WorldWideScience

Sample records for axial support motion

  1. Stochastic optimal control of cable vibration in plane by using axial support motion

    Institute of Scientific and Technical Information of China (English)

    Ming Zhao; Wei-Qiu Zhu

    2011-01-01

    A stochastic optimal control strategy for a slightly sagged cable using support motion in the cable axial direction is proposed. The nonlinear equation of cable motion in plane is derived and reduced to the equations for the first two modes of cable vibration by using the Galerkin method.The partially averaged 10 equation for controlled system energy is further derived by applying the stochastic averaging method for quasi-non-integrable Hamiltonian systems. The dynamical programming equation for the controlled system energy with a performance index is established by applying the stochastic dynamical programming principle and a stochastic optimal control law is obtained through solving the dynamical programming equation. A bilinear controller by using the direct method of Lyapunov is introduced. The comparison between the two controllers shows that the proposed stochastic optimal control strategy is superior to the bilinear control strategy in terms of higher control effectiveness and efficiency.

  2. Semi-active Control of Shallow Cables with Magnetorheological Dampers under Harmonic Axial Support Motion

    DEFF Research Database (Denmark)

    Zhou, Q.; Nielsen, Søren R.K.; Qu, W.L.

    2007-01-01

    The paper deals with the control of sub- and superharmonic resonances by means of magnetorheological (MR) dampers of an inclined shallow cable caused by parametric excitation from harmonically varying support points. A mechanical model based on the Dahl hysteretic model is used to describe the...... dynamic property of the MR damper, and the finite difference method is used to discretize the derived governing nonlinear equations of motion of the cable-damper system. Semi-active control strategies are proposed based on the modulated homogeneous friction (SA-1) algorithm and the balance logic (SA-2......) algorithm. Four cases are analysed when the circular frequency O of the support point motion is in the vicinity of 2o1, o1, 2o1/3, and o1/2, o1 being the first in-plane eigenfrequency of the cable. The vibration reduction ability of the MR damper is compared with that of the viscous damper optimally tuned...

  3. Thermophoretic motion of bodies with axial symmetry

    International Nuclear Information System (INIS)

    Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen number, K n. The study is made in the limit where the typical length of the immersed body is small compared with the mean free path. It is shown that in this case, in contrast to what is the case for spherical bodies, the arising thermal force on the body is not in general anti-parallel to the temperature gradient. It is also shown that the gas exerts a torque on the body, which in magnitude and direction depends on the body geometry. Equations of motion describing the body movement are derived. Stationary solutions are studied

  4. An Impact Motion Generation Support Software

    OpenAIRE

    Tsujita, Teppei; Konno, Atsushi; Nomura, Yuki; Komizunai, Shunsuke; Ayaz, Yasar; Uchiyama, Masaru

    2010-01-01

    The detail of impact motion generation support software is presented in this paper. The developed software supports impact motion design with OpenHRP or OpenHRP3. A preliminary impact motion experiment is performed by a humanoid robot and the analyses of its result are presented. The analysis reveals that the designed motion is not robust against error in the position of the nail since the timing of pulling up the hammer is defined in the designed motion in advance. Therefore, ...

  5. An AFM-based methodology for measuring axial and radial error motions of spindles

    International Nuclear Information System (INIS)

    This paper presents a novel atomic force microscopy (AFM)-based methodology for measurement of axial and radial error motions of a high precision spindle. Based on a modified commercial AFM system, the AFM tip is employed as a cutting tool by which nano-grooves are scratched on a flat surface with the rotation of the spindle. By extracting the radial motion data of the spindle from the scratched nano-grooves, the radial error motion of the spindle can be calculated after subtracting the tilting errors from the original measurement data. Through recording the variation of the PZT displacement in the Z direction in AFM tapping mode during the spindle rotation, the axial error motion of the spindle can be obtained. Moreover the effects of the nano-scratching parameters on the scratched grooves, the tilting error removal method for both conditions and the method of data extraction from the scratched groove depth are studied in detail. The axial error motion of 124 nm and the radial error motion of 279 nm of a commercial high precision air bearing spindle are achieved by this novel method, which are comparable with the values provided by the manufacturer, verifying this method. This approach does not need an expensive standard part as in most conventional measurement approaches. Moreover, the axial and radial error motions of the spindle can both be obtained, indicating that this is a potential means of measuring the error motions of the high precision moving parts of ultra-precision machine tools in the future. (paper)

  6. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    International Nuclear Information System (INIS)

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  7. Chaotic motion in axially symmetric potentials with oblate quadrupole deformation

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, Patricio S. [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Ramos-Caro, Javier, E-mail: javier@ime.unicamp.br [Departamento de Matematica Aplicada, IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil); Lopez-Suspes, Framsol, E-mail: framsol@gmail.com [Facultad de Telecomunicaciones, Universidad Santo Tomas and Escuela de Fisica, Universidad Industrial de Santander, Bucaramanga (Colombia)

    2011-10-03

    By computing the Poincare's surfaces of section and Lyapunov exponents, we study the effect of introducing an oblate quadrupole in the dynamics associated with two generic spherical potentials of physical interest: the central monopole and the isotropic harmonic oscillator. In the former case we find saddle points in the effective potential, in contrast to the statements presented by Gueron and Letelier in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. The results we show in the second case have application in nuclear or atomic physics. In particular, we find values of oblate deformation leading to a disappearance of shell structure in the single-particle spectrum. -- Highlights: → We find chaotic motion around a monopole with oblate quadrupole deformation. → This corrects the statements introduced in [E. Gueron, P.S. Letelier, Phys. Rev. E 63 (2001) 035201]. → We present an alternative model for the potential due to an oblate deformed nuclei. → This leads to stochastic regions in the phase space of classical orbits. → It suggests that the shell structure of single-particle spectrum tends to disappear.

  8. Mechanical axial flow blood pump to support cavopulmonary circulation.

    Science.gov (United States)

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  9. Natural frequencies of axial-torsional coupled motion in springs and composite bars

    Science.gov (United States)

    Howson, W. P.; Rafezy, B.

    2011-07-01

    The natural frequencies corresponding to axial-torsional (extension-twist) coupled motion of a helical spring, or the corresponding motion induced through material coupling in a composite bar, are considered using an equivalent continuum approach. Closed form solution of the governing differential equations leads either to an exact dynamic stiffness matrix or to a number of exact relationships between the natural frequencies corresponding to coupled and uncoupled motion. The latter relationships both guarantee that the Wittrick-Williams root finding algorithm can still be used to converge on any required natural frequency, despite any lack of reciprocity arising from differential coupling, and for the case of symmetric material coupling coefficients, enable their value to be determined precisely from experimental results. A number of examples are then given to confirm the accuracy of the proposed theory and to indicate its range of application.

  10. Concurrent measurement method of spindle radial, axial and angular motions using concentric circle grating and phase modulation interferometers

    International Nuclear Information System (INIS)

    This paper describes a concurrent measurement of spindle radial, axial and angular motions using concentric circle grating and phase modulation interferometers. In the measurement, a concentric circle grating with fine pitch is the reference artifact. A frequency modulated laser diode is used for the light source of the phase modulation interferometers. The phase modulation interferometers, which consist of three Michelson and three grating interferometers, measure three radial and three axial displacements of the grating. From these six measured displacements, radial, axial and angular motions of a spindle can be determined concurrently. In the paper, a measurement principle, a measurement instrument and experimental results are discussed. Concurrent measurements of spindle radial, axial and angular motions were successfully attained. (paper)

  11. THE STABILITY OF AN AXIALLY ACCELERATING BEAM ON SIMPLE SUPPORTS WITH TORSION SPRINGS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Liqun

    2005-01-01

    The axially moving beams on simple supports with torsion springs are studied. The general modal functions of the axially moving beam with constant speed have been obtained from the supporting conditions. The contribution of the spring stiffness to the natural frequencies has been numerically investigated. Transverse stability is also studied for axially moving beams on simple supports with torsion springs. The method of multiple scales is applied to the partialdifferential equation governing the transverse parametric vibration. The stability boundary is derived from the solvability condition. Instability occurs if the axial speed fluctuation frequency is close to the sum of any two natural frequencies or is two fold natural frequency of the unperturbed system. It can be concluded that the spring stiffness makes both the natural frequencies and the instability regions smaller in the axial speed fluctuation frequency-amplitude plane for given mean axial speed and bending stiffness of the beam.

  12. Characteristics of a magnetic fluid seal and its motion in an axial variable seal gap

    Institute of Scientific and Technical Information of China (English)

    QIAN Ji-guo; YANG Zhi-yi

    2008-01-01

    With suitable assumptions a hydrodynamic model for the magnetic fluid motion in an axial variable gap seal was constructed, and the solution to the equations of the model was deduced. The characteristics of a magnetic fluid seal and its motion,including the speed and pressure distribution, and the seal capacity of a magnetic fluid rotating seal were systematically described.The factors affecting seal capacity and ways to improve seal capacity based on the hydrodynamic model are discussed. The basic condition for dynamic seal availability is presented. The rotating speed and radius of the shafts should be decreased. The work can provide proof of a seal design or suggest ways to improve the seal capacity of magnetic fluid seals.

  13. Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations

    Directory of Open Access Journals (Sweden)

    Harman Melinda K

    2012-10-01

    internal rotation during mid-flexion. Knees with femoral-tibial rotational mismatch had significantly lower total axial rotation compared to knees with nominal alignment. Conclusions Maintaining relative rotational mismatch within ±5° during TKR provided for controlled knee axial rotation during flexion. TKR with rotational alignment outside of defined surgical norms, with either positive or negative mismatch, experienced measurable kinematic differences and presented different patterns of axial rotation motions during passive knee flexion compared to TKR with nominal mismatch. These findings support previous studies linking prosthesis rotational alignment with inferior clinical and functional outcomes. Trial Registration Clinical Trials NCT01022099

  14. Comparison of wear behaviors for an artificial cervical disc under flexion/extension and axial rotation motions.

    Science.gov (United States)

    Wang, Song; Song, Jian; Liao, Zhenhua; Feng, Pingfa; Liu, Weiqiang

    2016-06-01

    The wear behaviors of a ball-on-socket (UHMWPE-on-Ti6Al4V) artificial cervical disc were studied with 1.5MC (million cycles) wear simulation under single flexion/extension and axial rotation motion and their composite motion. The wear rates, wear traces, and contact stress were analyzed and contrasted based on mass loss, optical microscopy and SEM as well as 3D profilometer, and ANSYS software, respectively. A much higher wear rate and more severe wear scars appeared under multi-directional motion. Flexion/extension motion of 7.5° lead to more severe wear than that under axial rotation motion of 4°. The above results were closely related to the contact compression stress and shear stress. The wear surface in FE motion showed typical linear wear scratches while revealing obvious arc-shaped wear tracks in AR motion. However, the central zone of both ball and socket components revealed more severe wear tracks than that in the edge zone under these two different motions. The dominant wear mechanism was plowing/scratching and abrasive wear as well as a little oxidation wear for the titanium socket while it was scratching damage with adhesive wear and fatigue wear due to plastic deformation under cyclic load and motion profiles for the UHMWPE ball. PMID:27040218

  15. Relation between the mass coefficients for rotational and γ-vibrational motion in axially symmetric deformed nuclei

    International Nuclear Information System (INIS)

    In this paper, the ratio of the mass coefficients for the γ-vibrational and rotational motion for the well deformed axially symmetric nuclei is calculated. Calculations are performed based on the cranking model approach. The results obtained show that the microscopic model based on the Woods–Saxon nuclear mean field potential and the pairing forces with a constant strength coefficient qualitatively explain the existing experimental data on the ratio of the mass coefficients. (author)

  16. Vector modeling and track simulation in axial turn-milling motion

    Institute of Scientific and Technical Information of China (English)

    JIANG Zeng-hui; JIA Chun-de

    2005-01-01

    Through vector analysis the kinetic vector model is built in a machining cylinder surface through axial turn-milling. When building a kinetic vector model in the machining field, machining through axial turn-milling and using equilateral triangles and square prism surfaces, the kinetic vector model is given any equilateral polygon prismic surface. Kinetic tracks are simulated through these kinetic models respectively, thus it can be seen that the axial turn-milling is a very effective method in manufacturing any equilateral, polygon, prismic surface.

  17. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.

    Science.gov (United States)

    Hillmann, Dierck; Bonin, Tim; Lührs, Christian; Franke, Gesa; Hagen-Eggert, Martin; Koch, Peter; Hüttmann, Gereon

    2012-03-12

    Swept-source optical coherence tomography (SS-OCT) is sensitive to sample motion during the wavelength sweep, which leads to image blurring and image artifacts. In line-field and full-field SS-OCT parallelization is achieved by using a line or area detector, respectively. Thus, approximately 1000 lines or images at different wavenumbers are acquired. The sweep duration is identically with the acquisition time of a complete B-scan or volume, rendering parallel SS-OCT more sensitive to motion artifacts than scanning OCT. The effect of axial motion on the measured spectra is similar to the effect of non-balanced group velocity dispersion (GVD) in the interferometer arms. It causes the apparent optical path lengths in the sample arm to vary with the wavenumber. Here we propose the cross-correlation of sub-bandwidth reconstructions (CCSBR) as a new algorithm that is capable of detecting and correcting the artifacts induced by axial motion in line-field or full-field SS-OCT as well as GVD mismatch in any Fourier-domain OCT (FD-OCT) setup. By cross-correlating images which were reconstructed from a limited spectral range of the interference signal, a phase error is determined which is used to correct the spectral modulation prior to the calculation of the A-scans. Performance of the algorithm is demonstrated on in vivo full-field SS-OCT images of skin and scanning FD-OCT of skin and retina. PMID:22418560

  18. Isothermal transient analysis of piston skirt-to-cylinder wall contacts under combined axial, lateral and tilting motion

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, S; Rahnejat, H [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough (United Kingdom)

    2005-03-07

    The paper describes the combined axial, lateral and tilting motions of piston within the confine of cylinder bore, with sliding and normally approaching and separating contacts between the piston skirt and the cylinder wall on both the major and minor thrust sides. The methodology developed undertakes combined solution for inertial dynamics of the piston, together with transient elastohydrodynamic analysis of both contacts. It also includes important practical features of the contacting surfaces, such as the axial form relieving of the piston skirt profile. The space-time solver uses Newmark {beta}-type time marching integrator, as well as the effective influence Newton-Raphson method for space-domain solution of the elastohydrodynamic conjunctions in each step of time. This approach, not hitherto reported for this type of conforming contacts yields accurate predictions of lubricant film thickness and pressure distribution within computationally acceptable times, given the inclusion of level of detail in the model.

  19. Non-Parametric Bayesian Human Motion Recognition Using a Single MEMS Tri-Axial Accelerometer

    OpenAIRE

    Ejaz Ahmed, M.; Ju Bin Song

    2012-01-01

    In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS) accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM) and collapsed Gibbs sampler are adopted to cl...

  20. Non-Parametric Bayesian Human Motion Recognition Using a Single MEMS Tri-Axial Accelerometer

    Directory of Open Access Journals (Sweden)

    M. Ejaz Ahmed

    2012-09-01

    Full Text Available In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM and collapsed Gibbs sampler are adopted to cluster the human motions using extracted features. From the experimental results, we show that the unanticipated human motions are detected and recognized with significant accuracy, as compared with the parametric Fuzzy C-Mean (FCM technique, the unsupervised K-means algorithm, and the non-parametric mean-shift method.

  1. Non-parametric Bayesian human motion recognition using a single MEMS tri-axial accelerometer.

    Science.gov (United States)

    Ahmed, M Ejaz; Song, Ju Bin

    2012-01-01

    In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS) accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM) and collapsed Gibbs sampler are adopted to cluster the human motions using extracted features. From the experimental results, we show that the unanticipated human motions are detected and recognized with significant accuracy, as compared with the parametric Fuzzy C-Mean (FCM) technique, the unsupervised K-means algorithm, and the non-parametric mean-shift method. PMID:23201992

  2. Axial tomographic scanner having means for supporting X-ray source cables

    International Nuclear Information System (INIS)

    An axial tomographic scanner is described which has means for supporting a plurality of cables leading to the X-ray source, including a yoke upon which the X-ray source is mounted, first bracket means mounted on the yoke adjacent the X-ray source for restraining cable movement, second bracket means mounted on the yoke remote from the X-ray source for restraining cable movement, and means disposed between the first and second bracket means for maintaining the cables passing therethrough in a gradual arc while preventing undue flexing of the cables and undesirable movement of the cables into an interfering position with other components of the axial tomographic scanner

  3. The most general axially symmetric electrovac spacetime admitting separable equations of motion

    International Nuclear Information System (INIS)

    We obtain the most general solution of the Einstein electro-vacuum equation for the stationary axially symmetric spacetime in which the Hamilton-Jacobi and Klein-Gordon equations are separable. The most remarkable feature of the solution is its invariance under the duality transformation involving mass and NUT parameter, and the radial and angle coordinates. It is the general solution for a rotating (gravitational dyon) particle which is endowed with both gravitoelectric and gravitomagnetic charges, and a duality transformation exists from one to the other. It also happens to be a transform of the Kerr-NUT solution. Like the Kerr family, it is also possible to make this solution radiating which asymptotically conforms to the Vaidya null radiation

  4. Axial motion of collector plasma in a relativistic backward wave oscillator

    Science.gov (United States)

    Xiao, Renzhen; Chen, Changhua; Deng, Yuqun; Cao, Yibing; Sun, Jun; Li, Jiawei

    2016-06-01

    In this paper, it is proposed that plasma formed at the collector may drift back to the cathode and cause pulse shortening of the relativistic backward wave oscillator. Theoretical analysis shows that the axial drift velocity of plasma ions can be up to 5 mm/ns due to the presence of space charge potential provided by an intense relativistic electron beam. Particle-in-cell simulations indicate that the plasma electrons are initially trapped around the collector surface. With the accumulation of the plasma ions, a large electrostatic field forms and drives the plasma electrons to overcome the space charge potential and enter the beam-wave interaction region along the magnetic field lines. As a result, the beam current modulation is disturbed and the output microwave power falls rapidly. The plasma ions move in the beam-wave interaction region with an average axial velocity of 5-8 mm/ns. After the plasma ions reach the diode region, the emitted current at the cathode rises due to the charge neutralizations by the ions. The impedance collapse leads to further decrease of the microwave power. In experiments, when the diode voltage and beam current were 850 kV and 9.2 kA, and the collector radius was 2.15 cm, the output microwave power was 2.4 GW with a pulse width of less than 20 ns. The ion drift velocity was estimated to be about 5 mm/ns. After an improved collector with 3.35 cm radius was adopted, the pulse width was prolonged to more than 30 ns.

  5. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    International Nuclear Information System (INIS)

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability

  6. Effect of axial loads on implant-supported partial fixed prostheses by strain gauge analysis

    Directory of Open Access Journals (Sweden)

    Luis Gustavo Oliveira de Vasconcellos

    2011-12-01

    Full Text Available OBJECTIVES: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. MATERIAL AND METHODS: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n=5. Four strain gauges (SG were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E. The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. RESULTS: There was a significant difference for the loading point (p=0.0001, with point B generating the smallest microdeformation (239.49 µε and point D the highest (442.77 µε. No significant difference was found for the cylinder type (p=0.748. CONCLUSIONS: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.

  7. Vibrations of axially moving strings with in-plane oscillating supports

    DEFF Research Database (Denmark)

    Fuglede, Niels; Thomsen, Jon Juel

    uniform, heavy string moving at subcritical speed with prescribed endpoint motion, and ignoring longitudinal inertia, one obtains a continuous, nonlinear, gyroscopic, parametrically and externally excited system. By employing a single-mode approximation, using velocity dependent mode shapes, the system...... response is approximated using the method of multiple scales. Vibrations from support oscillations characteristic of roller chain drives are investigated. Conclusions about critical values for chain drive parameters such as pretension and meshing frequency are sought and identified....

  8. Hemocompatibility of Axial Versus Centrifugal Pump Technology in Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian

    2015-08-01

    The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P centrifugal CM device showed significantly lower activation of coagulation and inflammation than that of the HM II axial flow pump. Both HM II and CM have demonstrated an acceptable hemocompatibility profile in patients. However, there is a great opportunity to gain a clinical benefit by developing techniques to lower the blood surface interaction within both pump technologies and a magnetically levitated centrifugal pump design might be superior. PMID:26234452

  9. CAMDYN: a new model to describe the axial motion of molten fuel inside the pin of a fast breeder reactor during accident conditions

    International Nuclear Information System (INIS)

    The new in-pin fuel motion model CAMDYN (Cavity Material Dynamics) describes the axial motion of both partially and fully molten fuel inside the pin of a fast breeder reactor during accident conditions. The motion of the two types of molten fuel and the imbedded fission gas bubbles is treated both before and after cladding failure. The basic modelling approach consists of the treatment of two one-dimensional flows which are coupled by interaction terms. Each of these flows is treated compressively and with axially variable flow cross sections. The mass and energy equations of both fields are solved explicitly using upwind differencing on a fixed Eulerian grid. The two momentum equations are solved simultaneously, using the convective momentum fluxes of the previous timestep. Both partially and fully molten fuel can move axially into a central hole extending to the plenum in the case of certain hollow pellet designs. The fuel temperature calculation includes the determination of a radial temperature profile. A simple conduction freezing model is included. After cladding failure, ejection into the coolant channel is modeled

  10. Interaction of a rotational motion and an axial flow in small geometries for a Couette-Taylor problem

    CERN Document Server

    Bordag, L A; Froehner, M; Myrnyy, V

    2003-01-01

    We analyze the stability of a cylindrical Couette flow under the imposition of a weak axial flow in case of a very short cylinder with a narrow annulus gap. We consider an incompressible viscous fluid which is contained in the narrow gap between two concentric short cylinders, where the inner cylinder rotates with constant angular velocity. The caps of the cylinders have narrow tubes conically tapering to super narrow slits which allow for an axial flow along the surface of the inner cylinder. The approximated solution for the Couette flow for short cylinders was found and used for the stability analysis instead of the exact but bulky solution. The sensitivity of the Couette flow to general small perturbations and to the weak axial flow was studied. We demonstrate that perturbations coming from the axial flow cause the propagation of dispersive waves in the Taylor-Couette flow. The coexistence of a rotation and of an axial flow requires to study in addition to the energy and the angular momentum also the heli...

  11. Transverse vibration characteristics of axially moving viscoelastic plate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yin-feng; WANG Zhong-min

    2007-01-01

    The dynamic characteristics and stability of axially moving viscoelastic rectangular thin plate are investigated. Based on the two dimensional viscoelastic differential constitutive relation, the differential equations of motion of the axially moving viscoelastic plate are established. Dimensionless complex frequencies of an axially moving viscoelastic plate with four edges simply supported, two opposite edges simply supported and other two edges clamped are calculated by the differential quadrature method. The effects of the aspect ratio, moving speed and dimensionless delay time of the material on the transverse vibration and stability of the axially moving viscoelastic plate are analyzed.

  12. Real-time axial motion detection and correction for single photon emission computed tomography using a linear prediction filter

    International Nuclear Information System (INIS)

    We have developed an algorithm for real-time detection and complete correction of the patient motion effects during single photon emission computed tomography. The algorithm is based on a linear prediction filter (LPC). The new prediction of projection data algorithm (PPDA) detects most motions-such as those of the head, legs, and hands-using comparison of the predicted and measured frame data. When the data acquisition for a specific frame is completed, the accuracy of the acquired data is evaluated by the PPDA. If patient motion is detected, the scanning procedure is stopped. After the patient rests in his or her true position, data acquisition is repeated only for the corrupted frame and the scanning procedure is continued. Various experimental data were used to validate the motion detection algorithm; on the whole, the proposed method was tested with approximately 100 test cases. The PPDA shows promising results. Using the PPDA enables us to prevent the scanner from collecting disturbed data during the scan and replaces them with motion-free data by real-time rescanning for the corrupted frames. As a result, the effects of patient motion is corrected in real time. (author)

  13. Research progress of the static and dynamic characteristics and motion errors of hydrostatic supports

    Directory of Open Access Journals (Sweden)

    Zhiwei WANG

    2016-06-01

    Full Text Available At present, the research on static and dynamic characteristics of hydrostatic supports depend on the form and structure of the restrictor, which are mainly focused on the influences of recess shape, bearing structure, bearing surface roughness, lubricant and elastic deformations of the bearing. There are few studies on the thermal effect of hydrostatic supports and static and dynamic characteristics of hydrostatic guideways. The research on motion errors of hydrostatic supports is primarily based on the static equilibrium of the moving part. The effects of the motion speed of the moving part and structural deformation on the motion errors are not considered. Finally, the research prospects from the standardization, modularization and industrialization of hydrostatic supports, thermal effect of hydrostatic bearing, the static and dynamic characteristics of hydrostatic guideways and motion errors of hydrostatic supports under operating conditions are concluded.

  14. Breast Support Garments are Ineffective at Reducing Breast Motion During an Aqua Aerobics Jumping Exercise

    OpenAIRE

    Mills Chris; Ayres Bessie; Scurr Joanna

    2015-01-01

    The buoyant forces of water during aquatic exercise may provide a form of ‘natural’ breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key resul...

  15. Motion

    CERN Document Server

    Graybill, George

    2007-01-01

    Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str

  16. Dynamic stability of simply supported composite cylindrical shells under partial axial loading

    Science.gov (United States)

    Dey, Tanish; Ramachandra, L. S.

    2015-09-01

    The parametric vibration of a simply supported composite circular cylindrical shell under periodic partial edge loadings is discussed in this article. Donnell's nonlinear shallow shell theory considering first order shear deformation theory is used to model the shell. The applied partial edge loading is represented in terms of a Fourier series and stress distributions within the cylindrical shell are determined by prebuckling analysis. The governing equations of the dynamic instability of shells are derived in terms of displacements (u-v-w) and rotations (φx, φθ). Employing the Galerkin and Bolotin methods the dynamic instability regions are computed. Using the expression for the stress function derived in this paper, the pre-buckling stresses in the cylindrical shell due to partial loading can be calculated explicitly. Numerical results are presented to show the influence of radius-to-thickness ratio, different partial edge loading distributions and shear deformation on the dynamic instability regions. The linear and nonlinear responses in the stable and unstable regions are presented to bring out the characteristic features of the dynamic instability regions, such as the existence of beats, its dependence on forcing frequency and effect of nonlinearity on the response. The effect of dynamic load amplitude on the nonlinear response is also studied. It is found that for higher values of dynamic loading, the shell exhibits chaotic behavior.

  17. RESEARCH NOTES On the support of super-Brownian motion with super-Brownian immigration

    Institute of Scientific and Technical Information of China (English)

    洪文明; 钟惠芳

    2001-01-01

    The support properties of the super Brownian motion with random immigration Xρ1 are considered,where the immigration rate is governed by the trajectory of another super-Brownian motion ρ. When both the initial state Xρo of the process and the immigration rate process ρo are of finite measure and with compact supports, the probability of the support of the process Xρi dominated by a ball is given by the solutions of a singular elliptic boundary value problem.

  18. Multi-frequency response of a cylinder subjected to vortex shedding and support motions

    Energy Technology Data Exchange (ETDEWEB)

    Vikestad, Kyrre

    1998-12-31

    This thesis deals with an experimental investigation of vortex induced vibrations of a circular cylinder. The purpose of the experiment was to identify the influence from a controlled disturbance of the cylinder motions on the response caused by vortex shedding. The cylinder investigated is 2 m long and the diameter is 10 cm. The cylinder is elastically mounted in an apparatus using springs, where the foundation of one of the springs can have a harmonic motion. The apparatus is placed on a carriage in a 25 m long towing tank. Towing velocities are varied between 0.140 m/s and 0.655 m/s corresponding to reduced velocity range from 2.8 to 13.2. The still water natural frequency is 0.497 Hz, and the natural frequency in air is 0.634 Hz. The cylinder is only able to oscillate in the cross-flow direction. The support motion frequency was varied between 0.26 Hz and 1.01 Hz, and the force motion amplitude was varied using 2, 4 and 6 cm support amplitudes. Three sets of experiments were carried out: (1) Still water oscillations due to harmonic support motion excitation, support amplitude and frequencies varied, (2) Towing tests with no support motion, the velocity is varied, (3) Combined excitation: Towing tests with support motion. All possible combinations of experiments (1) and (2) are carried out. The two first experiments provide reference values for the combined excitation experiments and for verification purposes. The results reveal the ability of the external disturbance to influence the vortex shedding process both regarding frequency and the resulting response amplitudes. Results for added mass, in-line drag and damping are also obtained. The work may be of use in deep water floating petroleum production. 81 refs., 73 figs., 6 tabs.

  19. Breast Support Garments are Ineffective at Reducing Breast Motion During an Aqua Aerobics Jumping Exercise.

    Science.gov (United States)

    Mills, Chris; Ayres, Bessie; Scurr, Joanna

    2015-06-27

    The buoyant forces of water during aquatic exercise may provide a form of 'natural' breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key results showed that the swimsuit and sports bra were able to significantly reduce the superioinferior breast range of motion by 0.04 and 0.05 m, respectively, and peak velocity by 0.23 and 0.33 m/s, respectively, during land-based jumping when compared to the bare-breasted condition, but were ineffective at reducing breast kinematics during water-based jumping. Furthermore, the magnitude of the swimsuit superioinferior breast range of motion during water-based jumping was significantly greater than land-based jumping (0.13 m and 0.06 m), yet there were no significant differences in exercise induced breast pain, thus contradicting previously published relationships between these parameters on land. Furthermore, the addition of an external breast support garment was able to reduce breast kinematics on land but not in water, suggesting the swimsuit and sports bras were ineffective and improvements in swimwear breast support garments may help to reduce excessive breast motion during aqua aerobic jumping exercises. PMID:26240648

  20. Breast Support Garments are Ineffective at Reducing Breast Motion During an Aqua Aerobics Jumping Exercise

    Directory of Open Access Journals (Sweden)

    Mills Chris

    2015-06-01

    Full Text Available The buoyant forces of water during aquatic exercise may provide a form of ‘natural’ breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key results showed that the swimsuit and sports bra were able to significantly reduce the superioinferior breast range of motion by 0.04 and 0.05 m, respectively, and peak velocity by 0.23 and 0.33 m/s, respectively, during land-based jumping when compared to the bare-breasted condition, but were ineffective at reducing breast kinematics during water-based jumping. Furthermore, the magnitude of the swimsuit superioinferior breast range of motion during water-based jumping was significantly greater than land-based jumping (0.13 m and 0.06 m, yet there were no significant differences in exercise induced breast pain, thus contradicting previously published relationships between these parameters on land. Furthermore, the addition of an external breast support garment was able to reduce breast kinematics on land but not in water, suggesting the swimsuit and sports bras were ineffective and improvements in swimwear breast support garments may help to reduce excessive breast motion during aqua aerobic jumping exercises.

  1. Postural stability when walking and exposed to lateral oscillatory motion: benefits from hand supports.

    Science.gov (United States)

    Ayık, Hatice Müjde; Griffin, Michael J

    2015-01-01

    While walking on a treadmill, 20 subjects experienced lateral oscillations: frequencies from 0.5 to 2 Hz and velocities from 0.05 to 0.16 m s(- 1) rms. Postural stability was indicated by ratings of 'discomfort or difficulty in walking', the movement of the centre of pressure beneath the feet and lateral forces applied to a hand support. Hand support improved postural stability with all frequencies and all velocities of oscillatory motion: the lateral velocity of the centre of pressure reduced by 30-50% when using support throughout motion, by 20-30% when instructed to use the support only when required and by 15% during normal walking without oscillation. Improvements in stability, and the forces applied to the hand support, were independent of support height when used continuously throughout motion. When support was used only when required, subjects preferred to hold it 118-134 cm above the surface supporting the feet. PMID:25331636

  2. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    Energy Technology Data Exchange (ETDEWEB)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  3. Non-linear effects in the support motion of an elastically mounted slider crank mechanism

    Science.gov (United States)

    Davidson, I.

    1983-01-01

    A study is made of an in-line slider crank mechanism in which the sliding mass is elastically supported. The ratio of crank length to connecting rod length is not assumed small and relatively large displacements of the support are allowed. Ordinary and parametric non-linear terms are thus retained in the equations of motion. It is shown that the presence of parametric terms gives rise to additional conditions for resonance in the support motion. Approximate solutions are obtained for the fundamental and half subharmonic steady state responses and the effect of the non-linear and parametric terms examined. The stability of the steady state responses is considered and it is shown that instability is associated with a negative slope of the amplitude frequency characteristic.

  4. Influence of earthquake ground motion incoherency on multi-support structures

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A linear response history analysis method is used to determine the influence of three factors: geometric incoherency, wave-passage, and local site characteristics on the response of multi-support structures subjected to differential ground motions. A one-span frame and a reduced model of a 24-span bridge, located in Las Vegas, Nevada are studied, in which the influence of each of the three factors and their combinations are analyzed. It is revealed that the incoherency of earthquake ground motion can have a dramatic influence on structural response by modifying the dynamics response to uniform excitation and inducing pseudo-static response, which does not exist in structures subjected to uniform excitation. The total response when all three sources of ground motion incoherency are included is generally larger than that of uniform excitation.

  5. THE FIRST EXPERIENCE IN CLINICAL APPLICATION OF DOMESTIC CIRCULATORY SUPPORT DEVICE ON BASIS OF IMPLANTABLE AXIAL PUMP FOR TWO STAGE HEART TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    S. V. Gautier

    2013-01-01

    Full Text Available The paper describes the first clinical experience in RF of successful application of domestic circulatory support device based on implantable axial pump for two stage heart transplantation. This case demonstrate the effec- tiveness and safety of our device (АВК-Н for a longtime (270 days left ventricular bypass and the ability to perform a successful transplantation of donor,s heart after application of this system. 

  6. Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery.

    Science.gov (United States)

    Singh, S D; Xu, X Y; Pepper, J R; Izgi, C; Treasure, T; Mohiaddin, R H

    2016-07-01

    Aortic root motion was previously identified as a risk factor for aortic dissection due to increased longitudinal stresses in the ascending aorta. The aim of this study was to investigate the effects of aortic root motion on wall stress and strain in the ascending aorta and evaluate changes before and after implantation of personalised external aortic root support (PEARS). Finite element (FE) models of the aortic root and thoracic aorta were developed using patient-specific geometries reconstructed from pre- and post-PEARS cardiovascular magnetic resonance (CMR) images in three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients' pulse pressure was applied. Cardiovascular MR cine images were used to quantify aortic root motion, which was imposed at the aortic root boundary of the FE model, with zero-displacement constraints at the distal ends of the aortic branches and descending aorta. Measurements of the systolic downward motion of the aortic root revealed a significant reduction in the axial displacement in all three patients post-PEARS compared with its pre-PEARS counterparts. Higher longitudinal stresses were observed in the ascending aorta when compared with models without the root motion. Implantation of PEARS reduced the longitudinal stresses in the ascending aorta by up to 52%. In contrast, the circumferential stresses at the interface between the supported and unsupported aorta were increase by up to 82%. However, all peak stresses were less than half the known yield stress for the dilated thoracic aorta. PMID:27255604

  7. Dynamic response of successive oscillators running on a suspended beam shaken by support motions

    Czech Academy of Sciences Publication Activity Database

    Yau, J. D.; Frýba, Ladislav

    Beijing : China Railway Publishing House, 2010 - (Fu Xigang; Zhang Jie), s. 808-811 ISBN 978-7-113-11751-1. [International Conference on Railway Engineering ICRE2010. Beijing (CN), 20.08.2010-22.08.2010] Grant ostatní: GAČR(CZ) GA103/08/1340 Institutional research plan: CEZ:AV0Z20710524 Keywords : suspended bridge * support motion * high-speed train Subject RIV: JM - Building Engineering

  8. Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity.

    Science.gov (United States)

    Chantarojsiri, Teera; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J

    2015-06-15

    We report the photochemical generation and study of a family of water-soluble iron(IV)-oxo complexes supported by pentapyridine PY5Me2-X ligands (PY5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine; X = CF3, H, Me, or NMe2), in which the oxidative reactivity of these ferryl species correlates with the electronic properties of the axial pyridine ligand. Synthesis of a systematic series of [Fe(II)(L)(PY5Me2-X)](2+) complexes, where L = CH3CN or H2O, and characterizations by several methods, including X-ray crystallography, cyclic voltammetry, and Mössbauer spectroscopy, show that increasing the electron-donating ability of the axial pyridine ligand tracks with less positive Fe(III)/Fe(II) reduction potentials and quadrupole splitting parameters. The Fe(II) precursors are readily oxidized to their Fe(IV)-oxo counterparts using either chemical outer-sphere oxidants such as CAN (ceric ammonium nitrate) or flash-quench photochemical oxidation with [Ru(bpy)3](2+) as a photosensitizer and K2S2O8 as a quencher. The Fe(IV)-oxo complexes are capable of oxidizing the C-H bonds of alkane (4-ethylbenzenesulfonate) and alcohol (benzyl alcohol) substrates via hydrogen atom transfer (HAT) and an olefin (4-styrenesulfonate) substrate by oxygen atom transfer (OAT). The [Fe(IV)(O)(PY5Me2-X)](2+) derivatives with electron-poor axial ligands show faster rates of HAT and OAT compared to their counterparts supported by electron-rich axial donors, but the magnitudes of these differences are relatively modest. PMID:26039655

  9. Effect of PVRC damping with independent support motion response spectrum analysis of piping systems

    International Nuclear Information System (INIS)

    The Technical Committee for Piping Systems of the Pressure Vessel Research Committee (PVRC) has recommended new damping values to be used in the seismic analyses of piping systems in nuclear power plants. To evaluate the effects of coupling these recommendations with the use of independent support motion analyses methods, two sets of seismic analyses have been carried out for several piping systems. One set based on the use of uniform damping as specified in Regulatory Guide 1.61, the other based on the PVRC recommendations. In each set the analyses were performed using independent support motion time history and response spectrum methods as well as the envelope spectrum method. In the independent response spectrum analyses, 14 response estimates were in fact obtained by considering different combination procedures between the support group contributions and all sequences of combinations between support groups, modes and directions. For each analysis set, the response spectrum results were compared with time history estimates of those results. Comparison tables were then prepared depicting the percentage by which the response spectrum estimates exceeded the time history estimates. By comparing the result tables between both analysis sets, the impact of PVRC damping can be observed. Preliminary results show that the degree of exceedance of the response spectrum estimates based on PVRC damping is less than that based on uniform damping for the same piping problem. Expressed differently the results obtained if ISM methods are coupled with PVRC damping are not as conservative as those obtained using uniform damping

  10. Dynamic Interaction Behavior between Jumbo Container Crane and Pile-Supported Wharf under NearField and Far-Field Ground Motions

    Directory of Open Access Journals (Sweden)

    J. R. LI

    2016-02-01

    Full Text Available Playing an important role in local and national seaport activities, container wharves are susceptible to structural failure and damage during earthquake events. Therefore, factors that affect the seismic response of crane–wharf structures under different types of earthquake ground motions should be elucidated. In this paper, 3D finite element models were established to investigate the differences of natural vibration characteristics between the wharf and crane–wharf structures. The dynamic response of a typical pile-supported wharf structure and the interaction behavior of a crane and wharf structural system under seismic actions of near-field and far-field ground motions were studied by performing numerical simulation and time-history response analysis. Axial force–moment relation curves were adopted to analyze the elastic–plastic limit state of the wharf structure under different ground motions. Results showed that the consideration of the container crane increased the natural vibration period of the pile-supported wharf structure and affected the dynamic characteristics of the structure. Compared with the far-field earthquake ground motion, the nearfield earthquake exerted a more significant impact on the structural dynamic response that controlled the elastic–plastic limit state. With the presence of a crane, the moment and shear force of the pile-top decreased and the location of the extreme value moved down obviously. The findings demonstrated that considering the crane changed the failure mechanism of the wharf structure, and the eccentric effect of the crane may amplify the dynamic response as the peak ground acceleration increases. The results provide reference for the seismic design and the evaluation of the seismic response of container wharves.

  11. Stability and transient motion of a plain journal mounted in flexible damped supports

    Science.gov (United States)

    Kirk, R. G.; Gunter, E. J.

    1975-01-01

    Results are presented for an extensive study of the influence of damped flexible supports on the stability-threshold speed of a symmetric rotor mounted in nonlinear fluid-film bearings. A stability analysis is conducted by applying the Routh criteria and calculating the damped eigenvalues of the system. Stability maps are given in dimensionless form for a range of support stiffness, damping, and mass ratios. The effect of rotor imbalance on the stability of rotor systems is examined, and it is shown that time transient orbits of shaft and support motions clearly indicate their dynamic behavior for both stable and unstable operating speeds. Simple design criteria are proposed for choosing the support stiffness and damping on the basis of rotor weight and journal clearance to promote optimum stability. It is concluded that the use of a flexible damped support system may increase the stability threshold of a plain journal bearing and that damper supports should promote smoother and quieter machine operation by suppressing oil whirl and attenuating unbalanced rotational forces.

  12. Prevalence of Peri-Implant Mucositis and Peri-Implantitis in Patients Treated with a Combination of Axial and Tilted Implants Supporting a Complete Fixed Denture

    Directory of Open Access Journals (Sweden)

    Nicolò Cavalli

    2015-01-01

    Full Text Available Objectives. The aim of this retrospective study was to assess the incidence and prevalence of peri-implant mucositis and peri-implantitis in patients with a fixed full-arch prosthesis supported by two axial and two tilted implants. Materials and Methods. Sixty-nine patients were included in the study. Each patient received a fixed full-arch prosthesis supported by two mesial axial and two distal tilted implants to rehabilitate the upper arch, the lower arch, or both. Three hundred thirty-six implants for 84 restorations were delivered. Patients were scheduled for follow-up visits every 6 months in the first 2 years and yearly after. At each follow-up visit peri-implant mucositis and peri-implantitis were diagnosed if present. Results. The overall follow-up range was from 12 to 130 months (mean 63,2 months. Three patients presented peri-implantitis. The prevalence of peri-implant mucositis ranged between 0 and 7,14% of patients (5,06% of implants while the prevalence of peri-implantitis varied from 0 to 4,55% of patients (3,81% of implants. Conclusions. The prevalence and incidence of peri-implant mucositis and peri-implantitis are lower than most of the studies in literature. Therefore this kind of rehabilitation could be considered a feasible option, on the condition of adopting a systematic hygienic protocol.

  13. Fluoroscopic measurement of the axial motion of the diaphragm, correlated with rib cage and abdominal movement and with diaphragmatic volume displacement

    International Nuclear Information System (INIS)

    This paper studies the motion of costal, central tendon, and crural parts of the diaphragm during semistatic VC maneuver and to compare this motion with rib cage (RC) and abdominal (Abd) cross-sectional area changes (CAC) and diaphragmatic volume displacement. Diaphragmatic motion was studied with the use of lateral fluoroscopy of the chest in seven healthy volunteers. RC and Abd CAC was measured with the use of respiratory inductive plethysmography. Diaphragmatic volume displacement was measured with fluoroscopy and calculated from RC and Abd CAC with the use of a theoretical analysis described by previous works

  14. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression

    International Nuclear Information System (INIS)

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  15. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  16. System identification modelling of ship manoeuvring motion based onε- support vector regression

    Institute of Scientific and Technical Information of China (English)

    王雪刚; 邹早建; 侯先瑞; 徐锋

    2015-01-01

    Based on theε-support vector regression, three modelling methods for the ship manoeuvring motion, i.e., the white-box modelling, the grey-box modelling and the black-box modelling, are investigated. Theoo10/10,oo20/20 zigzag tests and the o35 turning circle manoeuvre are simulated. Part of the simulation data for theoo20/20 zigzag test are used to train the support vectors, and the trained support vector machine is used to predict the wholeoo20/20 zigzag test. Comparison between the simula- ted and predictedoo20/20 zigzag test shows a good predictive ability of the three modelling methods. Then all mathematical models obtained by the modelling methods are used to predict theoo10/10 zigzag test ando35 turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the modelling methods are analyzed and compared with each other in terms of the application conditions, the prediction accuracy and the computation speed. An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification.

  17. On the Support that the Special and General Theories of Relativity Provide for Rock's Argument Concerning Induced Self-Motion

    OpenAIRE

    Snyder, D. M.

    1999-01-01

    Though Einstein and other physicists recognized the importance of an observer being at rest in an inertial reference frame for the special theory of relativity, the supporting psychological structures were not discussed much by physicists. On the other hand, Rock, a psychologist, wrote of the factors involved in the perception of motion, including one's own motion. Rock thus came to discuss issues of significance to relativity theory, apparently without any significant understanding of how hi...

  18. MOVIEMOD: An Implementable Decision-Support System for Prerelease Market Evaluation of Motion Pictures

    OpenAIRE

    Jehoshua Eliashberg; Jedid-Jah Jonker; Mohanbir S. Sawhney; Berend Wierenga

    2000-01-01

    In spite of the high financial stakes involved in marketing new motion pictures, marketing science models have not been applied to the market evaluation of motion pictures. The motion picture industry poses some unique challenges. For example, the consumer adoption process for movies is very sensitive to word-of-mouth interactions, which are difficult to measure and predict the movie has been released. In this article, we undertake the challenge to develop and implement MOVIEMOD—a prerelease ...

  19. Formulation of Equations of Motion for a Simply Supported Bridge under a Moving Railway Freight Vehicle

    Directory of Open Access Journals (Sweden)

    Ping Lou

    2007-01-01

    Full Text Available Based on energy approach, the equations of motion in matrix form for the railway freight vehicle-bridge interaction system are derived, in which the dynamic contact forces between vehicle and bridge are considered as internal forces. The freight vehicle is modelled as a multi-rigid-body system, which comprises one car body, two bogie frames and four wheelsets. The bogie frame is linked with the car body through spring-dashpot suspension systems, and the bogie frame is rigidly linked with wheelsets. The bridge deck, together with railway track resting on bridge, is modelled as a simply supported Bernoulli-Euler beam and its deflection is described by superimposing modes. The direct time integration method is applied to obtain the dynamic response of the vehicle-bridge interaction system at each time step. A computer program has been developed for analyzing this system. The correctness of the proposed procedure is confirmed by one numerical example. The effect of different beam mode numbers and various surface irregularities of beam on the dynamic responses of the vehicle-bridge interaction system are investigated.

  20. The effect of PVRC damping with independent support motion response spectrum analysis of piping systems

    International Nuclear Information System (INIS)

    The Technical Committee for Piping Systems of the Pressure Vessel Research Committee (PVRC) has recommended new damping values to be used in the seismic analyses of piping systems in nuclear power plants. To evaluate the effect of coupling these recommendations with the use of independent support motion analyses methods, two sets of seismic analyses have been carried out for several piping systems. For each analysis set, the response spectrum results were compared with time history estimates of those results. Comparison tables were then prepared depicting the percentage by which the response spectrum estimates exceeded the time history estimates. By comparing the result tables between both analysis sets, the impact of PVRC damping can be observed. Preliminary results show that the degree of exceedance of the response spectrum estimates based on PVRC damping is less than that based on uniform damping for the same piping problem. Expressed differently the results obtained if ISM methods are coupled with PVRC damping are not as conservative as those obtained using uniform damping

  1. Postural responses exhibit multisensory dependencies with discordant visual and support surface motion.

    Science.gov (United States)

    Keshner, Emily A; Kenyon, Robert V; Langston, Jessica

    2004-01-01

    The purpose of this study was to identify how the postural system weights coincident yet discordant disturbances of the visual and proprioceptive/vestibular systems. Eleven healthy subjects (25-38 yrs) received either fore-aft translations of an immersive, wide field-of-view visual environment (0.1 Hz, +/- 3.7 m/sec), or anterior-posterior translations of the support surface (0.25 Hz, +/- 15 cm/sec), or both concurrently. Kinematics of the head, trunk, and shank were collected with an Optotrak system and angular motion of each segment plotted across time. With only support surface translation, segmental responses were small (1 degrees -2 degrees ) and mostly opposed the direction of sled translation. When only the visual scene was moving, segmental responses increased as the trial progressed. When the inputs were presented coincidentally, response amplitudes were large even at the onset of the trial. Mean RMS values across subjects were significantly greater with combined stimuli than for either stimulus presented alone and areas under the power curve across subjects were significantly increased at the frequency of the visual input when both inputs were presented. Thus, intra-modality dependencies were observed, such that responses to the visual inputs significantly increased and responses to the somatosensory signals reflected the stimulus amplitude only when the two inputs were combined. We believe it unlikely that the role of any single pathway contributing to postural control can be accurately characterized in a static environment if the function of that pathway is context dependent. PMID:15328445

  2. Axial gap rotating electrical machine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  3. Effect of proximal contact strength on the three-dimensional displacements of implant-supported cantilever fixed partial dentures under axial loading

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhen PENG; Xin-min CHEN; Jun WANG; Ai-jie LI; Zu-jie XU

    2013-01-01

    Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture (CFPD) under vertically concentrated loading with digital laser speckle (DLS) technique.Methods:Fresh mandible of beagle dog was used to establish the implant-supported CFPD for specimen.DLS technique was employed for measuring the three-dimensional displacement of the prosthesis under vertically concentrated loading ranging from 200 to 3000 g.The effect of the contact tightness on the displacement of CFPD was investigated by means of changing the contact tightness.Results:When an axial concentrated loading was exerted on the pontic of the implant-supported CFPD,the displacement of the CFPD was the greatest.The displacement of the prosthesis decreased with the increase of contact strength.When the contact strength was 0,0.95,and 3.25 N,the displacement of the buccolingual direction was smaller than that of the mesiodistal direction but greater than that of the occlusogingival direction.When the force on the contact area was 6.50 N,the mesiodistal displacement of the prosthesis was the biggest while the buccolingual displacement was the smallest.Conclusions:The implantsupported CFPD is an effective therapy for fully or partially edentulous patients.The restoration of the contact area and the selection of the appropriate contact strength can reduce the displacement of the CFPD,and get a better stress distribution.The most appropriate force value is 3.25 N in this study.

  4. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  5. Empowering Technology and POETRY Supporting Scientific Inquiry: Investigating the Motion of a Rebounding Trolley

    Science.gov (United States)

    Urban-Woldron, Hildegard

    2012-03-01

    The recent implementation of technology in the classroom is probably one of the most challenging innovations that many teachers are having to confront today. Teachers have to develop a knowledge base that goes beyond technology proficiency, into learning about how technology, for example, can be used for various forms of representations of subject matters. This article aims to report on the investigation of the motion of a rebounding trolley, bringing together physics content, pedagogy, and technology to enhance student thinking and construction of knowledge. The activity, called "Rebounding Trolley," uses data logging and helps to emphasize the idea that velocity and acceleration can be in opposite directions.

  6. Can the vertical motions in the eyewall of tropical cyclones support persistent UAV flight?

    CERN Document Server

    Poh, Chung-Kiak

    2014-01-01

    Powered flights in the form of manned or unmanned aerial vehicles (UAVs) have been flying into tropical cyclones to obtain vital atmospheric measurements with flight duration typically lasting between 12 and 36 hours. Convective vertical motion properties of tropical cyclones have previously been studied. This work investigates the possibility to achieve persistent flight by harnessing the generally pervasive updrafts in the eyewall of tropical cyclones. A sailplane UAV capable of vertical take-off and landing (VTOL) is proposed and its flight characteristics simulated. Results suggest that the concept of persistent flight within the eyewall is promising and may be extendable to the rainband regions.

  7. System Identification Modeling of Ship Manoeuvring Motion in 4 Degrees of Freedom Based on Support Vector Machines

    Institute of Scientific and Technical Information of China (English)

    王雪刚; 邹早建; 余龙; 蔡韡

    2015-01-01

    Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20°/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.

  8. Precise ground motion measurements to support multi-hazard analysis in Jakarta

    Science.gov (United States)

    Koudogbo, Fifamè; Duro, Javier; Garcia Robles, Javier; Abidin, Hasanuddin Z.

    2015-04-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. Flood events have been increasing in severity during the past decade. The February 2007 event inundated 235 Km2 (about 36%) of the city, by up to seven meters in some areas. This event affected more than 2.6 million people; the estimated financial and economic losses from this event amounted to US900 million [1][2]. Inundations continue to occur under any sustained rainfall conditions. Flood events in Jakarta are expected to become more frequent in coming years, with a shift from previously slow natural processes with low frequency to a high frequency process resulting in severe socio-economic damage. Land subsidence in Jakarta results in increased vulnerability to flooding due to the reduced gravitational capacity to channel storm flows to the sea and an increased risk of tidal flooding. It continues at increasingly alarming rates, principally caused by intensive deep groundwater abstraction [3]. Recent studies have found typical subsidence rates of 7.5-10 cm a year. In localized areas of north Jakarta subsidence in the range 15-25 cm a year is occurring which, if sustained, would result in them sinking to 4-5 m below sea level by 2025 [3]. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion measurements with millimetric precision and high accuracy [4]. Within the RASOR (Rapid Analysis and Spatialisation and Of Risk) project, ALTAMIRA INFORMATION will apply GlobalSARTM to assess recent land subsidence in Jakarta, based on the processing of Very High

  9. The Right Hemisphere Planum Temporale Supports Enhanced Visual Motion Detection Ability in Deaf People: Evidence from Cortical Thickness.

    Science.gov (United States)

    Shiell, Martha M; Champoux, François; Zatorre, Robert J

    2016-01-01

    After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl's gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area's involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity. PMID:26885405

  10. The Right Hemisphere Planum Temporale Supports Enhanced Visual Motion Detection Ability in Deaf People: Evidence from Cortical Thickness

    Directory of Open Access Journals (Sweden)

    Martha M. Shiell

    2016-01-01

    Full Text Available After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl’s gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area’s involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.

  11. The Right Hemisphere Planum Temporale Supports Enhanced Visual Motion Detection Ability in Deaf People: Evidence from Cortical Thickness

    Science.gov (United States)

    Shiell, Martha M.; Champoux, François; Zatorre, Robert J.

    2016-01-01

    After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl's gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area's involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity. PMID:26885405

  12. Axial Thermal Rotation of Slender Rods

    Science.gov (United States)

    Li, Dichuan; Fakhri, Nikta; Pasquali, Matteo; Biswal, Sibani Lisa

    2011-05-01

    Axial rotational diffusion of rodlike polymers is important in processes such as microtubule filament sliding and flagella beating. By imaging the motion of small kinks along the backbone of chains of DNA-linked colloids, we produce a direct and systematic measurement of axial rotational diffusivity of rods both in bulk solution and near a wall. The measured diffusivities decrease linearly with the chain length, irrespective of the distance from a wall, in agreement with slender-body hydrodynamics theory. Moreover, the presence of small kinks does not affect the chain’s axial diffusivity. Our system and measurements provide insights into fundamental axial diffusion processes of slender objects, which encompass a wide range of entities including biological filaments and linear polymer chains.

  13. Nonlinear Models for Transverse Forced Vibration of Axially Moving Viscoelastic Beams

    Directory of Open Access Journals (Sweden)

    Hu Ding

    2011-01-01

    Full Text Available Nonlinear models of transverse vibration of axially moving viscoelastic beams subjected external transverse loads via steady-state periodical response are numerically investigated. An integro-partial-differential equation and a partial-differential equation of transverse motion can be derived respectively from a model of the coupled planar vibration for an axially moving beam. The finite difference scheme is developed to calculate steady-state response for the model of coupled planar and the two models of transverse motion under the simple support boundary. Numerical results indicate that the amplitude of the steady-state response for the model of coupled vibration and two models of transverse vibration predict qualitatively the same tendencies with the changing parameters and the integro-partial-differential equation gives results more closely to the coupled planar vibration.

  14. On two transverse nonlinear models of axially moving beams

    Institute of Scientific and Technical Information of China (English)

    DING Hu; CHEN LiQun

    2009-01-01

    Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit-ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av-eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif-ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte-gro-partial-differential equation gives better results for large amplitude vibration.

  15. On two transverse nonlinear models of axially moving beams

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Nonlinear models of transverse vibration of axially moving beams are computationally investigated. A partial-differential equation is derived from the governing equation of coupled planar motion by omit- ting its longitudinal terms. The model can be reduced to an integro-partial-differential equation by av- eraging the beam disturbed tension. Numerical schemes are respectively presented for the governing equations of coupled planar and the two governing equations of transverse motion via the finite dif- ference method and differential quadrature method under the fixed boundary and the simple support boundary. A steel beam and a copper beam are treated as examples to demonstrate the deviations of the solutions to the two transverse equations from the solution to the coupled equation. The numerical results indicate that the differences increase with the amplitude of vibration and the axial speed. Both models yield almost the same precision results for small amplitude vibration and the inte- gro-partial-differential equation gives better results for large amplitude vibration.

  16. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations

    Institute of Scientific and Technical Information of China (English)

    Qiaoyun YAN; Hu DING; Liqun CHEN

    2015-01-01

    This investigation focuses on the nonlinear dynamic behaviors in the trans-verse vibration of an axially accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincar´e map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re-lationship between the dual-frequency excitations.

  17. BWR AXIAL PROFILE

    International Nuclear Information System (INIS)

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I

  18. BWR AXIAL PROFILE

    Energy Technology Data Exchange (ETDEWEB)

    J. Huffer

    2004-09-28

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.

  19. Signatures for axial chromodynamics

    International Nuclear Information System (INIS)

    Within the context of basic left-right symmetry and the hypothesis of unification of weak, electromagnetic and strong forces at a mass level approximately equal to 104-106 GeV, relatively light ''mass'' axial gluons, confined or liberated, must be postulated. The authors remark that the existence of such ''light'' axial gluons supplementing the familiar vector octet preserves the successes of QCD, both for deep inelastic processes and charmonium physics. Through the characteristic spin-spin force, generated by their exchange, they may even help resolve some of the discrepancies between vector QCD predictions and charmonium physics. The main remark of this note is that if colour is liberated, not only vector but also axial-vector gluons are produced in high-energy e-e+ experiments, e.g. at PETRA and PEP, with fairly large cross-section. Distinctive decay modes of such liberated axial gluons are noted

  20. Surface nanoscale axial photonics

    OpenAIRE

    Sumetsky, M.; Fini, J. M.

    2011-01-01

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger e...

  1. NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Li-Qun

    2006-01-01

    The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.

  2. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    International Nuclear Information System (INIS)

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue. (paper)

  3. Approximate and numerical analysis of nonlinear forced vibration of axially moving viscoelastic beams

    Institute of Scientific and Technical Information of China (English)

    Hu Ding; Li-Qun Chen

    2011-01-01

    Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation.It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same, but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.

  4. Nonlinear vibrations and imperfection sensitivity of a cylindrical shell containing axial fluid flow

    Science.gov (United States)

    del Prado, Z.; Gonçalves, P. B.; Païdoussis, M. P.

    2009-10-01

    The high imperfection sensitivity of cylindrical shells under static compressive axial loads is a well-known phenomenon in structural stability. On the other hand, less is known of the influence of imperfections on the nonlinear vibrations of these shells under harmonic axial loads. The aim of this work is to study the simultaneous influence of geometric imperfections and an axial fluid flow on the nonlinear vibrations and instabilities of simply supported circular cylindrical shells under axial load. The fluid is assumed to be non-viscous and incompressible and the flow to be isentropic and irrotational. The behavior of the thin-walled shell is modeled by Donnell's nonlinear shallow-shell equations. It is subjected to a static uniform compressive axial pre-load plus a harmonic axial load. A low-dimensional modal expansion, which satisfies the relevant boundary and continuity conditions, and takes into account all relevant nonlinear modal interactions observed in the past in the nonlinear vibrations of cylindrical shells with and without flow is used together with the Galerkin method to derive a set of eight coupled nonlinear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The shell is considered to be initially at rest, in a position corresponding to a pre-buckling configuration. Then, a harmonic excitation is applied and conditions for parametric instability and dynamic snap-through are sought. The results clarify the marked influence of geometric imperfections and fluid flow on the dynamic stability boundaries, bifurcations and basins of attraction.

  5. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    Science.gov (United States)

    Lee, Victor R.

    2015-01-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…

  6. Análisis de la fuerza axial en un transportador de sinfín // Analysis of axial force in a screw conveyor.

    Directory of Open Access Journals (Sweden)

    F. Aguilar Parés

    1999-01-01

    Full Text Available Durante el movimiento de un material en un transportador de sinfín surge una fuerza en dirección axial que influye en laselección de uno de los cojinetes de apoyo del equipo. En el artículo aparecen algunas soluciones constructivas que tienen encuentan la fuerza axial. Por otro lado se establece la relación entre la fuerza axial y el empuje axial y se precisa de quiendepende el sentido del empuje axial. Por último se propone un modelo matemático que relaciona la fuerza axial con la potenciarequerida por el equipo.Palabras claves: Transportador de sinf in, fuerza axial , empuje axial ._________________________________________________________________________AbstractDuring the movement of material in a screw conveyor surge a force in axial direction that influence in the selection of one ofthe equipment support bearings. Some constructive solutions appear in the article for considering the axial force. In the otherhand it is established the relation between axial force and axial thurst and it is precised whose direction thurst axial depend of.Finally it is proposed a mathematic model that relates the axial force with the power required by the equipment.Key words: Screw conveyor, axial force, axial thurst .

  7. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  8. PWR AXIAL BURNUP PROFILE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  9. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    Science.gov (United States)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  10. A non-integral, axial-force measuring element

    Science.gov (United States)

    Ringel, M.; Levin, D.; Seginer, A.

    1989-10-01

    A new approach to the measurement of the axial force is presented. A nonintegral axial-force measuring element, housed within the wind-tunnel model, avoids the interactions that are caused by nonlinear elastic phenomena characteristic of integral balances. The new design overcomes other problems, such as friction, misalignment and relative motion between metric elements, that plagued previous attempts at separate measurement of the axial force. Calibration and test results prove the ability of the new approach to duplicate and even surpass the results of much more complicated and expensive integral balances. The advantages of the new design make it the best known solution for particular measurement problems.

  11. Laser vibrometer analysis of sensor loading effects in underwater measurements of compliant surface motion

    Energy Technology Data Exchange (ETDEWEB)

    Caspall, J.J.; Gray, M.D.; Caille, G.W. [Georgia Tech Research Institute, Undersea Research Program Office, Georgia Institute of Technology, Atlanta, Georgia 30332-0810 (United States); Jarzynski, J.; Rogers, P.H.; McCall, G.S. II [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    1996-04-01

    The application of contact motion sensors, such as accelerometers, in the measurement of the vibration of compliant surfaces underwater may lead to errors in the evaluation of certain types of surface motion. An underwater scanning laser Doppler vibrometer (USLDV) was used to measure the scattered velocity field due to a mock sensor (rigid, neutrally buoyant cylindrical body) on a compliant surface (the outer surface of a thin cylindrical shell coated with a layer of soft rubber). Axially propagating waves were launched in the shell by a ring of 10 uniformly distributed shakers located near one end of the shell and driven with a short pulse. The outer surface of the coating was scanned over a short line segment in the axial direction with and without the mock sensor attached. The extracted scattered field, consisted of high wavenumber fluid-solid interface waves accompanied by rotational motion of the mock sensor. [Work supported by ONR] {copyright} {ital 1996 American Institute of Physics.}

  12. On renormalization of axial anomaly

    International Nuclear Information System (INIS)

    It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs

  13. Axial compressor stability enhancement

    OpenAIRE

    Houghton, Timothy Oliver.

    2010-01-01

    Aircraft jet engines must operate in a stable manner at all times. One source of instability is compressor stall. Stall problems can be reduced by machining cavities into the compressor casing adjacent to the rotor blades. This ?casing treatment? is the focus of the present work. Two treatment configurations are tested: circumferential grooves cut into the casing above the rotor blades, and axial slots cut into the casing adjacent to the rotor blade leading edges. The performance of a single ...

  14. Evidence in Support of the Local Quasar Model from Inner Jet Structure and Angular Motions in Radio Loud AGN

    CERN Document Server

    Bell, M B

    2007-01-01

    Radio loud jetted sources with and without extended inner jet structure show good agreement with the simple ballistic ejection scenario proposed in the decreasing intrinsic redshift (DIR) model, where, because of projection effects, those that show the most obvious extended structure and large angular motions are assumed to have jets that lie close to the plane of the sky, and those with little or no structure and small angular motions are assumed to have jets that are coming almost directly towards us. This simple model also predicts several other relations seen in the raw data that, in some cases, may be less easily explained if the redshifts are cosmological and relativistic ejection is required. In particular, for radio-loud sources the source number density is found to be high for sources that are not Doppler boosted but low for highly boosted sources. This is opposite to what is expected, suggesting that Doppler boosting may not be involved at all, which would be in agreement with the DIR model. If so, ...

  15. Axial anomaly, Dirac sea, and the chiral magnetic effect

    OpenAIRE

    Kharzeev, Dmitri E.

    2010-01-01

    Gribov viewed the axial anomaly as a manifestation of the collective motion of charged fermions with arbitrarily high momenta in the vacuum. In the presence of an external magnetic field and a chirality imbalance, this collective motion becomes directly observable in the form of the electric current - this is the chiral magnetic effect (CME). I give an elementary introduction into the physics of CME, and discuss some recent developments.

  16. Implementation and Validation of EtherCAT Support in Integrated Development Environment for Synchronized Motion Control Application

    International Nuclear Information System (INIS)

    Recently, software-based programmable logic controller (PLC) systems, which are implemented in standard PLC languages on general hardware, are gaining popularity because they overcome the limitations of classical hardware PLC systems. Another noticeable trend is that the use of integrated development environment (IDE) is becoming important. IDEs can help developers to easily manage the growing complexity of modern control systems. Furthermore, industrial Ethernet, e. g. EtherCAT, is becoming widely accepted as a replacement for conventional fieldbuses in the distributed control domain because it offers favorable features such as short transmission delay, high bandwidth, and low cost. In this paper, we implemented the extension of open source IDE, called Beremiz, for developing EtherCAT-based real-time, synchronized motion control applications. We validated the EtherCAT system management features and the real-time responsiveness of the control function by using commercial EtherCAT drives and evaluation boards

  17. Cervical Spine Axial Rotation Goniometer Design

    Directory of Open Access Journals (Sweden)

    Emin Ulaş Erdem

    2012-06-01

    Full Text Available To evaluate the cervical spine rotation movement is quiet harder than other joints. Configuration and arrangement of current goniometers and devices is not always practic in clinics and some methods are quiet expensive. The cervical axial rotation goniometer designed by the authors is consists of five pieces (head apparatus, chair, goniometric platform, eye pads and camera. With this goniometer design a detailed evaluation of cervical spine range of motion can be obtained. Besides, measurement of "joint position sense" which is recently has rising interest in researches can be made practically with this goniometer.

  18. Equation of Motion and Determining the Vibration Mode Shapes of a Rectangular Thin Plate Simply Supported on Contour Using MATLAB

    Directory of Open Access Journals (Sweden)

    Cornel Hatiegan

    2013-01-01

    Full Text Available This paper presents the differential biharmonic equation of thin plates through which, the vibration mode shapes for a rectangular thin plate simply supported on contour were obtained. Also, the first four vibration mode and the first four natural frequencies of this rectangular thin plate of steel, were obtained. Using MATLAB software, the vibration mode shapes were graphically represented.

  19. Support for Simulation-Based Learning; The Effects of Model Progression and Assignments on Learning about Oscillatory Motion.

    Science.gov (United States)

    Swaak, Janine; And Others

    In this study, learners worked with a simulation of harmonic oscillation. Two supportive measures were introduced: model progression and assignments. In model progression, the model underlying the simulation is not offered in its full complexity from the start, but variables are gradually introduced. Assignments are small exercises that help the…

  20. DYNAMIC RESPONSES OF VISCOELASTIC AXIALLY MOVING BELT

    Institute of Scientific and Technical Information of China (English)

    李映辉; 高庆; 蹇开林; 殷学纲

    2003-01-01

    Based on the Kelvin viscoelastic differential constitutive law and the motion equation of the axially moving belt, the nonlinear dynamic model of the viscoelastic axial moving belt was established. And then it was reduced to be a linear differential system which the analytical solutions with a constant transport velocity and with a harmonically varying transport velocity were obtained by applying Lie group transformations. According to the nonlinear dynamic model, the effects of material parameters and the steady-state velocity and the perturbed axial velocity of the belt on the dynamic responses of the belts were investigated by the research of digital simulation. The result shows: 1 ) The nonlinear vibration frequency of the belt will become small when the relocity of the belt increases. 2 ) Increasing the value of viscosity or decreasing the value of elasticity leads to a deceasing in vibration frequencies. 3 ) The most effects of the transverse amplitudes come from the frequency of the perturbed velocity when the belt moves with harmonic velocity.

  1. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  2. A new method for sudden mechanical perturbation with axial load, to assess postural control in sitting and standing.

    Science.gov (United States)

    Claus, Andrew P; Verrel, Julius; Pounds, Paul E I; Shaw, Renee C; Brady, Niamh; Chew, Min T; Dekkers, Thomas A; Hodges, Paul W

    2016-05-01

    Sudden application of load along a sagittal or coronal axis has been used to study trunk stiffness, but not axial (vertical) load. This study introduces a new method for sudden-release axial load perturbation. Prima facie validity was supported by comparison with standard mechanical systems. We report the response of the human body to axial perturbation in sitting and standing and within-day repeatability of measures. Load of 20% of body weight was released from light contact onto the shoulders of 22 healthy participants (10 males). Force input was measured via force transducers at shoulders, output via a force plate below the participant, and kinematics via 3-D motion capture. System identification was used to fit data from the time of load release to time of peak load-displacement, fitting with a 2nd-order mass-spring-damper system with a delay term. At peak load-displacement, the mean (SD) effective stiffness measured with this device for participants in sitting was 12.0(3.4)N/mm, and in standing was 13.3(4.2)N/mm. Peak force output exceeded input by 44.8 (10.0)% in sitting and by 30.4(7.9)% in standing. Intra-class correlation coefficients for within-day repeatability of axial stiffness were 0.58 (CI: -0.03 to 0.83) in sitting and 0.82(0.57-0.93) in standing. Despite greater degrees of freedom in standing than sitting, standing involved lesser time, downward displacement, peak output force and was more repeatable in defending upright postural control against the same axial loads. This method provides a foundation for future studies of neuromuscular control with axial perturbation. PMID:26968087

  3. The Contribution of Trunk Axial Kinematics to Poststrike Ball Velocity During Maximal Instep Soccer Kicking.

    Science.gov (United States)

    Fullenkamp, Adam M; Campbell, Brian M; Laurent, C Matthew; Lane, Amanda Paige

    2015-10-01

    To date, biomechanical analyses of soccer kicking have focused predominantly on lower-extremity motions, with little emphasis on the trunk and upper body. The purpose of this study was to evaluate differences in trunk axial kinematics between novice (n = 10) and skilled (n = 10) participants, as well as to establish the relationship of trunk axial motion and sagittal plane thigh rotation to poststrike ball velocity. Three-dimensional body segmental motion data were captured using high-resolution motion analysis (120 Hz) while each participant completed 5 maximal instep soccer-style kicks. The results demonstrate that skilled participants use 53% greater axial trunk range of motion compared with novice participants (P soccer athletes. PMID:26099160

  4. Axial anomaly in nonrenormalizable theories

    International Nuclear Information System (INIS)

    The anomaly for the axial current in nonrenormalizable theories with electromagnetic coupling is considered. The spinor electrodynamics with Pauli term is examined in detail using the Feynman graph technique and the point-splitting method. The same finite value for the axial anomaly emerges. (author)

  5. Extra-axial brain tumors.

    Science.gov (United States)

    Rapalino, Otto; Smirniotopoulos, James G

    2016-01-01

    Extra-axial brain tumors are the most common adult intracranial neoplasms and encompass a broad spectrum of pathologic subtypes. Meningiomas are the most common extra-axial brain tumor (approximately one-third of all intracranial neoplasms) and typically present as slowly growing dural-based masses. Benign meningiomas are very common, and may occasionally be difficult to differentiate from more aggressive subtypes (i.e., atypical or malignant varieties) or other dural-based masses with more aggressive biologic behavior (e.g., hemangiopericytoma or dural-based metastases). Many neoplasms that typically affect the brain parenchyma (intra-axial), such as gliomas, may also present with primary or secondary extra-axial involvement. This chapter provides a general and concise overview of the common types of extra-axial tumors and their typical imaging features. PMID:27432671

  6. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  7. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-01-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  8. Axial Patterning in Hydra

    Science.gov (United States)

    Bode, Hans R.

    2009-01-01

    Morphogen gradients play an important role in pattern formation during early stages of embryonic development in many bilaterians. In an adult hydra, axial patterning processes are constantly active because of the tissue dynamics in the adult. These processes include an organizer region in the head, which continuously produces and transmits two signals that are distributed in gradients down the body column. One signal sets up and maintains the head activation gradient, which is a morphogenetic gradient. This gradient confers the capacity of head formation on tissue of the body column, which takes place during bud formation, hydra's mode of asexual reproduction, as well as during head regeneration following bisection of the animal anywhere along the body column. The other signal sets up the head inhibition gradient, which prevents head formation, thereby restricting bud formation to the lower part of the body column in an adult hydra. Little is known about the molecular basis of the two gradients. In contrast, the canonical Wnt pathway plays a central role in setting up and maintaining the head organizer. PMID:20066073

  9. Two-dimensional nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed

    International Nuclear Information System (INIS)

    In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs)

  10. Study of axial magnetic effect

    International Nuclear Information System (INIS)

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T2 behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction

  11. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  12. NONLINEAR DYNAMICS OF AXIALLY ACCELERATING VISCOELASTIC BEAMS BASED ON DIFFERENTIAL QUADRATURE

    Institute of Scientific and Technical Information of China (English)

    Hu Ding; Liqun Chen

    2009-01-01

    This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equa-tion, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numeri-cally the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numer-ical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.

  13. Vacuum arc under axial magnetic fields: experimental and simulation research

    International Nuclear Information System (INIS)

    Axial magnetic field (AMF) technology is a most important control method of vacuum arc, particularly for high-current vacuum arcs in vacuum interrupters. In this paper, a review of the state of current research on vacuum arcs under AMF is presented. The major aspects of vacuum arc in an AMF such as arc voltage, the motion of cathode spots, and anode activities are discussed, and the most recent progress both of experimental and simulation research is presented. (topical review)

  14. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  15. Vectorial versus axial goldstone bosons

    International Nuclear Information System (INIS)

    The Yukawa interactions of fermions with Goldstone bosons are given in closed form for an arbitrary renormalizable field theory to all orders of perturbation theory or for a general effective Lagrangian. Although the diagonal couplings are always pseudoscalar there is an important difference between spontaneously broken vector and axial-vector global symmetries. Compared to the axial case, the diagonal douplings of 'vectorial' Goldstone bosons to charged fermions are suppressed by mixing angles or appear only via radiative corrections involving gauge fields. This general result may be relevant for the problem of flavour symmetry breaking in composite models. (Author)

  16. Simulation of an Axial Vircator

    CERN Document Server

    Tikhomirov, V V

    2013-01-01

    An algorithm of particle-in-cell simulations is described and tested to aid further the actual design of simple vircators working on axially symmetric modes. The methods of correction of the numerical solution, have been chosen and jointly tested, allow the stable simulation of the fast nonlinear multiflow dynamics of virtual cathode formation and evolution, as well as the fields generated by the virtual cathode. The selected combination of the correction methods can be straightforwardly generalized to the case of axially nonsymmetric modes, while the parameters of these correction methods can be widely used to improve an agreement between the simulation predictions and the experimental data.

  17. Energy efficiency improvement by the application of nanostructured coatings on axial piston pump slippers

    OpenAIRE

    Rizzo, Giuseppe; Bonanno, Antonino; Massarotti, Giorgio Paolo; Pastorello, Luca; Raimondo, Mariarosa; Veronesi, Federico; Blosi, Magda

    2016-01-01

    Axial piston pumps and motors are widely used in heavy-duty applications and play a fundamental role in hydrostatic and power split drives. The mechanical power losses in hydraulic piston pumps come from the friction between parts in relative motion. The improvement, albeit marginal, in overall efficiency of these components may significantly impact the global efficiency of the machine. The friction between slipper and swash plate is a functional key in an axial piston pump, especially when t...

  18. Nonlinear stability of cylindrical shells subjected to axial flow: Theory and experiments

    Science.gov (United States)

    Karagiozis, K. N.; Païdoussis, M. P.; Amabili, M.; Misra, A. K.

    2008-01-01

    This paper, is concerned with the nonlinear dynamics and stability of thin circular cylindrical shells clamped at both ends and subjected to axial fluid flow. In particular, it describes the development of a nonlinear theoretical model and presents theoretical results displaying the nonlinear behaviour of the clamped shell subjected to flowing fluid. The theoretical model employs the Donnell nonlinear shallow shell equations to describe the geometrically nonlinear structure. The clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions and the circumferential continuity condition exactly. The fluid is assumed to be incompressible and inviscid, and the fluid-structure interaction is described by linear potential flow theory. The partial differential equation of motion is discretized using the Galerkin method and the final set of ordinary differential equations are integrated numerically using a pseudo-arclength continuation and collocation techniques and the Gear backward differentiation formula. A theoretical model for shells with simply supported ends is presented as well. Experiments are also described for (i) elastomer shells subjected to annular (external) air-flow and (ii) aluminium and plastic shells with internal water flow. The experimental results along with the theoretical ones indicate loss of stability by divergence with a subcritical nonlinear behaviour. Finally, theory and experiments are compared, showing good qualitative and reasonable quantitative agreement.

  19. Axial structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner

    2002-01-01

    We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.

  20. NONLINEAR DYNAMIC SIMULATION OF AN AXIALLY SLIDE-SPIN ROCKET FLEXIBLE SYSTEM WITH CLEARANCE

    Institute of Scientific and Technical Information of China (English)

    Zhu Huailiang; Zhang Fuxiang

    2005-01-01

    A hybrid approach is presented to investigate the dynamic behavior of an axially slide-spin flexible rocket with nonlinear clearance. The equations of motion of the flexible rocket are derived based upon Euler-Bernoulli beam theory and Hamilton principle and the finite element method. The characteristics of clearance between the spinning rocket and launcher are considered to be piecewise linear. Numerical solution is developed by direct integration method and demonstrates the validity of the method. The coupled dynamic behavior of axial motion and transverse vibrations of rocket are analyzed, and the influences of axially moving acceleration, spin speed, linking stiffness of elastic "shoes", and the nonlinearity of clearance on the motion attitude of rocket are studied.

  1. STED microscopy based on axially symmetric polarized vortex beams

    Science.gov (United States)

    Zhehai, Zhou; Lianqing, Zhu

    2016-03-01

    A stimulated emission depletion (STED) microscopy scheme using axially symmetric polarized vortex beams is proposed based on unique focusing properties of such kinds of beams. The concept of axially symmetric polarized vortex beams is first introduced, and the basic principle about the scheme is described. Simulation results for several typical beams are then shown, including radially polarized vortex beams, azimuthally polarized vortex beams, and high-order axially symmetric polarized vortex beams. The results indicate that sharper doughnut spots and thus higher resolutions can be achieved, showing more flexibility than previous schemes based on flexible modulation of both phase and polarization for incident beams. Project supported by the National Natural Science Foundation of China (Grant Nos. 61108047 and 61475021), the Natural Science Foundation of Beijing, China (Grant No. 4152015), the Program for New Century Excellent Talents in Universities of China (Grant No. NCET-13-0667), and the Top Young Talents Support Program of Beijing, China (Grant No. CIT&TCD201404113).

  2. Method to measure tone of axial and proximal muscle.

    Science.gov (United States)

    Gurfinkel, Victor S; Cacciatore, Timothy W; Cordo, Paul J; Horak, Fay B

    2011-01-01

    The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the vertical axis during stance, so as to twist the neck, trunk or hip regions. This twisting imposes length changes on axial muscles without changing the body's relationship to gravity. Because Twister does not provide postural support, tone must be regulated to counteract gravitational torques. We quantify this tonic regulation by the restive torque to twisting, which reflects the state of all muscles undergoing length changes, as well as by electromyography of relevant muscles. Because tone is characterized by long-lasting low-level muscle activity, tonic control is studied with slow movements that produce "tonic" changes in muscle length, without evoking fast "phasic" responses. Twister can be reconfigured to study various aspects of muscle tone, such as co-contraction, tonic modulation to postural changes, tonic interactions across body segments, as well as perceptual thresholds to slow axial rotation. Twister can also be used to provide a quantitative measurement of the effects of disease on axial and proximal postural tone and assess the efficacy of intervention. PMID:22214974

  3. Ion trajectory simulations of axial ac dipolar excitation in the Orbitrap

    Science.gov (United States)

    Wu, Guangxiang; Noll, Robert J.; Plass, Wolfgang R.; Hu, Qizhi; Perry, Richard H.; Cooks, R. Graham

    2006-07-01

    The newly developed version of the multi-particle ion trajectory simulation program, ITSIM 6.0, was applied to simulate ac dipolar excitation of ion axial motion in the Orbitrap. The Orbitrap inner and outer electrodes were generated in AutoCAD, a 3D drawing program. The electrode geometry was imported into the 3D field solver COMSOL; the field array was then imported into ITSIM 6.0. Ion trajectories were calculated by solving Newton's equations using Runge-Kutta integration methods. Compared to the analytical solution, calculated radial components of the field at the device's "equator" (z = 0) were within 0.5% and calculated axial components midway between the inner and outer electrodes were within 0.2%. The experiments simulated here involved the control of axial motion of ions in the Orbitrap by the application of dipolar ac signals to the split outer electrodes, as described in a recently published paper from this laboratory [Hu et al., J. Phys. Chem. A 110 (2006) 2682]. In these experiments, ac signal was applied at the axial resonant frequency of a selected ion. Axial excitation and eventual ion ejection resulted when the ac was in phase with, i.e., had 0° phase relative to ion axial motion. De-excitation of ion axial motion until the ions were at z = 0 and at rest with respect to the z-axis resulted if the applied ac was out of phase with ion motion, with re-excitation of ion axial motion occurring if the dipolar ac was continued beyond this point. Both de-excitation and re-excitation could be achieved mass-selectively and depended on the amplitude and duration (number of cycles) of the applied ac. The effects of ac amplitude, frequency, phase relative to ion motion, and bandwidth of applied waveform were simulated. All simulation results were compared directly with the experimental data and good agreement was observed. Such ion motion control experiments and their simulation provide the possibility to improve Orbitrap performance and to develop tandem mass

  4. Axially symmetric rotating traversable wormholes

    CERN Document Server

    Kuhfittig, P K F

    2003-01-01

    This paper generalizes the static and spherically symmetric traversable wormhole geometry to a rotating axially symmetric one with a time-dependent angular velocity by means of an exact solution. It was found that the violation of the weak energy condition, although unavoidable, is considerably less severe than in the static spherically symmetric case. The radial tidal constraint is more easily met due to the rotation. Similar improvements are seen in one of the lateral tidal constraints. The magnitude of the angular velocity may have little effect on the weak energy condition violation for an axially symmetric wormhole. For a spherically symmetric one, however, the violation becomes less severe with increasing angular velocity. The time rate of change of the angular velocity, on the other hand, was found to have no effect at all. Finally, the angular velocity must depend only on the radial coordinate, confirming an earlier result.

  5. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  6. Simulation of an Axial Vircator

    OpenAIRE

    Tikhomirov, V. V.; Siahlo, S. E.

    2013-01-01

    An algorithm of particle-in-cell simulations is described and tested to aid further the actual design of simple vircators working on axially symmetric modes. The methods of correction of the numerical solution, have been chosen and jointly tested, allow the stable simulation of the fast nonlinear multiflow dynamics of virtual cathode formation and evolution, as well as the fields generated by the virtual cathode. The selected combination of the correction methods can be straightforwardly gene...

  7. Axial Force at the Vessel Bottom Induced by Axial Impellers

    OpenAIRE

    I. Fořt; P. Hasal; A. Paglianti; F. Magelli

    2008-01-01

    This paper deals with the axial force affecting the flat bottom of a cylindrical stirred vessel. The vessel is equipped with four radial baffles and is stirred with a four 45° pitched blade impeller pumping downwards. The set of pressure transducers is located along the whole radius of the flat bottom between two radial baffles. The radial distribution of the dynamic pressures indicated by the transducers is measured in dependence on the impeller off-bottom clearance and impeller speed.It fol...

  8. Motion constraint

    OpenAIRE

    Raunhardt, Daniel; Boulic, Ronan

    2009-01-01

    In this paper, we propose a hybrid postural control approach taking advantage of data-driven and goal-oriented methods while overcoming their limitations. In particular, we take advantage of the latent space characterizing a given motion database. We introduce a motion constraint operating in the latent space to benefit from its much smaller dimension compared to the joint space. This allows its transparent integration into a Prioritized Inverse Kinematics framework. If its priority is high t...

  9. Free fall - A partial unique motion environment

    Science.gov (United States)

    Graybiel, A.

    1980-01-01

    Conditions leading to the elicitation of motion sickness have been divided into two main categories: partial motion environments, in which head movements are required to elicit motion sickness, and complete motion environments, in which independent movements of the head are not required for the production of symptoms. It is postulated that, according to this categorization, free fall constitutes a partial motion environment. In support of this hypothesis evidence is reviewed from Skylab missions, experiments in parabolic flight, and ground-based studies.

  10. An Axial Sliding Test for machine elements surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran;

    2012-01-01

    , a housing and a stripwound container. The rod and the sleeve are the two surfaces in relative sliding motion; the stripwound container maintains a constant, but adjustable normal pressure and the housing serves as interface between the sleeve and the container. For carrying out the test, two...... machineries are necessary: a press to provide the normal pressure and a tensile machine to perform the axial movements. The test is calibrated so that the correspondence between the normal pressure and the container advancement is found. Finally, preliminary tests are carried out involving a multifunctional...

  11. Calculus of axial force in a mechanism using Lagrange equations

    Directory of Open Access Journals (Sweden)

    Thien Van NGUYEN

    2016-06-01

    Full Text Available Lagrange equations are used to study the motion of a system under the action of known external forces. Besides, based on these equations we can determine the internal force in an arbitrary element of the mechanism acting by active force. If an internal force has to be found, a supplementary mobility related to it is considered in the system. The corresponding internal force for new mobility is found for null values of mobility and of its first and second derivatives. Also the determination of the axial force in the connecting rod of the slider-crank mechanism is presented in this paper as an illustration of this method.

  12. Strange axial-vector mesons

    International Nuclear Information System (INIS)

    The strange axial-vector mesons K1 (1270) and K1 (1400) are reanalyzed in the light of the updated experimental information and compared with the recent result on the Kππ production in τ decay. The mixing angle between the strange mesons of 3P1 and 1P1 is determined by the partial decay rates, and, independently, by the masses. They lead to θK∼33 degree or 57 degree. The observed K1 (1400) production dominance in the τ decay favors θK∼33 degree. Flavor-SU(3) breaking of 20% or so in the production amplitudes can explain quantitatively the observed production ratio

  13. Inducing chaos by breaking axial symmetry in a black hole magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kopáček, O.; Karas, V., E-mail: kopacek@ig.cas.cz [Astronomical Institute, Academy of Sciences, Boční II, CZ-141 31 Prague (Czech Republic)

    2014-06-01

    While the motion of particles near a rotating, electrically neutral (Kerr), and charged (Kerr-Newman) black hole is always strictly regular, a perturbation in the gravitational or the electromagnetic field generally leads to chaos. The transition from regular to chaotic dynamics is relatively gradual if the system preserves axial symmetry, whereas non-axisymmetry induces chaos more efficiently. Here we study the development of chaos in an oblique (electro-vacuum) magnetosphere of a magnetized black hole. Besides the strong gravity of the massive source represented by the Kerr metric, we consider the presence of a weak, ordered, large-scale magnetic field. An axially symmetric model consisting of a rotating black hole embedded in an aligned magnetic field is generalized by allowing an oblique direction of the field having a general inclination with respect to the rotation axis of the system. The inclination of the field acts as an additional perturbation to the motion of charged particles as it breaks the axial symmetry of the system and cancels the related integral of motion. The axial component of angular momentum is no longer conserved and the resulting system thus has three degrees of freedom. Our primary concern within this contribution is to find out how sensitive the system of bound particles is to the inclination of the field. We employ the method of the maximal Lyapunov exponent to distinguish between regular and chaotic orbits and to quantify their chaoticity. We find that even a small misalignment induces chaotic motion.

  14. Axial and transverse displacement tolerances during excimer laser surgery for myopia

    Science.gov (United States)

    Shimmick, John K.; Munnerlyn, Charles R.; Clapham, Terrance N.; McDonald, Marguerite B.

    1991-06-01

    This paper presents an analysis of the effects of axial and transverse displacement on the optical quality and accuracy of lenses created during excimer laser photoablation. Tolerance levels for axial positioning of the cornea prior to and during surgery are presented. The axial tolerance levels are dependent upon a number of parameters which include the intended dioptric correction and laser system cone angle. A collimation lens is introduced as a means of desensitizing the laser system to axial displacement. Transverse displacement tolerances during laser treatment are shown to depend upon the treatment diameter, dioptric correction and acceptable distortion level in the lens ablated into the anterior corneal stroma. A video and computer analysis of transverse motion during seven randomly selected excimer laser refractive surgeries is presented. Although transverse displacement exceeded the tolerance levels presented, it did not appear to affect the quality of correction in the eight patients analyzed.

  15. Nonlinear Interactions between Slender Structures and Axial Flow

    Science.gov (United States)

    Du, Li

    2015-03-01

    For decades, dynamic behaviors of a slender structure with axial flow have been extensively studied. However, the governing equation based on expansions of small quantities is complicatedly-expressed and can be inappropriate as amplitude becomes considerably large. In this research, we are dedicated to finding an approach to study the nonlinear dynamics of a fluid-conveying slender strcture with arbitrary amplitude. By introducing the Intrinsic Coordinate, we find a concise way to describe the configuration of the system. Differential relations of such coordinate are studied and the rigorous nonlinear equation of motion is derived. Then rather than small-deflection approximation, linear dynamics are studied using Argand Diagram under a weaker condition named low-varying approximation. Nonlinear properties including Hopf bifurcation, limit-cycle motion and vibration frequencies are studied theoretically and experimentally.

  16. Nonlinear flap-lag axial equations of a rotating beam

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1977-01-01

    It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.

  17. 轴向扩散下不可压饱和多孔简支弹性杆的弯曲%Bending of simply supported incompressible saturated poroelastic beams with axial diffusion

    Institute of Scientific and Technical Information of China (English)

    杨骁; 刘鑫

    2008-01-01

    Based on the mathematical model of the bending of the incompressible saturated poroelastic beam with axialdiffusion, the quasi-static bendings of the simply supported poroelastic beam subjected to a suddenly applied constant loadwere investigated, and the analytical solutions were obtained for different diffusion conditions of the pore fluid at the beamends. The deflections, the bending moments of the solid skeleton and the equivalent couples of the pore pressures werepresented in figures. It is also shown that the behavior of the saturated poroelastic beams depends closely on the diffusionconditions at the beam ends, especially for the equivalent couples of the pore pressures. It is found that the Mandel-Cryereffect also exists in the bending of the saturated poroelastic beams under specific diffusion conditions at the beam ends.

  18. Axial Non-linear Dynamic Soil-Pile Interaction - Keynote

    Directory of Open Access Journals (Sweden)

    Holeyman A.

    2014-01-01

    Full Text Available This keynote lecture describes recent analytical and numerical advances in the modeling of the axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus degradation is evaluated over a range of parameters and compared with those obtained by other authors and by a numerical radial discrete model simulating the pile and soil movements from integration of the laws of motion. New approximate non linear solutions for axial pile shaft behaviour developed from general elastodynamic equations are presented and compared to existing linear solutions. The soil non linear behaviour and its ability to dissipate mechanical energy upon cyclic loading are shown to have a significant influence on the mechanical impedance provided by the surrounding soil against pile shaft movement. The limitations of over-simplified modelling of pile response are highlighted.

  19. Mass Effect on Axial Charge Dynamics

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We studied effect of finite quark mass on the dynamics of axial charge using the D3/D7 model in holography. The mass term in axial anomaly equation affects both the fluctuation (generation) and dissipation of axial charge. We studied the dependence of the effect on quark mass and external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a non-monotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and magnetic field.

  20. Axial Vector $Z'$ and Anomaly Cancellation

    CERN Document Server

    Ismail, Ahmed; Tsao, Kuo-Hsing; Unwin, James

    2016-01-01

    Whilst the prospect of new $Z'$ gauge bosons with only axial couplings to the Standard Model (SM) fermions is widely discussed, examples of anomaly-free renormalisable models are lacking in the literature. We look to remedy this by constructing several motivated examples. Specifically, we consider axial vectors which couple universally to all SM fermions, as well as those which are generation-specific, leptophilic, and leptophobic. Anomaly cancellation typically requires the presence of new coloured and charged chiral fermions, and we argue that the masses of these new states must generally be comparable to that of the axial vector. Finally, an axial vector mediator could provide a portal between SM and hidden sector states, and we also consider the possibility that the axial vector couples to dark matter. If the dark matter relic density is set due to freeze-out via the axial vector, this strongly constrains the parameter space.

  1. Axial velocity in decaying swirl flow

    Science.gov (United States)

    Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.

    1988-09-01

    Experiments were carried out on turbulent swirling flow with variable initial swirl at different flow rates to study the effect of swirl on axial velocity. A correlation was made between the defect in the swirling flow axial velocity and the swirl number which locally defines the swirl intensity. An expression which can be used to predict the axial velocity distribution of turbulent swirling flow in a pipe is presented.

  2. Sensorless Control of Axial Magnetic Bearings

    Science.gov (United States)

    Atsumo, Daichi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper describes a sensorless control method of axial active magnetic bearings (AMBs). At high frequencies, inductance of the axial electromagnets is hardly dependent on the airgap because of the eddy current effects of the non-laminated core. Therefore the carrier frequency should be 3 kHz below to improve the sensitivity to the airgap. In the experiment, Sensorless controll of the axial AMBs have been achieved.

  3. Axial asymmetry in the IVBM

    International Nuclear Information System (INIS)

    The dynamical symmetry limit of the two-fluid Interacting Vector Boson Model (IVBM), defined through the chain Sp(12,R) contains U(3,3) contains Up(3) x Un(3) contains SU*(3) contains SO(3), is considered and applied for the description of nuclear collective spectra exhibiting axially asymmetric features. The effect of the introduction of a Majorana interaction to the SU*(3) model Hamiltonian on the γ-band energies is studied. The theoretical predictions are compared with the experimental data for 192Os, 190Os, and 112Ru isotopes. It is shown that by taking into account the full symplectic structures in the considered dynamical symmetry of the IVBM, the proper description of the energy spectra and the γ-band energy staggering of the nuclei under considerations can be achieved. The obtained results show that the potential energy surfaces for the following two nuclei 192Os and 112Ru, possess almost γ-flat potentials with very shallow triaxial minima, suggesting a more complex and intermediate situation between γ-rigid and γ-unstable structures. Additionally, the absolute B(E2) intraband transition probabilities between the states of the ground-state band and γ band, as well as the B(M1) interband transition probabilities between the states of the ground and γ bands for the two nuclei 192Os and 190Os are calculated and compared with experiment and for the B(E2) values with the predictions of some other collective models incorporating the γ-rigid or γ-unstable structures. The obtained results agree well with the experimental data and reveal the relevance of the used dynamical symmetry of IVBM in the description of nuclei exhibiting axially asymmetric features in their spectra. (orig.)

  4. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model......Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...

  5. Effective quantum number for axially symmetric problems

    OpenAIRE

    Trunov, N. N.

    2014-01-01

    We generalize the universal effective quantum number introduced earlier for centrally symmetric problems. The proposed number determines the semiclassical quantization condition for axially symmetric potentials.

  6. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  7. Increased multiaxial lumbar motion responses during multiple-impulse mechanical force manually assisted spinal manipulation

    Directory of Open Access Journals (Sweden)

    Gunzburg Robert

    2006-04-01

    the initial impulse acceleration response, subsequent multiple SMT impulses were found to produce significantly greater (3% to 25%, P Conclusion Knowledge of the vertebral motion responses produced by impulse-type, instrument-based adjusting instruments provide biomechanical benchmarks that support the clinical rationale for patient treatment. Our results indicate that impulse-type adjusting instruments that deliver multiple impulse SMTs significantly increase multi-axial spinal motion.

  8. Experimental Harmonic Motion

    Science.gov (United States)

    Searle, G. F. C.

    2014-05-01

    1. Elementary theory of harmonic motion; 2. Experimental work in harmonic motion; Experiment 1. Determination of g by a simple pendulum; Experiment 2. Harmonic motion of a body suspended by a spring; Experiment 3. Harmonic motion of a rigid body suspended by a torsion wire; Experiment 4. Study of a system with variable moment of inertia; Experiment 5. Dynamical determination of ratio of couple to twist for a torsion wire; Experiment 6. Comparison of the moments of inertia of two bodies; Experiment 7. Experiment with a pair of inertia bars; Experiment 8. Determination of the moment of inertia of a rigid pendulum; Experiment 9. Experiment on a pendulum with variable moment of inertia; Experiment 10. Determination of g by a rigid pendulum; Experiment 11. Pendulum on a yielding support; Experiment 12. Determination of the radius of curvature of a concave mirror by the oscillations of a sphere rolling in it; Experiment 13. Determination of g by the oscillations of a rod rolling on a cylinder; Experiment 14. Study of a vibrating system with two degrees of freedom; Note 1. On the vibration of a body suspended from a light spring; Note 2. Periodic time of a pendulum vibrating through a finite arc; Note 3. Periodic time for finite motion; Note 4. Periodic times of a pendulum with two degrees of freedom.

  9. Axial forces and bending moments in the loaded rabbit tibia in vivo

    Directory of Open Access Journals (Sweden)

    Reifenrath Janin

    2012-03-01

    Full Text Available Abstract Background Different animal models are used as fracture models in orthopaedic research prior to implant use in humans, although biomechanical forces can differ to a great extend between species due to variable anatomic conditions, particularly with regard to the gait. The rabbit is an often used fracture model, but biomechanical data are very rare. The objective of the present study was to measure axial forces, bending moments, and bending axis directly in the rabbit tibia in vivo. The following hypothesis was tested: Axial forces and bending moments in the mid-diaphysis of rabbit tibia differ from other experimental animals or indirectly calculated data. Methods A minifixateur system with 4 force sensors was developed and attached to rabbit tibia (n = 4, which were subsequently ostectomised. Axial forces, bending moments and bending angles were calculated telemetrically during weight bearing in motion between 6 and 42 days post operation. Results Highest single values were 201% body weight [% bw] for axial forces and 409% bw cm for bending moments. Whereas there was a continous decrease in axial forces over time after day 10 (P = 0.03 on day 15, a decrease in bending moments was inconsistent (P = 0.03 on day 27. High values for bending moments were frequently, but not consistently, associated with high values for axial forces. Conclusion Axial forces in rabbit tibia exceeded axial forces in sheep, and differed from indirectly calculated data. The rabbit is an appropriate fracture model because axial loads and bending moments in rabbit tibia were more closely to human conditions than in sheep tibia as an animal model.

  10. Axial blanket fuel design and demonstration. First semi-annual progress report, January-September 1980

    International Nuclear Information System (INIS)

    The axial blanket fuel design in this program, which is retrofittable in operating pressurized water reactors, involves replacing the top and bottom of the enriched fuel column with low-enriched (less than or equal to 1.0 wt % 235U) fertile uranium. This repositioning of the fissile inventory in the fuel rod leads to decreased axial leakage and increased discharge burnups in the enriched fuel. Various axial blanket fuel designs, with blanket thicknesses from 0 to 10 inches and blanket enrichments from 0.2 to 1.0 wt % 235U, were investigated to determine the relationship between uranium utilization and power peaking. Analyses were preformed to assess the nuclear, mechanical, and thermal-hydraulic effects arising from the use of axial blankets. Four axial blanket lead test assemblies are being fabricated for scheduled irradiation in cycle 5 of Sacramento Municipal Utility District's Rancho Seco pressurized water reactor. Analyses to support licensing cycle 5 are in progress

  11. Investigations on vibrations of coupled axial-flow turbine blades. Final report. Pt. 1. Theory. Untersuchung ueber Schwingungen gekoppelter Axialturbinenschaufeln. Abschlussbericht. T. 1. Theorie

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.F.

    1987-01-01

    The present Part I of the final report covers theoretical investigations relating to the project; Part II presents the results of experimental work. The finite element method (FEM) is used to calculate the natural oscillation behaviour of coupled blade systems in axial-flow turbomachines. This involved combining the propagating wave method, which utilises the periodicity of such structures and substantially reduces computational effort, with existing FEM software systems (ASKA, PERMAS, NOVA). The static condition of pre-stress condition in the blades caused by the centrifugal force field and influencing the natural frequency can also be calculated by taking into account geometrically non-linear effects. Based on this condition, the equation of motion is linearised taking into account of centrifugal forces during oscillatory motion. When modelling a coupled blading, exceptions in respect of the forces and moments transmitted between the blade and the coupling element must be given special consideration. The natural frequencies obtained for different configurations and model formations are compared to resonance frequencies determined by experiments to support these coupling conditions. The discussion of natural oscillation modes of a model blading gives a deeper insight into the physical conditions of different types of coupled axial bladinngs. Based on the natural oscillation calculation of a real output stage blading,it is shown that the calculation method can also be used to analyse natural frequencies of complex structures. (orig.) With 80 figs., 12 tabs., 99 refs.

  12. Collective Motion

    CERN Document Server

    Czirok, A

    1999-01-01

    With the aim of understanding the emergence of collective motion from local interactions of organisms in a "noisy" environment, we study biologically inspired, inherently non-equilibrium models consisting of self-propelled particles. In these models particles interact with their neighbors by turning towards the local average direction of motion. In the limit of vanishing velocities this behavior results in a dynamics analogous to some Monte Carlo realization of equilibrium ferromagnets. However, numerical simulations indicate the existence of new types of phase transitions which are not present in the corresponding ferromagnets. In particular, here we demonstrate both numerically and analytically that even in certain one dimensional self-propelled particle systems an ordered phase exists for finite noise levels.

  13. Structural support bracket for gas flow path

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-02

    A structural support system is provided in a can annular gas turbine engine having an arrangement including a plurality of integrated exit pieces (IEPs) forming an annular chamber for delivering gases from a plurality of combustors to a first row of turbine blades. A bracket structure is connected between an IEP and an inner support structure on the engine. The bracket structure includes an axial bracket member attached to an IEP and extending axially in a forward direction. A transverse bracket member has an end attached to the inner support structure and extends circumferentially to a connection with a forward end of the axial bracket member. The transverse bracket member provides a fixed radial position for the forward end of the axial bracket member and is flexible in the axial direction to permit axial movement of the axial bracket member.

  14. Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field

    Institute of Scientific and Technical Information of China (English)

    胡宇达; 张金志

    2013-01-01

    Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid-ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para-metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.

  15. Stabilizing effects of ankle bracing under a combination of inversion and axial compression loading.

    Science.gov (United States)

    Tohyama, Harukazu; Yasuda, Kazunori; Beynnon, Bruce D; Renstrom, Per A

    2006-04-01

    The combined effects of bracing, axial compression and inversion rotation on the ankle-subtalar complexes were evaluated. Ex vivo tests under the load-controlled condition were performed on six cadaver ankle specimens using a six degree-of-freedom fixture. Inversion rotation was measured while subjecting the ankle-subtalar complex to a 2.5 N-m inversion moment and a combination of the testing variables (brace type, no brace, 178 N axial compression load, no compression load, 0 degrees and 20 degrees of plantar flexion) for a total of 16 tests per specimen. Three commercially available braces (two semirigid types and one lace up type) were evaluated. An axial compression load significantly decreased ankle-subtalar motion in unbraced ankles for the tested inversion moment. The contribution of bracing to stabilization of the ankle was smaller in the axial loading condition than in the no axial loading condition. The semirigid braces had greater stabilizing effects in response to the inversion moment than the lace up brace. Stabilizing effects of bracing were significantly greater in 20 degrees of plantar flexion than in 0 degrees of plantar flexion. The most common mechanism for an ankle sprain injury is inversion rotation on a weight-bearing ankle. Therefore, we should not overestimate stabilizing effects of bracing from evaluations of bracing without axial compression loading. PMID:15959767

  16. Symbolic Modelling of Dynamic Human Motions

    OpenAIRE

    Stirling, David; Hesami, Amir; Ritz, Christian; Adistambha, Kevin; Naghdy, Fazel

    2010-01-01

    The results from Section 4 and Section 5 clearly support all of the three objectives discussed at the end of Section 2. These being to firstly; develop a plausible model for dynamic finger printing of motion data between individuals. Secondly, investigate a model that could to also identify distinctions between various motion tasks, and finally to formulate a model to identify motion pretence, or acting, as well as normal and (physically induced) abnormal motion behaviours.

  17. Axial force measurement for esophageal function testing.

    Science.gov (United States)

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-14

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method. PMID:19132762

  18. Axial force measurement for esophageal function testing

    Institute of Scientific and Technical Information of China (English)

    Flemming H Gravesen; Peter Funch-Jensen; Hans Gregersen; Asbjφrn Mohr Drewes

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the "golden standard" for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external force transducers over in-vivo strain gauges of various sizes to electrical impedance based measurements. The amplitude and duration of the axial force has been shown to be as reliable as manometry. Normal, as well as abnormal, manometric recordings occur with normal bolus transit, which have been documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe with combined axial force and manometry recordings showed that axial force amplitude increased by 130% in contrast to an increase of 30% using manometry. Using axial force in combination with manometry provides a more complete picture of esophageal motility, and the current paper outlines the advantages of using this method.

  19. Axial length variability in cataract surgery

    International Nuclear Information System (INIS)

    To determine the mean axial length and biometric measures in patients undergoing cataract surgery and further compare the variability of axial length between the gender and with age. Study Design: Cross-sectional observational study. Place and Duration of Study: Eye Unit I, Department of Ophthalmology, Liaquat University of Medical and Health Sciences, Hyderabad, Pakistan from January 2010 to December 2012. Methodology: All patients referred for cataract surgery were assessed. The study included 886 eyes which were straightforward cataract cases with no other ocular problem. The data was collected for axial length, keratometric values and Intra-Ocular Lens (IOL) power prior to cataract surgery. The collected data was then analyzed using SPSS version 19 for windows software. Results: Gender based comparison showed significant difference in age, axial length, keratometric values and IOL power between the two groups (p=0.000). 86% of the eyes had an axial length between 21.00 mm and 23.99 mm. In univariate analysis there was significant (p=0.000) relation between overall age and axial length. The keratometric values ranged between 36.75 D and 52.50 D. Majority of the IOL powers ranged between 20.00 D and 23.00 D. Conclusion: The mean axial length of patients undergoing cataract surgery was 22.96 +- 1.04 mm, was comparable to Indian and Chinese population but shorter than the Western population. Females had shorter axial lengths, similar to other studies. Axial length was positively associated with age among the females, the cause of which is yet to be determined. (author)

  20. Influence of constraints on axial growth reduction of cylindrical Li-ion battery electrode particles

    OpenAIRE

    Chakraborty, Jeevanjyoti; Please, Colin P.; Goriely, Alain; Chapman, S. Jonathan

    2014-01-01

    Volumetric expansion of silicon anode particles in a lithium-ion battery during charging may lead to the generation of undesirable internal stresses. For a cylindrical particle such growth may also lead to failure by buckling if the expansion is constrained in the axial direction due to other particles or supporting structures. To mitigate this problem, the possibility of reducing axial growth is investigated theoretically by studying simple modifications of the solid cylinder geometry. First...

  1. The Buckling Analysis of Axially Loaded Columns with Artificial Neural Networks

    OpenAIRE

    Ülker, Mehmet; CİVALEK, Ömer

    2002-01-01

    The determination of effective design values in structural analysis is important.Axially loaded columns are designed according to the their buckling load capacity. In this study, a multi-layer artificial neural network is trained to give critical load for axially loaded columns and various support conditions. Back-propagation training algorithms are used considering the circular, square, rectangular, and I cross-sections. The artificial neural network, with is trained for circular and rec...

  2. Magnetic Resonance Imaging Assessment of Spinal Cord and Cauda Equina Motion in Supine Patients With Spinal Metastases Planned for Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chia-Lin [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Sussman, Marshall S. [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States); Soliman, Hany; Thibault, Isabelle [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Cho, B. C. John; Simeonov, Anna [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Yu, Eugene [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Fehlings, Michael G. [Department of Neurosurgery and Spine Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)

    2015-04-01

    Purpose: To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. Methods and Materials: We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motion (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. Results: In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. Conclusions: Oscillatory CNT motion was observed to be relatively minor. Our results

  3. Magnetic Resonance Imaging Assessment of Spinal Cord and Cauda Equina Motion in Supine Patients With Spinal Metastases Planned for Spine Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Purpose: To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. Methods and Materials: We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motion (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. Results: In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. Conclusions: Oscillatory CNT motion was observed to be relatively minor. Our results

  4. New Anomaly of the Axial-Vector Current

    Institute of Scientific and Technical Information of China (English)

    HE Han-Xin

    2001-01-01

    By computing the axial-vector current operator equation, we find the anomalous axial-vector curl equation besides the well-known anomalous axial-vector divergence equation (the Adler-Bell-Jackiw anomaly) and discuss its implication.``

  5. Evolution of Axially Symmetric Anisotropic Sources in $f(R,T)$ Gravity

    CERN Document Server

    Zubair, M

    2015-01-01

    We discuss the dynamical analysis in $f(R,T)$ gravity (where $R$ is Ricci scalar and $T$ is trace of energy momentum tensor) for gravitating sources carrying axial symmetry. The self gravitating system is taken to be anisotropic and line element describes axially symmetric geometry avoiding rotation about symmetry axis and meridional motions (zero vorticity case). The modified field equations for axial symmetry in $f(R,T)$ theory are formulated, together with the dynamical equations. Linearly perturbed dynamical equations lead to the evolution equation carrying adiabatic index $\\Gamma$ that defines impact of non-minimal matter to geometry coupling on range of instability for Newtonian (N) and post-Newtonian (pN) approximations.

  6. Evolution of axially symmetric anisotropic sources in f(R, T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, M. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Noureen, Ifra [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2015-06-15

    We discuss the dynamical analysis in f(R, T) gravity (where R is the Ricci scalar and T is the trace of the energy momentum tensor) for gravitating sources carrying axial symmetry. The self-gravitating system is taken to be anisotropic and the line element describes an axially symmetric geometry avoiding rotation about the symmetry axis and meridional motions (zero vorticity case). The modified field equations for axial symmetry in f(R, T) theory are formulated, together with the dynamical equations. Linearly perturbed dynamical equations lead to the evolution equation carrying the adiabatic index Γ, which defines the impact of a non-minimal matter to geometry coupling on the range of instability for Newtonian and post-Newtonian approximations. (orig.)

  7. Computer axial tomography in geosciences

    International Nuclear Information System (INIS)

    Computer Axial Tomography (CAT) is one of the most adequate non-invasive techniques for the investigation of the internal structure of a large category of objects. Initially designed for medical investigations, this technique, based on the attenuation of X- or gamma-ray (and in some cases neutrons), generates digital images which map the numerical values of the linear attenuation coefficient of a section or of the entire volume of the investigated sample. Shortly after its application in medicine, CAT has been successfully used in archaeology, life sciences, and geosciences as well as for the industrial materials non-destructive testing. Depending on the energy of the utilized radiation as well as on the effective atomic number of the sample, CAT can provide with a spatial resolution of 0.01 - 0.5 mm, quantitative as well as qualitative information concerning local density, porosity or chemical composition of the sample. At present two types of axial Computer Tomographs (CT) are in use. One category, consisting of medical as well as industrial CT is equipped with X-ray tubes while the other uses isotopic gamma-ray sources. CT provided with intense X-ray sources (equivalent to 12-15 kCi or 450-550 TBq) has the advantage of an extremely short running time (a few seconds and even less) but presents some disadvantages known as beam hardening and absorption edge effects. These effects, intrinsically related to the polychromatic nature of the X-rays generated by classical tubes, need special mathematical or physical corrections. A polychromatic X-ray beam can be made almost monochromatic by means of crystal diffraction or by using adequate multicomponent filters, but these devices are costly and considerably diminish the output of X-ray generators. In the case of CT of the second type, monochromatic gamma-rays generated by radioisotopic sources, such as 169 Yb (50.4 keV), 241 Am (59 keV), 192 Ir (310.5 and 469.1 keV ) or 137 Cs (662.7 keV), are used in combination with

  8. Nonperturbative features of the axial current

    CERN Document Server

    Kopeliovich, B Z; Siddikov, M

    2013-01-01

    In this paper we study the nonperturbative structure of the axial current and evaluate the two-point distribution amplitudes $\\int d\\xi\\, e^{-iq...\\xi}$ in the framework of the instanton vacuum model in the leading order in $\\mathcal{O}(N_{c})$. We perform a direct numerical test of the relations between the axial current and the pion distribution amplitudes, imposed by PCAC, and found excellent agreement.

  9. Axial Vircator for Electronic Warfare Applications

    OpenAIRE

    L. Drazan; R. Vrana

    2009-01-01

    This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM) is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered b...

  10. Nonperturbative Aspects of Axial Vector Vertex

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; CHEN Xiang-Song; WANG Fan; CHANG Chao-Hsi; ZHAO En-Guang

    2002-01-01

    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model.Gluon dressing of the axial vector vertex and the quark self-energy functions are described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger Dyson equation in the rainbow approximation,respectively.

  11. 纳米粒子在具有温度梯度的碳纳米管上运动模式的研究%A Study on Motion Modes of Nanoparticles Supported on Carbon Nanotubes With Temperature Gradient

    Institute of Scientific and Technical Information of China (English)

    王金剑; 王寅; 朱小蕾

    2012-01-01

    Molecular dynamics (MD) simulations are carried out with Born-Mayer-Huggins and Lennard-Jones interaction potentials.We investigate the motion characteristics of KI nanoparticles attached on the outside of carbon nanotubes ( CNTs) with temperature gradient ( V T).The results demonstrate that there are two kinds of motion modes during KI nanoparticles move from the hot zone to the cold zone of the CNTs.Through the analysis of the trajectory of KI nanoparticles supported on the CNTs subject to temperature gradient,we find the shape of the moving route are affected by the chirality,diameter,and temperature gradient of CNT.The analysis of the force added on KI nanoparticles supported on the CNTs with temperature gradient can account for the relationship between the motion modes of KI nanoparticles and the chirality of CNT.The results of this article may be instructive in designing of novel nanoscale motors.%采用分子动力学(MD)模拟的方法,使用Born-Mayer-Huggins与Lennard-Jones相互作用势函数,研究KI纳米粒子负载在具有一定温度梯度的碳纳米管外壁上的运动特征.模拟结果表明,在纳米粒子由碳管高温端向低温端运动的过程中有两种模式.通过KI纳米粒子在具有温度梯度的碳管上的轨迹分析,说明了这些运动模式与碳纳米管的手性、管径和温度梯度的大小密切相关.通过KI纳米粒子在具有温度梯度的碳管上的受力分析,解释了KI纳米粒子在具有温度梯度的碳管上采取特殊模式运动的原因.本文的工作对于设计纳米尺度的马达有一定的指导意义.

  12. An Unbroken Axial Vector Current Conservation Law

    CERN Document Server

    Sharafiddinov, Rasulkhozha S

    2015-01-01

    The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space i...

  13. Hamilton's equations for a fluid membrane: axial symmetry

    International Nuclear Information System (INIS)

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space

  14. No spreading across the southern Juan de Fuca ridge axial cleft during 1994-1996

    Science.gov (United States)

    Chadwell, C.D.; Hildebrand, J.A.; Spiess, Fred N.; Morton, J.L.; Normark, W.R.; Reiss, C.A.

    1999-01-01

    Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40' N and 130??20' W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (~1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5??7 mm/yr) between the 1994 and 1996 surveys.Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40 minutes N and 130??20 minutes W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (approx. 1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5 ?? 7 mm/yr) between the 1994 and 1996 surveys.

  15. Molecular dynamics study of nanojoining between axially positioned Ag nanowires

    Science.gov (United States)

    Cui, Jianlei; Theogene, Barayavuga; Wang, Xuewen; Mei, Xuesong; Wang, Wenjun; Wang, Kedian

    2016-08-01

    The miniaturization of electronics devices into nanometer scale is indispensable for next-generation semiconductor technology. Ag nanowires (Ag NWs) are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties. The nanojoining of axially positioned Ag NWs was performed by molecular dynamics simulation. Through the detailed atomic evolution during the nanojoining, the results indicate that the temperature and the distance between Ag NWs in axial direction have a great impact on nanojoining effect. When the nanojoining temperature is relatively high, the atoms are disordered and the atomic queues become to distort with strong thermodynamic properties and weak effect of metal bonds. At the relatively low temperature, the Ag NWs can be well connected with good junction quality and their own morphology, which is similar to the cold welding without fusion, while the distance between Ag NWs should be controlled for interaction and diffusion of interfacial atoms at nanowires head. When the Ag NWs are placed on Si and SiO2 substrate, because the atomic species and lattice structure of substrate material can differently affect the motions of Ag atoms through the interactive force between the atoms, the nanojoining quality of Ag NWs on Si substrate is better than that on the SiO2 substrate. So, for getting effective and reliable nanojoining without nanosolders and other materials, the temperature, distance and substrate surface should be reasonably controlled and selected, providing helpful theoretical guidance for experiment and application of nanojoining.

  16. A microscopic derivation of nuclear collective rotation-vibration model, axially symmetric case

    OpenAIRE

    Gulshani, Parviz

    2015-01-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed the to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on th...

  17. Comparison of ISO Standard and TKR Patient Axial Force Profiles during the Stance Phase of Gait

    OpenAIRE

    Lundberg, Hannah J.; Ngai, Valentina; Markus A. Wimmer

    2012-01-01

    Preclinical endurance testing of total knee replacements (TKRs) is performed using International Organization for Standardization (ISO) load and motion protocols. The standards are based on data from normal subjects and may not sufficiently mimic in vivo implant conditions. In this study, a mathematical model was used to calculate the axial force profile of 30 TKR patients with two current implant types, 22 with NexGen and eight with Miller-Galante II Cruciate-Retaining TKRs, and statisticall...

  18. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    ArjenAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  19. A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation

    Energy Technology Data Exchange (ETDEWEB)

    Pechstein, Astrid, E-mail: astrid.pechstein@jku.at [Johannes Kepler University Linz, Institute of Technical Mechanics (Austria); Gerstmayr, Johannes, E-mail: johannes.gerstmayr@accm.co.at [Austrian Center of Competence in Mechatronics (Austria)

    2013-10-15

    In the scope of this paper, a finite-element formulation for an axially moving beam is presented. The beam element is based on the absolute nodal coordinate formulation, where position and slope vectors are used as degrees of freedom instead of rotational parameters. The equations of motion for an axially moving beam are derived from generalized Lagrange equations in a Lagrange-Eulerian sense. This procedure yields equations which can be implemented as a straightforward augmentation to the standard equations of motion for a Bernoulli-Euler beam. Moreover, a contact model for frictional contact between an axially moving strip and rotating rolls is presented. To show the efficiency of the method, simulations of a belt drive are presented.

  20. A Complete Design Flow of a General Purpose Wireless GPS/Inertial Platform for Motion Data Monitoring

    Directory of Open Access Journals (Sweden)

    Gianluca Borgese

    2015-07-01

    Full Text Available This work illustrates a complete design flow of an electronic system developed to support applications in which there are the need to measure motion parameters and transmit them to a remote unit for real-time teleprocessing. In order to be useful in many operative contexts, the system is flexible, compact, and lightweight. It integrates a tri-axial inertial sensor, a GPS module, a wireless transceiver and can drive a pocket camera. Data acquisition and packetization are handled in order to increase data throughput on Radio Bridge and to minimize power consumption. A trajectory reconstruction algorithm, implementing the Kalman-filter technique, allows obtaining real-time body tracking using only inertial sensors. Thanks to a graphical user interface it is possible to remotely control the system operations and to display the motion data.

  1. Axial and radial velocities in the creeping flow in a pipe

    Directory of Open Access Journals (Sweden)

    Zuykov Andrey L'vovich

    2014-05-01

    Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.

  2. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  3. Echocardiographic Evaluation of the Jarvik 2000 Axial-Flow LVAD

    OpenAIRE

    Stainback, Raymond F.; Croitoru, Mihai; Hernandez, Antonieta; Myers, Timothy J.; Wadia, Yasmin; Frazier, O H

    2005-01-01

    From April 2000 through September 2001, we studied 11 patients with the Jarvik 2000 —a left ventricular assist device with an axial-flow pump that provides continuous blood flow—to determine the echocardiographic characteristics. All patients underwent complete echocardiographic examination, including outflow-graft flow evaluation 24 hours after implantation and each month thereafter for the duration of support. Data were obtained at each pump setting (8,000–12,000 rpm in 1,000-rpm increments...

  4. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  5. Polarization converters based on axially symmetric twisted nematic liquid crystal.

    Science.gov (United States)

    Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien

    2010-02-15

    An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369

  6. Improving the lattice axial vector current

    CERN Document Server

    Horsley, R; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M

    2015-01-01

    For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order $O(a)$ effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.

  7. Axial instability of rotating relativistic stars

    CERN Document Server

    Friedman, J L; Friedman, John L.; Morsink, Sharon M.

    1998-01-01

    Perturbations of rotating relativistic stars can be classified by their behavior under parity. For axial perturbations (r-modes), initial data with negative canonical energy is found with angular dependence $e^{im\\phi}$ for all values of $m\\geq 2$ and for arbitrarily slow rotation. This implies instability (or marginal stability) of such perturbations for rotating perfect fluids. This low $m$-instability is strikingly different from the instability to polar perturbations, which sets in first for large values of $m$. The timescale for the axial instability appears, for small angular velocity $\\Omega$, to be proportional to a high power of $\\Omega$. As in the case of polar modes, viscosity will again presumably enforce stability except for hot, rapidly rotating neutron stars. This work complements Andersson's numerical investigation of axial modes in slowly rotating stars.

  8. The axial distribution of reactivity coefficients

    International Nuclear Information System (INIS)

    The purpose of the present work is to investigate the correlation of the axial distributions of the different reactivity coefficients with the neutron flux and the neutron flux squared. Calculations were carried out for the Zion Unit 2 PWR. Reactivity coefficients, forward fluxes and adjoint fluxes were all computed and correlations obtained. The core length was divided into 7 axial regions in order to obtain the effect on reactivity in the reactor as a whole of changing the cross sections in each axial region in turn. The parameters chosen for change were coolant density, coolant temperature and fuel temperature. The results appear to bear out our original hypothesis that the reactivity coefficient profiles have a higher positive correlation with the total flux squared profile than with the linear flux profile. (authors). 5 refs., 2 figs

  9. PSEUDO EXCITATION METHOD OF DIRECT SOLVING GROUND MOTION EQUATION OF MULTI-DIMENSIONAL AND MULTI-SUPPORT EXCITATION%直接求解多维多点地震动方程的虚拟激励法

    Institute of Scientific and Technical Information of China (English)

    贾宏宇; 郑史雄

    2013-01-01

    为解决传统的虚拟激励法多维多点虚拟激励荷载输入繁琐及在通用有限元软件中实现困难的问题,通过在质量矩阵上“置大数”的方法快速实现地震动输入,更快捷地将一维多点激励扩展到多维多点虚拟激励,运用绝对位移直接求解运动方程.相比传统的多维多点虚拟激励法,不必将绝对位移分解为拟静力位移项和动力相对位移项,避免了求解静力影响矩阵的繁琐,能更高效的实现多自由度大跨结构多维多点虚拟激励荷载在通用有限元软件中的输入与分析,不需要编制专门的计算程序,使得虚拟激励法在理论上和工程中的应用得到进一步的拓展.%This work is concerned with the input and implementation issues of the pseudo load in the finite element software for a pseudo excitation method. The input of ground motion is achieved more expediently through a "place large numbers" approach. Therefore, the pseudo excitation is swiftly extended from one-dimensional and multi-supports (ODMS) to multi-dimensional and multi-supports (MDMS), and the motion equations are solved directly through absolute displacement. Compared to the traditional MDMS pseudo excitation method, the directly-solving method through the absolute displacement does not decompose the absolute displacement into quasi-static and dynamic relative displacement items, avoids solving the static influence matrix, more efficiently realizes the input of pseudo excitation loading and the analysis of multiple-degree-of-freedom structures in the finite element software, and does not require a special program. The pseudo excitation method is further expanded in theory and engineering applications.

  10. Classical Motion

    CERN Document Server

    Mould, R A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previously given rules support all of these cases. Key Words: brain states, conscious observer, detector, measurement, probability current, state reduction, von Neumann, wave collapse.

  11. Selection rules and ratios for axial couplings

    CERN Document Server

    Buccella, F; Pugliese, A; Sorace, E

    1972-01-01

    The predictions for the axial couplings following from the use of the mixing operator U(Z), previously introduced to tilt the axial charges of SU/sub 6/ in the physical ones, are studied. The quantum number (-1)/sup L+L3/, where L and L/sub 3/ are the O/sub 3/ angular momentum and its third component, is shown to be conserved. From the properties of Z further predictions can be achieved as the D/F= /sup 3///sub 2/ for the /sup 1///sub 2//sup +/ baryon octet in general agreement with experiment. (14 refs).

  12. Axial Stiffness of Multiwalled Carbon Nanotubes

    OpenAIRE

    Zavalniuk, Vladimir

    2011-01-01

    The axial stiffness of MWCNTs is demonstrated to be determined only by several external shells (usually 3-5 and up to 15 for the extremely large nanotubes and high elongations) what is in a good agreement with experimentally observed inverse relation between the radius and Young modulus (i.e., stiffness) of MWCNTs. This result is a consequence of the van der Waals intershell interaction. The interpolating formula is obtained for the actual axial stiffness of MWCNT as a function of the tube ex...

  13. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  14. Motion of rotor supported on aerodynamic bearings

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Šimek, J.; Kozánek, Jan

    Praha : Institute of Thermomechanics AS CR, v. v. i., 2007 - (Zolotarev, I.), s. 235-236 ISBN 978-80-87012-06-2. [Engineering Mechanics 2007: national conference with international participation. Svratka (CZ), 14.05.2007-17.05.2007] R&D Projects: GA ČR GA101/06/1787 Institutional research plan: CEZ:AV0Z20760514 Keywords : rotor dynamics * aerodynamic bearing * tilting pad s Subject RIV: BI - Acoustics

  15. STABILITY AND LOCAL BIFURCATION IN A SIMPLY-SUPPORTED BEAM CARRYING A MOVING MASS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stability and local bifurcation of a simply-supported flexible beam (Bernoulli-Euler type) carrying a moving mass and subjected to harmonic axial excitation are investigated.In the theoretical analysis, the partial differential equation of motion with the fifth-order nonlinear term is solved using the method of multiple scales (a perturbation technique). The stability and local bifurcation of the beam are analyzed for 1/2 sub harmonic resonance. The results show that some of the parameters, especially the velocity of moving mass and external excitation, affect the local bifurcation significantly. Therefore, these parameters play important roles in the system stability.

  16. Breast motion asymmetry during running

    OpenAIRE

    Mills, Chris; Risius, Debbie; Scurr, Joanna

    2015-01-01

    Breast asymmetry is common in females, despite a similar driving force; dynamic activity may result in asymmetrical breast motion. This preliminary study investigated how breast categorisation (left/right or dominant/non-dominant) may affect breast support recommendations and its relationship with breast pain. Ten females ran on a treadmill at 10 kph in three breast supports (no bra, everyday bra, sports bra). Five reflective markers on the thorax and nipples were tracked using infrared camer...

  17. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  18. Knowledge Based Design of Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Dinesh kumar.R

    2015-05-01

    Full Text Available In the aerospace industry with highly competitive market the time to design and delivery is shortening every day. Pressure on delivering robust product with cost economy is in demand in each development. Even though technology is older, it is new for each customer requirement and highly non-liner to fit one in another place. Gas turbine is considered one of a complex design in the aircraft system. It involves experts to be grouped with designers of various segments to arrive the best output. The time is crucial to achieve a best design and it needs knowledge automation incorporated with CAD/CAE tools. In the present work an innovative idea in the form of Knowledge Based Engineering for axial compressor is proposed, this includes the fundamental design of axial compressor integrated with artificial intelligence in the form of knowledge capturing and programmed with high level language (Visual Basis.Net and embedded into CATIA v5. This KBE frame work eases out the design and modeling of axial compressor design and produces 3D modeling for further flow simulation with fluid dynamic in Ansys-Fluent. Most of the aerospace components are developed through simulation driven product development and in this case it is established for axial compressor.

  19. The Axial Current in Electromagnetic Interaction

    CERN Document Server

    Cheoun, M K; Cheon, I T; Cheoun, Myung Ki; Cheon, Il-Tong

    1998-01-01

    We discussed the possibility that the charged axial currents of matter fields could be non-conserved in electromagnetic interaction at $O(e) $ order. It means that chiral symmetry is broken explicitly by electromagnetic interaction. This explicit symmetry breaking of chiral symmetry is shown to lead the mass differences between the charged and neutral particles of matter fields.

  20. Constant-axial-intensity nondiffracting beam.

    Science.gov (United States)

    Cox, A J; D'Anna, J

    1992-02-15

    Numerical solutions of the Fresnel diffraction integral with various apodizing filter functions are used to indicate that a so-called nondiffracting beam can be produced that maintains a constant spot size and constant axial intensity over a considerable range, approximately 30 m in our example. PMID:19784285

  1. Axially symmetric SU(3) gravitating skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidou, Theodora [Maths Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: ti3@auth.gr; Kleihaus, Burkhard [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)]. E-mail: kleihaus@theorie.physik.uni-oldenburg.de; Zakrzewski, Wojtek [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)]. E-mail: w.j.zakrzewski@durham.ac.uk

    2004-10-21

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  2. Axially symmetric SU(3) Gravitating Skyrmions

    CERN Document Server

    Ioannidou, T A; Zakrzewski, W J; Ioannidou, Theodora; Kleihaus, Burkhard; Zakrzewski, Wojtek

    2004-01-01

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [1]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail.

  3. Axially symmetric SU(3) gravitating skyrmions

    International Nuclear Information System (INIS)

    Axially symmetric gravitating multi-skyrmion configurations are obtained using the harmonic map ansatz introduced in [J. Math. Phys. 40 (1999) 6353]. In particular, the effect of gravity on the energy and baryon densities of the SU(3) non-gravitating multi-skyrmion configurations is studied in detail

  4. Primitive axial algebras of Jordan type

    OpenAIRE

    Hall, J I; Rehren, F; Shpectorov, S.

    2014-01-01

    An axial algebra over the field $\\mathbb F$ is a commutative algebra generated by idempotents whose adjoint action has multiplicity-free minimal polynomial. For semisimple associative algebras this leads to sums of copies of $\\mathbb F$. Here we consider the first nonassociative case, where adjoint minimal polynomials divide $(x-1)x(x-\\eta)$ for fixed $0\

  5. Mixed lubrication analysis for spherical valve plate in piston rod driving type bent-axial-type axial piston pump. 1st Report. Mathematical model; Rod kudo hoshiki shajikushiki piston pump ni okeru kyumen benban no kongo junkatsu kaiseki. 1. Sugaku model

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K. [Fukui National College of Technology, Fukui (Japan); Kyogoku, K.; Momozono, S.; Nakahara, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1999-06-25

    In order to investigate lubrication characteristics between rotor and spherical valve plate, a mathematical model of rotor motion has been presented for a piston rod driving type bent-axis-type axial piston pump. The forces and the moments acting on the rotor through the piston rod have been derived from geometric analysis of rotor driving mechanism with the piston rod. An analysis model on mixed lubrication between the rotor and the spherical valve plate has been shown using Average-Flow-Model by Patir-Cheng and the contact theory by Greenwood-Tripp, respectively. In addition, bearing part between the rotor and shaft, supporting element of the rotor, has been regarded as squeeze film bearing. The simulation for the lubrication characteristics, such as minimum film thickness, its occurring position and friction loss between the rotor and the spherical valve plate, will be demonstrated in the paper, part 2. (author)

  6. Spontaneous motion of an elliptic camphor particle

    Science.gov (United States)

    Kitahata, Hiroyuki; Iida, Keita; Nagayama, Masaharu

    2013-01-01

    The coupling between deformation and motion in a self-propelled system has attracted broader interest. In the present study, we consider an elliptic camphor particle for investigating the effect of particle shape on spontaneous motion. It is concluded that the symmetric spatial distribution of camphor molecules at the water surface becomes unstable first in the direction of a short axis, which induces the camphor disk motion in this direction. Experimental results also support the theoretical analysis. From the present results, we suggest that when an elliptic particle supplies surface-active molecules to the water surface, the particle can exhibit translational motion only in the short-axis direction.

  7. Canonical active Brownian motion

    OpenAIRE

    Gluck, Alexander; Huffel, Helmuth; Ilijic, Sasa

    2008-01-01

    Active Brownian motion is the complex motion of active Brownian particles. They are active in the sense that they can transform their internal energy into energy of motion and thus create complex motion patterns. Theories of active Brownian motion so far imposed couplings between the internal energy and the kinetic energy of the system. We investigate how this idea can be naturally taken further to include also couplings to the potential energy, which finally leads to a general theory of cano...

  8. Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts

    International Nuclear Information System (INIS)

    The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments

  9. Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dingyu; Xiu, Shixin, E-mail: xsx@mail.xjtu.edu.cn; Wang, Yi; Liu, Gang [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Yali; Bi, Dongli [Shaanxi Baoguang Vacuum Electric Device Co., Ltd., 53 Xibao Road, Baoji 721006 (China)

    2015-10-15

    The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments.

  10. Turbine nozzle/nozzle support structure

    Science.gov (United States)

    Boyd, Gary L.; Shaffer, James E.

    1997-01-01

    An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.

  11. Observation of a New Narrow Axial-Vector Meson alpha(1)(1420)

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Akhunzyanov, R.; Alexeev, M.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlák, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Chang, W.-C.; Chiosso, M.; Choi, I.; Chung, S. U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, E.; Hinterberger, F.; Horikawa, N.; d´Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jarý, V.; Jörg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.; Marchand, C.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W. D.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schmeing, S.; Schmidt, K.; Schlüter, T.; Selyunin, A.; Schmieden, H.; Schönning, K.; Schopferer, S.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Šulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2015-01-01

    Roč. 115, č. 8 (2015), 082001:1-6. ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : COMPASS * pion-nucleon scattering * hadron spectroscopy * light-meson spectrum * axial-vector mesons * exotic mesons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.512, year: 2014

  12. The amplitude of fluid-induced vibration of cylinders in axial flow

    International Nuclear Information System (INIS)

    This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)

  13. Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference in...

  14. Permeability changes of coal cores and briquettes under tri-axial stress conditions

    Czech Academy of Sciences Publication Activity Database

    Wierzbicki, M.; Konečný, Pavel; Kožušníková, Alena

    2014-01-01

    Roč. 59, č. 4 (2014), s. 1129-1138. ISSN 0860-7001 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : coal * gas permeability * tri-axial stress * coal briquettes Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.608, year: 2013 http://mining.archives.pl

  15. Axial flow positive displacement worm compressor

    Science.gov (United States)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement compressor has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first and second sections of a compressor assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first and second twist slopes in the first and second sections respectively. The first twist slopes are less than the second twist slopes. An engine including the compressor has in downstream serial flow relationship from the compressor a combustor and a high pressure turbine drivingly connected to the compressor by a high pressure shaft.

  16. Proto-I axial-focusing experiments

    International Nuclear Information System (INIS)

    The time-integrated axial (z) focus of the 4.5-cm-radius Proto I (1.5 MV, 500 kA) radial proton diode is presently limited to approx. 3 mm FWHM. This result is obtained with current neutralized beam transport in a gas cell with 6 Torr argon. If the vertical local divergence were the same (10 or less) as the horizontal divergence, the local divergence alone would produce a 1.5 mm FWHM focus. The axial focal size is evidently limited by time-dependent effects. These are studied by observing the beam incident upon various targets with two time-resolved pinhole cameras. The first camera observes Rutherford-scattered protons from gold targets with an array of 11 siicon PIN detectors. The second camera observes K/sub α/-fluorescence from aluminum targets with 4 independently-gated microchannel plates imaging tubes

  17. Microwave axial dielectric properties of carbon fiber

    Science.gov (United States)

    Hong, Wen; Xiao, Peng; Luo, Heng; Li, Zhuan

    2015-10-01

    Randomly distributed carbon fibers (CFs) reinforced epoxy resin composites are prepared by the pouring method, the dielectric properties of CF composites with different fiber content and length have been performed in the frequency range from 8.2 to 12.4 GHz. The complex permittivity of the composite increases with the fiber length, which is attributed to the decrease of depolarization field, and increases with the volume fraction, which is attributed to the increase of polarization. A formula, based on the theory of Reynolds-Hugh, is proposed to calculate the effective permittivity of CF composites, and validated by the experiments. The proposed formula is further applied to derive the axial permittivity of CF and analyze the effect of fiber length on the axial permittivity.

  18. Direct optical nanoscopy with axially localized detection

    CERN Document Server

    Bourg, N; Dupuis, G; Barroca, T; Bon, P; Lécart, S; Fort, E; Lévêque-Fort, S

    2014-01-01

    Evanescent light excitation is widely used in super-resolution fluorescence microscopy to confine light and reduce background noise. Herein we propose a method of exploiting evanescent light in the context of emission. When a fluorophore is located in close proximity to a medium with a higher refractive index, its near-field component is converted into light that propagates beyond the critical angle. This so-called Supercritical Angle Fluorescence (SAF) can be captured using a hig-NA objective and used to determine the axial position of the fluorophore with nanometer precision. We introduce a new technique for 3D nanoscopy that combines direct STochastic Optical Reconstruction Microscopy (dSTORM) imaging with dedicated detection of SAF emission. We demonstrate that our approach of a Direct Optical Nanoscopy with Axially Localized Detection (DONALD) yields a typical isotropic 3D localization precision of 20 nm.

  19. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  20. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  1. On the problem of axial anomaly in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    The explicit relation is found between the axial current obeying the Adler-Bardeen theorem and the supersymmetric one belonging to a supermultiplet. It is shown that the axial and superconformal anomalies are consistent in all orders of perturbation theory

  2. Multimode interaction in axially excited cylindrical shells

    OpenAIRE

    Silva F. M. A.; Rodrigues L.; Gonçalves P. B.; Del Prado Z. J. G. N

    2014-01-01

    Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural fr...

  3. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  4. Axial Flow Characteristics within a Screw Compressor

    OpenAIRE

    Nouri, J. M.; Guerrato, D.; Stosic, N.; Arcoumanis, C.

    2008-01-01

    Angle-resolved axial mean flow and turbulence characteristics were measured inside the working chamber of the male rotor of a screw compressor with high spatial and temporal resolution using laser Doppler velocimetry at two rotor speeds, 750 and 1000 rpm. Measurements were performed through a transparent window near the discharge port to allow the application of various laser techniques. The results showed that an angular resolution up to 2° could fully describe the flow variation inside the ...

  5. Axial force measurement for esophageal function testing

    OpenAIRE

    Gravesen, Flemming H; Funch-Jensen, Peter; Gregersen, Hans; Drewes, Asbjørn Mohr

    2009-01-01

    The esophagus serves to transport food and fluid from the pharynx to the stomach. Manometry has been the “golden standard” for the diagnosis of esophageal motility diseases for many decades. Hence, esophageal function is normally evaluated by means of manometry even though it reflects the squeeze force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure o...

  6. Axially evoked postural reflexes: influence of task

    OpenAIRE

    Govender, Sendhil; Dennis, Danielle L.; Colebatch, James G.

    2014-01-01

    Postural reflexes were recorded in healthy subjects (n = 17) using brief axial accelerations and tap stimuli applied at the vertebra prominens (C7) and manubrium sterni. Short latency (SL) responses were recorded from the soleus, hamstrings and tibialis anterior muscles and expressed as a percentage of the background EMG prior to stimulus onset. In the majority of postural conditions tested, subjects were recorded standing erect and leaning forward with their feet together. The SL response wa...

  7. Numerical simulation of an axial blood pump.

    Science.gov (United States)

    Chua, Leok Poh; Su, Boyang; Lim, Tau Meng; Zhou, Tongming

    2007-07-01

    The axial blood pump with a magnetically suspended impeller is superior to other artificial blood pumps because of its small size. In this article, the distributions of velocity, path line, pressure, and shear stress in the straightener, the rotor, and the diffuser of the axial blood pump, as well as the gap zone were obtained using the commercial software, Fluent (version 6.2). The main focus was on the flow field of the blood pump. The numerical results showed that the axial blood pump could produce 5.14 L/min of blood at 100 mm Hg through the outlet when rotating at 11,000 rpm. However, there was a leakage flow of 1.06 L/min in the gap between the rotor cylinder and the pump housing, and thus the overall flow rate the impeller could generate was 6.2 L/min. The numerical results showed that 75% of the scalar shear stresses (SSs) were less than 250 Pa, and 10% were higher than 500 Pa within the whole pump. The high SS region appeared around the blade tip where a large variation of velocity direction and magnitude was found, which might be due to the steep angle variation at the blade tip. Because the exposure time of the blood cell at the high SS region within the pump was relatively short, it might not cause serious damage to the blood cells, but the improvement of blade profile should be considered in the future design of the axial pump. PMID:17584481

  8. The window of opportunity: a relevant concept for axial spondyloarthritis

    OpenAIRE

    Robinson, Philip C.; Brown, Matthew A.

    2014-01-01

    The window of opportunity is a concept critical to rheumatoid arthritis treatment. Early treatment changes the outcome of rheumatoid arthritis treatment, in that response rates are higher with earlier disease-modifying anti-rheumatic drug treatment and damage is substantially reduced. Axial spondyloarthritis is an inflammatory axial disease encompassing both nonradiographic axial spondyloarthritis and established ankylosing spondylitis. In axial spondyloarthritis, studies of magnetic resonanc...

  9. Extra-Axial Medulloblastoma in the Cerebellar Hemisphere

    OpenAIRE

    Chung, Eui Jin; Jeun, Sin Soo

    2014-01-01

    Extra-axial medulloblastoma is a rare phenomenon. We report a case in a 5-year-old boy who presented with nausea, vomiting, and gait disturbance. He was treated with total removal of the tumor. This is the first case of an extra-axially located medulloblastoma occurring in the cerebellar hemisphere posteriolateral to the cerebellopontine angle in Korea. Although the extra-axial occurrence of medulloblastoma is rare, it should be considered in the differential diagnosis of extra-axial lesions ...

  10. FREE NON-LINEAR VIBRATION OF AXIALLY MOVING BEAMS WITH FIXED ENDS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Liqun

    2005-01-01

    The free non-linear vibration of axially moving, elastic, and tensioned beams on fixed supports is investigated in this paper. Two types of non-linearity, namely, the differential type and integro-differential type, are analyzed. Approximate solutions are sought using the method of multiple scales. The contribution of non-linearity to the response increases with the axial speed,and grows most rapidly near the critical speed. It has been found that the differential type nonlinearity is stronger than the integro-differential type non-linearity by analyzing the non-linear effects on natural frequencies.

  11. A New Technique for Analysis of Static Eccentricity in Axial Flux Resolver

    Science.gov (United States)

    Tootoonchian, F.; Abbaszadeh, K.; Ardebili, M.

    2012-01-01

    Resolvers have been widely used in motion control systems as position sensors. This paper deals with the analysis of Axial Flux Resolvers. Axial flux resolvers are a group of resolvers which can be used in high performance servomechanisms. The accuracy of resolver detected position is affected by errors. Some of these errors are caused by speed fluctuations, permeance ripples, unbalanced voltages, and eccentricity between rotor and stator. Among these errors the static eccentricity > and Lq values and then, the static eccentricity effect based on the developed model is studied. A novel algorithm is proposed for suppressing the eccentricity error. This method is based on analytical model and modern control fundamentals. In a comparison, simulation and experimental results show good agreement. Finally, the effect of air gap length, pole number and excitation voltage on position error of eccentric AFR is investigated, practically.

  12. Bending vibration of axially loaded Timoshenko beams with locally distributed Kelvin-Voigt damping

    Science.gov (United States)

    Chen, Wei-Ren

    2011-06-01

    Utilizing the Timoshenko beam theory and applying Hamilton's principle, the bending vibration equations of an axially loaded beam with locally distributed internal damping of the Kelvin-Voigt type are established. The partial differential equations of motion are then discretized into linear second-order ordinary differential equations based on a finite element method. A quadratic eigenvalue problem of a damped system is formed to determine the eigenfrequencies of the damped beams. The effects of the internal damping, sizes and locations of damped segment, axial load and restraint types on the damping and oscillating parts of the damped natural frequency are investigated. It is believed that the present study is valuable for better understanding the influence of various parameters of the damped beam on its vibration characteristics.

  13. Dynamics of Axial Symmetric System in Self-Interacting Brans-Dicke Gravity

    CERN Document Server

    Sharif, M

    2016-01-01

    This paper investigates dynamics of axial reflection symmetric model in self-interacting Brans-Dicke gravity for anisotropic fluid. We formulate hydrodynamical equations and discuss oscillations using time-dependent perturbation for both spin as well as spin-independent cases. The expressions of frequency, total energy density and equation of motion of oscillating model are obtained. We study instability of oscillating models in weak approximations. It is found that the oscillations and stability of the model depend upon the dark energy source along with anisotropy and reflection effects. We conclude that the axial reflection system remains stable for stiffness parameter $\\Gamma=1$, collapses for $\\Gamma>1$ and becomes unstable for $0<\\Gamma<1$.

  14. Vibrational power flow of a finite cylindrical shell with discrete axial stiffeners

    Institute of Scientific and Technical Information of China (English)

    LIU Yanmei; HUANG Xieqing

    2002-01-01

    The structural wave power flows in an elastic finite cylindrical shell with discrete axial stiffeners are studied when a simple harmonic force is applied on it. The equations of motion of the shell are derived by using Flugge equation and Hamilton variational principle,and the responses of the shell are obtained. By use of the basic definition of the power flow, the characteristics of axial propagation of the power flow supplied by input structure and carried by different shell internal forces of a forced shell are investigated. The effects of parameters, such as relative location of driving force and stringer, driving force type and structural damping on the vibrational power flows in the shell, are discussed. These provide some theoretical bases for vibration control and noise reduction of this kind of structure.

  15. Resolution of axial anomaly problem in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    The explicit form of transformation is found which converters the operators, involved in axial anomaly, from the renormalization scheme obeying the Adler-BaAdeen theorem to a supersymmetric one. It is shown that there is no contradiction between axial current and superconformal anomalies. In supersymmetric scheme the axial current and its anomaly belong to the corresponding supermultiplets

  16. Influence of Physical and Geometrical Uncertainties in the Parametric Instability Load of an Axially Excited Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Frederico Martins Alves da Silva

    2015-01-01

    Full Text Available This work investigates the influence of Young’s modulus, shells thickness, and geometrical imperfection uncertainties on the parametric instability loads of simply supported axially excited cylindrical shells. The Donnell nonlinear shallow shell theory is used for the displacement field of the cylindrical shell and the parameters under investigation are considered as uncertain parameters with a known probability density function in the equilibrium equation. The uncertainties are discretized as Hermite-Chaos polynomials together with the Galerkin stochastic procedure that discretizes the stochastic equation in a set of deterministic equations of motion. Then, a general expression for the transversal displacement is obtained by a perturbation procedure which identifies all nonlinear modes that couple with the linear modes. So, a particular solution is selected which ensures the convergence of the response up to very large deflections. Applying the standard Galerkin method, a discrete system in time domain that considers the uncertainties is obtained and solved by fourth-order Runge-Kutta method. Several numerical strategies are used to study the nonlinear behavior of the shell considering the uncertainties in the parameters. Special attention is given to the influence of the uncertainties on the parametric instability and time response, showing that the Hermite-Chaos polynomial is a good numerical tool.

  17. A new strategy of axial power distribution control based on three axial offsets concept

    International Nuclear Information System (INIS)

    We have proposed a very simple control procedure for axial xenon oscillation control based on a characteristic trajectory. The trajectory is drawn by three offsets of power distributions, namely, AOp, AOi and AOx. They are defined as the offset of axial power distribution, the offset of the power distribution under which the current iodine distribution is obtained as the equilibrium and that for xenon distribution, respectively. When these offsets are plotted on X-Y plane for (AOp-AOx, AOi-AOx) the trajectory draws a quite characteristic ellipse (or an elliptic spiral). On the other hands, Constant Axial Offset Control (CAOC) procedure is adopted as axial power distribution control strategy during both base load and load following operations in domestic PWRs. In the previous paper, we have presented an innovative procedure of axial power distribution control during load following in PWRs based on this trajectory such that the AOp-AOx is to be controlled to zero when the value deviates the pre-determined limiting values. In this paper we propose a modified control strategy to get more stability of axial power distributions. In this strategy, we control the trajectory to be close to the major axis of the ellipse when the power distribution reaches the limiting values. In other words, the plot is not controlled only to reduce AOp-AOx but also AOi-AOx is taken into account at the same time. It is known that when the plot is controlled to the major axis, it means that the point gives the peak position of axial xenon oscillation. Therefore xenon oscillation will not increase its amplitude any more. Thus more stable axial power distribution control is attained. This kind of design concept is quite important especially for the future PWRs with elongated fuel length and longer core life. Because in a longer effective core and also the longer core life, it has been known that the stability of axial xenon oscillation becomes more unstable. In this paper, some simulation

  18. Motion motif extraction from high-dimensional motion information

    OpenAIRE

    Araki, Yutaka; Arita, Daisaku; Taniguchi, Rin-ichiro

    2006-01-01

    Recently, there are a lot of researches on virtual environments for distant human communication. Real-time Human Proxy (RHP), which is a concept for such a virtual environment, has been proposed. For realizing natural communication by RHP, it is necessary to recognize human actions essential for human communication. However, it is difficult for system developers to decide which human actions should be recognized. For supporting the decision, we propose a human motion analysis method which aut...

  19. NUMERICAL PREDICTION OF COMPOSITE BEAM SUBJECTED TO COMBINED NEGATIVE BENDING AND AXIAL TENSION

    Directory of Open Access Journals (Sweden)

    MAHESAN BAVAN

    2013-08-01

    Full Text Available The present study has investigated the finite element method (FEM techniques of composite beam subjected to combined axial tension and negative bending. The negative bending regions of composite beams are influenced by worsen failures due to various levels of axial tensile loads on steel section especially in the regions near internal supports. Three dimensional solid FEM model was developed to accurately predict the unfavourable phenomenon of cracking of concrete and compression of steel in the negative bending regions of composite beam due to axial tensile loads. The prediction of quasi-static solution was extensively analysed with various deformation speeds and energy stabilities. The FEM model was then validated with existing experimental data. Reasonable agreements were observed between the results of FEM model and experimental analysis in the combination of vertical-axial forces and failure modes on ultimate limit state behaviour. The local failure modes known as shear studs failure, excess yielding on steel beam and crushing on concrete were completely verified by extensive similarity between the numerical and experimental results. Finally, a proper way of modelling techniques for large FEM models by considering uncertainties of material behaviour due to biaxial loadings and complex contact interactions is discussed. Further, the model is suggested for the limit state prediction of composite beam with calibrating necessary degree of the combined axial loads.

  20. Internal resonance of axially moving laminated circular cylindrical shells

    Science.gov (United States)

    Wang, Yan Qing; Liang, Li; Guo, Xing Hui

    2013-11-01

    The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.

  1. Neutron Star Asteroseismology. Axial Crust Oscillations in the Cowling Approximation

    CERN Document Server

    Samuelsson, L; Samuelsson, Lars; Andersson, Nils

    2006-01-01

    Recent observations of quasi-periodic oscillations in the aftermath of giant flares in soft gamma-ray repeaters suggest a close coupling between the seismic motion of the crust after a major quake and the modes of oscillations in a magnetar. In this paper we consider the purely elastic modes of oscillation in the crust of a neutron star in the relativistic Cowling approximation (disregarding any magnetic field). We determine the axial crust modes for a large set of stellar models, using a state-of-the-art crust equation of state and a wide range of core masses and radii. We also devise useful approximate formulae for the mode-frequencies. We show that the relative crust thickness is well described by a function of the compactness of the star and a parameter describing the compressibility of the crust only. Considering the observational data for SGR 1900+14 and SGR 1806-20, we demonstrate how our results can be used to constrain the mass and radius of an oscillating neutron star.

  2. Compressible motion fields

    OpenAIRE

    Ottaviano, Giuseppe; Kohli, Pushmeet

    2013-01-01

    Traditional video compression methods obtain a compact representation for image frames by computing coarse motion fields defined on patches of pixels called blocks, in order to compensate for the motion in the scene across frames. This piecewise constant approximation makes the motion field efficiently encodable, but it introduces block artifacts in the warped image frame. In this paper, we address the problem of estimating dense motion fields that, while accurately predicting one frame from ...

  3. Axially-symmetric Neutron stars: Implication of rapid rotation

    CERN Document Server

    Sharma, B K

    2009-01-01

    Models of relativistic rotating neutron star composed of hyperon rich matter is constructed in the framework of an effective field theory in the mean-field approach. The gross properties of compact star is calculated at both static and the mass-shedding limit in the axially symmetric basis. The effect of appearance and abundance of hyperons on equation of state of dense matter and stellar properties is lineated with particular emphasis on the underlying nuclear interactions. We find that the models can explain fast rotations, which supports the existence of millisecond pulsars. An important offshoot of the present investigation is that, irrespective of the model parameters and interaction taken, the star seems to sustain faster rotations (an increase in rotational frequency up to $\\approx$ 50%) without any further deformation.

  4. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  5. CFD Simulation of Casing Treatment of Axial Flow Compressors

    Science.gov (United States)

    DeWitt, Kenneth

    2005-01-01

    A computational study is carried out to understand the physical mechanism responsible for the improvement in stall margin of an axial flow rotor due to the circumferential casing grooves. It is shown that the computational tool used predicts an increase in operating range of the rotor when casing grooves are present. A budget of the axial momentum equation is carried out at the rotor casing in the tip gap in order to uncover the physical process behind this stall margin improvement. It is shown that for the smooth casing the net axial pressure force . However in the presence of casing grooves the net axial shear stress force acting at the casing is augmented by the axial force due to the radial transport of axial momentum, which occurs across the grooves and power stream interface. This additional force adds to the net axial viscous sheer force and thus leads to an increase in the stall margin of the rotor.

  6. A free-breathing lung motion model

    Science.gov (United States)

    Zhao, Tianyu

    Lung cancer has been the leading cause of cancer deaths for decades in the United States. Although radiotherapy is one of the most effective treatments, side effects from error in delivery of radiation due to organ motion during breathing remain a significant issue. To compensate the breathing motion during the treatment, a free breathing lung motion model, x= x0+αv+betaf, was developed and discussed, where x is the position of a piece of tissue located at reference position x0. α is a parameter which characterizes the motion due to local air filling (motion as a function of tidal volume) and beta is the parameter that accounts for the motion due to the imbalance of dynamical stress distributions during inspiration and exhalation which cause lung motion hysteresis (motion as a function of airflow). The parameters α and beta together provide a quantitative characterization of breathing motion that inherently includes the complex hysteresis interplay. The theoretical foundation of the model was built by investigating the stress distribution inside of a lung and the biomechanical properties of the lung tissues. Accuracy of the model was investigated by using 49 free-breathing patient data sets. Applications of the model in localizing lung cancer, monitoring radiation damage and suppressing artifacts in free-breathing PET images were also discussed. This work supported in part by NIHR01CA096679 and NIHR01CA116712.

  7. Plasma flow crisis and limiting electron temperature in a vacuum arc and in axial magnetic field

    International Nuclear Information System (INIS)

    One studied possibility of supersonic motion of cathode plasma in a weak-current vacuum arc placed in axial magnetic field. Increase of electron temperature is shown to result inevitably in reduction of plasma speed up to sonic speed, that is, flow crisis. One derived dependence of the boundary length of plasma stationary flow on magnetic field. The maximum attainable electron temperature of plasma was determined to be governed by ion initial energy and to be equal to the triple value of electron temperature within cathode spot range

  8. Drop size selection in axially heated co-axial fiber capillary instability

    Science.gov (United States)

    Mowlavi, Saviz; Brun, Pierre-Thomas; Gallaire, Francois

    2015-11-01

    We analyze the sphere size selection mechanism in silicon-in-silica sphere formation through the application of an external axial thermal gradient to a co-axial silicon-in-silica fiber (Gumennik et al., Nature Com., 2013). We first apply a convective/absolute stability analysis to the in-fibre capillary instability governing the sphere formation and demonstrate that the resulting wavelength selection predicts a finite but still too large wavelength. A global stability analysis is then pursued, which accounts for the spatial inhomogeneity of the base flow. F.G. acknowledges funding from ERC SimCoMiCs 280117.

  9. Axial electron-channelling analysis of perovskite

    International Nuclear Information System (INIS)

    The orientation dependence of characteristic X-ray emission (the Borrmann effect) under near-zone-axis diffraction conditions has been used to identify the site preferences of strontium, zirconium and uranium impurities within a CaTiO3 (perovskite) host structure. As characteristic emission lines from these impurities occur at both higher and lower energies than the calcium or titanium K-shell excitations, effects of delocalization are clearly measureable, and are used as a tool in axial electron channeling or ALCHEMI analysis. It is found that strontium and uranium strongly partition into calcium sites, whereas zirconium occupies titanium sites. (author)

  10. Single Band Helical Antenna in Axial Mode

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2012-11-01

    Full Text Available Helical antennas have been widely used in a various useful applications, due to their low weight and low profile conformability, easy and cheap realization.Radiation properties of this antenna are examined both theoretically and experimentally. In this paper, an attempt has been made to investigate new helical antenna structure for Applications. CST MWS Software is used for the simulation and design calculations of the helical antennas. The axial ratio, return loss, VSWR, Directivity, gain, radiation pattern is evaluated. Using CST MWS simulation software proposed antenna is designed/simulated and optimized. The antenna exhibits a single band from 0 GHz to 3 GHz for GPS and several satellite applications

  11. Resonances in axially symmetric dielectric objects

    CERN Document Server

    Helsing, Johan

    2016-01-01

    A high-order convergent and robust numerical solver is constructed and used to find complex eigenwavenumbers and electromagnetic eigenfields of dielectric objects with axial symmetry. The solver is based on Fourier--Nystr\\"om discretization of M\\"uller's combined integral equations for the transmission problem and can be applied to demanding resonance problems at microwave, terahertz, and optical wavelengths. High achievable accuracy, even at very high wavenumbers, makes the solver ideal for benchmarking and for assessing the performance of general purpose commercial software.

  12. Modeling coupled bending, axial, and torsional vibrations of a CANDU fuel rod subjected to multiple frictional contact constraints

    International Nuclear Information System (INIS)

    In this paper, a finite element based dynamic model is presented for bending, axial, and torsional vibrations of an outer CANDU fuel element subjected to multiple unilateral frictional contact (MUFC) constraints. The Bozzak-Newmark relaxation-integration scheme is used to discretize the equations of motion in the time domain. At a time step, equations of state of the fuel element with MUFC constraints reduce to a linear complementarity problem (LCP). Results are compared with those available in the literature. Good agreement is achieved. The 2D sliding and stiction motion of a fuel element at points of contact is obtained for harmonic excitations. (author)

  13. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algo- rithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  14. Multivariate respiratory motion prediction

    International Nuclear Information System (INIS)

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation. (paper)

  15. Multivariate respiratory motion prediction

    Science.gov (United States)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  16. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  17. Exact analytic solutions for the rotation of an axially symmetric rigid body subjected to a constant torque

    Science.gov (United States)

    Romano, Marcello

    2008-08-01

    New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.

  18. Precision of working memory for visual motion sequences and transparent motion surfaces

    OpenAIRE

    Zokaei, N; Gorgoraptis, N.; Bahrami, B.; Bays, P.M.; Husain, M.

    2011-01-01

    Recent studies investigating working memory for location, colour and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously.

  19. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  20. Impact of ion motion on induced magnetization in a laser produced plasma

    International Nuclear Information System (INIS)

    The electron current will dominate over ion current in an electron ion plasma and hence the electron motion can significantly affect the production of axial magnetic field in a laser produced plasma. Analytically, it has been shown that, for high frequency laser (viz. Nd-glass laser of wavelength λ = 0.53 μm and power flux P = 1016 W/cm2), the self generated axial magnetic due to electron motion is 106 times greater than that of ion in an under dense plasma. But the case would be reversed if low frequency mode can be studied in the presence of ambient magnetic field. (Author)

  1. Novel Approach in Sensorless Speed Control of Salient Axial-Gap Self-Bearing Motor Using Extended Electromotive Force

    Science.gov (United States)

    Nguyen, Quang-Dich; Ueno, Satoshi

    Axial-gap self-bearing motor (AGBM) is an electrical combination of an axial flux motor and a thrust magnetic bearing, hence it can support rotation and magnetic levitation without any additional windings. The goal of this paper is utilization of the state observer to research a new capability of sensorless speed control of a salient AGBM. First, analytical and theoretical evaluation for a sensorless speed vector control of a salient AGBM is presented. The approach is based on the estimation of the extended electromotive force (EEMF) through a Luenberger Observer (LO) with help of reference stator voltages, measured stator currents and measured axial displacement. Then, experiment is implemented based on dSpace1104 with two three-phase inverters. The experimental results confirm that the AGBM can simultaneously produce levitation force and rotational torque. Moreover, speed and axial displacement can be independently controlled without speed sensor.

  2. Sympathetic cooling of molecular ion motion to the ground state

    OpenAIRE

    Rugango, Rene; Goeders, James E.; Dixon, Thomas H.; John M. Gray; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J.; Brown, Kenneth R.

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm...

  3. An analytical approach to predicting particle deposit by fouling in the axial compressor of the industrial gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Song, T.W.; Sohn, J.L.; Kim, T.S.; Kim, J.H.; Ro, S.T.

    2005-03-15

    The gas turbine performance deteriorates with increased operating hours. Fouling in the axial compressor is an important factor for the performance degradation of gas turbines. Airborne particles entering the compressor with the air adhere to the blade surface and result in the change of the blade shape, which directly influences the compressor performance. It is difficult to exactly understand the mechanism of compressor fouling because of its slow growth and different length scales of compressor blades. In this study, an analytical method to predict the particle motion in the axial compressor and the characteristics of particle deposition onto blade is proposed as an approach to investigating physical phenomena of fouling in the axial compressor of industrial gas turbines. Calculated results using the proposed method and comparison with measured data demonstrate the feasibility of the model. It was also found that design parameters of the axial compressor such as chord length, solidity, and number of stages are closely related to the fouling phenomena. Likewise, the particle size and patterns of particle distributions are also important factors related to fouling phenomena in the axial compressor. (Author)

  4. Axial vessel widening in arborescent monocots.

    Science.gov (United States)

    Petit, Giai; DeClerck, Fabrice A J; Carrer, Marco; Anfodillo, Tommaso

    2014-02-01

    Dicotyledons have evolved a strategy to compensate for the increase in hydraulic resistance to water transport with height growth by widening xylem conduits downwards. In monocots, the accumulation of hydraulic resistance with height should be similar, but the absence of secondary growth represents a strong limitation for the maintenance of xylem hydraulic efficiency during ontogeny. The hydraulic architecture of monocots has been studied but it is unclear how monocots arrange their axial vascular structure during ontogeny to compensate for increases in height. We measured the vessel lumina and estimated the hydraulic diameter (Dh) at different heights along the stem of two arborescent monocots, Bactris gasipaes (Kunth) and Guadua angustifolia (Kunth). For the former, we also estimated the variation in Dh along the leaf rachis. Hydraulic diameter increased basally from the stem apex to the base with a scaling exponent (b) in the range of those reported for dicot trees (b = 0.22 in B. gasipaes; b = 0.31 and 0.23 in G. angustifolia). In B. gasipaes, vessels decrease in Dh from the stem's centre towards the periphery, an opposite pattern compared with dicot trees. Along the leaf rachis, a pattern of increasing Dh basally was also found (b = 0.13). The hydraulic design of the monocots studied revealed an axial pattern of xylem conduits similar to those evolved by dicots to compensate and minimize the negative effect of root-to-leaf length on hydrodynamic resistance to water flow. PMID:24488857

  5. The failure of axially loaded steel columns

    International Nuclear Information System (INIS)

    Slender compression steel members fail by elastic bucking, and short compression members may be loaded until the steel yields. In the majority of usual situations, failure occurs by inelastic buckling after a portion of the cross section has yielded. Residual stresses are the primary cause of the nonlinear protion of the average stress strain curve of axially loaded compression members (huber and Beedle, 1954). A number of theories tackled the problem of inelastic bucking. The LRFD Code ended with adopting an empirical parabolic equation that is stitched to the Euler hyperbola at the column slenderness value of λ C =2 square root and is believed to provide a reasonable approximation for column strength curves. The analysis of steel sections used in this paper defines an explicit from of failure to define the failure load of axially loaded columns in the inelastic range. inelastic bucking is defined in terms of the elaSTIC bucking of transformed sections. Two examples are used to clarify the method of analysis that accounts for residual stresses. (author). 9 refs., 5 figs

  6. Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives.

    Science.gov (United States)

    Sarigul, Sevgi; Dogan, Ilknur

    2016-07-15

    Nonracemic axially chiral thiohydantoins were synthesized atroposelectively by the reaction of o-aryl isothiocyanates with amino acid ester salts in the presence of triethylamine (TEA). The synthesis of the nonaxially chiral derivatives, however, gave thiohydantoins racemized at C-5 of the heterocyclic ring. The micropreparatively resolved enantiomers of the nonaxially chiral derivatives from the racemic products were found to be optically stable under neutral conditions. On formation of the 5-methyl-3-arylthiohydantoin ring, bulky o-aryl substituents at N3 were found to suppress the C-5 racemization and in this way enabled the transfer of chirality from the α-amino acid to the products. The corresponding 5-isopropylthiohydantoins turned out to be more prone to racemization at C-5 during the ring formation. The isomer compositions of the synthesized axially chiral thiohydantoins have been determined through HPLC analyses with chiral stationary phases. In most cases a high prevalence of the P isomers over the M isomers has been obtained. The barriers to rotation determined around the Nsp(2)-Caryl chiral axis were found to be dependent upon the size of the o-halo aryl substituents. PMID:27322739

  7. Proton spin and baryon octet axial couplings

    International Nuclear Information System (INIS)

    Peripheral spin structure of the nucelon generated by the soft mesonic radiative corrections is studied within the light-cone perturbation theory. Starting with the tree-level SU(6) symmetry, we find a good description of the axial-vector couplings in β-decay of hyperons. We study the proton helicity flow from the baryonic core to the angular momentum of the pionic cloud. It is found that in the relativistic light-cone approach the spin-flip pattern is different from that in the coventional non-relativistic models. The axial-vector current matrix elements are shown to receive large corrections from beyond the conventional static limit. The important virtue of using the light-cone vertex functions of the meson-baryon Fock components of the proton is that the local gauge invariance and the energy-momentum sum rule are satisfied automatically. We infer the radius of the light-cone form factor from an analysis of the experimental data on the fragmentation of high-energy protons into nucleons and hyperons-the process dominated by stripping off the mesons of the meson-baryon Fock states. (orig.)

  8. Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics

    Institute of Scientific and Technical Information of China (English)

    Yuefang Wang; Lihua Huang; Xuetao Liu; Keren Wang

    2005-01-01

    The Hamiltonian dynamics is adopted to solve the eigenvalue problem for transverse vibrations of axially moving strings. With the explicit Hamiltonian function the canonical equation of the free vibration is derived. Non-singular modal functions are obtained through a linear, symplectic eigenvalue analysis, and the symplectic-type orthogonality conditions of modes are derived. Stability of the transverse motion is examined by means of analyzing the eigenvalues and their bifurcation, especially for strings transporting with the critical speed. It is pointed out that the motion of the string does not possess divergence instability at the critical speed due to the weak interaction between eigenvalue pairs. The expansion theorem is applied with the non-singular modal functions to solve the displacement response to free and forced vibrations. It is demonstrated that the modal functions can be used as the base functions for solving linear and nonlinear vibration problems.

  9. Report on the Dynamical Evolution of an Axially Symmetric Quasar Model

    Indian Academy of Sciences (India)

    N. J. Papadopoulos; N. D. Caranicolas

    2006-12-01

    The role of the angular momentum in the regular or chaotic character of motion in an axially symmetric quasar model is examined. It is found that, for a given value of the critical angular momentum , there are two values of the mass of the nucleus for which transition from regular to chaotic motion occurs. The [-] relationship shows a linear dependence for the time independent model and an exponential dependence for the evolving model. Both cases are explained using theoretical arguments together with some numerical evidence. The evolution of the orbits is studied, as mass is transported from the disk to the nucleus. The results are compared with the outcomes derived for galactic models with massive nuclei.

  10. Motion of relativistic particles in axially symmetric and perturbed magnetic fields in a tokamak

    NARCIS (Netherlands)

    de Rover, M.; Cardozo, N. J. L.; Montvai, A.

    1996-01-01

    An extensive comparison is given between an analytical theory for the computations of particle orbits of relativistic runaway electrons [M. de Rover et al., Phys. Plasmas 3, 4468 (1996)], and numerical simulations. A new numerical scheme is used for the computer simulations of guiding center orbits.

  11. Mind the gap - tip leakage vortex in axial turbines

    International Nuclear Information System (INIS)

    The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex

  12. Axial stress corrosion cracking forming method to metal tube

    International Nuclear Information System (INIS)

    Generally, it is more difficult in a metal tube, to intentionally cause a stress corrosion cracking in axial direction than in circumferential direction. In the present invention, a bevel is formed on a metal tube and welding is conducted in circumferential direction along the bevel, and welding is conducted in axial direction partially to the portion welded in circumferential direction. Namely, a bevel is formed in circumferential direction to an abutting portion of thick-walled metal tubes with each other, welding is conducted in circumferential direction along the bevel, and welding is conducted in axial direction partially to a portion welded in circumferential direction. With such procedures, since tensile stress in the circumferential direction is increased partially at a portion welded in axial direction, stress corrosion cracking is caused in axial direction at the portion. Then, stress corrosion cracking in axial direction can thus be formed on the thick-walled metal tube. (N.H.)

  13. Universal Axial Algebras and a Theorem of Sakuma

    OpenAIRE

    Hall, J I; Rehren, F; Shpectorov, S.

    2013-01-01

    In the first half of this paper, we define axial algebras: nonassociative commutative algebras generated by axes, that is, semisimple idempotents---the prototypical example of which is Griess' algebra [C85] for the Monster group. When multiplication of eigenspaces of axes is controlled by fusion rules, the structure of the axial algebra is determined to a large degree. We give a construction of the universal Frobenius axial algebra on $n$ generators with a specified fusion rules, of which all...

  14. Composite Axial Flow Propulsor for Small Aircraft

    Directory of Open Access Journals (Sweden)

    R. Poul

    2005-01-01

    Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail. 

  15. Axially symmetric static sources of gravitational field

    CERN Document Server

    Hernandez-Pastora, J L; Martin, J

    2016-01-01

    A general procedure to find static and axially symmetric, interior solutions to the Einstein equations is presented. All the so obtained solutions, verify the energy conditions for a wide range of values of the parameters, and match smoothly to some exterior solution of the Weyl family, thereby representing globally regular models describing non spherical sources of gravitational field. In the spherically symmetric limit, all our models converge to the well known incompressible perfect fluid solution.The key stone of our approach is based on an ansatz allowing to define the interior metric in terms of the exterior metric functions evaluated at the boundary source. Some particular sources are obtained, and the physical variables of the energy-momentum tensor are calculated explicitly, as well as the geometry of the source in terms of the relativistic multipole moments. The total mass of different configurations is also calculated, it is shown to be equal to the monopole of the exterior solution.

  16. Fragmentation of an axially impacted slender rod

    Science.gov (United States)

    Ji, W.; Waas, A. M.

    2010-02-01

    Motivated by experimental results on the dynamic buckling and fragmentation of a vertical column impacted by a falling mass, results from an analytical model for dynamic buckling which considers the dynamic interaction between the axial column deformation and the out-of-plane buckling displacements are used to interpret the fragmentation process and the resulting fragment lengths. It is shown that a critical time exists for the rod to undergo fragmentation. At this critical time, the rod deforms in a modulated pattern of waves, setting up the stage for the ensuing fragmentation as a result of induced large curvatures that exceed the critical bending strain of the rod material. The resulting fragment length distributions, which show two characteristics peaks at \\frac{\\lambda}{2} and \\frac{\\lambda}{4} , where λ is a characteristic half-wavelength, are found to compare favorably with the experimental results.

  17. Acoustic horizons in axially symmetric relativistic accretion

    CERN Document Server

    Abraham, H; Das, T K; Abraham, Hrvoje; Bilic, Neven; Das, Tapas K.

    2006-01-01

    Transonic accretion onto astrophysical objects is a unique example of analogue black hole realized in nature. In the framework of acoustic geometry we study axially symmetric accretion and wind of a rotating astrophysical black hole or of a neutron star assuming isentropic flow of a fluid described by a polytropic equation of state. In particular we analyze the causal structure of multitransonic configurations with two sonic points and a shock. Retarded and advanced null curves clearly demonstrate the presence of the acoustic black hole at regular sonic points and of the white hole at the shock. We calculate the analogue surface gravity and the Hawking temperature for the inner and the outer acoustic horizons.

  18. Dynamics of Flapping Flag in Axial Flow

    Science.gov (United States)

    Abderrahmane, Hamid Ait; Fayed, Mohamed; Gunter, Amy-Lee; Paidoussis, Michael P.; Ng, Hoi Dick

    2010-11-01

    We investigate experimentally the phenomenon of the flapping of a flag, placed within a low turbulent axial flow inside a small scale wind tunnel test section. Flags of different sizes and flexural rigidities were used. Image processing technique was used and the time series of a given point on the edge of the flag was analyzed. The stability condition of the flag was obtained and compared to the recent theoretical models and numerical simulations. Afterwards, the nonlinear dynamics of the flapping was investigated using nonlinear time series method. The nonlinear dynamics is depicted in phase space and the correlation dimension of the attractors is determined. On the basis of observations made in this study, some conclusions on the existing models were drawn.

  19. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  20. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  1. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus;

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  2. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  3. Inlet Flow Test Calibration for a Small Axial Compressor Facility. Part 1: Design and Experimental Results

    Science.gov (United States)

    Miller, D. P.; Prahst, P. S.

    1994-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. The inlet region consisted of a long flowpath region with two series of support struts and a flapped inlet guide vane. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the inlet for a highly loaded two-stage axial compressor test. Several flow conditions and IGV angle settings were established in which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. A detailed discussion of the flowpath design along with a summary of the experimental results are provided in Part 1.

  4. Experimental - theoretical study of axially compressed cold formed steel profiles

    Directory of Open Access Journals (Sweden)

    Bešević Miroslav

    2011-01-01

    Full Text Available Analysis of axially compressed steel members made of cold formed profiles presented in this paper was conducted through both experimental and numerical methods. Numerical analysis was conducted by means of "PAK" finite element software designed for nonlinear static and dynamic analysis of structures. Results of numerical analysis included ultimate bearing capacity with corresponding middle section force-deflection graphs and buckling curves. Extensive experimental investigation were also concentrated on determination of bearing capacity and buckling curves. Experiments were conducted on five series with six specimens each for slenderness values of 50, 70, 90, 110 and 120. Compressed simply supported members were analyzed on Amsler Spherical pin support with unique electronical equipment and software. Besides determination of forcedeflection curves, strains were measured in 18 or 12 cross sections along the height of the members. Analysis included comparisons with results obtained by different authors in this field recently published in international journals. Special attention was dedicated to experiments conducted on high strength and stainless steel members.

  5. Measurements for the JASPER program Axial Shield Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T. [Oak Ridge National Lab., TN (United States); Shono, A.; Chatani, K. [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1991-08-01

    The Axial Shield Experiment was conducted at the Oak Ridge National Laboratory (ORNL) during 1990--1991 as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) program starting in 1986. The program is intended to provide support for the development of current designs proposed for advanced liquid metal reactor (LMR) system both in Japan and the United States. As in the previous two experiments, the same spectrum modifier was used to alter the Tower Shielding Reactor source spectrum to one representing the LMR neutron spectra directly above the core in the area of the fission-gas plenum. In one of the measurements the spectrum was further modified by the fission gas plenum. In all cases the modified spectrum was followed by combinations of seven hexagon assemblies that represented different coolant flow and shielding patterns within the assemblies. The varied configuration permitted not only a study of the different designs, but also allowed a comparison to be made of the relative neutron attenuation effectiveness of boron carbide and stainless steel in such designs. This experiment was the third in a series of eight experiments to be performed as part of a cooperative effort between the United States Department of Energy (US DOE) and the Japan Power Reactor and Nuclear Fuel Development Corporation (PNC). This experiment, as was the previous Radial Shield Attenuation and Fission Gas Plenum Experiments, intended to provide support for the development of advanced sodium-cooled reactors. 5 refs.

  6. Impulsive Wave Propagation within Magmatic Conduits with Axial Symmetry

    Science.gov (United States)

    De Negri Leiva, R. S.; Arciniega-Ceballos, A.; Scheu, B.; Dingwell, D. B.; Sanchez-Sesma, F. J.

    2013-12-01

    We implemented Trefftz's method to simulate wave propagation in a fluid-solid system aimed to represent a magmatic conduit. Assuming axial symmetry, a set of multipoles is used to build a complete system of wave functions for both the solid and the fluid. These functions are solutions of the elastodynamic equations that govern the motions in the fluid and the solid, respectively. The conduit can be closed or open and the exterior elastic domain may be unlimited or with an exterior boundary. In order to find the functions coefficients, boundary conditions (null shear and continuity of pressures and normal velocities) are satisfied in the least squares sense. The impulsive nature of the source is considered using Fourier analysis. Despite the simplicity of the formulation our results display a rich variety of behaviors. In fact, for a uniform infinite cylinder we reproduced the analytical solution. Moreover, this approach allows establishing some important effects of conduit geometry, including changes of sections. Lateral effects and bump resonances are well resolved. We compared our numerical calculations with results obtained from experimental simulations of volcanic explosions in which rapid depressurization induces fragmentation of volcanic rocks. These experiments are performed within a shock-tube apparatus at room temperature and various pressures using Argon (Ar) gas, particles and pumice samples of different porosities, from Popocatepetl volcano. The mechanical system is well characterized and the dynamics of the explosive process is monitored with high precision piezoelectric sensors located at the pipe surface. The combination of analytical and experimental approaches is very useful to understand the seismic wave field of volcanic conduit dynamics.

  7. Green's Functions in Axial and Lorentz-type Gauges and Application to The Axial Pole Prescription and The Wilson Loop

    OpenAIRE

    Joglekar, Satish D.

    2000-01-01

    We summarize the work done in connecting Green's functions in a different classes of gauges and its applications to the problems in the axial gauges.The procedure adopted uses finite field-dependent BRS [FFBRS] transformations to connect axial and the Lorentz type gauges.These transformations preserve the vacuum expectation of gauge-invariant observables explicitly. We discuss the applications of these ideas to the axial gauge pole problem and to the preservation of the Wilson loop and the th...

  8. Motion compensator for holographic motion picture camera

    Science.gov (United States)

    Kurtz, R. L.

    1973-01-01

    When reference beam strikes target it undergoes Doppler shift dependent upon target velocity. To compensate, object beam is first reflected from rotating cylinder that revolves in direction opposite to target but at same speed. When beam strikes target it is returned to original frequency and is in phase with reference beam. Alternatively this motion compensator may act on reference beam.

  9. Focused Review on Transthoracic Echocardiographic Assessment of Patients with Continuous Axial Left Ventricular Assist Devices

    OpenAIRE

    Park, Soon J.; Michel Carrier; Atchison, Fawn W.; Simon Maltais; Louis P. Perrault; Oh, Jae K; Yan Topilsky

    2011-01-01

    Left ventricular assist devices (LVADs) are systems for mechanical support for patients with end-stage heart failure. Preoperative, postoperative and comprehensive followup with transthoracic echocardiography has a major role in LVAD patient management. In this paper, we will present briefly the hemodynamics of axial-flow LVAD, the rationale, and available data for a complete and organized echocardiographic assessment in these patients including preoperative assessment, postoperative and long...

  10. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212. ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * columnar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.344, year: 2014 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  11. Classical and numerical approaches to determining V-section band clamp axial stiffness

    Science.gov (United States)

    Barrans, Simon M.; Khodabakhshi, Goodarz; Muller, Matthias

    2014-12-01

    V-band clamp joints are used in a wide range of applications to connect circular flanges, for ducts, pipes and the turbocharger housing. Previous studies and research on V-bands are either purely empirical or analytical with limited applicability on the variety of V-band design and working conditions. In this paper models of the V-band are developed based on the classical theory of solid mechanics and the finite element method to study the behaviour of theV-bands under axial loading conditions. The good agreement between results from the developed FEA and the classical model support the suitability of the latter to modelV-band joints with diameters greater than 110mm under axial loading. The results from both models suggest that the axial stiffness for thisV-band cross section reaches a peak value for V-bands with radius of approximately 150 mmacross a wide range of coefficients of friction. Also, it is shown that the coefficient of friction and the wedge angle have a significant effect on the axial stiffness of V-bands.

  12. Estimation of maximum axial force of anchor bolts in consideration of random bolt failures

    International Nuclear Information System (INIS)

    This paper proposes a method for structural reliability analysis of anchor bolts used in the support skirt of a reactor vessel. The method is based on the conservative assumption that a few anchor bolts within the skirt's inner-wall may fail in a random nature. Under the assumption, the maximum axial forces in the intact bolts are estimated. To reflect the uncertainty, random numbers are generated to simulate the possible failed bolts among a total of 60 bolts, which are circumferentially arranged along the inner side of the wall. Then the outcome of failed bolts together with their locations for every 60 bolts is defined as an experiment of a sample. The locations of failed bolt can significantly affect the stress analysis and its random outcomes require an efficient calculation scheme. In this paper we propose a rapid calculation algorithm, thus the direction of bending moment that causes the worst scenario in the stress analysis of bolts for each experiment can be rapidly found. Taking into consideration of design loads, the finite element method is further employed to calculate the maximum axial bolt force of each experiment. After statistical analysis of maximum axial forces from all experiments, the average maximum axial-force interval that the remaining bolts can withstand under a given random condition is estimated with a 95% confidence level. This interval can be used in conjunction with various results of structural integrity assessment to ensure the structural safety and reliability of a nuclear power plant component

  13. Axial buckling analysis of a slender current-carrying nanowire acted upon by a magnetic field using the surface energy approach

    International Nuclear Information System (INIS)

    The axial buckling behavior of magnetically affected current-carrying nanowires is studied accounting for the surface energy effect. Using Euler–Bernoulli beam theory, the Lorentz force on the nanowire is determined and the governing equations are established. By application of the Galerkin approach and assumed mode method, the critical axial compressive load of the nanostructure is evaluated in the cases of simply supported and fully clamped ends. The effects of surface energy, electric current, strength of the magnetic field, slenderness ratio, and nanowire’s radius on the axial buckling loads are comprehensively discussed. The obtained results reveal that both the electric current and exerted magnetic field endanger the axial stability of the nanowire. For high levels of electric current or magnetic field strength, the surface effect becomes significant in the axial buckling performance of the nanostructure. (paper)

  14. Cyclotron motion in graphene

    OpenAIRE

    Schliemann, John

    2008-01-01

    We investigate cyclotron motion in graphene monolayers considering both the full quantum dynamics and its semiclassical limit reached at high carrier energies. Effects of zitterbewegung due to the two dispersion branches of the spectrum dominate the irregular quantum motion at low energies and are obtained as a systematic correction to the semiclassical case. Recent experiments are shown to operate in the semiclassical regime.

  15. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  16. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  17. Indexing Motion Detection Data for Surveillance Video

    DEFF Research Database (Denmark)

    Vind, Søren Juhl; Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We show how to compactly index video data to support fast motion detection queries. A query specifies a time interval T, a area A in the video and two thresholds v and p. The answer to a query is a list of timestamps in T where ≥ p% of A has changed by ≥ v values. Our results show that by building...... a small index, we can support queries with a speedup of two to three orders of magnitude compared to motion detection without an index. For high resolution video, the index size is about 20% of the compressed video size....

  18. Test Setup for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test setup for testing axially static and cyclic loaded piles in sand is described in the following. The purpose for the tests is to examine the tensile capacity of axially loaded piles in dense fully saturated sand. The pile dimensions are chosen to resemble full scale dimension of piles used...

  19. An Unbroken Axial-Vector Current Conservation Law

    Science.gov (United States)

    Sharafiddinov, Rasulkhozha S.

    2016-04-01

    The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space in which a neutrino is characterized by left as well as by right space-time coordinates. Therefore, it is not surprising that whatever the main purposes experiments about a quasielastic axial-vector mass say in favor of an axial-vector mirror Minkowski space-time.

  20. Improved axial flux shape generator for quick DNB test

    International Nuclear Information System (INIS)

    Axial power shapes that develop during power maneuvering in pressurized water reactors must be analyzed to ensure that adequate margin to avoid departure from nucleate boiling (DNB) is maintained during these transients. In order to reduce the number of flux shapes that need to be analyzed in detail to determine DNB ratio (DNBR), often generic axial flux shapes are analyzed and Maximum Allowable Peaking (MAP) limits are determined to conservatively filter those actual axial power shapes that are clearly safe. Current generic MAP limits, obtained for axial flux shapes, generated by a two-parameter based axial flux shape generator, are overly conservative for some power shapes and nonconservative for others leading to unnecessary operational restrictions on conservative cases. A penalty is imposed on nonconservative cases. In order to reduce the number of overly conservative and nonconservative cases, the authors have developed a new generic axial power shape generator, that is based on three parameters. Generic MAP limits have been developed for the new axial flux shape generator and tested using real flux shapes by plotting the percent deviation of MAP limits for generic flux shapes from the corresponding value for actual flux shapes. New axial flux shape generator, which is clearly superior as it leads to significantly lower percent deviation, will lead to reduced man-hours for detailed DNBR analyses and remove some of the unnecessary operational restrictions imposed by the old flux shape generator

  1. A new approach to radial and axial gauges

    Energy Technology Data Exchange (ETDEWEB)

    Weigert, H.; Heinz, U. (Regensburg Univ. (Germany). Inst. fuer Theoretische Physik)

    1992-10-01

    We develop a new path integral formulation of QCD in radial and axial gauges. This formalism yields free propagators which are free of gauge poles. We find that radial gauges are ghost free. In axial gauges ghosts cannot generally be excluded from the formalism due to the need to fix the residual gauge freedom. (orig.).

  2. Study of a new airfoil used in reversible axial fans

    Science.gov (United States)

    Li, Chaojun; Wei, Baosuo; Gu, Chuangang

    1991-01-01

    The characteristics of the reverse ventilation of axial flow are analyzed. An s shaped airfoil with a double circular arc was tested in a wind tunnel. The experimental results showed that the characteristics of this new airfoil in reverse ventilation are the same as those in normal ventilation, and that this airfoil is better than the existing airfoils used on reversible axial fans.

  3. Selectivity of spatial filtering velocimetry of objective speckles for measuring out-of-plane motion

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Yura, H. T.; Hanson, Steen Grüner

    2012-01-01

    We probe the dynamics of objective laser speckles as the axial distance between the object and the observation plane changes. With the purpose of measuring out-of-plane motion in real time, we apply optical spatial filtering velocimetry to the speckle dynamics. To achieve this, a rotationally sym...

  4. Diagnosis of spondyloarthritis of the axial skeleton

    International Nuclear Information System (INIS)

    Conventional radiography is used as the first-line imaging test in evaluating the axial skeleton for manifestations of spondyloarthritis, which is a cover term for five entities: ankylosing spondylitis, psoriatric spondyloarthritis, reactive arthritis, enteropathic arthritis, and undifferentiated spondyloarthritis. However, as it often takes many years from the onset of clinical symptoms and the first appearance of radiographic changes, a cross-sectional imaging is warranted (CT and/or MRI) for early diagnosis. MRI sensitively detects early inflammatory stages of spondyloarthritis and can thus fill the gap by markedly reducing the interval between initial symptoms and diagnosis. The aim of this article is to show that all manifestations and forms of spondyloarthritis share the same pathogenetic inflammatory pattern, namely a mixture of bone destruction and bone proliferation: enthesis - enthesitis - enthesiophyte. An enthesis in the true sense is a fibrocartilaginous junction (uncalcified fibrocartilage - tidemark - calcified fibrocartilage) between a tendon, ligament, joint capsule, or fascia and bone. The sacroiliac joint is a special form, a so-called articular fibrocartilaginous enthesis. A wide range of images - including radiographs, CT scans, and MR images - will be presented to provide a comprehensive picture of the entheseal manifestations and inflammatory patterns of the sacroiliac joints, vertebral endplates and ridges, facet joints, costovertebral junctions, and spinal ligaments in spondyloarthritis. (orig.)

  5. Analysis of SONACO axial cooling experiments

    International Nuclear Information System (INIS)

    The SONACO test rig contained a sodium-cooled, electrically heated 37-pin bundle. On this rig, a series of forced, mixed and natural convection experiments have been performed with the aim of contributing to the understanding of thermal-hydraulic phenomena and providing data for code validation for a subassembly at decay heat power level with low flow or stagnant coolant. The test section and especially the heater pins were equipped with an extensive number of chromel-alumel thermocouples. In addition, special permanent-magnet probes were used for measuring local velocities. In this paper we give a survey of results from axial cooling experiments, where heat was removed by natural convection to a cooling coil situated in the coolant channel (plenum) above the bundle. The experimental conditions led to turbulent convection with a slowly varying, large scale flow pattern. It is shown that a power tilt in the bundle reduces these fluctuations but does not eliminate them. For the uniformly heated bundle, aglebraic expressions for the average turbulent heat flux as well as for temperature and velocity fluctuations are derived from a second-moments model and compared with experimental data. Furthermore, heat transfer in the plenum and the consequences of the SONACO experiments for the coolability of reactor fuel elements under loss-of-flow conditions are discussed. ((orig.))

  6. Axial change in semi-leptonic processes

    International Nuclear Information System (INIS)

    According to a general argument the time component AOof the axial current should have a large exchange current Aexch0due to a soft-pion exchange diagram the structure and magnitude of which are dictated by current algebra and the low-energy theorem. This implies that Aexch0carries valuable information on the role of chiral symmetry in nuclear medium, and many theoretical and experimental studies have been devoted to Aexch0 in the recent years. My talk surveys the latest developments in these studies. I first review the current status2 of analysis of the relevant Β decay data, paying particular attention to the assessment of nuclear physics uncertainties. I then discuss the observed extra enhancement of Aexch0 over the soft-pion prediction. Two possible explanations to this problem have been reported in the literature: (1) contributions of heavy- meson exchange processes; (2) higher-order terms in chiral perturbation expansion. I review critically these two different approaches and discuss a possible interrelation between them. Finally, I touch upon the relevance of Aexch0 to the in-medium value of the pseudoscalar form factor gp

  7. Axially Loaded Behavior of Driven PC Piles

    Science.gov (United States)

    Hsu, Shih-Tsung

    2010-05-01

    To obtain a fair load-settlement curve of a driven pile, and to evaluate the ultimate pile capacity more accurately, a numerical model was created to simulate the ground movements during a pile being driven. After the procedure, the axially loaded behaviors of the piles in silty sand were analyzed. The numerical results are compared with those results by full scale pile load tests. It was found, although the loads added on the tested piles are different from those by the numerical analyses which applied displacement increments on piles, the load-settlement behaviors of piles calculated from the numerical model were close to those measured from field tests before the piles stressed to peak. Total load, shaft friction, and point bearing do not reach peak values at the same pile settlement; furthermore, the point bearing slowly increases all the while, with no peak. However, the point bearing only contributes 10˜20% of ultimate pile capacity. No matter which relative density of silty sand, pile diameter, and pile length increased, ultimate pile capacity increased as well.

  8. The Klinger hot gas double axial valve

    International Nuclear Information System (INIS)

    The Klinger hot gas valve is a medium controlled double axial valve with advanced design features and safety function. It was first proposed by Klinger early in 1976 for the PNP-Project as a containment shut-off for hot helium (918 deg. C and 42 bar), because a market research has shown that such a valve is not state of present techniques. In the first stage of development a feasibility study had to be made by detailed design, calculation and by basic experiments for key components in close collaboration with Interatom/GHT. This was the basis for further design, calculation, construction and experimental work for such a valve prototype within the new development contract. The stage of knowledge to that time revealed the following key priority development areas: Finite element stress analysis for the highly stressed high temperature main components; development of an insulation layout; Detailed experimental tests of functionally important structural components or units of the valve, partly at Klingers (gasstatic bearings, flexible metallic sealing element, aerodynamic and thermohydraulic tests), partly at Interatom (actuator unit and also gasstatic bearings), partly at HRB in Juelich (flexible metallic sealing system, aerodynamic and thermohydraulic tests); Design of a test valve for experimental work in the KVK (test circuit at Interatom) for evaluation of temperature distribution and reliability of operation; Design of a prototype and extensive testing in the KVK

  9. Axial channeling of boron ions into silicon

    Science.gov (United States)

    La Ferla, A.; Galvagno, G.; Raineri, V.; Setola, R.; Rimini, E.; Carbera, A.; Gasparotto, A.

    1992-04-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5 × 10 11 and 1 × 10 15 atoms/cm 2. The axial channeling concentration profiles of implanted B + were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, Sc, was extracted from the experimental maximum ranges for the [100] and [110] axis. The energ dependence of the electronic stopping power is given by Sc = KEp with p[100] = 0.469±0.010 and p[110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles.

  10. Axial channeling of boron ions into silicon

    International Nuclear Information System (INIS)

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x1011 and 1x1015 atoms/cm2. The axial channeling concentration profiles of implanted B+ were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, Sc, was extracted from the experimental maximum ranges for the [100] and [110] axis. The energy dependence of the electronic stopping power is given by Se = KEp with p[100] = 0.469±0.010 and p[110] = 0.554±0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.)

  11. Axial channeling of boron ions into silicon

    Energy Technology Data Exchange (ETDEWEB)

    La Ferla, A.; Galvagno, G. (Ist. di Tecnologie e Metodologie per la Microelettronica, CNR, Dipt. di Fisica, Catania (Italy)); Raineri, V.; Setola, R.; Rimini, E. (Dipt. di Fisica, Univ. di Catania (Italy)); Carnera, A.; Gasparotto, A. (Dipt. di Fisica, Univ. di Padova (Italy))

    1992-04-01

    Channeling boron implants were performed into (100) and (110) silicon substrates in the energy range 80-700 keV. The dose ranged between 3.5x10{sup 11} and 1x10{sup 15} atoms/cm{sup 2}. The axial channeling concentration profiles of implanted B{sup +} were compared with that obtained for incidence along the random direction of the crystal and with that obtained by implantation in amorphous silicon. The electrical and chemical boron distributions were obtained by spreading resistance and secondary ion mass spectrometry measurements, respectively. The inelastic stopping power, S{sub c}, was extracted from the experimental maximum ranges for the (100) and (110) axis. The energy dependence of the electronic stopping power is given by S{sub e} = KE{sup p} with p{sub (100)} = 0.469{+-}0.010 and p{sub (110)} = 0.554{+-}0.004. Simulations obtained by the MARLOWE code, using the Oen-Robinson impact parameter dependent formula, for the electronic energy loss reproduce quite well the experimental depth profiles. (orig.).

  12. OCT Motion Correction

    Science.gov (United States)

    Kraus, Martin F.; Hornegger, Joachim

    From the introduction of time domain OCT [1] up to recent swept source systems, motion continues to be an issue in OCT imaging. In contrast to normal photography, an OCT image does not represent a single point in time. Instead, conventional OCT devices sequentially acquire one-dimensional data over a period of several seconds, capturing one beam of light at a time and recording both the intensity and delay of reflections along its path through an object. In combination with unavoidable object motion which occurs in many imaging contexts, the problem of motion artifacts lies in the very nature of OCT imaging. Motion artifacts degrade image quality and make quantitative measurements less reliable. Therefore, it is desirable to come up with techniques to measure and/or correct object motion during OCT acquisition. In this chapter, we describe the effect of motion on OCT data sets and give an overview on the state of the art in the field of retinal OCT motion correction.

  13. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    International Nuclear Information System (INIS)

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were used to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased

  14. Inflation and Cyclotron Motion

    CERN Document Server

    Greensite, Jeff

    2016-01-01

    We consider, in the context of a braneworld cosmology, the motion of the universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that conditions on the flatness of the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field.

  15. Generalized compliant motion primitive

    Science.gov (United States)

    Backes, Paul G.

    1994-08-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  16. ROV Motion Control Systems

    OpenAIRE

    Dukan, Fredrik

    2014-01-01

    This thesis is about automatic motion control systems for remotely operated vehicles (ROV). The work has focused on topics within guidance and navigation. In addition, a motion control system has been developed, implemented, tested and used on two ROVs in sea trials.The main motivation for the work has been the need to automate ROV tasks in order to make the ROV a more efficient tool for exploring the ocean space. Many parts of a motion control system for a ROV is similar to that of surface v...

  17. ON THE AXIAL TRANSIENT RESPONSE ANALYSIS OF THE SECTOR-SHAPED HYDRODYNAMIC THRUST BEARING-ROTOR SYSTEM IN A TURBOEXPANDER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for the non-linear axial vibrations of the hydrodynamic thrust bearing-rotor system in a turboexpander is described.The axial transient process of the system is investigated.The timedependent form ofthe Reynolds equation is solved by a finite difference method with successive overrelaxation scheme to obtain the hydrodynamic forces of the sector-shaped thrust bearing (SSTB).Using these forces,the equation of motion is solved by the fourth-order Runge-Kutta method and the Adams method to predict the transient behaviour of the thrust bearing-rotor system (TBRS).Also,the linearized stiffness and damping coefficients of the oil film hydrodynamic SSTB are calculated.The analyses of the axial transient response of the system under both linear and non-linear conditions are performed.The non-linearity of oil film forces can significantly contribute to the axial transient response.Conclusions obtained can be applied for evaluation of the reliability of the TBRS.

  18. Effect of the axial scraping velocity on enhanced heat exchangers

    International Nuclear Information System (INIS)

    Highlights: • The flow pattern has been obtained by means of PIV in an enhanced heat exchanger. • The effects of the Reynolds number and the scraping velocity have been analysed. • The turbulence level of the flow has been related to the scraping velocity. • A numerical RNG k–ε turbulent model has been validated with the experimental data. -- Abstract: The flow pattern within an enhanced tubular heat exchanger equipped with a reciprocating scraping device is experimentally analysed. The insert device, specially designed to avoid fouling and to enhance heat transfer, has also been used to produce ice slurry. It consists of several circular perforated scraping discs mounted on a coaxial shaft. The whole is moved alternatively along the axial direction by a hydraulic cylinder. The phase-averaged velocity fields of the turbulent flow have been obtained with PIV technique for both scraping semi-cycles. Special attention has been paid to the effect of the non-dimensional scraping velocity and the Reynolds number in the flow field. CFD simulations provide support for the identification of the flow patterns and the parameter assessment extension. The results show how the scraping parameters affect the turbulence level produced in the flow and therefore the desired heat transfer enhancement

  19. Axial focusing of energy from a hypervelocity impact on earth

    International Nuclear Information System (INIS)

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes

  20. Vision and Motion Pictures.

    Science.gov (United States)

    Grambo, Gregory

    1998-01-01

    Presents activities on persistence of vision that involve students in a hands-on approach to the study of early methods of creating motion pictures. Students construct flip books, a Zoetrope, and an early movie machine. (DDR)

  1. Travelers' Health: Motion Sickness

    Science.gov (United States)

    ... Visiting Friends and Family in Areas with Chikungunya, Dengue, or Zika Travel to the Olympics Infographic: Olympic ... ibandronate sodium, risedronate sodium TREATMENT Nonpharmacologic treatments for preventing and treating motion sickness can be effective with ...

  2. Towards a Complete Commonsense Theory of Motion: The interaction of dimensions in children's predictions of natural object motion

    Science.gov (United States)

    Hast, Michael; Howe, Christine

    2013-07-01

    Events involving motion in fall are differentiated psychologically from events involving horizontal motion. Do children associate motion down inclines more with motion along horizontals or more with motion in fall, or do they even treat it as an integration of the two? The question was raised over 20 years ago but never satisfactorily answered, so the principal aim of the reported research was to take matters forward. Children (n = 144) aged 5-11 years were assessed while predicting natural dynamic events along a horizontal, in fall and down an incline. They were required to make predictions of speed with heavy and light balls and under changes in incline heights. The results show that, consistent with previous work, faster horizontal motion was associated with the light ball across all ages, whereas faster fall was associated with the heavy ball. However, while the younger children predicted faster incline motion for the lighter ball, there was a shift in this conception towards older children predicting faster motion for the heavier ball. Understanding of how changes in incline height affect speed was generally good, with this aspect of the study helping to establish how children perceive diagonal dimensions. How supported horizontal motion and unsupported fall motion may affect children's changing understanding of incline motion is discussed, thus providing more complete insight into children's understanding of natural object motion than has been established so far.

  3. Ballistic motion planning

    OpenAIRE

    Campana, Mylène; Laumond, Jean-Paul

    2016-01-01

    This paper addresses the motion planning problem for a jumping point-robot. Each jump consists in a ballistic motion linking two positions in contact with obstacle surfaces. A solution path is thus a sequence of parabola arcs. The originality of the approach is to consider non-sliding constraints at contact points: slipping avoidance is handled by constraining takeoff and landing velocity vectors to belong to 3D friction cones. Furthermore the magnitude of these velocities is bounded. A balli...

  4. Humanoid Motion Description Language

    OpenAIRE

    Choi, Ben; Chen, Yanbing

    2002-01-01

    In this paper we propose a description language for specifying motions for humanoid robots and for allowing humanoid robots to acquire motor skills. Locomotion greatly increases our ability to interact with our environments, which in turn increases our mental abilities. This principle also applies to humanoid robots. However, there are great difficulties to specify humanoid motions and to represent motor skills, which in most cases require four-dimensional space representations. We propose a ...

  5. Motion of a Pendulum

    Directory of Open Access Journals (Sweden)

    Jared Wynn

    2010-01-01

    Full Text Available The objective of this project is to derive and solve the equation of motion for a pendulum swinging at small angles in one dimension. The pendulum may be either a simple pendulum like a ball hanging from a string or a physical pendulum like a pendulum on a clock. For simplicity, we only considered small rotational angles so that the equation of motion becomes a harmonic oscillator.

  6. An update on biomarkers in axial spondyloarthritis.

    Science.gov (United States)

    Prajzlerová, Klára; Grobelná, Kristýna; Pavelka, Karel; Šenolt, Ladislav; Filková, Mária

    2016-06-01

    Axial spondyloarthritis is a chronic inflammatory disease with the onset at a young age, and, if undiagnosed and untreated, it may result in permanent damage and lifelong disability. Rates of early diagnosis have improved, due in particular to the addition of magnetic resonance imaging into the diagnostic armamentaria; however, it is costly, not widely available, and requires experienced readers to interpret the findings. In addition to clinical measures and imaging techniques, biomarkers that will be described in this review may represent useful tools for diagnosis, monitoring disease activity and outcomes as well as therapeutic responses. Currently, HLA-B27 remains the best genetic biomarker for making a diagnosis, while CRP currently appears to be the best circulating measure for assessing disease activity, predicting structural progression and therapeutic response. Interestingly, key molecules in the pathogenesis of the disease and essential therapeutic targets, such as tumour necrosis factor (TNF)α, interleukin (IL)-17 and IL-23, show only limited association with disease characteristics or disease progression. Some genetic biomarkers and particularly anti-CD74 antibodies, may become a promising tool for the early diagnosis of axSpA. Further biomarkers, such as matrix metalloproteinases (MMP)-3, calprotectin (S100A8/9), vascular endothelial growth factor (VEGF), C-terminal telopeptide of type II collagen (CTX-II) or dickkopf-1 (DKK-1), are not sufficient to reflect disease activity, but may predict spinal structural progression. In addition, recent data have shown that monitoring calprotectin might represent a valuable biomarker of therapeutic response. However, all of these results need to be confirmed in large cohort studies prior to use in daily clinical practice. PMID:26851549

  7. Reactivity effects of nonuniform axial burnup distributions on spent fuel

    International Nuclear Information System (INIS)

    When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup

  8. Reactivity effects of nonuniform axial burnup distributions on spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Leary, R.W. II; Parish, T.A. [Texas A & M Univ., College Station, TX (United States)

    1995-12-01

    When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup.

  9. Lagrangian speckle model and tissue-motion estimation--theory.

    Science.gov (United States)

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear. PMID:10504093

  10. NASA Glenn's Single-Stage Axial Compressor Facility Upgraded

    Science.gov (United States)

    Brokopp, Richard A.

    2004-01-01

    NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when

  11. Influence of axial coolant flow on fuel assembly damping for the response to horizontal seismic loads

    International Nuclear Information System (INIS)

    The existence of a large damping increase under axial flow is clearly demonstrated by test results. Therefore this phenomenon concerns not only isolated tubes, but also rod bundles with multiple support such as fuel assemblies, and it may represent a large conservatism margin when not allowed for in their modelling. Test results also demonstrate that the mock-up behaviour is representative of that of a full-scale assembly, and that actual confinement conditions are not of much concern since their influence remains small. However, applying test results under axial flow to a core model can be envisaged only with caution, since no clear physical interpretation of this phenomenon has been found (at least for such large damping values). Further studies will comprise a complementary experimental program, in order to specify the physical nature and the application range of this effect, and to provide hints for a theoretical interpretation. (author)

  12. Effect of axial finiteness on electron heating in low-frequency inductively coupled plasmas

    International Nuclear Information System (INIS)

    Total power absorption inside the plasma (by taking the thermal motion of the electrons into account) has been calculated using different inductively coupled plasma models. The comparison shows that in the low-frequency region the results of the semi-infinite plasma models are different from those of the finite-length plasma models. The semi-infinite plasma models show net reduction of heating in the low-frequency region, due to thermal motion of the electrons from inside the skin region to outside the skin region. The finite-length plasma models on the other hand (due to change in the skin depth owing to the boundary condition of E=0 at z=L, and reflection of electrons from the plasma boundary) show that the decrease in heating due to the motion of the electrons from inside the skin depth to outside the skin depth is recovered by the reflection of the electrons from the plasma boundary. Hence, it is concluded that the results of the semi-infinite plasma models presented by Tyshetskiy et al. [Phys Rev. Lett. 90, 255002 (2003)] can be misleading (in the low-frequency region), since they overlooked the effect of axial finiteness of the plasma

  13. Gravitational waves from the axial perturbations of hyperon stars

    Institute of Scientific and Technical Information of China (English)

    Wen De-Hua; Yan Jing; Liu Xue-Mei

    2012-01-01

    The eigen-frequencies of the axial w-mode oscillations of hyperon stars are examined.It is shown that as the appearance of hyperons softens the equation of state of the super-density matter,the frequency of gravitational waves from the axial w-mode of hyperon star becomes smaller than that of a traditional neutron star at the same stellar mass.Moreover,the eigenfrequencies of hyperon stars also have scaling universality.It is shown that the EURO thirdgeneration gravitational-wave detector has the potential to detect the gravitational-wave signal emitted from the axial w-mode oscillations of a hyperon star.

  14. Tensile Property of Bi-axial Warp Knitted Structure

    Institute of Scientific and Technical Information of China (English)

    沈为

    2003-01-01

    The tensile property of bi-axial warp knitted fabrics is tested and compared with that of the plain weave fabric. The results show that there are obvious differences between the tensile property of a bi-axial warp knitted fabric and that of a plain weave fabric.The former can give fuller play to the property of a high modulus yarn than the latter. The tensile strength of a bi-axial warp knitted fabric is linear with the number of yarns in the direction of force.

  15. The axial charges of the hidden-charm pentaquark states

    CERN Document Server

    Wang, Guang-Juan; Zhu, Shi-Lin

    2016-01-01

    With the chiral quark model, we have calculated the axial charges of the pentaquark states with $(I,I_3)=(\\frac{1}{2},\\frac{1}{2})$ and $J^{P}=\\frac{1}{2}^{\\pm},\\frac{3}{2}^{\\pm},\\frac{5}{2}^{\\pm}$. The $P_c$ states with the same $J^P$ quantum numbers but different color-spin-flavor configurations have very different axial charges, which encode important information on their underlying structures. For some of the $J^{P}=\\frac{3}{2}^{\\pm}$ or $\\frac{5}{2}^{\\pm}$ pentaquark states, their axial charges are much smaller than that of the proton.

  16. Effects of external axial magnetic field on fast electron propagation

    International Nuclear Information System (INIS)

    A scheme employing an external axial magnetic field is proposed to diagnose the intrinsic divergence of laser-generated fast electron beams, and this is studied numerically with hybrid simulations. The maximum beam radius of fast electrons increases with the initial divergence and decreases with the amplitude of the axial magnetic field. It is indicated that the intrinsic divergence of fast electrons can be inferred from measurements of the beam radius at different depth under the axial field. The proposed scheme here may be useful for future fast ignition experiments and in other applications of laser-generated fast electron beams.

  17. Dynamic Analysis of Axial Magnetic Forces for DVD Spindle Motors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.

  18. Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field

    Science.gov (United States)

    Arani, A. Ghorbanpour; Haghparast, E.; BabaAkbar Zarei, H.

    2016-08-01

    In the present research, vibration and instability of axially moving single-layered graphene sheet (SLGS) subjected to magnetic field is investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. Third order shear deformation theory (TSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Motion equations are obtained by means of Hamilton's principle and solved analytically. Influences of various parameters such as axially moving speed, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of SLGS on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving SLGS is strongly dependent on the moving speed. Therefore, the critical speed of moving SLGS can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of marine vessels in nanoscale.

  19. Dynamic Stability of a Cylindrical Shell Reinforced by Longitudinal Ribs and a Hollow Cylinder Under the Action of Axial Forces

    Science.gov (United States)

    Bakulin, V. N.; Volkov, E. N.; Nedbai, A. Ya.

    2016-05-01

    The dynamic stability of a cylindrical orthotropic shell reinforced by longitudinal ribs and a hollow cylinder under the action of axial forces changing harmonically with time was investigated with regard for the axial contact interaction of the shell with the ribs. A solution of the differential equations defining this process has been obtained in the form of trigonometric series in the angular and time coordinates. A two-term approximation of the Mathieu-Hill equations of motion was used for construction of the main region of instability of the shell. As a result, the problem was reduced to a system of algebraic equations for components of displacements of the shell at the locations of the ribs. The problem for uniformly spaced ribs was solved in the explicit form. A numerical example of this solution is presented.

  20. Method for calibration of an axial tomographic scanner

    International Nuclear Information System (INIS)

    The method of calibrating an axial tomographic scanner including frame means having an opening therein in which an object to be examined is to be placed, source and detector means mounted on the frame means for directing one or more beams of penetrating radiation through the object from the source to the detector means, and means to rotate the scanner including the source and detector means about the object whereby a plurality of sets of data corresponding to the transmission or absorption by the object of a plurality of beams of penetrating radiation are collected; the calibration method comprising mounting calibration means supporting an adjustable centering member onto the frame means, positioning the adjustable centering member at approximately the center of rotation of the scanner, placing position-sensitive indicator means adjacent the approximately centered member, rotating the scanner and the calibration means mounted thereon at least one time and, if necessary, adjusting the positioning of the centering member until the centering member is coincident with the center of rotation of the scanner as determined by minimum deflection of the position-sensitive indicator means, rotating and translating the source and detector means and determining for each angular orientation of the frame means supporting the source and detector means the central position of each translational scan relative to the centered member and/or if a plurality of detectors are utilized with the detector means for each planar slice of the object being examined, the central position of each translational scan for each detector relative to the centered member

  1. AXIAL: a system for boiling water reactor fuel assembly axial optimization using genetic algorithms

    International Nuclear Information System (INIS)

    A system named AXIAL is developed based on the genetic algorithms (GA) optimization method, using the 3D steady state simulator code Core-Master-PRESTO (CM-PRESTO) to evaluate the objective function. The feasibility of this methodology is investigated for a typical boiling water reactor (BWR) fuel assembly (FA). The axial location of different fuel compositions is found in order to minimize the FA mean enrichment needed to obtain the cycle length under the safety constraints. Thermal limits are evaluated at the end of cycle using the Haling calculation; the hot excess reactivity and the shutdown margin at the beginning of cycle are also evaluated. The implemented objective function is very flexible and complete, incorporating all the thermal and reactivity limits imposed during fuel design analysis; furthermore, additional constraints can be easily introduced in order to obtain an improved solution. The results show a small improvement in the FA average enrichment obtained with the system related to the reference case that has been studied. The results show that the system converge to an optimal solution, it is observed that the mean fuel enrichment decreases while all the constraints are satisfied. A comparison was also performed using one-point and two-points crossover operator and the results of a sensitivity study for different mutation percentage are also showed

  2. Spacelab experiments on space motion sickness

    Science.gov (United States)

    Oman, Charles M.

    Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurement of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.

  3. 轴向运动黏弹性梁受力参激振动稳定性的多尺度分析%Multi-scales Analysis on Stability of Parametrically Excited Vibration for Axially Moving of Viscoelastic Beams Subjected to Axial Disturbing Tension

    Institute of Scientific and Technical Information of China (English)

    王波; 薛纭

    2012-01-01

    The motion stability of axially moving viscoelastic beams subjected to the parametrically excited tension is presented. The parametric vibration of axially moving beams is studied in this paper. The axial tension is characterized as a simple harmonic variation about the initial tension. The material time derivative is used in the viscoelastic constitutive relation. Asymptotic analysis is proposed to investigate the governing equation of an axially accelerating viscoelastic beam via the method of multiple scales. Beams are always fastened up by elastic joints at both ends. The supporting conditions may be formulated as simple supports with torsion springs. If the axial speed variation frequency approaches the sum of arbitrary two natural frequencies or the twice arbitrary natural frequency, the combined resonance or principal parametric resonance may occur. Analytical expressions of the instability boundary are obtained for summation and principal parametric resonance. Numerical examples show the effects of the viscous damping: whenever the instability regions for either the combined or the principal parametric resonance occcur, they will both decras while the viscous damping is increasing.%研究了轴向匀速运动黏弹性梁的运动稳定性.考察轴向拉力在初始拉力的基础上做微小简谐变化的参激振动.建立了受轴向拉力参数激励时轴向运动梁的控制微分方程,黏弹性本构关系引入了物质时间导数.轴向运动梁两端的边界受由带有扭转弹簧的套筒铰支约束的混杂边界条件.应用多尺度法直接求解轴向运动梁参激振动的控制方程,并导出了当扰动拉力的频率接近未扰系统任意两个固有频率之和及任一固有频率2倍时所发生的组合共振和主共振的稳定边界方程.数值例子给出了黏弹阻尼对轴向运动黏弹性梁参激振动发生组合共振和主共振的影响,结果显示:不论组合共振还是主共振发生时,失稳区域均

  4. Thermal diffusion in a binary fluid mixture flows due to a rotating disc of uniform high suction in presence of a weak axial magnetic field

    Directory of Open Access Journals (Sweden)

    Sharma B.R.

    2010-01-01

    Full Text Available The effect of a weak uniform axial magnetic field on separation of a binary mixture of incompressible viscous thermally and electrically conducting fluids flowing due to a rotating disc of uniform high suction is examined. Neglecting the induced electric field the equations governing the motion, temperature and concentration are solved in cylindrical polar coordinate by expanding the flow parameters as well as the temperature and the concentration in powers of suction parameter. The solution obtained for concentration distribution is plotted against the different axial distances from the disc for various values of non-dimensional parameters. It is found that the temperature gradient, axial magnetic field, Reynolds number, Schmidt number, Prandtl number and suction parameter effect the species separation significantly.

  5. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  6. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  7. Numerical analysis of cocurrent conical and cylindrical axial cyclone separators

    Science.gov (United States)

    Nor, M. A. M.; Al-Kayiem, H. H.; Lemma, T. A.

    2015-12-01

    Axial concurrent liquid-liquid separator is seen as an alternative unit to the traditional tangential counter current cyclone due to lower droplet break ups, turbulence and pressure drop. This paper presents the numerical analysis of a new conical axial cocurrent design along with a comparison to the cylindrical axial cocurrent type. The simulation was carried out using CFD technique in ANSYS-FLUENT software. The simulation results were validated by comparison with experimental data from literature, and mesh independency and quality were performed. The analysis indicates that the conical version achieves better separation performance compared to the cylindrical type. Simulation results indicate tangential velocity with 8% higher and axial velocity with 80% lower recirculation compared to the cylindrical type. Also, the flow visualization counters shows smaller recirculation region relative to the cylindrical unit. The proposed conical design seems more efficient and suits the crude/water separation in O&G industry.

  8. Energy Dissipation in Sandwich Structures During Axial Compression

    DEFF Research Database (Denmark)

    Urban, Jesper

    2002-01-01

    The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full......-scale structural elements in fast sandwich vessels. Two of the crushing tests are simulated with the explicit finite element software LS-DYNA3D. The key results are load-end shortening relationship and the energy dissipation. Good agreement between the numerical predictions and the experiments are obtained. A...... simple analytical model for the energy dissipation during axial crushing is proposed. Keywords: Sandwich, Energy Dissipation, Axial Crushing, LS-DYNA, Analytical crushing models, Crashworthiness....

  9. CT of posterior ocular staphyloma in axial myopia

    International Nuclear Information System (INIS)

    We present two cases of posterior ocular staphylomas in axial myopia. CT findings of an enlarged globe with focal posterior bulging and scleraluveal rim thinning appear to be specific for this diagnosis. (orig.)

  10. Effect of axial heat flux distribution on CHF

    International Nuclear Information System (INIS)

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations

  11. CT of posterior ocular staphyloma in axial myopia

    Energy Technology Data Exchange (ETDEWEB)

    Swayne, L.C.; Garfinkle, W.B.; Bennett, R.H.

    1984-05-01

    We present two cases of posterior ocular staphylomas in axial myopia. CT findings of an enlarged globe with focal posterior bulging and scleraluveal rim thinning appear to be specific for this diagnosis.

  12. The Particle--Motion Problem.

    Science.gov (United States)

    Demana, Franklin; Waits, Bert K.

    1993-01-01

    Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)

  13. The development of an axial active magnetic bearing / R. Gouws

    OpenAIRE

    Gouws, Rupert

    2004-01-01

    In this dissertation, the author presents the operation and development of active magnetic bearings (AMBs) , with specific focus on axial M s . The project objective is the development of an axial AMB system. The electromagnetic design, inductive sensor design, dSpace controller model design and actuating amplifier design are aspects discussed in this dissertation. The physical model constitutes two electromagnets positioned above and beneath a 2 kg steel disc with an air gap o...

  14. Design and Simulation of Axial Flow Maglev Blood Pump

    OpenAIRE

    Huachun Wu; Ziyan Wang; Xujun Lv

    2011-01-01

    The axial flow maglev blood pump (AFMBP) has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element an...

  15. Radial breathing mode of carbon nanotubes subjected to axial pressure

    OpenAIRE

    Lei, Xiao-Wen; Ni, Qing-Qing; Shi, Jin-Xing; Natsuki, Toshiaki

    2011-01-01

    In this paper, a theoretical analysis of the radial breathing mode (RBM) of carbon nanotubes (CNTs) subjected to axial pressure is presented based on an elastic continuum model. Single-walled carbon nanotubes (SWCNTs) are described as an individual elastic shell and double-walled carbon nanotubes (DWCNTs) are considered to be two shells coupled through the van der Waals force. The effects of axial pressure, wave numbers and nanotube diameter on the RBM frequency are investigated in detail. Th...

  16. Nuclear Axial Currents in Chiral Effective Field Theory

    OpenAIRE

    Baroni, A.; Girlanda, L.; Pastore, S.; Schiavilla, R.; Viviani, M

    2015-01-01

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and...

  17. Axial myopia in computed and magnetic resonance tomography

    International Nuclear Information System (INIS)

    The case of a 44-year old woman suffering from amblyopia on the left eye with unilateral proptosis caused by axial (progressive) myopia is presented. The clinical and radiological findings were discussed in reference to the literature. The diagnosis was established by ruling out neoplastic, inflammatory or endocrine causes for the exophtalmos. CT and MR scans revealed an enlarged left globe without evidence of orbital masses. The findings were regarded as typical for the diagnosis at axial myopia. (orig.)

  18. Watson's theorem and the $N\\Delta(1232)$ axial transition

    CERN Document Server

    Alvarez-Ruso, L; Nieves, J; Vacas, M J Vicente

    2016-01-01

    We present a new determination of the $N\\Delta$ axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al., Phys. Rev. D76, 033005 (2007) is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger $C_5^A(0)$, in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.

  19. Volume Dependence of the Axial Charge of the Nucleon

    OpenAIRE

    Hall, N. L.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia); Zanotti, J. M.

    2012-01-01

    It is shown that the strong volume-dependence of the axial charge of the nucleon seen in lattice QCD calculations can be understood quantitatively in terms of the pion-induced interactions between neighbouring nucleons. The associated wave function renormalization leads to an increased suppression of the axial charge as the strength of the interaction increases, either because of a decrease in lattice size or in pion mass.

  20. Passive axial stabilization of a magnetic radial bearing by superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu, M.; Marinescu, N. (Ing.-Buro f. Magnettechnik, Mailander Str.19, D-6000 Frankfurt/M. 70 (DE)); Tenbrink, J.; Krauth, H. (Vacuumschmelze GmbH, Gruner Weg 37, D-6450 Hanau (DE))

    1989-09-01

    Contactless bearings for high-speed operation can be constructed using passive magnet systems, which inherently need a second, active bearing for their stabilization. Completely passive bearings only can be obtained using diamagnetic materials. This study deals with the axial stabilization of magnetic radial bearings using a permanent magnet/superconductor system. Using finite element calculation procedures it is shown that axial forces of up 3000 N and stiffnesses of up to 400 N/mm may be achieved.

  1. Organo-Axial Volvulus of the Stomach with Diaphragmatic Eventration

    OpenAIRE

    Lee, June Sung; Park, Jae Wan; Sohn, Jang Won; Kim, Kyung Chul; Hwang, Seong Gyu; Park, Pil Won; Rim, Kyu Sung; Kim, Hee Jin

    2000-01-01

    Gastric volvulus occurs when the stomach rotates about its longitudinal axis (organo-axial volvulus), or about an axis joining the lesser and greater curvatures (mesentero-axial volvulus). Primary gastric volvulus, making up one third of cases, occurs when the stabilizing ligaments are too lax as a result of congenital or acquired causes. Secondary gastric volvulus, making up the remainder of cases, occurs in association with a paraesophageal hernia or other congenital or acquired diaphragmat...

  2. Particle simulation of an improved axially extracted vircator

    International Nuclear Information System (INIS)

    An axially extracted virtual cathode oscillator (vircator) with a feedback annulus is proposed and configured through particle-in-cell (PIC) simulation. In this paper, the effects of the feedback mechanism are studied through PIC method. The simulated results indicate that the improved new vircator can increase the output power twice large than that of the axially-extracted conventional vircator under the same condition. On the other hand, it can narrow the bandwidth and purify the modes

  3. Particle Simulation of an Improved Axially Extracted Vircator

    Institute of Scientific and Technical Information of China (English)

    刘振祥; 舒挺; 张建德; 钱宝良

    2003-01-01

    An axially extracted virtual cathode oscillator (vircator) with a feedback annulusis proposed and configured through particle-in-cell (PIC) simulation in Ref. [1]. In this paper,the effects of the feedback mechanism are studied through PIC method. The simulated resultsindicate that the improved new vircator can increase the output power twice large than that ofthe axially-extracted conventional vircator under the same condition. On the other hand, it cannarrow the bandwidth and purify the modes.

  4. Axial Non-linear Dynamic Soil-Pile Interaction - Keynote

    OpenAIRE

    Holeyman A.; Whenham V.

    2014-01-01

    This keynote lecture describes recent analytical and numerical advances in the modeling of the axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus degradation is evaluated over a range of parameters and compared with those obtained...

  5. The New Performance Calculation Method of Fouled Axial Flow Compressor

    OpenAIRE

    Huadong Yang; Hong Xu

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section in...

  6. Axial myopia in computed and magnetic resonance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Beyer-Enke, S.A.; Goerich, J.; Gamroth, A.

    1987-08-01

    The case of a 44-year old woman suffering from amblyopia on the left eye with unilateral proptosis caused by axial (progressive) myopia is presented. The clinical and radiological findings were discussed in reference to the literature. The diagnosis was established by ruling out neoplastic, inflammatory or endocrine causes for the exophtalmos. CT and MR scans revealed an enlarged left globe without evidence of orbital masses. The findings were regarded as typical for the diagnosis at axial myopia.

  7. Axial Myopia and its Influence on Diabetic Retinopathy

    International Nuclear Information System (INIS)

    Objective: To evaluate the correlation between axial myopia and diabetic retinopathy. Study Design: Cross-sectional study. Place and Duration of Study: Eye Department of Postgraduate Medical Institute, Lahore General Hospital, from August 2012 to February 2013. Methodology: A total of 258 participants suffering from type-2 diabetic retinopathy were included. Axial length was measured by two optometrists using contact type ultrasound biometer. Colored retinal photographs, red free retinal photographs and Fundus Fluorescein Angiography (FFA) were performed on all patients using standard fundus camera. All fundus photographs and angiograms were independently reviewed and graded by two qualified vitreoretinal fellows. Results: Out of 258 patients, 163 were males (63.2%) and 95 (36.8%) were females. Average age of patients was 56.30 +- 7.57 years. Average axial length of right and left eyes were 23.16 mm and 23.15 mm respectively. There was statistically significant negative correlation between axial length and severity of diabetic retinopathy in the right eye, (Spearman correlation = -0.511, p = 0.0001) as well as the left eye (Spearman correlation = -0.522, p = 0.0001). Conclusion: There is a protective influence of longer axial length of globe on the stage and severity of diabetic retinopathy. This study may help in modifying the screening protocol for diabetic retinopathy amongst patients of differing axial lengths. (author)

  8. Difference between measured and predicted axial offset at NPP Krsko

    International Nuclear Information System (INIS)

    At NPP Krsko axial power distribution is monitored through periodic measurements of the AO (axial offset). AO represents the normalized power difference between top and bottom of the core. Within the core design process predicted values of axial offset (P-AO) for the entire core lifetime are calculated. During the core performance surveillance measured AO (M-AO) is compared to the predicted value. Measured vs. predicted axial offset difference (D-AO) of +3% at hot-full-power (HFP) steady-state core conditions is considered to be within measurement and design tolerances. During the last two 18 months cycles increase in the D-AO above 3 % was experienced for limited period of time at NPP Krsko - in cycle 22 for more than 90 EFPD (Effective Full Power Days). For such deviation evaluation has to be performed to confirm that reload safety evaluation and analysis of the core has not been impacted. Root cause analysis was performed afterwards and it was classified as a core design computer code deficiency. Precisely, inadequate axial actinides treatment in the computer code contributed to the observed axial offset difference. (author)

  9. Superfluid phase stability of 3He in axially anisotropic aerogel

    International Nuclear Information System (INIS)

    Measurements of superfluid 3He in 98% aerogel demonstrate the existence of a metastable A-like phase and a stable B-like phase. It has been suggested that the relative stability of these two phases is controlled by anisotropic quasiparticle scattering in the aerogel. Anisotropic scattering produced by axial compression of the aerogel has been predicted to stabilize the axial state of superfluid 3He. To explore this possibility, we used transverse acoustic impedance to map out the phase diagram of superfluid 3He in a ∼ 98% porous silica aerogel subjected to 17% axial compression. We have previously shown that axial anisotropy in aerogel leads to optical birefringence and that optical cross-polarization studies can be used to characterize such anisotropy. Consequently, we have performed optical cross-polarization experiments to verify the presence and uniformity of the axial anisotropy in our aerogel sample. We find that uniform axial anisotropy introduced by 17% compression does not stabilize the A-like phase. We also find an increase in the supercooling of the A-like phase at lower pressure, indicating a modification to B-like phase nucleation in globally anisotropic aerogels.

  10. Sloshing suppression by bulkhead in cylindrical and co-axial cylindrical liquid vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuyuki [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan). Research Inst.; Mieda, Tsutomu; Jitsu, Kouji [Ishikawajima-Harima Heavy Industries Co. Ltd. Yokohama (Japan); Shibata, Heki [Yokohama National Univ. (Japan)

    1995-11-01

    This paper presents the effectiveness of bulkhead in suppressing the sloshing in cylindrical and co-axial double cylinder vessels containing liquid. The bulkhead is hung vertically from the vessel top so as to divide it into two equal sectors (in the annulus part for the latter type) but leaving enough space under its lower end for free (though somewhat perturbed) flow of the liquid. By deriving Lagrangian equations for the sloshing motion, it is shown that the sloshing mode is dissociated into two non-coupling modes of the U-tube mode and the bulkhead mode, both contributing to suppressing sloshing highly effectively. The practical utility of this simplified analysis has been verified by a series of shaking table experiments conducting with small model tanks and by the finite difference method of analysis by Flow-3D, a computational fluid dynamics code.

  11. Hamilton's equations for a fluid membrane: axial symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2005-09-23

    Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.

  12. An imaging co-axial tube electrodynamic trap for manipulation of charged particles

    International Nuclear Information System (INIS)

    A tubular particle trapping device was designed and fabricated using two co-axial electrically conductive tubes with diameters of 5 mm and 7 mm, respectively. The device was integrated with an imaging camera and optical fiber bundle for real time monitoring of trapped particle motion. Charged microparticles of 3 to 50 m diameter can be suspended in air at ambient pressure using the device utilizing a quadrupole potential with an alternating voltage of amplitude 300 V to 750 V and frequency of 30 Hz to 140 Hz. Controlled trapping of a single particle or multiple particles can be achieved by tuning the voltage amplitude. The particle remained trapped when the entire assembly was translated or rotated. The device can be used as a manipulator for charged particle transport and repositioning.

  13. Muscle Motion Solenoid Actuator

    Science.gov (United States)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  14. Ground motion predictions

    International Nuclear Information System (INIS)

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  15. Angular distribution of ions axially channeled in a very thin crystal: Experimental and theoretical results

    International Nuclear Information System (INIS)

    We have studied the angular distributions for 6--30-MeV Cq+ (q=4--6) and 2--9-MeV H+ ions axially channeled in the [001] direction of a thin silicon crystal (1792 and 1900 A). We report highly structured two-dimensional angular distributions that depend sensitively on the projectile's velocity and incident charge state and the target's thickness and azimuthal orientation. Some structure in the angular contour maps is the result of a rainbow effect in axial channeling (i.e., extrema in the classical deflection function). State-to-state charge-state distributions, which are required to interpret the data accurately, have also been measured. All measured angular distributions have been explained via Monte Carlo trajectory calculations using Moliere's approximation to the Thomas-Fermi screening function and a screening length given by target electrons alone. The calculations indicate that all projectile velocity and charge-state effects and the target-thickness effects observed are the result of the projectile's transverse oscillatory motion in the channel. Using this information, we show that swift heavy-ion and proton angular distributions are simply related using a scaling law that depends only on the projectile's velocity and charge-to-mass ratio and on the crystal thickness

  16. Dynamic stability of parametrically-excited linear resonant beams under periodic axial force

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Fan Shang-Chun; Li Yan; Guo Zhan-She

    2012-01-01

    The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied.It is assumed that the theoretical formulations are based on Euler Bernoulli beam theory.The governing equationsof motion are derived by using the Rayleigh Ritz method and transformed into Mathieu equations,which are formedto determine the stability criterion and stability regions for parametricallyexcited linear resonant beams.An improved stability criterion is obtained using periodic Lyapunov functions.The boundary points on the stable regions are determined by using a small parameter perturbation method.Numerical results and discussion are presented to highlight the effects of beam length,axial force and damped coefficient on the stability criterion and stability regions.While some stability rules are easy to anticipate,we draw some conclusions: with the increase of damped coefficient,stable regions arise;with the decrease of beam length,the conditions of the damped coefficient arise instead.These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.

  17. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    Science.gov (United States)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  18. Evaporative capillary instability for flow in porous media under the influence of axial electric field

    International Nuclear Information System (INIS)

    We study the linear analysis of electrohydrodynamic capillary instability of the interface between two viscous, incompressible and electrically conducting fluids in a fully saturated porous medium, when the phases are enclosed between two horizontal cylindrical surfaces coaxial with the interface and, when there is mass and heat transfer across the interface. The fluids are subjected to a constant electric field in the axial direction. Here, we use an irrotational theory in which the motion and pressure are irrotational and the viscosity enters through the jump in the viscous normal stress in the normal stress balance at the interface. A quadratic dispersion relation that accounts for the growth of axisymmetric waves is obtained and stability criterion is given in terms of a critical value of wave number as well as electric field. It is observed that heat transfer has stabilizing effect on the stability of the considered system while medium porosity destabilizes the interface. The axial electric field has dual effect on the stability analysis

  19. Comparison of rotordynamic fluid forces in axial inducers and centrifugal turbopump impellers

    Science.gov (United States)

    d'Agostino, Luca

    2016-05-01

    The paper illustrates and compares the results of the experimental campaigns carried out in the Cavitating Pump Rotordynamic Test Facility (CPRTF) at Alta, Italy, under ESA funding for the characterization of the lateral rotordynamic fluid forces acting on high-head axial inducers and centrifugal turbopump impellers for space propulsion applications. The configurations presented here refer to a three-bladed tapered-hub, variable-pitch, inducer (DAPROT3) and a single-stage centrifugal pump (VAMPIRE) with vaneless diffuser and single spiral volute. Both the centrifugal pump and the inducer have been designed by means of reduced order models specifically developed by the author and his collaborators for the geometric definition and performance prediction of this kind of hydraulic turbomachinery. Continuous spectra of the rotordynamic forces acting on the impellers as functions of the whirl frequency have been obtained by means of the novel technique recently developed and demonstrated at Alta. The influence of the rotor whirl motion, flow rate, cavitating conditions, and liquid temperature (thermal cavitation effects) on the rotordynamic fluid forces is illustrated and the observed differences in their behavior in axial inducers and centrifugal turbpumps are discussed and interpreted in the light of the outcome of recent cavitation visualization experiments carried out by the Chemical Propulsion Team at Alta.

  20. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    International Nuclear Information System (INIS)

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress

  1. Nonlinear combination parametric resonance of axially accelerating viscoelastic strings constituted by the standard linear solid model

    Institute of Scientific and Technical Information of China (English)

    LIM; C.W.

    2010-01-01

    Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.

  2. Microwave-Excited CO2 Slab-Laser with an Axially-Homogeneous Discharge

    International Nuclear Information System (INIS)

    A slab laser-head configuration has been proved to be most suitable for RF or microwave excitation of slow-flow and sealed CO2-lasers. These laser schemes are characterized by their high average and peak powers. When excited by microwave radiation in a pulsed regime, a high peak-to-average power ratios can be obtained. In this regime the microwave-excited CO2 slab-laser proves advantageous comparing to RF excited lasers or combined RF and DC pumped schemes. Two main mechanisms impairing the CO2 slab-lasers operation are investigated:Thermal-instabilities occurrence, due to the absence of a stabilizing dielectric strip inside the laser discharge-zone. An axially inhomogeneous discharge formation due to the relatively short excitation-wavelength. In the presented research, we find adequate solutions for these difficulties. We investigate and optimize the operation of microwave excited CO2 slab-lasers regarding thermal-instabilities and the discharge homogeneity, and support the presented theory by experimental verifications. An axially homogeneous discharge in a CO2 slab-laser excited by a magnetron is obtained in a low gas-flow regime operation. Coupling a slab laser parallel to the electric-field of a rectangular resonator operated near cutoff, where the laser head is axially shorter than the resonator, forms an axially-uniform discharge field. The laser head employs a 40 cm long double-ridged waveguide, with an axially-unvaried cross section. For a slab surface of 80 cm2 and discharge heights of 1.5 or 2 mm, a maximal average laser-power of 40 W is measured. A peak laser-power of 580W is measured with an overall efficiency of 6%. A maximal overall efficiency of 9% in a duty cycle of 5% (PW=10s) is measured for a non-optimized device. This first prototype is proposed as a means to develop a highly efficient, compact sealed microwave-excited CO2 slab-laser exploiting the benefits of an axially homogeneous-discharge

  3. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa

    2013-01-01

    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  4. On the Reduction of Vector and Axial-Vector Fields in a Meson Effective Action at O(p4)

    International Nuclear Information System (INIS)

    Starting from an effective NJL-type quark interaction we have derived an effective meson action for the pseudoscalar sector. The vector and axial-vector degrees of freedom have been integrated out, applying the static equations of motion. As the results we have found a (reduced) pseudoscalar meson Lagrangian of the Gasser-Leutwyler type with modified structure coefficients Li. This method has been also used to construct the reduced weak and electromagnetic-weak currents. The application of the reduced Lagrangian and currents has been considered in physical processes. 36 refs., 1 fig., 1 tab

  5. Hand in motion reveals mind in motion

    Directory of Open Access Journals (Sweden)

    JonathanFreeman

    2011-04-01

    Full Text Available Recently, researchers have measured hand movements en route to choices on a screen to understand the dynamics of a broad range of psychological processes. We review this growing body of research and explain how manual action exposes the real-time unfolding of underlying cognitive processing. We describe how simple hand motions may be used to continuously index participants’ tentative commitments to different choice alternatives during the evolution of a behavioral response. As such, hand-tracking can provide unusually high-fidelity, real-time motor traces of the mind. These motor traces cast novel theoretical and empirical light onto a wide range of phenomena and serve as a potential bridge between far-reaching areas of psychological science—from language, to high-level cognition and learning, to social cognitive processes.

  6. Polymer-based flexible capacitive sensor for three-axial force measurements

    International Nuclear Information System (INIS)

    We have developed a flexible-substrate-based three-axial force sensor, composed of finger-shaped electrode capacitors, whose operation is based on the measurement of a capacitance change induced upon applying a three-axial load. The electrode design supports high sensitivity to shear forces. An overall flexibility of the sensor and elasticity of the capacitor's dielectric is obtained by integrating three polymers in the sensor's technology process, namely polyimide, parylene-C, and polydimethylsiloxane, combined with standard metallization processes. We have theoretically modeled the sensor's capacitance and its three-axial force sensitivity. The unit capacitors have static capacitances in the range of 20 pF. The electro-mechanical characterization of the capacitors reveals in the normal direction a sensitivity Sz = 0.024 kPa−1 for pressures <10 kPa, whereas for higher pressures the measured sensitivity Sz = 6.6 × 10−4 kPa−1. Typical measured shear force sensitivity Sx = 2.8 × 10−4 kPa−1. These values give our transducer high potential for use in skin-like sensing applications. (paper)

  7. A Study of the Conditions of Maximum Filtration Efficiency for a HGMF-Axial Magnetic Filter Cell With Bounded Flow Field

    OpenAIRE

    Badescu, V.; Murariu, V.; Rotariu, O.; Rezlescu, N.

    1996-01-01

    The theory of magnetic particles′ capture on a HGMF-axial magnetic filter cell with bounded flow field is presented. The equations of particle motion for both potential and laminar flow are obtained. By analytical solving of these equations, the trajectories of particles are established. The flow velocity of the fluid suspension for the case of potential flow is set equal with the velocity averaged across the tube section for the laminar flow. Thus, it is possible to make a comparison between...

  8. Axially shaped channel and integral flow trippers

    International Nuclear Information System (INIS)

    A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid

  9. Axially shaped channel and integral flow trippers

    Energy Technology Data Exchange (ETDEWEB)

    Crowther, R.L.; Johansson, E.B.; Matzner, B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.

  10. Axially shaped channel and integral flow trippers

    Energy Technology Data Exchange (ETDEWEB)

    Crowther, R.L. Jr.; Johansson, E.B.; Matzner, B.

    1992-02-11

    This patent describes a fuel assembly. It comprises: fuel rods positioned in spaced array by upper and lower tie-plates, and open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounding the array for conducting coolant about the fuel rods; the open ended channel having a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, the improvement in the flow channel comprising tapered side walls, the tapered side walls extending from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.

  11. Nuclear motion is classical

    CERN Document Server

    Frank, Irmgard

    2016-01-01

    The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.

  12. Noncommutative Brownian motion

    CERN Document Server

    Santos, Willien O; Souza, Andre M C

    2016-01-01

    We investigate the Brownian motion of a particle in a two-dimensional noncommutative (NC) space. Using the standard NC algebra embodied by the sympletic Weyl-Moyal formalism we find that noncommutativity induces a non-vanishing correlation between both coordinates at different times. The effect itself stands as a signature of spatial noncommutativity and offers further alternatives to experimentally detect the phenomena.

  13. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author)

  14. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    . This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  15. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex

    2012-01-01

    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360...

  16. Planets in Motion

    Science.gov (United States)

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  17. Wiimote Experiments: Circular Motion

    Science.gov (United States)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  18. A world in motion

    Energy Technology Data Exchange (ETDEWEB)

    Boynton, J.A. [SAE, Warrendale, PA (United States)

    1994-12-31

    A World in Motion is a physical science curriculum supplement for grades four, five, and six which responds to the need to promote and teach sound science and mathematics concepts. Using the A World in Motion kits, teachers work in partnership with practicing engineer or scientists volunteers to provide students with fun, exciting, and relevant hands-on science and math experiences. During the A World in Motion experience, students work together in {open_quotes}Engineering Design Teams{close_quotes} exploring physics concepts through a series of activities. Each student is assigned a role as either a facilities engineer, development engineer, test engineer, or project engineer and is given responsibilities paralleling those of engineers in industry. The program culminates in a {open_quotes}Design Review{close_quotes} where students can communicate their results, demonstrate their designs, and receive recognition for their efforts. They are given a chance to take on responsibility and build self-esteem. Since January 1991, over 12,000 volunteers engineers have been involved with the program, with a distribution of 20,000 A World in Motion kit throughout the U.S. and Canada.

  19. Introducing Simple Harmonic Motion.

    Science.gov (United States)

    Roche, John

    2002-01-01

    Explains the origin and significance of harmonic motion which is an important topic that has wide application in the world. Describes the phenomenon by using an auxiliary circle to help illustrate the key relationships between acceleration, displacement, time, velocity, and phase. (Contains 16 references.) (Author/YDS)

  20. A Harmonic Motion Experiment

    Science.gov (United States)

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  1. Investigation of axial power gradients near a control rod tip

    International Nuclear Information System (INIS)

    Highlights: → Pin power gradients near BWR control rod tips have been investigated. → A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. → Small nodes increases pin power gradients; standard nodes underestimates gradients. → The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, ∼15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.

  2. Amoeboid motion in confined geometry

    CERN Document Server

    Wu, Hao; Hu, Wei-Fan; Farutin, Alexander; Rafaï, Salima; Lai, Ming-Chih; Peyla, Philippe; Misbah, Chaouqi

    2015-01-01

    Cells of the immune system, as well as cancer cells, migrating in confined environment of tissues undergo frequent shape changes (described as amoeboid motion) that enable them to move forward through these porous media without the assistance of adhesion sites. In other words, they perform amoeboid swimming (AS) while using extracellular matrices and cells of tissues as support. We introduce a simple model of AS in a confined geometry solved by means of 2D numerical simulations. We find that confinement promotes AS, unless being so strong that it restricts shape change amplitude. A straight AS trajectory in the channel is found to be unstable, and ample lateral excursions of the swimmer prevail. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. This is a spontaneous symmetry-breaking bifurcation. We find that there exists an optimal confinement for migration. We provide numerical results as...

  3. Motion dominance in binocular rivalry depends on extraretinal motions.

    Science.gov (United States)

    Nakayama, Ryohei; Motoyoshi, Isamu; Sato, Takao

    2016-01-01

    In binocular rivalry, moving stimulus is dominant over stationary stimulus. This is called motion dominance. The motion here is usually a motion defined on the retina (retinal motion). However, motion can be defined in several different coordinates. It can be defined with respect to objects in the background (object-based motion) or to observers' head or body (spatiotopic motion), as well as to the retinal coordinate. In this study, we examined the role of motions defined by these three coordinates. A dichoptic pair of gratings was presented to create a binocular rivalry, one of which was moving and the other stationary. A fixation point and a reference background were either moving with the grating or stationary, depending on the condition. Different combinations of the three types of motions were created by having the observer track the fixation point or the background when they are moving. It was found that the retinal motion does not necessarily yield motion dominance, and that the motion dominance is determined by the combination of motions defined by different coordinate systems. PMID:26943347

  4. Atypical integration of motion signals in Autism Spectrum Conditions.

    Directory of Open Access Journals (Sweden)

    Caroline E Robertson

    Full Text Available Vision in Autism Spectrum Conditions (ASC is characterized by enhanced perception of local elements, but impaired perception of global percepts. Deficits in coherent motion perception seem to support this characterization, but the roots and robustness of such deficits remain unclear. We aimed to investigate the dynamics of the perceptual decision-making network known to support coherent motion perception. In a series of forced-choice coherent motion perception tests, we parametrically varied a single stimulus dimension, viewing duration, to test whether the rate at which evidence is accumulated towards a global decision is atypical in ASC. 40 adult participants (20 ASC performed a classic motion discrimination task, manually indicating the global direction of motion in a random-dot kinematogram across a range of coherence levels (2-75% and stimulus-viewing durations (200-1500 ms. We report a deficit in global motion perception at short viewing durations in ASC. Critically, however, we found that increasing the amount of time over which motion signals could be integrated reduced the magnitude of the deficit, such that at the longest duration there was no difference between the ASC and control groups. Further, the deficit in motion integration at the shortest duration was significantly associated with the severity of autistic symptoms in our clinical population, and was independent from measures of intelligence. These results point to atypical integration of motion signals during the construction of a global percept in ASC. Based on the neural correlates of decision-making in global motion perception our findings suggest the global motion deficit observed in ASC could reflect a slower or more variable response from the primary motion area of the brain or longer accumulation of evidence towards a decision-bound in parietal areas.

  5. Lateral and Torsional Vibrations of a Two-disk Rotor-stator System with Axial Contact/Rubs

    Science.gov (United States)

    Ding, Qian; Zhang, Kunpeng

    2010-05-01

    The dynamics of a rotor system with axial contact/rub events between the disks and stator are investigated by numerical simulations. The coupled equations of lateral and torsional motions of rotor and the lateral motion of disk are established. Numerical simulations are carried out to reveal the lateral and torsional vibrations for both two-disk contact/rubs and one disk contact/rubs. Bifurcation diagrams, orbits, phase portraits, amplitude- frequency spectra and Poincaré maps are adopted to demonstrate the dynamical behaviors of the system. The results show that though both the lateral and torsional vibrations can reflect the influences of contact/rubs on rotor dynamics, the spectrum analyses of the torsional vibrations are more suitable to determine straight the extent of their effect.

  6. STS Motion Control Using Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Mohd Bazli Bahar

    2014-07-01

    Full Text Available This study presents the development of Sit to Stand (STS motion control method. The main challenge in STS is in addressing the lift-off from chair problem. In solving the problem, the main components of the humanoid STS motion system involved are the (1 phase and trajectory planning and (2 motion control. These components should be designed so that the Zero Moment Point (ZMP, Centre of Pressure (CoP and Centre of Mass (CoM is always in the support polygon. Basically, in STS motion control there are two components, 1. Action selector and 2. Tracking controller. The STS motion control should able to operate in real time and continuously able to adapt any change in between the motion. In this way, the accuracy of the controller to rectify the motion error shall increase. The overall proposed method to perform the STS motion is designed to have two main phases. (1 CoM transferring that implements Alexander STS technique and (2 Stabilization Strategy that used IF-THEN rules and proportional velocity controller. This study focuses on the presentation of the development of second phase which are 1. The development of the IF-THEN rules as the action selector that operates in real time to assists the proportional controller in making the best decision and, 2. The development of Proportional Gain Identification for the proportional velocity controller that is capable to change the gain implementation by referring to the define region that represent the motion condition. The validation of the proposed method is done experimentally using NAO robot as the test platform. The coefficient of the gain identification for the proportional controller was tuned using NAO robot that was initially set at sitting position on a wooden chair. The inclination of the body from a frame perpendicular with the ground, angle y is observed. Coefficient that gives the lowest RMSE of angle y trajectory is taken as a constant. Results show the proposed control method has reduce

  7. Examining Rotational Ground Motion Induced by Tornados

    Science.gov (United States)

    Kessler, Elijah; Dunn, Robert

    2016-03-01

    Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.

  8. Evaluation of control motion input location

    International Nuclear Information System (INIS)

    This paper reports on a research program where a quarter scale model reactor containment structure was constructed in Lotung, Taiwan. This is a seismically active region and the same local as the strong motion array (SMART) supported by the National Science Foundation. Two types of experiments have been conducted at the site. First, shaker tests were conducted on the model. Second, instrumentation placed on the structure and in the free field was set to be triggered by seismic motions occurring at the site. Data was collected from many earthquakes which have occurred at the site. The input free field motions were made available. Predictions were then made for the structural response, and compared with the measured in-structure motion. This paper is based on work performed in making the blind predictions. The work presented in this paper focuses on the comparisons made between the predicted and measured results as influenced by the location of the control point motion used as input to the structural response calculation

  9. Modeling and control of a brushless DC axial flow ventricular assist device.

    Science.gov (United States)

    Giridharan, Guruprasad A; Skliar, Mikhail; Olsen, Donald B; Pantalos, George M

    2002-01-01

    This article presents an integrated model of the human circulatory system that incorporates circulatory support by a brushless DC axial flow ventricular assist device (VAD), and a feedback VAD controller designed to maintain physiologically sufficient perfusion. The developed integrated model combines a network type model of the circulatory system with a nonlinear dynamic model of the brushless DC pump We show that maintaining a reference differential pressure between the left ventricle and aorta leads to adequate perfusion for different pathologic cases, ranging from normal heart to left heart asystole, and widely varying physical activity scenarios from rest to exercise. PMID:12059002

  10. Buckling of un-stiffened cylindrical shell under non-uniform axial conpressive stress

    Institute of Scientific and Technical Information of China (English)

    宋昌永

    2002-01-01

    This paper provides a review of recent research advances and trends in the area of stability of un-stiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses. Only the more important and interesting aspects of the research, judged from a personal viewpoint, are discussed. They can be crudely classified into four categories: (1) shells subjected to non-uniform loads; (2) shells on discrete supports; (3) shells with intended cutouts/holes; and (4) shells with non-uniform settlements.

  11. Pressure loss due to the tip clearance of impellar blades in centrifugal and axial blowers

    Science.gov (United States)

    Senoo, Y.

    Equations to evaluate pressure loss based on the tip clearance of impeller blades (pressure loss induced by the leakage flow through the clearance, and pressure loss for supporting fluid against the pressure gradient in the thin annular clearance space between the shroud and the impeller) are derived. The predicted pressure losses are compared with experimental data for two types of centrifugal impellers. The equations are simplified for axial impellers as a special case, and the predicted efficiency-drop is compared with the experimental data for seven cases. Good agreement is demonstrated.

  12. An Axial Vector Photon in a Mirror World

    CERN Document Server

    Sharafiddinov, Rasulkhozha S

    2015-01-01

    The unity of symmetry laws emphasizes, in the case of a mirror CP-even Dirac Lagrangian, the ideas of the left- and right-handed axial-vector photons referring to long- and short-lived bosons of true neutrality, respectively. Such a difference in lifetimes expresses the unidenticality of masses, energies and momenta of axial-vector photons of the different components. They define the unified field theory equation of C-odd particles with an integral spin. Together with a new equation of a theory of truly neutral particles with the half-integral spin, the latter reflects the availability in their nature of the second type of the local axial-vector gauge transformation responsible for origination in the Lagrangian of C-oddity of an interaction Newton component giving an axial-vector mass to all the interacting particles and fields. The mirror axial-vector mass, energy and momentum operators constitute a CP-invariant equation of quantum mechanics, confirming that each of them can individually influence on matter ...

  13. Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in high-low labyrinth seals over a range of seal clearances and inlet swirl velocities. A well-established CFD-perturbation model was employed to predict the rotordynamic coefficients. A surprisingly large effect was detected for rotordynamic characteristics due to rotor shifting. It was also found that a less destabilizing effect arose from rotor axial shifting in the leakage flow direction, whereas a more destabilizing effect arose from shifting against the leakage flow direction. Further, a tentative explanation was proposed for the large sensitivities of dynamic forces to rotor axial shifting.

  14. Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting

    Directory of Open Access Journals (Sweden)

    David L. Rhode

    2006-03-01

    Full Text Available Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in high-low labyrinth seals over a range of seal clearances and inlet swirl velocities. A well-established CFD-perturbation model was employed to predict the rotordynamic coefficients. A surprisingly large effect was detected for rotordynamic characteristics due to rotor shifting. It was also found that a less destabilizing effect arose from rotor axial shifting in the leakage flow direction, whereas a more destabilizing effect arose from shifting against the leakage flow direction. Further, a tentative explanation was proposed for the large sensitivities of dynamic forces to rotor axial shifting.

  15. Artery Remodeling Under Axial Twist in Three Days Organ Culture.

    Science.gov (United States)

    Wang, Guo-Liang; Xiao, Yangming; Voorhees, Andrew; Qi, Ying-Xin; Jiang, Zong-Lai; Han, Hai-Chao

    2015-08-01

    Arteries often endure axial twist due to body movement and surgical procedures, but how arteries remodel under axial twist remains unclear. The objective of this study was to investigate early stage arterial wall remodeling under axial twist. Porcine carotid arteries were twisted axially and maintained for three days in ex vivo organ culture systems while the pressure and flow remained the same as untwisted controls. Cell proliferation, internal elastic lamina (IEL) fenestrae shape and size, endothelial cell (EC) morphology and orientation, as well as the expression of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and tissue inhibitor of metalloproteinase-2 (TIMP-2) were quantified using immunohistochemistry staining and immunoblotting. Our results demonstrated that cell proliferation in both the intima and media were significantly higher in the twisted arteries compared to the controls. The cell proliferation in the intima increased from 1.33 ± 0.21% to 7.63 ± 1.89%, and in the media from 1.93 ± 0.84% to 8.27 ± 2.92% (p culture, a decrease from the initial 15.58 ± 1.29 degrees. These results demonstrate that axial twist can stimulate artery remodeling. These findings complement our understanding of arterial wall remodeling under mechanical stress resulting from pressure and flow variations. PMID:25503524

  16. An Axial-Vector Photon in a Mirror World

    Science.gov (United States)

    Sharafiddinov, Rasulkhozha S.

    2016-03-01

    The unity of symmetry laws emphasizes, in the case of a mirror CP-even Dirac Lagrangian, the ideas of the left- and right-handed axial-vector photons referring to long- and short-lived bosons of true neutrality, respectively. Such a difference in lifetimes expresses the unidenticality of masses, energies and momenta of axial-vector photons of the different components. They define the unified field theory equation of C-odd particles with an integral spin. Together with a new equation of a theory of truly neutral particles with the half-integral spin, the latter reflects the availability in their nature of the second type of the local axial-vector gauge transformation responsible for origination in the Lagrangian of C-oddity of an interaction Newton component giving an axial-vector mass to all the interacting particles and fields. The mirror axial-vector mass, energy and momentum operators constitute a CP-invariant equation of quantum mechanics, confirming that each of them can individually influence on matter field. Thereby, findings suggest at the level of the mass-charge structure of gauge invariance a new equation for the C-noninvariant Lagrangian.

  17. Sympathetic cooling of molecular ion motion to the ground state

    CERN Document Server

    Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.

  18. Method for manufacturing an optimized motion simulator and optimized motion simulator

    NARCIS (Netherlands)

    Advani, S.K.

    1999-01-01

    The invention relates to a motion simulator comprising a deck supported by a number of length-adjustable legs that are connected to the deck in first pivot points, which legs are connected to a base part in second pivot points, wherein the first and second pivot points respectively form pairs, where

  19. Modeling and Simulation on Axial Piston Pump Based on Virtual Prototype Technology

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; XU Bing; XIA Chunlin; YANG Huayong

    2009-01-01

    A particular emphasis is placed on the virtual prototype technology (VPT) of axial piston pump. With this technology it is convenient and flexible to build a complicated 3D virtual based on real physical model. The actual kinematics pairs of the parts were added on the model. The fluid characters were calculated by hydraulic software. The shape of the parts, the flexible body of parts, etc were improved in this prototype. So the virtual prototype of piston pump can work in computer like a real piston pump, and the flow ripple, pressure pulsation, motion principle, stress of parts, etc can be investigated. The development of the VPT is introduced at the beginning, and the modeling process of the virtual prototype is explained. Then a special emphasis is laid on the relationship between the dynamics model and the hydraulic model, and the simulations on the flow ripple, pressure pulsation, motion principle, the stress and strain distribution of the middle shaft and piston are operated. Finally, the advantages and disadvantages of the VPT are discussed. The improved virtual prototype of piston pump more tally with the real situation and the VPT has a great potential in simulation on hydraulic components.

  20. The effect of calibrated nonlocal constant on the modal parameters and stability of axially compressed CNTs

    Science.gov (United States)

    Fathi, Reza; Lotfan, Saeed

    2016-05-01

    Nowadays investigating the vibration behavior of carbon nanotubes (CNTs) has drawn considerable attention due to the superior mechanical properties of the CNTs. One of the powerful theoretical methods to study the vibration behavior of CNTs is implementing the nonlocal theory. Most of studies on the vibration behavior of CNTs have assumed a fixed value for small scale parameter for all vibration modes, however, this value is mode-dependent. Therefore, in this paper, the small scale parameter is calibrated for a single-walled carbon nanotube (SWCNT) with respect to each vibration mode. For this propose, the governing equation of motion based on the nonlocal beam theory is extracted by applying the Hamilton's principle. Then, by using the power series method, an eigenvalue problem is defined to derive the calibrated value of small scale constant and nonlocal mode shapes of the CNT. By using the expansion theory, the equation of motion is discretized, and the effect of nonlocality on the modal parameters and stability of the CNT under compressive force is investigated. Finally, the possibility of estimating nonlocal parameter based on simulated frequency domain response of the system by using modal analysis methods is studied. The results show that the calibration of small scale constant is important and the critical axial force is highly sensitive to this value.

  1. Nonlinear flap-lag-axial equations of a rotating beam with arbitrary precone angle

    Science.gov (United States)

    Kvaternik, R. G.; White, W. F., Jr.; Kaza, K. R. V.

    1978-01-01

    In an attempt both to unify and extend the analytical basis of several aspects of the dynamic behavior of flexible rotating beams, the second-degree nonlinear equations of motion for the coupled flapwise bending, lagwise bending, and axial extension of an untwisted, torsionally rigid, nonuniform, rotating beam having an arbitrary angle of precone with the plane perpendicular to the axis of rotation are derived using Hamilton's principle. The derivation of the equations is based on the geometric nonlinear theory of elasticity and the resulting equations are consistent with the assumption that the strains are negligible compared to unity. No restrictions are imposed on the relative displacements or angular rotations of the cross sections of the beam other than those implied by the assumption of small strains. Illustrative numerical results, obtained by using an integrating matrix as the basis for the method of solution, are presented both for the purpose of validating the present method of solution and indicating the range of applicability of the equations of motion and the method of solution.

  2. Energy loss distributions of relativistic protons axially channeled in a bent silicon crystal

    Energy Technology Data Exchange (ETDEWEB)

    Stojanov, Nace, E-mail: nacestoj@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, P.O. Box 162, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Petrović, Srdjan; Nešković, Nebojša [Laboratory of Physics (010), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2013-05-01

    A detailed study of the energy loss distributions of the relativistic protons axially channeled in the bent < 100 > Si crystals is presented in this work. The bending angle was varied from 0 to 20 μrad, while the crystal thickness was equal to 1 mm. The proton energy was chosen to be 7 TeV in accordance with the Large Hadron Collider (LHC) project, at the European Organization for Nuclear Research (CERN), in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated using the numerical solution of the proton equations of motion in the transverse plane and the computer simulation method. An accurate energy loss model was used, which takes into account the trajectory dependence of the energy loss of protons during their motion through the crystal channels. Further, the dispersion of the proton’s scattering angle caused by its collisions with the electrons of the crystal and the divergence of the proton beam were taken into account. The calculated dependence of the number of dechanneled protons on the bending angle was excellently fitted by the Gompertz type dechanneling function.

  3. Ground motion effects

    International Nuclear Information System (INIS)

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  4. Theory of coorbital motion

    Science.gov (United States)

    Konopliv, Alexander Stephen

    The gravitational interaction of two small coorbital satellites in nearly identical orbits about a large central mass is investigated. This involves the study of the general three-body problem as well as the restricted three-body problem. Since the eccentricity is small, dynamical models are developed by expanding the equations of motion in rotating polar coordinates about a circular orbit. For numerical investigation, a combination of Hill's variables and equinoctial variables is used to find series solutions expanded in time. From these series solutions, highly accurate averaged equations are determined. To study the stability of the motion, periodic orbits are generated and the linearized stability is found from the eigenvalues of the state transition matrix.

  5. Identification du comportement de composites en fatigue bi-axiale

    OpenAIRE

    Busca, Damien

    2014-01-01

    La connaissance du comportement de composites sous un état de contraintes multi-axial reste un enjeu majeur pour l’optimisation du dimensionnement des structures. La machine de fatigue bi-axiale présente au LGP permet de générer un état de contrainte bi-axial par l’utilisation d’éprouvettes cruciformes. La conception des éprouvettes reste un enjeu majeur pour les chercheurs pour répondre aux problèmes spécifiques liés aux matériaux composites. Un nouveau type d’éprouvette cruciforme en compos...

  6. Liquid Axial Mixing in Packed Tower at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    唐忠利; 张鹏; 等

    2003-01-01

    Liquid phase axial mixing was measured with the tracer technique in a packed column with inner diameter of 0.15m,in which the structured packing,Mellapak 350Y,was installed.Tap water as the liquid phase flowed down through the column and stagnant gas was at elevated pressure ranging from atmospheric to 2.0MPa.The model parameters of Bo andθwere estimated with the least square method in the time domain.As liquid flow rate was increased,the liquid axial mixing decreased.under our experimental conditions,the effect of pressure on Bo number on single liquid phase was negligible,and eddy diffusion was believed to be the primary cause of axial mixing in liquid phase.

  7. Axial Shock in a Cylindrical Plasma with Current

    International Nuclear Information System (INIS)

    Hugoniot relations of a two-dimensional axial shock with current and magnetic field in a cylindrical shock tube were investigated by a numerical method. The radial profiles of the magnetic field, electric current, pressures, flow velocities and temperatures between the up- and down-stream radial force-balanced plasma of the shock were revealed by numerical analysis. It is clearly found that the axial shock can lead to two effects: one is an inverse skin effect (i.e., the current density rises towards the center of the conductor), the another is a reversed current effect which occurs near the edge and about a half radius. It is also found that the radial gradient of pressure, density and temperature all become very large near the center due to the axial shock

  8. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  9. Fast imaging of mean, axial and radial diffusion kurtosis

    DEFF Research Database (Denmark)

    Hansen, Brian; Shemesh, Noam; Jespersen, Sune Nørhøj

    2016-01-01

    benefit from more efficient acquisition and computational methods. To meet this demand, we recently developed a method capable of estimating mean kurtosis with only 13 diffusion weighted images. This approach was later shown to provide very accurate mean kurtosis estimates and to be more efficient in...... terms of contrast to noise per unit time. However, insofar, the computation of two other critical DKI parameters, radial and axial kurtosis, has required the estimation of all 22 variables parameterizing the full DKI signal expression. Here, we present two strategies for estimating all of DKI......'s principal parameters – mean kurtosis, radial kurtosis, and axial kurtosis – using only 19 diffusion weighted images, compared to the current state-of-the-art acquisitions typically requiring about 60 images. The first approach is based on axially symmetric diffusion and kurtosis tensors, presented here for...

  10. Modified approach for calculating axial vector vacuum susceptibility

    International Nuclear Information System (INIS)

    We generalize our previous work [Phys. Rev. C 72, 035202 (2005)] on the linear response theory of the dressed quark propagator in the presence of a constant external field to the case of a variable external field in order to make it applicable to a wider class of problems. Using the axial vector vacuum susceptibility as an illustration, we apply this general formalism to extract a new expression for the axial vector vacuum susceptibility in the quantum chromodynamical (QCD) sum rule two-point external field formula. The numerical values of the axial vector vacuum susceptibility are calculated within the framework of the rainbow-ladder approximation of the Dyson-Schwinger approach. A comparison with the results of the previous approaches is given

  11. Numerical analysis of cavitation within slanted axial-flow pump

    Institute of Scientific and Technical Information of China (English)

    张睿; 陈红勋

    2013-01-01

    In this paper, the cavitating flow within a slanted axial-flow pump is numerically researched. The hydraulic and cavitation performance of the slanted axial-flow pump under different operation conditions are estimated. Compared with the experimental hydraulic performance curves, the numerical results show that the filter-based model is better than the standard k-e model to predict the parameters of hydraulic performance. In cavitation simulation, compared with the experimental results, the proposed numerical method has good predicting ability. Under different cavitation conditions, the internal cavitating flow fields within slanted axial-flow pump are investigated. Compared with flow visualization results, the major internal flow features can be effectively grasped. In order to explore the origin of the cavitation performance breakdown, the Boundary Vorticity Flux (BVF) is introduced to diagnose the cavitating flow fields. The analysis results indicate that the cavitation performance drop is relevant to the instability of cavitating flow on the blade suction surface.

  12. The small axial charge of the N(1535) resonance

    CERN Document Server

    an, C S

    2008-01-01

    There is a natural cancellation between the contributions of the $qqq$ and $qqqq\\bar q$ components to the axial charge of the N(1535) resonance. While the probability of the former is larger than that of the latter, its coefficient in the axial charge expression is exceptionally small. The magnitude of two of the corresponding coefficients of the $qqqq\\bar q$ components are in contrast large and have the opposite sign. This result provides a phenomenological illustration of the recent unquenched lattice calculation result that the axial charge of the N(1535) resonance is very small, if not vanishing \\cite{takah}. The result sets an upper limit on the magnitude of the probability of $qqqq\\bar q$ components as well.

  13. Optimum axial flow taper in a countercurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Von Halle, E.

    1979-02-01

    The effect of an axially varying countercurrent circulation rate in a gas centrifuge on the efficiency factors, e/sub I/, the ideality efficiency, and e/sub C/, the circulation efficiency, is investigated and compared with the case in which the countercurrent circulation rate is constant throughout the centrifuge. The optimum variation of the centrifuge parameter m, which is a measure of the countercurrent circulation rate, as a function of axial position in the centrifuge is determined. It is shown that when the countercurrent circulation rate has its optimum value at every axial position in the centrifuge, the product of the efficiency factors, e/sub I/ x e/sub C/, can exceed 81 per cent, the nominal upper limit of the value of the product of the efficiency factors for a constant countercurrent circulation rate, and can be quite close to unity. This is illustrated by numerical examples based on a centrifuge previously described in the literature.

  14. Twenty axial level handling in the APOSTOL code

    International Nuclear Information System (INIS)

    In many high-resolution calculation it has been proved that, in assemblies beside the control rod the pin-wise linear heat rate is different from linear heat rate calculated by pin-wise diffusion codes using only ten axial level code. In the linear heat rate of these assemblies there is a positive peak beside the intermediate part of control rod, which is the connection between the absorber and the fuel. In the ten level calculation cases this peak is not observable because of the homogenisation of the levels. Therefore more detailed axial division has to be used for the calculations. In this paper it is presented the application of a twenty axial level division in the APOSTOL code. It is presented the geometry of the nodes and the calculation of the cross sections of the nodes. Furthermore, the twenty level handling in the APOSTOL code is described. The same calculation result in realistic cases are presented. (author)

  15. Quantifying intra- and inter-fractional motion in breast radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott, E-mail: scott.jones@health.qld.gov.au [Division of Cancer Services, Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia); Fitzgerald, Rhys [Division of Cancer Services, Princess Alexandra Hospital, Brisbane (Australia); Owen, Rebecca; Ramsay, Jonathan [Division of Cancer Services, Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia)

    2015-03-15

    The magnitude of intra- and inter-fractional variation in the set up of breast cancer patients treated with tangential megavoltage photon beams was investigated using an electronic portal imaging device (EPID). Daily cine-EPID images were captured during delivery of the tangential fields for ten breast cancer patients treated in the supine position. Measurements collected from each image included the central lung distance (CLD), central flash distance (CFD), superior axial measurement (SAM) and the inferior axial measurement (IAM). The variation of motion within a fraction (intra-fraction) and the variation between fractions (inter-fraction) was analysed to quantify set up variation and motion due to respiration. Altogether 3775 EPID images were collected from 10 patients. The effect of respiratory motion during treatment was <0.1 cm standard deviation (SD) in the anterior–posterior (AP) direction. The inter-fraction movement caused by variations in daily set up was larger at 0.28 cm SD in the AP direction. Superior–inferior (SI) variation was more difficult to summarise and proved unreliable as the measurements were taken to an ambiguous point on the images. It was difficult to discern true SI movement from that implicated by AP movement. There is minimal intra-fractional chest wall motion due to respiration during treatment. Inter-fractional variation was larger, however, on average it remained within departmental tolerance (0.5 cm) for set up variations. This review of our current breast technique provides confidence in the feasibility of utilising advanced treatment techniques (field-in-field, intensity modulated radiotherapy or volumetric modulated arc therapy) following a review of the current imaging protocol.

  16. Quantifying intra- and inter-fractional motion in breast radiotherapy

    International Nuclear Information System (INIS)

    The magnitude of intra- and inter-fractional variation in the set up of breast cancer patients treated with tangential megavoltage photon beams was investigated using an electronic portal imaging device (EPID). Daily cine-EPID images were captured during delivery of the tangential fields for ten breast cancer patients treated in the supine position. Measurements collected from each image included the central lung distance (CLD), central flash distance (CFD), superior axial measurement (SAM) and the inferior axial measurement (IAM). The variation of motion within a fraction (intra-fraction) and the variation between fractions (inter-fraction) was analysed to quantify set up variation and motion due to respiration. Altogether 3775 EPID images were collected from 10 patients. The effect of respiratory motion during treatment was <0.1 cm standard deviation (SD) in the anterior–posterior (AP) direction. The inter-fraction movement caused by variations in daily set up was larger at 0.28 cm SD in the AP direction. Superior–inferior (SI) variation was more difficult to summarise and proved unreliable as the measurements were taken to an ambiguous point on the images. It was difficult to discern true SI movement from that implicated by AP movement. There is minimal intra-fractional chest wall motion due to respiration during treatment. Inter-fractional variation was larger, however, on average it remained within departmental tolerance (0.5 cm) for set up variations. This review of our current breast technique provides confidence in the feasibility of utilising advanced treatment techniques (field-in-field, intensity modulated radiotherapy or volumetric modulated arc therapy) following a review of the current imaging protocol

  17. MOTION IN PAINTING

    OpenAIRE

    AKÇAOĞLU, ZELİHA

    2010-01-01

    Starting from primitive society until nowadays, the paint art, which shows the life with thoughts and fantasies, has awakened interest of people. Those, who were interested in it (paint art) were tryin to catch this elusive moment which is exposed in picture or paint. This short period of time called "moment"' is really important in paint art. Painter, who transfers the moment into a picture, at the same time tryin to transfer the motion. So far, all the light and regular mo...

  18. Motional Casimir force

    OpenAIRE

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    We study the situation where two point like mirrors are placed in the vacuum state of a scalar field in a two-dimensional spacetime. Describing the scattering upon the mirrors by transmittivity and reflectivity functions obeying unitarity, causality and high frequency transparency conditions, we compute the fluctuations of the Casimir forces exerted upon the two motionless mirrors. We use the linear response theory to derive the motional forces exerted upon one mirror when it moves or when th...

  19. Motion of Confined Particles

    CERN Document Server

    Miller, David E

    2016-01-01

    We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.

  20. Electromagnetic and axial structures of Baryon ground and resonant states

    International Nuclear Information System (INIS)

    This thesis is devoted to the investigation of the electroweak structures of baryons. One performs a comprehensive study of the electromagnetic and axial form factors of baryon ground states with flavors 'up', 'down', and 'strange'; regarding baryon resonances the axial charges are investigated. The dynamics for the description of baryons is furnished by the relativistic constituent-quark model, of which three different variants are applied here. The calculations are performed in the framework of relativistic quantum mechanics, where the electromagnetic and axial current operators are constructed along a spectator model in the point-form.While the evaluations of the electroweak form factors are based on an already established formalism, one develops a generally valid formulation for the axial charges. Thereby it becomes possible to calculate these quantities for arbitrary baryon states and completely general interaction models.It turns out that relativistic constituent-quark models can describe in the framework of a Poincare-invariant formalism not only the electromagnetic but also the axial form factors, which are calculated here for the first time for all baryons. Globally, a good agreement with experiment is achieved up to momentum transfers of about 4 GeV/c. With regard to the particularly sensitive quantities, like the electric radii and magnetic moments, the constituent-quark model based on Goldstone-boson exchange yields the best results. In cases, where no experimental data exist, the predictions agree well with results from lattice quantum chromodynamics. The analogue is true for the axial charges of baryon ground and resonant states. Except for some special cases, their values are presented here for the first time comprehensively and consistently. (author)

  1. A three-dimensional nodal method with Channel-wise Intrinsic Axial Mesh Adaptation

    International Nuclear Information System (INIS)

    Highlights: • CIAMA solves axial heterogeneity without iterative node re-homogenization. • CIAMA can easily resolve the control rod cusping problem. • CIAMA result shows great potential for 3-D pin-by-pin calculation. - Abstract: In a conventional coarse mesh nodal method the more accurate treatment of intra-nodal axial heterogeneity requires iterative axial node re-homogenization using axial flux profiles either reconstructed from core-wise coarse mesh solution or obtained from channel-wise axial fine mesh calculation. In this paper a new nodal method formulation, using Channel-wise Intrinsic Axial Mesh Adaptation (CIAMA), is proposed to solve this problem in a more fundamental way. For a given transverse (radial) leakage, along each axial channel a rigorous sub-node heterogeneous calculation is performed with the explicit axial heterogeneity within each coarse axial node. However, the transverse leakage between the axial channels is still calculated on the basis of coarse axial nodes, using the axially averaged radial current in each coarse axial node. Since the coupling between the axial channels is through the coarse axial nodes, it is not necessary to match the boundaries of the axial sub-nodes of neighboring axial channels in order to incorporate the axial sub-node calculation as an intrinsic part of the whole core global calculation. Therefore in the CIAMA nodal method, each axial channel is allowed to have its own sub-nodes adapting to its own axial heterogeneity variation. The CIAMA method has been implemented in the commercial code EGRET, which is used to qualify CIAMA. Excellent results of modeling fuel grid and control rod movement are presented. Application of CIAMA to three-dimensional pin-by-pin core calculation is also discussed and demonstrated to work well

  2. Force and motion

    CERN Document Server

    Robertson, William C

    2002-01-01

    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  3. A simple approach to the ABJ axial anomaly

    International Nuclear Information System (INIS)

    A very simple semi-quantitative derivation of the Adler-Bell-Jackiw (ABJ) axial anomaly is given, based on an investigation of the absorptive part of the VVA triangle graph and dispersion relations. Essential ingredients of our discussion are: normal Ward identities for the absorptive part of the relevant diagram, dimensional analysis, unitarity, and energy-momentum conservation. An explanation of the physical origin of axial anomaly, proposed in some earlier treatments within such a dispersive framework, is critically examined. In particular, the interpretation of the ABJ anomaly as an analogy of the Lee-Nauenberg effect occurring in the massless limit of spinor electrodynamics is shown to be fallacious

  4. Axial-symmetrical domain structures in ferrite-garnet films

    International Nuclear Information System (INIS)

    Applying the improved technique of double ultrahigh-speed photography one studied occurrence and progress of domain structure upon magnetization of a small section of (BiLaTm)3(FeGa)5O12 ferrite-garnet film prior to saturation. The radial deformation affecting the specimen on the magnetized coil side was determined to break single-axis anisotropy resulting in occurrence of axial-oriented band domain structure inside the magnetized range. That structure period reduced with growth of the pulse field amplitude. Band axial-oriented domain structure is formed under the effect of the magnetostatic axisymmetric field

  5. Vector and axial currents in Wilson chiral perturbation theory

    International Nuclear Information System (INIS)

    We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory, the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two-flavor theory. Our result differs from previously published ones.

  6. Instability of Meridional Axial System in f(R) Gravity

    CERN Document Server

    Sharif, M

    2015-01-01

    We analyze dynamical instability of non-static reflection axial stellar structure by taking into account generalized Euler's equation in metric $f(R)$ gravity. Such an equation is obtained by contracting Bianchi identities of usual anisotropic and effective stress-energy tensors, which after using radial perturbation technique gives modified collapse equation. In the realm of $R+\\epsilon R^n$ gravity model, we investigate instability constraints at Newtonian and post-Newtonian approximations. We find that instability of meridional axial self-gravitating system depends upon static profile of structure coefficients while $f(R)$ extra curvature terms induce stability to the evolving celestial body.

  7. The gravitational axial superfield and the formalism of differential geometry

    International Nuclear Information System (INIS)

    The formalism of differential geometry in the physical 4+4-dimensional superspace (SS) is developed on the basis of the simplest supergravity group of general transformations of the coordinates of the left and right chiral SS. In this formalism the only independent dynamical variable is the axial gravitational superfield (SF). All the geometrical objects - supertetrades, affinities, etc. - are expressed in terms of the axial gravitational SF. Analysis of the transformation properties of the spinor-coordinate derivatives has led to a natural definition of the local Lorentz group for SF. The simplest Lagrangian for pure supergravity is discussed

  8. Axial crack propagation and arrest in pressurized fuselage

    Science.gov (United States)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  9. Experimental investigation on ducted counter-rotating axial flow fans

    OpenAIRE

    Nouri, Hussain; Ravelet, Florent; Bakir, Farid; Sarraf, Christophe

    2011-01-01

    An experimental study on counter-rotating axial-flow fans was carried out. The fans of diameter D = 375 mm were designed using an inverse method. The counter-rotating fans operate in a ducted-flow configuration and the overall performances are measured in a normalized test bench. The rotation rate of each fan is independently controlled. The axial spacing between the fans can vary from 10 to 50 mm by steps of 10 mm. The results show that the efficiency is strongly increased compared to a conv...

  10. An effective theory for QCD with an axial chemical potential

    CERN Document Server

    Andrianov, Alexander A; Espriu, Domenec; Planells, Xumeu

    2013-01-01

    We consider the low energy realization of QCD in terms of meson fields when an axial chemical potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate that the presence of an axial charge constitutes an explicit source of parity breaking. The eigenstates of strong interactions do not have a definite parity and interactions that would otherwise be forbidden compete with the familiar ones. In this work, we first focus on scalars and pseudoscalars that are described by a generalized linear sigma model; and next, we give some hints on how the Vector Meson Dominance model describes the vector sector.

  11. Infrared and terahertz radiation of a crystal at axial channeling

    International Nuclear Information System (INIS)

    Basic properties of radiation of a crystal lattice excited by an axial channeling particle are considered. It is shown that a coherent radiation of atoms occurs if the frequency of oscillations of the channeled particle comes to a resonance with the vibrational mode of the crystal. Spectral and angular distribution of radiation and its polarization are calculated. In case of a relativistic channeled particle, the radiation of atoms is generated into a narrow cone in the direction of a crystallographic axis along which the particle is channeling. The radiation of atoms exited at axial channelling has significant degree of circular polarization

  12. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically...

  13. Spectral analysis in thin tubes with axial heterogeneities

    KAUST Repository

    Ferreira, Rita

    2015-01-01

    In this paper, we present the 3D-1D asymptotic analysis of the Dirichlet spectral problem associated with an elliptic operator with axial periodic heterogeneities. We extend to the 3D-1D case previous 3D-2D results (see [10]) and we analyze the special case where the scale of thickness is much smaller than the scale of the heterogeneities and the planar coefficient has a unique global minimum in the periodic cell. These results are of great relevance in the comprehension of the wave propagation in nanowires showing axial heterogeneities (see [17]).

  14. An analytical model of prominence mass motion

    CERN Document Server

    Routh, Swati; Bhat, Atul

    2016-01-01

    Solar Prominences are intriguing, but poorly understood magnetic structures of the solar corona. Convective motions in the photosphere and sub-photosphere may be responsible for generating the magnetic fields that support long-lived quiescent solar prominence. The dynamics of solar prominence has been the subject of a large number of studies. We develop a theoretical model using analytical approximations to analyze the nature of the dynamics of these quiescent solar prominences based on the K-S model.

  15. A charged-particle manipulator utilizing a co-axial tube electrodynamic trap with an integrated camera

    International Nuclear Information System (INIS)

    A charged-particle manipulator was designed and fabricated with an integrated imaging camera allowing real-time in-situ monitoring of trapped particle motion even when the trap device is under motion or rotation. The trap device was made of two co-axial electrically conductive tubes with diameters of 5.5 mm and 7 mm for the inner tube and outer tube, respectively; the imaging camera with its optical fiber bundle was integrated within the tubular trap device to realize a single instrument functioning as a manipulator. Motion of suspended microparticles of 3 μm to 50 μm in diameter can be monitored using the integrated camera regardless of the trap device orientations. This manipulator provides capability of controlled manipulation of trapped particles by tuning the operating conditions while monitoring the feedback of real-time particle motion. Imaging of suspended particles was not interrupted while the manipulator was translated and/or rotated. This integrated manipulator can be used for charged particle transport and repositioning.

  16. A charged-particle manipulator utilizing a co-axial tube electrodynamic trap with an integrated camera

    Science.gov (United States)

    Jiang, L.; Whitten, W. B.; Pau, S.

    2011-10-01

    A charged-particle manipulator was designed and fabricated with an integrated imaging camera allowing real-time in-situ monitoring of trapped particle motion even when the trap device is under motion or rotation. The trap device was made of two co-axial electrically conductive tubes with diameters of 5.5 mm and 7 mm for the inner tube and outer tube, respectively; the imaging camera with its optical fiber bundle was integrated within the tubular trap device to realize a single instrument functioning as a manipulator. Motion of suspended microparticles of 3 μm to 50 μm in diameter can be monitored using the integrated camera regardless of the trap device orientations. This manipulator provides capability of controlled manipulation of trapped particles by tuning the operating conditions while monitoring the feedback of real-time particle motion. Imaging of suspended particles was not interrupted while the manipulator was translated and/or rotated. This integrated manipulator can be used for charged particle transport and repositioning.

  17. Neural mechanisms of uncon-scious visual motion priming

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The neural correlates of the motion priming were examined in normal young subjects using event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI). Visual motion perception can be uncon-sciously biased in favor of a particular direction by a pre-ceding motion in that direction. Motion priming first in-volved an enhancement of ERP amplitude about 100 ms fol-lowing the onset of motion. The amplitudes of ERP compo-nents after 350 ms were also increased. The fMRI results suggest that the early-latency effect reflects modulation of neural responses in extrastriate cortex. Higher-level visual processing areas, including cortical regions MT/MST and the intraparietal cortices were also activated. The findings provide direct evidence that unconscious priming of motion perception is the result of interaction of direction-selective neural responses to motion stimuli. The results cannot be accounted for by refractoriness of neural responses, but in-stead support a theory of motion priming based on motion opponency, as proposed in computational models.

  18. Instantaneous axial velocity of a radioactive tracer determined with radioactive particle tracking

    International Nuclear Information System (INIS)

    Radioactive Particle Tracking (RPT) is a technique that has been successfully used to get features of the liquid and/or the solid motion in multiphase contactors. It is one of the rare techniques able to provide experimental data in dense and strongly turbulent multiphase media. Validation of the technique has always been based on comparing the estimated mean velocity to an imposed mean velocity although the extracted features are frequently related to the instantaneous velocities. The present work pursues the analysis, through calibration experiments, of the ability of RPT to get the actual tracer instantaneous velocities. With this purpose, the motion of a radioactive tracer attached to a moving rod driven by a pneumatic system is reconstructed from the combined response of an array of 10 NaI(Tl) scintillation detectors. Simultaneously, the tracer motion is registered through an encoder able to establish the axial tracer coordinate with high precision and high time resolution. The tracer is a gold particle, activated by neutron bombardment. The rod is moved at different velocities and it travels upwards and downwards close to the column centre. A mini-pilot scale bubble column is used as the test facility. The model liquid is tap water in batch mode and the gas is air, flowing at different gas velocities, spanning the homogeneous and the heterogeneous flow regimes. Time series of the entirety response of all the detectors, while the rod is moving at different imposed velocities within the two phase emulsion, are measured with a sampling period of 0.03 s during about 2 minutes. The instantaneous tracer positions and velocities reconstructed from RPT and the one obtained from the encoder response are compared under different operating conditions and for different tracer velocities. (author)

  19. A mathematical model for estimating the axial stress of the common carotid artery wall from ultrasound images.

    Science.gov (United States)

    Soleimani, Effat; Mokhtari-Dizaji, Manijhe; Saberi, Hajir; Sharif-Kashani, Shervin

    2016-08-01

    Clarifying the complex interaction between mechanical and biological processes in healthy and diseased conditions requires constitutive models for arterial walls. In this study, a mathematical model for the displacement of the carotid artery wall in the longitudinal direction is defined providing a satisfactory representation of the axial stress applied to the arterial wall. The proposed model was applied to the carotid artery wall motion estimated from ultrasound image sequences of 10 healthy adults, and the axial stress waveform exerted on the artery wall was extracted. Consecutive ultrasonic images (30 frames per second) of the common carotid artery of 10 healthy subjects (age 44 ± 4 year) were recorded and transferred to a personal computer. Longitudinal displacement and acceleration were extracted from ultrasonic image processing using a block-matching algorithm. Furthermore, images were examined using a maximum gradient algorithm and time rate changes of the internal diameter and intima-media thickness were extracted. Finally, axial stress was estimated using an appropriate constitutive equation for thin-walled tubes. Performance of the proposed model was evaluated using goodness of fit between approximated and measured longitudinal displacement statistics. Values of goodness-of-fit statistics indicated high quality of fit for all investigated subjects with the mean adjusted R-square (0.86 ± 0.08) and root mean squared error (0.08 ± 0.04 mm). According to the results of the present study, maximum and minimum axial stresses exerted on the arterial wall are 1.7 ± 0.6 and -1.5 ± 0.5 kPa, respectively. These results reveal the potential of this technique to provide a new method to assess arterial stress from ultrasound images, overcoming the limitations of the finite element and other simulation techniques. PMID:26563198

  20. Pion electroproduction, partially conserved axial-vector current, chiral Ward identities, and the axial form factor revisited

    International Nuclear Information System (INIS)

    We reinvestigate Adler's partially conserved axial-vector current relation in the presence of an external electromagnetic field within the framework of QCD coupled to external fields. We discuss pion electroproduction within a tree-level approximation to chiral perturbation theory and explicitly verify a chiral Ward identity referred to as the Adler-Gilman relation. We critically examine soft-momentum techniques and point out how inadmissable approximations may lead to results incompatible with chiral symmetry. As a result we confirm that threshold pion electroproduction is indeed a tool to obtain information on the axial form factor of the nucleon

  1. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  2. Influence of Physical and Geometrical Uncertainties in the Parametric Instability Load of an Axially Excited Cylindrical Shell

    OpenAIRE

    Frederico Martins Alves da Silva; Augusta Finotti Brazão; Paulo Batista Gonçalves

    2015-01-01

    This work investigates the influence of Young’s modulus, shells thickness, and geometrical imperfection uncertainties on the parametric instability loads of simply supported axially excited cylindrical shells. The Donnell nonlinear shallow shell theory is used for the displacement field of the cylindrical shell and the parameters under investigation are considered as uncertain parameters with a known probability density function in the equilibrium equation. The uncertainties are discretized a...

  3. Motion-compensated compressed sensing for dynamic imaging

    Science.gov (United States)

    Sundaresan, Rajagopalan; Kim, Yookyung; Nadar, Mariappan S.; Bilgin, Ali

    2010-08-01

    The recently introduced Compressed Sensing (CS) theory explains how sparse or compressible signals can be reconstructed from far fewer samples than what was previously believed possible. The CS theory has attracted significant attention for applications such as Magnetic Resonance Imaging (MRI) where long acquisition times have been problematic. This is especially true for dynamic MRI applications where high spatio-temporal resolution is needed. For example, in cardiac cine MRI, it is desirable to acquire the whole cardiac volume within a single breath-hold in order to avoid artifacts due to respiratory motion. Conventional MRI techniques do not allow reconstruction of high resolution image sequences from such limited amount of data. Vaswani et al. recently proposed an extension of the CS framework to problems with partially known support (i.e. sparsity pattern). In their work, the problem of recursive reconstruction of time sequences of sparse signals was considered. Under the assumption that the support of the signal changes slowly over time, they proposed using the support of the previous frame as the "known" part of the support for the current frame. While this approach works well for image sequences with little or no motion, motion causes significant change in support between adjacent frames. In this paper, we illustrate how motion estimation and compensation techniques can be used to reconstruct more accurate estimates of support for image sequences with substantial motion (such as cardiac MRI). Experimental results using phantoms as well as real MRI data sets illustrate the improved performance of the proposed technique.

  4. Evolution of the motion of a viscoelastic planet with retrograde rotation in the gravitational field of two point masses

    International Nuclear Information System (INIS)

    Nonlinear resonance phenomena in the solar system, including commensurability between the axial and orbital motions of the planets has drawn the attention of researchers. The resource in the motion of Venus has been discussed: at each inferior conjunction with the earth the same side of Venus is turned toward the earth. This work examines the evolution of the translational-rotational motion of a viscoelastic planet of Kelvin-Voigt material moving in the field of two attracting points. A model of the sun-Venus-Earth system is constructed. An averaging scheme is used to investigate the resonance modes in two-frequency oscillatory systems

  5. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  6. Improving axial depth of cut accuracy in micromilling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    and their rapid warming and cooling, which prevent the achievement of a steady state. Several other factors, independent on the tool-workpiece interaction, influence the machining accuracy. The cutting parameter most heavily affected is the axial depth of cut which is the most critical when using...

  7. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  8. Axial heterogeneous core concept applied for super phoenix reactor

    International Nuclear Information System (INIS)

    Always maintaining the current design rules, this paper presents a parametric study on the type of axial heterogeneous core concept (CHA), utilizing a core of fast reactor Super Phenix type, reaching a maximum thermal burnup rate of 150000 M W d/t and being managed in single batch. (author)

  9. Defining active sacroiliitis on MRI for classification of axial spondyloarthritis

    DEFF Research Database (Denmark)

    Lambert, Robert G W; Bakker, Pauline A C; van der Heijde, Désirée;

    2016-01-01

    OBJECTIVES: To review and update the existing definition of a positive MRI for classification of axial spondyloarthritis (SpA). METHODS: The Assessment in SpondyloArthritis International Society (ASAS) MRI working group conducted a consensus exercise to review the definition of a positive MRI for...

  10. Dynamic calibration of tri-axial piezoelectric force transducers

    International Nuclear Information System (INIS)

    Applied dynamic loads are often difficult to measure accurately due to the dynamic response of the sensor used and the dependence of the sensor's sensitivity on the mounting and loading details. For tri-axial force transducers, which are capable of measuring forces along the axial direction and along both directions of the transducer's face, dynamic calibration is further complicated by the coupling of the sensor's measurement directions. For this reason, a new apparatus for dynamic calibration of normal and tangential directions of a tri-axial piezoelectric force transducer has been constructed and tested. The calibration force is provided from a spring loaded uni-axial impulse hammer. The apparatus allows for calibration at a variety of calibration angles and speeds; the loading for all cases of a nonzero calibration angle is oblique, with the point of force application being eccentric to the centerline of the force transducer's normal axis. As such, tangential loads are always accompanied by a normal load. The calibration results show that the normal direction correction factors have a systematic dependence on the calibration angle; the tangential correction factors show some scatter but do not appear to be dependent on the calibration angle

  11. AXIAL DEFFLECTION STUDIES OF RING SHAPED FORCE TRANSDUCER: A REVIEW

    Directory of Open Access Journals (Sweden)

    SUDHIR KUMAR,

    2011-01-01

    Full Text Available The ring shaped force transducers are widely used in practice and are available in varying capacities from few hundred newtons to mega newtons. The present paper discusses the deflection studies of thering shaped force transducers under action of axial forces. Various methods leading to the measurement of deflection have been discussed and compared here.

  12. On the axially symmetric equilibrium of a magnetically confined plasma

    International Nuclear Information System (INIS)

    The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)

  13. COMPARISON OF AXIAL FAN ROTOR EXPERIMENTAL DATA WITH CFD SIMULATION

    OpenAIRE

    Aleš Prachař

    2016-01-01

    Data obtained from an experimental simulation on a new test rig for axial fans are compared to a CFD simulation. The Edge solver is used and the development needed for the simulation (boundary conditions, free stream consistency) is described. Adequate agreement between the measured and calculated data is observed.

  14. COMPARISON OF AXIAL FAN ROTOR EXPERIMENTAL DATA WITH CFD SIMULATION

    Directory of Open Access Journals (Sweden)

    Aleš Prachař

    2016-02-01

    Full Text Available Data obtained from an experimental simulation on a new test rig for axial fans are compared to a CFD simulation. The Edge solver is used and the development needed for the simulation (boundary conditions, free stream consistency is described. Adequate agreement between the measured and calculated data is observed.

  15. A cylindrical drift chamber with azimuthal and axial position readout

    International Nuclear Information System (INIS)

    A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in π-p interactions. We describe the chamber's design considerations, details of its construction, electronics, and performance characteristics. (orig.)

  16. Modelling the cardiac transverse-axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Christé, G.; Orchard, C.

    2008-01-01

    Roč. 96, - (2008), s. 226-246. ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : cardiac cell * transverse-axial tubular system * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  17. On the Applications of Axial Representation of Trigonometric Functions

    Science.gov (United States)

    Siadat, M. Vali

    2006-01-01

    In terms of modern pedagogy, having visual interpretation of trigonometric functions is useful and quite helpful. This paper presents, pictorially, an easy approach to prove all single angle trigonometric identities on the axes. It also discusses the application of axial representation in calculus--finding the derivative of trigonometric functions.

  18. FINITE ELEMENT ANALYSIS OF AXIAL FEED BAR ROLLING

    Institute of Scientific and Technical Information of China (English)

    C.G. Xu; G.H. Liu; G.S. Ren; Z. Shen; C.P. Ma; W. W. Ren

    2007-01-01

    A flexible technique of hot working of bars by axial feed rolling was introduced. The processdeformation, strain field, stress field, and temperature field of the parts are analyzed by finite elementmethod (FEM)-simulation software DEFORM-3D. The material flow rule and tool load have beeninvestigated.

  19. View of the Axial Field Spectrometer (R807)

    CERN Multimedia

    1980-01-01

    In this view of the Axial Field Spectrometer at I8, the vertical uranium/scintillator hadron calorimeter (just left of centre) is retracted to give access to the cylindrical central drift chamber. The yellow iron structure served as a filter to identify muons, with MWPCs and the array of Cherenkov counters to the right.

  20. Axial and focal-plane diffraction catastrophe integrals

    Energy Technology Data Exchange (ETDEWEB)

    Berry, M V [H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Howls, C J [School of Mathematics, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2010-09-17

    Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X{sub 9} diffraction catastrophes. These representations reveal unexpected relations between the integrals.

  1. On the generation techniques of axially symmetric stationary metrics

    Indian Academy of Sciences (India)

    S Chaudhuri

    2002-03-01

    In the present paper, a relationship between the method of Gutsunaev–Manko and the soliton technique (for two-soliton solutions) of Belinskii–Zakharov, for generating solutions of axially symmetric stationary space-times in general relativity is discussed.

  2. Etanercept for the treatment of non-radiographic axial spondyloarthritis.

    Science.gov (United States)

    Rios Rodriguez, Valeria; Poddubnyy, Denis

    2016-05-01

    Presently, tumor necrosis factor α antagonist therapy is the only effective alternative treatment to nonsteroidal anti-inflammatory drugs for the entire spectrum of axial spondyloarthritis, including non-radiographic and radiographic (=ankylosing spondylitis) forms. Recently, etanercept has been approved by the European Medicines Agency for the treatment of non-radiographic axial spondyloarthritis, increasing the number of available treatment options for this indication. The latest data on etanercept concerning clinical efficacy and safety in short-term and long-term treatment of patients with non-radiographic axial spondyloarthritis who do not respond to the first-line therapy with non-steroidal anti-inflammatory drugs suggests good efficacy and safety profiles similar to that observed previously in ankylosing spondylitis. This article reviews recent data on the efficacy and safety of etanercept and is focused on the treatment of non-radiographic axial spondyloarthritis. This article will also discuss the role of etanercept in the context of current and developing treatment options. PMID:26788837

  3. WORKSHOP: Stable particle motion

    International Nuclear Information System (INIS)

    Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants

  4. Vibration Analysis of a Two-disc Rotor-stator System with Axial Rubs%轴向摩擦转子的弯扭耦合振动分析

    Institute of Scientific and Technical Information of China (English)

    张昆鹏; 丁千

    2009-01-01

    The calculation models of the axial contact force and the friction force among the discs and sealing flanges of the stator were deduced. The axial contact forces were converted into the radial forces based on the equivalent moment rule. Then lateral - torsional coupling vibration equations of a single -span-two-disc rotor-stator system were established with consideration of the axial rubs. The results show that when axial rubs happen, the transverse motion of the system can be multiple-periodic and chaotic. The severity of axial rubs can be reflected directly by the torsional motion of the disks.%推导了圆盘与封严圈之间的轴向碰撞力和摩擦力计算公式,并根据力矩相等原则,建立考虑轴向碰摩的单跨双盘转子一静子的弯扭耦合振动方程.采用数值方法,计算分析轴向摩擦对转子运动的影响.研究表明,轴向摩擦导致系统出现多周期和混沌的横向运动,而圆盘扭转运动则能够较直接地反映轴向摩擦的严重程度.

  5. Electromechanical motion devices

    CERN Document Server

    Krause, Paul C; Pekarek, Steven D

    2012-01-01

    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  6. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  7. Brownian Brownian Motion-1

    OpenAIRE

    Chernov, N.; Dolgopyat, D.

    2008-01-01

    A classical model of Brownian motion consists of a heavy molecule submerged into a gas of light atoms in a closed container. In this work we study a 2D version of this model, where the molecule is a heavy disk of mass M and the gas is represented by just one point particle of mass m = 1, which interacts with the disk and the walls of the container via elastic collisions. Chaotic behavior of the particles is ensured by convex (scattering) walls of the container. We prove that the position and ...

  8. Projectile transverse motion and stability in electromagnetic induction launchers

    Energy Technology Data Exchange (ETDEWEB)

    Shokair, I.R.

    1993-12-31

    The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Linearized transverse forces and torques due to energized coils are derived for displaced or tilted armature elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple linear stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot circuit code and numerical solutions for the transverse motion are obtained. For a launcher with a 10 cm bore radius with a 40 cm long solid armature, we find that stability is achieved with a restoring force (per unit length) constant of k {approx} 1 {times} 10{sup 8} N/m{sup 2}. For k = 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars. Results for a wound armature with uniform current density throughout show very similar displacements.

  9. Infants' ability to associate motion paths with object kinds.

    Science.gov (United States)

    Baker, Rachel K; Pettigrew, Tamara L; Poulin-Dubois, Diane

    2014-02-01

    The goal of the present research was to examine whether infants associate different paths of motion with animate beings and inanimate objects. An infant-controlled habituation procedure was used to examine 10-20-month-old infants' ability to associate a non-linear motion path (jumping) with animals and a linear (rebounding) motion path with vehicles (Experiment 1) and furniture (Experiment 2). During the habituation phase, infants saw a dog jumping over a barrier and either a vehicle or a piece of furniture rebounding off the barrier. In the test phase, infants looked longer when another inanimate object jumped rather than rebounded, but showed no such differential looking in the case of another animate object. The ability to restrict the animate motion path of jumping to animate beings was present by 10 months of age. The present findings support the hypothesis that motion path is associated with the animate-inanimate distinction early in infancy. PMID:24486789

  10. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    The Simplified PN(SPN) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SPN equations involving a radial transverse leakage. The SPN solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SPN nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP3. Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP3 with only about a 15% increase in the computing time. It is shown that the SP5 case gives very similar results to the SP3 case. (author)

  11. Free motion around black holes with discs or rings: between integrability and chaos -- IV

    OpenAIRE

    Witzany, V.; Semerak, O.; Sukova, P.

    2016-01-01

    The dynamical system studied in previous papers of this series, namely a bound time-like geodesic motion in the exact static and axially symmetric space-time of an (originally) Schwarzschild black hole surrounded by a thin disc or ring, is considered to test whether the often employed "pseudo-Newtonian" approach (resorting to Newtonian dynamics in gravitational potentials modified to mimic the black-hole field) can reproduce phase-space properties observed in the relativistic treatment. By pl...

  12. A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    Tasawar Hayat; Najma Saleem; Awatif A. Hendi

    2011-01-01

    A mathematical model is presented with an interest to examine the peristaltic motion in an asymmetric channel by taking into account the slip, heat and mass transfer. Constitutive relationships for a micropolar fluid are used. The solution procedure for nonlinear analysis is given under long wavelength and low Reynolds number approximations. The effects of sundry parameters entering into the expressions of axial velocity,temperature and concentration are explored. Pumping and trapping phenomena are discussed.

  13. Neural correlates of facial motion perception.

    Science.gov (United States)

    Girges, Christine; O'Brien, Justin; Spencer, Janine

    2016-06-01

    Several neuroimaging studies have revealed that the superior temporal sulcus (STS) is highly implicated in the processing of facial motion. A limitation of these investigations, however, is that many of them utilize unnatural stimuli (e.g., morphed videos) or those which contain many confounding spatial cues. As a result, the underlying mechanisms may not be fully engaged during such perception. The aim of the current study was to build upon the existing literature by implementing highly detailed and accurate models of facial movement. Accordingly, neurologically healthy participants viewed simultaneous sequences of rigid and nonrigid motion that was retargeted onto a standard computer generated imagery face model. Their task was to discriminate between different facial motion videos in a two-alternative forced choice paradigm. Presentations varied between upright and inverted orientations. In corroboration with previous data, the perception of natural facial motion strongly activated a portion of the posterior STS. The analysis also revealed engagement of the lingual gyrus, fusiform gyrus, precentral gyrus, and cerebellum. These findings therefore suggest that the processing of dynamic facial information is supported by a network of visuomotor substrates. PMID:26077725

  14. Do lower vertebrates suffer from motion sickness?

    Science.gov (United States)

    Lychakov, Dmitri

    , there is absent the hypothetical center of subjective «nauseating» sensations; therefore, they are immune to the motion sickness. This work was partly supported by Russian grant RFFI 14-04-00601.

  15. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  16. Bubble oscillations and motion under vibration

    CERN Document Server

    O'Hern, Tim; Torczynski, John

    2011-01-01

    Bubbles under vibration can behave in unusual ways, e.g., moving downward against the force of buoyancy. While the bubble downward motion due to the Bjerknes force is well known at acoustic frequencies close to the bubble resonant frequency, these experiments demonstrate that these effects can be observed at relatively low frequencies as well. Experiments were performed in a thin, quasi-two-dimensional rectangular acrylic box partially filled with 20-cSt PDMS silicone oil with overlying ambient air. The apparatus was subjected to sinusoidal axial vibration that produced breakup of the gas-liquid free surface, producing liquid jets into the air, droplets pinching off from these jets, gas cavities in the liquid from impacts of these droplets, and bubble transport below the interface. Vibration conditions for the attached videos are 280 Hz frequency, 15 g acceleration, and 94 micron peak-to-peak displacement. Behaviors shown in the videos include the following. 1. Free surface breakup into jets and droplets, and...

  17. Powering biomedical devices with body motion.

    Science.gov (United States)

    Romero, Edwar; Warrington, Robert O; Neuman, Michael R

    2010-01-01

    Energy harvesting from body motion is an alternative power source that can be used to energize miniature electronic biomedical devices. This technology can make it possible to recharge batteries to reduce the frequency of or eliminate surgeries to replace depleted cells. Power availability evaluation from walking and running at several body locations and different speeds is presented. Treadmill tests were performed on 11 healthy subjects to measure the accelerations at the ankle, knee, hip, chest, wrist, elbow, upper arm, and side of the head. Power was estimated from the treadmill results since it is proportional to the acceleration magnitudes and the frequency of occurrence. Available power output from walking was found to be more than 0.5 mW/cm(3) for all body locations while being more than 10 mW/cm(3) for the ankle and knee. Running results were at least 10 times higher than those from walking. An axial flux miniature electric dynamo using electromagnetic induction was evaluated for power generation. The device was composed of a rotor with multiple-pole permanent magnets positioned on an annular ring having an eccentric mass, and stacked planar coils as a stator. A 2 cm(3) prototype was found to generate 117 microW of power from the generator placed laterally on the ankle while walking. PMID:21096868

  18. Motion Capture: Drawing and the Moving Image Exhibition, Letterkenny, Donegal.

    OpenAIRE

    Fay, Brian

    2013-01-01

    Motion Capture Drawing & the Moving Image A GLUCKSMAN exhibition, touring to Regional Cultural Centre, Letterkenny, Co. Donegal, 22 January – 9 March 2013 Supported by a Touring and Dissemination award from the Arts Council of Ireland/An Chomhairle Ealaíon. Motion Capture is an exhibition that explores the relationship of movement in two artistic media: drawing and the moving image. Featuring artworks from the mid-twentieth century through to the present day, the exhibition emphasises the ...

  19. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  20. Quantitative analysis of cone photoreceptor distribution and its relationship with axial length, age, and early age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Ryo Obata

    Full Text Available PURPOSE: It has not been clarified whether early age-related macular degeneration (AMD is associated with cone photoreceptor distribution. We used adaptive optics fundus camera to examine cone photoreceptors in the macular area of aged patients and quantitatively analyzed its relationship between the presence of early AMD and cone distribution. METHODS: Sixty cases aged 50 or older were studied. The eyes were examined with funduscopy and spectral-domain optical coherence tomography to exclude the eyes with any abnormalities at two sites of measurement, 2° superior and 5° temporal to the fovea. High-resolution retinal images with cone photoreceptor mosaic were obtained with adaptive optics fundus camera (rtx1, Imagine Eyes, France. After adjusting for axial length, cone packing density was calculated and the relationship with age, axial length, or severity of early AMD based on the age-related eye disease study (AREDS classification was analyzed. RESULTS: Patient's age ranged from 50 to 77, and axial length from 21.7 to 27.5 mm. Mean density in metric units and that in angular units were 24,900 cells/mm2, 2,170 cells/deg2 at 2° superior, and 18,500 cells/mm2, 1,570 cels/deg2 at 5° temporal, respectively. Axial length was significantly correlated with the density calculated in metric units, but not with that in angular units. Age was significantly correlated with the density both in metric and angular units at 2° superior. There was no significant difference in the density in metric and angular units between the eyes with AREDS category one and those with categories two or three. CONCLUSION: Axial length and age were significantly correlated with parafoveal cone photoreceptor distribution. The results do not support that early AMD might influence cone photoreceptor density in the area without drusen or pigment abnormalities.