they first establish the predictions from a model based on the Pomeron and meson exchange mechanisms. They have also explored the contributions due to the mechanisms involving s- and u-channel intermediate nucleon state. Some discrepancies found at the energies near threshold and large scattering angles suggest a possibility of using this reaction to identify the nucleon resonances
Vector meson inclusive spectra in dual parton model
International Nuclear Information System (INIS)
The inclusive spectra of vector mesons are calculated in the framework of the dual parton model, and their comparison with the experimental data on Kp interaction is carried out. An expression is given to describe hadron distributions in a string, which takes into account the valence nature of quarks, forming the string. This allowance for valence quarks in the string is important up to the ISR energies. It turned out that the regard for the topology of the processes allows one to eliminate the contradiction in model description of K*-meson production in Kp interactions
Peculiarities of massive vector mesons and their zero mass limits
International Nuclear Information System (INIS)
Massive QED, in contrast with its massless counterpart, possesses two conserved charges; one is a screened (vanishing) Maxwell charge which is directly associated with the massive vector mesons through the identically conserved Maxwell current, while the presence of a particle-antiparticle counting charge depends on the matter. A somewhat peculiar situation arises for couplings of Hermitian matter fields to massive vector potentials; in that case the only current is the screened Maxwell current and the coupling disappears in the massless limit. In the case of self-interacting massive vector mesons the situation becomes even more peculiar in that the usually renormalizability guaranteeing validity of the first order power-counting criterion breaks down in second order and requires the compensatory presence of additional Hermitian H-fields. Some aspect of these observation have already been noticed in the BRST gauge theoretic formulation, but here we use a new setting based on string-local vector mesons which is required by Hilbert space positivity (“off-shell unitarity”). This new formulation explains why spontaneous symmetry breaking cannot occur in the presence of higher spin s≥1 fields. The coupling to H-fields induces Mexican hat-like self-interactions; they are not imposed and bear no relation with spontaneous symmetry breaking; they are rather consequences of the foundational causal localization properties realized in a Hilbert space setting. In the case of self-interacting massive vector mesons their presence is required in order to maintain the first order power-counting restriction of renormalizability also in second order. The presentation of the new Hilbert space setting for vector mesons which replaces gauge theory and extends on-shell unitarity to its off-shell counterpart is the main motivation for this work. The new Hilbert space setting also shows that the second order Lie-algebra structure of self-interacting vector mesons is a consequence of
Peculiarities of massive vector mesons and their zero mass limits
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert, E-mail: schroer@zedat.fu-berlin.de [CBPF, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro (Brazil); Institut für Theoretische Physik, FU-Berlin, Arnimallee 14, 14195, Berlin (Germany)
2015-08-12
Massive QED, in contrast with its massless counterpart, possesses two conserved charges; one is a screened (vanishing) Maxwell charge which is directly associated with the massive vector mesons through the identically conserved Maxwell current, while the presence of a particle-antiparticle counting charge depends on the matter. A somewhat peculiar situation arises for couplings of Hermitian matter fields to massive vector potentials; in that case the only current is the screened Maxwell current and the coupling disappears in the massless limit. In the case of self-interacting massive vector mesons the situation becomes even more peculiar in that the usually renormalizability guaranteeing validity of the first order power-counting criterion breaks down in second order and requires the compensatory presence of additional Hermitian H-fields. Some aspect of these observation have already been noticed in the BRST gauge theoretic formulation, but here we use a new setting based on string-local vector mesons which is required by Hilbert space positivity (“off-shell unitarity”). This new formulation explains why spontaneous symmetry breaking cannot occur in the presence of higher spin s≥1 fields. The coupling to H-fields induces Mexican hat-like self-interactions; they are not imposed and bear no relation with spontaneous symmetry breaking; they are rather consequences of the foundational causal localization properties realized in a Hilbert space setting. In the case of self-interacting massive vector mesons their presence is required in order to maintain the first order power-counting restriction of renormalizability also in second order. The presentation of the new Hilbert space setting for vector mesons which replaces gauge theory and extends on-shell unitarity to its off-shell counterpart is the main motivation for this work. The new Hilbert space setting also shows that the second order Lie-algebra structure of self-interacting vector mesons is a consequence of
Chiral phase transition scenarios from the vector meson extended Polyakov quark meson model
Kovács, Péter
2015-01-01
Chiral phase transition is investigated in an $SU(3)_L \\times SU(3)_R$ symmetric vector meson extended linear sigma model with additional constituent quarks and Polyakov loops (extended Polyakov quark meson model). The parameterization of the Lagrangian is done at zero temperature in a hybrid approach, where the mesons are treated at tree-level, while the constituent quarks at 1-loop level. The temperature and baryochemical potential dependence of the two assumed scalar condensates are calculated from the hybrid 1-loop level equations of states. The order of the phase transition along the $T=0$ and $\\mu_B=0$ axes are determined for various parameterization scenarios. We find that in order to have a first order phase transition at $T=0$ as a function of $\\mu_B$ a light isoscalar particle is needed.
Double vector meson production from the BFKL equation
Gonçalves, V P
2005-01-01
The double vector meson production in two photon collisions is addressed assuming that the color singlet $t$-channel exchange carries large momentum transfer. We consider the non-forward solution of the BFKL equation at high energy and large momentum transfer and estimate the total and differential cross section for the process $\\gamma \\gamma \\to V_1 V_2$, where $V_1$ and $V_2$ can be any two vector mesons ($V_i = \\rho, \\omega, \\phi, J/\\Psi, \\Upsilon$). A comparison between our predictions and previous theoretical results obtained at Born level or assuming the Pomeron-exchange factorization relations is presented. Our results demonstrate that the BFKL dynamics implies an enhancement of the cross sections. Predictions for the future linear colliders (TESLA, CLIC and ILC) are given.
The Ideal Mixing Departure in Vector Meson Physics
Epele, L N; Grunfeld, A G
2002-01-01
In this work we study the departure for the ideal $\\phi-\\omega$ mixing angle in the frame of the Nambu-Jona-Lasinio model. We have shown that in that context, the flavour symmetry breaking is unable to produce the shifting in the mixing angle. We introduce a nonet symmetry breaking in the neutral vector sector to regulate the non-strange content of the $\\phi$ meson. The phenomenon is well reproduced by our proposal.
On relativistic scalar and vector mesons with harmonic oscillatorlike interactions
International Nuclear Information System (INIS)
Relativistic descriptions for spin 0 and 1 particles of nonzero restmasses are known for a long time as the so-called Kemmer of Sakata-Taketani formulations. Through harmonic osicllatorlike interactions, we study the nonrelativistic limit of the corresponding wave equations in connection with expected spin-orbit terms. Typical Foldy-Wouthuysen developments are included in these approaches with exact results up to required orders for interacting vector mesons only. (orig.)
On relativistic scalar and vector mesons with harmonic oscillatorlike interactions
Energy Technology Data Exchange (ETDEWEB)
Debergh, N.; Ndimubandi, J.; Strivay, D. (Liege Univ. (Belgium). Theoretical and Mathematical Physics)
1992-11-01
Relativistic descriptions for spin 0 and 1 particles of nonzero restmasses are known for a long time as the so-called Kemmer of Sakata-Taketani formulations. Through harmonic osicllatorlike interactions, we study the nonrelativistic limit of the corresponding wave equations in connection with expected spin-orbit terms. Typical Foldy-Wouthuysen developments are included in these approaches with exact results up to required orders for interacting vector mesons only. (orig.).
Interpreting f0(600) and a0(980) as \\bar q - q states from an Nf=3 Sigma Model with (Axial-)Vectors
Parganlija, Denis
2011-01-01
We address the question whether it is possible to interpret the low-lying scalar mesons f0(600) and a0(980) as \\bar q - q states within a U(3)xU(3) Linear Sigma Model containing vector and axial-vector degrees of freedom.
Vector mesons in medium in a transport approach
International Nuclear Information System (INIS)
In this thesis we use a transport-model approach to study the observability of in-medium modifications of vector mesons in various setups. In the past, a number of possible medium-modification schemes have been proposed, including effects like collisional broadening, a pole-mass shift (related to a partial restoration of chiral symmetry) and more complex scenarios. However, stringent experimental evidence turned out to be extremely hard to obtain. We use the Giessen BUU model (GiBUU) to study vector-meson production in proton-nucleus, nucleus-nucleus and photon-nucleus collisions. To observe in-medium changes of these mesons, the dilepton decay mode is particularly well-suited, since the leptons do not interact strongly with the surrounding hadronic medium. As an alternative, also hadronic decay modes like ω→π0γ are used, which are subject to hadronic final-state interaction, however. After a general introduction of the model, the first part of the thesis deals with dilepton spectra from pp, pA and AA reactions in the few-GeV regime, as measured by the DLS and HADES detectors. The DLS spectra pose a long-standing puzzle and have never been fully explained to date. However, they have been confirmed experimentally by the second-generation measurements of the HADES collaboration at GSI. Our investigations aim to give new impulses to the solution of the ''DLS puzzle'' and at the same time explain the new HADES data. In particular, we achieve an improved description of the elementary pp collisions by consistently incorporating effects of the baryonic resonances, which have often been neglected or underestimated in previous studies. Such effects already proved to be essential for the in-medium self-energies of vector mesons in heavy-ion collisions at higher energies (measured by the NA60 detector). We show that at low energies especially the rho meson's coupling to baryon resonances can influence dilepton spectra - even in elementary pp collisions. Such effects
Vector and axial currents in Wilson chiral perturbation theory
International Nuclear Information System (INIS)
We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory, the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two-flavor theory. Our result differs from previously published ones.
Vacuum phenomenology of the chiral partner of the nucleon in a linear sigma model with vector mesons
International Nuclear Information System (INIS)
We investigate a linear sigma model with global chiral U(2)RxU(2)L symmetry. The mesonic degrees of freedom are the standard scalar and pseudoscalar mesons and the vector and axial-vector mesons. The baryonic degrees of freedom are the nucleon, N, and its chiral partner, N*, which is usually identified with N(1535). The chiral partner is incorporated in the so-called mirror assignment, where the nucleon mass is not solely generated by the chiral condensate but also by a chirally invariant mass term, m0. The presence of (axial-) vector fields modifies the expressions for the axial-coupling constants of the nucleon, gAN, and its partner, gAN*. Using experimental data for the decays N*→Nπ and a1→πγ, as well as lattice results for gAN* we infer that in our model m0∼500 MeV, i.e., an appreciable amount of the nucleon mass originates from sources other than the chiral condensate. We test our model by evaluating the decay N*→Nη and the s-wave nucleon-pion scattering lengths a0(±).
Effective Lagrangian in QCD: vector mesons and skyrmions physics
International Nuclear Information System (INIS)
The purpose of this communication is two fold. We first show that the proper introduction of the triplet of vector mesons, ρ, solve in an unique way the confusing question of how to stabilize the baryon solitons (Skyrmions); moreover it fixes the value of the (a-dimensional) constant in the Skyrme term as e ≅ g ρππ, explaining the origin of such a term. Second we shall indicate the numerical and analytical support for the main hypothesis made: the ρ mesons are the gauge particles associated to SUV(2), the hidden symmetry of non linear σ model. An outline of the analytical framework is given, and the numerical profile of the soliton solution, F(r), is shown, comparing the results with the Skyrme solution and its static properties
Energy Technology Data Exchange (ETDEWEB)
Santini, Elvira
2008-02-15
The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)
International Nuclear Information System (INIS)
The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)
An Axial Vector Photon in a Mirror World
Sharafiddinov, Rasulkhozha S
2015-01-01
The unity of symmetry laws emphasizes, in the case of a mirror CP-even Dirac Lagrangian, the ideas of the left- and right-handed axial-vector photons referring to long- and short-lived bosons of true neutrality, respectively. Such a difference in lifetimes expresses the unidenticality of masses, energies and momenta of axial-vector photons of the different components. They define the unified field theory equation of C-odd particles with an integral spin. Together with a new equation of a theory of truly neutral particles with the half-integral spin, the latter reflects the availability in their nature of the second type of the local axial-vector gauge transformation responsible for origination in the Lagrangian of C-oddity of an interaction Newton component giving an axial-vector mass to all the interacting particles and fields. The mirror axial-vector mass, energy and momentum operators constitute a CP-invariant equation of quantum mechanics, confirming that each of them can individually influence on matter ...
An Axial-Vector Photon in a Mirror World
Sharafiddinov, Rasulkhozha S.
2016-03-01
The unity of symmetry laws emphasizes, in the case of a mirror CP-even Dirac Lagrangian, the ideas of the left- and right-handed axial-vector photons referring to long- and short-lived bosons of true neutrality, respectively. Such a difference in lifetimes expresses the unidenticality of masses, energies and momenta of axial-vector photons of the different components. They define the unified field theory equation of C-odd particles with an integral spin. Together with a new equation of a theory of truly neutral particles with the half-integral spin, the latter reflects the availability in their nature of the second type of the local axial-vector gauge transformation responsible for origination in the Lagrangian of C-oddity of an interaction Newton component giving an axial-vector mass to all the interacting particles and fields. The mirror axial-vector mass, energy and momentum operators constitute a CP-invariant equation of quantum mechanics, confirming that each of them can individually influence on matter field. Thereby, findings suggest at the level of the mass-charge structure of gauge invariance a new equation for the C-noninvariant Lagrangian.
Pion form factor in chiral EFT with explicit vector mesons
International Nuclear Information System (INIS)
Electromagnetic form factor of the Pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. Results are given for the time-like region up to q2∝1 GeV2. To construct an effective field theory with a consistent power counting the complex-mass-renormalization scheme is applied. This can be interpreted as the on-mass-shell renormalization scheme for unstable particles. Reasonably good description of the data is obtained already at next-to-leading order within the given approach.
Exclusive vector meson production at HERA from QCD with saturation
International Nuclear Information System (INIS)
Following recent predictions that the geometric scaling properties of deep inelastic scattering data in inclusive γ*p collisions are expected also in exclusive diffractive processes, we investigate the diffractive production of vector mesons. Using analytic results in the framework of the Balitsky-Kovchegov (BK) equation at nonzero momentum transfer, we extend to the nonforward amplitude a QCD-inspired forward saturation model including charm, following the theoretical predictions for the momentum transfer dependence of the saturation scale. We obtain a good fit to the available HERA data and make predictions for deeply virtual Compton scattering measurements
Radiative decays of vector mesons in the relativistic harmonic oscillator model
Energy Technology Data Exchange (ETDEWEB)
Govorkov, A.B.; Drenska, S.B.
1977-10-01
Radiative M1 transitions both of ordinary vector mesons ..omega.., rho/sup 0/, K/sup 0/*, and also of the new J/psi meson into pseudoscalar mesons ..pi../sup 0/, eta, eta', and K/sup 0/ are discussed in terms of the relativistic model of a four-dimensional harmonic oscillator. The parameters of the oscillator were determined from the experimental data on the decay widths of vector mesons into a lepton pair. For the J/psi meson the relativistic effects lead to an appreciable additional suppression of radiative transitions.
Modified approach for calculating axial vector vacuum susceptibility
International Nuclear Information System (INIS)
We generalize our previous work [Phys. Rev. C 72, 035202 (2005)] on the linear response theory of the dressed quark propagator in the presence of a constant external field to the case of a variable external field in order to make it applicable to a wider class of problems. Using the axial vector vacuum susceptibility as an illustration, we apply this general formalism to extract a new expression for the axial vector vacuum susceptibility in the quantum chromodynamical (QCD) sum rule two-point external field formula. The numerical values of the axial vector vacuum susceptibility are calculated within the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach. A comparison with the results of the previous approaches is given
Vector meson production and nuclear effects in FNAL E866
Energy Technology Data Exchange (ETDEWEB)
Leitch, M.J.; E866/NUSEA Collaboration
1998-12-31
Fermilab E866/NUSEA is a fixed-target experiment which has made a number of measurements of the production of vector mesons by 800 GeV protons. The nuclear dependence results include measurements for J/{psi}, {psi}{prime} and {phi} production over very broad ranges in {chi}{sub F} and p{sub T}, and the J/{psi} decay angular distribution at very large {chi}{sub F}. Preliminary results from measurements on Be, Fe and W targets are presented and discussed in the context of nuclear effects such as energy loss and multiple scattering of the partons, absorption of the produced c{bar c} pairs, and shadowing. Production mechanisms involving color-singlet or color-octet states for the c{bar c} pair which eventually forms a J/{psi} or {psi}{prime}, have implications on the strength of absorption in the nucleus and on the angular distribution of the decay muons. Their preliminary results on the angular distributions versus {chi}{sub F} and p{sub T} indicate some transverse polarization of the J/{psi} as predicted by models of production through the color octet state. The measurements of dimuons in the 1 to 3 GeV region explore the nuclear dependence of the {phi} meson and also the composition of the continuum between the {phi} and the J/{psi}. These studies of vector meson production and it`s nuclear dependence are critical in furthering the understanding of these processes towards future measurements at RHIC and new results from NA50 at CERN, where J/{psi} suppression is predicted to be an important signature of the creation of quark-gluon plasma in heavy-ion collisions.
Dynamical Mass Generation of Light-vector Mesons from QCD Trace Anomaly
Hayata, Tomoya
2013-01-01
Mass formulas for the light-vector mesons written in terms of the gluon condensate i.e., the trace anomaly in quantum chromodynamics (QCD), are derived on the basis of finite energy QCD sum rules. We utilize sum rules with $s^n$ and $s^{n+1/2}$ weights, which relate the energy-weighted spectral sums to the vacuum expectation values of certain commutation relations. After evaluating the commutation relations, the sum rules with $s^n$ weights are reduced to the familiar ones obtained from the operator product expansion (OPE). On the other hand, the sum rules with $s^{n+1/2}$ weights cannot be derived from OPE. They give new relations between the spectral sums and QCD vacuum fluctuations. To derive simple mass formula, we adopt the pole + continuum Ansatz for the spectral function, and solve coupled equations given by the sum rules with $s^{0,1}$ weights and the new sum rule with $s^{1/2}$ weight. Application of our approach to the axial-vector meson is also discussed.
Axial-vector dominance predictions in quasielastic neutrino-nucleus scattering
Amaro, J E
2015-01-01
We use the minimum meson-dominance ansatz compatible with low- and high energy constrains to model the nucleon axial form factor. The parameters of the resulting axial form factor are the masses and widths of the two axial mesons, incorporated as a product of monopoles. By applying the half width rule in a Monte Carlo simulation a distribution of theoretical predictions can be generated for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the $(\
Exclusive central diffractive production of scalar, pseudoscalar and vector mesons
Directory of Open Access Journals (Sweden)
Lebiedowicz P.
2014-01-01
Full Text Available We discuss exclusive central diffractive production of scalar (ƒ0(980, ƒ0(1370, ƒ0(1500, pseudoscalar (η, η′(958, and vector (ρ0 mesons in proton-proton collisions. The amplitudes are formulated in terms of effective vertices required to respect standard rules of Quantum Field Theory and propagators for the exchanged pomeron and reggeons. Different pomeron-pomeron-meson tensorial (vectorial coupling structures are possible in general. In most cases two lowest orbital angular momentum - spin couplings are necessary to describe experimental differential distributions. For the ƒ0(980 and η production the reggeon-pomeron, pomeron-reggeon, and reggeon-reggeon exchanges are included in addition, which seems to be necessary at relatively low energies. The theoretical results are compared with the WA102 experimental data, in order to determine the model parameters. For the ρ0 production the photon-pomeron and pomeron-photon exchanges are considered. The coupling parameters of tensor pomeron and/or reggeon are fixed from the H1 and ZEUS experimental data of the γp → ρ0 p reaction. We present first predictions of this mechanism for pp → ppπ+π− reaction being studied at COMPASS, RHIC, Tevatron, and LHC. Correlation in azimuthal angle between outgoing protons and distribution in pion rapidities at √s = 7 TeV are presented. We show that high-energy central production of mesons could provide crucial information on the spin structure of the soft pomeron.
$K^{*}$ vector meson resonances dynamics in heavy-ion collisions
Ilner, Andrej; Markert, Christina; Bratkovskaya, Elena
2016-01-01
We study the strange vector meson ($K^*, \\bar K^*$) dynamics in relativistic heavy-ion collisions based on the microscopic Parton-Hadron-String Dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees-of-freedom, a phase transition from hadronic to partonic matter - Quark-Gluon-Plasma (QGP) - and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the $K^*, \\bar K^*$ meson dynamics by employing Breit-Wigner spectral functions for the $K^*$'s with self-energies obtained from a self-consistent coupled-channel G-matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p+p, Cu+Cu and Au+Au collisions at energies up to $\\sqrt{{s}_{NN}} = 200$~GeV. Our analysis shows that at relativistic energies most of the final $K^*$s (observed experimentally) are produced during the late hadronic phase, dominantly by the $K+ \\pi \\to K^*$ channel, such that the fraction of the $K^*$s...
International Nuclear Information System (INIS)
The main objective of the present work has been the study of radiative decays of light vector mesons within the framework of NRQM formalism using both non relativistic and relativistic phase spaces. In this work, radiative decay widths of light vector mesons have been obtained using spectroscopic parameters from which the masses of vector and pseudoscalar mesons are obtained. The experimental data on radiative decay rates is understood theoretically in terms of a multipole expansion model. The quality of the calculated results reveal that the non relativistic phase space is not a correct prescription for light vector mesons. Comparison between the photon energy and the mass of the emitting meson reveals that the relativistic phase space is more suited which is seen in the model calculations
Test of OZI violation in vector meson production with COMPASS
Bernhard, Johannes
2011-01-01
The COMPASS experiment at CERN SPS completed its data taking with hadron beams ($p,\\pi, K$) in the years 2008 and 2009 by collecting a large set of data using different targets (H$_{2}$, Pb, Ni, W). These data are dedicated to hadron spectroscopy, where the focus is directed to the search for exotic bound states of quarks and gluons (hybrids, glueballs). The production of such states is known to be favoured in glue-rich environments, e.g. so-called OZI-forbidden processes. The OZI rule postulates that processes with disconnected quark line diagrams are forbidden. On the one hand, the study of the degree of OZI violation in vector meson production yields the possibilty to learn more about the involved production mechanisms. On the other hand it helps to understand the nucleon's structure itself. Contrary to former experiments, the large data sample allows for detailed studies in respect to Feynman's variable $x_{F}$. We present results from the ongoing analysis on the comparison of $\\omega$ and $\\phi$ vector m...
Chiral symmetry restoration and axial vector renormalization for Wilson fermions
Reisz, T
2000-01-01
Lattice gauge theories with Wilson fermions break chiral symmetry. In theU(1) axial vector current this manifests itself in the anomaly. On the otherhand it is generally expected that the axial vector flavour mixing current isnon-anomalous. We give a short, but strict proof of this to all orders ofperturbation theory, and show that chiral symmetry restauration implies aunique multiplicative renormalization constant for the current. This constantis determined entirely from an irrelevant operator in the Ward identity. Thebasic ingredients going into the proof are the lattice Ward identity, chargeconjugation symmetry and the power counting theorem. We compute therenormalization constant to one loop order. It is largely independent of theparticular lattice realization of the current.
Search for coherent production of vector mesons in muon neutrino interactions with Gargamelle
International Nuclear Information System (INIS)
This work is dedicated to the search for axial mesons (A1+, A10) and vector mesons (ρ+, ρ-) produced in elastic coherent reactions between muon neutrinos and C12, F19 and Br80 nuclei. 4 reactions have been taken into account: νμ + N → μ- + A1+ + N; νμ + N → νμ + A10 + N; νμ + N → μ- + ρ+ + N; and νμ + N → νμ + ρ0 + N. The experimental setting involved the cloud chamber Gargamelle and a muon neutrino beam coming from SPS (CERN) facility. A large part of this work has been the analysis of data provided by the cloud chamber in terms of event selection and kinematic event reconstruction. We got the following limiting values for the production cross-section on C12 (the carbon content of the gaseous mix was 88%): σ(coh.,A1+) -39; σ(coh.,ρ+) -39 cm2; σ(coh.,ρ0) -39 cm2; and σ(coh.,A10 -39 cm2. Our results are consistent with other published data through the formula σ(coh.) = A*σ(nucleon) where A is the mass number. (A.C.)
The Klein paradox and the mass spectra of the neutral vector mesons
International Nuclear Information System (INIS)
We use Dirac's equation with a long range harmonic potential to obtain the mass spectra of the neutral vector mesons rho0, ω, PHI, Ksup(0*) and psi. Our predictions are in fairly good agreement with the experimental results. (author)
Inclusive photoproduction of charmed hadrons in the meson vector dominance model
Energy Technology Data Exchange (ETDEWEB)
Likhoded, A.K.; Slabospitskij, S.R.; Tolstenkov, A.N. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij)
1982-05-01
On basis of meson vector dominance model, together with the ''fusion'' model, a mechanism is proposed for the photoproduction of charmed hadrons. In framework of the mechanism pre-- sented, the total cross sections and the inclusive spectra of charmed hadro produced in ..gamma..N ineractions are calculated. According to the thoreical estimates obtained, at low energies the anti D-meson yields are higher than the D-meson yields, That is relevant to the associated production of anti D mesons and ..lambda..sub(c) baryons.
Inclusive photoproduction of charmed hadrons in the meson vector dominance model
International Nuclear Information System (INIS)
On basis of meson vector dominance model, together with the ''fusion'' model, a mechanism is proposed for the photoproduction of charmed hadrons. In framework of the mechanism pre-- sented, the total cross sections and the inclusive spectra of charmed hadro produced in γN ineractions are calculated. According to the thoreical estimates obtained, at low energies the anti D-meson yields are higher than the D-meson yields, That is relevant to the associated production of anti D mesons and Λsub(c) baryons
Vector meson quasinormal modes in a finite-temperature AdS/QCD model
International Nuclear Information System (INIS)
We study the spectrum of vector mesons in a finite temperature plasma. The plasma is holographically described by a black hole AdS/QCD model. We compute the boundary retarded Green’s functions using AdS/CFT prescriptions. The corresponding thermal spectral functions show quasiparticle peaks at low temperatures. Then we calculate the quasinormal modes of vector mesons in the soft-wall black hole geometry and analyse their temperature and momentum dependences
Zöllner, Rico
2016-01-01
Descent extensions of the soft-wall model are used to accommodate two variants of Regge trajectories of vector meson excitations. At non-zero temperatures, various options for either sequential or instantaneous disappearance of vector mesons as normalisable modes are found, thus emulating deconfinement at a certain temperature in the order of the (pseudo-) critical temperature of QCD. The crucial role of the blackness function, which steers the thermodynamic properties of the considered system, is highlighted.
High-energy photoproduction of rho and phi vector mesons
Energy Technology Data Exchange (ETDEWEB)
Callahan, P.H.
1983-01-01
We have studied the photoproduction of rho and phi vector mesons from hydrogen in the Fermilab broad band neutral beam. Forward going two particle final states were detected in a multiparticle spectrometer consisting of two analyzing magnets, a multiwire-proportional-chamber tracking system and a particle identification system. Recoil protons and target fragments were observed in a recoil detector which surrounded the target. The total elastic cross-sections were measured to be independent of energy at the 10% level from 35 to 225 GeV at 10.6 ..mu..b for the rho and from 35 to 165 GeV at 0.64 ..mu..b for the phi. The elastic differential cross-sections were also measured. Approximately 20% of the diffractive rho and phi events were found to be inelastic from an analysis of the recoil detector. The t-dependence of the fraction of diffractive events which are inelastic for both the phi and the psi are consistent with a universal function determined from the rho data.
Diffractive vector meson production in deep inelastic scattering
International Nuclear Information System (INIS)
This thesis seeks to bring comfort to those who are appalled by the usual high level of violence in high energy physics. Although also here we engage in the customary vandalistic smashing together of two particles, the reaction we will study has a happy end in store for both of them. The subject of this thesis will be the reaction: e+p→e+pV where V is one of the vector mesons ρ, ω, φ, J/ψ. We will investigate the situation where the final state positron enters the ZEUS main detector, which indicates that a violent reaction has taken place between the initial state particles, but nevertheless the proton does not break up. The violence with which the positron is scattered characterises the reaction as a Deep Inelastic Scattering (DIS), the fact that the proton does not break up characterises the reaction as diffractive which explains the title of the thesis. Both DIS and diffractive physics will be defined and discussed in the context of this thesis. (orig./WL)
High-energy photoproduction of rho and phi vector mesons
International Nuclear Information System (INIS)
We have studied the photoproduction of rho and phi vector mesons from hydrogen in the Fermilab broad band neutral beam. Forward going two particle final states were detected in a multiparticle spectrometer consisting of two analyzing magnets, a multiwire-proportional-chamber tracking system and a particle identification system. Recoil protons and target fragments were observed in a recoil detector which surrounded the target. The total elastic cross-sections were measured to be independent of energy at the 10% level from 35 to 225 GeV at 10.6 μb for the rho and from 35 to 165 GeV at 0.64 μb for the phi. The elastic differential cross-sections were also measured. Approximately 20% of the diffractive rho and phi events were found to be inelastic from an analysis of the recoil detector. The t-dependence of the fraction of diffractive events which are inelastic for both the phi and the psi are consistent with a universal function determined from the rho data
Masses of light and heavy mesons in a $U(4)_r \\times U(4)_l$ linear sigma model
Eshraim, Walaa I
2014-01-01
We extend the three-flavor linear sigma model with (axial-)vector mesons to four flavors. We compute the masses of (pseudo)scalar and (axial-)vector mesons including open and hidden charmed mesons as well as weak decay constants. The results are in good agreement with experimental data.
One-loop corrections to the baryon axial vector current
Indian Academy of Sciences (India)
M A Hernández-Ruíz
2012-10-01
The symmetry breaking corrections to the pion–baryon couplings vanish to first order in $1/N_{c}$, where $N_{c}$ is the number of colours. Loop graphs with octet and decuplet intermediate states cancel to various orders in $N_{c}$ as a consequence of the large-$N_{c}$ spin-flavour symmetry of QCD baryons. The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large Nc limit. $1/N_{c}$ corrections in the case of $g_{A}$ in QCD are presented here.
Vector Mesons and Baryon Resonances in Nuclear Matter
Post, M.; Mosel, U.
2001-01-01
We calculate the effect of many-body interactions in nuclear matter on the spectral function of $\\rho$ and $\\omega$ meson. In particular, we focus on the role played by baryon resonances in this context.
Fate of QCD sum rules or fate of vector meson dominance in a nuclear medium
Leupold, S
2006-01-01
A current-current correlator with the quantum numbers of the omega meson is studied in a nuclear medium. Using weighted finite energy sum rules and dispersion relations for the current-nucleon forward scattering amplitude it is shown that strict vector meson dominance and QCD sum rules are incompatible with each other. This implies that at least one of these concepts -- which are both very powerful in the vacuum -- has to fade in the nuclear environment.
Vector meson production and inclusive Ks0Ks0 final state at HERA
International Nuclear Information System (INIS)
Measurements of vector mesons at HERA allow a detailed study of diffractive and non-diffractive production mechanisms, fragmentation and decay branching ratios. Results are presented on hadronic resonance measurements. In addition, the first observation of two meson states at masses around 1500 MeV and 1700 MeV are reported using inclusive Ks0Ks0 production in deep inelastic ep scattering in ZEUS at HERA
Vector meson production and inclusive KsKs final state at HERA
Barbi, M
2003-01-01
Measurements of vector mesons at HERA allow a detailed study of diffractive and non-diffractive production mechanisms, fragmentation and decay branching ratios. Results are presented on hadronic resonance measurements. In addition, the first observation of two meson states at masses around 1500 MeV and 1700 MeV are reported using inclusive KsKs production in deep inelastic ep scattering in ZEUS at HERA.
On the vector meson production in Nambu-Jona-Lasinio model
International Nuclear Information System (INIS)
Vector meson production at low energies are analyzed within the chiral invariant effective Lagrangian of the Nambu-Jona-Lasinio-type with the meson and diquark sectors with the different values of coupling constants. The main Feynman diagrams are analyzed and it is shown that the production cross section is sensitive to the parameters of the diquark sector. Comparison of calculated cross section with available experimental data is done. 28 refs.; 5 figs
Inclusive photoproduction of charmed hadrons in the model of vector-meson dominance
Energy Technology Data Exchange (ETDEWEB)
Likhoded, A.K.; Slabospitskii, S.R.; Tolstenkov, A.N.
1982-05-01
On the basis of the vector-dominance model supplemented with the fusion model, a mechanism for photoproduction of charmed hadrons is proposed. In the framework of this mechanism, the total cross sections and inclusive spectra of charmed hadrons in ..gamma..N interactions are calculated. According to the theoretical estimates that are obtained, at low energies the yields of D-bar mesons exceed the yields of D mesons; this is due to pair production of D-bar mesons and ..lambda../sub c/ baryons.
Inclusive photoproduction of charmed hadrons in the model of vector-meson dominance
International Nuclear Information System (INIS)
On the basis of the vector-dominance model supplemented with the fusion model, a mechanism for photoproduction of charmed hadrons is proposed. In the framework of this mechanism, the total cross sections and inclusive spectra of charmed hadrons in γN interactions are calculated. According to the theoretical estimates that are obtained, at low energies the yields of D-bar mesons exceed the yields of D mesons; this is due to pair production of D-bar mesons and Λ/sub c/ baryons
Cherenkov and Fano effects at the origin of asymmetric vector mesons in nuclear media
Dremin, I M
2015-01-01
It is argued that the experimentally observed phenomenon of asymmetric vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Cherenkov and Fano effects. The mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape in the low-mass wing of the resonance. That is explained by the positive real part of the amplitude in this wing for classic Cherenkov treatment and further detalized in quantum mechanics as the interference of direct and continuum states in Fano effect. The corresponding parameters are found from the comparison with rho-meson data and admit reasonable explanation.
Nucleon's axial-vector form factor in the hard-wall AdS/QCD model
Mamedov, Shahin; Huseynova, Narmin; Atayev, Ibrahim
2016-01-01
The axial-vector form factor of the nucleons is considered in the framework of hard-wall model of holographic QCD. A new interaction term between the bulk gauge and matter fields was included into the interaction Lagrangian. We obtain the axial-vector form factor of nucleons in the boundary QCD from the bulk action using AdS/CFT correspondence. The momentum square dependence of the axial-vector form factor is analysed numerically.
Thermal behavior of the axial vector coupling constant
International Nuclear Information System (INIS)
A thermal QCD Finite Energy Sum Rule (FESR) allows us to obtain the temperature dependence of the axial vector coupling of the nucleon, gA(T). It turns out that this coupling is essentially constant for the wide range 0 ≤ T ≤ 0.9Tc, being Tc the critical deconfining temperature. In contrast to other effective hadronic couplings, gA(T) diverges when T → Tc. At finite temperature, gA develops also a q2 dependence. This led us to explore the mean squared radius associated to gA, finding that it diverges at the critical temperature, thus signalling quark deconfinement. Finally, as a byproduct of our analysis, we study the thermal evolution of the Goldberger-Treiman relation
Vector D and B mesons in asymmetric and hot dense medium
Chhabra, Rahul; Kumar, Arvind
2016-03-01
We calculate the effect of density and temperature of isospin asymmetric non-strange medium on the shift in masses and decay constants of vector D and B mesons using chiral SU(3) model and QCD sum rule approach. In the present investigation the values of quark and gluon condensates are calculated from the chiral SU(3) model and these condensates are further used as input in the QCD Sum rule framework. These condensates are further used to calculate the in medium masses and decay constants of vector D and B mesons. These in medium properties of vector D and B mesons are helpful to understand the experimental observables of the experiments like CBM and PANDA under FAIR project at GSI, Germany. The results which are observed in present work are also compared with the previous predictions.
Exclusive electroproduction of vector mesons in lepton nucleon scattering at the HERMES experiment
Augustyniak, W.
2013-12-01
Exclusive electroproduction of vector mesons has been measured on hydrogen and deuterium targets at HERMES using the 27.6 GeV electron/positron beam of HERA. From this process, information can be obtained about generalized parton distributions (GPDs), which provide a unified description of the structure of hadrons embedding longitudinal-momentum distributions (ordinary PDFs) and transverse-position information (form factors). The study of the azimuthal distribution of the decay products via spin-density matrix elements provide constraints on helicity-amplitudes used to describe exclusive vector-meson production. Recent results from the HERMES experiment on the production of ρ0, ω and ϕ vector mesons will be presented.
Exclusive electroproduction of vector mesons in lepton nucleon scattering at the HERMES experiment
Energy Technology Data Exchange (ETDEWEB)
Augustyniak, W.
2013-12-15
Exclusive electroproduction of vector mesons has been measured on hydrogen and deuterium targets at HERMES using the 27.6 GeV electron/positron beam of HERA. From this process, information can be obtained about generalized parton distributions (GPDs), which provide a unified description of the structure of hadrons embedding longitudinal-momentum distributions (ordinary PDFs) and transverse-position information (form factors). The study of the azimuthal distribution of the decay products via spin-density matrix elements provide constraints on helicity-amplitudes used to describe exclusive vector-meson production. Recent results from the HERMES experiment on the production of ρ{sup 0}, ω and ϕ vector mesons will be presented.
Vector exchanges in production of light meson pairs and elementary atoms
Gevorkyan, S R; Volkov, M K
2013-01-01
The production of pseudoscalar and scalar mesons pairs and bound states (positronium or pionium atoms) in high energy $\\gamma\\gamma$ collisions at high energies provided by photon or vector meson exchanges are considered. The vector exchanges lead to nondecreasing with energy cross section of binary process $\\gamma+\\gamma\\to h_a+h_b$ with $h_a, h_b$ states in the fragmentation regions of initial particles. The production of light mesons pairs $\\pi\\pi, \\eta\\eta, \\eta'\\eta', \\sigma\\sigma $ as well as a pairs of positronium $Ps$ and pionium $A_\\pi$ atoms in peripheral kinematics are discussed. Unlike the photon exchange the vector meson exchange needs a reggeization, leading to fall with energy. Nevertheless due to peripheral kinematics out of very forward production angles the vector meson exchanges dominated. The proposed approach allows to express the matrix elements of the considered processes through impact factors, which can be calculated in perturbation models like Chiral Perturbation Theory (ChPT) or Nam...
In-medium properties of strange vector mesons in dense and hot nuclear matter
International Nuclear Information System (INIS)
We investigate the in-medium properties of strange vector mesons (K* and anti K*) in dense and hot nuclear matter based on chirally motivated models of the meson self-energies. We parameterise medium effects as density or temperature dependent effective masses and widths, obtain the vector meson spectral functions within a Breit-Wigner prescription (which is often used in transport simulations), and study whether such an approach can retain the essential features of full microscopic calculations. For μB ≠ 0 the medium corrections arise from anti K* (K*) N scattering and the anti K* (K*) → anti K (K) π decay mode (accounting for in-medium anti K (K) dynamics). We calculate the scattering contribution to the K* self-energy based on the hidden local symmetry formalism for vector meson nucleon interactions, whereas for the anti K* self-energy we implement recent results from a self-consistent coupled-channel determination within the same approach. For μB ≅ 0 and finite temperature we rely on a phenomenological approach for the kaon self-energy in a hot pionic medium consistent with chiral symmetry, and evaluate the anti K* (K*) → anti K (K) π decay width. The emergence of a mass shift at finite temperature is studied with a dispersion relation over the imaginary part of the vector meson self-energy.
Leading-twist distribution amplitudes of scalar- and vector-mesons
Li, Bo-Lin; Ding, Minghui; Roberts, Craig D; Zong, Hong-Shi
2016-01-01
A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence-constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence-constituents within a vector meson is zero, that within a scalar meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as $P$-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. ...
Interaction of the vector-meson octet with the baryon octet in effective field theory
Unal, Y; Scherer, S
2015-01-01
We analyze the constraint structure of the interaction of vector mesons with baryons using the classical Dirac constraint analysis. We show that the standard interaction in terms of two independent SU(3) structures is consistent at the classical level. We then require the self-consistency condition of the interacting system in terms of perturbative renormalizability to obtain relations for the renormalized coupling constants at the one-loop level. As a result we find a universal interaction with one coupling constant which is the same as in the massive Yang-Mills Lagrangian of the vector-meson sector.
Strangeness Vector and Axial-Vector Form Factors of the Nucleon
Directory of Open Access Journals (Sweden)
Pate Stephen
2014-03-01
Full Text Available A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic form factors GsE(Q2 and GsM(Q2 are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2 is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.
Renormalization of the baryon axial vector current in large-Nc chiral perturbation theory
International Nuclear Information System (INIS)
The baryon axial vector current is considered within the combined framework of large-Nc baryon chiral perturbation theory (where Nc is the number of colors) and the baryon axial vector couplings are extracted. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis
Energy Technology Data Exchange (ETDEWEB)
Ablakulov, Kh., E-mail: ablakulov@inp.uz; Narzikulov, Z., E-mail: narzikulov@inp.uz [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)
2015-01-15
A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants.
International Nuclear Information System (INIS)
A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants
Vector modeling and track simulation in axial turn-milling motion
Institute of Scientific and Technical Information of China (English)
JIANG Zeng-hui; JIA Chun-de
2005-01-01
Through vector analysis the kinetic vector model is built in a machining cylinder surface through axial turn-milling. When building a kinetic vector model in the machining field, machining through axial turn-milling and using equilateral triangles and square prism surfaces, the kinetic vector model is given any equilateral polygon prismic surface. Kinetic tracks are simulated through these kinetic models respectively, thus it can be seen that the axial turn-milling is a very effective method in manufacturing any equilateral, polygon, prismic surface.
International Nuclear Information System (INIS)
A consistent theory of coherency effects in initial and final state interactions for virtual photoproduction of vector mesons off nuclei is presented. The onset of ISI is shown to have a very strong impact on nuclear transparency and on the onset of color transparency effects
Decay properties of the new vector mesons in broken SU(4)
International Nuclear Information System (INIS)
We calculate mass spectra for vector, pseudoscalar and tensor mesons on the basis of singlet and fifteenplet mixing in broken SU(4) and study the dependence of wave functions on input masses. With these wave functions we compute various two-body decays of PSI-3105 with SU(4) invariant couplings. (orig.)
Reggeometry of deeply virtual compton scattering and exclusive diffractive vector meson production
International Nuclear Information System (INIS)
We extend a simple Pomerons pole amplitude by t and Q2 , Mν, dependencies inspired by geometrical ideas. The experimentally transition from soft to hard dynamics is realized by the introduction of two Po meron poles with different Q2, Mν - dependent residue. A unified description of deeply virtual Compton scattering as well as the elastic electroproduction of all vector meson is suggested
Vector Meson Exchanges and CP Asymmetry in $K^{\\pm}\\rightarrow\\pi^{\\pm}\\pi^0$
Riazuddin; Paver, N; Simeoni, F.
1993-01-01
Using a current algebra framework, we discuss the contribution of vector meson exchanges to the CP violating asymmetry in the decay $K^{\\pm}\\rightarrow\\pi^{\\pm}\\pi^0$, resulting from the interference of the $K\\rightarrow\\pi\\pi$ amplitude with the radiative correction $K\\rightarrow\\pi\\pi\\gamma$.
Pauli coupling of vector meson and softening of the nuclear equation of state
Bhattacharyya, Subir; Mazumder, Abhee K. Dutt-; Dutta-Roy, Binayak; Sinha, Bikash
1998-01-01
We investigate the equation of state (EOS) for nuclear matter, within the framework of the Relativistic Hartree Fock (RHF) theory, with special emphasis on the role of the Pauli coupling of the vector meson $\\rho$ to the nucleon vis-a-vis the eventual softening of the EOS as revealed through a substantial reduction of the incompressibility parameter ($K_0$) for symmetric nuclear matter.
Models for exclusive vector meson production in heavy-ion collisions
Lappi, T.; Mäntysaari, H.
2013-01-01
We discuss coherent and incoherent photoproduction of $J/\\Psi$ vector mesons in high energy heavy ion collisions. In a dipole picture for the photon both can be naturally related to the dipole cross section that is also probed in inclusive DIS. We compare results of a particular calculation to ALICE data.
Correction of Relativistic Center-of-Mass Vector on Electric Polarizability of Pion Meson
Institute of Scientific and Technical Information of China (English)
DONG Yu-Bing
2005-01-01
We estimate the correction of relativistic center-of-mass vector on electric polarizability of an equal-mass quark-antiquark system numerically. Effect on the system confined by different interactive potentials is analysed. A great improvement for the electric polarizability of pion meson is obtained.
Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II
Salam, Abdus; Delbourgo, Robert
1964-01-01
The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).
Microscopic foundations of the vector meson dominance model and the analysis of ρ-ω mixing
International Nuclear Information System (INIS)
We use a momentum-space analysis of a generalized Nambu endash Jona-Lasinio (NJL) model to provide a microscopic foundation for the vector-meson-dominance model. (In our model the photon interacts with the constituent quarks rather than with the hadrons.) A novel feature of our model is the introduction of q2-dependent meson decay constants, gρ(q2) and gω(q2), as well as q2-dependent meson-meson coupling constants, such as gρππ(q2). We discuss the values of gρ(q2), gω(q2), and gρππ(q2) obtained using our generalized NJL model, considering different choices for the parameters of the model. We also provide a quark-based description of ρ-ω mixing including the effects of direct ω→π++π- decay. The definition of momentum-dependent meson decay constants allows us to introduce current correlation functions for the ρ and ω mesons into the analysis in an unambiguous manner, when we start with an analysis of hadronic current correlators that are expressed in terms of quark fields. A good fit is obtained for the pion form factor in the region where ρ-ω mixing is important. copyright 1997 The American Physical Society
Measuring nuclear transparency from exclusive vector meson production in lepton-nucleus scattering
Energy Technology Data Exchange (ETDEWEB)
Fang, G.Y. [Harvard Univ., Cambridge, MA (United States)
1994-04-01
Preliminary results on the measurement of nuclear transparencies from exclusive {rho}{sup 0} meson production from E665 at Fermilab are reported. The data were collected on hydrogen, deuterium, carbon, calcium, and lead targets with a mean beam energy of 470 GeV. Increases in the transparencies are observed in both coherent and incoherent production channels as the virtuality of the photon increases, as expected of color transparency. Ideas of systematic studies of color transparency in exclusive vector meson production at CEBAF are discussed.
Peculiarities of massive vector mesons and their zero mass limits. To the memory of Raymond Stora
International Nuclear Information System (INIS)
Massive QED, in contrast with its massless counterpart, possesses two conserved charges; one is a screened (vanishing) Maxwell charge which is directly associated with the massive vector mesons through the identically conserved Maxwell current, while the presence of a particle-antiparticle counting charge depends on the matter. A somewhat peculiar situation arises for couplings of Hermitian matter fields to massive vector potentials; in that case the only current is the screened Maxwell current and the coupling disappears in the massless limit. In the case of self-interacting massive vector mesons the situation becomes even more peculiar in that the usually renormalizability guaranteeing validity of the first order power-counting criterion breaks down in second order and requires the compensatory presence of additional Hermitian H-fields. Some aspect of these observation have already been noticed in the BRST gauge theoretic formulation, but here we use a new setting based on string-local vector mesons which is required by Hilbert space positivity (''off-shell unitarity''). This new formulation explains why spontaneous symmetry breaking cannot occur in the presence of higher spin s ≥ 1 fields. The coupling to H-fields induces Mexican hat-like self-interactions; they are not imposed and bear no relation with spontaneous symmetry breaking; they are rather consequences of the foundational causal localization properties realized in a Hilbert space setting. In the case of self-interacting massive vector mesons their presence is required in order to maintain the first order power-counting restriction of renormalizability also in second order. The presentation of the new Hilbert space setting for vector mesons which replaces gauge theory and extends on-shell unitarity to its off-shell counterpart is the main motivation for this work. The new Hilbert space setting also shows that the second order Lie-algebra structure of self-interacting vector mesons
Peculiarities of massive vector mesons and their zero mass limits. To the memory of Raymond Stora
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [CBPF, Rio de Janeiro (Brazil); Institut fuer Theoretische Physik, FU-Berlin, Berlin (Germany)
2015-08-15
Massive QED, in contrast with its massless counterpart, possesses two conserved charges; one is a screened (vanishing) Maxwell charge which is directly associated with the massive vector mesons through the identically conserved Maxwell current, while the presence of a particle-antiparticle counting charge depends on the matter. A somewhat peculiar situation arises for couplings of Hermitian matter fields to massive vector potentials; in that case the only current is the screened Maxwell current and the coupling disappears in the massless limit. In the case of self-interacting massive vector mesons the situation becomes even more peculiar in that the usually renormalizability guaranteeing validity of the first order power-counting criterion breaks down in second order and requires the compensatory presence of additional Hermitian H-fields. Some aspect of these observation have already been noticed in the BRST gauge theoretic formulation, but here we use a new setting based on string-local vector mesons which is required by Hilbert space positivity (''off-shell unitarity''). This new formulation explains why spontaneous symmetry breaking cannot occur in the presence of higher spin s ≥ 1 fields. The coupling to H-fields induces Mexican hat-like self-interactions; they are not imposed and bear no relation with spontaneous symmetry breaking; they are rather consequences of the foundational causal localization properties realized in a Hilbert space setting. In the case of self-interacting massive vector mesons their presence is required in order to maintain the first order power-counting restriction of renormalizability also in second order. The presentation of the new Hilbert space setting for vector mesons which replaces gauge theory and extends on-shell unitarity to its off-shell counterpart is the main motivation for this work. The new Hilbert space setting also shows that the second order Lie-algebra structure of self-interacting vector mesons
Directory of Open Access Journals (Sweden)
Schäfer Wolfgang
2012-12-01
Full Text Available Photoproduction of vector mesons has been studied since the 1960’s and was instrumental in establishing the hadronic structure of the photon and the concept of vectormeson dominance. More recently our knowledge on vector meson photoproduction has been furthered by experiments at the HERA accelerator. Total cross sections ans well as a number of kinematical distributions have been measured from light to heavy vector mesons. These experiments have been a testbed of ideas on the production mechanism, the QCD Pomeron exchange. In particular in varying the mass of the vector meson we can study the Pomeron exchange from the soft to the perturbatively hard regimes. The production mechanism also contains information on the quark-antiquark wave function of the produced meson. High energy protons or ions are the source of a flux of Weizsäcker-Williams photons, which can be utilized to study the photoproduction of vector mesons also at the Tevatron and LHC colliders. We discuss how information on the small-x gluon distribution in protons in nuclei can be obtained. Besides this intrinsic interest in vector meson production, a precise knowledge thereof is also necessary for odderon searches. In this regard, we discuss also transverse momentum distributions including absorption effects.
Abe, T; Adamczyk, L; Adamus, M; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bodmann, B; Bokel, C; Boogert, S; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cartiglia, N; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Crittenden, J; D'Agostini, Giulio; Dagan, S; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fox-Murphy, A; Fricke, U; Fusayasu, T; Gabareen, A; Galea, R; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Hughes, V W; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jelen, K; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Kerger, R; Khein, L A; Kim, C L; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lammers, S; Lane, J B; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levi, G; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lopez-Duran Viani, A; Lukina, O Yu; Lupi, A; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Martínez, M; Maselli, S; Mastroberardino, A; Mat, T; Matsuzawa, K; Mattingly, M C K; Mc, G J; McCubbin, N A; Mellado, B; Menary, S R; Metlica, F; Meyer, A; Milite, M; Miller, D B; Mindur, B; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Ochs, A; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pellmann, I A; Peroni, C; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Raach, H; Rautenberg, J; Raval, A; Redondo, I; Reeder, D D; Renner, R; Repond, J; Rigby, M; Robins, S; Rodrigues, E; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Salehi, H; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smalska, B; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tap, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Tuning, N; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Umemori, K; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walker, R; Weber, A; Wes, H; West, B J; Whitmore, J J; Wichmann, R; Wick, K; Wiggers, L; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zakrzewski, J A; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J
2003-01-01
Diffractive photoproduction of vector mesons, gamma p --> V Y, where Y is a proton-dissociative system, has been measured in ep interactions with the ZEUS detector at HERA using an integrated luminosity of 25 pb^-1. The differential cross section, ds/dt, is presented for -t phi Y)/dt to ds_(gamma p --> rho^0 Y)/dt and ds_(gamma p --> J/psi Y)/dt to ds_(gamma p --> rho^0 Y)/dt increase with increasing -t. Decay-angle analyses for rho^0, phi and J/psi mesons have been carried out. For the rho^0 and phi mesons, contributions from single and double helicity flip are observed. The results are compared to expectations of theoretical models.
International Nuclear Information System (INIS)
Data on the chemical shifts of half-lives for atomic and molecular tritium were used to determine the ratio of axial-vector-to-vector weak coupling constants for beta decay of triton (GA/GV)t = -1.2646 ± 0.0035
Photoproduction of the Theta^+ and its vector and axial-vector structure
Kim, Hyun-Chul; Ledwig, Tim; Nam, Seung-il
2009-01-01
We present recent investigations on the vector and axial-vector transitions of the baryon antidecuplet within the framework of the self-consistent SU(3) chiral quark-soliton model, taking into account the 1/N_c rotational and linear m_s corrections. The main contribution to the electric-like transition form factor comes from the wave-function corrections. This is a consequence of the generalized Ademollo-Gatto theorem. It is also found that in general the leading-order contributions are almost canceled by the rotational 1/N_c corrections. The results are summarized as follows: the vector and tensor K^*-N-Theta coupling constants, g_{K^*-N-Theta}=0.74 - 0.87 and f_{K^*-N-Theta}=0.53 - 1.16, respectively, and Gamma_{Theta->KN}=0.71 MeV, based on the result of the K-N-Theta coupling constant g_{K-n-Theta}=0.83. We also show the differential cross sections and beam asymmetries, based on the present results. We also discuss the connection of present results with the original work by Diakonov, Petrov, and Polyakov.
Observation of Pseudoscalar and Axial Vector Resonances in pi- p -> K+ K- pi0 n at 18 GeV
Energy Technology Data Exchange (ETDEWEB)
G.S. Adams; T. Adams; Z. Bar-Yam; J.M. Bishop; V.A. Bodyagin; D.S. Brown; N.M. Cason; S.U. Chung; J.P. Cummings; K. Danyo; A.I. Demianov; S. Denisov; V. Dorofeev; J.P. Dowd; P. Eugenio; X.L. Fan; A.M. Gribushin; R.W. Hackenburg; M. Hayek; J. Hu; E.I. Ivanov; D. Joffe; I. Kachaev; W. Kern; E. King; O.L. Kodolova; V.L. Korotkikh; M.A. Kostin; Joachim Kuhn; V. Lipaev; J.M. Losecco; M. Lu; J.J. Manak; J. Napolitano; M. Nozar; C. Olchanski; A.I. Ostrovidov; T.K. Pedlar; A. Popov; D. Ryabchikov; A.H. Sanjari; L.I. Sarycheva; K.K. Seth; N. Shenhav; X. Shen; W.D. Shephard; N.B. Sinev; D.L. Stienike; S.A. Taegar; D.R. Thompson; A. Tomaradze; I.N. Vardanyan; D.P. Weygand; D. White; H.J. Willutzki; A.A. Yershov
2001-09-01
The number of pseudoscalar mesons in the mass range from 1400 to 1500 MeV/c{sup 2} has been a subject of considerable interest for many years, with several experiments having presented evidence for two closely spaced states. A new measurement of the reaction {pi}{sup -} p {yields} K{sup +} K{sup -} {pi}{sup 0}n has been made at a beam energy of 18 GeV. A partial wave analysis of the K{sup +} K{sup -} {pi}{sup 0} system shows evidence for three pseudoscalar resonances, {eta}(1295), {eta}(1416), and {eta}(1485), as well as two axial vectors, f{sub 1}(1285), and f{sub 1}(1420). Their observed masses, widths and decay properties are reported. No signal was observed for C(1480), an I{sub G} J{sup PC} = 1{sup +} 1{sup --} state previously reported in {phi}{pi}{sup 0} decay.
Unified chiral analysis of the vector meson spectrum from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Wes Armour; Chris Allton; Derek Leinweber; Anthony Thomas; Ross Young
2005-10-13
The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of $M_\\rho$ in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.
Double vector meson production in photon - hadron interactions at hadronic colliders
Goncalves, V P; Navarra, F S
2016-01-01
In this paper we study double vector meson production in photon -- hadron ($\\gamma h$) interactions at $pp/pA/AA$ collisions and present predictions for $\\rho\\rho$, $J/\\Psi J/\\Psi$ and $\\rho J/\\Psi$ production considering the double scattering mechanism. We compute the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for double vector meson production in $\\gamma \\gamma$ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS and LHCb Collaborations. Our results demonstrate that the $\\rho\\rho$ and $J/\\Psi J/\\Psi$ production in $PbPb$ collisions is dominated by the double scattering mechanism, while the two - photon mechanism dominates in $pp$ collisions. Moreover, our results indicate that the analysis of the $\\rho J/\\Psi$ production at LHC can be useful to constrain the double scattering mechanism.
Shrinkage vs. anti-shrinkage of the diffraction cone in the exclusive vector mesons production
Ivanov, I P
2003-01-01
We investigate the energy behavior of the diffraction cone in the exclusive vector meson production in diffractive DIS within the k_t-factorization approach. In our calculations, we make full use of fits to the unintegrated gluon structure functions extracted recently from experimental data on F_2p. Confirming early predictions, we observe that shrinkage of the diffraction cone due to the slope of the Pomeron trajectory is significantly compensated by the anti-shrinkage behavior of the gamma -> V transition. In order to match recent ZEUS data on the energy behavior of the diffraction slope, alpha^prime_eff(J/psi, exp.) = 0.115 +/- 0.018 (stat.) +0.008-0.015(syst.) GeV^-2, we had to use an input value alpha^\\prime_Pomeron = 0.25 GeV^-2. We investigate the compensation effect in detail and give predictions for Q^2-dependence of the rate of cone shrinkage for different vector mesons.
Mass splitting of the pseudoscalar and vector mesons induced by the homogeneous vacuum gluon field
International Nuclear Information System (INIS)
Masses of the pseudoscalar and vector mesons are calculated within the generalized Nambu-Jona-Lasinio model taking into account homogeneous vacuum gluon field. This vacuum provides an analytical quark confinement. Colorless modes are determined by the confined gluons and are described by the nonlocal quark currents with appropriate radial and angular quantum numbers. An interaction of the quark spin with the vacuum gluon field arises naturally within the model under consideration. It is shown that this spin-field interaction leads to mass splitting between vector and pseudoscalar mesons with identical quark structure (ρ - π, K-K* and so on). In contrast to the standard NJL model, this allows to use the four-fermion coupling constant being common for both nonets. 24 refs.; 1 fig.; 2 tabs. (author)
Goncalves, V P; Navarra, F S; Spiering, D
2016-01-01
In this paper we study leading neutron production in photon - hadron interactions which take place in $pp$ and $pA$ collisions at large impact parameters. Using a model that describes the recent leading neutron data at HERA, we consider exclusive vector meson production in association with a leading neutron in $pp/pA$ collisions at RHIC and LHC energies. The total cross sections and rapidity distributions of $\\rho$, $\\phi$ and $J/\\Psi$ produced together with a leading neutron are computed. Our results indicate that the study of these processes is feasible and that it can be used to improve the understanding of leading neutron processes and of exclusive vector meson production.
Constraint Analysis for the Interaction of the Vector-Meson Octet with the Baryon Octet
International Nuclear Information System (INIS)
We describe a constraint analysis for the interaction of the vector-meson octet with the baryon octet. Applying Dirac's Hamiltonian method, we verify that the standard interaction in terms of two independent SU(3) structures is consistent at the classical level. We argue how the requirement of self consistency with respect to perturbative renormalizability may lead to relations among the renormalized coupling constants of the system
Constraint analysis for the interaction of the vector-meson octet with the baryon octet
Unal, Y; Scherer, S
2014-01-01
We describe a constraint analysis for the interaction of the vector-meson octet with the baryon octet. Applying Dirac's Hamiltonian method, we verify that the standard interaction in terms of two independent SU(3) structures is consistent at the classical level. We argue how the requirement of self consistency with respect to perturbative renormalizability may lead to relations among the renormalized coupling constants of the system.
Polarization analysis of vector-meson production in pion-nucleon interactions
Arash, Firooz; Habibi, Mohammad F.
1993-07-01
In view of the growing (though still incomplete) set of data on vector-meson production in pion-nucleon interactions, the polarization structure of this reaction is presented, together with polarization tests of one-particle-exchange processes in the s and t channels, as well as polarization tests for the Skyrmion model. The amplitude-observable relations are exhibited in the helicity, transversity, and planar-transverse frames. The desirable direction of future experimental programs is also outlined.
Polarization analysis of vector-meson production in pion-nucleon interactions
International Nuclear Information System (INIS)
In view of the growing (though still incomplete) set of data on vector-meson production in pion-nucleon interactions, the polarization structure of this reaction is presented, together with polarization tests of one-particle-exchange processes in the s and t channels, as well as polarization tests for the Skyrmion model. The amplitude-observable relations are exhibited in the helicity, transversity, and planar-transverse frames. The desirable direction of future experimental programs is also outlined
Vector meson production in ultra-peripheral collisions at the LHC
Energy Technology Data Exchange (ETDEWEB)
Fiore, R. [Dipartimento di Fisica, Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Jenkovszky, L.; Salii, A. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, 03680 Ukraine (Ukraine); Libov, V. [Deutsches Elektronen-Synchrotron, Hamburg (Germany); Machado, M. V. T. [HEP Phenomenology Group, CEP 91501-970, Porto Alegre, RS (Brazil)
2015-04-10
By using a Regge-pole model for vector meson production (VMP), that successfully describes the HERA data, we analyse the connection of VMP cross sections in photon-induced reactions at HERA with those in ultra-peripheral collisions at the Large Hadron Collider (LHC). The role of the low-energy behaviour of VMP cross sections in γp collisions is scrutinized.
Calculation of vector meson electron widths in QCD using their mass spectrum
International Nuclear Information System (INIS)
A QCD sum rules method is discussed which enables one to calculate the electron width of vector mesons from the Γ-, Ψ-, Φ- and ρ-families, using their mass spectrum. The results of the calculation agree with available experimental data. In the obtained formula for electron widths the corrections ∼as play a very essential role, while the contribution from the nonperturbative corrections, related to vacuum condensates of dimension d≤8, is negligible
International Nuclear Information System (INIS)
We reinvestigate Adler's partially conserved axial-vector current relation in the presence of an external electromagnetic field within the framework of QCD coupled to external fields. We discuss pion electroproduction within a tree-level approximation to chiral perturbation theory and explicitly verify a chiral Ward identity referred to as the Adler-Gilman relation. We critically examine soft-momentum techniques and point out how inadmissable approximations may lead to results incompatible with chiral symmetry. As a result we confirm that threshold pion electroproduction is indeed a tool to obtain information on the axial form factor of the nucleon
Vector meson spectral function and dilepton rate in an effective mean field model
Islam, Chowdhury Aminul; Haque, Najmul; Mustafa, Munshi G
2015-01-01
We have studied the vector meson spectral function (VMSF) in a hot and dense medium within an effective QCD model namely the Nambu-Jona-Lasinio (NJL) and its Polyakov Loop extended version (PNJL) with and without the effect of isoscalar vector interaction (IVI). The effect of the IVI has been taken into account using the ring approximation. We obtained the dilepton production rate (DPR) using the VMSF and observed that at moderate temperature it is enhanced in the PNJL model as compared to the NJL and Born rate due to the suppression of color degrees of freedom.
Calculation of the nucleon-nucleon interaction due to vector-meson exchange
International Nuclear Information System (INIS)
We make use of a momentum-space bosonization of a generalized Nambu endash Jona-Lasinio model to calculate the contribution of rho and omega exchange to the one-boson-exchange (OBE) model of the nucleon-nucleon interaction. Momentum-dependent meson-quark coupling constants are obtained in the bosonization scheme. A vector-meson-dominance (VMD) model is used to obtain information concerning the momentum dependence of the meson-nucleon vertex, other than that which arises from the momentum dependence of the meson-quark coupling constants. We find good agreement with the magnitude of the force at q2=0 for both rho and omega exchange. The momentum dependence of the interaction in the region -0.2 GeV2≤q2≤0 was calculated. We only obtain about two-thirds of the strength of the OBE interaction at q2=-0.2 GeV2, suggesting the importance of interactions of shorter range than that considered here. (We note that, for -0.2 GeV2≤q2≤0, we span the range of q2 of significance for nuclear structure studies.) copyright 1996 The American Physical Society
Resonance $X(5568)$ as an exotic axial-vector state
Agaev, S S; Barsbay, B; Sundu, H
2016-01-01
The mass and meson-current coupling constant of the resonance $X(5568)$, as well as the width of the decay $X(5568)\\to B_s^{\\ast}\\pi$ are calculated by modeling the exotic $X(5568)$ resonance as a diquark-antidiquark state $% X_b=[su][bd]$ with quantum numbers $J^{P}=1^{+}$. The calculations are made employing QCD two-point sum rule method, where the quark, gluon and mixed vacuum condensates up to dimension eight are taken into account. The sum rule approach on the light-cone in its soft-meson approximation is used to explore the vertex $X_bB_{s}^{\\ast}\\pi$ and extract the strong coupling $g_{X_bB_{s}^{\\ast}\\pi}$, which is a necessary ingredient to find the width of the $X_b \\to B_s^{\\ast}\\pi^{+}$ decay process. The obtained predictions are compared with the experimental data of the D0 Collaboration, and results of other theoretical works.
Measurement of diffractive photoproduction of vector mesons at large momentum transfer at HERA
Abbiendi, G; Abramowicz, H; Acosta, D; Adamczyk, L; Adamus, M; Ahn, S H; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Bari, G; Barreiro, F; Barret, O; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bellagamba, L; Bertolin, A; Bhadra, S; Bienlein, J K; Blaikley, H E; Bohnet, I; Bokel, C; Boogert, S; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Bruni, A; Bruni, G; Brümmer, N; Burgard, C; Burow, B D; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carlin, R; Cartiglia, N; Cashmore, R J; Castellini, G; Catterall, C D; Chapin, D; Chekanov, S; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coboken, K; Coldewey, C; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cor, M; Cormack, C; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dardo, M; De Pasquale, S; De Wolf, E; Deffner, R; Del Peso, J; Deppe, O; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Dondana, S; Dosselli, U; Doyle, A T; Drews, G; Dulinski, Z; Durkin, L S; Dusini, S; Eckert, M; Edmonds, J K; Eisenberg, Y; Eisenhardt, S; Engelen, J; Epperson, D E; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Fernández, J P; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fox-Murphy, A; Fricke, U; Frisken, W R; Fusayasu, T; Gadaj, T; Galea, R; Gallo, E; García, G; Garfagnini, A; Gendner, N; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Göbel, F; Golubkov, Yu A; Grabosch, H J; Graciani, R; Grosse-Knetter, J; Grzelak, G; Göttlicher, P; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanna, D S; Harnew, N; Hart, H; Hart, J C; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Hebbel, K; Heinloth, K; Heinz, L; Hernández, J M; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Hong, S J; Howell, G; Hughes, V W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jelen, K; Jeoung, H Y; Jing, Z; Johnson, K F; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Kasemann, M; Katz, U F; Kcira, D; Kerger, R; Khakzad, M; Khein, L A; Kim, C L; Kim, J Y; Kisielewska, D; Kitamura, S; Klanner, Robert; Klimek, K; Ko, I A; Koch, W; Koffeman, E; Kooijman, P; Koop, T; Korotkova, N A; Kotanski, A; Kowal, A M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Kötz, U; Labarga, L; Lamberti, L; Lane, J B; Laurenti, G; Lee, J H; Lee, S B; Lee, S W; Levi, G; Levman, G M; Levy, A; Lim, H; Lim, I T; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Lohrmann, E; Long, K R; Lopez-Duran Viani, A; Lukina, O Yu; Löhr, B; Ma, K J; MacDonald, N; Maccarrone, G; Magill, S; Mallik, U; Margotti, A; Marini, G; Markun, P; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Mattingly, M C K; Mattingly, S E K; McCance, G J; McCubbin, N A; McFall, J D; Mellado, B; Menary, S R; Meyer, A; Meyer-Larsen, A; Milewski, J; Milite, M; Miller, D B; Monaco, V; Monteiro, T; Morandin, M; Moritz, M; Murray, W N; Musgrave, B; Mönig, K; Nagano, K; Nam, S W; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Okrasinski, J R; Olkiewicz, K; Orr, R S; Pac, M Y; Padhi, S; Palmonari, F; Park, I H; Park, S K; Parsons, J A; Paul, E; Pavel, N; Pawlak, J M; Pawlak, R; Pelfer, Pier Giovanni; Pellegrino, A; Pelucchi, F; Peroni, C; Pesci, A; Petrucci, M C; Pfeiffer, M; Pic, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Raach, H; Raso, M; Rautenberg, J; Re, J; Redondo, I; Reeder, D D; Ritz, S; Riveline, M; Rohde, M; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Sadrozinski, H F W; Saint-Laurent, M; Salehi, H; Samp, S; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schechter, A; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Schwarzer, O; Sciulli, F; Scott, J; Sedgbeer, J K; Seiden, A; Selonke, F; Shah, T P; Shcheglova, L M; Sideris, D; Sievers, M; Simmons, D; Sinclair, L E; Skillicorn, I O; Smalska, B; Smith, W H; Solano, A; Solomin, A N; Son, D; Staiano, A; Stairs, D G; Stanco, L; Stanek, R; Stifutkin, A; Stonjek, S; Straub, P B; Strickland, E; Stroili, R; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Toothacker, W S; Tsurugai, T; Tuning, N; Tymieniecka, T; Umemori, K; Vaiciulis, A W; Van Sighem, A; Velthuis, J J; Verkerke, W; Voci, C; Vossebeld, Joost Herman; Votano, L; Walczak, R; Walker, R; Wang, S M; Waters, D S; Waugh, R; Weber, A; Whitmore, J J; Wichmann, R; Wick, K; Wieber, H; Wiggers, L; Wildschek, T; Williams, D C; Wing, M; Wodarczyk, M; Wolf, G; Wollmer, U; Wróblewski, A K; Wölfle, S; Yamada, S; Yamashita, T; Yamauchi, K; Yamazaki, Y; Yoshida, R; Youngman, C; Zajac, J; Zakrzewski, J A; Zamora Garcia, Y; Zawiejski, L; Zetsche, F; Zeuner, W; Zhu, Q; Zichichi, A; Zotkin, S A
2000-01-01
Elastic and proton-dissociative photoproduction of $\\rho^0$, $\\phi$ and $J/\\psi$ vector mesons ($\\gamma p\\to Vp$, $\\gamma p\\to VN$, respectively) have been measured in e^+p interactions at HERA up to -t=3 GeV$^2$, where t is the four-momentum transfer squared at the photon-vector meson vertex. The analysis is based on a data sample in which photoproduction reactions were tagged by detection of the scattered positron in a special-purpose calorimeter. This limits the photon virtuality, Q^2, to values less than 0.01 GeV$^2$, and selects a $\\gamma p$ average center-of-mass energy of = 94 GeV. Results for the differential cross sections, d$\\sigma$/d$t$, for $\\rho^0$, $\\phi$ and $J/\\psi$ mesons are presented and compared to the results of recent QCD calculations. Results are also presented for the t-dependence of the pion-pair invariant-mass distribution in the $\\rho^0$ mass region and of the spin-density matrix elements determined from the decay-angle distributions. The Pomeron trajectory has been derived from me...
International Nuclear Information System (INIS)
The dispersive approach to QCD, which properly embodies the intrinsically nonperturbative constraints originating in the kinematic restrictions on relevant physical processes and extends the applicability range of perturbation theory towards the infrared domain, is briefly overviewed. The study of OPAL (update 2012) and ALEPH (update 2014) experimental data on inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach is presented
Observation of chicJ radiative decays to light vector mesons.
Bennett, J V; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tan, B J Y; Tomaradze, A; Libby, J; Martin, L; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Tatishvili, G; Vogel, H; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J
2008-10-10
Using a total of 2.74 x 10(7) decays of the psi(2S) collected with the CLEO-c detector, we present a study of chi(cJ)-->gammaV, where V=rho(0), omega, phi. The transitions chi(c1)-->gammarho(0 and chi(c1)-->gammaomega are observed with B(chi(c1)-->gammarho(0))=(2.43+/-0.19+/-0.22) x 10(-4) and B(chi(c1)-->gammaomega)=(8.3+/-1.5+/-1.2) x 10(-5). In the chi(c1)-->gammarho(0) transition, the final state meson is dominantly longitudinally polarized. Upper limits on the branching fractions of other chi(cJ) states to light vector mesons are presented. PMID:18999588
Ward–Green–Takahashi identities and the axial-vector vertex
International Nuclear Information System (INIS)
The colour-singlet axial-vector vertex plays a pivotal role in understanding dynamical chiral symmetry breaking and numerous hadronic weak interactions, yet scant model-independent information is available. We therefore use longitudinal and transverse Ward–Green–Takahashi (WGT) identities, together with kinematic constraints, in order to ameliorate this situation and expose novel features of the axial vertex: amongst them, Ward-like identities for elements in the transverse piece of the vertex, which complement and shed new light on identities determined previously for components in its longitudinal part. Such algebraic results are verified via solutions of the Bethe–Salpeter equation for the axial vertex obtained using two materially different kernels for the relevant Dyson–Schwinger equations. The solutions also provide insights that suggest a practical Ansatz for the axial-vector vertex.
The masses of vector mesons in holographic QCD at finite chiral chemical potential
International Nuclear Information System (INIS)
Central heavy-ion collisions may induce sizeable fluctuations of the topological charge. This effect is expected to distort the dispersion relation for the hadron masses. We construct a general setup for a compact description of this phenomenon in the framework of bottom-up holographic approach to QCD. A couple of soft wall holographic models are proposed for the vector mesons. The states having different circular polarizations are shown to have different effective mass. The requirement of stability imposes strong constraints on the possible choice of models
Effects of a dressed quark-gluon vertex in vector heavy-light mesons
Gomez-Rocha, M; Krassnigg, A
2016-01-01
We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed-quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate dressed quark photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the B_c*, which we obtain at 6.334 GeV well in line with predictions from other approaches.
The masses of vector mesons in holographic QCD at finite chiral chemical potential
Afonin, S. S.; Andrianov, A. A.; Espriu, D.
2015-05-01
Central heavy-ion collisions may induce sizeable fluctuations of the topological charge. This effect is expected to distort the dispersion relation for the hadron masses. We construct a general setup for a compact description of this phenomenon in the framework of bottom-up holographic approach to QCD. A couple of soft wall holographic models are proposed for the vector mesons. The states having different circular polarizations are shown to have different effective mass. The requirement of stability imposes strong constraints on the possible choice of models.
The masses of vector mesons in holographic QCD at finite chiral chemical potential
Afonin, S S; Espriu, D
2015-01-01
Central heavy-ion collisions may induce sizeable fluctuations of the topological charge. This effect is expected to distort the dispersion relation for the hadron masses. We construct a general setup for a compact description of this phenomenon in the framework of bottom-up holographic approach to QCD. A couple of soft wall holographic models are proposed for the vector mesons. The states having different circular polarizations are shown to have different effective mass. The requirement of stability imposes strong constraints on the possible choice of models.
The masses of vector mesons in holographic QCD at finite chiral chemical potential
Directory of Open Access Journals (Sweden)
S.S. Afonin
2015-05-01
Full Text Available Central heavy-ion collisions may induce sizeable fluctuations of the topological charge. This effect is expected to distort the dispersion relation for the hadron masses. We construct a general setup for a compact description of this phenomenon in the framework of bottom-up holographic approach to QCD. A couple of soft wall holographic models are proposed for the vector mesons. The states having different circular polarizations are shown to have different effective mass. The requirement of stability imposes strong constraints on the possible choice of models.
The masses of vector mesons in holographic QCD at finite chiral chemical potential
Energy Technology Data Exchange (ETDEWEB)
Afonin, S.S., E-mail: afonin24@mail.ru [V.A. Fock Department of Theoretical Physics, Saint-Petersburg State University, 1 ul. Ulyanovskaya, 198504 St. Petersburg (Russian Federation); Andrianov, A.A. [V.A. Fock Department of Theoretical Physics, Saint-Petersburg State University, 1 ul. Ulyanovskaya, 198504 St. Petersburg (Russian Federation); Espriu, D. [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Marti Franquès 1, 08028 Barcelona (Spain)
2015-05-18
Central heavy-ion collisions may induce sizeable fluctuations of the topological charge. This effect is expected to distort the dispersion relation for the hadron masses. We construct a general setup for a compact description of this phenomenon in the framework of bottom-up holographic approach to QCD. A couple of soft wall holographic models are proposed for the vector mesons. The states having different circular polarizations are shown to have different effective mass. The requirement of stability imposes strong constraints on the possible choice of models.
Meson's Correlation Functions in a Nuclear Medium
Park, Chanyong
2016-01-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the rho-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Meson's correlation functions in a nuclear medium
Park, Chanyong
2016-09-01
We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.
Dileptons spectrometer for measuring the propagation of vector mesons in nuclear matter
International Nuclear Information System (INIS)
This work is devoted to the study of a detector of e+ -e- pairs, coming from the decay of a ρ meson. ρ mesons are photoproduced in the nucleus by bremsstrahlung photons, generated by a 2 GeV electron beam interacting with a thin Lead target. The experiment requires a detector with the following characteristics: - Detection in a large solid angle at high luminosity - Detectors which are not in a direct view of the target -Symmetrical detection of charge - High momentum resolution for each lepton. In the chosen option, the magnetic spectrometer is made of two supraconducting parallel coils (in order to obtain the necessary current for a good analysis of the momenta), and an iron return yoke. The tridimensional modelisation of the field for the magnet was executed by the TOSCA code (VECTOR FIELDS). The detector was inspired by the RICH technology. The detection of the particles is realized with an apparatus made of Cerenkov radiators, mirrors reflecting the Cerenkov photons on U.V. chambers. Cerenkov radiators allow a big rejection of pions. U.V photodetectors have a high resolution. We have simulated the detection of e+ -e- pairs and reconstructed the momentum of detected leptons by using the MUDIFI code. The obtained resolution of the invariant mass of ρ meson is 60 MeV
Pseudotensor mesons as three-body resonances
Roca, L
2011-01-01
We show that the lightest pseudotensor mesons J^{PC}=2^-+ can be regarded as molecules made of a pseudoscalar (P) 0^-+ and a tensor 2^++ meson, where the latter is itself made of two vector (V) mesons. The idea stems from the fact that the vector-vector interaction in s-wave and spin 2 is very strong, to the point of generating the 2^++ tensor mesons. On the other hand the interaction of a pseudoscalar with a vector meson in s-wave is also very strong and it generates dynamically the lightest axial-vector mesons. Therefore we expect the PVV interaction to be strongly attractive and thus able to build up quasibound PVV resonances. We calculate the three body PVV interaction by using the fixed center approximation to the Faddeev equations where the two vectors are clustered forming a tensor meson. We find clear resonant structures which can be identified with the pi_2(1670), eta_2(1645) and K^*_2(1770) (2^-+) pseudotensor mesons.
On Axially Symmetric Space-Times Admitting Homothetic Vector Fields in Lyra's Geometry
Gad, Ragab M
2016-01-01
This paper investigates axially symmetric space-times which admit a homothetic vector field based on Lyra's geometry. The cases when the displacement vector is function of $t$ and when it is constant are studied. In the context of this geometry, we find and classify the solutions of the Einstein's field equations (EFE) for the space-time under consideration which display a homothetic symmetry.
International Nuclear Information System (INIS)
The production at large transverse momentum of low mass electron pairs was investigated at the CERN Intersecting Storage Rings using lithium/xenon transition radiation detectors and liquid argon calorimeters. Production of the vector mesons rho0, ω0, and phi was observed with cross sections consistent with the assumptions that rho0, ω0, and π0 production are nearly equal at large p/sub t/ and that phi production is suppressed by about an order of magnitude relative to rho0 and ω0 production. The observed low mass virtual photon continuum between masses of 200 and 500 MeV was consistent with estimates of Dalitz decays plus predictions of the vector dominance model. The measured cross section for virtual photon production enabled a limit of (0.5 +- 1.0) percent to be placed on the ratio of direct real photon production to π0 production
Extended partially conserved axial-vector current hypothesis and chiral-symmetry breaking
International Nuclear Information System (INIS)
An extended partially conserved axial-vector current (PCAC) hypothesis that incorporates a family of heavy bosons in a model-independent way is proposed. This is motivated by the impossibility of accounting for the corrections to Goldberger-Treiman relations, both in SU(2) x SU(2) and SU(3) x SU(3), by means of ordinary dynamical mechanisms (many-particle intermediate states). This new hypothesis coupled with an assumption on the strong-coupling constants of the heavy bosons leads to the following results: (i) A universality among the corrections to Goldberger-Treiman relations for ΔS = 0 decays, Δ/sub π/, on the one hand and for ΔS not-equal 0 decays, Δ/sub K/, on the other. (ii) From this universality there follow two sets of sum rules involving masses and strong and weak coupling constants. These sum rules become identities in the chiral as well as in the SU(3) limit and although a definite check has to await for the advent of accurate hyperon data, there are indications that they might be saturated. (iii) By studying the Dashen-Weinstein sum rules, new sets of sum rules involving only strong coupling constants are predicted as well as an expression for Δ/sub π//Δ/sub K/ in good agreement with present data. (iv) It is found that Δ/sub π/ and Δ/sub K/, which are a measure of chiral-symmetry breaking, determine completely the on-mass-shell corrections to soft-meson theorems. Since both Δ/sub π/ and Δ/sub K/ are known experimentally, a calculation is made of the on-mass-shell amplitudes for π0 → γγ, eta → γγ, eta → ππγ, γ → πππ,and γγ → πππ starting from the zero-mass limits implied by anomalous Ward identities. In particular, it is found that the results for the radiative eta decays are in agreement with present experimental data without the need for invoking eta-eta' mixing
Production rates of strange vector mesons at the Z{sup 0} resonance
Energy Technology Data Exchange (ETDEWEB)
Dima, M.O.
1997-05-01
This dissertation presents a study of strange vector meson production, {open_quotes}leading particle{close_quotes} effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z{sup 0}. The measurements were performed in e{sup +}e{sup -} collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of {phi} and K*{sup 0} and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*{sup 0} production is studied separately in these samples, and the results show evidence for the {open_quotes}leading particle{close_quotes} effect. The difference between K*{sup 0} production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation.
Pion transition form factor in the Regge approach and incomplete vector-meson dominance
International Nuclear Information System (INIS)
The concept of incomplete vector-meson dominance and Regge models is applied to the transition form factor of the pion. First, we argue that variants of the chiral quark model fulfilling the chiral anomaly may violate the Terazawa-West unitarity bounds, as these bounds are based on unverified assumptions for the real parts of the amplitudes, precluding a possible presence of polynomial terms. A direct consequence is that the transition form factor need not necessarily vanish at large values of the photon virtuality. Moreover, in the range of the BABAR experiment, the Terazawa-West bound is an order of magnitude above the data, thus is of formal rather than practical interest. Then we demonstrate how the experimental data may be properly explained with incomplete vector-meson dominance in a simple model with one state, as well as in more sophisticated Regge models. Generalizations of the simple Regge model along the lines of Dominguez result in a proper description of the data, where one may adjust the parameters in such a way that the Terazawa-West bound is satisfied or violated. We also impose the experimental constraint from the Z→π0γ decay. Finally, we point out that the photon momentum asymmetry parameter may noticeably influence the precision analysis.
Exclusive Production of Neutral Vector Mesons at the Electron-Proton Collider HERA
Crittenden, James Arthur
1997-01-01
The first five years of operation of the multi-purpose experiments ZEUS and H1 at the electron-proton storage ring facility HERA have opened a new era in the study of vector-meson production in high-energy photon-proton interactions. The high center-of-mass energy available at this unique accelerator complex allows investigations in hitherto unexplored kinematic regions, providing answers to long-standing questions concerning the energy-dependence of the rho, omega, phi, and J/psi production cross sections. The excellent angular acceptance of these detectors, combined with that of specialized tagging detectors at small production angles, has permitted measurements of elastic and inelastic production processes for both quasi-real photons and those of virtuality exceeding the squared mass of the vector meson. This report provides a quantitative picture of the present status of these studies, comparing them to the extensive measurements in this field at lower energies and summarizing topical developments in theo...
Production rates of strange vector mesons at the Z0 resonance
International Nuclear Information System (INIS)
This dissertation presents a study of strange vector meson production, open-quotes leading particleclose quotes effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z0. The measurements were performed in e+e- collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of φ and K*0 and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*0 production is studied separately in these samples, and the results show evidence for the open-quotes leading particleclose quotes effect. The difference between K*0 production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation
Fejos, G
2015-01-01
Temperature dependence of the $U_A(1)$ anomaly is investigated by taking into account mesonic fluctuations in the $U(3)\\times U(3)$ linear sigma model. A field dependent anomaly coefficient function of the effective potential is calculated within the finite temperature functional renormalization group approach. The applied approximation scheme is a generalization of the chiral invariant expansion technique developed in [G. Fej\\H{o}s, Phys. Rev. D 90, 096011 (2014)]. We provide an analytic expression and also numerical evidence that depending on the relationship between the two quartic couplings, mesonic fluctuations can either strengthen of weaken the anomaly as a function of the temperature. Role of the six-point invariant of the $U(3)\\times U(3)$ group, and therefore the stability of the chiral expansion is also discussed in detail.
Non-perturbative renormalization of the B-meson axial current
International Nuclear Information System (INIS)
The axial current of a light and a heavy quark is studied in the static approximation, with the aim of defining a non-perturbative renormalization scheme. To keep lattice artifacts small, O(a) improvement in the static approximation is discussed in detail. It is explained how a finite size scheme can be used to avoid the necessity of accommodating a large energy range on a single lattice in the determination of the scale dependence of the renormalized static-light axial current. To that end, Schroedinger functional boundary conditions are imposed on the static quark field, and a renormalization condition is formulated. As a central object of the SF scheme, the 'step scaling function', connecting the renormalization constants at different scales, is introduced. A large part of this thesis is dedicated to the expansion of suitable correlation functions to one loop order of perturbation theory. Using these expansions, the finite renormalization constants connecting the static-light axial current in the lattice MS scheme and the light-light axial current normalized by current algebra relations is calculated at one loop order. From this result, the relation of the renormalized static-light axial current in the SF scheme to the MS-renormalized static-light axial current is derived. Using that relation, the static-light axial current's two loop anomalous dimension in the SF scheme, which is needed for the calculation of the renormalization group invariant current, is calculated by conversion from the MS scheme. Further studies made in this thesis are the determination of discretization errors in the step scaling function at one loop order, and the calculation of an improvement coefficient for the static-light axial current at one loop order to perturbation theory. (orig.)
Form factors, medium effects and vector mesons in the projected chiral soliton model
International Nuclear Information System (INIS)
The main goal of the present work has been the evaluation of baryonic form factors by means of the projected chiralquark-meson soliton model and various generalizations of it. In first place we have studied the Nambu-Jona-Lasinio model in the Hartree approximation for classical non-strange scalar and pseudoscalar couplings in the vacuum sector. In doing so, we have first bosonized the Lagrangian and applied three regularization schemes in order to render the theory finite. We have found that at least two physical quantities as the quark mass and the quark condensate are very sensitive to the actual scheme used. The procedures which allow to reproduce best the experimental values are both sharp cut-off methods. We have also shown that the chiral soliton model with explicit valence quarks can be considered as an approximation to the Hartree solution of the Nambu-Jona-lasinio model for quarks. In the framework of the linear chiral sigma model with quarks, sigma-, and pi-mesons we have discussed several nucleon form factors such as electromagnetic, axial and that for the pion-nucleon interaction. (orig./HSI)
Role of vector interaction and axial anomaly in the PNJL modeling of the QCD phase diagram
International Nuclear Information System (INIS)
Effects of a flavor singlet vector interaction in the Polyakov–Nambu–Jona-Lasinio (PNJL) Model are studied in combination with the axial U(1) breaking Kobayashi–Maskawa–'t Hooft interaction, using an improved, consistent cutoff scheme. We confirm that the first-order chiral phase transition at moderate baryon chemical potentials and its critical point, a generic feature of NJL-type models without vector coupling, disappear for sufficiently large vector coupling strength gv. New results are presented concerning the curvature of the crossover boundary in the T–μ plane close to μ=0 and its dependence on gv
Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions
Gran, R; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, Yu K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Mayer, B; Vasseur, G; Yéche, C; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihályi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H; Back, B B
2006-01-01
The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \\pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.
Study of Muon Pairs and Vector Mesons Produced in High Energy Pb-Pb Interactions
Karavicheva, T; Atayan, M; Bordalo, P; Constans, N P; Gulkanyan, H; Kluberg, L
2002-01-01
%NA50 %title\\\\ \\\\The experiment studies dimuons produced in Pb-Pb and p-A collisions, at nucleon-nucleon c.m. energies of $ \\sqrt{s} $ = 18 and 30 GeV respectively. The setup accepts dimuons in a kinematical range roughly defined as $0.1$ $1 GeV/c$, and stands maximal luminosity (5~10$^{7}$~Pb ions and 10$^7$ interactions per burst). The physics includes signals which probe QGP (Quark-Gluon Plasma), namely the $\\phi$, J/$\\psi$ and $\\psi^\\prime$ vector mesons and thermal dimuons, and reference signals, namely the (unseparated) $\\rho$ and $\\omega$ mesons, and Drell-Yan dimuons. The experiment is a continuation, with improved means, of NA38, and expands its study of {\\it charmonium suppression} and {\\it strangeness enhancement}.\\\\ \\\\The muons are measured in the former NA10 spectrometer, which is shielded from the hot target region by a beam stopper and absorber wall. The muons traverse 5~m of BeO and C. The impact parameter is determined by a Zero Degree Calorimeter (Ta with silica fibres). Energy dissipation ...
Observation of chi(c1) Decays into Vector Meson Pairs phi phi, omega omega, and omega phi
Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, M. Y.; Fan, R. R.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Grishin, S.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kavatsyuk, M.; Komamiya, S.; Kuehn, W.; Lange, J. S.; Leung, J. K. C.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Lei; Li, N. B.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, G. C.; Liu, H.; Liu, H. B.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Sonoda, S.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tian, H. L.; Toth, D.; Varner, G. S.; Wan, X.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, M.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, L.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.; Zweber, P.
2011-01-01
Using (106 +/- 4) x 10(6) psi(3686) events accumulated with the BESIII detector at the BEPCII e(+) e(-) collider, we present the first measurement of decays of chi(c1) to vector meson pairs phi phi, omega omega, and omega phi. The branching fractions are measured to be (4.4 +/- 0.3 +/- 0.5) x 10(-4)
Photoproduction of vector mesons: from ultraperipheral to semi-central heavy ion collisions
Klusek-Gawenda, M
2016-01-01
We discuss nuclear cross sections for $AA \\to AAV$ and $AA \\to AAVV$ reactions with one or two vector mesons in the final state. Our analysis is done in the impact parameter space equivalent photon approximation. This approach allows to consider the above processes taking into account distance between colliding nuclei. We consider both ultraperipheral and semi-central collisions. We are a first group which undertook a study of single $J/\\psi$ photoproduction for different centrality bins. We show that one can describe new ALICE experimental data by including geometrical effects of collisions in the flux factor. Next, total and differential cross section for double-scattering mechanism in the exclusive $AA \\to AAVV$ reaction in ultrarelativistic ultraperipheral heavy ion collisions is presented. In this context we consider double photoproduction and photon-photon processes. Simultaneously, we get very good agreement of our results with STAR (RHIC), CMS and ALICE (LHC) experimental data for single $\\rho^0$ and ...
Vector meson masses in two-dimensional SU(NC) lattice gauge theory with massive quarks
Institute of Scientific and Technical Information of China (English)
JIANG Jun-Qin
2008-01-01
Using an improved lattice Hamiltonian with massive Wilson quarks a variational method is applied to study the dependence of the vector meson mass Mv on the quark mass m and the Wilson parameter r in in the scaling window 1 ≤ 1/g2 ≤ 2, Mv/g is approximately linear in m, but Mv/g obviously does not depend on r (this differs from the quark condensate). Particularly for m → 0 our numerical results agree very well with Bhattacharya's analytical strong coupling result in the continuum, and the value of ((e)Mv/(e)m) |mm=0 in two-dimensional SU(NC) lattice gauge theory is very close to that in Schwinger model.
Vector meson-baryon dynamics in photoproduction reactions around 2 GeV
Directory of Open Access Journals (Sweden)
Ramos A.
2014-01-01
Full Text Available We investigate the role of vector mesons and coupled-channel unitarization on photoproduction reactions o_ the proton at energies around 2 GeV. We explain the sudden drop on the γp → K0Σ+ cross section, observed recently by the CBELSA/TAPS collaboration, by a delicate interference between amplitudes having K*Λ and K*Σ intermediate states modulated by the presence of a nearby N* resonance produced by our model, a feature that we have employed to predict its properties. We also show the importance of coupled-channel unitarization in the γp → K*0Σ+ reaction, measured recently by CBELSA/TAPS and CLAS with conflicting results.
Exclusive J/Ψ vector-meson production in high-energy nuclear collisions
Energy Technology Data Exchange (ETDEWEB)
Ramnath, A.; Weigert, H.; Hamilton, A.
2014-12-15
We illustrate the first steps in a cross-section determination for exclusive J/Ψ production in ultra-peripheral heavy ion collisions from two viewpoints. First, the setup for a theoretical calculation is done in the context of the Colour Glass Condensate effective field theory, using the Gaussian truncation to parametrise rapidity-averaged n-point correlators. Secondly, a feasibility study is carried out using STARlight Monte Carlo simulations to predict how many exclusive J/Ψ vector-mesons might be expected in ATLAS at the LHC. In a data set corresponding to 160 μb{sup −1} of total integrated luminosity, about 150 candidate events are expected.
International Nuclear Information System (INIS)
A precise measurement of the atomic mass dependence of dimuon continuum and vector-meson production induced by 800 GeV/c protons is reported. Approximately 700,000 muon pairs with dimuon mass M ≥ 3 GeV were recorded from targets of 2H, C, Ca, Fe, and W. The ratio of Drell-Yan dimuon yield per nucleon for nuclei versus 2H, R = YA/Y2H, is sensitive to modifications of the antiquark sea in nuclei. No nuclear dependence of this ratio is observed over the range of target-quark momentum fraction 0.1 t t f and pt. 25 refs., 19 figs., 1 tab
Deeply Virtual Compton Scattering on nucleons and nuclei in generalized vector meson dominance model
Göke, K; Siddikov, M
2008-01-01
We consider Deeply Virtual Compton Scattering (DVCS) on nucleons and nuclei in the framework of generalized vector meson dominance (GVMD) model. We demonstrate that the GVMD model provides a good description of the HERA data on the dependence of the proton DVCS cross section on Q^2, W (at Q^2=4 GeV^2) and t. At Q^2 = 8 GeV^2, the soft W-behavior of the GVMD model somewhat underestimates the W-dependence of the DVCS cross section due to the hard contribution not present in the GVMD model. We estimate 1/Q^2 power-suppressed corrections to the DVCS amplitude and the DVCS cross section and find them large. We also make predictions for the nuclear DVCS amplitude and cross section in the kinematics of the future Electron-Ion Collider. We predict significant nuclear shadowing, which matches well predictions of the leading-twist nuclear shadowing in DIS on nuclei.
Determination of the Axial-Vector Weak Coupling Constant with Polarized Ultracold Neutrons
Liu, J; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; Garcia, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C -Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Galvan, A Perez; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R
2010-01-01
A precise measurement of the neutron decay $\\beta$-asymmetry $A_0$ has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report $A_0 = -0.11966 \\pm 0.00089 _{-0.00140}^{+0.00123}$, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon $g_A/g_V = -1.27590 _{-0.00445}^{+0.00409}$.
Determination of the axial-vector weak coupling constant with ultracold neutrons.
Liu, J; Mendenhall, M P; Holley, A T; Back, H O; Bowles, T J; Broussard, L J; Carr, R; Clayton, S; Currie, S; Filippone, B W; García, A; Geltenbort, P; Hickerson, K P; Hoagland, J; Hogan, G E; Hona, B; Ito, T M; Liu, C-Y; Makela, M; Mammei, R R; Martin, J W; Melconian, D; Morris, C L; Pattie, R W; Pérez Galván, A; Pitt, M L; Plaster, B; Ramsey, J C; Rios, R; Russell, R; Saunders, A; Seestrom, S J; Sondheim, W E; Tatar, E; Vogelaar, R B; VornDick, B; Wrede, C; Yan, H; Young, A R
2010-10-29
A precise measurement of the neutron decay β asymmetry A₀ has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A₀ = -0.119 66±0.000 89{-0.001 40}{+0.001 23}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g{A}/g{V}=-1.275 90{-0.004 45}{+0.004 09}. PMID:21231098
Universal formula for the flavor non-singlet axial-vector current from the gradient flow
International Nuclear Information System (INIS)
By employing the gradient/Wilson flow, we derive a universal formula that expresses a correctly normalized flavor non-singlet axial-vector current of quarks. The formula is universal in the sense that it holds independently of regularization and especially holds with lattice regularization. It is also confirmed that, in the lowest non-trivial order of perturbation theory, the triangle diagram containing the formula and two flavor non-singlet vector currents possesses non-local structure that is compatible with the triangle anomaly
Gómez-Rocha, M.; Hilger, T.; Krassnigg, A.
2016-04-01
We extend earlier investigations of heavy-light pseudoscalar mesons to the vector case, using a simple model in the context of the Dyson-Schwinger-Bethe-Salpeter approach. We investigate the effects of a dressed quark-gluon vertex in a systematic fashion and illustrate and attempt to quantify corrections beyond the phenomenologically very useful and successful rainbow-ladder truncation. In particular we investigate the dressed quark-photon vertex in such a setup and make a prediction for the experimentally as yet unknown mass of the Bc* , which we obtain at 6.334 GeV well in line with predictions from other approaches. Furthermore, we combine a comprehensive set of results from the theoretical literature. The theoretical average for the mass of the Bc* meson is 6.336 ±0.002 GeV .
Partially conserved axial-vector current and model chiral field theories in nuclear physics
International Nuclear Information System (INIS)
We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology
Elastic vector and axial scattering of weakly interacting particles off nuclei
Moreno, O
2016-01-01
We analyze the elastic scattering of particles interacting with nuclei through vector and axial currents with overall couplings of the order of the Standard Model weak interaction, or smaller; the dominant contribution to the elastic cross section is identified as the coherent component and is therefore spin-independent. Differential and integrated cross sections are obtained for a wide range of incident particle masses and velocities and for nuclear targets with different masses; vector, axial and overall couplings of the incident particle and of the hadronic target to the massive exchanged boson are also kept general. This study naturally encompasses several kinds of possible dark matter components, including active and sterile neutrinos or neutralinos, and addresses the prospects for their direct detection through elastic scattering off nuclei.
Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Axial Vector Form Factor
International Nuclear Information System (INIS)
The authors report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at the backward angles at electron beam energy of 125 MeV [Q2=0.038 (GeV/c)2]. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon. In addition to the tree level amplitude associated with Z-exchange, the neutral weak axial vector form factor as measured in electron scattering can potentially receive large electroweak corrections, including the anapole moment, that are absent in neutrino scattering. The measured asymmetry A -3.51 ± 0.57 (stat) ± 0.58 (sys) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at 200 MeV [Q2 = 0.091 (GeV/c)2] on a deuterium target. The updated results are also consistent with theoretical predictions on the neutral weal axial vector form factor
Beyond gauge theory: positivity and causal localization in the presence of vector mesons
Schroer, Bert
2016-07-01
The Hilbert space formulation of interacting s=1 vector-potentials stands is an interesting contrast with the point-local Krein space setting of gauge theory. Already in the absence of interactions the Wilson loop in a Hilbert space setting has a topological property which is missing in the gauge-theoretic description (Haag duality, Aharonov-Bohm effect); the conceptual differences increase in the presence of interactions. The Hilbert space positivity weakens the causal localization properties of interacting fields, which results in the replacement of the gauge-variant point-local matter fields in Krein space by string-local physical fields in Hilbert space. The gauge invariance of the perturbative S-matrix corresponds to its independence of the space-like string direction of its interpolating fields. In contrast to gauge theory, whose direct physical range is limited to a gauge-invariant perturbative S-matrix and local observables, its Hilbert space string-local counterpart is a full-fledged quantum field theory (QFT). The new setting reveals that the Lie structure of self-coupled vector mesons results from perturbative implementation of the causal localization principles of QFT.
Double vector meson production in γγ interactions at hadronic colliders
Energy Technology Data Exchange (ETDEWEB)
Goncalves, V.P. [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Universidade Federal de Pelotas, High and Medium Energy Group, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Moreira, B.D.; Navarra, F.S. [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo, SP (Brazil)
2016-03-15
In this paper we revisit the double vector meson production in γγ interactions at heavy ion collisions and present, by the first time, predictions for the ρρ and J/ΨJ/Ψ production in proton.nucleus and proton.proton collisions. In order to obtain realistic predictions for rapidity distributions and total cross sections for the double vector production in ultra peripheral hadronic collisions we take into account the description of γγ → VV cross section at lowenergies as well as its behavior at large energies, associated to the gluonic interaction between the color dipoles. Our results demonstrate that the double ρ production is dominated by the low energy behavior of the γγ → VV cross section. In contrast, for the double J/Ψ production, the contribution associated to the description of the QCD dynamics at high energies contributes significantly, mainly in pp collisions. Predictions for the RHIC, LHC, FCC, and CEPC-SPPC energies are shown. (orig.)
Role of Vector Interaction and Axial Anomaly in the PNJL Modeling of the QCD Phase Diagram
Bratovic, Nino M; Weise, Wolfram
2012-01-01
Effects of a flavor singlet vector interaction in the Polyakov - Nambu - Jona-Lasinio (PNJL) model are studied in combination with the axial U(1) breaking Kobayashi - Maskawa - 't Hooft interaction. Using a consistent cutoff scheme we investigate the QCD phase diagram and its dependence on the vector coupling strength $g_v$. We find that the first order chiral phase transition at moderate baryon chemical potentials and its critical point, a generic feature of most NJL-type models without vector coupling, disappear for sufficiently large values of $g_v$ that are consistent with lattice QCD results at imaginary chemical potential. The influence of non-zero $g_v$ on the curvature of the crossover boundary in the $T-\\mu$ plane close to $\\mu = 0$ is also examined.
Goncalves, V P; Sauter, W K
2015-01-01
The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken - $x$ variable and low values of the hard scale $Q^2$. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon - hadron and hadron - hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrizations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the collinear formalism. We perform a fit of the normalization of the $\\gamma h$ cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small - $x$ and low $Q^2$.
Renormalization of Chiral-Even Twist-3 Light-cone Wave Functions for Vector Mesons in QCD
Koike, Y; Tanaka, K
1998-01-01
We present the one-loop anomalous dimension matrices for the chiral-even twist-3 (nonsinglet) conformal operators, which govern the scale-dependence of the vector meson light-cone wave functions through the conformal expansion. It is clarified that the constraints from the charge-conjugation invariance and the chirality conservation allow only one independent anomalous dimension matrix for each conformal spin.
International Nuclear Information System (INIS)
In this paper the general structure of leptonic decay constants of vector mesons is evaluated in the framework of Bethe-Salpeter Equation under Covariant Instantaneous Ansatz (CIA) with a modified structure of the Hqq-bar vertex function Γ which is generalized to include Dirac covariants other than the leading Dirac covariant γμ within its structure. The numerical values of fv in this CIA framework are calculated. (author)
Institute of Scientific and Technical Information of China (English)
徐庆华; 梁作堂
2001-01-01
We calculate the contribution of vector meson dominance to deeply inelastic lepton-nucleon scattering in the kinematic region of the HERMES experiment. The results obtained show that this contribution is quite significant.Together with the fact that there exist very striking left-right asymmetries for hadrons produced in single-spin hadron-hadron collisions, these results imply that the single-spin azimuthal asymmetry observed by HERMEScannot be simply regarded as a pure fragmentation effect.
Extended vector meson dominance model for the baryon octet electromagnetic form factors
International Nuclear Information System (INIS)
An unresolved issue in the present understanding of nucleon structure is the effect of hidden strangeness on electromagnetic observables such as GnE(q2). Previously, we have shown that GnE(q2) is sensitive to small φNN couplings. A complementary approach for understanding effects due to strangeness content and the Okubo-Zweig-Iizuka (OZI) rule is to investigate the electromagnetic structure of hyperons. We apply Sakurai close-quote s universality limit of the SU(3)F symmetry relations and a prescription based on the OZI rule to calculate the electromagnetic form factors of the baryon octet states (p,n,Λ,Σ+,Σ0,Σ-,Ξ0,Ξ-) within the framework of an extended vector meson dominance model. To provide additional motivation for experimental investigation, we discuss the possibility of extracting the ratio GMΛ(q2)/GMΣΛ(q2) from the Λ/Σ polarization ratio in kaon electroproduction experiments. copyright 1996 The American Physical Society
Evaluation of the Axial Vector Commutator Sum Rule for Pion-Pion Scattering
Adler, Stephen L
2007-01-01
We consider the sum rule proposed by one of us (SLA), obtained by taking the expectation value of an axial vector commutator in a state with one pion. The sum rule relates the pion decay constant to integrals of pion-pion cross sections, with one pion off the mass shell. We remark that recent data on pion-pion scattering allow a precise evaluation of the sum rule. We also discuss the related Adler--Weisberger sum rule (obtained by taking the expectation value of the same commutator in a state with one nucleon), especially in connection with the problem of extrapolation of the pion momentum off its mass shell.
Axial vector transition form factors of N \\rightarrow \\Delta in QCD
Kucukarslan, A; Ozpineci, A
2015-01-01
The isovector axial vector form factors of N \\rightarrow \\Delta transition are calculated by employing Light-cone QCD sum rules. The analytical results are analysed by both the conventional method, and also by a Monte Carlo based approach which allows one to scan all of the parameter space. The predictions are also compared with the results in the literature, where available. Although the Monte Carlo analysis predicts large uncertainties in the predicted results, the predictions obtained by the conventional analysis are in good agreement with other results in the literature.
Axial-vector current and quark spin content of the proton in an effective theory
International Nuclear Information System (INIS)
The background field theory is applied to study the internal spin structure of the proton in terms of both the large Nc expansion and derivative expansion. A new flavor-independent axial-vector current has been derived. Due to the higher order of this current in the large Nc expansion and the higher order in the derivative expansion a small quark spin content is expected and a nonzero strange quark spin content is revealed from the large Nc expansion. The numerical results are in agreement with the data. (orig.)
Pion as a Longitudinal Axial-Vector Meson $q\\bar{q}$ Bound State
Pham, T. N.
2013-01-01
The success of the Adler-Bell-Jackiw(ABJ) chiral anomaly prediction for $\\pi^{0}\\to \\gamma\\gamma$ decay rate shows that non-anomaly terms would make a negligible contribution to the decay rate, in agreement with the Sutherland-Veltman theorem. Thus the conventional $q\\bar{q}$ bound-state description of the pion could not be valid since it would produce a $\\pi^{0}\\to \\gamma\\gamma$ decay amplitude not suppressed in the soft pion limit, in contradiction with the Sutherland-Veltman theorem. There...
Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics
International Nuclear Information System (INIS)
By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3)F symmetry breaking effects are estimated and, if possible, confronted with experiment. ((orig.))
Vacuum properties of open charmed mesons in a chiral symmetric model
Eshraim, Walaa I
2014-01-01
We present a $U(4)_R \\times U(4)_L$ chirally symmetric model, which in addition to scalar and pseudoscalar mesons also includes vector and axial-vector mesons. A part from the three new parameters pertaining to the charm degree of freedom, the parameters of the model are fixed from the $N_f=3$ flavor sector. We compute open charmed meson masses, weak decay constants, and the (OZI-dominant) strong decays of open charmed mesons. A precise description of decays of open charmed states is important for the CBM and PANDA experiments at the future FAIR facility.
Baryon and meson phenomenology in the extended Linear Sigma Model
International Nuclear Information System (INIS)
The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.
Guzey, V.; Kryshen, E.; Zhalov, M.
2016-05-01
We make predictions for the cross sections of coherent photoproduction of ρ ,ϕ ,J /ψ ,ψ (2 S ) , and Υ (1 S ) mesons in Pb-Pb ultraperipheral collisions (UPCs) at √{sN N}=5.02 TeV in the kinematics of run 2 at the Large Hadron Collider extending the approaches successfully describing the available Pb-Pb UPC data at √{sN N}=2.76 TeV . Our results illustrate the important roles of hadronic fluctuations of the photon and inelastic nuclear shadowing in photoproduction of light vector mesons on nuclei and the large leading twist nuclear gluon shadowing in photoproduction of quarkonia on nuclei. We show that the ratio of ψ (2 S ) and J /ψ photoproduction cross sections in Pb-Pb UPCs is largely determined by the ratio of these cross sections on the proton. We also argue that UPCs with electromagnetic excitations of the colliding ions followed by the forward neutron emission allows one to significantly increase the range of photon energies accessed in vector meson photoproduction on nuclei.
Guzey, V; Zhalov, M
2016-01-01
We make predictions for the cross sections of coherent photoproduction of $\\rho$, $\\phi$, $J/\\psi$, $\\psi(2S)$, and $\\Upsilon(1S)$ mesons in Pb-Pb UPCs at $\\sqrt{s_{NN}}=5.02$ TeV in the kinematics of Run 2 at the LHC extending the approaches successfully describing the available Pb-Pb UPC data at $\\sqrt{s_{NN}}=2.76$ TeV. Our results illustrate the important roles of hadronic fluctuations of the photon and inelastic nuclear shadowing in photoproduction of light vector mesons on nuclei and the large leading twist nuclear gluon shadowing in photoproduction of quarkonia on nuclei. We show that the ratio of $\\psi(2S)$ and $J/\\psi$ photoproduction cross sections in Pb-Pb UPCs is largely determined by the ratio of these cross sections on the proton. We also argue that UPCs with electromagnetic excitations of the colliding ions followed by the forward neutron emission allows one to significantly increase the range of photon energies accessed in vector meson photoproduction on nuclei.
International Nuclear Information System (INIS)
Using the assumption of a partially conserved axial-vector current and the conservation law for the electromagnetic current, we rederive a low-energy theorem for the pion electroproduction. In contrast to the traditional approach, we include all effects of off-shell nucleons and pions. We parametrize the axial-vector current in its most general form and apply the minimal substitution prescription to obtain the radiative axial-vector vertex that is required for gauge invariance. We split the full radiative axial-vector vertex into the isolated-pole contribution, the minimal-coupling interaction, and the remainder. The Ward-Takahashi identities are translated into the constraints on the pion electroproduction amplitude. The rigorous low-energy theorem is obtained for the zero four-momentum pion electroproduction. It is found that the off-shell matrix elements of the axial-vector current affect the isolated-pole term and the gauge term so that the low-energy theorem is at variance with the standard one given in the literature
Determination of the axial-vector form factor in the radiative decay of the pion
International Nuclear Information System (INIS)
The branching ratio for the decay π → eνγ was measured in a counter experiment in which the e+ was detected in a magnetic spectrometer and the γ-ray in a lead glass hodoscope. The number of observed events is 226.2 +- 22.4. The branching ratio into the phase space with electron momentum above 56 MeV/c and the electron/photon opening angle greater than 1320 is found to be (5.6 +- 0.7) x 10-8. From the measured branching ratio one determines γ, the ratio of the axial vector to vector form factor. The vector form factor is computed using CVC and the π0 lifetime. For T/sub π/0 = 0.828 x 10-16 sec, γ = 0.44 +- 0.12 or γ = --2.36 +- 0.12 is obtained. A comparison between the measured values of γ and various theories is made
An effective theory for QCD with an axial chemical potential
Andrianov, Alexander A; Espriu, Domenec; Planells, Xumeu
2013-01-01
We consider the low energy realization of QCD in terms of meson fields when an axial chemical potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate that the presence of an axial charge constitutes an explicit source of parity breaking. The eigenstates of strong interactions do not have a definite parity and interactions that would otherwise be forbidden compete with the familiar ones. In this work, we first focus on scalars and pseudoscalars that are described by a generalized linear sigma model; and next, we give some hints on how the Vector Meson Dominance model describes the vector sector.
Simulations for an experiment to probe the in-medium properties of photoproduced vector mesons
Energy Technology Data Exchange (ETDEWEB)
Clarisse Tur
2003-04-01
The g7 experiment has been devised to measure the modifications of the vector meson properties, such as mass or width, inside nuclear medium, based on the ideas presented in the numerous papers published during the fifteen years that preceded its run. It consisted in sending a bremstrahlung photon beam on a target that contained elements with different densities, a liquid deuterium cell, and seven solid foils: carbon, iron, carbon, lead, carbon, titanium, carbon. The goal of the experiment is to examine the inclusive e{sup +}e{sup -} photoproduction in the incoherent region. The reaction of interest to g7 is {gamma}A {yields} VA{prime} {yields} e{sup +}e{sup -}A{prime} where V could be a {rho} an {omega} or a {phi} meson. The goal of the present thesis was to present the simulation work done prior to the g7 run in the fall of 2002 at Jlab, essential for the choice of the ideal experimental setup and conditions, as well as the test run of June 2002. The simulations needed a particular attention, given the many experimental challenges that awaited the g7 team. First, one had to prove that the resolution of the CLAS detector was sufficient to properly locate the vertices of the events given the multi-segmented target, and the simulations proved that fact. They also provided a rough idea of the systematic errors that one had to expect. Using nuclei bigger than carbon was a first time for CLAS. Given the very small branching ratio for {rho} {yields} e{sup +}e{sup -}, a very intense beam had to be sent on the target containing high-Z material. Thus, a huge background, formed of low energy e{sup +}e{sup -} pairs, was expected around the target and the region I of the drift chambers and which one had to reduce in an efficient way. The simulations showed that using the mini torus with its current set to 75% of its maximum value would give a reduction of about a factor of 3 in the number of hits in the region I of the drift chambers, compared to the case with no mini torus
Terschlüsen, Carla; Leupold, Stefan
2016-07-01
Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent structures that appear for the effective low-energy action at chiral orders Q2 and Q4 . The corresponding renormalization-scale dependencies of all low-energy constants up to chiral order Q4 are determined. Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the framework of chiral perturbation theory in the limit of a large number of colors.
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
Deur, Alexandre
2013-01-01
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01
Radiative meson decays in a relativistic quark model
International Nuclear Information System (INIS)
Motivated by the recent lattice QCD results indicating that the topological charge contribution to the flavor singlet axial vector current can be traded off by the constituent quark masses, we investigate the radiative decays of pseudoscalar (π, K, η, η'), vector (ρ, K*, ω, φ) and axial vector (A1) mesons using a simple relativistic constituent quark model. For both simplicity and relativity, we take advantage of the distinguished features in the light-cone quantization method: (1) the Fock-state expansion of meson wavefunctions are not contaminated by the vacuum fluctuation, (2) the assignment of meson quantum numbers are given by the Melosh transformation. The computed decay widths of ρ, ω → π(η)γ, K* → Kγ, A1 → πγ and the transition form factor of π0 → γ*γ at 0 ≤ Q2 ≤ 8 GeV2 are in a remarkably good agreement with the experimental data. (author)
Plasma neutrino energy loss due to the axial-vector current at the late stages of stellar evolution
Institute of Scientific and Technical Information of China (English)
LIU Jing-Jing
2009-01-01
Based on the Weinberg-Salam theory, the plasma neutrino energy loss rates of vector and axialvector contributions are studied.A ratable factor of the rates from the axial-vector current relative to those of the total neutrino energy loss rates is accurately calculated.The results show that the ratable factor will reach a maximum of 0.95 or even more at relatively higher temperature and lower density (such as P/μe＜ 10~7 g/cm~3).Thus the rates of the axial-vector contribution cannot be neglected.On the other hand, the rates of the axialvector contribution are on the order of～0.01% of the total vector contribution, which is in good agreement with Itoh's at relatively high density (such as p/μe＞10~7 g/cm~3) and a temperature of T≤10~(11) K.
Medium Modi cation on Vector Mesons Observed in 12 GeV p + A Reactions
International Nuclear Information System (INIS)
The invariant mass spectra of e+e- pairs produced in 12 GeV p+A reactions are measured at the KEK-PS. We observed a significant enhancement over the known hadronic sources on the low-mass side of the ω meson peak. The 95 % C.L. allowed parameter regions for ρ/ω ratio are obtained as ρ/ω < 0.15 and ρ/ω < 0.31 for C and Cu targets, respectively. As for the φ meson, the data obtained with a Cu target revealed a significant excess on the low-mass side of the φ meson peak mainly in the βγφ < 1.25 region
Medium Modi cation on Vector Mesons Observed in 12 GeV p + A Reactions
Naruki, M.; En'yo, H.; Muto, R.; Tabaru, T.; Yokkaichi, S.; Fukao, Y.; Funahashi, H.; Ishino, M.; Kanda, H.; Kitaguchi, M.; Mihara, S.; Miwa, K.; Miyashita, T.; Murakami, T.; Nakura, T.; Sakuma, F.; Togawa, M.; Yamada, S.; Yoshimura, Y.; Chiba, J.; Ieiri, M.; Sasaki, O.; Sekimoto, M.; Tanaka, K. H.; Hamagaki, H.; Kek-Ps E325 Collaboration
2006-11-01
The invariant mass spectra of e+e- pairs produced in 12 GeV p+A reactions are measured at the KEK-PS. We observed a significant enhancement over the known hadronic sources on the low-mass side of the ω meson peak. The 95 % C.L. allowed parameter regions for ρ/ω ratio are obtained as ρ/ω < 0.15 and ρ/ω < 0.31 for C and Cu targets, respectively. As for the φ meson, the data obtained with a Cu target revealed a significant excess on the low-mass side of the φ meson peak mainly in the βγφ < 1.25 region.
International Nuclear Information System (INIS)
The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken-x variable and low values of the hard scale Q2. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon-hadron and hadron-hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrisations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalisation of the γh cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small x and low Q2. (orig.)
International Nuclear Information System (INIS)
This thesis is concerned with modelling electromagnetic and hadronic processes in the low-energy regime, employing a manifestly lorentz-invariant chiral effective field theory with dynamical vector mesons. This effective theory serves as an approximation of the more fundamental quantum chromodynamics at low energies. Focusing on power counting and renormalization, a consistent description of different processes up to approximately 1GeV is possible. The key ingredient of the power counting is a large-Nc argument, which implies an equivalent treatment of Goldstone bosons (pions) and resonances (rho and omega mesons). A suitable renormalization scheme is the complex-mass scheme (a generalization of the extended on-mass-shell scheme) which - combined with the BPHZ renormalization method (named after Bogoliubov, Parasiuk, Hepp, and Zimmermann) - yields a powerful framework for the computation of quantum corrections in chiral effective theories. All calculations contain contributions up to and including fourth chiral order at the one-loop level. Analyzed quantities are, besides others, the vector form factor of the pion in the timelike region and real Compton scattering (respectively photon fusion) in the neutral and charged channels. In addition, virtual Compton scattering off the pion, embedded into electron-positron annihilation, is discussed. Furthermore, experimental data of various observables are used to extract the values of all contributing low-energy coupling constants. The developed methods - especially the technical implementations - are of very general nature and, therefore, straightforward to adapt to additional problems in low-energy quantum chromodynamics.
Energy Technology Data Exchange (ETDEWEB)
Goncalves, V.P. [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Martins, L.A.S.; Sauter, W.K. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil)
2016-02-15
The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken-x variable and low values of the hard scale Q{sup 2}. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon-hadron and hadron-hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrisations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalisation of the γh cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small x and low Q{sup 2}. (orig.)
Analysis of the Light-Flavor Scalar and Axial-Vector Diquark States with QCD Sum Rules
Institute of Scientific and Technical Information of China (English)
WANG Zhi-Gang
2013-01-01
In this article,we study the light-flavor scalar and axial-vector diquark states in the vacuum and in the nuclear matter using the QCD sum rules in a systematic way,and make reasonable predictions for their masses in the vacuum and in the nuclear matter.
Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir
2016-05-01
We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.
Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors
International Nuclear Information System (INIS)
We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q2 dependence of the axial-vector form factor ga(Q2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure ga(Q2). If ga(Q2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q2 mapping of ga between 0.01 22. 60 days of beam can yield 14 data points with a subpercent statistical and point to point uncorrelated uncertainties on each point. Such an experiment may also allow to measure the free-neutron magnetic form factor GMn. The experiment employs the usual techniques of electron-nucleon scattering and presents no special difficulty. Higher energy extensions are possible. They could yield measurements of ga(Q2) up to Q2=3 GeV2 and the possibility to access other form factors, such as the almost unknown pseudoscalar form factor gP. However, the experiments become much more challenging as soon as beam energies pass the pion production threshold
2012-01-31
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Airbee Wireless, Inc., Axial Vector Engine Corp. (n/k/a Avec Corporation), and... accurate information concerning the securities of Axial Vector Engine Corp. (n/k/a Avec...
Strong coupling constant of hb vector to the pseudoscalar and vector Bc mesons in QCD sum rules
International Nuclear Information System (INIS)
The strong coupling constant ghbBcPSBcV is calculated using the three-point QCD sum-rule method. We use correlation functions to obtain these strong coupling constants with contributions of both BcPS and BcV mesons as off-shell states. The contributions of two gluon condensates as a radiative correction are considered. The results show that ghbBcPSBcV = 8.80 ± 2.84 GeV-1 and ghbBcPSBcV = 9.34 ± 3.12 GeV-1 in the BcPS and BcV off-shell state, respectively. (orig.)
Hadronic resonance spectrum may help in resolution of meson nonet enigmas
International Nuclear Information System (INIS)
The identification of problematic meson states as the members of the quark model qq nonets by using a hadronic resonance spectrum is discussed. The results favor the currently adopted qq assignments for the tensor and 1 3F4 JPC=4++ meson nonets, and suggest a new qq assignments for the scalar and axial-vector nonets which favor the interpretation of the f0(980), f0(1710) and f1(1510) mesons as non-qq objects. We also suggest that the 2 3S1 1/2(1-) state should be identified with the K*(1680) rather than K*(1410) meson. (orig.)
Light vector meson production in pp collisions at sqrt(s) = 7 TeV
DEFF Research Database (Denmark)
Collaboration, ALICE; Abelev, B.; Abrahantes Quintana, A.;
2012-01-01
The ALICE experiment has measured low-mass dimuon production in pp collisions at \\sqrt{s} = 7 TeV in the dimuon rapidity region 2.5y\\eta^{}, \\phi) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for \\omega and \\phi are \\sigma_\\omega (1p_t5 GeV/c,2.5y4...
Islam, Chowdhury Aminul; Majumder, Sarbani; Mustafa, Munshi G.
2015-11-01
In this work we have reexplored our earlier study on the vector meson spectral function and its spectral property in the form of dilepton rate in a two-flavor Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model in the presence of a strong entanglement between the chiral and Polyakov loop dynamics. The entanglement considered here is generated through the four-quark scalar-type interaction in which the coupling strength depends on the Polyakov loop and runs with temperature and chemical potential. The entanglement effect is also considered for the four-quark vector-type interaction in the same manner. We observe that the entanglement effect relatively enhances the color degrees of freedom due to the running of both the scalar and vector couplings. This modifies the vector meson spectral function and, thus, the spectral property such as the dilepton production rate in the low invariant mass also gets modified.
Islam, Chowdhury Aminul; Mustafa, Munshi G
2015-01-01
In this work we have re-explored our earlier study on the vector meson spectral function and its spectral property in the form of dilepton rate in a two-flavour Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model in presence of a strong entanglement between the chiral and Polyakov loop dynamics. The entanglement considered here is generated through the four-quark scalar type interaction in which the coupling strength depends on the Polyakov loop and runs with temperature and chemical potential. The entanglement effect is also considered for the four-quark vector type interaction in the same manner. We observe that the entanglement effect relatively enhances the color degrees of freedom due to the running of the both scalar and vector couplings. This modifies the vector meson spectral function and thus the spectral property such as the dilepton production rate in low invariant mass also gets modified.
Chiral perturbation theory and U(3)L x U(3)R chiral theory of mesons
International Nuclear Information System (INIS)
In terms of the path integration theory, we examine U(3)L x U(3)R chiral theory of mesons (Li model) through integrating out fields of vector and axial-vector mesons. The corresponding effective Lagrangian for pseudoscalar mesons at order p4 have been obtained, and five quark-mass independent coupling constants Li(i = 1, 2, 3, 9, 10) in it have been calculated. It has been found that they are in good agreement with the values of χPT's at μ = mp. (author). 12 refs, 1 tab
Study of the radiative decay of the φ vector meson through e+e- annihilation
International Nuclear Information System (INIS)
This work is dedicated to the M2N (Neutral Modes Mesons) experiment whose main aim has been to measure the decay radiative modes of the φ meson. We have studied the 2 decay channels: φ → ηγ and φ → π0γ in the electron-positron collider of Orsay (ACO). This work is divided into 4 parts, the first part presents a theoretical background on the radiative decay of the φ meson including kinematics, the production cross-section, the quark model and the SU3 symmetry group. The second part describes the experiment with its detection system based on spark chambers and scintillation counters. The principles of data acquisition and data processing are presented, about 106 photos have been taken during the experiment. The third part deals with data analysis, the determination of the detection efficiency is made through a Monte-Carlo simulation of 3 γ events. About 1721 events releasing 3 γ have been measured, they correspond to the 4 following reactions: e+e- → φ → KS0Kl0; e+e- → 3γ; e+e- → φ → ηγ → 3γ; and e+e- → φ → π0γ → 3γ. In order to extract the signal due only to the last 2 reactions, 3 new selection criteria have been set based on position, energy and angle limit. The last part presents the experimental results, we have got: σ(φ → ηγ) = (66 ± 15) nb and σ(φ → π0γ) = (6.2 ± 1.6) nb
Vector meson production in electron-positron annihilation events at c.m. energies of 34.6 GeV
International Nuclear Information System (INIS)
The influence of quark spins on the hadronisation in e+e- annihilation events was investigated by measuring the production rates of strange pseudoscalar mesons and strange vector mesons. The data were taken with the TASSO detector at the e+e- storage ring PETRA. Clear K0 and K*± signals were selected from the data. The scaled cross section for inclusive K*± production was determined. The number of K0, anti K0 per event is 1.48 ± 0.05 (stat.) ± 0.22 (syst.) and the numbers of K*± per event is 0.59 ± 0.19 (stat.) ± 0.13 (syst.). From this the vector meson production parameter V/(V+P) was determined to be 0.53 ± 0.11 (stat.) ± 0.15 (syst.). The dependance of V/(V+P) on the mass ratio MV/MP of the meson partners was investigated by comparing inclusive cross sections for mesons with different quark compositions. (orig.)
Light vector meson production in pp collisions at √(s)=7 TeV
International Nuclear Information System (INIS)
The ALICE experiment has measured low-mass dimuon production in pp collisions at √(s)=7 TeV in the dimuon rapidity region 2.5′,φ) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for ω and φ are σω(1tφ(1t2σ/dydpt are extracted as a function of pt for ω and φ. The ratio between the ρ and ω cross section is obtained. Results for the φ are compared with other measurements at the same energy and with predictions by models.
Medium dependence of the vector-meson mass: dynamical and/or Brown-Rho scaling?
International Nuclear Information System (INIS)
We discuss the similarities and differences for the theories of Rapp, Wambach and collaborators (called R/W in short) and those based on Brown-Rho scaling (called B/R), as applied to reproduce the dileptons measured by the CERES collaboration in the CERN experiments. In both theories the large number of dileptons at invariant masses ∼ mρ/2 are shown to be chiefly produced by a density-dependent ρ-meson mass. In R/W the medium dependence is dynamically calculated using hadronic variables defined in the matter-free vacuum. In B/R scaling it follows from movement towards chiral symmetry restoration due to medium-induced vacuum change, and is described in terms of constituent (or quasiparticle) quarks. We argue that the R/W description should be reliable up to densities somewhat beyond nuclear density, where hadrons are the effective variables. At higher density there should be a crossover to constituent quarks as effective variables scaling according to B/R. In the crossover region, the two descriptions must be ''dual'' For the moment there is a factor ≥ 2 difference between the predicted number of dileptons from the two theories, B/R scaling giving the larger number. We show that a substantial factor results because in B/R, fluctuation is made about the ''vacuum'' modified by density, so that a different mass mρ* appears in the Lagrangian for each density, thereby rendering residual interactions between hadrons weaker, whereas R/W calculate a mass mρ for each density with an effective Lagrangian defined in the zero-density vacuum, which has the free mρ in the Lagrangian and hence the coupling is strong. Thus more diagrams need to be incorporated in R/W to reduce the discrepancy. On the other hand, R/W include processes which may be additional to these of B/R. These constitute several (smaller) corrections. It is argued that the N*-hole state [N*(1520)N-1]1- is almost completely ρ-meson like in content; i.e., it is, to a good approximation, just the state
The production of neutral vector mesons by bremsstrahlung in electron-positron colliding beams
International Nuclear Information System (INIS)
The authors study the bremsstrahlung production of the rho meson in the reaction e+e- → e+e-rho (→ e+e- π+π-). This reaction gives a C = -1 background which complicates the study of C = +1 two-photon processes at the new colliding-beam facilities. The cross section for the reaction rises from approximately 0.3 nb to 0.7 nb as the beam energy increases from 2 GeV to 15 GeV. From a study of the distributions of the final leptons and pions, one finds a suitable choice of cuts which will reduce the event rate down to a small fraction of R. It is not possible to attribute the three-prong events seen at DELCO and PLUTO to this particular production mechanism. (Auth.)
Light vector meson production in pp collisions at $\\sqrt{s}$ = 7 TeV
Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergmann, Cyrano; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bortolin, Claudio; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Bottger, Stefan; Boyer, Bruno Alexandre; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Caselle, Michele; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Coffin, Jean-Pierre Michel; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Azevedo Moregula, Andrea; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Del Castillo Sanchez, Eduardo; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Fini, Rosa Anna; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Fragkiadakis, Michail; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Huber, Sebastian Bernd; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jung, Won Woong; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kottachchi Kankanamge Don, Chamath; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Xiaomei; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Maslov, Nikolai; Masoni, Alberto; Massacrier, Laure Marie; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Michalon, Alain; Midori, Jumpei; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Obayashi, Hideyuki; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otterlund, Ingvar; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodriguez Cahuantzi, Mario; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selioujenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Sgura, Irene; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Tagridis, Christos; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Thomas, Jim; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Traczyk, Tomasz; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernekohl, Don Constantin; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; vrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yang, Hongyan; Yang, Shiming; Yano, Satoshi; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo
2012-01-01
The ALICE experiment has measured low-mass dimuon production in pp collisions at $\\sqrt{s}$ = 7 TeV in the dimuon rapidity region 2.5
Broz, Michal
2015-01-01
Vector mesons are copiously produced in ultra-peripheral collisions. In these collisions, the impact parameter is larger than the sum of the radii of the two projectiles, implying that electromagnetic processes become dominant. The cross section of production of vector mesons is expected to be sensitive to the gluon distribution and can therefore probe nuclear gluon shadowing (Pb–Pb) and the gluon structure function in the nucleon (p-Pb). The ALICE Collaboration has performed the first measurements of the production of ρ0, J/ψ and ψ/(2S) in Pb–Pb ultra-peripheral collision as well as the cross section for exclusive J/ψ photoproduction off protons in ultra-peripheral proton-lead collisions at the LHC. The results are compared to the STARLIGHT Monte Carlo and to QCD based models.
Rahaman, Anisur
2016-01-01
The generalized version of a lower dimensional model where vector and axial vector interaction get mixed up with different weight is considered. The bosonized version of which does not posses the local gauge symmetry. An attempt has been made here to construct BRST invariant reformulation of this model using Batalin Fradlin and Vilkovisky formalism. It is found that the extra field needed to make it gauge invariant turns into Wess-Zumino scalar with appropriate choice of gauge fixing. An application of finite field dependent BRST and anti-BRST transformation is also made here in order to show the transmutation between the BRST symmetric and the usual non-symmetric version of the model.
Abelev, B. I.; Y. Bai; Benedosso, F.; Botje, M.A.J.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.(Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands); Russcher, M. J.; Snellings, R. J M; van der Kolk, N.; van Leeuwen, M.(Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands)
2008-01-01
We present the first spin alignment measurements for the K 0(892) and (1020) vector mesons produced at mid-rapidity with transverse momenta up to 5GeV/c at √sNN = 200GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are 00 = 0.32 ± 0.04 (stat) ± 0.09 (syst) for the K 0 (0.8
International Nuclear Information System (INIS)
The Split Field Magnet facility at the CERN ISR has been used to measure inclusive resonance production in inelastic p-p collisions at a c.m. energy of 53 GeV. The mass spectrum of pairs of oppositely charged hadrons shows a strong correlation, which can be explained as a consequence of dominant vector meson production, accounting for more than 60% of all pions and kaons produced. (Auth.)
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Souza, R. Derradi De; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jin, F.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.
2008-06-01
We present the first spin alignment measurements for the K*0(892) and ϕ(1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at sNN=200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are ρ00=0.32±0.04 (stat) ± 0.09 (syst) for the K*0 (0.8
Brandt, Bastian B.; Francis, Anthony; Jäger, Benjamin; Meyer, Harvey B.
2016-03-01
We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures T /Tc=0.156 , 0.8, 1.0, 1.25 and 1.67 with Tc≃203 MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of ≃270 MeV . Exploiting exact sum rules and applying a phenomenologically motivated Ansatz allows us to determine the spectral function ρ (ω ,T ) via a fit to the lattice correlation function data. From these results we estimate the electrical conductivity across the deconfinement phase transition via a Kubo formula and find evidence for the dissociation of the ρ meson by resolving its spectral weight at the available temperatures. We also apply the Backus-Gilbert method as a model-independent approach to this problem. At any given frequency, it yields a local weighted average of the true spectral function. We use this method to compare kinetic theory predictions and previously published phenomenological spectral functions to our lattice study.
2002-01-01
The aim of this experiment is to measure with precision the electromagnetic form factors of the proton in the time-like region via the reaction: .ce @*p @A e|+e|- with antiprotons of momenta between 0 and 2 GeV/c. Up to @= 800 MeV/c, a continuous energy scan in @= 2 MeV (@]s) bins will be performed. The form factor !G(E)! and !G(M)! will be determined separately since large statistics can be collected with LEAR antiproton beams, so that angular distributions can be obtained at many momenta.\\\\ \\\\ In addition, e|+e|- pairs produced via the reaction: .ce @*p @A V|0 + neutrals, .ce !@A e|+e|- where the antiprotons are at rest, will be detected allowing the vector meson mass spectrum between @= 1 GeV and @= 1.7 GeV to be obtained with high statistics and in one run. \\\\ \\\\ The proposed apparatus consists of a central detector, surrounded by a gas Cerenkov counter, wire chambers, hodoscopes, and an electromagnetic calorimeter. The central detector consists of several layers of proportional chambers around a liquid-h...
Limit on the production of a light vector gauge boson in ϕ meson decays with the KLOE detector
International Nuclear Information System (INIS)
We present a new limit on the production of a light dark-force mediator with the KLOE detector at DAΦNE. This boson, called U, has been searched for in the decay ϕ→ηU, U→e+e−, analyzing the decay η→π0π0π0 in a data sample of 1.7 fb−1. No structures are observed in the e+e− invariant mass distribution over the background. This search is combined with a previous result obtained from the decay η→π+π−π0, increasing the sensitivity. We set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of α′/α<1.7×10−5 for 30
Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector
:,; Badoni, D; Balwierz-Pytko, I; Bencivenni, G; Bini, C; Bloise, C; Bossi, F; Branchini, P; Budano, A; Balkestaahl, L Caldeira; Capon, G; Ceradini, F; Ciambrone, P; Czerwinski, E; Dane, E; De Lucia, E; De Robertis, G; De Santis, A; Di Domenico, A; Di Donato, C; Di Salvo, R; Domenici, D; Erriquez, O; Fanizzi, G; Fantini, A; Felici, G; Fiore, S; Franzini, P; Gauzzi, P; Giardina, G; Giovannella, S; Gonnella, F; Graziani, E; Happacher, F; Heijkenskj, L; Hoistad, B; Iafolla, L; Jacewicz, M; Johansson, T; Kupsc, A; Lee-Franzini, J; Leverington, B; Loddo, F; Loffredo, S; Mandaglio, G; Martemianov, M; Martini, M; Mascolo, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Nguyen, F; Passeri, A; Patera, V; Longhi, I Prado; Ranieri, A; Redmer, C F; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Wislicki, W; Wolke, M; Zdebik, J
2012-01-01
We present a new limit on the production of a light dark-force mediator with the KLOE detector at DAPHNE. This boson, called U, has been searched for in the decay phi -->eta U, with the hypothesis U-->e+e-, analyzing the decay eta-->pi0pi0pi0 in a data sample of 1.7 fb-1 integrated luminosity. This search is combined with a previous result obtained using the decay eta-->pi+pi-pi0, increasing substantially the sensitivity. No structures are observed in the e+e- invariant mass distribution over the background. Combining the two eta decay modes, we set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of alpha'/alpha <= 1.5x10^-5 for 30
Limit on the production of a light vector gauge boson in ϕ meson decays with the KLOE detector
Energy Technology Data Exchange (ETDEWEB)
Babusci, D. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Badoni, D. [Dipartimento di Fisica dell' Università “Tor Vergata”, Roma (Italy); INFN Sezione di Roma Tor Vergata, Roma (Italy); Balwierz-Pytko, I. [Institute of Physics, Jagiellonian University, Cracow (Poland); Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Bini, C. [Dipartimento di Fisica dell' Università “Sapienza”, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Bloise, C.; Bossi, F. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Branchini, P. [INFN Sezione di Roma Tre, Roma (Italy); Budano, A. [Dipartimento di Fisica dell' Università “Roma Tre”, Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Caldeira Balkeståhl, L. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Capon, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ceradini, F. [Dipartimento di Fisica dell' Università “Roma Tre”, Roma (Italy); INFN Sezione di Roma Tre, Roma (Italy); Ciambrone, P. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Czerwiński, E. [Institute of Physics, Jagiellonian University, Cracow (Poland); Danè, E.; De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Robertis, G. [INFN Sezione di Bari, Bari (Italy); De Santis, A.; Di Domenico, A. [Dipartimento di Fisica dell' Università “Sapienza”, Roma (Italy); INFN Sezione di Roma, Roma (Italy); and others
2013-03-13
We present a new limit on the production of a light dark-force mediator with the KLOE detector at DAΦNE. This boson, called U, has been searched for in the decay ϕ→ηU, U→e{sup +}e{sup −}, analyzing the decay η→π{sup 0}π{sup 0}π{sup 0} in a data sample of 1.7 fb{sup −1}. No structures are observed in the e{sup +}e{sup −} invariant mass distribution over the background. This search is combined with a previous result obtained from the decay η→π{sup +}π{sup −}π{sup 0}, increasing the sensitivity. We set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of α{sup ′}/α<1.7×10{sup −5} for 30
Proton spin and baryon octet axial couplings
International Nuclear Information System (INIS)
Peripheral spin structure of the nucelon generated by the soft mesonic radiative corrections is studied within the light-cone perturbation theory. Starting with the tree-level SU(6) symmetry, we find a good description of the axial-vector couplings in β-decay of hyperons. We study the proton helicity flow from the baryonic core to the angular momentum of the pionic cloud. It is found that in the relativistic light-cone approach the spin-flip pattern is different from that in the coventional non-relativistic models. The axial-vector current matrix elements are shown to receive large corrections from beyond the conventional static limit. The important virtue of using the light-cone vertex functions of the meson-baryon Fock components of the proton is that the local gauge invariance and the energy-momentum sum rule are satisfied automatically. We infer the radius of the light-cone form factor from an analysis of the experimental data on the fragmentation of high-energy protons into nucleons and hyperons-the process dominated by stripping off the mesons of the meson-baryon Fock states. (orig.)
Weak radiative decays of hyperons: Quarks, SU(6)W, and vector-meson dominance
International Nuclear Information System (INIS)
Quark-model, SU(6)W, and vector-dominance-model (VDM) methods are simultaneously used to investigate weak radiative decays of hyperons. The use of the VDM helps in the identification of the origin of the quark-model violation of the Hara theorem: besides the bar u1σμνγ5qνu2Aμ term the AμJVμ ''contact'' photon-quark interaction generates an additional contribution which is effectively equivalent to a nonvanishing bar u1γ5γμu2Aμ photon-hadron coupling. Our approach provides a SU(6)W-based symmetry connection between radiative and nonleptonic hyperon decays. As a result, a parameter-free symmetry prediction for asymmetries and branching ratios in weak radiative hyperon decays is obtained. The Σ+→pγ decay asymmetry is found to be large and negative (α congruent -0.6)
,
2016-01-01
The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^-\\pi^+$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. Novel analysis techniques have been...
Schroer, Bert
2016-01-01
The Hilbert space formulation of interacting spin 1 vector-potentials stands in an interesting contrast with the point-local Krein space setting.of gauge theory. Already in the absence of interactions the Wilson loop in a Hilbert space setting has a topological property which is missing in the gauge theoretic description (Haag duality, Aharonov-Bohm effect); the conceptual differences increase in the presence of interactions. The Hilbert space positivity weakens the causal localization properties if interacting fields from point- to string-like, but it also improves the short distance properties in that the scale dimensions of string-local fields fields is independent of spin. This makes it possible to find interaction densities within the power-counting bound of renormalizability for any spin, But for string-local interacting fields there is a new requirement (existence of a L,V pair) which has no analog for point-local fields.It insures the preservation of string-localization in higher orders and secures th...
International Nuclear Information System (INIS)
Using the point-splitting procedure and the method of functional integration, we define currents in the chiral Schwinger model and compute the correlation funtions of currents with themselves and with the fundamental fields. We show that the ambiguities in the choice of the phase factor employed in the point-splitting procedure can be compensated by mixing of the currents with the gauge potential Aμ and εμνAν. A three-parameter family of conserved currents is found and the transformations they generate are identified. In order to construct the conserved energy-momentum tensor, it is necessary to allow for mixings with AμAν and gμνAαAα. We compute the two-point function of the energy-momentum tensor and the correlation functions of it with the fundamental fields. The physics of the chiral model is discussed in comparison with the vector model
Soft and Hard Scale QCD Dynamics in Mesons
International Nuclear Information System (INIS)
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
International Nuclear Information System (INIS)
We describe a calculation of the two-photon decays of heavy vector-mesons, B* → Bγγ and D* → Dγγ, by using the 'heavy meson chiral Lagrangian'. The decay amplitudes are expressed in terms of the strong coupling g of the Lagrangian at various powers and the strength of the anomalous magnetic dipole μB*Bγ (respectively μD*Dγ). In the charm case we are able to express the branching ratio Γ(D*0 → D0γγ)/Γ(D*0) as a function of g only and we expect it to be in the 10-6 - 10-5 range, depending on the value of g. The determination of μB*0B0γ, μB*+B+γ requires a more involved analysis, including the consideration of bremsstrahlung radiation for the B*+ → B+γγ case
Low-mass vector-meson production at forward rapidity in $p$$+$$p$ collisions at $\\sqrt{s}=200$ GeV
Adare, A; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Ta'ani, H; Alexander, J; Alfred, M; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Asano, H; Aschenauer, E C; Atomssa, E T; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bandara, N S; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Beaumier, M; Beckman, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Berdnikov, A; Berdnikov, Y; Black, D; Blau, D S; Bok, J; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Castera, P; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; del Valle, Z Conesa; Connors, M; Csanád, M; Csörgő, T; Dairaku, S; Datta, A; Daugherity, M S; David, G; Dayananda, M K; DeBlasio, K; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Ding, L; Dion, A; Do, J H; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; D'Orazio, L; Efremenko, Y V; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Feege, N; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Gal, C; Gallus, P; Garg, P; Garishvili, I; Ge, H; Giordano, F; Glenn, A; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guo, L; Guragain, H; Gustafsson, H -Å; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Han, S Y; Hanks, J; Harper, C; Hasegawa, S; Hashimoto, K; Haslum, E; Hayano, R; He, X; Hemmick, T K; Hester, T; Hill, J C; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Hoshino, T; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Ivanishchev, D; Iwanaga, Y; Jacak, B V; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; John, D; Johnson, B M; Jones, T; Joo, E; Joo, K S; Jouan, D; Jumper, D S; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kazantsev, A V; Kempel, T; Key, J A; Khachatryan, V; Khanzadeev, A; Kihara, K; Kijima, K M; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E -J; Kim, H -J; Kim, M; Kim, Y -J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Klatsky, J; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kofarago, M; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Leitgab, M; Li, X; Lim, S H; Levy, L A Linden; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Miller, A J; Milov, A; Mishra, D K; Mitchell, J T; Miyachi, Y; Miyasaka, S; Mizuno, S; Mohanty, A K; Montuenga, P; Moon, H J; Moon, T; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Netrakanti, P K; Newby, J; Nguyen, M; Nihashi, M; Niida, T; Nouicer, R; Novitzky, N; Nyanin, A S; Oakley, C; O'Brien, E; Ogilvie, C A; Oka, M; Okada, K; Koop, J D Orjuela; Oskarsson, A; Ouchida, M; Ozaki, H; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S; Park, S K; Pate, S F; Patel, L; Patel, M; Pei, H; Peng, J -C; Pereira, H; Perepelitsa, D V; Perera, G D N; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Riveli, N; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosendahl, S S E; Rowan, Z; Rubin, J G; Sahlmueller, B; Saito, N; Sakaguchi, T; Sako, H; Samsonov, V; Sano, S; Sarsour, M; Sato, S; Sato, T; Savastio, M; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Sen, A; Seto, R; Sett, P; Sexton, A; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stepanov, M; Stoll, S P; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D
2014-01-01
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\\omega$, $\\rho$, and $\\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1
Eidelman, S; Korchin, A; Pancheri, G; Shekhovtsova, O
2010-01-01
We present a general framework for the model-independent decomposition of the fully differential cross section of the reactions e+e- -> gamma* -> (pi0 pi0 gamma) and e+e- -> gamma* -> (pi0 eta gamma), which can provide important information on the properties of scalar mesons: f0(600), f0(980) and a0(980). Resonance Chiral Theory with vector and scalar mesons has been used to obtain the model-dependent ingredients in the differential cross section. Numerical results are compared to data. The framework is convenient for development of a Monte Carlo generator and can also be applied to the reaction e+e- -> gamma* -> (pi+ pi- gamma).
Phenomenology of charmed mesons in the extended linear sigma model
International Nuclear Information System (INIS)
We study the so-called extended linear sigma model for the case of four quark flavors. This model is based on global chiral symmetry and dilatation invariance and includes, besides scalar and pseudoscalar mesons, vector and axial-vector mesons. Most of the parameters of the model have been determined in previous work by fitting properties of mesons with three quark flavors. Only three new parameters, all related to the current charm quark mass, appear when introducing charmed mesons. Surprisingly, within the accuracy expected from our approach, the masses of open charmed mesons turn out to be in quantitative agreement with experimental data. On the other hand, with the exception of J/ψ, the masses of charmonia are underpredicted by about 10%. It is remarkable that our approach correctly predicts (within errors) the mass splitting between spin-0 and spin-1 negative-parity open charm states. This indicates that, although the charm quark mass breaks chiral symmetry quite strongly explicitly, this symmetry still seems to have some influence on the properties of charmed mesons. (orig.)
De Freitas, J. M.
2010-04-01
A new probability density function which is the direct extension of the Maxwell distribution has been given. The distribution describes the effect of signal plus noise in a tri-axial system of accelerometers. It is shown that an excitation along one axis of a perfectly aligned orthogonal system of accelerometers leads to an apparent angular misalignment in the measured signal when there is random noise in the other two axes. The amplitude distribution with no signal in two axes is the direct analogue of the Rice distribution. The mean and variance of the new distribution are provided.
Decays of open charmed mesons in the extended Linear Sigma Model
Directory of Open Access Journals (Sweden)
Eshraim Walaa I.
2014-01-01
Full Text Available We enlarge the so-called extended linear Sigma model (eLSM by including the charm quark according to the global U(4r × U(4l chiral symmetry. In the eLSM, besides scalar and pseudoscalar mesons, also vector and axial-vector mesons are present. Almost all the parameters of the model were fixed in a previous study of mesons below 2 GeV. In the extension to the four-flavor case, only three additional parameters (all of them related to the bare mass of the charm quark appear.We compute the (OZI dominant strong decays of open charmed mesons. The results are compatible with the experimental data, although the theoretical uncertainties are still large.
Spectroscopy of mesons in the QCD-inspired potential model with harmonic oscillator approximation
International Nuclear Information System (INIS)
The spectrum of pseudoscalar, scalar, vector and axial-vector mesons are investigated in the frame of QCD-inspired potential model with harmonic oscillator approximation. Numerical solutions of the Bethe-Salpeter (BS) equation with the using of continuous analogy of Newton's method (CANM) have been obtained. It was shown that solutions of BS equation in harmonic approximation at quantity level describes observed spectrum of mesons and their radial- and orbital-excited states. The contrary 'progonka' (driving) method for numerical solution of the BS equation was briefly described. (author). 9 refs.; 4 tabs
Scalar meson production in proton-proton and proton-antiproton collisions
Ahmadov, A. I.; Bystritskiy, Yu. M.; Kuraev, E. A.
2009-01-01
Taking into account the exchange forces between protons of scalar, pseudoscalar, vector and axial vector type the cross sections of neutral and charged scalar mesons $a_0(980)$, $a_+(980)$, $f_0(980)$, $\\sigma(600)$ production are calculated. The estimation for the facilities of moderately high energies such as PANDA and NICA are presented. Similar analysis is given for processes of charged and neutral Higgs boson production at high energy proton-proton colliders such as Tevatron, RHIC and LH...
Yasmin, Safia
2016-01-01
A $(1+1)$ dimensional model where vector and axial vector interaction get mixed up with different weight is considered with a generalized masslike term for gauge field. Through Poincar\\'e algebra it has been made confirm that only a Lorentz covariant masslike term leads to a physically sensible theory as long as the number of constraints in the phase space is two. With that admissible masslike term, phase space structure of this model with proper identification of physical canonical pair has been determined using Diracs' scheme of quantization of constrained system. The bosonized version of the model remains gauge non-invariant to start with. Therefore, with the inclusion of appropriate Wess-Zumino term it is made gauge symmetric. An alternative quantization has been carried out over this gauge symmetric version to determine the phase space structure in this situation. To establish that the Wess-Zumino fields allocates themselves in the un-physical sector of the theory an attempts has been made to get back th...
Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1999-01-01
The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...
Observation of an isoscalar vector meson at ≅ 1650 MeV/c2 in the e+e- → KantiKπ reaction
International Nuclear Information System (INIS)
The e+e- → Ks0K±π-+ and K+K-π0 cross sections have been measured in the energy interval 1350 ≤ √s ≤ 2400 MeV with the DM2 detector at DCI. The Ks0K±π-+ cross section shows the contribution of an isoscalar vector meson at ∼ 1650 MeV/c2 in agreement with a previous experiment. The low statistics K+K-π0 measurement is consistent with the above result. (5 figs)
Nuclear media effects on production and decay of vector meson studied in 12 GeV p + A interaction
Energy Technology Data Exchange (ETDEWEB)
En' yo, Hideto [Inst. of Physical and Chemical Research, Wako, Saitama (Japan); Chiba, Junsei [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Funahashi, Haruhiko [Kyoto Univ., Dept. of Physics, Kyoto (JP)] [and others
2003-07-01
The experiment E325 has been carried out at KEK-PS to investigate nuclear media effects on the invariant mass spectra of {rho}, {omega} and {phi} mesons through their decays in the e{sup +}e{sup -} or K{sup +}K{sup -} channels. From the earlier data, the experiment has reported the signature of in-medium mass modification of {rho} and/or {omega} mesons for the first time. This manuscript describes our preliminary results based on the data acquired in the allocated beam time of {approx}3200 hours, which ended in February 2002. (author)
Nuclear media effects on production and decay of vector meson studied in 12 GeV p + A interaction
International Nuclear Information System (INIS)
The experiment E325 has been carried out at KEK-PS to investigate nuclear media effects on the invariant mass spectra of ρ, ω and φ mesons through their decays in the e+e- or K+K- channels. From the earlier data, the experiment has reported the signature of in-medium mass modification of ρ and/or ω mesons for the first time. This manuscript describes our preliminary results based on the data acquired in the allocated beam time of ∼3200 hours, which ended in February 2002. (author)
Aaltonen, T; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Marchese, L; Deninno, M; Devoto, F; D'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Ramos, J P Fernández; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; López, O González; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; da Costa, J Guimaraes; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucà, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Fernández, I Redondo; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; Denis, R St; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W -M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S
2015-01-01
A study of vector boson ($V$) production in conjunction with a $D^{*}(2010)^+$ meson is presented. Using a data sample correponding to $9.7\\, {\\rm fb}^{-1}$ of proton-antiproton collisions at center-of-mass energy $\\sqrt{s}=1.96\\rm~ TeV$ produced by the Fermilab Tevatron, we reconstruct $V+D^{*+}$ samples with the CDF~II detector. The $D^{*+}$ is fully reconstructed in the $D^{*}(2010)^+ \\rightarrow D^{0}(\\to K^-\\pi^+)\\pi^+$ decay mode. This technique is sensitive to the associated production of vector boson plus charm or bottom mesons. We measure the ratio of production cross sections $\\sigma(W+D^{*})/\\sigma(W)$ = $[1.75\\pm 0.13 {\\rm (stat)}\\pm 0.09 {\\rm (syst)}]\\% $ and $\\sigma(Z+D^{*})/\\sigma(Z)$ = $[1.5\\pm 0.4 {\\rm (stat)} \\pm 0.2 {\\rm (syst)}]\\% $. Event properties are utilized to determine the fraction of $V+D^{*}(2010)^+$ events originating from different production processes. The results are in agreement with the predictions obtained with the {\\sc pythia} program, limiting possible contribution from n...
Measurement of vector boson plus D*(2010)+ meson production in p ¯p collisions at √{s }=1.96 TeV
Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; Denis, R. St.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration
2016-03-01
A measurement of vector boson (V ) production in conjunction with a D*(2010)+meson is presented. Using a data sample corresponding to 9.7 fb-1 of proton-antiproton collisions at center-of-mass energy √{s }=1.96 TeV produced by the Fermilab Tevatron, we reconstruct V +D*+ samples with the CDF II detector. The D*+ is fully reconstructed in the D*(2010)+→D0(→K-π+)π+ decay mode. This technique is sensitive to the associated production of vector boson plus charm or bottom mesons. We measure the ratio of production cross sections σ (W +D*)/σ (W )=[1.75 ±0.13 (stat ) ±0.09 (stat ) ]% and σ (Z +D*)/σ (Z )=[1.5 ±0.4 (stat ) ±0.2 (stat ) ]% and perform a differential measurement of d σ (W +D*)/d pT(D*). Event properties are utilized to determine the fraction of V +D*(2010)+ events originating from different production processes. The results are in agreement with the predictions obtained with the pythia program, limiting possible contribution from non-standard-model physics processes.
Energy Technology Data Exchange (ETDEWEB)
Aaltonen, T. [Univ. of Helsinki (Finland). et al.
2015-08-27
Our study of vector boson (V ) production in conjunction with a D*(2010)^{+} meson is presented. Using a data sample correponding to 9.7 fb^{-1} p of proton-antiproton collisions at center-of-mass energy √s = 1:96 TeV produced by the Fermilab Tevatron, we reconstruct V +D^{*+} samples with the CDF II detector. The D^{*+} is fully reconstructed in the D*(2010)^{+} → D^{0}(→ K^{- }π^{+})π^{+} decay mode. This technique is sensitive to the associated production of vector boson plus charm or bottom mesons. We measure the ratio of production cross sections σ(W +D^{*})/ σ(W) = [1.75±0.13(stat)±0:09(syst)]% and σ(Z +D^{*})/ σ(Z) = [1:5±0:4(stat)_0:2(syst)]%. Event properties are utilized to determine the fraction of V +D^{*}(2010)^{+} events originating from different production processes. Our results are in agreement with the predictions obtained with the pythia program, limiting possible contribution from non-standard-model physics processes.
Regarding the enigmas of P-wave meson spectroscopy
International Nuclear Information System (INIS)
The mass spectrum of P-wave mesons is considered in a nonrelativistic constituent quark model. The results show the common mass degeneracy of the isovector and isodoublet states of the scalar and tensor meson nonets, m(a0)congruent m(a2), m(K0*)congruent m(K2*), and do not exclude the possibility of a similar degeneracy of the same states of the axial-vector and pseudovector nonets. Current experimental hadronic and τ-decay data suggest, however, a different scenario leading to the a1 meson mass ≅1190 MeV and the K1A-K1B mixing angle ≅(37±3)degree. Possible s bar s states of the four nonets are also discussed. copyright 1998 The American Physical Society
Chukanov, A; Popov, B; Astier, Pierre; Autiero, D; Baldisseri, Alberto; Baldo-Ceolin, M; Banner, M; Bassompierre, G; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A; Bunyatov, S; Camilleri, L L; Cardini, A; Cattaneo, P W; Cavasinni, V; Cervera-Villanueva, A; Challis, R; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; Degaudenzi, H M; Del Prete, T; De Santo, A; Dignan, T; Di Lella, L; Do Couto e Silva, E; Dumarchez, J; Ellis, M; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, V; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S; Godley, A; Gómez-Cadenas, J J; Gosset, J; Gössling, C; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Hagner, C; Hernando, J; Hubbard, D; Hurst, P; Hyett, N; Iacopini, E; Joseph, C; Juget, F; Kent, N; Kirsanov, M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; La Rotonda, L; Laveder, M; Letessier-Selvon, A A; Lévy, J M; Linssen, Lucie; Ljubicic, A; Long, J; Lupi, A; Lyubushkin, V; Marchionni, A; Martelli, F; Méchain, X; Mendiburu, J P; Meyer, J P; Mezzetto, Mauro; Mishra, S R; Moorhead, G F; Nédélec, P; Nefedov, Yu; Nguyen-Mau, C; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Poulsen, C; Rebuffi, L; Renò, R; Rico, J; Riemann, P; Roda, C; Rubbia, André; Salvatore, F; Samoylov, O; Schahmaneche, K; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G N; Tereshchenko, V V; Toropin, A; Touchard, A M; Tovey, Stuart N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V; Vannucci, F; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zei, R; Zuber, K; Zuccon, P
2006-01-01
First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results obtained for the rho00 parameter, 0.40 +/- 0.06 (stat) +/- 0.03 (syst) and 0.28 +/- 0.07 (stat) +/- 0.03 (syst) for K*+ and K*- produced in nu_mu CC interactions, are compared to theoretical predictions tuned on LEP measurements in e+e- annihilation at the Z0 pole. For K*+ mesons produced in nu NC interactions the measured r...
Energy Technology Data Exchange (ETDEWEB)
Schaub, John [New Mexico State Univ., Las Cruces, NM (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2010-07-01
We studied the strange contributions to the elastic vector and axial form factors of the nucleon using all available elastic electroweak scattering data. Specifically, we combine elastic nu-p and nubar-p scattering cross-section data from the Brookhaven E734 experiment with elastic ep and quasi-elastic ed and e-^{4}He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, PVA4 and G0 experiments. We not only determined these form factors at individual values of momentum-transfer (Q^{2}), as other groups have done recently, but also fit the Q^{2}-dependence of these form factors using simple functional forms. I present an overview of the G^{0} backward-angle experiment as well as the results of these fits using existing data, along with some expectations of how we can improve our knowledge of these form factors if the MicroBooNE collaboration completes their experiment.
An effective QCD Lagrangian in the presence of an axial chemical potential
International Nuclear Information System (INIS)
We consider the low energy realization of QCD in terms of mesons when an axial chemical potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate that the presence of an axial charge has profound consequences on meson physics. The most notorious effect is the appearance of an explicit source of parity breaking. The eigenstates of strong interactions do not have a definite parity and interactions that would otherwise be forbidden compete with the familiar ones. In this work we focus on scalars and pseudoscalars that are described by a generalized linear sigma model. We comment briefly on the screening role of axial vectors in formation of effective axial charge and on the possible experimental relevance of our results, whose consequences may have been already seen at RHIC. (orig.)
International Nuclear Information System (INIS)
The A4 collaboration at the MAMI facilities has measured the parity-violating asymmetry in the quasi-elastic scattering of longitudinally polarized electron on deuteron at backward angles and at a four momentum transfer of Q2=0.23 (GeV/c)2. This measurement is sensitive to a linear combination of the strange magnetic vector form factor GMs and the axial form factor GA. Combined with the measurement of the parity-violating asymmetry on proton at backwards and at the same four momentum transfer it allows the experimental determination of the axial form factor GA.
Infrared-improved soft-wall AdS/QCD model for mesons
International Nuclear Information System (INIS)
We construct and investigate an infrared-improved soft-wall AdS/QCD model for mesons. Both linear confinement and chiral symmetry breaking of low energy QCD are well characterized in such an infrared-improved soft-wall AdS/QCD model. The model enables us to obtain a more consistent numerical prediction for the mass spectra of resonance scalar, pseudoscalar, vector, and axial-vector mesons. In particular, the predicted mass for the lightest ground state scalar meson shows good agreement with the experimental data. The model also provides a remarkable check for the Gell-Mann-Oakes-Renner relation and a sensible result for the space-like pion form factor. (orig.)
Infrared-improved soft-wall AdS/QCD model for mesons
Energy Technology Data Exchange (ETDEWEB)
Cui, Ling-Xiao; Fang, Zhen; Wu, Yue-Liang [State Key Laboratory of Theoretical Physics (SKLTP), Beijing (China); Kavli Institute for Theoretical Physics China (KITPC), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)
2016-01-15
We construct and investigate an infrared-improved soft-wall AdS/QCD model for mesons. Both linear confinement and chiral symmetry breaking of low energy QCD are well characterized in such an infrared-improved soft-wall AdS/QCD model. The model enables us to obtain a more consistent numerical prediction for the mass spectra of resonance scalar, pseudoscalar, vector, and axial-vector mesons. In particular, the predicted mass for the lightest ground state scalar meson shows good agreement with the experimental data. The model also provides a remarkable check for the Gell-Mann-Oakes-Renner relation and a sensible result for the space-like pion form factor. (orig.)
Decay constants and spectroscopy of mesons in lattice QCD using domain-wall fermions
Fahy, B; Hashimoto, S; Kaneko, T; Noaki, J; Tomii, M
2015-01-01
We report results of masses and decay constants of light and charmed pseudo-scalar mesons using lattice QCD with M\\"obius domain-wall fermions. Using this formulation we are able to compute pseudo-scalar decay constants through the pseudo-scalar density operator as well as with the axial-vector current. Results are shown from several lattice spacings and pion masses between 230 MeV and 500 MeV. We present an analysis of these results at different quark masses to show the chiral properties of the light mesons masses and decay constants.
The sigma meson from QCD sum rules for large-$N_c$ Regge spectra
Afonin, S S
2016-01-01
The QCD sum rules in the large-$N_c$ limit for the light non-strange vector, axial-vector and scalar mesons are considered assuming a string-like linear spectrum for the radially excited states. We propose a improved method for a combined analysis of these channels that gives a reasonable description of the observed spectrum. Fixing the universal slope of radial trajectories and the quark condensate from the vector channels, we argue that, in contrast to a common belief, the prediction of a light quark-antiquark scalar state compatible with $f_0(500)$ can be quite natural within the planar QCD sum rules.
International Nuclear Information System (INIS)
The author calculates the form factors describing semileptonic and penguin induced decays of B mesons into light pseudoscalar and vector mesons. The form factors are calculated from QCD sum rules on the light-cone including contributions up to twist 4, radiative corrections to the leading twist contribution and SU(3) breaking effects. The theoretical uncertainty is estimated to be tilde (15--20)%
K^* Mesons and Nucleon Strangeness
Barz, L. L.; Forkel, H.; Hammer, H. -W.; Navarra, F. S.; Nielsen, M; Ramsey-Musolf, M. J.
1998-01-01
We study contributions to the nucleon strange quark vector current form factors from intermediate states containing K^* mesons. We show how these contributions may be comparable in magnitude to those made by K mesons, using methods complementary to those employed in quark model studies. We also analyze the degree of theoretical uncertainty associated with K^* contributions.
International Nuclear Information System (INIS)
We calculate the decay widths of the charmonium states, J/ψ, ψ(3686) and ψ(3770), to DD¯ pairs, as well as the decay width of D* → Dπ, in isospin asymmetric strange hadronic matter, using a field theoretical model for composite hadrons with quark constituents. For this purpose, we use the quark–antiquark pair creation term of the free Dirac Hamiltonian written in terms of the constituent quark field operators, and use explicit charmonium, D, D¯, D* and π states to evaluate the matrix elements for the charmonium as well as D* decay amplitudes. The medium modifications of the partial decay widths of charmonium to DD¯ pair, arising from the mass modifications of the D(D¯) and the charmonium states calculated in a chiral effective model, are also included. The results of the present investigations are then compared with the decay widths computed earlier, in a model using light quark pair creation in 3P0 state. As in 3P0 model, the decay amplitude in the present model is multiplied with a strength parameter for the light quark pair creation, which is fitted from the observed vacuum decay width. The effects of the isospin asymmetry, the strangeness fraction of the hadronic matter on the masses of the charmonium states and D(D¯) mesons and hence on the decay widths, have also been studied. The isospin asymmetry effect is observed to be dominant for high densities, leading to appreciable difference in the decay channels of the charmonium to D+ D- and D0D¯0 pairs. The decay width of D* → Dπ in the hadronic matter has also been calculated within the composite quark model in the present work, accounting for the medium modifications of the D and D* masses. The density modifications of the charmonium states and D(D*) mesons, which are observed to be appreciable at high densities, will be of relevance in the compressed baryonic matter (CBM) experiments at the future facility of FAIR, GSI, where charmed hadrons will be produced by annihilation of antiprotons on
International Nuclear Information System (INIS)
The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes Ds and D*0 mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.
Energy Technology Data Exchange (ETDEWEB)
Hilger, Thomas Uwe
2012-04-11
The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.
Heavy meson production at HERA
Directory of Open Access Journals (Sweden)
Figiel Jan
2014-01-01
Full Text Available The copious production of charm mesons at HERA has allowed QCD to be probed in open charm and charm vector meson production. Elastic and proton-dissociatve photoproduction of J/ψ mesons have been measured at HERA. The data are compared to other measurements and the W and t dependences are parametrised using phenomenological fits. The ψ (2S state has also been measured exclusively and the ratio of its production rate to J/ψ mesons presented as a function of the kinematic variables. Inelastic production of J/ψ and ψ(2S mesons gives insight into non-relativistic QCD and final results are presented here. Open charm production has been measured in order to better understand the fragmentation process of charm mesons as well as giving insight into the structure of the proton.
International Nuclear Information System (INIS)
ρ0 - ω mixing effect on direct CP violation in B decay into vector mesons is one of the main studies of this work. The first part is dedicated to the calculation of the decay amplitudes of the channels B → Vρ0(ω) which have been represented by a model. We have used the helicity formalism. In such a way branching ratios and asymmetries depending on form factor models and other parameters are predicted. Direct CP violation appears at several levels: in branching ratios, in angular distributions and in differential asymmetry as a function of ρ0 - ω mass. The dominance of the longitudinal polarization in the studied channels is confirmed by Babar and Belle experimental results. We calculated too the strong phase and the ratio of Penguin to Tree amplitudes for each channel. In a second part, was developed an analysis of the channel B0 → K*0ρ0(ω) in the framework of LHCb experiment. It will start in 2007 and is dedicated to b flavor study and CP violation. The realistic analysis which has been performed shows that this channel is not appropriate to observe ρ0 - ω mixing effect on asymmetry in LHCb, while the ρ+ρ0(ω) channel, for which we have predicted a branching ratio value confirmed by Babar and Belle, is much more promising. (author)
Soft and Hard scale QCD Dynamics in Mesons
Nguyen, Trang; Tandy, Peter C
2010-01-01
Using a ladder-rainbow kernel previously established for the soft scale of light quark hadrons, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator. The difference between vector and axial vector current correlators is examined to estimate the four quark chiral condensate. The valence quark distributions, in the pion and kaon, defined in deep inelastic scattering, and measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.
Properties Of Light Mesons Calculated In A Relativistic Random-phase Approximation
Wang, H
2004-01-01
In this work we report upon a large number of calculations made using a generalized Nambu - Jona- Lasinio (NJL) model that has been extended to include a covariant model of confinement. We discuss the properties of light mesons calculated in a covariant random-phase approximation (RPA). We describe the a0, f0, π, K, η, and η′ mesons and their radial excitations. For the pseudoscalar mesons we include pseudoscalar-axial-vector coupling and report upon calculations of meson decay constants for all the meson states that we consider. In the case of the scalar mesons, the identification of the experimentally observed states with the states of our model is made complex due to the presence of “dynamically-generated” states such as the f 0(400–1200) and the κ(700–900). In this work we provide a precise definition of “intrinsic” and “dynamically- generated” states and present our suggestions for ...
Photoproduction and Decay of Light Mesons in CLAS
Energy Technology Data Exchange (ETDEWEB)
Amaryan, Moskov Jamalovich [Old Dominion University
2013-08-01
We present preliminary experimental results on photoproduction and decay of light mesons measured with CLAS setup at JLAB . This include Dalitz decay of pseudoscalar and vector mesons, radiative decay of pseudoscalar mesons as well hadronic decays of pseudoscalar and vector mesons. The collected high statistics in some of decay channels exceeds the world data by an order of magnitude and some other decay modes are observed for the first time. It is shown how the CLAS data will improve the world data on transition form factors of light mesons, Dalitz plot analyses, branching ratios of rare decay modes and other fundamental properties potentially accessible through the light meson decays.
Neutral quark matter in a Nambu-Jona Lasinio model with vector interaction
Abuki, H; Ruggieri, M
2009-01-01
We investigate the three flavor Nambu-Jona Lasinio model of neutral quark matter at zero temperature and finite density, keeping into account the scalar, the pseudoscalar and the Kobayashi-Maskawa-'t Hooft interactions as well as the repulsive vector plus axial-vector interaction terms (vector extended NJL, VENJL in the following). We focus on the effect of the vector interaction on the chiral restoration at finite density in neutral matter. We also study the evolution of the charged pseudoscalar meson energies as a function of the quark chemical potential.
$\\pi$ and K-meson Bethe-Salpeter Amplitudes
Maris, P
1997-01-01
Independent of assumptions about the form of the quark-quark scattering kernel, K, we derive the explicit relation between the flavour-nonsinglet pseudoscalar meson Bethe-Salpeter amplitude, Gamma_H, and the dressed-quark propagator in the chiral limit. In addition to a term proportional to gamma_5, Gamma_H necessarily contains qualitatively and quantitatively important terms proportional to gamma_5 gamma.P and gamma_5 gamma.k k.P, where P is the total momentum of the bound state. The axial-vector vertex contains a bound state pole described by Gamma_H, whose residue is the leptonic decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-Takahashi identity relates these pole residues; with the Gell-Mann--Oakes--Renner relation a corollary of this identity. The dominant ultraviolet asymptotic behaviour of the scalar functions in the meson Bethe-Salpeter a...
Instantaneous Chiral Quark Model for Relativistic Mesons in a Hot and Dense Medium
International Nuclear Information System (INIS)
A chiral quark model with covariant instantaneous interactions is formulated using relativistic thermodynamic Green functions. The approach is applied to the description of mesons as relativistic bound state in hot and dense quark matter. The Schwinger-Dyson equation for the quark mass operator is obtained for a covariant four-point interaction kernel. The Salpeter equations for quark-antiquark bound states in a two-component relativistic quark plasma are given in the scalar-pseudoscalar as well as vector-axial-vector channels. The case of nonvanishing total momentum of bound state relative to the medium is considered. Numerical results for the meson mass spectrum and the pion decay constant at finite temperature are presented for the special case of a separable interaction which can be applied to the case of more realistic potentials. 36 refs., 7 figs
Signatures for axial chromodynamics
International Nuclear Information System (INIS)
Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 104-106 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e-e+ experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted
International Nuclear Information System (INIS)
The dimension-3 quark-condensate component of the flavour-diagonal axial-vector two-current correlation function is evaluated to all orders in the quark mass mqk through use of the quark-condensate component of the nonperturbative fermion propagator. The result obtained is analytic in p2 except for a branch cut for 02qk)2, corresponding to a branch cut occurring helow the anti qq kinematic threshold. The deep Euclidean region of the longitudinal component of this correlation function is utilized to obtain leading and subleading contributions to the QCD sum-rule relating mqk to . These same sum-rule results are obtained by means of an alternative derivation involving integration over the discontinuity in the correlation function along the branch cut, demonstrating the consistency of the physical-momentum-region branch cut with results obtained via standard means in the deep Euclidean region. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ilakovac, A.; Tadic-acute-accent, D.D.; Coutinho, F.A.B.; Krmpotic-acute-accent, F.
1986-04-15
We study the introduction of the internal dynamical variables for consituent quarks. These variables are related to the center-of-mass of a nucleon. The problem is connected with the description of spinorial properties of the quarks. The spinors must be artificially introduced in a harmonic oscillator (HO) model. Experimental values of the magnetic moment and the axial-vector coupling constant of a nucleon can be easily reproduced. The theoretical results are not sensitive to the theoretical details; they follow from the general properties of the quark structure of baryons. The connections with the relativistic HO models are also discussed. The case of a very small confinement radius is explored in the Appendix.
International Nuclear Information System (INIS)
We study the introduction of the internal dynamical variables for consituent quarks. These variables are related to the center-of-mass of a nucleon. The problem is connected with the description of spinorial properties of the quarks. The spinors must be artificially introduced in a harmonic oscillator (HO) model. Experimental values of the magnetic moment and the axial-vector coupling constant of a nucleon can be easily reproduced. The theoretical results are not sensitive to the theoretical details; they follow from the general properties of the quark structure of baryons. The connections with the relativistic HO models are also discussed. The case of a very small confinement radius is explored in the Appendix
The ρ and A mesons in strong abelian magnetic field in $\mathit{SU}(2)$ lattice gauge theory
Luschevskaya, E. V.; Larina, O.V.
2014-01-01
We calculated correlators of vector, axial and pseudoscalar currents in external strong abelian magnetic field according to SU(2) gluodynamics. The masses of neutral ρ and A mesons with various spin projections to the axis parallel to the external magnetic field B have been calculated. We found that the masses of neutral mesons with zero spin s=0 decrease in increasing magnetic field, while the masses of the ρ and A mesons with spin s=±1 increase in the mentioned field. Also we performed extr...
Axial form factors of the octet baryons in a covariant quark model
Ramalho, G.; Tsushima, K.
2016-07-01
We study the weak interaction axial form factors of the octet baryons, within the covariant spectator quark model, focusing on the dependence of four-momentum transfer squared, Q2. In our model the axial form factors GA(Q2) (axial-vector form factor) and GP(Q2) (induced pseudoscalar form factor) are calculated based on the constituent quark axial form factors and the octet baryon wave functions. The quark axial current is parametrized by the two constituent quark form factors, the axial-vector form factor gAq(Q2), and the induced pseudoscalar form factor gPq(Q2). The baryon wave functions are composed of a dominant S -state and a P -state mixture for the relative angular momentum of the quarks. First, we study in detail the nucleon case. We assume that the quark axial-vector form factor gAq(Q2) has the same function form as that of the quark electromagnetic isovector form factor. The remaining parameters of the model, the P -state mixture and the Q2 dependence of gPq(Q2), are determined by a fit to the nucleon axial form factor data obtained by lattice QCD simulations with large pion masses. In this lattice QCD regime the meson cloud effects are small, and the physics associated with the valence quarks can be better calibrated. Once the valence quark model is calibrated, we extend the model to the physical regime and use the low Q2 experimental data to estimate the meson cloud contributions for GA(Q2) and GP(Q2). Using the calibrated quark axial form factors and the generalization of the nucleon wave function for the other octet baryon members, we make predictions for all the possible weak interaction axial form factors GA(Q2) and GP(Q2) of the octet baryons. The results are compared with the corresponding experimental data for GA(0 ) and with the estimates of baryon-meson models based on S U (6 ) symmetry.
The leptonic decay constant fB of the B(banti d) meson and the beauty quark mass
International Nuclear Information System (INIS)
We determine the value of the beauty quark mass using the existing detailed experimental information in moment and Borel transformed sum rules for the vector b-quark current anti bγμb. The resulting value (mb = 4.17±0.02 GeV) is used for calculating the decay constant fB and the mass of the B meson via two sum rules, one constructed from the correlation function of two pseudoscalar currents and the other from the correlation function of a pseudoscalar and an axial vector current. We find fB = 170±20 MeV. (orig.)
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
Mamedov, Shahin
2016-02-01
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ , a_1, and π mesons.
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
International Nuclear Information System (INIS)
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a1, an π mesons. (orig.)
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
Energy Technology Data Exchange (ETDEWEB)
Mamedov, Shahin [Gazi University, Department of Physics, Ankara (Turkey); Baku State University, Institute for Physical Problems, Baku (Azerbaijan); Azerbaijan National Academy of Sciences, Institute of Physics, Baku (Azerbaijan)
2016-02-15
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ, a{sub 1}, an π mesons. (orig.)
Production of vector and tensor mesons in proton-proton interactions at √s = 52.5 GeV
International Nuclear Information System (INIS)
In the framework of an experiment performed at the proton storage rings at CERN the production of K0sub(s), rho0, f, g0, Ksup(*)0(896), Ksup(*)0(1430), and phi-mesons could be observed. Both differential and total cross sections agree well with the results of other experiments. The energy dependence of the production of K0sub(s), rho0, and f-mesons can be decribed in the form sigma(pp→ V + x) = a x ln2s - b, while the exclusively centrally produced Ksup(*)0-mesons show at low energies a distinctly steeper ascendence. This behaviour can be qualitatively understood in the framework of the additive quark model. (orig./HSI)
Photo and electroproduction of heavy mesons
International Nuclear Information System (INIS)
This report reviews first the η0 photoproduction then the photoproduction vector mesons and presents some results. Finally, some notes on the experimental devices which should have to be developed to undertake this study are given
Gubler, Philipp; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei
2015-01-01
We investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral ans\\"atze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension--5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixing effects almost completely saturate the mass shifts obtained in our sum rule analysis.
Giacosa, Francesco; Janowski, Stanislaus
2016-01-01
We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons. By setting the mass of this yet hypothetical vector glueball to 3.8 GeV as predicted by Lattice QCD, many branching ratios can be computed and represent a parameter-free prediction of our approach. We find that the decay mode $\\omega\\pi\\pi$ should be one of the largest (both through the decay chain $\\mathcal{O}\\rightarrow b_{1}\\pi\\rightarrow$ $\\omega\\pi\\pi$ and through the direct coupling $\\mathcal{O}\\rightarrow\\omega\\pi\\pi$)$.$ Similarly, the (direct and indirect) decay into $\\pi KK^{\\ast}(892)$ is sizable. Moreover, the decays into $\\rho\\pi$ and $K^{\\ast}(892)K$ are, although subleading, possible and could play a role in explaining the $\\rho\\pi$ puzzle of the charmonium state $\\psi(2S)$ thank to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA exper...
Light Meson Distribution Amplitudes
Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; de Lima, H Pedroso; Rae, T D; Sachrajda, C T; Samways, B
2010-01-01
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
Possible assignments of the $X(3872)$, $Z_c(3900)$ and $Z_b(10610)$ as axial-vector molecular states
Wang, Zhi-Gang
2014-01-01
In this article, we construct both the color singlet-singlet type and octet-octet type currents to interpolate the $X(3872)$, $Z_c(3900)$, $Z_b(10610)$, and calculate the vacuum condensates up to dimension-10 and order $\\mathcal{O}(\\alpha_s)$ in the operator product expansion. Then we study the axial-vector hidden charmed and hidden bottom molecular states with the QCD sum rules, explore the energy scale dependence of the QCD sum rules for the heavy molecular states in details, and use the formula $\\mu=\\sqrt{M^2_{X/Y/Z}-(2{\\mathbb{M}}_Q)^2}$ with the effective masses ${\\mathbb{M}}_Q$ to determine the energy scales. The numerical results support assigning the $X(3872)$, $Z_c(3900)$, $Z_b(10610)$ as the color singlet-singlet type molecular states with $J^{PC}=1^{++}$, $1^{+-}$, $1^{+-}$, respectively, more theoretical and experimental works are still needed to distinguish the molecule and tetraquark assignments; while there are no candidates for the color octet-octet type molecular states.
International Nuclear Information System (INIS)
The photoproduction of the vector meson φ(1020) and the hyperon Λ(1520) have been measured in the finale state pK+K- from their thresholds up to 2.65 GeV using the high duty-factor electron accelerator ELSA and the 4π-detectorsystem SAPHIR. The t-dependence of φ(1020)-production shows an exponential behavior as expected from diffractive production. s-channel helicity conservation can be seen in the decay angular distribution in the helicity frame. The decay angular distribution in the Gottfried-Jackson frame is not conformable with the exchange of a Pomeron in the t-channel. For the first time, differential cross sections of the Λ(1520) photoproduction from the threshold are measured. The production angular distribution and the decay angular distribution in the Gottfried-Jackson frame show a K* exchange in the t-channel. (orig.)
B-meson decay constant on the lattice and renormalization
International Nuclear Information System (INIS)
We compute in perturbation theory the relation between the B-meson leptonic decay constant FB computed on a lattice by the 1/mb expansion in the manner of Eichten and the continuum: i.e., the physical value of FB. To that aim we compare the QCD radiative corrections up to order αs of the axial-vector-current correlator for different quark masses with the radiative corrections of the effective operator which replaces the correlator in the 1/mb expansion. The latter radiative corrections are computed in the continuum and on a lattice. For this effective operator we recover the anomalous dimension γ=2 already found by Shifman and Voloshin. Our final result is that FB congruent 0.8FBlatt, only weakly dependent on lattice spacing and ΛQCD. .AE
International Nuclear Information System (INIS)
In this article we give a review of certain aspects of the present understanding of spectroscopy of heavy mesons and constituent quark masses in the light of non-relativistic potential model approach motivated by quantum chromodynamics. We find that the one gluon exchange at short distance and colour-confining interaction at large distance which is pure scalar (or scalar-vector admixture with dominant scalar interaction) under the Lorentz transformation, can explain only partially the present data on 1P states of cc-bar and bb-bar states. The S-wave data, that are available at present, however can be understood with both scalar confinement or scalar-vector admixture with scalar-dominant interaction. (author). 44 refs, 13 tabs
Two, three, many body systems involving mesons. Multimeson condensates
Oset, E; Dote, A; Hyodo, T; Khemchandani, P K; Liang, W H; Torres, A Martinez; Oka, M; Roca, L; Uchino, T; Xiao, C W
2015-01-01
In this talk we review results from studies with unconventional many hadron systems containing mesons: systems with two mesons and one baryon, three mesons, some novel systems with two baryons and one meson, and finally systems with many vector mesons, up to six, with their spins aligned forming states of increasing spin. We show that in many cases one has experimental counterparts for the states found, while in some other cases they remain as predictions, which we suggest to be searched in BESIII, Belle, LHCb, FAIR and other facilities.
π- and K-meson Bethe-Salpeter amplitudes
International Nuclear Information System (INIS)
Independent of assumptions about the form of the quark-quark scattering kernel K, we derive the explicit relation between the flavor-nonsinglet pseudoscalar-meson Bethe-Salpeter amplitude ΓH and the dressed-quark propagator in the chiral limit. In addition to a term proportional to γ5, ΓH necessarily contains qualitatively and quantitatively important terms proportional to γ5γ·P and γ5γ·kk·P, where P is the total momentum of the bound state. The axial-vector vertex contains a bound state pole described by ΓH, whose residue is the leptonic decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-Takahashi identity relates these pole residues, with the Gell-Mann endash Oakes endash Renner relation a corollary of this identity. The dominant ultraviolet asymptotic behavior of the scalar functions in the meson Bethe-Salpeter amplitude is fully determined by the behavior of the chiral limit quark mass function, and is characteristic of the QCD renormalization group. The rainbow-ladder Ansatz for K, with a simple model for the dressed-quark-quark interaction, is used to illustrate and elucidate these general results. The model preserves the one-loop renormalization group structure of QCD. The numerical studies also provide a means of exploring procedures for solving the Bethe-Salpeter equation without a three-dimensional reduction. copyright 1997 The American Physical Society
Cross sections for meson-meson nonresonant reactions
Li, Yu-Qi
2007-01-01
Meson-meson nonresonant reactions governed by the quark-interchange mechanism are studied in a potential that is derived from QCD. S-wave elastic phase shifts for I=2 \\pi\\pi and I=3/2 K \\pi scattering are obtained with wave functions determined by the central spin-independent term of the potential. The reactions include inelastic scatterings of two mesons in the ground-state pseudoscalar octet and the ground-state vector nonet. Cross sections for reactions involving pion, rho, K and K^* indicate that mesonic interactions in matter consisting of only K and K^* can be stronger than mesonic interactions in matter consisting of only pions and rhos and the reaction of I=3/2 \\pi K^* \\to \\rho K is most important among the endothermic nonresonant reactions. By the quark-interchange mechanism we can offer \\sqrt s-dependences of phi absorption cross sections in collisions with pion and rho and relevant average cross sections what are very small for the reaction of I=1 \\pi \\phi \\to K^* K^* and remarkably large for the r...
Search for medium modifications of the rho meson.
Nasseripour, R; Wood, M H; Djalali, C; Weygand, D P; Tur, C; Mosel, U; Muehlich, P; Adams, G; Amaryan, M J; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Casey, L; Chen, S; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dickson, R; Dodge, G E; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Feldman, G; Feuerbach, R J; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gordon, C I O; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hanretty, C; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Juengst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Krahn, Z; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Li, Ji; Livingston, K; Lu, H Y; Maccormick, M; Markov, N; Mattione, P; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Moriya, K; Morrow, S A; Moteabbed, M; Mueller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatié, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Tkabladze, A; Tkachenko, S; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Williams, M; Wolin, E; Yegneswaran, A; Zana, L; Zhang, B; Zhang, J; Zhao, B; Zhao, Z W
2007-12-31
The photoproduction of vector mesons on various nuclei has been studied using the CLAS detector at Jefferson Laboratory. The vector mesons, rho, omega, and varphi, are observed via their decay to e;{+}e;{-}, in order to reduce the effects of final-state interactions in the nucleus. Of particular interest are possible in-medium effects on the properties of the rho meson. The rho mass spectrum is extracted from the data on various nuclei, 2H, C, Fe, and Ti. We observe no significant mass shift and some broadening consistent with expected collisional broadening for the rho meson. PMID:18233570
Chiral Phase Transition and Meson Melting from AdS/QCD
Bartz, Sean P
2016-01-01
We investigate the in-medium behavior of mesons at finite temperature and baryon chemical potential within a soft-wall model of AdS/QCD. We use a quartic scalar potential to obtain the correct form of chiral symmetry breaking. At zero quark mass the chiral phase transition is second-order, becoming a crossover at physical quark mass. At zero baryon chemical potential, we find a chiral transition temperature of 155 MeV in the chiral limit and a pseudo-transition temperature of 151 MeV at physical quark mass, consistent with lattice results. In the low-temperature limit, the second-order transition occurs at a baryon chemical potential of 566 MeV while the rapid crossover occurs at 559 MeV. A new parameterization of the dilaton profile results in improved meson spectra. Meson melting occurs at a lower temperature and chemical potential than the chiral phase transition, so the vector-axial vector mass splitting remains constant until the bound states melt.
Spin-dependence and glueball mixing with THETA(1640) in ordinary meson spectroscopy
International Nuclear Information System (INIS)
It is shown from a fairly general point of view that meson spectroscopy implies that the spin-spin and tensor forces are due to very short-ranged interactions. The (Q1, Q2) reversible (Qsub(A), Qsub(B)) mixing of axial vector I=1/2 mesons implies the presence of a substantial repulsive Thomas term as well as an attractive short-ranged spin-orbit force of comparable magnitude. This analysis makes no reference to detailed potentials or wave functions. Inverted multiplets are predicted as a consequence of the large repulsive Thomas term. The spin-dependent potentials can be interpreted as effective exchanges dominated by short-ranged vector exchange and a confining potential transforming as a Lorentz scalar, although small amounts of other exchanges are also possible. A model-dependent analysis of the gluon annihilation contribution to the mass matrix and two-body decays of the I=0 2++ mesons indicates significant gluon mixing in these states. The presence of a non-qanti q state (glueball) which mixes with f'(1514) and another I=0 2++ state is required by the mixing model. The possibility that this additional state is THETA(1640) is considered. The mass of such a state satisfies f'(1514) 0) < THETA(1640). The model predicts 0.01 < GAMMA(THETA → etaeta)/GAMMA(THETA → Kanti K) < 0.18, with the actual widths sensitive to the details of singlet-octet mixing in the eta wave function. (orig.)
Studies on inclusive meson resonance and particle production
International Nuclear Information System (INIS)
Production and decay of meson resonances are studied in medium energy meson-proton collisions. Strong evidence is found that hadronic collisions are dominated by resonance production. Especially the vector mesons have often large inclusive cross sections, typically of the order of few millibarns at the present energies. In all, a majority of pions and kaons appear to be decay products of resonances or other unstable particles. The detailed kinematics of the parent resonance's decays is found to play an important role in determining inclusive pion spectra. The squared transverse momentum distributions of hadrons heavier than the pion appear to have in common an exponential behaviour, with a universal slope for the esponential fall-off. The observed vector meson yields suggest that only a small fraction of the direct lepton production observed at large transverse momentum in nucleon-nucleon interactions is accounted for by the ''old'' vector mesons. An attempt has been made to separate out the central production and fragmentation components of the meson production. Both the central production and the fragmentation of the incoming meson are found to be important mechanisms in the non-strange meson production whereas the central production of strange meson resonances is rare at our energies. The ratios of the observed meson yields are found to be generally in good agreement with a simple quark-counting model. (author)
The decay τ→3πντ and characteristics of a1 meson
International Nuclear Information System (INIS)
The phenomenological meson Lagrangian based on the four-quark interactions of the scalar, pseudoscalar, vector and axial-vector types is used for description of the decay τ-→π+π-π-ντ. The structure of the main hadronic vertex a1-no is discussed. The expression for the axial hadronic current Jμ(a1→3π) is obtained. The low-energy limit of this current is analyzed. Spectral functions for the main channel of the given process are calculated. The fitting of the experimental data leads to the following values of the a1 meson parameters: ma1=1242 37 MeV, Γa1=465143+228 MeV (DELCO); ma1=1260±14 MeV, Γa1=298-34+40 MeV (MARK 2); ma1=1250±9 MeV, Γa1=488±32 MeV (AFGUS). 27 refs.; 4 figs.; 2 tabs
Precision Studies of Light Mesons at COMPASS
Ketzer, Bernhard
2014-01-01
The COMPASS experiment at CERN's SPS investigates the structure and excitations of strongly interacting systems. Using reactions of 190 GeV/c pions with protons and nuclear targets, mediated by the strong and electromagnetic interaction, an unprecedented statistical precision has been reached allowing new insight into the properties of light mesons. For the first time the diffractively produced 3pi final state has been analyzed simultaneously in bins of invariant mass and four-momentum transfer using a large set of 88 waves up to a total angular momentum of 6. In addition to a precise determination of the properties of known resonances and including a model-indepedent analysis of the pi pi S-wave isobar, a new narrow axial-vector state coupling strongly to f0(980)pi has been found in previously unchartered territory. By selecting reactions with very small four-momentum transfer COMPASS is able to study processes involving the exchange of quasi-real photons. These provide clean access to low-energy quantities ...
Massive mesons in Weyl-Dirac theory
Mirabotalebi, S.; Ahmadi, F.; Salehi, H.
2008-01-01
In order to study the mass generation of the vector fields in the framework of a conformal invariant gravitational model, the Weyl-Dirac theory is considered. The mass of the Weyl’s meson fields plays a principal role in this theory, it connects basically the conformal and gauge symmetries. We estimate this mass by using the large-scale characteristics of the observed universe. To do this we firstly specify a preferred conformal frame as a cosmological frame, then in this frame, we introduce an exact possible solution of the theory. We also study the dynamical effect of the massive vector meson fields on the trajectories of an elementary particle. We show that a local change of the cosmological frame leads to a Hamilton-Jacobi equation describing a particle with an adjustable mass. The dynamical effect of the massive vector meson field presents itself in the form of a correction term for the mass of the particle.
Photoproduction of the $f_1(1285)$ Meson
Dickson, R
2016-01-01
The $f_1(1285)$ meson with mass $1281.0 \\pm 0.8$ MeV/$c^2$ and width $18.4 \\pm 1.4$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $\\eta\\pi^{+}\\pi^{-}$, $K^+\\bar{K}^0\\pi^-$, and $K^-K^0\\pi^+$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the $\\eta\\pi^{+}\\pi^{-}$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $f_1(1285)$ identity, rather than the pseudoscalar $0^-$ $\\eta(1295)$. The production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $\\eta\\pi\\pi$ go dominantly via the intermediate $a_0^\\pm(980)\\pi^\\mp$ states, with the branching ratio $\\Gamma(a_0\\pi \\text{ (no} \\bar{K} K\\text{)}) / \\Gamma(\\eta\\pi\\pi \\text{(all)}) = 0.74\\pm0.09$. The branching ratios $\\Gamma(K \\bar{K} \\pi)/\\Gamma(\\eta\\pi\\pi) = 0.216\\pm0.033$...
Structure of exotic nuclei and superheavy elements in meson field theory
International Nuclear Information System (INIS)
In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)
Structure of exotic nuclei and superheavy elements in meson field theory
Energy Technology Data Exchange (ETDEWEB)
Linn, Khin Nyan
2008-07-15
In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)
GlueX: Meson Spectroscopy in Photoproduction
Energy Technology Data Exchange (ETDEWEB)
Salgado, Carlos [Norfolk State University, JLAB; Smith, Elton S. [JLAB
2014-03-01
The goal of the GlueX experiment \\cite{gluex} is to provide crucial data to help understand the soft gluonic fields responsible for binding quarks in hadrons. Hybrid mesons, and in particular exotic hybrid mesons, provide the ideal laboratory for testing QCD in the confinement regime since these mesons explicitly manifest the gluonic degrees of freedom. Photoproduction is expected to be effective in producing exotic hybrids but there is little data on the photoproduction of light mesons. GlueX will use the new 12-GeV electron beam at Jefferson Lab to produce a 9-GeV beam of linearly polarized photons using the technique of coherent bremsstrahlung. A solenoid-based hermetic detector is under construction, which will be used to collect data on meson production and decays. These data will also be used to study the spectrum of conventional mesons, including the poorly understood excited vector mesons. This talk will give an update on the experiment as well as describe theoretical developments \\cite{Dudek:2011bn} to help understand how these data can provide insights into the fundamental theory of strong interactions.
Description of the a0/f0 mesons with the Juelich model
International Nuclear Information System (INIS)
Recently we have developed meson-exchange models for ππ and πη scattering and we have used them for investigating the nature of the meson resonances f0(980) and a0(980). These models are based on an effective meson Lagrangian utilising the symmetries of the QCD-Lagrangian as guideline. The resulting potential for meson-meson scattering contains t-channel vector-meson exchanges (ρ, K*, ω, φ) as well as s-channel pole diagrams (ρ, element of (1400), f2(1270)) and is iterated in a three-dimensional scattering equation of Blankenbecler-Sugar type. (orig.)
Spin O decay angular distribution for interfering mesons in electroproduction
Energy Technology Data Exchange (ETDEWEB)
Funsten, H.; Gilfoyle, G.
1994-04-01
Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.
Meson masses and decay constants from unquenched lattice QCD
International Nuclear Information System (INIS)
We report results for the masses of the flavour non-singlet light 0++, 1--, and 1+- mesons from unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavours of sea quarks. For the 0++ and 1+- mesons we look for the effect of decays on the mass dependence. For the light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and transverse decay constants of the meson. We test the mass dependence of the KRSF relations. (orig.)
Charmed Mesons in Nuclei with Heavy-Quark Spin Symmetry
Tolos, L.; Garcia-Recio, C.; Nieves, J.; Romanets, O.; Salcedo, L. L.
2013-08-01
We study the properties of charmed pseudoscalar and vector mesons in dense matter within a unitary meson-baryon coupled-channel model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. Several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. Those states are then compared to experimental data as well as theoretical models. Next, Pauli-blocking effects and meson self-energies are introduced in a self-consistent manner to obtain the open-charm meson spectral functions in a dense nuclear environment. We finally discuss the formation of D-mesic nuclei.
Charmed mesons in nuclei with heavy-quark spin symmetry
Tolos, L; Nieves, J; Romanets, O; Salcedo, L L
2012-01-01
We study the properties of charmed pseudoscalar and vector mesons in dense matter within a unitary meson-baryon coupled-channel model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa Lagrangian to SU(8) spin-flavor symmetry and implementing a suitable flavor symmetry breaking. Several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with $1/2^+$ and $3/2^+$ baryons. Those states are then compared to experimental data as well as theoretical models. Next, Pauli-blocking effects and meson self-energies are introduced in a self-consistent manner to obtain the open-charm meson spectral functions in a dense nuclear environment. We finally discuss the formation of $D$-mesic nuclei.
Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange
Llanes-Estrada, Felipe J; Swanson, Eric S; Szczepaniak, Adam P; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.; Szczepaniak, Adam P.; Swanson, Eric S.
2004-01-01
Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both $S$ and $D$ waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the $\\pi$-$\\rho$ mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the $\\pi$ mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The $\\eta_b$ mass is predicted to be around 9400 MeV consistent w...
Factorization for hard exclusive electroproduction of mesons in QCD
International Nuclear Information System (INIS)
We formulate and prove a QCD factorization theorem for hard exclusive electroproduction of mesons in QCD. The proof is valid for the leading power in Q and all logarithms. This generalizes previous work on vector meson production in the diffractive region of small x. The amplitude is expressed in terms of off-diagonal generalizations of the usual parton densities. The full theorem applies to all kinds of mesons and not just to vector mesons. The parton densities used include not only the ordinary parton density, but also the helicity density (g1 or Δq) and the transversity density (h1 or δq), and these can be probed by measuring the polarization of the produced mesons with unpolarized protons. copyright 1997 The American Physical Society
Mesonic spectroscopy of Minimal Walking Technicolor
DEFF Research Database (Denmark)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino; Pica, Claudio; Rago, Antonio
2010-01-01
We investigate the structure and the novel emerging features of the mesonic non-singlet spectrum of the Minimal Walking Technicolor (MWT) theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD...
Energy Technology Data Exchange (ETDEWEB)
Chudakov, Eugene A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gevorkyan, Sergey [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Somov, Alexander [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-01-01
We consider photoproduction of omega mesons off complex nuclei to study interactions of transversely and longitudinally polarized vector mesons with nucleons. Whereas the total cross section for interactions of the transversely polarized vector mesons with nucleons sigma_T = sigma(V_T N) can be obtained from coherent photoproduction, measurements of vector meson photoproduction in the incoherent region provide a unique opportunity to extract the not-yet-measured total cross section for longitudinally polarized mesons sigma_L = sigma(V_L N). The predictions for the latter strongly depend on the theoretical approaches. This work is stimulated by the construction of the new experiment GlueX at Jefferson Lab, designed to study the photoproduction of mesons in a large beam energy range up to 12 GeV.
Spin O decay angular distribution for interfering mesons in electroproduction
International Nuclear Information System (INIS)
Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W(θ,ψ). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W(θ,ψ) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter's relative orbital angular momentum m-projection; none is open-quotes absorbedclose quotes into daughter helicities. The decaying meson's helicity maximally appears in W(θ,ψ). W(θ,ψ) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W(θ,ψ) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W (θ,ψ), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters
International Nuclear Information System (INIS)
This thesis probes the beauty baryon physics in the framework of the LHCb experiment. The present study deals with the Λb0 → Λ0V decays where V is a vector meson such as J/Ψ(μ+μ-), φ(K+K-), ω(π+π-π0) or the ρ0 - ω0(π+π-) mixing. These processes allow to test independently the CP symmetry, which violation has not been observed yet in the baryonic sector, and the T symmetry, which experimental proofs are limited. Among the possible perspectives, a precise measurement of the Λb0 lifetime could contribute to the resolution of the raising theoretical-experimental puzzle. A phenomenological model of the Λb0 → Λ0V decays has been performed, from which branching ratios and angular distributions have been estimated. An advanced study of the reconstruction and the selection of these reactions by the LHCb apparatus shows that the channel Λb0 → Λ0J/Ψ is the dominant channel on both statistics and purity aspects. The Λb0 lifetime measure is the most imminent result; the constrains on asymmetries due to CP and T violation require several data taking years. Besides, an instrumental work has been achieved on the read-out electronics, called Front-End, of the experiment pre-shower. This contribution takes into account the validation of the prototype boards and the development of tools required by the qualification of the 100 production boards. (author)
Vectorial versus axial goldstone bosons
International Nuclear Information System (INIS)
The Yukawa interactions of fermions with Goldstone bosons are given in closed form for an arbitrary renormalizable field theory to all orders of perturbation theory or for a general effective Lagrangian. Although the diagonal couplings are always pseudoscalar there is an important difference between spontaneously broken vector and axial-vector global symmetries. Compared to the axial case, the diagonal douplings of 'vectorial' Goldstone bosons to charged fermions are suppressed by mixing angles or appear only via radiative corrections involving gauge fields. This general result may be relevant for the problem of flavour symmetry breaking in composite models. (Author)
Meson-meson processes in strong interactions
International Nuclear Information System (INIS)
Based on the meson-exchange framework the present work investigates the role played by meson-meson processes in strong interaction dynamics. We concentrate on two particular topics, one representing the more fundamental aspects of meson-meson systems the other being an example for the many possible applications. Using realistic meson-exchange models for ππ- and πη-scattering the first part of this work investigates the structure of the scalar meson f0(980) and a0(980) both being of outstanding importance for our understanding of the scalar meson sector. Our model produces good agreement with the available data. Furthermore, an analysis of the pole structure of the underlying ππ- and πη-scattering amplitudes leads to an understanding of the nature and parameters of f0(980) and a0(980). It is shown that besides the observed relationship between f0(980) and a0(980) their underlying structure is quite different. The second part of our investigation deals with the role played by correlated πρ exchange in the NN interaction. Starting point are open questions concerning the structure of the πNN vertex function. In the Bonn potential of the NN interaction a rather ''hard'' πNN formfactor is required in order to be able to reproduce experimental data, in particular the deuteron properties. However, this result is in disagreement with predictions from several theoretical models requiring a much softer πNN formfactor. We are able to show that this discrepancy is removed if correlated πρ exchange is added to the Bonn potential. (orig.)
Scattering amplitudes to all orders in meson exchange
International Nuclear Information System (INIS)
As the number of colors in QCD, NC, becomes large, it is possible to sum up all meson-exchange contributions, however arbitrarily complicated, to meson-baryon and baryon-baryon scattering. A semi-classical structure for the two-flavor theory emerges, in close correspondence to vector-meson-augmented Skyrme models. In this limit, baryons act as extended static sources for the classical meson fields. This leads to non-linear differential equations for the classical meson fields which can be solved numerically for static radial (hedgehog-like) solutions. The non-linear terms in the equations of motion for the quantized meson fields can then be simplified, to leading order in 1/NC, by replacing all factors of the meson field but one by the previously-found classical field. This results in linear, Schroedinger-like equations, which are easily solved. For the meson-baryon case the solution can be subsequently analyzed to obtain the phase shifts for the scattering and, from these, the baryon resonance spectrum of the model. As the warm-up, we have carried out this calculation for the simple case of σ mesons only, finding sensible results. 8 refs., 3 figs
Magnetic properties of ground-state mesons
Simonis, Vytautas
2016-01-01
Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.
Rapidity resummation for $B$-meson wave functions
Shen, Yue-Long
2014-01-01
Transverse-momentum dependent (TMD) hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity $\\zeta$ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for $B$-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic $B$-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of $B$-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive $B$-meson decays. The phenomenological consequence of rapidity-resummation improved $B$-meson wave functions is further discussed in the context of $B \\t...
Meson decay constants from Nf=2 clover fermions
International Nuclear Information System (INIS)
We present recent results for meson decay constants calculated on configurations with two flavours of O(a)-improved Wilson fermions. Non-perturbative renormalisation is applied and quark mass dependencies as well as finite volume and discretisation effects are investigated. In this work we also present the first computation of the coupling of the light vector mesons to the tensor current using dynamical fermions. (orig.)
International Nuclear Information System (INIS)
The authors discuss why QCD leads to the search for exotic hadrons. They summarize some expectations from theory and models concerning the masses, decay pattern and characteristic features of glueballs (gg), hybrid (q bar qg) and diquonia (qq bar q bar q) mesons. They discuss the best known or more interesting candidates for exotic mesons
Mesonic effects in nuclear physics
International Nuclear Information System (INIS)
The relation between mesons and nucleons and the properties of nuclear matter, as presently understood, is considered in these lectures. Feynman diagrams, meson theoretical nucleon-nucleon interactions, mesonic components in nuclear wave functions, direct observation of mesonic components in NN scattering above the pion production threshold, nuclear matter theory, and pion condensation are treated. 120 references
Distribution amplitudes of light-quark mesons from lattice QCD
Segovia, Jorge; Cloet, Ian C; Roberts, Craig D; Schmidt, Sebastian M; Zong, Hong-shi
2013-01-01
We exploit a method introduced recently to determine parton distribution amplitudes (PDAs) from minimal information in order to obtain light-quark pseudoscalar and vector meson PDAs from the limited number of moments produced by numerical simulations of lattice-regularised QCD. Within errors, the PDAs of pseudoscalar and vector mesons constituted from the same valence quarks are identical; they are concave functions, whose dilation expresses the strength of dynamical chiral symmetry breaking; and SU(3)-flavour symmetry is broken nonperturbatively at the level of 10%. Notably, the appearance of precision in the lattice moments is misleading. The moments also exhibit material dependence on lattice volume, especially for the pion. Improvements need therefore be made before an accurate, unified picture of the light-front structure of light-quark pseudoscalar and vector mesons is revealed.
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U. /Beijing Normal U.; de Teramond, Guy F.; /Costa Rica U.
2011-11-04
The QCD evolution of the pion distribution amplitude (DA) {phi}{sub {pi}} (x, Q{sup 2}) is computed for several commonly used models. Our analysis includes the nonperturbative form predicted by lightfront holographic QCD, thus combining the nonperturbative bound state dynamics of the pion with the perturbative ERBL evolution of the pion distribution amplitude. We calculate the meson-photon transition form factors for the {pi}{sup 0}, {eta} and {eta}' using the hard-scattering formalism. We point out that a widely-used approximation of replacing {phi} (x; (1 - x)Q) with {phi} (x;Q) in the calculations will unjustifiably reduce the predictions for the meson-photon transition form factors. It is found that the four models of the pion DA discussed give very different predictions for the Q{sup 2} dependence of the meson-photon transition form factors in the region of Q{sup 2} > 30 GeV{sup 2}. More accurate measurements of these transition form factors at the large Q{sup 2} region will be able to distinguish the four models of the pion DA. The rapid growth of the large Q{sup 2} data for the pion-photon transition form factor reported by the BABAR Collaboration is difficult to explain within the current framework of QCD. If the BABAR data for the meson-photon transition form factor for the {pi}{sup 0} is confirmed, it could indicate physics beyond-the-standard model, such as a weakly-coupled elementary C = + axial vector or pseudoscalar z{sup 0} in the few GeV domain, an elementary field which would provide the coupling {gamma}{sup *}{gamma} {yields} z{sup 0} {yields} {pi}{sup 0} at leading twist. Our analysis thus indicates the importance of additional measurements of the pion-photon transition form factor at large Q{sup 2}.
The unified BS wavefunctions of mesons with natural Jsup(PC)
International Nuclear Information System (INIS)
From the Bethe-Salpeter equation with a spin-independent kernel, a unified wavefunction is derived for mesons with natural Jsup(PC). Masses of vector mesons calculated from this wavefunction yield a spectrum which agrees with the observed one. (orig.)
Indian Academy of Sciences (India)
Ajay Kumar Rai; P C Vinodkumar
2006-05-01
The mass spectrum of $c\\bar{b}$ meson is investigated with an effective quark-antiquark potential of the form $\\dfrac{-_{c}}{r} + Ar^{}$ with varying from 0.5 to 2.0. The and -wave masses, pseudoscalar decay constant, weak decay partial widths in spectator model and the lifetime of c meson are computed. The properties calculated here are found to be in good agreement with other theoretical and experimental values at potential index, = 1.
Transversity and Meson Photoproduction
Goldstein, G R; Goldstein, Gary R.; Gamberg, Leonard
2002-01-01
Both meson photoproduction and semi-inclusive deep inelastic scattering can potentially probe transversity in the nucleon. We explore how that potential can be realized dynamically. The role of rescattering in both exclusive and inclusive meson production as a source for transverse polarization asymmetry is examined. We use a dynamical model to calculate the asymmetry and relate that to the transversity distribution of the nucleon.
Charming Mesons with Baryons and Nuclei
Tolos, Laura
2013-11-01
The properties of charmed mesons in nuclear matter and nuclei are reviewed. Different frameworks are discussed paying a special attention to unitarized coupled-channel approaches which incorporate heavy-quark spin symmetry. Several charmed baryon states with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. These states are compared to experimental data. Moreover, the properties of open-charm mesons in matter are analyzed. The in-medium solution accounts for Pauli blocking effects, and for the meson self-energies in a self-consistent manner. The behavior in the nuclear medium of the rich spectrum of dynamically-generated baryon states is studied as well as their influence in the self-energy and, hence, the spectral function of open charm. The possible experimental signatures of the in-medium properties of open charm are finally addressed, such as the formation of charmed nuclei, in connection with the future FAIR facility.
Charming mesons with baryons and nuclei
Tolos, Laura
2013-01-01
The properties of charmed mesons in nuclear matter and nuclei are reviewed. Different frameworks are discussed paying a special attention to unitarized coupled-channel approaches which incorporate heavy-quark spin symmetry. Several charmed baryon states with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with $1/2^+$ and $3/2^+$ baryons. These states are compared to experimental data. Moreover, the properties of open-charm mesons in matter are analyzed. The in-medium solution accounts for Pauli blocking effects, and for the meson self-energies in a self-consistent manner. The behavior in the nuclear medium of the rich spectrum of dynamically-generated baryon states is studied as well as their influence in the self-energy and, hence, the spectral function of open charm. The possible experimental signatures of the in-medium properties of open charm are finally addressed, such as the formation of charmed nuclei, in connection with the future F...
Adam, C.; C. Naya; Sanchez-Guillen, J.; Wereszczynski, A.
2012-01-01
We analyze the vector meson formulation of the BPS Skyrme model in (3+1) dimensions, where the term of sixth power in first derivatives characteristic for the original, integrable BPS Skyrme model (the topological or baryon current squared) is replaced by a coupling between the vector meson $\\omega_\\mu$ and the baryon current. We find that the model remains integrable in the sense of generalized integrability and almost solvable (reducible to a set of two first order ODEs) for any value of th...
ρ meson decays of heavy hybrid mesons
Zhang, Liang; Huang, Peng-Zhi
2016-07-01
We calculate the ρ meson couplings between the heavy hybrid doublets Hh/Sh/Mh/Th and the ordinary qQ̅ doublets in the framework of the light-cone QCD sum rule. The sum rules obtained rely mildly on the Borel parameters in their working regions. The resulting coupling constants are rather small in most cases. Supported by National Natural Science Foundation of China (11105007)
Weak decay constant of pseudscalar meson in a QCD-inspired model
Salcedo, L A M; Hadj-Michef, D; Frederico, T
2003-01-01
We show that a linear scaling between the weak decay constants of pseudoscalar and the vector mesons masses is supported by the available experimental data. The decay constant scale as $f_m/f_{pi}=M_V/M_{\\rho}$ (f_m is decay constant and M_V vector meson ground state mass). This simple form is justified within a renormalized light-front QCD-inpired model for quark-antiquark bound states.
International Nuclear Information System (INIS)
The plasma phase at high temperatures of a strongly coupled gauge theory can be holographically modelled by an AdS black hole. Matter in the fundamental representation and in the quenched approximation is introduced through embedding D7-branes in the AdS-Schwarzschild background. Low spin mesons correspond to the fluctuations of the D7-brane world volume. As is well known by now, there are two different kinds of embeddings, either reaching down to the black hole horizon or staying outside of it. In the latter case the fluctuations of the D7-brane world volume represent stable low spin mesons. In the plasma phase we do not expect mesons to be stable but to melt at sufficiently high temperature. We model the late stages of this meson melting by the quasinormal modes of D7-brane fluctuations for the embeddings that do reach down to the horizon. The inverse of the imaginary part of the quasinormal frequency gives the typical relaxation time back to equilibrium of the meson perturbation in the hot plasma. We briefly comment on the possible application of our model to quarkonium suppression
Exclusive electroproduction of $\\phi$ mesons at HERA
Chekanov, S; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Allfrey, P D; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Behrens, U; Bell, M A; Bellagamba, L; Bellan, P M; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Büttner, C; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cassel, D G; Catterall, C D; Abramowicz, H; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Corradi, M; Corriveau, F; Costa, M; Cottrell, A; Cui, Y; D'Agostini, G; Dal Corso, F; Danilov, P; De Pasquale, S; Dementiev, R K; Derrick, M; Devenish, R C E; Dhawan, S; Dobur, D; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Everett, A; Ferrando, J; Ferrero, M I; Figiel, J; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fry, C; Gabareen, A; Galas, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Goncalo, R; González, O; Gosau, T; Göttlicher, P; Grabowska-Bold, I; Graciani-Díaz, R; Grigorescu, G; Grijpink, S; Groys, M; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, C; Hartmann, H; Hartner, G; Heaphy, E A; Heath, G P; Helbich, M; Hilger, E; Hochman, D; Holm, U; Horn, C; Iacobucci, G; Iga, Y; Irrgang, P; Jakob, H P; Jiménez, M; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Karshon, U; Karstens, F; Kasemann, M; Kataoka, M; Katkov, I I; Kcira, D; Keramidas, A; Khein, L A; Kim, J Y; Kind, O; Kisielewska, D; Kitamura, S; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowalski, H; Kramberger, G; Kreisel, A; Krumnack, N; Kulinski, P; Kuze, M; Kuzmin, V A; Labarga, L; Lammers, S; Lelas, D; Levchenko, B B; Levy, A; Li, L; Lightwood, M S; Lim, H; Limentani, S; Ling, T Y; Liu, C; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukasik, J; Lukina, O Yu; Luzniak, P; Ma, K J; Maddox, E; Magill, S; Malka, J; Mankel, R; Margotti, A; Marini, G; Martin, J F; Martínez, M; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Miglioranzi, S; Milite, M; Mirea, A; Monaco, V; Montanari, A; Musgrave, B; Nagano, K; Namsoo, T; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Noor, U; Notz, D; Nowak, R J; Nuncio-Quiroz, A E; Oh, B Y; Olkiewicz, K; Ota, O; Padhi, S; Palmonari, F; Patel, S; Paul, E; Pavel, Usan; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Piotrzkowski, K; Plamondon, M; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Ri, Y D; Rinaldi, L; Robins, S; Rosin, M; Ruspa, M; Ryan, P; Sacchi, R; Salehi, H; Santamarta, R; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schleper, P; Schmidke, W B; Schneekloth, U; Schörner-Sadenius, T; Sciulli, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Stösslein, U; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutiak, J; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tapper, A D; Targett-Adams, C; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Tyszkiewicz, A; Ukleja, A; Ukleja, J; Vázquez, M; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Whitmore, J J; Whyte, J; Wichmann, K; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wlasenko, M; Wolf, G; Yagues-Molina, A G; Yamada, S; Yamazaki, Y; Yoshida, R; Youngman, C; Zambrana, M; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zhou, C; Zichichi, A; Ziegler, A; Zotkin, D S; Zotkin, S A; De Favereau, J; De Wolf, E; Del Peso, J
2005-01-01
Exclusive electroproduction of $\\phi$ mesons has been studied in $e^\\pm p$ collisions at $\\sqrt{s}=318 \\gev$ with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb$^{-1}$. The $\\gamma^*p$ cross section is presented in the kinematic range $2vector mesons. The ratios $R$ of the cross sections for longitudinally and transversely polarized virtual photons are presented as functions of $Q^2$ and $W$. The data are also compared to predictions from theoretical models.
QCD monopole and sigma meson coupling
Iwazaki, Aiichi
2016-01-01
Under the assumption of the Abelian dominance in QCD, we show that chiral condensate is locally present around a QCD monopole. The appearance of the chiral condensate around a GUT monopole was shown in the previous analysis of the Rubakov effect. We apply a similar analysis to the QCD monopole. It follows that the condensation of the monopole carrying the chiral condensate leads to the chiral symmetry breaking as well as quark confinement. To realize the result explicitly, we present a phenomenological linear sigma model coupled with the monopoles, in which the monopole condensation causes the chiral symmetry breaking as well as confinement. The monopoles are assumed to be described by a model of dual superconductor. We identify the monopoles with scalar isoscalar $f_0$ mesons with masses $1400\\sim 1700$ MeV as well as dual gauge fields with $h_1$ vector mesons with masses $\\sim 1500$MeV.
Antinucleon nucleon annihilations into two mesons
International Nuclear Information System (INIS)
We study two aspects of the antinucleon-nucleon annihilation into two mesons (antiNN → M1M2), starting from simple Born diagrams. On one hand, we discuss the possibility of modelling the antiNN optical potential with the box diagrams related to the M1M2 channels. We include the lightest pseudoscalar, scalar and vector mesons with effective coupling constants. Much more channels appear to be needed in order to achieve sensible results. On the other hand, we show that a simple phenomenological optical potential, successfull in reproducing antiNN elastic scattering and total annihilation data can be further used to make predictions on the antiNN → M1M2 processes, which prove to be in good agreement with experiment. We find a lower bound of 17% on the relative contribution of these reactions to the antiNN annihilation. Also, the model favours a rather small effective radius for the nucleon
Polarization observables in φ-meson photoproduction
International Nuclear Information System (INIS)
We analyze polarization observables of the φ-meson photoproduction from a proton within the uud-ss bar cluster model as a probe of strangeness in the proton. Our consideration is based on the relativistic quark model that takes into account the Lorentz-contraction effects of the intrinsic hadron wave functions. We show that transverse target-recoil and longitudinal beam-target double polarizations in the diffractive vector meson dominance model are different from those of the knockout mechanisms and the difference between them is as much as 20∼80% if only 0.2∼0.3% strangeness admixture in proton wave function is assumed. This strong effect may be studied experimentally. 17 refs., 4 figs
Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory
Directory of Open Access Journals (Sweden)
E.V. Luschevskaya
2015-09-01
Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.
A lattice QCD determination of potentials between pairs of static-light mesons
International Nuclear Information System (INIS)
Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B*, a D or a D* heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z+(4430).
Unquenching the meson spectrum: a model study of excited $\\rho$ resonances
Rupp, George; van Beveren, Eef
2016-01-01
Quark models taking into account the dynamical effects of hadronic decay often produce very different predictions for mass shifts in the hadron spectrum. The consequences for meson spectroscopy can be dramatic and completely obscure the underlying confining force. Recent unquenched lattice calculations of mesonic resonances that also include meson-meson interpolators provide a touchstone for such models, despite the present limitations in applicability. On the experimental side, the $\\rho(770)$ meson and its several observed radial recurrences are a fertile testing ground for both quark models and lattice computations. Here we apply a unitarised quark model that has been successful in the description of many enigmatic mesons to these vector $\\rho$ resonances and the corresponding $P$-wave $\\pi\\pi$ phase shifts. This work is in progress, with encouraging preliminary results.
A lattice QCD determination of potentials between pairs of static-light mesons
Energy Technology Data Exchange (ETDEWEB)
Hetzenegger, Martin
2011-07-04
Potentials between pairs of static-light mesons are interesting in a sense that they give insights in the nature of strong interactions from first principles for multiquark systems. For large heavy quark masses, e.g., the spectra of heavy-light mesons are determined by excitations of the light quark and gluonic degrees of freedom. In particular, the vector-pseudoscalar splitting vanishes and a static-light meson can be interpreted as either a B, a B{sup *}, a D or a D{sup *} heavy-light meson. Calculating potentials between two static-light mesons also enables investigations of possible bound tetraquark states or for particles that are close to the meson-antimeson threshold, such as the X(3872) or the Z{sup +}(4430).
Low-energy photoproduction of omega-mesons
Barth, J; Glander, K H; Hannappel, J; Jöpen, N; Klein, F; Lawall, R; Menze, D; Neuerburg, W; Ostrick, M; Paul, E; Schulday, I; Schwille, W J; Wiegers, B; Ernst, J; Kalinowsky, H; Klempt, E; Link, J; Pee, H V; Klein, F J; Wieland, F W; Wisskirchen, J; Wu, C
2003-01-01
The photoproduction of the vector meson omega has been studied between threshold and W=2.4 GeV with the SAPHIR detector at the Bonn electron stretcher ring ELSA. Besides, the total cross-sections angular distributions in the CMS and decay angular distributions in the helicity and Gottfried-Jackson systems have been measured.
Radiative decays of mesons in the NJL model
Epele, L N; Dumm, D G; Grunfeld, A G
2001-01-01
We revisit the theoretical predictions for anomalous radiative decays of pseudoscalar and vector mesons. Our analysis is performed in the framework of the Nambu-Jona-Lasinio model, introducing adequate parameters to account for the breakdown of chiral symmetry. The results are comparable with those obtained in previous approaches.
Static-light meson-meson potentials
Bali, Gunnar
2010-01-01
We investigate potentials between pairs of static-light mesons in Nf=2 Lattice QCD, in different spin channels. The question of attraction and repulsion is particularly interesting with respect to the X(3872) charmonium state and charged candidates such as the Z+(4430). We employ the nonperturbatively improved Sheikholeslami-Wohlert fermion and the Wilson gauge actions at a lattice spacing a approx. 0.084 fm and a pseudoscalar mass mPS approx. 760 MeV. We use stochastic all-to-all propagator techniques, improved by a hopping parameter expansion. The analysis is based on the variational method, utilizing various source and sink interpolators.
International Nuclear Information System (INIS)
The search for I = 0 0++ mesons is described. The crucial role played by the states in the 1 GeV region is highlighted. An analysis program that with unimpeachable data would produce definitive results on these is outlined and shown with present data to provide prima facie evidence for dynamics beyond that of the quark model. The authors briefly speculate on the current status of the lowest mass scalar mesons and discuss how experiment can resolve the unanswered issues. 30 references, 6 figures, 1 table
Spectroscopy of light mesons with account of quark-gluon mixing
International Nuclear Information System (INIS)
The pseudoscalar, tensor, scalar and axial meson multiplets are considered in an assumption on the existence of a quark-gluon mixing. The mixing angles for these multiplets are obtained, thus allowing one to determine the quark-gluon composition of the light mesons. All the experimental data available on the two-particle decays of 0-+, 2++, 0++ and 1+±-mesons are described and predictions for a large number of such decays are given. It turned out that η(1430) f2 (1720), f0 (991) and f0 (1590) mesons are quite real candidates for glueballs. f1 (1420) and f1 (1285) mesons contain almost the same 50% glueball components, this explaining many features of spectroscopy in the interval of masses from 1400 to 1500 MeV. (author). 16 refs, 12 tabs
Properties of mesons in a strong magnetic field
Zhang, Rui; Fu, Wei-jie; Liu, Yu-xin
2016-06-01
By extending the Φ -derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, σ , and ρ mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of π 0 and σ meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the π ^{± } mass ascends suddenly at almost the same critical temperature. Meanwhile the ρ mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, T_c^{χ }, is always enhanced by the magnetic field. Moreover, our calculations indicate that the ρ mesons will get melted as the chiral symmetry has not yet been restored, but the σ meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme.
Techniques in meson spectroscopy
International Nuclear Information System (INIS)
This report contains lectures on the following topics: the quark model and beyond using quantum chromodynamics; analysis of formation reactions; energy dependence of the partial wave amplitudes; where the data for the t-matrix analysis comes from; and coupled channel analysis of isoscalar mesons
Energy Technology Data Exchange (ETDEWEB)
Vento, Vicente [Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica y Instituto de Fisica Corpuscular, Universidad de Valencia, Burjassot (Spain)
2016-01-15
Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at ∝1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar spectrum. (orig.)
Zhou, Si-Hong; Wei, Yan-Bing; Qin, Qin; Li, Ying; Yu, Fu-Sheng; Lu, Cai-Dian
2015-01-01
Within the factorization-assisted topological-amplitude approach, we study the two-body charmed $B$ meson decays $B_{u,d,s} \\to D^{(*)}M$, with $M$ denoting a light pseudoscalar (or vector) meson. The meson decay constants and transition form factors are factorized out from the hadronic matrix element of topological diagrams. Therefore the effect of SU(3) symmetry breaking is retained, which is different from the conventional topological diagram approach. The number of free nonperturbative pa...
Lattice results for low moments of light meson distribution amplitudes
International Nuclear Information System (INIS)
As part of the UKQCD and RBC collaborations' Nf = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons π and K and the (longitudinally-polarised) vector mesons ρ, K* and φ. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique. (orig.)
Lattice Results for Low Moments of Light Meson Distribution Amplitudes
Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; Rae, T D; Sachrajda, C T.C
2011-01-01
As part of the UKQCD and RBC collaborations' N_f=2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons pion and kaon and the (longitudinally-polarised) vector mesons rho, K-star and phi. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique.
The role of meson dynamics in nuclear matter saturation
International Nuclear Information System (INIS)
The problem of the saturation of nuclea matter in the non-relativistic limit of the model proposed by J.D. Walecka is studied. In the original context nuclear matter saturation is obtained as a direct consequence of relativistic effects and both scalar and vector mesons are treated statically. In the present work we investigate the effect of the meson dynamics for the saturation using a Born-Oppenheimer approximation for the ground state. An upper limit for the saturation curve of nuclear matter and are able to decide now essential is the relativistic treatment of the nucleons for this problem, is obtained. (author)
Lattice results for low moments of light meson distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Arthur, R.; Boyle, P.A. [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Broemmel, D.; Flynn, J.M.; Rae, T.D.; Sachrajda, C.T.C. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Donnellan, M.A. [NIC/DESY Zeuthen (Germany); Juettner, A. [CERN, Geneva (Switzerland). Physics Dept.
2010-12-15
As part of the UKQCD and RBC collaborations' N{sub f} = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons {pi} and K and the (longitudinally-polarised) vector mesons {rho}, K{sup *} and {phi}. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI{sup '}/MOM technique. (orig.)
Next-to-leading order corrections in exclusive meson production
International Nuclear Information System (INIS)
We analyze in detail the size of next-to-leading order corrections to hard exclusive meson production within the collinear factorization approach. Corrections to the cross section are found to be huge at small xB and substantial in typical fixed-target kinematics. With the models we take for nucleon helicity-flip distributions, the transverse target polarization asymmetry in vector meson production is strongly affected by radiative corrections, except at large xB. Its overall size is very small for ρ production but can be large in the ω channel. (orig.)
The no-wall holographic model for vector quarkonia
Afonin, S S
2016-01-01
We use the no-wall holographic approach (a relative of the soft-wall one) to construct a universal description of vector mesons with arbitrary quark masses. The proposed model predicts a specific dependence of the parameters of radial Regge trajectories on the quark masses in a reasonable agreement with the meson phenomenology and some theoretical expectations.
Exclusive and inclusive decays of B mesons into Ds mesons
International Nuclear Information System (INIS)
We have studied the production of Ds mesons in the decays of B mesons at the Υ(4S) resonance. We report on the first observation of exclusive B-meson decays B→Ds-D*+, B→Ds-D+, and B→Ds-D0. We also present a new measurement of the branching ratio and the momentum spectrum for the inclusive decay B→DsX
International Nuclear Information System (INIS)
ALICE experiment at LHC studies the Quark Gluon Plasma (QGP), a particular state of matter where quarks and gluons are deconfined. A probe to explore this state is the study of several resonances (ρ, ω, φ, J/ψ and Υ) through their dimuon decay channel, with a muon spectrometer covering pseudo-rapidity -4 NN)=2.76 TeV. Light vector mesons are powerful tools to probe the QGP due to their short lifetime and their dimuon decay channel. Indeed, leptons have negligible final state interactions. Production rates and spectral functions of those mesons are modified by the hot hadronic and QGP medium. Chiral symmetry restoration study is done thanks to the study of ρ spectral function. Strangeness enhancement is accessed via the ratio of φ over ρ + ω yields as a function of the centrality of the collision. In pp analysis, the emphasis is on background understanding and on first physics results such as φ yield over ρ + ω yield as a function of pT, and pT distributions of φ and ρ + ω. Cross sections and pT-differential cross sections of light mesons will also be shown. The Pb-Pb analysis and its prospects will be presented. The second part of the thesis concerns ALICE upgrade plans of year 2017. A feasibility study for a Muon Forward Tracker (MFT) in Silicon pixels located upstream of the hadronic absorber in the spectrometer acceptance was performed. This upgrade is mainly motivated by the improvement of the dimuon invariant mass resolution and secondary vertex measurement. This gives access to open charm and beauty direct study in single muon channel. Prompt J/ψ can also be distinguished from B feed-down J/ψ, allowing a better study of a QGP signature: the 'J/ψ suppression' in ultra-relativistic heavy ion collisions. MFT performances on those different topics were established in simulations. The track matching algorithm to match MFT tracks with spectrometer tracks (a crucial step for the feasibility of the project) and its results are presented. (author)
The vector manifestation and effective degrees of freedom at chiral restoration
International Nuclear Information System (INIS)
The role of effective degrees of freedom on the vector and axial-vector susceptibilities and the pion velocity at chiral restoration is analyzed. We consider two possible scenarios, one in which pions are considered to be the only low-lying degrees of freedom - that we shall refer to as 'standard' - and the other in which pions, vector mesons and constituent quarks (or quasiquarks in short) are the relevant low-lying degrees of freedom - that we shall refer to as 'vector manifestation (VM)'. We show at one-loop order in chiral perturbation theory with hidden local symmetry Lagrangian that while in the standard scenario, the pion velocity vanishes at the chiral transition, it instead approaches unity in the VM scenario. If the VM is realized in nature, the chiral phase structure of hadronic matter can be much richer than that in the standard one and the phase transition will be a smooth crossover: Sharp vector and scalar excitations are expected in the vicinity of the critical point. Some indirect indications that lend support to the VM scenario, and in consequence to BR scaling, are discussed. (author)
Nuclear matter with scalar-vector interactions
Energy Technology Data Exchange (ETDEWEB)
Moncada, A.; Scholtz, F.G.; Hahne, F.J.W. (Institute of Theoretical Physics, University of Stellenbosch, Stellenbosch 7600 (South Africa))
1994-09-01
The properties of cold nuclear matter are investigated in a class of nonlinear mean field [sigma]-[omega] theories which includes a density dependence of the meson parameters. This dependence can be both explicit and implicit through the effective nucleon mass. We apply the theory to the case of an interaction between the scalar and the vector mesons and investigate the properties of neutron stars using the resulting equation of state.
Nuclear matter with scalar-vector interactions
International Nuclear Information System (INIS)
The properties of cold nuclear matter are investigated in a class of nonlinear mean field σ-ω theories which includes a density dependence of the meson parameters. This dependence can be both explicit and implicit through the effective nucleon mass. We apply the theory to the case of an interaction between the scalar and the vector mesons and investigate the properties of neutron stars using the resulting equation of state
International Nuclear Information System (INIS)
According to the Standard Model of six quarks and six leptons, the charged-current decays of quarks can couple any of the up quarks, u, c, or t, to any of the down quarks, d, s, or b. Several of these couplings can be measured only in B-meson decays. It is important to measure them accurately in order to expand our knowledge of the model, to test its validity, and more importantly, to take us to a formulation of what is beyond. In the paper, the authors review the measurements that have been made on the weak decays of B mesons and discuss their implications for the matrix of quark couplings
Meson Spectroscopy without Tetraquarks
Bugg, D V
2011-01-01
Data on e+e- -> piplus-piminus-Upsilon(1S,2S,3S) show a large increase in branching fractions near Upsilon(10860). A suggestion of Ali et al. is to interpret this as evidence for a tetraquark, Yb(10890) = b-bbar. However, it may also be interpreted in terms of Upsilon(10860) -> B-B*, B*B* and BsB*s above the open-b threshold, followed by de-excitation processes such as $BB* -> Upsilon (1S,2S,3S). In the charm sector, a hypothesis open to experimental test is that X,Y and Z peaks in the mass range 3872 to 3945 MeV may all be due to regular 3P1 and 3P2 c-cbar states (and perhaps 3P0) mixed with meson-meson.
Törnqvist, N. A.; Spanier, S.(University of Tennessee, Knoxville, USA); Amsler, C
2008-01-01
This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and re...
International Nuclear Information System (INIS)
The nature of the scalar mesons in the 1 GeV region is studied. Analysis of all high statistics data in the neighbourhood of Kanti K threshold, in particular the fine-binned spectra on ψ → φ(ππ), φ(Kanti K) from DM2 and Mark III, indicate in an almost model-independent way that the f0(S*) is not a Kanti K molecule. (orig.)
International Nuclear Information System (INIS)
A heavy particle with an unusual decay pattern discovered by the Belle experiment at KEK in Japan is the latest addition to the meson family tree. If we had to name a modern-day Mendeleev, his name would surely be Murray Gell-Mann. In the 1960s, faced with a bewildering array of particles called hadrons that had been turning up in high-energy experiments around the world, Gell-Mann proposed that the particles were combinations of a few fundamental entities called quarks. This idea brought order into the hadronic chaos, a feat for which Gell-Man was awarded the 1969 Nobel Prize for Physics. Ever since the quark model was introduced, physicists have wanted to find out how the six different types of quarks - up (u), down (d), strange (s), charm (c), bottom (b) and top (t) - combine to form the hadrons we observe. The simple hadronic structures that we see are easy to define: mesons such as pions and kaons consist of a quark and an antiquark pair, while baryons such as protons and neutrons are made up of three quarks or three antiquarks. But the theory that describes quarks, quantum chromodynamics (QCD), also permits particles containing four or more quarks. Indeed, a meson can be more generally defined as a hadron that has an integer value of intrinsic angular momentum in quantum units, while baryons have half-integer multiples of spin. Discovering such exotic hadrons, particularly mesons with more than the minimal quark-antiquark structure, would therefore provide crucial information for our understanding of the strong force. In fact, physicists thought they had glimpsed a five-quark state called a 'pentaquark' in 2003. Sadly this excitement looks as if it was misplaced, since the latest results from dedicated experimental searches suggest that pentaquarks are a purely statistical phenomenon (see Physics World May p7: print edition only). (U.K.)
Measurements of B meson decays to (omega)K* and (omega)(rho)
Energy Technology Data Exchange (ETDEWEB)
Aubert, B; Cheng, C H; Lange, D J; Simani, M C; . Wright, D M; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R H; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Y G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Abe, T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, G; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn' ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Keith, D W . S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O' Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, H; Strube, J; Su, D; Sullivan, M K; Va' vra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Collaboration, B
2006-03-14
The authors describe searches for B meson decays to the charmless vector-vector final states {omega}K* and {omega}{rho} in 89 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation at {radical}s = 10.58 GeV.
Multichannel calculation of excited vector φ resonances and the φ(2170)
International Nuclear Information System (INIS)
A multichannel calculation of excited JPC=1--φ states is carried out within a generalization of the resonance-spectrum expansion, which may shed light on the classification of the φ(2170) resonance, discovered by BABAR and originally denoted X(2175). In this framework, a complete spectrum of bare ss states is coupled to those Okubo-Zweig-Iizuka-allowed decay channels that should be most relevant for the considered energy range. The included S- and P-wave two-meson channels comprise the lowest pseudoscalar, vector, scalar, and axial-vector mesons, while in the qq sector both the 3S1 and 3D1 states are coupled. The only two free parameters are tuned so as to reproduce mass and width of the φ(1020), but come out reasonably close to previously used values. Among the model's T-matrix poles, there are good candidates for observed resonances, as well as other ones that should exist according to the quark model. Besides the expected resonances as unitarized confinement states, a dynamical resonance pole is found at (2186-i246) MeV. The huge width makes its interpretation as the φ(2170) somewhat dubious, but further improvements of the model may change this conclusion.
Neutrino-induced meson productions
Nakamura, Satoshi X
2015-01-01
We develop a dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region, by extending the DCC model that we have previously developed through an analysis of $\\pi N, \\gamma N\\to \\pi N, \\eta N, K\\Lambda, K\\Sigma$ reaction data for $W\\le 2.1$ GeV. We analyze electron-induced reaction data for both proton and neutron targets to determine the vector current form factors up to $Q^2\\le$ 3.0 (GeV/$c$)$^2$. Axial-current matrix elements are derived in accordance with the Partially Conserved Axial Current (PCAC) relation to the $\\pi N$ interactions of the DCC model. As a result, we can uniquely determine the interference pattern between resonant and non-resonant amplitudes. Our calculated cross sections for neutrino-induced single-pion productions are compared with available data, and are found to be in reasonable agreement with the data. We also calculate the double-pion production cross sections in the resonance region, for the first time, with relevant resonance contributions and c...
Future prospects for exotic mesons
International Nuclear Information System (INIS)
A brief description is given of the current status of exotic mesons produced in π-p interactions at 18 GeV/c-carried out with the BNL multiparticle spectrometer. The next logical step in our endeavor to understand the gluonic degrees of freedom in mesons is to extend the search for exotic mesons with hidden strangeness in K-p interactions at beam momenta in the range 15 to 25 GeV/c. (orig.)
Tolos, L; Garcia-Recio, C; Molina, R; Nieves, J; Oset, E; Ramos, A
2010-01-01
The properties of charmed mesons in dense matter are studied using a unitary coupled-channel approach in the nuclear medium which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear environment, and discuss their implications on hidden charm and charm scalar resonances and on the formation of $D$-mesic nuclei at FAIR.
On the spectra of scalar mesons from HQCD models
Mintakevich, Oded; Sonnenschein, Jacob
2008-08-01
We determine the holographic spectra of scalar mesons from the fluctuations of the embedding of flavor D-brane probes in HQCD models. The models we consider include a generalization of the Sakai Sugimoto model at zero temperature and at the ``high-temperature intermediate phase", where the system is in a deconfining phase while admitting chiral symmetry breaking and a non-critical 6d model at zero temperature. All these models are based on backgrounds associated with near extremal Nc D4 branes and a set of Nf mcq and on the excitation number n as Mn2 ~ mcq and M2n ~ n1.7 for the ten dimensional case and as Mn ~ mcq and Mn ~ n0.75 in the non-critical case. At the high temperature intermediate phase we detect a decrease of the masses of low spin mesons as a function of the temperature similar to holographic vector mesons and to lattice calculations.
MIXING AND CP VIOLATION IN D MESONS
Yaouanc, A. Le; Oliver, L.; Pène, O; Raynal, J. -C.
1995-01-01
We review mixing and CP violation in $D$ mesons, emphasizing the differences with the other pseudoscalar mesons in the Standard Model, and show that $D$ mesons can be useful to look for physics beyond the Standard Model.
Charmed mesons in nuclear matter
Tolos, L; Garcia-Recio, C; Oset, E; Molina, R; Nieves, J; Ramos, A
2010-01-01
We obtain the properties of charmed mesons in dense matter using a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner. We study the behaviour of dynamically-generated baryonic resonances together with the open-charm meson spectral functions in this dense nuclear environment. We discuss the implications of the in-medium properties of open-charm mesons on the $D_{s0}(2317)$ and the predicted X(3700) scalar resonances, and on the formation of $D$-mesic nuclei.
Polarisation of the omega meson in the pd-->3He+omega reaction at 1360 and 1450 MeV
Schonning, K; Bashkanov, M; Berlowski, M; Bogoslawsky, D; Calén, H; Clement, H; Demirors, L; Ekström, C; Fransson, K; Geren, L; Gustafsson, L; Höistad, B; Ivanov, G; Jacewicz, M; Jiganov, E; Johansson, T; Keleta, S; Khakimova, O; Koch, I; Kren, F; Kullander, Sven; Kupsc, A; Kuzmin, A; Lindberg, K; Marciniewski, P; Morosov, B; Oelert, W; Pauly, C; Pettersson, H; Petukhov, Yu P; Povtorejko, A; Ruber, R J M Y; Scobel, W; Shafigullin, R; Shwartz, B; Skorodko, T; Sopov, V; Stepaniak, J; Tegner, P -E; Engblom, P Thorngren; Tikhomirov, V; Turowiecki, A; Wagner, G J; Wilkin, C; Wolke, M; Zabierowski, J; Zartova, I; Zlomanczuk, Yu
2008-01-01
The tensor polarisation of omega mesons produced in the pd-->3He+omega reaction has been studied at two energies near threshold. The 3He nuclei were detected in coincidence with the pi0pi+pi- or pi0gamma decay products of the omega. In contrast to the case of phi meson production, the omega mesons are found to be unpolarised. This brings into question the applicability of the Okubo-Zweig-Iizuka rule when comparing the production of vector mesons in low energy hadronic reactions.
Quark model estimates of the structure of the meson-N-N*(1/2-) transition vertices
International Nuclear Information System (INIS)
We address an actual problem of baryon-resonance dominated meson-exchange processes in the low GeV regime, i.e. the phase and the structure of meson-NN* transition vertices. Our starting point is a quark-diquark model for the baryons (obeying approximate covariance; the mesons are kept as elementary objects), together with the relative phases for the NN vertices, as determined from low energy NN scattering. From the explicit representation of the N and N* baryons, we exemplify the derivation of phases, coupling constants and form factors of the NN* (J = 1/2-) transition vertices for pseudo-scalar, scalar and vector mesons. (author)
Study of Zweig's rule using phi mesons in a broad band neutral beam
International Nuclear Information System (INIS)
A study of Zweig's rule using phi mesons in a high energy photon beam was performed. Measurement of the ratio sigma(γA → phi ππA)/sigma(γA → ωππA) = 0.10 +- 0.02 is taken as evidence that there is not as strong suppression as could be expected. Other ratios show strange particle production down from nonstrange particle production by a factor of twelve. Decays involving phi mesons are studied, and the only candidate seen is a four sigma effect in the mode two phis with a mass 2.15 GeV. F meson, charm pseudo-scalar meson and exotic vector mesons which might decay into phis are not seen. The phi prime is not seen with an upper limit sigma(γA → phi'A)B(phi' → K+K-π+π-) < 6 nb per nucleon
Rare B Meson Decays With Omega Mesons
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei; /Colorado U.
2006-04-24
Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed the decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.
On a low energy, strong interaction model, unifying mesons and baryons
International Nuclear Information System (INIS)
This thesis is concerned with the study of a unified theory of mesons and baryons. An effective Lagrangian with the low mass mesons, generalizing the Skyrme model, is constructed. The vector meson fields are introduced as gauge fields in the linear sigma model instead of the non linear sigma model. Topological soliton solutions of the model are examined and the nucleon-nucleon interaction in the product approximation is investigated. The leading correction to the classical skyrmion mass, the Casimir energy, is evaluated. The problem of the stability of topological solitons when vector fields enter the chiral Lagrangian is also studied. It is shown that the soliton is stable in very much the same way as with the ωmeson and that peculiar classical doublet solutions do not exist
A unitarized meson model including color Coulomb interaction
International Nuclear Information System (INIS)
Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs
Rapidity resummation for B-meson wave functions
Directory of Open Access Journals (Sweden)
Shen Yue-Long
2014-01-01
Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.
Comment on "Mixing and Decay Constants of Pseudoscalar Mesons"
Kirchbach, M
1999-01-01
The key assumption used recently by Feldmann, Kroll and Stich [Phys.Rev. D58, 114006 (1998)] that the decay constants f_\\eta, and f_\\eta ' of the respective eta and eta ' mesons in the quark flavor basis follow the pattern of strange and non--strange quarkonia mixing in their wave functions, is reproduced in identifying the non-isotriplet part of the strong neutral axial current with the genuine axial hypercharge current J_{\\mu, 5}^Y =\\bar q \\gamma_\\mu\\gamma_5 Y/2 q, where Y=C+S+B is defined by the Gell-Mann-Nakano-Nishijima relation as the sum of charm (C), strangeness (S), and baryon (B) quark quantum numbers. The inequivalence between octet and hypercharge axial currents is pointed out.
Low-energy processes of meson production in the extended Nambu-Jona-Lasinio model
Volkov, M. K.; Arbuzov, A. B.
2016-07-01
The processes of meson production in electron-positron collisions at low energies are characterized within the extended Nambu-Jona-Lasinio model. It is demonstrated that intermediate vector mesons (both in the ground state and in the first radially excited one) play a critical part in these processes. The obtained results are in reasonable agreement with the available experimental data. A number of theoretical predictions are made, which can be tested experimentally in the near future.
Spectra and decay rates of bb̄ meson using Gaussian wave function
Directory of Open Access Journals (Sweden)
Rai Ajay Kumar
2015-01-01
Full Text Available Using the Gaussian wave function mass spectra and decay rates of bb̄ meson are investigated in the framework of phenomenological quark anti-quark potential (coulomb plus power model consisting of relativistic corrections to the kinetic energy term. The spin-spin, spin-orbit and tensor interactions are employed to obtain the pseudoscalar and vector meson masses. The decay constants (fP/V are computed using the wave function at the origin. The di-gamma and di-leptonic decays of the bb̄ meson are investigated using Van-Rayan Weisskopf formula as well as in the NRQCD formalism.
Dirac mass spectra of Qanti q-like mesons in a power-law potential
International Nuclear Information System (INIS)
The mass spectra of Qanti q-like mesons are studied in the Dirac equation with an equally mixed 4-vector and scalar powerlaw potential of the form V(r)=Arsup(0.1) + V0. It is found that this flavor-independent potential can satisfactorily describe the mass levels of D, F and B mesons along with those of PSI and T families in a unified manner and that the quark masses in quarkonia and Qanti q-like mesons are very close to the current quark masses. (orig.)
Quenched Charmed Meson Spectra Using Tadpole Improved Quark Action on Anisotropic Lattices
Institute of Scientific and Technical Information of China (English)
LIU Liu-Ming; SU Shi-Quan; LI Xin; LIU Chuan
2005-01-01
@@ Charmed meson charmonium spectra are studied with improved quark actions on anisotropic lattices. We measured the pseudo-scalar and vector meson dispersion relations for four lowest lattice momentum modes with quark mass values ranging from the strange quark to charm quark with three different values of gauge coupling β and four different values of bare speed of light v. With the bare speed of light parameter v tuned in a mass-dependent way, we study the mass spectra of D, Ds, ηc, D*, Ds* and J/ψ mesons. The results extrapolated to the continuum limit are compared with the experiment, and a qualitative agreement is found.
Bounds on Leptoquark and Supersymmetric, R-parity violating Interactions from Meson Decays
Herz, M
2003-01-01
We present constraints on products of two leptoquark (LQ) coupling constants. The bounds are obtained from meson decays, in particular leptonic \\pi, K, D, D_s, B, B_s decays. Furthermore semileptonic meson decays and mixing in neutral meson systems are discussed. We use the Buchmueller-Rueckl-Wyler-model for scalar and vector LQs. Bounds on R-parity violation can be extracted directly from the corresponding LQ bounds. Our results are listed in the Tables 6 (for LQs) and 7 (for SUSY particles) with english captions. The bounds of Davidson/Bailey/Campbell were updated. The SUSY-bounds of Dreiner/Polesello/Thormeier were reproduced.
Exotic mesons: status and future
Klempt, Eberhard
2007-01-01
The evidence for the existence of mesons with exotic quantum numbers and of hybrid candidates with non-exotic quantum numbers is critically reviewed, including candidates with hidden charm. Aims and methods of future searches for hybrid mesons are briefly discussed.
Mesonic theory of effective forces
International Nuclear Information System (INIS)
The construction of nucleon-nucleon effective interaction on base of meson theory of nuclear forces is considered. The dependence of effective force parameters from coupling constants and masses of the exchange mesons is investigated. The results of nuclear matter calculations are presented. 36 refs.; 9 figs.; 2 tabs
Exotic meson spectroscopy with CLAS
Energy Technology Data Exchange (ETDEWEB)
Adams, G.; Napolitano, J. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The identification and study of mesons with explicit gluonic degrees of freedom will provide major constraints on nonperturbative QCD and models thereof. CLAS will provide a unique opportunity for studying these resonances by measuring photoproduction of multi-meson final states.
The light meson spectroscopy program
Directory of Open Access Journals (Sweden)
Smith Elton S.
2014-06-01
Full Text Available Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.
Meson Resonances from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.
Meson resonances on the lattice
Energy Technology Data Exchange (ETDEWEB)
Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems
The light meson spectroscopy program
Energy Technology Data Exchange (ETDEWEB)
Smith, Elton S. [JLAB
2014-06-01
Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.
Heavy meson fragmentation at LHC
Directory of Open Access Journals (Sweden)
M. A. Gomshi Nobary
2003-06-01
Full Text Available Large Hadron Collider (LHC at CERN will provide excellent opportunity to study the production and decay of heavy mesons and baryons with high statistics. We aim at the heavy mesons in this work and calculate their fragmentation functions consistent with this machine and present their total fragmentation probabilities and average fragmentation parameters.
International Nuclear Information System (INIS)
Using the ARGUS detector at the e+e- storage ring DORIS II at DESY, we have measured the lifetimes of the D0, D+ and Ds+ mesons. We find τsub(D0) = (4.8±0.4±0.3)x10-13 s, τsub(D+) = (10.5±0.8±0.7)x10-13 s and τsub(Ds+) = (5.6-1.2+1.3±0.8)x10.13s. (orig.)
Photoproduction of Hybrid Mesons
Barnes, T.
1999-01-01
In this contribution I discuss prospects for photoproducing hybrid mesons at CEBAF, based on recent model results and experimental indications of possible hybrids. One excellent opportunity appears to be a search for the I=1, JPC=2+-, neutral "(b2)o" hybrid in (a2 pi)o through diffractive photoproduction. Other notable possibilities accessible through pi+ or pio exchange photoproduction are I=1, JPC=1-+, charged "pi1+" in f1 pi+, (b1 pi)+ and (rho pi)+; piJ(1770)+ in f2 pi+ and (b1 pi)+; pi(1...
Physics opportunities with meson beams
Energy Technology Data Exchange (ETDEWEB)
Briscoe, William J.; Doering, Michael; Haberzettl, Helmut; Strakovsky, Igor I. [The George Washington University, Washington, DC (United States); Manley, D.M. [Kent State University, Kent, OH (United States); Naruki, Megumi [Kyoto University, Kyoto (Japan); Swanson, Eric S. [University of Pittsburgh, Pittsburgh, PA (United States)
2015-10-15
Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility. (orig.)
Physics Opportunities with Meson Beams
Briscoe, William J; Haberzettl, Helmut; Manley, D Mark; Naruki, Megumi; Strakovsky, Igor I; Swanson, Eric S
2015-01-01
Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.
B Meson Decays to mega K*, omega rho, omega omega, omega phi, and omega f0
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.; Barate, R.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona; Palano, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.; /Bergen U.; Abrams,; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego
2006-07-28
The authors describe searches for B meson decays to the charmless vector-vector final states {omega}K*, {omega}p, {omega}{omega}, and {omega}{phi} with 233 x 10{sup 6} B{bar B} pairs produced in e{sup +}e{sup -} annihilation at {radical}s = 10.58 GeV. They also search for the vector-scalar B decay to {omega}f{sub 0}.
Gauge-symmetric approach to effective lagrangians: the η' meson from QCD
International Nuclear Information System (INIS)
We present a general scheme for extracting effective degrees of freedom from an underlying fundamental lagrangian, through a series of well-defined transformations in the functional integral of the cut-off theory. This is done by introducing collective fields in a gauge-symmetric manner. Through appropriate gauge fixings of this symmetry one can remove long-distance degrees of freedom from the underlying theory, replacing them by the collective fields. Applying this technique to QCD, we set out to extract the long-distance dynamics in the pseudoscalar flavour singlet sector through a gauging (and subsequent gauge fixing) of the U(1)A flavour symmetry which is broken by the anomaly. By this series of exact transformations of a cut-off generating functional for QCD, we arrive at a theory describing the long-distance physics of a pseudoscalar flavour singlet meson coupled to the residual quark-gluon degrees of freedom. As an example we show how to derive a Witten-Veneziano-like relation between the η' mass and the topological susceptibility. The resulting effective lagrangian contains an axial vector field, which shares the relevant features with the Veneziano ghost. This field is responsible for removing the η' degree of freedom from the fundamental QCD lagrangian. (orig.)
Grube, Boris
2015-01-01
The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and thus allows to access a wide range of reactions. Light mesons are studied with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The spectrum of light mesons is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^+\\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new resonance-like signal, t...
Meson radiobiology and therapy
International Nuclear Information System (INIS)
High-linear energy transfer radiation (neutrons, heavy ions, and pions) have a greater relative biological effectiveness than low-linear energy transfer radiation by depositing a high density of ionization in irradiated cells. This overcomes the protective effect of oxygen; decreases the variation in sensitivity among the several stages of the cell cycles; and, inhibits the repair of sublethal damage as compared to x-rays, gamma rays, electrons and protons. Negative pi mesons (pions), appear particularly suited for radiation therapy as their penetration and depth-dose profiles lend themselves to shaping the high dose area to the tumor size and location. Preliminary biological experiments with pions produced at the Los Alamos Meson Physics Facility studied cell survival at various radiation depths and cell cycle sensitivity. Histologic study of data from the first human experiments indicated severe tumor cell destruction by pions as compared to x-rays in treating malignant melanoma skin nodules, without increased effects on dermal elements. (U.S.)
Determining meson radiative widths from Primakoff-effect measurements
International Nuclear Information System (INIS)
We suggest that the measurement of vector-meson radiation decays V → Pγ in the Primakoff-effect experiments on nuclei should be reanalyzed including isovector hadronic exchange. Its inclusion invalidates the assumption, made in data analyses, of A independence of the strength of the strong-production amplitude and could well remove the disagreement between theory and experiment for GAMMA (rho → πγ) and GAMMA
Photon-meson transition form factors of light pseudoscalar mesons
Xiao, Bo-Wen; Ma, Bo-Qiang
2005-01-01
The photon-meson transition form factors of light pseudoscalar mesons $\\pi ^{0}$, $\\eta$, and $\\eta ^{\\prime}$ are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low $Q^{2}$ and is also physically in accordance with the light-cone pQCD approach at large $Q^{2}$. The calculated results agree with the available experimental data at high energy scale. We also predict the low $Q^{2}$ behaviors of the photon-meson transition form factors of ...
Eta'-meson as pseudoscalar gluonium
International Nuclear Information System (INIS)
It is proved the sum rules of quantum chromodynamics for a current constructed of the gluon field operators are saturated by the eta'-meson. The meson mass is estimated and its residue in the gluon current. There is a considerable difference between the eta'-meson as gluon and the classical quark states such as the delta-meson. (orig.)
D* and B* mesons in strange hadronic medium at finite temperature
Chhabra, Rahul; Kumar, Arvind
2016-03-01
We calculate the effect of density and temperature of isospin symmetric strange medium on the shift in masses and decay constants of vector D and B mesons using chiral SU(3) model and QCD sum rule approach. In the present investigation the values of quark and gluon condensates are calculated from the chiral SU(3) model and these condensatesare further used as input in the QCD Sum rule framework to calculate the in-medium masses and decay constants of vector D and B mesons. These in medium properties of vector D and B mesons may be helpful to understand the experimental observables of the experiments like CBM and PANDA under FAIR project at GSI, Germany. The results which are observed in present work are also compared with the previous predictions.
D* and B* mesons in strange hadronic medium at finite temperature
Directory of Open Access Journals (Sweden)
Chhabra Rahul
2016-01-01
Full Text Available We calculate the effect of density and temperature of isospin symmetric strange medium on the shift in masses and decay constants of vector D and B mesons using chiral SU(3 model and QCD sum rule approach. In the present investigation the values of quark and gluon condensates are calculated from the chiral SU(3 model and these condensatesare further used as input in the QCD Sum rule framework to calculate the in-medium masses and decay constants of vector D and B mesons. These in medium properties of vector D and B mesons may be helpful to understand the experimental observables of the experiments like CBM and PANDA under FAIR project at GSI, Germany. The results which are observed in present work are also compared with the previous predictions.
Production of η, η' and f1(1285)-mesons in tagged and untagged two-photon reactions
International Nuclear Information System (INIS)
In this thesis the formation of the pseudoscalar mesons η η' and of the axial vector meson f1 (1285) has been studied in tagged and untagged two-photon reactions with the CELLO detector. In the untagged mode the production of the pseudoscalar meson η' was studied in the π+π-γ final state. The radiative width was determined to be Γγγ(η') = 3.62 ± 0.15 ± 0.47 keV. One major source of background in the π+π-γ-final state in the incompletely reconstructed decay of the a2 (1320) into π+π-π0. A combined fit to the η' and a2 mass spectrum yields a radiative width for the a2 (1320) of Γγγ(a2(1320)) = 0.97 ± 0.09 ± 0.20 keV. In the single tag mode the Q2-development of the pseudoscalar-γγ*-transition form factor was measured. For the η' this measurement was performed in the decay modes η' → ργ, η' → η→γγπ+π- and η' → ηsub(→π+π--(π0/γ))π+π-. The Q2-developed of the form factor is described by a pole-form 1/(1+Q2/Λ2) with a mass of Λsub(η') = 0.794 ± 0.044 GeV. The coresponding measurement for the η was performed in the decay modes η → π+π-π0 and π+π-γ. Here as well the Q2-dependence can be described with a pole form for the form factor. The pole mass obtained by a fit is Λη = 0.839 ± 0.063 GeV. The coupling of spin-1 mesons to two photons cannot be measured in the untagged mode. Their radiative width is zero at Q2 = 0. Instead , a Q2-independent coupling strength Γ can be determined in the single tag mode. This quantity was measured for the f1(1285) in the ηπ+π--final state to be Γsub(γγ*)Cahn (f1(1285)) = 4.4 ± 2.1 ± 1.2 keV in the frame-work of the Cahn-model which relates the two possible independent cross sections σLT and σTT governing this process. (orig./HSI)
Mesonic and isobar modes in matter
International Nuclear Information System (INIS)
Experiments with heavy ion collisions, like the ones performed at the GSI, are a tool to gain insight in the structure of matter. One key point needed to understand the experimental data is the theoretical description of the in medium properties of mesons and baryons. In this thesis we first developed a self-consistent description for the light vector mesons, ρ and ω, and the pion at finite temperature and in a baryon free environment. A generalisation of these calculations towards finite densities mandatorily needs a reliable description for the pion and the Δ(1232) resonance. Here we extended the approaches discussed in literature by the inclusion of vertex corrections and a selfconsistent and completely relativistic description. Within these models we were able to show that even at high temperatures the ρ-meson properties are not changed dramatically when temperature effects are considered only. In contrast to this the behaviour of the pion and the Δ-isobar is dramatically changed a finite density. The isobar mass-shift is given by an appropriate choice of the mean-fields. Therefore we can not draw a final conclusion about such shifts within our model. In order to do so more calculations, especially of the photo absorption on the nucleus, have to be performed. A further aspect of the calculations presented is that due to a consistent consideration of vertex corrections we were able to achieve a description of the Δ-resonance without the usually used soft formfactor. This is especially important for the in-medium calculations because only in this way we can guarantee that soft modes of the spectrum are treated consistently. The techniques developed within this thesis allow for a straight forward generalisation of the presented models with respect to the consideration of more resonances or couplings. Doing so the here obtained description of the in-medium properties of the considered particles can be refined. (orig.)
Mesonic and isobar modes in matter
Energy Technology Data Exchange (ETDEWEB)
Riek, Felix C.
2007-07-01
Experiments with heavy ion collisions, like the ones performed at the GSI, are a tool to gain insight in the structure of matter. One key point needed to understand the experimental data is the theoretical description of the in medium properties of mesons and baryons. In this thesis we first developed a self-consistent description for the light vector mesons, {rho} and {omega}, and the pion at finite temperature and in a baryon free environment. A generalisation of these calculations towards finite densities mandatorily needs a reliable description for the pion and the {delta}(1232) resonance. Here we extended the approaches discussed in literature by the inclusion of vertex corrections and a selfconsistent and completely relativistic description. Within these models we were able to show that even at high temperatures the {rho}-meson properties are not changed dramatically when temperature effects are considered only. In contrast to this the behaviour of the pion and the {delta}-isobar is dramatically changed a finite density. The isobar mass-shift is given by an appropriate choice of the mean-fields. Therefore we can not draw a final conclusion about such shifts within our model. In order to do so more calculations, especially of the photo absorption on the nucleus, have to be performed. A further aspect of the calculations presented is that due to a consistent consideration of vertex corrections we were able to achieve a description of the {delta}-resonance without the usually used soft formfactor. This is especially important for the in-medium calculations because only in this way we can guarantee that soft modes of the spectrum are treated consistently. The techniques developed within this thesis allow for a straight forward generalisation of the presented models with respect to the consideration of more resonances or couplings. Doing so the here obtained description of the in-medium properties of the considered particles can be refined. (orig.)
Strong and Electromagnetic Transitions in Heavy Flavor Mesons
Lähde, T A
2003-01-01
The electromagnetic and pionic transitions in mesons with heavy flavor quarks are calculated within the framework of the covariant Blankenbecler-Sugar equation. The M1 transitions in the charmonium system are shown to be sensitive to the relativistic aspect of the spin-flip magnetic moment operator, and the Lorentz structure of the Q\\bar Q interaction. The observed rate for the M1 transition J/psi -> eta_c gamma is shown to provide strong evidence for a scalar confining interaction. The single pion and dipion widths are calculated for the heavy-light D mesons, by employment of the pseudovector pion-quark coupling suggested by chiral perturbation theory. The pionic transitions D* -> D pi are shown to provide constraining information on the pion-quark axial coupling g_A^q. It is also shown that axial exchange charge contributions associated with the Q\\bar q interaction suppress the axial charge amplitude for pion emission by an order of magnitude. The models for pi and M1 transitions also make it possible to es...
Rotating strings confronting PDG mesons
Jacob Sonnenschein; Dorin Weissman
2014-01-01
We revisit the model of mesons as rotating strings with massive endpoints and confront it with meson spectra. We look at Regge trajectories both in the ( J, M 2 ) and ( n, M 2 ) planes, where J and n are the angular momentum and radial excitation number respectively. We start from states comprised of u and d quarks alone, move on to trajectories involving s and c quarks, and finally analyze the trajectories of the heaviest observed b b ¯ $$ b\\overline{b} $$ mesons. The endpoint masses provide...
Relativistic corrections to the pair $B_c$-meson production in $e^+e^-$ annihilation
Karyasov, A A; Martynenko, F A
2016-01-01
Relativistic corrections to the pair $B_c$-meson production in $e^+e^-$-annihilation are calculated. We investigate a production of pair pseudoscalar, vector and pseudoscalar+vector $B_c$-mesons in the leading order perturbative quantum chromodynamics and relativistic quark model. Relativistic expressions of the pair production cross sections are obtained. Their numerical evaluation shows that relativistic effects in the production amplitudes and bound state wave functions three times reduce nonrelativistic results at the center-of-mass energy s=22 GeV.
Meson spectroscopy with unitary coupled-channels model for heavy-meson decay into three mesons
Nakamura, Satoshi X.
2012-01-01
We develop a model for describing excited mesons decay into three mesons. The properties of the excited mesons can be extracted with this model. The model maintains the three-body unitarity that has been missed in previous data analyses based on the conventional isobar models. We study an importance of the three-body unitarity in extracting hadron properties from data. For this purpose, we use the unitary and isobar models to analyze the same pseudo data of gamma p -> pi+pi+pi-n, and extract ...
An introduction to heavy mesons
Grinstein, B
1995-01-01
Introductory lectures (delivered at the VI Mexican School of Particles and Fields) on heavy quarks and heavy quark effective field theory. Applications to inclusive semileptonic decays and to interactions with light mesons are covered in detail.
International Nuclear Information System (INIS)
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I
Energy Technology Data Exchange (ETDEWEB)
J. Huffer
2004-09-28
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.
Recent results of hadronic decays of J/psi into vector-tensor from MARK III
International Nuclear Information System (INIS)
From a data sample of 5.8 x 106 J/psi's collected by the MARK III detector at the storage ring SPEAR at SLAC, two-body decay modes of the J/psi into a vector and a tensor meson have been measured. From the studies of the tensor meson, recoiling against the ideally mixed and well understood vector mesons, quark correlations are established and compared with the theoretical expectations of the J/psi decays and the SU(3) predictions. The beginnings of a similar systematic study of the two-body vector scalar decays are also presented
Surface nanoscale axial photonics
Sumetsky, M.; Fini, J. M.
2011-01-01
Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger e...
Leading logarithms in N-flavour mesonic Chiral Perturbation Theory
International Nuclear Information System (INIS)
We extend earlier work on leading logarithms in the massive nonlinear O(n) sigma model to the case of SU(N)×SU(N)/SU(N) which coincides with mesonic Chiral Perturbation Theory for N flavours of light quarks. We discuss the leading logarithms for the mass and decay constant to six loops and for the vacuum expectation value 〈q¯q〉 to seven loops. For dynamical quantities the expressions grow extremely large much faster such that we only quote the leading logarithms to five loops for the vector and scalar form factor and for meson–meson scattering. The last quantity we consider is the vector–vector to meson–meson amplitude where we quote results up to four loops for a subset of quantities, in particular for the pion polarizabilities. As a side result we provide an elementary proof that the factors of N appearing at each loop order are odd or even depending on the order and the remaining traces over external flavours
D meson decay channels that involve light scalar mesons
Fariborz, Amir
2013-04-01
A generalized linear sigma model of low-energy QCD is used to study several decay channels of D mesons that involve light scalar meson as a decay product. Such studies require reliable models for scalar mesons that take into account underlying mixing among quark-antiquarks, tetra quarks and glueballs. In this talk, the generalized linear sigma model of low-energy QCD for understanding the properties of scalar mosons will be briefly presented, and he application of this model to studies of heavier meson decays [such as the semileptonic decay Ds(1968)->f0(980) e^+ ν] will be presented, and a few directions for further extensions of the model will be outlined. Refs. A.H. Fariborz, R. Jora, J. Schechter and M.N. Shahid, ``Semi-leptonic Ds^+(1968) Decays as a Scalar Meson Probe,'' Physical Review D 84, 094024 (2011). A.H. Fariborz, R. Jora, J. Schechter and M.N. Shahid, ``Chiral Nonet Mixing in pi-pi Scattering,'' Physical Review D 84, 113004 (2011).
A Constituent Quark-Meson Model for Heavy Meson Decays
Deandrea, Aldo
1998-01-01
I describe a model for heavy meson decays based on an effective quark-meson lagrangian. I consider the heavy mesons S with spin and parity J^P=(1+,0+), H with J^P=(1-,0-) and T^mu with J^P=(2+,1+), i.e. S and P wave heavy-light mesons. The model is constrained by the known symmetries of QCD in the mQ -> infinity limit for the heavy quarks, and chiral symmetry in the light quark sector. Using a very limited number of free parameters it is possible to compute several phenomenological quantities, e.g. the leptonic B and B** decay constants; the three universal Isgur-Wise form factors: xi, tau(3/2), tau(1/2), describing the semi-leptonic decays B -> D(*) l nu, B -> D** l nu; the strong and radiative D* decays; the weak semi-leptonic decays of B and D into light mesons: pi, rho, a1. An overall agreement with data, when available, is achieved.
Inclusive production of K*(892), ρ0(770), and ω(783) mesons in the Yenergy region
International Nuclear Information System (INIS)
The production of K*+(892), K*0(892), ρ0(770) and ω(783) vector mesons in q anti q events as well as in the gluonic Y(1S) decays and Y(4S)→B anti B decays has been studied using the ARGUS detector. Combining these results with data on pseudoscalar meson, φ meson and baryon production collected with the same detector allow comprehensive studies of quark and gluon fragmentation. Model independent information on s quark and vector meson suppression (s/u=0.37±0.04, V/(V+P)π=0.21±0.04 and V/(V+P)K=0.34±0.03)) are derived. The data are compared with predictions from the models Jetset 7.3 and UCLA 7.31. (orig.)
Photon-meson transition form factors of light pseudoscalar mesons
Xiao, B W; Xiao, Bo-Wen; Ma, Bo-Qiang
2005-01-01
The photon-meson transition form factors of light pseudoscalar mesons $\\pi ^{0}$, $\\eta $, and $\\eta ^{\\prime}$ are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low $Q^{2}$ and is also physically in accordance with the light-cone pQCD approach at large $Q^{2}$. The calculated results agree with the available experimental data at high energy scale. We also predict the low $Q^{2}$ behaviors of the photon-meson transition form factors of $\\pi ^{0}$, $\\eta $ and $\\eta ^{\\prime }$, which are measurable in $e+A({Nucleus})\\to e+A+M$ process via Primakoff effect at JLab and DESY.
First measurement of coherent $\\phi$-meson photoproduction on deuteron at low energies
Energy Technology Data Exchange (ETDEWEB)
Tsutomu Mibe; Haiyan Gao; Kenneth Hicks; Kevin Kramer; Stepan Stepanyan; David Tedeschi; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; G. Asryan; Gerard Audit; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Lukasz Blaszczyk; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; Volker Crede; John Cummings; Natalya Dashyan; Rita De Masi; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Kahanawita Dharmawardane; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Gerald Feldman; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; Charles Hanretty; John Hardie; F. Hersman; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; John Johnstone; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mikhail Kossov; Zebulun Krahn; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ji Li; Kenneth Livingston; Haiyun Lu; Marion MacCormick; Claude Marchand; Nikolai Markov; Paul Mattione; Bryan McKinnon; Bernhard Mecking; Joseph Melone; Mac Mestayer; Curtis Meyer; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; E. Munevar; Gordon Mutchler; P. Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; K. Park; Evgueni Pasyuk; Craig Paterson; S. Anefalos Pereira; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Dmitri Sharov; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; A. Stavinsky; Samuel Stepanyan; B.E. Stokes; Paul Stoler; I.I. Strakovsky; Steffen Strauch; Mauro Taiuti; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Daniel Watts; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao
2007-11-01
The cross section and decay angular distributions for the coherent \\phi meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t =(p_{\\gamma}-p_{\\phi})^2 =-2 GeV^2/c^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a re-scattering model. In a framework of vector meson dominance, the data are consistent with the total \\phi-N cross section \\sigma_{\\phi N} at about 10 mb. If vector meson dominance is violated, a larger \\sigma_{\\phi N} is possible by introducing larger t-slope for the \\phi N \\to \\phi N process than that for the \\gamma N \\to \\phi N process. The decay angular distributions of the \\phi are consistent with helicity conservation.
First measurement of coherent φ-meson photoproduction on deuteron at low energies
International Nuclear Information System (INIS)
The cross section and decay angular distributions for the coherent φ meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t =(pγ-pφ)2 = -2 GeV2/c2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a re-scattering model. In a framework of vector meson dominance, the data are consistent with the total φ-N cross section σφN at about 10 mb. If vector meson dominance is violated, a larger σφN is possible by introducing larger t-slope for the φN → φN process than that for the γN → φN process. The decay angular distributions of the φ are consistent with helicity conservation
First measurement of coherent $\\phi$-meson photoproduction on deuteron at low energies
Mibe, T; Hicks, K; Krämer, K; Stepanyan, S; Tedeschi, D J; Amaryan, M J; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Audit, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Battaglieri, M; Bedlinskiy, I; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Chen, S; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Crannell, H; Credé, V; Cummings, J P; Dashyan, N B; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Deur, A; Dharmawardane, K V; Dickson, R; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Feldman, G; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gonenc, A; Gordon, C I O; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hanretty, C; Hardie, J; Hersman, F W; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Jüngst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Krahn, Z; Kramer, L H; Kubarovski, V; Kühn, J; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Lee, T; Li, Ji; Livingston, K; Lu, H Y; MacCormick, M; Marchand, C; Markov, N; Mattione, P; McKinnon, B; Mecking, B A; Melone, J J; Mestayer, M D; Meyer, C A; Mikhailov, K; Minehart, R C; Mirazita, M; Miskimen, R; Mokeev, V; Moriya, K; Morrow, S A; Moteabbed, M; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O I; Pozdniakov, S; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatie, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabyan, Yu G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A V; Stepanyan, S S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Thoma, U; Tkabladze, A; Tkachenko, S I; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B; Zhao, Z W; al, et
2007-01-01
The cross section and decay angular distributions for the coherent \\phi meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t =(p_{\\gamma}-p_{\\phi})^2 =-2 GeV^2/c^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a re-scattering model. In a framework of vector meson dominance, the data are consistent with the total \\phi-N cross section \\sigma_{\\phi N} at about 10 mb. If vector meson dominance is violated, a larger \\sigma_{\\phi N} is possible by introducing larger t-slope for the \\phi N \\to \\phi N process than that for the \\gamma N \\to \\phi N process. The decay angular distributions of the \\phi are consistent with helicity conservation.
Watson's theorem and the $N\\Delta(1232)$ axial transition
Alvarez-Ruso, L; Nieves, J; Vacas, M J Vicente
2016-01-01
We present a new determination of the $N\\Delta$ axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al., Phys. Rev. D76, 033005 (2007) is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger $C_5^A(0)$, in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.
Meson Strings and Flavor Branes
Bando, M; Terunuma, S; Bando, Masako; Sugamoto, Akio; Terunuma, Sachiko
2006-01-01
In a QCD-like string model based on D6 flavor branes in the presence of D4 color branes wrapping one of the compactified dimension on an $S^1$, the shape of meson strings in the five dimensional curved space as well as the potential between quark and anti-quark are investigated. The flavor branes on which both ends of a meson string live are assumed to be separated in this five dimensional space, depending on the values of the constituent quark masses. It is shown in this picture that the meson string with different flavors on both ends changes its shape at a critical distance. There is, however, no critical distance for the meson with the same flavors. At this critical distance the potential between quark and anti-quark with different flavors gives a point of reflection and changes its shape around this point. Accordingly, the attractive force between quark and anti-quark seems to become stronger when the distance of flavor branes connecting meson strings becomes larger. This indicates quark systems with dif...
Beauty Meson Decays To Charmonium
Ershov, A V
2001-01-01
We study decays of beauty (B) mesons into the final states containing charmonium mesons. The data were collected by the CLEO experiment at the Cornell Electron Storage Ring from 1990 to 1999. First, we describe a technique that significantly improves the reconstruction efficiency for decays of J/ y and y (2S) mesons into a pair of leptons. This reconstruction method is used in all the analyses presented in this dissertation. Then we present a study of B decays to the χc 1 and χc2 charmonium states and compare our results with the predictions of different theoretical models of charmonium production. After that we report the first observation of the decay B → J/ y &phis;K, which is the first B meson decay requiring a creation of an additional ss¯ quark pair. Then we measure the B0 and B+ meson masses from B0 → y (′) K0S and B+ → y (′) K+ decays. The method employed eliminates the dominant systematic uncertainty associated w...
Nuclear symmetry energy in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2015-01-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.
Improved sum rules for light mesons and thermal hadronic threshold
International Nuclear Information System (INIS)
The thermal properties of light vector and scalar mesons are investigated in the framework of QCD sum rules. The phenomenological side of the correlation function can be calculated using either the quark-hadron duality approach or in terms of two-pion continuum contributions. In the quark-hadron duality approach, a free parameter (hadronic threshold) arises in the phenomenological part and it is necessary to know the temperature dependence of the hadronic threshold. A comparison of above mentioned approaches gives us additional information about the temperature dependence of the hadronic threshold. Taking into account the thermal spectral density and additional operators appearing at finite temperature the thermal QCD sum rules are improved. The decay constants of ρ and σ mesons are calculated and our investigations show that the above mentioned methods give us the same results.
Linear radial Regge trajectories for mesons with any quark flavor
Afonin, S S
2016-01-01
In the Regge phenomenology, the radial spectrum of light mesons is given by a linear relation $M_n^2=a(n+b)$, where $a$ is a universal slope, the dimensionless intercept $b$ depends on quantum numbers, and $n$ enumerates the excited states in radial recurrences. The usual extensions of this relation to heavy quarkonia in the framework of hadron string models typically lead to strong nonlinearities which seem to be at variance with the available experimental data. Introducing a radially static string picture of mesons, we put forward a linear generalization $(M_n-m_1-m_2)^2=a(n+b)$, where $m_{1,2}$ are quark masses. The vector channel contains enough experimental states to check this new relation and a good agreement is observed. It is shown that this generalization leads to a simple estimate of current quark masses from the radial spectra.
Estimation of parameters of K-meson structure functions
International Nuclear Information System (INIS)
In the framework of the multiparton recombination model with Kuti-Weisskopf parametrization the available experimental data on inclusive spectra of vector and tensor mesons in the reactions K±p→MX (M=ρ, φ, K(890), K(1430) in kaon fragmentation range at high energies (32-110 GeV/c) have been analyzed. The analysis was aimed at obtaining the parameters of the K-meson structure functions. The kaon strange sea suppression factor is found to the λS=0.18±0.01. The fractions of the kaon longitudinal momentum carried away by the strange and nonstrage valence quarks and by sea partons are, respectively, NV>=0.17, SV>=0.30, and S>=0.53
Meson exchange model for the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Nucleon-nucleon interactions obtained from several models for the field theoretic scattering amplitude are studied. The interaction includes contributions from one-pion and one-omega exchange and from two-pion exchange as calculated in a dispersion theory framework. The resulting interaction is regularized by a cut-off factor obtained by the eikonal approximation to multiple vector meson exchange processes. The Blankenbecler-Sugar equation is solved with the interaction and nucleon-nucleon scattering phase parameters are computed. For the best model good agreement with phenomenological phase parameters is achieved for physically reasonable values of the meson-nucleon coupling constants and the spectral functions needed for the evaluation of the two-pion exchange effects. The deuteron wave function is computed as are the deuteron charge and quadrupole form factors. The interaction is shown to have significantly weaker short-range repulsion than commonly found in local phenomenological potentials and in one-boson exchange models. (Auth.)
Two-Pion Decay Widths of Excited Charm Mesons
Lähde, T A
2001-01-01
The widths for $\\pi\\pi$ decay of the L=1 charm mesons are calculated by describing the pion coupling to light constituents quarks by the lowest order chiral interaction. The wavefunctions of the charm mesons are obtained as solutions to the covariant Blankenbecler-Sugar equation. These solutions correspond to an interaction Hamiltonian modeled as the sum of a linear scalar confining and a screened one-gluon exchange (OGE) interaction. This interaction induces a two-quark contribution to the amplitude for two-pion decay, which is found to interfere destructively with the single quark amplitude. For the currently known L=1 $D$ mesons, the total $\\pi\\pi$ decay widths are found to be $\\sim 1$ MeV for the $D_1(2420)$ and $\\sim 3$ MeV for the $D^*_2(2460)$ if the axial coupling of the constituent quark is taken to be $g_A^q=1$. The as yet undiscovered spin singlet $D_1^*$ state is predicted to have a larger width of 7 - 10 MeV for $\\pi\\pi$ decay.
Search for rare B meson decays into Ds+ mesons
International Nuclear Information System (INIS)
A search has been performed for rare B meson decays into Ds+ mesons arising from b→u transitions, W exchange modes, B+ annihilation processes, and decays where the Ds+ is not produced via a W→c anti s quark pair coupling, using the ARGUS detector operating on the Y(4S) resonance at the e+e- storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of Ds+l- correlations an upper limit of BR(B→Ds+l-X)<1.2%(90% CL) is determined. (orig.)
Meson decays in an extended Nambu-Jona-Lasinio model with heavy quark flavors
International Nuclear Information System (INIS)
In a previous work, we proposed an extended Nambu-Jona-Lasinio (NJL) model including heavy quark flavors. In this work, we will calculate strong and radiative decays of vector mesons in this extended NJL model, including light ρ, ω, K*, Φ and heavy D*, Ds*, B*, Bs*. (authors)
Quasielastic electron scattering and the modification of mesonic mass parameters in nuclei
International Nuclear Information System (INIS)
In this paper making use of a vector-dominance model for the nucleon electromagnetic form factors, the authors investigate the consequences for the calculation of the inclusive electromagnetic response (in the quasielastic domain) of recent suggestions that mesonic mass parameters are modified in a nuclear medium
Sudakov form factor in a massive vector field theory
International Nuclear Information System (INIS)
The leading-logarithm approximation for the Sudakov form factor is examined in a theory containing massive fermion and massive neutral vector meson fields. In the on-shell case, where there is only one mass scale (the meson mass), the Sudakov form factor in this model agrees with the result in QED. In the off-shell case, however, with two different mass scales (the meson mass and the off-shell mass of the fermion), the Sudakov form factor differs from the QED result. copyright 1997 The American Physical Society
Neutral B meson flavor tagging
Wilson, R J
2001-01-01
We present an investigation of the use of net charge and kaon identification to tag the flavor of neutral B mesons. The net charge of the neutral B meson decay products is zero if all charged particles are used and slightly non-zero if only undiscriminated hadronic final states are used. The net charge of the kaons alone correctly tags the identity of the neutral meson in at least a third of all decays. We have parametrized the particle identification capability of several techniques, such as dE/dx in time projection chambers, LEP/SLC ring-imaging chambers and an enhanced BaBar DIRC. Using these parametrisations we compare the relative tagging power of each technique to that of an ideal detector. (8 refs).
Beauty meson decays to charmonium
Ershov, Alexey Valerievich
2001-10-01
We study decays of beauty (B) mesons into the final states containing charmonium mesons. The data were collected by the CLEO experiment at the Cornell Electron Storage Ring from 1990 to 1999. First, we describe a technique that significantly improves the reconstruction efficiency for decays of J/ y and y (2S) mesons into a pair of leptons. This reconstruction method is used in all the analyses presented in this dissertation. Then we present a study of B decays to the χc 1 and χc2 charmonium states and compare our results with the predictions of different theoretical models of charmonium production. After that we report the first observation of the decay B --> J/ y φK, which is the first B meson decay requiring a creation of an additional ss¯ quark pair. Then we measure the B0 and B+ meson masses from B0 --> y (') K0S and B+ --> y (') K+ decays. The method employed eliminates the dominant systematic uncertainty associated with the previous B meson mass measurements at the e+e- colliders and results in a significant improvement in precision. After that we present a study of three B0 decay modes useful for time-dependent CP asymmetry measurements. In this study we reconstruct B0 --> J/ y K0S , B0 --> χc 1 K0S , and B0 --> J/ y π0 decays. The latter two decay modes are observed for the first time. We describe a K0S --> π0π0 detection technique and its application to the reconstruction of the decay B 0 --> J/ y K0S . Then we present a sensitivity study for the measurement of the mixing-induced CP violation in the neutral B meson system (parameter sin 2β) at CLEO using the method that requires a measurement of the decay time of only one meson in a B0overline B0 pair. Finally, we search for direct CP violation in decays B+/- --> J/ y K+/- and B +/- --> y (2S) K+/- . The results of this search are consistent with the Standard Model expectations and provide the first experimental test of the assumption that direct CP violation is negligible in B --> y (') K decays.
Status of light scalar mesons as non-ordinary mesons
International Nuclear Information System (INIS)
In this talk I briefly review the status of the f0(500) and f0(980) together with the other light scalar resonances, as well as the emerging picture of a non-ordinary light meson multiplet, paying particular attention to unitarized Chiral Perturbation Theory, large Nc, semilocal duality and Regge theory arguments
Production of charmed mesons in Z decays
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedemann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, B.; Fouque, G.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Ikeda, M.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe=Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Karger, C.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, M.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttal, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Drinkard, J.; Etienne, F.; Nicod, D.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, G.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, H.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Luisiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Bobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Zheng, M.; Zobernig, G.
1994-03-01
The production of charmed mesonsmathop {D^0 }limits^{( - )} , D ± , and D *± is studied in a sample of 478,000 hadronic Z decays. The production rates are measured to be 10052_2005_Article_BF01559519_TeX2GIFE1.gif begin{gathered} {Γ (Z to D^{* ± } X)}/{Γ _{had }} = 0.187 ± 0.015(exp .) ± 0.013(BR), \\ {Γ (Z to D^ ± X)}/{Γ _{had }} = 0.251 ± 0.026(exp .) ± 0.025(BR), \\ {Γ (Z to mathop {D^0 }limits^{( - )} X)}/{Γ _{had }} = 0.518 ± 0.052(exp .) ± 0.035(BR), \\ where the errors from this analysis are separated from those coming from the D branching ratios (BR). The D *± momentum distribution is extracted separately forZ to cbar c andZ to bbar b events with the help of event shape variables. It is consistent with the prediction of the JETSET Monte Carlo program after adjustment of the charm fragmentation function. Constraining the shape of theZ to bbar b contribution, the average fraction of the beam energy taken by a D * meson produced in the fragmentation of a charm quark is extracted by a parametric fit to be c =0.495±0.011±0.007. Evidence for D **0 ( D 1(2420)0 and/or D {2/*}(2460)0) production is found in theD^{* ± } π ^ mp channel, accounting for a fraction (18±5±2)% of all D *± production. The relative production of vector and pseudoscalar mesons is dicussed, together with the possible effects of D ** production. The c-quark forward-backward Z-pole asymmetry is detrmined from that of high momentum D *± to be A {/FB 0,c }=(7.7±4.4)%.
International Nuclear Information System (INIS)
The dynamical symmetry limit of the two-fluid Interacting Vector Boson Model (IVBM), defined through the chain Sp(12,R) contains U(3,3) contains Up(3) x Un(3) contains SU*(3) contains SO(3), is considered and applied for the description of nuclear collective spectra exhibiting axially asymmetric features. The effect of the introduction of a Majorana interaction to the SU*(3) model Hamiltonian on the γ-band energies is studied. The theoretical predictions are compared with the experimental data for 192Os, 190Os, and 112Ru isotopes. It is shown that by taking into account the full symplectic structures in the considered dynamical symmetry of the IVBM, the proper description of the energy spectra and the γ-band energy staggering of the nuclei under considerations can be achieved. The obtained results show that the potential energy surfaces for the following two nuclei 192Os and 112Ru, possess almost γ-flat potentials with very shallow triaxial minima, suggesting a more complex and intermediate situation between γ-rigid and γ-unstable structures. Additionally, the absolute B(E2) intraband transition probabilities between the states of the ground-state band and γ band, as well as the B(M1) interband transition probabilities between the states of the ground and γ bands for the two nuclei 192Os and 190Os are calculated and compared with experiment and for the B(E2) values with the predictions of some other collective models incorporating the γ-rigid or γ-unstable structures. The obtained results agree well with the experimental data and reveal the relevance of the used dynamical symmetry of IVBM in the description of nuclei exhibiting axially asymmetric features in their spectra. (orig.)
Unraveling the pattern of the $XYZ$ mesons
Vijande, J
2015-01-01
We present a plausible mechanism for the origin of the $XYZ$ mesons in the heavy meson spectra within a standard quark-model picture. We discuss the conditions required for the existence of four--quark bound states or resonances contributing to the heavy meson spectra, being either compact or molecular. We concentrate on charmonium and bottomonium spectra, where several new states, difficult to understand as simple quark-antiquark pairs, have been reported by different experimental collaborations. The pivotal role played by entangled meson-meson thresholds is emphasized.
ω and η (η′) mesons from NN and ND collisions at intermediate energies
International Nuclear Information System (INIS)
The production of pseudo scalar, η, η′, and vector, ω, ρ, ϕ, mesons in NN collisions at threshold-near energies is analyzed within a covariant effective meson-nucleon theory. It is shown that a good description of cross sections and angular distributions, for vector meson production, can be accomplished by considering meson and nucleon currents only, while for pseudo scalar production an inclusion of nucleon resonances is needed. The di-electron production from subsequent Dalitz decay of the produced mesons, η′ → γγ* → γe+e- and ω → πγ* → πe+e- is also considered and numerical results are presented for intermediate energies and kinematics of possible experiments with HADES, CLAS and KEK-PS. We argue that the transition form factor ω → γ*π as well as η′ → γ*γ can be defined in a fairly model independent way and the feasibility of an experimental access to transition form factors is discussed. (author)
Excited meson radiative transitions from lattice QCD using variationally optimized operators
Energy Technology Data Exchange (ETDEWEB)
Shultz, Christian J. [Old Dominion Univ., Norfolk, VA (United States); Dudek, Jozef J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-06-02
We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.
Inclusive production of η'(958) and f0(975) mesons in the γ energy region
International Nuclear Information System (INIS)
The inclusive production cross sections of η'(958) and f0(975) mesons are measured in e+e- annihilation in the nonresonant continuum around √s=10 GeV and in decays of the Υ resonances using the ARGUS detector. For η'(958) mesons, a production ratio of η'(958)/ηdir = 0.35 ± 0.24, with ηdir = η - BR(η' → ηX) . η', is determined in direct Υ(1S) decays, which can be partially explained by the pseudoscalar singlet/octet mixing. For f0(975) production, we obtain a production ratio of f0(975)/ρ(770)0 = 0.117 ± 0.030 in direct Υ(1S) decays. In its production features, the f0(975) behaves like an ordinary meson, though a Kanti K molecule nature cannot be excluded. The substantial production yield of the f0(975) meson demonstrates the important effect of feeddown from mesons beyond the basic multiplets on pseudoscalar and vector meson production. (orig.)
Theoretical overview: The New mesons
Energy Technology Data Exchange (ETDEWEB)
Quigg, Chris; /Fermilab
2004-11-01
After commenting on the state of contemporary hadronic physics and spectroscopy, I highlight four areas where the action is: searching for the relevant degrees of freedom, mesons with beauty and charm, chiral symmetry and the D{sub sJ} levels, and X(3872) and the lost tribes of charmonium.
Holographic mesons in various dimensions
Myers, R C; Myers, Robert C.; Thomson, Rowan M.
2006-01-01
We calculate the spectrum of fluctuations of a probe Dk-brane in the background of N Dp-branes, for k=p,p+2,p+4 and p< 5. The result corresponds to the mesonic spectrum of a (p+1)-dimensional super-Yang-Mills (SYM) theory coupled to `dynamical quarks', i.e., fields in the fundamental representation -- the latter are confined to a defect for k=p and p+2. We find a universal behaviour where the spectrum is discrete and the mesons are deeply bound. The mass gap and spectrum are set by the scale M ~ m_q/g_{eff}(m_q), where m_q is the mass of the fundamental fields and g_{eff}(m_q) is the effective coupling evaluated at the quark mass, i.e. g_{eff}^2(m_q)=\\gym^2N m_q^{p-3}. We consider the evolution of the meson spectra into the far infrared of three-dimensional SYM, where the gravity dual lifts to M-theory. We also argue that the mass scale appearing in the meson spectra is dictated by holography.
Local optical potentials for mesons
International Nuclear Information System (INIS)
Full text: Local optical models are very useful to describe many nuclear reactions, with the parameters often determined from fits to data. Elastic meson-nucleus scattering can be described by such potentials, but there is a strong ambiguity in the parameters [1], making the model hard to apply. Consideration of meson-nucleus inelastic scattering to collective states can be described in the local DWBA, built on local optical models. If the parameters of the optical potential are varied so as to find simultaneous agreement with both elastic and inelastic scattering, the ambiguity is removed, and a unique local optical potential can be defined for mesons [2,3]. The methods used to determine these parameters, examples of the fits and the meaning of the results will be explained. The result is a widely usable set of parameters in a simple local optical potential for pion and kaon interactions with nuclei, found to describe these reactions over a wide range of beam energies and nuclear masses. This accomplishment should allow a wider range of nuclear reaction models to include mesons in a simple way
Kotulla, Martin
2006-01-01
We discuss recent experimental results on the modification of hadron properties in a nuclear medium. Particular emphasis is placed on an $\\omega$ production experiment performed by the CBELSA/TAPS collaboration at the ELSA accelerator. The data shows a smaller $\\omega$ meson mass together with a significant increase of its width in the nuclear medium.
Pseudoscalar meson form factors and decays
Dorokhov, A E
2011-01-01
In this communication we discuss few topics related with modern experimental data on the physics of light pseudoscalar mesons. It includes the contribution of the pseudoscalar mesons to the muon anomalous magnetic moment (AMM), $g-2$, the rare decays of light pseudoscalar mesons to lepton pair, the transition form factors of pseudoscalar mesons at large momentum transfer, the pion transversity form factor. Measuring the muon anomalous magnetic moment $g-2$ and the rare decays of light pseudoscalar mesons into lepton pair $P\\rightarrow l^{+}l^{-} $ serve as important test of the standard model. To reduce the theoretical uncertainty in the standard model predictions the data on the transition form factors of light pseudoscalar mesons play significant role. Recently new data on behavior of these form factors at large momentum transfer was supplied by the BABAR collaboration. Within the nonlocal chiral quark model it shown how to describe these data and how the meson distribution amplitude evolves as a function o...
Introduction to vector velocity imaging
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;
virtually impossible to compensate for the factor and obtain correct velocity estimates for either CFM or spectral velocity estimation. This talk will describe methods for finding the correct velocity by estimating both the axial and lateral component of the velocity vector. The transverse oscillation...... method introduces an ultrasound field that oscillation not only along the ultrasound beam both also transverse to it to estimate both the lateral and axial velocity for the full velocity vector. The correct velocity magnitude can be found from this as well as the instantaneous angle. This can be obtained...... over the full region of interest and a real time image at a frame rate of 20 Hz can be displayed. Real time videos have been obtained from both our research systems and from commercial BK Medical scanners. The vector velocity images reveal the full complexity of the human blood flow. It is easy to see...
Searching for super-WIMPs in leptonic heavy meson decays
International Nuclear Information System (INIS)
We study constraints on the models of bosonic super-weakly interacting particle (super-WIMP) dark matter (DM) with DM masses mX∼O(1-100) keV from leptonic decays M→ℓν¯ℓ+X, where M=B±,D±,Ds± is a heavy meson state. We focus on two cases where X denotes either a light pseudoscalar (axion-like), or a light vector state that couples to the standard model (SM) through kinetic mixing. We note that for a small DM mass these decays are separately sensitive to DM couplings to quarks, but not its mass.
Study of Hadronic Five-Body Decays of Charmed Mesons
Wahl, M; Collaboration, for the FOCUS
2002-01-01
We study the decay of D+ and Ds+ mesons into charged five body final states, and report the discovery of the decay mode D+ -> K+K-Pi+Pi+Pi-, as well as measurements of the decay modes D+ -> K-Pi+Pi+Pi+Pi-, Ds+ -> K+K-Pi+Pi+Pi-, Ds+ -> PhiPi+Pi+Pi- and D+/Ds+ -> Pi+Pi+Pi+Pi-Pi-. An analysis of the resonant substructure is also included, with evidence suggesting that both decays proceed primarily through an a1 vector resonance.