WorldWideScience

Sample records for axial magnetic field

  1. Build Axial Gradient Field by Using Axial Magnetized Permanent Rings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Axial magnetic field produced by an axial magnetized permanent ring was studied. For two permanent rings, if they are magnetized in the same directions, a nearly uniform axial field can be produced. If they are magnetized in opposite direction,an axial gradient magnetic field can be generated, with the field range changing from -B0 to B0. A permanent magnet with a high axial gradient field was fabricated, the measured results agree with the PANDIRA calculation very well. For wider usage,it is desirable for the field gradient to be changed. Some methods to produce the variable gradient field are presented. These kinds of axial gradient magnetic field can also be used as a beam focusing for linear accelerator if the periodic field can be produced along the beam trajectory. The axial magnetic field is something like a solenoid, large stray field will leak to the outside environment if no method is taken to control them. In this paper, one method is illustrated to shield off the outside leakage field.

  2. Effects of external axial magnetic field on fast electron propagation

    International Nuclear Information System (INIS)

    A scheme employing an external axial magnetic field is proposed to diagnose the intrinsic divergence of laser-generated fast electron beams, and this is studied numerically with hybrid simulations. The maximum beam radius of fast electrons increases with the initial divergence and decreases with the amplitude of the axial magnetic field. It is indicated that the intrinsic divergence of fast electrons can be inferred from measurements of the beam radius at different depth under the axial field. The proposed scheme here may be useful for future fast ignition experiments and in other applications of laser-generated fast electron beams.

  3. Vacuum arc under axial magnetic fields: experimental and simulation research

    International Nuclear Information System (INIS)

    Axial magnetic field (AMF) technology is a most important control method of vacuum arc, particularly for high-current vacuum arcs in vacuum interrupters. In this paper, a review of the state of current research on vacuum arcs under AMF is presented. The major aspects of vacuum arc in an AMF such as arc voltage, the motion of cathode spots, and anode activities are discussed, and the most recent progress both of experimental and simulation research is presented. (topical review)

  4. Experimental studies of axial magnetic fields generated in ultrashort-pulse laser-plasma interaction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic field was obtained with a peak value as high as 170 Tesla. Theory suggests that the axial magnetic field is generated by dynamo effect in laser-plasma interaction.

  5. Axial Magnetic Field Effect on Taylor-Couette Flow

    Directory of Open Access Journals (Sweden)

    Sofiane ABERKANE

    2015-01-01

    Full Text Available This study is interested in the effect of an axial magnetic field imposed on incompressible flow of electrically conductive fluid between two horizontal coaxial cylinders. The imposed magnetic field is assumed uniform and constant. The effect of heat generation due to viscous dissipation is also taken into account. The inner and outer cylinders are maintained at different uniform temperatures. The movement of the fluid is due to rotation of the cylinder with a constant speed. An exact solution of the equations governing the flow was obtained in the form of Bessel functions. A finite difference implicit scheme was used in the numerical solution. The velocity and temperature distributions were obtained with and without the magnetic field. The results show that for different values of the Hartmann number, the velocity between the two cylinders decreases as the Hartmann number increases. Also, it is found that by increasing the Hartmann number, the average Nusselt number decreases. On the other hand, the Hartmann number does not affect the temperature.

  6. Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field

    Science.gov (United States)

    Valone, Thomas F.

    2010-01-01

    power for magnetic field switching device can be achieved in order to deflect the rotor magnet in transit. The Wiegand effect itself (bistable FeCoV wire called "Vicalloy") invented by John Wiegand (Switchable Magnetic Device, US Patent ♯4,247,601), utilizing Barkhausen jumps of magnetic domains, is also applied for a similar achievement (Dilatush, 1977). Conventional approaches for spiral magnetic gradient force production have not been adequate for magnetostatic motors to perform useful work. It is proposed that integrating a magnetic force control device with a spiral stator inhomogeneous axial magnetic field motor is a viable approach to add a sufficient nonlinear boundary shift to apply the angular momentum and potential energy gained in 315 degrees of the motor cycle.

  7. Arc Behaviours in Vacuum Interrupters with Axial Magnetic Field Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongyi; ZHENG Yuesheng; LIU Zhiyuan; CHENG Shaoyong

    2008-01-01

    To improve the limiting current interruption capability and minimizing vacuum interrupter with axial magnetic field (AMF) electrodes,it is significant to investigate the vacuum arc behaviours between the contacts.AMF distributions of the slot type electrodes were studied by both numerical analysis and experiments. Furthermore,the behaviours of vacuum arcs for different parameters of the slot type AMF electrodes were investigated by using high-speed CCD camera.The influences of gap distance,contact diameter and phase shift time between AMF and arc current on the vacuum arc were investigated.The results provide a reference for research and development of vacuum interrupters with slot type or other types of AMF electrode.

  8. Design method and magnetic field analysis of axial-magnetized permanent magnet micromotor

    Institute of Scientific and Technical Information of China (English)

    YANG Jiewei; WU Yihui; JIA Hongguang; ZHANG Ping; WANG Shurong

    2007-01-01

    To investigate the impact of size on its performance in designing an axial-magnetized permanent magnet micromotor,the finite element method is adopted to simulate the magnetic field of the dual rotor motor,and the flux density wave form distributed in the airgap is obtained.The influence of the external dimensions,pole numbers and magnet thicknesses of the rotor,and the airgap distances on the flux density,are analyzed and analytical results are given.With the increase of the airgap distance,the flux density under more poles reduces more quickly than under fewer poles.With the increase of the magnet thickness,the flux density is a rising curve,and after the magnet thickness attains a certain point,the flux density is almost a constant.While reducing the diameter of the rotor,the decrease of the flux density slows down as magnet thickness is reduced.To avoid having a seriously distorted waveform,the distance between inner and outer radii of the rotor must be larger than 1.5 millimeter.Results of the magnetic field analysis can guide a microminiaturization of the motor.Moreover,the results are analyzed theoretically and the simulated values are almost consistent with the experimental values.

  9. Radiofrequency hydrogen ion source with permanent magnets providing axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Kohei, E-mail: oikawa@ecei.tohoku.ac.jp; Saito, Yuta; Komizunai, Shota; Takahashi, Kazunori; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-02-15

    Uniform axial magnetic field of about 70 G is applied to a radiofrequency (rf) hydrogen ion source by arrays of permanent magnets. The plasma density and electron temperature downstream of the source and near the magnetic filter are compared with those in the previously described ion source, where the axial field has been applied by two solenoids. The source is operated at ∼350 kHz and above 10 kW rf power with a field-effect-transistor-based invertor power supply in 1.5 Pa hydrogen. The results show that the plasma density of ∼10{sup 19} m{sup −3} near the source exit and ∼10{sup 18} m{sup −3} near the magnetic filter can be obtained, which are higher than those with the solenoids.

  10. Axial-field permanent magnet motors for electric vehicles

    Science.gov (United States)

    Campbell, P.

    1981-01-01

    The modelling of an anisotropic alnico magnet for the purpose of field computation involves assigning a value for the material's permeability in the transverse direction. This is generally based upon the preferred direction properties, being all that are easily available. By analyzing the rotation of intrinsic magnetization due to the self demagnetizing field, it is shown that the common assumptions relating the transverse to the preferred direction are not accurate. Transverse magnetization characteristics are needed, and these are given for Alnico 5, 5-7, and 8 magnets, yielding appropriate permeability values.

  11. Survey results for oblique field magnetic flux leakage survey in comparison to axial field

    Energy Technology Data Exchange (ETDEWEB)

    Simek, James [T.D. Williamson, Inc., Tulsa, OK (United States)

    2012-07-01

    Pipeline operators worldwide have implemented integrity management programs in an effort to improve operation and maintenance efficiency along with continued safe operation of pipeline systems. Several types of monitoring and data collection activities are incorporated into these programs, with in line inspection (ILI) tools providing data for detection and quantification of features that may impact the integrity of the pipeline system. Magnetic flux leakage (MFL) ILI tools are among the most widely used in pipeline systems. Primarily used for metal loss detection and quantification, these tools are extremely robust, performing successfully in the harsh environments found in operating pipelines, with the majority of MFL tools in service today relying upon axially oriented magnetic fields. For feature classes whose principal axis is aligned parallel to the pipe axis, the use of an axially applied magnetic field may quite often result in decreased performance due to difficulties in detection and sizing. Through the use of fields applied either perpendicular or in an oblique direction to the principal axis, the magnetic leakage levels generated at feature locations are increased, providing usable signal levels. When used concurrently with an axially oriented magnetizer, an obliquely applied magnetic field may provide the ability to detect, quantify, or otherwise aid in discrimination of volumetric versus non-volumetric features. Providing the ability to collect both of these data sets in a single survey would allow operators to minimize the number of surveys required to address all categories of metal loss features that may be present within pipeline systems. This paper will discuss some of the variables that affect detection and sizing of metal loss zones with respect to the applied field direction, including graphs and tables to quantify the effects of angular displacement for specific feature shapes. Several classes of features have been chosen for evaluation

  12. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    Science.gov (United States)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing

    2016-06-01

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF-AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  13. Simulation Research of Magnetic Constriction Effect and Controlling by Axial Magnetic Field of Vacuum Arc

    Institute of Scientific and Technical Information of China (English)

    王立军; 贾申利; 史宗谦; 荣命哲

    2005-01-01

    Based on magnetohydrodynamic (MHD) model of vacuum arc, the computer simulation of vacuum arc was carried out in this paper. In the MHD model, mass conservation equation,momentum conservation equations, energy conservation equations, generalized ohm's law and Maxwell equation were considered. MHD equations were calculated by numerical method, and the distribution of vacuum arc plasma parameters and current density were obtained. Simulation results showed that the magnetic constriction effect of vacuum arc is primarily caused by the Hall effect. In addition, the inhibition of axial magnetic field (AMF) on constriction of vacuum arc was calculated and analyzed.

  14. Toroidal linear force-free magnetic fields with axial symmetry

    Science.gov (United States)

    Vandas, M.; Romashets, E.

    2016-01-01

    Aims: Interplanetary magnetic flux ropes are often described as linear force-free fields. To account for their curvature, toroidal configurations must be used. The aim is to find an analytic description of a linear force-free magnetic field of the toroidal geometry in which the cross section of flux ropes can be controlled. Methods: The solution is found as a superposition of fields given by linear force-free cylinders tangential to a generating toroid. The cylindrical field is expressed in a series of terms that are not all cylindrically symmetric. Results: We found the general form of a toroidal linear force-free magnetic field. The field is azimuthally symmetric with respect to the torus axis. It depends on a set of coefficients that enables controlling the flux rope shape (cross section) to some extent. By varying the coefficients, flux ropes with circular and elliptic cross sections were constructed. Numerical comparison suggests that the simple analytic formula for calculating the helicity in toroidal flux ropes of the circular cross section can be used for flux ropes with elliptic cross sections if the minor radius in the formula is set to the geometric mean of the semi-axes of the elliptic cross section.

  15. Axial magnetic field extraction type microwave ion source with a permanent magnet

    International Nuclear Information System (INIS)

    A new type of microwave ion source in which a permanent magnet generates an axially directed magnetic field needed for the electron cyclotron resonance was developed. The electron cyclotron resonance produces a high density plasma in the ion source. A mA-order ion beam can be extracted. Compared with usual microwave ion sources, this source has a distinguished feature in that the axially directed magnetic field is formed by use of a permanent magnet. Shape of magnetic force lines near the ion extraction aperture was carefully investigated. The extracted ion current as a function of the ion extraction voltage was measured. The experimental data are in good agreement with the theoretical line. The ion source can be heated up to 500 deg C, and extraction of the alkaline metal ions is possible. The extracted ion current for various elements are shown in the table. The current density normalized by the proton was 350-650 mA/cm2 which was nearly equal to the upper limit of the extractable positive ion current density. The plasma density was estimated and was 2 - 3 x 1012 cm-3. The mass spectrum of a Cesium ion beam was obtained. A negligible amount of impurities was observed. The emittance diagram of the extracted ion beam was measured. The result shows that a low emittance and high brightness ion source is constructed. (Kato, T.)

  16. The Influence of the Axial Magnetic Field Upon-the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters of a coaxial plasma gun device. The experimental results are investigated with 0.5 KJ plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied

  17. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    Science.gov (United States)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  18. Principal parametric resonance of axially accelerating rectangular thin plate in magnetic field

    Institute of Scientific and Technical Information of China (English)

    胡宇达; 张金志

    2013-01-01

    Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid-ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para-metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.

  19. Tangential Velocity Profile for Axial Flow Through Two Concentric Rotating Cylinders with Radial Magnetic Field

    Directory of Open Access Journals (Sweden)

    Girishwar Nath

    1970-10-01

    Full Text Available A closed form solution of the Navier-Stokes equations has been obtained in the case of steady axisymmetric flow of an incompressible electrically conducting viscous fluid between two concentric rotating cylinders composed of an insulating material under the influence of radial magnetic field. It has been found that the velocity components are less than those of the classical hydrodynamic case. In the presence of the magnetic field, the tangential velocity becomes fully developed in a smaller axial distance than in the absence of the magnetic field. For small Reynolds number, the fully developed tangential velocity is achieved in a small axial distance, but it requires greater axial distance for large Reynolds number.

  20. Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Axial magnetic field generation by intense circularly polarized laser beams in underdense plasmas has been studied with three-dimensional particle-in-cell simulations and by means of theoretical analysis. Comparisons between analytical models and simulation results have identified an inverse Faraday effect as the main mechanism of the magnetic field generation in inhomogeneous plasmas. The source of azimuthal nonlinear currents and of the axial magnetic field depends on the transverse inhomogeneities of the electron density and laser intensity. The fields reach a maximum strength of several tens of megagauss for laser pulses undergoing relativistic self-focusing and channeling in moderately relativistic regime. Ultrarelativistic laser conditions inhibit magnetic field generation by directly reducing a source term and by generating fully evacuated plasma channels.

  1. Microwave generation from an axially extracted virtual cathode oscillator with a guide magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, K.G.; Nikolov, N.A. (Department of General Physics, Sofia University, Sofia 1126 (Bulgaria))

    1994-04-01

    The operation of a virtual cathode oscillator (vircator) with strong axial magnetic field has been experimentally studied. Depending on the cathode--anode gap and cathode diameter, the operating voltage varies from 200 kV up to 480 kV with 2--7 kA diode current. Microwave emission is produced by the oscillating virtual cathode. The central microwave frequency follows the beam plasma frequency. It varies by 11.5 GHz up to 22 GHz, depending on the current density. The oscillation frequency does not depend on the guide magnetic field magnitude. A maximal output power of 15[plus minus]5 MW in asymmetric transverse magnetic (TM) modes is achieved by the axially extracted vircator. Variation of the magnetic field intensity in a range of 0--40 kG has an insignificant effect upon the emitted microwave power. An electron beam power to microwave power conversion efficiency of approximately 1% is obtained.

  2. Microwave generation from an axially extracted virtual cathode oscillator with a guide magnetic field

    International Nuclear Information System (INIS)

    The operation of a virtual cathode oscillator (vircator) with strong axial magnetic field has been experimentally studied. Depending on the cathode--anode gap and cathode diameter, the operating voltage varies from 200 kV up to 480 kV with 2--7 kA diode current. Microwave emission is produced by the oscillating virtual cathode. The central microwave frequency follows the beam plasma frequency. It varies by 11.5 GHz up to 22 GHz, depending on the current density. The oscillation frequency does not depend on the guide magnetic field magnitude. A maximal output power of 15±5 MW in asymmetric transverse magnetic (TM) modes is achieved by the axially extracted vircator. Variation of the magnetic field intensity in a range of 0--40 kG has an insignificant effect upon the emitted microwave power. An electron beam power to microwave power conversion efficiency of approximately 1% is obtained

  3. Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts

    International Nuclear Information System (INIS)

    The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments

  4. Influence of axial self-magnetic field component on arcing behavior of spiral-shaped contacts

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Dingyu; Xiu, Shixin, E-mail: xsx@mail.xjtu.edu.cn; Wang, Yi; Liu, Gang [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Yali; Bi, Dongli [Shaanxi Baoguang Vacuum Electric Device Co., Ltd., 53 Xibao Road, Baoji 721006 (China)

    2015-10-15

    The transverse magnetic field (TMF) contact design is commonly used in vacuum interrupters. When arcing occurs between the TMF contacts, the contact structure can create a self-induced magnetic field that drives the arc to move and rotate on the contact, and thus local overheating and severe erosion can be avoided. However, TMF contacts could also create an axial self-magnetic component, and the influence of this component on the arc behavior has not been considered to date. In this paper, five different types of Cu-Cr spiral-shaped TMF contacts with three different structures are investigated in a demountable vacuum chamber that contains a high-speed charge-coupled device video camera. It was found that the contact structure greatly influenced the arc behavior, especially in terms of arc rotation and the effective contact area, while contacts with the same slot structure but different diameters showed similar arc behavior and arc motion. The magnetic field distribution and the Lorentz force of each of the three different contact structures are simulated, and the axial self-magnetic field was first taken into consideration for investigation of the TMF contact design. It was found that contact designs that have higher axial self-magnetic field components tend to have arc columns with larger diameters and show poorer arc motion and rotation performance in the experiments.

  5. Three-dimensional model and simulation of vacuum arcs under axial magnetic fields

    Science.gov (United States)

    Wang, Lijun; Jia, Shenli; Zhou, Xin; Wang, Haijing; Shi, Zongqian

    2012-01-01

    In this paper, a three-dimensional (3d) magneto-hydro-dynamic (MHD) model of axial magnetic field vacuum arcs (AMFVAs) is established. Based on this model, AMFVAs are simulated and analyzed. Three-dimensional spatial distributions of many important plasma parameters and electric characteristics in AMFVAs can be obtained, such as ion number density, ion temperature, electron temperature, plasma pressure, current densities along different directions (x, y, and z), ion velocities along different directions, electric fields strength along different directions, and so on. Simulation results show that there exist significant spiral-shaped rotational phenomena in the AMFVAs, this kind of rotational phenomenon also can be verified by the many related experiments (AMFVAs photographs, especially for stronger AMF strength). For current simulation results of AMFVAs, the maximal rotational velocity at anode side is about 1100 m/s. Radial electric field is increased from arc center to arc edge; axial electric field is decreased from cathode side to anode side. Radial electric field at arc edge can be larger than axial electric field. Azimuthal electric field in most regions is much smaller than radial and axial electric field, but it can reach about 1.19 kV/m. Radial magnetic field is the smallest one compared with other components, it reaches to maximum value at the position near to anode, it can influence arc characteristics.

  6. Vacuum effects in magnetic field with with account for fermion anomalous magnetic moment and axial-vector interaction

    Science.gov (United States)

    Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir

    2016-05-01

    We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.

  7. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...... towards the injector. Simultaneously with the compression, an increase in the electron temperature and reflection of a small amount of plasma are seen. The amount of plasma transmitted through the dipole field is found to be nearly independent of the field strength....

  8. The Influence of the Axial Magnetic Field Upon- the Coaxial Plasma Gun Parameters

    International Nuclear Information System (INIS)

    This study concerns with the influence of an applied axial magnetic field upon the electrical parameters and on the brightness (luminance) of argon plasma. The brightness was measured by with a photomultiplier type of IP28 RCA. The experimental results are investigated with plasma gun device operated with argon gas at a pressure of 3.5 Torr. An axial time independent magnetic field with intensity of 550 G is introduced along the plasma current sheath axial region, within the annular space between the two coaxial electrodes. From the measurements of the discharge current I(t) and the voltage V(t), the electrical discharge parameters of the plasma gun device and the plasma current sheath implosion velocity are estimated, in normal mode of plasma gun operation and in the mode of presence external axial magnetic field. A comparison between these two modes is studied. It was found that the thickness of skin-layer δ about 0.01 cm and the wavelength λ, of the perturbation about 1.3 cm i.e. the instability has been satisfied. The growth rate γ of the instability about 106 sec-1. (author)

  9. One-dimensional magnetohydrodynamics of a cylindrical liner imploded by an azimuthal magnetic field and compressing an axial field

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, F., E-mail: franck.hamann@cea.fr; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-08-15

    The one-dimensional magnetohydrodynamics of a plasma cylindrical liner is addressed in the case of a two components magnetic field. The azimuthal component is responsible for the implosion of the liner and the axial field is compressed inside the liner. A complete set of analytical profiles for the magnetic field components, the density, and the local velocity are proposed at the scale of the liner thickness. Numerical simulations are also presented to test the validity of the analytical formulas.

  10. One-dimensional magnetohydrodynamics of a cylindrical liner imploded by an azimuthal magnetic field and compressing an axial field

    International Nuclear Information System (INIS)

    The one-dimensional magnetohydrodynamics of a plasma cylindrical liner is addressed in the case of a two components magnetic field. The azimuthal component is responsible for the implosion of the liner and the axial field is compressed inside the liner. A complete set of analytical profiles for the magnetic field components, the density, and the local velocity are proposed at the scale of the liner thickness. Numerical simulations are also presented to test the validity of the analytical formulas

  11. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  12. Theory and experimental show up of axial magnetic fields self-generated in dense laser-produced plasmas

    International Nuclear Information System (INIS)

    The work presented in this thesis concerns the magnetic fields generated in laser produced plasma. A summary of the theoretical and experimental studies concerning the toroidal magnetic fields and realised by different groups of research is presented. Then, we present our original contribution on the generation of axial magnetic fields by the dynamo effect. The experimental work for the detection of magnetic field is based on the Faraday rotation and Zeeman effects. The experimental diagrams are detailed and discussed. The experimental results are presented and compared to the theory. Finaly, we present some consequences of the generation of the axial magnetic fields in laser produced plasma as a discussion of the thermal conductivity

  13. Magnetohydrodynamic stability of cylindrical liquid bridges under a uniform axial magnetic field

    Science.gov (United States)

    Nicolás, J. A.

    1992-11-01

    The effect of a uniform axial magnetic field on the stability of cylindrical liquid bridges of negligible viscosity and resistivity is examined in this paper, in the limit case when magnetic forces dominate inertia forces. The analysis yields the bifurcation curve and the growth factor in the neighborhood of the stability limit points as a function of two dimensionless parameters: Λ, the slenderness of the bridge and M, a nondimensional quantity proportional to the magnetic field. It is found that bridges of any slenderness can be stabilized by magnetic fields when M≳1/√2. The results are compared to those existing for capillary liquid jets, showing that the stability curves coincide and that the stabilizing effects are greater for liquid bridges than for infinite columns.

  14. Study of axial magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.

  15. Effects of slot closure by soft magnetic powder wedge material in axial-field permanent magnet brushless machines

    Science.gov (United States)

    Gair, S.; Eastham, J. F.; Canova, A.

    1996-04-01

    The article reports on a study of the effects of slot closure in axial-field permanent magnet brushless machines by a two-dimensional finite element method (2D FEM) of analysis. The closure of the slots is made by using soft magnetic powder wedge material. Parameter values and machine performance for the open and closed slot configuration are computed. In order to test the 2D FEM model, calculated results are compared with measurements and favorable agreement is shown.

  16. Axial behaviors of a theta pinch plasma with an antiparallel trapped magnetic field

    International Nuclear Information System (INIS)

    Fundamental plasma behavior has been almost revealed for theta pinch method in the researches for realizing controlled fusion reactions. Interest is also being taken in the axial behavior of plasma under such condition that the direction of the line of magnetic force confined in a pinched plasma column is reversed in relation to external magnetic field. The authors examined the axial behavior of linear theta pinch plasma with a high speed camera using the image converter tube RCA-4449A and the magnetic probe, and succeeded in photographing the details of plasma shape and its change with time. The experimental results and examinations are described in detail with the outline of experimental apparatuses, and summarized as follows. Area waves in compressional wave mode were observed during a second half cycle of discharge current, and the measured value of their propagation speed coincided with the calculated value. Collision of area waves at the center of the coil did not give the effect to annihilate the antiparallel field. Antiparalllel field arrangement, in which the location of zero magnetic field exists in pinch plasma, presents interesting problems such as heating and the stability in torus system in addition to the phenomena of area waves. The study with toroidal pinch will be a future research subject. (Wakatsuki, Y.)

  17. Converging Cylindrical Shock Waves in a Nonideal Gas With an Axial Magnetic Field

    Directory of Open Access Journals (Sweden)

    J. P. Vishwakarma

    2006-11-01

    Full Text Available This paper analyses the propagation of converging cylindrical shock waves in a nonidealgas, in the presence of an axial magnetic field. Chester-Chisnell-Whitham’s method has beenemployed to determine the shock velocity and the other flow-variables just behind the shockin the cases, when (i the gas is weakly ionised before and behind the shock front, (ii the gasis strongly ionised before and behind the shock front, and (iii nonionised gas undergoes intenseionisation as a result of the passage of the shock. The effects of the nonidealness of the gas,the conductivity of the gas, and the axial magnetic field have been investigated. It is found thatin the case (i, an increase in the value of parameter ( characterising the nonidealness of thegas accelerates the convergence of the shock. In the case (ii, the shock speed and pressurebehind the shock increase very fast as the axis is approached; and this increase occurs earlierif the strength of the initial magnetic field is increased. In the case (iii, for smaller values of theinitial magnetic field, the shock speed, and pressure behind the shock decrease very fast afterattaining a maximum; and for higher values of the initial magnetic field, the tendency of decreaseappears from the beginning. This shows that the magnetic field has damping effect on the shockpropagation. In the case (iii, it was also found that the growth of the shock in the initial phaseand decay in the last phase were faster when it was converging in a nonideal gas in comparisonwith that in a perfect gas. Further, it has been shown that the gas-ionising nature of the shockhas damping effect on its convergence.

  18. Axial anomaly of QED in a strong magnetic field and noncommutative anomaly

    OpenAIRE

    Sadooghi, N.; Salim, A. Jafari

    2006-01-01

    The Adler-Bell-Jackiw (ABJ) anomaly of a 3+1 dimensional QED is calculated in the presence of a strong magnetic field. It is shown that in the regime with the lowest Landau level (LLL) dominance a dimensional reduction from D=4 to D=2 dimensions occurs in the longitudinal sector of the low energy effective field theory. In the chiral limit, the resulting anomaly is therefore comparable with the axial anomaly of a two dimensional massless Schwinger model. It is further shown that the U(1) axia...

  19. Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2013-09-01

    Full Text Available Double rotor machine, an electronic continuously variable transmission, has great potential in application of hybrid electric vehicles (HEVs, wind power and marine propulsion. In this paper, an axial magnetic-field-modulated brushless double rotor machine (MFM-BDRM, which can realize the speed decoupling between the shaft of the modulating ring rotor and that of the permanent magnet rotor is proposed. Without brushes and slip rings, the axial MFM-BDRM offers significant advantages such as excellent reliability and high efficiency. Since the number of pole pairs of the stator is not equal to that of the permanent magnet rotor, which differs from the traditional permanent magnet synchronous machine, the operating principle of the MFM-BDRM is deduced. The relations of corresponding speed and toque transmission are analytically discussed. The cogging toque characteristics, especially the order of the cogging torque are mathematically formulated. Matching principle of the number of pole pairs of the stator, that of the permanent magnet rotor and the number of ferromagnetic pole pieces is inferred since it affects MFM-BDRM’s performance greatly, especially in the respect of the cogging torque and electromagnetic torque ripple. The above analyses are assessed with the three-dimensional (3D finite-element method (FEM.

  20. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  1. Distribution of Cathode Spots in Vacuum Arc Under Nonuniform Axial Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    SHI Zong-qian; JIA Shen-li; WANG Li-jun; LI Xing-wen; WANG Zheng

    2007-01-01

    Recent results on the distribution of vacuum arc cathode spots (CSs) in nonuniform axial magnetic field (AMF) are presented.Based on previous studies,we deem that two contrary influences of AMF,inward effect and outward effect,are attributed to CSs distribution.With this notion,we have analyzed the controlling effectiveness of nonuniform AMF on CSs distribution. Experiments were conducted in a detachable vacuum chamber with iron-style AMF electrodes.Images of vacuum arc column and the distribution of CSs were photographed with a high-speed charge coupled device (CCD) camera. Experimental results agreed well with the theoretical analysis.

  2. Growth rate enhancement of free-electron laser by two consecutive wigglers with axial magnetic field

    Indian Academy of Sciences (India)

    A Hasanbeigi; A Farhadian; E Khademi Bidhendi

    2014-06-01

    The operative mechanism for a free-electron laser (FEL) with two consecutive helical wigglers having opposite circular polarization in the presence of an axial magnetic field is proposed and analysed. With the help of fluid theory, a tenth-degree polynomial dispersion equation for electromagnetic and space-charge waves is derived. The results are used to illustrate and discuss the dependence of growth rate on different system parameters. Finally, it is shown that for the same system parameters the growth rate of the proposed structure is more than the growth rate of instability in a conventional FEL.

  3. Effect of an Electric Field on Transfer Processes in Axially Symmetric Magnetic Traps

    International Nuclear Information System (INIS)

    By solving the kinetic equation in the drift approximation, expressions are derived for the particle flux and energy density across a strong magnetic field in axially symmetric systems of the Levitron or Tokamak type. In addition to the longitudinal accelerating electric field, which is responsible for creating the longitudinal current, account is taken of the presence of a quasistatic electric field directed along the minor radius and resulting from ambipolarity of dispersion. Both the case of very low collision frequencies (lower than the characteristic frequency of the azimuthal motion of the ''blocked'' particles) and that of intermediate and high collision frequencies are considered. It is shown that, if either the thermal velocity of the particles or the ratio of the poloidal magnetic field to the longitudinal magnetic field is fairly large (so that the mean longitudinal velocity of the toroidally ''blocked'' particles is much less than the azimuthal variations of their longitudinal velocity), then allowance for the radial electric field corresponds to allowance in the flux expressions for corrections of the next higher (i.e. fourth) order with respect to the smallness parameter used. In the opposite limiting case, allowance for the radial electric field becomes very important: in the region of very low and very high collision frequencies it leads to a substantial change in the functional dependence of the dispersion and heat conduction coefficients on the plasma and magnetic field parameters, while in the region of intermediate collision frequencies it leads to corrections proportional to the square of the ratio of the Larmor radius in the poloidal magnetic field to the characteristic dimension of the plasma inhomogeneity. In conclusion, the author discusses the question of determining a self-consistent radial electric field within the framework of a theory which takes into account only the lowest order with respect to the Larmor radius. (author)

  4. Axial anomaly effects in finite isospin $\\chi$PT in a magnetic field

    CERN Document Server

    Adhikari, Prabal

    2015-01-01

    In this paper, we consider finite isospin chiral perturbation theory including the effects of the axial anomaly (through the Wess-Zumino-Witten term) in a strong magnetic field. We firstly prove that in a strong external magnetic field ($H_{\\rm ext}$) or more precisely the Schwinger limit, where photon back-reactions are suppressed, only neutral pions can condense and the condensation of charged pions is forbidden. Secondly, we find that the $\\pi^{0}$ domain wall is an example of a phase that can exist in a strong magnetic field and suggest the existence of a new phase transition line from the normal vacuum state to the $\\pi^{0}$ domain wall state. This phase transition exists for non-zero pion masses if the baryon chemical potential exceeds a critical value $16\\pi f_{\\pi}^{2}m_{\\pi}/eH_{\\rm ext}$. The phase transition line persists away from the Schwinger limit when the photons can back-react to the external magnetic field.

  5. Study of Magnetic Field Behavior at Lower Pressure of Neon in the Axial Phase of INTI Plasma Focus

    Directory of Open Access Journals (Sweden)

    K.K.A. Devi

    2014-03-01

    Full Text Available The magnetic field distribution substantially affects mechanisms for the generation of radiation in Z-pinches. Investigation of the axial component of the magnetic field is one of the important problems in plasma focus studies. The designed magnetic probe is intended to use for the study of current sheet in INTI plasma focus device with energy of about 3.3 kJ. The measurements of the azimuthal component of the magnetic field on the INTI Plasma Focus operated at neon pressures below 1 Torr was carried out using a custom built calibrated magnetic probe. The probe was tested for neon gas under the various lower pressures (i.e., 0.1, 0.3, 0.5 and 0.7, 1, 2, 3, 5 torr etc.. It is observed that the time response of the designed probe is sufficient for the rise time of the magnetic field associated with the current in the axial phase. We also note that the small size of the designed probe is well suited to sense the magnetic field without perturbing the plasma unduly. The probe designed and constructed is also suitable to carryout measurements to obtain axial distributions of trajectory, average axial velocity and magnetic field of the current sheath at a certain radial distances along the axis of the tube.

  6. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    International Nuclear Information System (INIS)

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form

  7. Electron injection for direct acceleration to multi-GeV energy by a Gaussian laser field under the influence of axial magnetic field

    Science.gov (United States)

    Ghotra, Harjit Singh; Kant, Niti

    2016-05-01

    Electron injected in the path of a circularly polarized Gaussian laser beam under the influence of an external axial magnetic field is shown to be accelerated with a several GeV of energy in vacuum. A small angle of injection δ with 0 ∘ propagation of laser pulse is suggested for better trapping of electron in laser field and stronger betatron resonance under the influence of axial magnetic field. Such an optimized electron injection with axial magnetic field maximizes the acceleration gradient and electron energy gain with low electron scattering.

  8. Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field

    Science.gov (United States)

    Arani, A. Ghorbanpour; Haghparast, E.; BabaAkbar Zarei, H.

    2016-08-01

    In the present research, vibration and instability of axially moving single-layered graphene sheet (SLGS) subjected to magnetic field is investigated. Orthotropic visco-Pasternak foundation is developed to consider the influences of orthotropy angle, damping coefficient, normal and shear modulus. Third order shear deformation theory (TSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Motion equations are obtained by means of Hamilton's principle and solved analytically. Influences of various parameters such as axially moving speed, magnetic field, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of SLGS on the vibration characteristics of moving system are discussed in details. The results indicated that the critical speed of moving SLGS is strongly dependent on the moving speed. Therefore, the critical speed of moving SLGS can be improved by applying magnetic field. The results of this investigation can be used in design and manufacturing of marine vessels in nanoscale.

  9. To the theory of heating of collisional plasma by means of magnetic pumping by axial-asymmetric variable fields

    International Nuclear Information System (INIS)

    Collisional heating of an inhomogeneous plasma cylinder with the help of magnetic pumping by axial-asymmetrical alternating fields, passing along a constant magnetic field with the phase velocity ω/K11 exceeding or of the order of sound velocity Vsub(s), has been considered. The heating rate is found for a low-pressure magnetized plasma. It is the same by the order of magnitude as the rate of heating by axial-symmetrical fields. In the case of the acoustic resonance (ω approximately K11 Vsub(s)) the energy absorption rate increases by a factor of 1/ωtausub(i)>>1, provided the resonance occurs in a narrow layer, and by a factor of 1/(ωtausub(i))2, provided the resonance occurs in the whole volume of plasma (tausub(i)sup(-1) is the frequency of ion-ion collisions)

  10. Investigation of mechanical field weakening of axial flux permanent magnet motor

    Science.gov (United States)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  11. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    Science.gov (United States)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  12. Star formation from dark filamentary clouds: Gravitational stability of a cylindrical plasma with an azimuthal and axial magnetic field

    CERN Document Server

    McLeman, James A; Bingham, Robert

    2012-01-01

    The precise process by which dark filamentary clouds collapse to form stars is a subject of intense debate. In this paper we consider a cylindrical distribution of plasma with both axial and azimuthal magnetic field and examine the resulting gravitational stability. The azimuthal magnetic field is created from an electric current in the plasma and is found to be dictated by Ampere's law. We model this system by using the magnetohydrodynamic (MHD) equation to derive a new virial theorem. We can reduce it to the virial theorem due to Chandrasekhar and Fermi (1953) if we remove the azimuthal magnetic field, as this will represent the case which they have considered. This new virial theorem gives us a fresh insight into the stability of the system. We also derive from this new virial theorem the case where there is only an azimuthal magnetic field. Our generalised stability condition allows for a possible electric current within realistic astronomical values.

  13. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akou, H., E-mail: h.akou@nit.ac.ir; Hamedi, M. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)

    2015-10-15

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy through keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.

  14. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    Science.gov (United States)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  15. Characteristic and magnetic field analysis of a high temperature superconductor axial-flux coreless induction maglev motor

    Science.gov (United States)

    Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv

    2012-04-01

    A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations.

  16. Generation of Helical and Axial Magnetic Fields by the Relativistic Laser Pulses in Under-dense Plasma: Three-Dimensional Particle-in-Cell Simulation

    Science.gov (United States)

    Zheng, Chun-Yang; Zhu, Shao-Ping; He, Xian-Tu

    2002-07-01

    The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmas have been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force can drive an intense electron current in the laser propagation direction, which is responsible for the generation of a helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives a solenoidal current. In particular, the physical significance of the kinetic model for the generation of the axial magnetic field is discussed.

  17. Primordial magnetic fields of non-minimal photon-torsion axial coupling origin

    CERN Document Server

    de Andrade, Garcia

    2010-01-01

    Dynamo action is shown to be induced from homogeneous non-minimal photon-torsion axial coupling in the quantum electrodynamics (QED) framework in Riemann flat spacetime contortion decays. The geometrical optics in Riemann-Cartan spacetime is considering and a plane wave expansion of the electromagnetic vector potential is considered leading to a set of the equations for the ray congruence. Since we are interested mainly on the torsion effects in this first report we just consider the Riemann-flat case composed of the Minkowskian spacetime with torsion. It is also shown that in torsionic de Sitter background the vacuum polarisation does alter the propagation of individual photons, an effect which is absent in Riemannian spaces. It is shown that the cosmological torsion background inhomogeneities induce Lorentz violation and massive photon modes in this QED. Magnetic dynamos in this torsioned spacetime electrodynamics are simpler obtained in Fourier space than the cosmic ones, previously obtained by Bassett et ...

  18. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    Science.gov (United States)

    Jing, C.; Chang, C.; Gold, S. H.; Konecny, R.; Antipov, S.; Schoessow, P.; Kanareykin, A.; Gai, W.

    2013-11-01

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.

  19. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Konecny, R.; Antipov, S. [Euclid Techlabs, LLC, 5900 Harper Rd., Solon, Ohio 44139 (United States); High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chang, C. [Science and Technology on High Power Microwave Laboratory, Xi' an City 710024 (China); Institute of Energy, Tsinghua University, Beijing 100084 (China); Gold, S. H. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States); Schoessow, P.; Kanareykin, A. [Euclid Techlabs, LLC, 5900 Harper Rd., Solon, Ohio 44139 (United States); Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2013-11-18

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications.

  20. Computer Calculations of Eddy-Current Power Loss in Rotating Titanium Wheels and Rims in Localized Axial Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mayhall, D J; Stein, W; Gronberg, J B

    2006-05-15

    We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.

  1. Turbulent convection in a horizontal duct with strong axial magnetic field

    Science.gov (United States)

    Zhang, Xuan; Zikanov, Oleg

    2014-11-01

    Convection in a horizontal duct with one heated wall is studied computationally. The work is motivated by the concept of a blanket for fusion reactors, according to which liquid metal slowly flows in toroidal ducts aligned with the main component of the magnetic field. We first assume that the magnetic field is sufficiently strong for the flow to be purely two-dimensional and analyze chaotic flow regimes at very high Grashof numbers. Furthermore, three-dimensional perturbations are considered and the relation between the length of the duct and the critical Hartmann number, below which the flow becomes three-dimensional, is determined. Financial support was provided by the US NSF (Grant CBET 1232851).

  2. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath

    CERN Document Server

    Auluck, S K H

    2014-01-01

    Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally-unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of ...

  3. Effect of axial magnetic field variations on asymmetry-induced transport in a non-neutral plasma trap

    International Nuclear Information System (INIS)

    It has been suggested that magnetically trapped particles play a role in the asymmetry-induced radial transport observed in the Occidental non-neutral plasma trap. This magnetic trapping would occur due to a small increase (β≡δB/B≅0.4%) in magnetic field at the center of our solenoid and would keep low velocity particles confined to the ends of the trap. To test this suggestion, three coils of additional windings have been added to the trap solenoid thus allowing adjustment of the axial field variation δB. The effect of these adjustments on typical radial flux resonances is investigated. Making B as uniform as possible reduces β by a factor of 5.9, but this produces little change in the transport. Varying β over the broader range from -8.5% to 9.5% gives variations of 20%-90% in the magnitude, peak frequency, and width of the flux resonances, but these variations do not match the predictions of a simple model of trapped particle transport based on isotropic particle distributions

  4. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    Institute of Scientific and Technical Information of China (English)

    Reza Khazaeinezhad; Mahdi Esmaeilzadeh

    2012-01-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article.The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration.In free electron lasers,electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser.The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method.The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  5. Generation of Helical and Axial Magnetic Fields by the Relativistic Laser Pulses in Under-dense Plasma: Three-Dimensional Particle-in-Cell Simulation

    Institute of Scientific and Technical Information of China (English)

    郑春阳; 朱少平; 贺贤土

    2002-01-01

    The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmashave been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force candrive an intense electron current in the laser propagation direction, which is responsible for the generation ofa helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives asolenoidal current. In particular, the physical significance of the kinetic model for the generation of the axialmagnetic field is discussed.

  6. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun, E-mail: lijunwang@mail.xjtu.edu.cn; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-10-15

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  7. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    Science.gov (United States)

    Wang, Lijun; Deng, Jie; Wang, Haijing; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2015-10-01

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region.

  8. Vacuum arc behavior and its voltage characteristics in drawing process controlled by composite magnetic fields along axial and transverse directions

    International Nuclear Information System (INIS)

    In this research, drawing vacuum arc (VA) experiments were conducted using composite contacts under currents ranging from 5 kA to 20 kA root mean square (rms). The new type of contact comprised an axial magnetic field (AMF) configuration and a transverse magnetic field (TMF) configuration. The TMF plate was in the center, surrounded by the AMF plate. The contact generated both AMFs and TMFs simultaneously. VA appearances and arc voltages were recorded, and the VA was modeled as a conductor for electromagnetic force analysis in ANSYS software. The results showed that the coaxiality of operating mechanisms significantly influenced arc behavior just as the arc was ignited. When arc brightness did not increase after ignition, there was a voltage drop accompanied with diffusion of the VA. As to VA development, when an arc was ignited on an AMF plate, it spread on the plate and rotated. Over time the arc current increased, the constricting arc forms, and the arc column rotated on the TMF plate under the action of Ampere's force. With regard to the influence of a magnetic field on a VA at different stages, in the initial drawing arc stage the TMF was dominant, and the arc started to rotate under the action of Ampere's force. Afterwards, the AMF was dominant, with a steadily burning arc. As for contact melting, in the initial arcing period, a contracted short arc caused severe melting and erosion of the contact plate. When the ignition spot or root was close to the slot of plate, the electromagnetic force pushed the arc toward slot and contact edge, resulting in local erosion of the slot region

  9. Effect of a low axial magnetic field on the primary Al 2 Cu phase growth in a directionally solidified Al-Cu hypereutectic alloy

    Science.gov (United States)

    Shen, Yu; Ren, Zhongming; Li, Xi; Ren, Weili; Xi, Yan

    2011-12-01

    Effect of a low axial magnetic field on the growth behavior of the primary Al 2Cu phase in the Al-40 wt% Cu hypereutectic alloy during directional solidification at a low growth speed has been investigated experimentally. The results show that the application of a low magnetic field (≤1 T) causes the primary Al 2Cu phase to become deformed and irregular opposed to the well developed strip-like primary phase in the absence of the field. The deformation of the primary phase is maximum when a 0.5 T magnetic field is applied. Moreover, it has been found that the magnetic field promotes a transition of the primary phase morphology from faceted growth to irregular cellular structure and makes the primary phase spacing decrease with the increase of the magnetic field intensity. From the macroscopic scale, the magnetic field causes the occurrence of a considerable radial macrosegregation. These experimental results may be attributed to the effects of thermoelectric magnetic force (TEMF) in the solid and thermoelectromagnetic convection (TEMC) in the liquid. Further, the model of these effects is presented and evaluated numerically. The results indicate that the numerical magnitude of the TEMF during directional solidification under a 0.5 T low axial magnetic field can be of the order of 10 3 N/m 3. The force causes TEMC at different scales to modify the distribution of solute at the interface and should be responsible for the deformation, fracture and deflection of the primary phase.

  10. Small-amplitude magnetic Rayleigh-Taylor instability growth in cylindrical liners and Z-pinches imploded in an axial magnetic field

    Science.gov (United States)

    Velikovich, A. L.; Giuliani, J. L.; Clark, R. W.; Mikitchuk, D.; Kroupp, E.; Maron, Y.; Fisher, A.; Schmit, P. F.

    2014-10-01

    Recent progress in developing the MagLIF approach to pulsed-power driven inertial confinement fusion has stimulated the interest in observation and mitigation of the magnetic Rayleigh-Taylor instability (MRTI) of liners and Z-pinches imploded in an axial magnetic field. Theoretical analysis of these issues is particularly important because direct numerical simulation of the MRTI development is challenging due to intrinsically 3D helical structure of the fastest-growing modes. We review the analytical small-amplitude theory of the MRTI perturbation development and the weakly nonlinear theory of MRTI mode interaction, emphasizing basic physics, opportunity for 3D code verification against exact analytical solutions, and stabilization criteria. The theory is compared to the experimental results obtained at Weizmann Institute with gas-puff Z pinches and on the Z facility at Sandia with solid liners imploded in an axial magnetic field. Work supported by the US DOE/NNSA, and by the US-Israel Binational Science Foundation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    Science.gov (United States)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  12. Electron bunch acceleration in an inverse free-electron laser with a helical magnetic wiggler and axial guide field

    International Nuclear Information System (INIS)

    Electron bunch acceleration by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied numerically in a static helical magnetic wiggler in vacuum. The main electron bunch parameters for simulations are 10 MeV initial energy with 0.1% longitudinal energy spread, 1 mm mrad rms transverse emittance, and 3x1012 cm-3 density. It is shown that the radial Gaussian profile can decrease the acceleration gradient compared with that of the plane-wave approximation due to the reduction of electron-pulse interaction area. In order to collimate electron bunch and overcome the decreasing of the acceleration gradient, an external axial magnetic field is used. The importance of the electron initial phase with respect to laser pulse is considered, and some appropriate values are found. Finally, acceleration of a femtosecond (fs) microbunch with an optimum appropriate initial phase is considered, which leads to a nearly monoenergetic microbunch and an acceleration gradient of about ≅0.2 GeV/m

  13. A Study of the Conditions of Maximum Filtration Efficiency for a HGMF-Axial Magnetic Filter Cell With Bounded Flow Field

    OpenAIRE

    Badescu, V.; Murariu, V.; Rotariu, O.; Rezlescu, N.

    1996-01-01

    The theory of magnetic particles′ capture on a HGMF-axial magnetic filter cell with bounded flow field is presented. The equations of particle motion for both potential and laminar flow are obtained. By analytical solving of these equations, the trajectories of particles are established. The flow velocity of the fluid suspension for the case of potential flow is set equal with the velocity averaged across the tube section for the laminar flow. Thus, it is possible to make a comparison between...

  14. Enhancement of the Excitation Efficiency of the Non-Contact Magnetostrictive Sensor for Pipe Inspection by Adjusting the Alternating Magnetic Field Axial Length

    Directory of Open Access Journals (Sweden)

    Pengfei Sun

    2014-01-01

    Full Text Available The non-contact magnetostrictive sensor (MsS has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2 mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material.

  15. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath

    International Nuclear Information System (INIS)

    Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy

  16. Capillary instability of a cylindrical interface of viscous magnetic and nonmagnetic fluids subjected to an axial magnetic field

    CERN Document Server

    Kazhan, V A

    2003-01-01

    In the framework of linearized equations of ferrohydrodynamics, one derives the dispersion equation of the problem on capillary instability of a stationary ferrofluid thread immersed in another ferrofluid of equal density and viscosity. The analytical formulae for the growth rate of a sinusoidal perturbation of a circular cylinder-shaped interface are founded in the limiting cases of large and small Ohnesorge numbers Oh. Numerical calculations carried out under condition Oh>>1 provide insights into the effect of the magnetic force on the capillary break-up of the ferrofluid thread surrounded by a nonmagnetic liquid as well as on the break-up of the nonmagnetic liquid thread being inside the ferrofluid body.

  17. Continuous quantum phase transitions in the one-dimensional spin-1/2 axial next-nearest-neighbour Ising model in two orthogonal magnetic fields

    Indian Academy of Sciences (India)

    Kunle Adegoke; Helmut Büttner

    2010-02-01

    We have investigated the one-dimensional spin-1/2 axial next-nearest-neighbour Ising (ANNNI) model in two orthogonal magnetic fields at zero temperature. There are four different possible ground state configurations for the ANNNI model in a longitudinal field, in the thermodynamic limit. The inclusion of a transverse field introduces quantum fluctuations which destroy the existing spin order along certain critical lines. The effects of the fluctuations in three of the four ordered regions were investigated using the finite-size scaling technique. The phase boundaries of the ANNNI model in two orthogonal magnetic fields were thus determined numerically. For certain limits of the Hamiltonian we compared the obtained results with the existing literature and our results were in good agreement with the results in the existing literature.

  18. Design and Verify of Axial-Field Flux Modulation Magnetic Gear%轴向磁场调制型磁力齿轮设计与验证

    Institute of Scientific and Technical Information of China (English)

    王杰; 曹海东; 黄苏融

    2013-01-01

    与传统机械齿轮箱不同,轴向磁力齿轮采用电磁变级变速原理,使得输入端和输出端之间无机械接触,具有无磨损、不需润滑、免维护等优点.采用二维动态场与三维静态场有限元法设计了磁力齿轮,样机试验数据比较表明,该有限元算法准确,样机设计合理可行.%Comparing to the traditional gear box,the axial-field flux modulation magnetic gear takes the advantages of no rubbing,no lubricating,no repairing by changing the ratio and poles.One kinds of axial-field modulation magnetic gear was designed by 2D transient field and 3D static field finite element method.The experimental results show that the finite element analysis is precision and the prototype design is rational.

  19. The differential equations defining deflection of particles of ion beam from axial trajectory in electric and magnetic fields

    International Nuclear Information System (INIS)

    The exact differential equations defining deviations of the paths of charged particles from the axial trajectory are derived in curvilinear coordinates. These equations are in a form suited for carrying out relativistically correct numerical calculations of the dynamics of charged particle beams.

  20. Axial anomaly, Dirac sea, and the chiral magnetic effect

    OpenAIRE

    Kharzeev, Dmitri E.

    2010-01-01

    Gribov viewed the axial anomaly as a manifestation of the collective motion of charged fermions with arbitrarily high momenta in the vacuum. In the presence of an external magnetic field and a chirality imbalance, this collective motion becomes directly observable in the form of the electric current - this is the chiral magnetic effect (CME). I give an elementary introduction into the physics of CME, and discuss some recent developments.

  1. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  2. Experimental Investigation on the Influence of Axial Magnetic Field Distribution on Resisting the Constriction of a High-Current Vacuum Arc

    Institute of Scientific and Technical Information of China (English)

    SHI Zongqian; LIU Zhigang; JIA Shenli; SONG Xiaochuan; WANG Lijun

    2009-01-01

    Effect of the axial magnetic field (AMF) on resisting the constriction of a high-current vacuum arc is studied in this paper. Two typical AMF distributions were investigated, i.e., the traditional bell-shaped AMF, and the saddle-shaped AMF. Experiments were conducted in a detachable vacuum chamber with a rms arc current in the range of 10 kA to 25 kA. The arc column was photographed by a high-speed digital camera with an exposure time of 2 microseconds. The constriction of the vacuum arc was compared by processing the images of the arc column under the two different field configurations and numerically determining the dimensions of the arc column near the electrodes. It was also confirmed that the AMF distribution had a signifcant influence on its effectiveness in resisting arc constriction, Furthermore, the AMF strength near the periphery of the arc is more influential than that at the centre of the electrodes in resisting arc constriction.

  3. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  4. Overview of the Axial Field Spectrometer in the ISR tunnel

    CERN Multimedia

    1980-01-01

    A view of the Axial Field Spectrometer – the last large experiment at the ISR. The horizontal top and vertical outer arrays of the uranium-scintillator hadron calorimeter are clear to be seen, with the blue cylindrical pole piece of the magnet just visible. The pipes that are visible in front of the pole piece are cryogenic feed pipes for the superconducting low-beta quadrupoles.

  5. Dynamic Analysis of Axial Magnetic Forces for DVD Spindle Motors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The axial magnetic force, induced by the complicated flux linkage distribution from rotor magnet and stator slotted, is constructed by different relative heights and calculated by 3D finite element method (FEM) to analyze the dynamic characteristics for a DVD spindle motor. The axial magnetic force is designed to provide an axial stiffness and govern the natural frequency of the dynamic performance. According to the simulation results and experimental measurements, the dynamic behaviors are significantly improved with a variation of relative height of rotor magnet and stator slotted on a DVD spindle motor.

  6. Simulation of Welding Arc in Axial Magnetic Field%轴向磁场对焊接电弧作用的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    王城; 陈塘; 查俊; 白冰; 夏维东

    2013-01-01

    Numerical simulation of welding arc in axial magnetic field (AMF) at atmospheric pressure is performed with an ideal magnetic hydromechanics dynamics (MHD) model of coupled plasma and cathode.Hence the mechanism of the welding arc affected by the AMF is analyzed.The calculation results indicate that,with the increase of AMF,the cathode arc root and the arc column near the cathode shrink,the plasma temperature near the cathode increases,the arc column near the anode expands radically,yet the core temperature decreases; the current density and the pressure of the anode arc root are both torus in configuration,the heated area of the anode increases,the plasma temperature near the anode decreases,the maximum temperature of the anode surface decreases,a temperature flat appears,and the heat transferred to the anode increases.The AMF produces a "magnetic sucking"effect through inducing arc rotating near the anode by the Lorentz effect which will enhance upstream cooled gas flow.The effect of low pressure in plasma core,together with the cooling effect by upstream cool gas,will shrink the cathode arc root and the arc column near the cathode.The shrinkage of the cathode root enhances the cathode jet,as a result,the expansion of arc column near the anode is limited.%采用耦合阴极模型模拟轴向磁场对焊接电弧的作用,分析了轴向磁场对焊接电弧位形的作用机制.计算结果显示,随轴向磁场增加:阴极弧根收缩;阴极附近等离子体温度升高,高温核心径向增大,弧柱收缩程度增加;阳极附近弧柱径向张开,中心温度降低;阳极表面电流密度和压力分布呈环状结构;阳极加热面增大,极值温度降低,出现温度平顶;电弧对阳极的传热量增加.分析认为,轴向磁场与电弧径向电流间的Lorentz力作用使近阳极区电弧旋转流动,产生磁抽吸作用,使阴极弧根和近阴极弧柱收缩,而阴极弧根收缩增强了阴极射流,并且抑制近阳极区电弧扩张.

  7. Passive axial stabilization of a magnetic radial bearing by superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu, M.; Marinescu, N. (Ing.-Buro f. Magnettechnik, Mailander Str.19, D-6000 Frankfurt/M. 70 (DE)); Tenbrink, J.; Krauth, H. (Vacuumschmelze GmbH, Gruner Weg 37, D-6450 Hanau (DE))

    1989-09-01

    Contactless bearings for high-speed operation can be constructed using passive magnet systems, which inherently need a second, active bearing for their stabilization. Completely passive bearings only can be obtained using diamagnetic materials. This study deals with the axial stabilization of magnetic radial bearings using a permanent magnet/superconductor system. Using finite element calculation procedures it is shown that axial forces of up 3000 N and stiffnesses of up to 400 N/mm may be achieved.

  8. Dynamic interaction between rotor and axially-magnetized passive magnetic bearing considering magnetic eccentricity

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar

    2014-01-01

    Passive magnetic bearings are known due to the excellent characteristics in terms of friction and no requirement of additional energy sources to work. However, passive magnetic bearings do not provide damping, are not stable and, depending on their design, may also introduce magnetic eccentricity....... Such magnetic eccentricities are generated by discrepancies in magnet fabrication. In this framework the main focus of the work is the theoretical as well as experimental investigation of the nonlinear dynamics of a rotor-bearing system with strong emphasis on the magnetic eccentricities and non......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...

  9. Axially symmetric static sources of gravitational field

    CERN Document Server

    Hernandez-Pastora, J L; Martin, J

    2016-01-01

    A general procedure to find static and axially symmetric, interior solutions to the Einstein equations is presented. All the so obtained solutions, verify the energy conditions for a wide range of values of the parameters, and match smoothly to some exterior solution of the Weyl family, thereby representing globally regular models describing non spherical sources of gravitational field. In the spherically symmetric limit, all our models converge to the well known incompressible perfect fluid solution.The key stone of our approach is based on an ansatz allowing to define the interior metric in terms of the exterior metric functions evaluated at the boundary source. Some particular sources are obtained, and the physical variables of the energy-momentum tensor are calculated explicitly, as well as the geometry of the source in terms of the relativistic multipole moments. The total mass of different configurations is also calculated, it is shown to be equal to the monopole of the exterior solution.

  10. Study on Electro-Magnetic Field of Permanen Magnet Synchronous Driving Axial Piston Hydraulic Motor Pump%永磁同步驱动轴向柱塞液压电机泵电磁场研究

    Institute of Scientific and Technical Information of China (English)

    高殿荣; 张大杰; 温茂森; 刘金慧

    2011-01-01

    Power unit which integrated the principle of axial piston pump with permanent magnetic synchronous motor was coneeived. Its structure and working principle were introduced. ANSYS/Emag module was applied to simulate the electric magnetic field of the motor pump with different types of cooling channel under the condition of load and unload. The simulation results were processed to get the electric magnetic field distribution and magnetic induction intensity within oil gap for different motor pump models. By inputting the data of magnetic induction intensity within oil gap into software MATLAB and analyzing with Fourier, the distributions of harmonic and fundamental were obtained. The research shows that the core of motor pump with 12 rectangle section channel with circle end is not easy saturation. The investigation provides basis for designing and optimizing the hydraulic motor pump.%提出轴向柱塞泵和永磁同步电机一体化的动力单元,介绍永磁同步轴向柱塞液压电机泵的结构和工作原理.利用ANSYS/Emag模块对带有不同冷却流道的电机泵模型对应的空载和负载电磁场进行数值计算并对结果进行处理,得到不同电机泵模型的电磁场分布及油隙磁感应强度,并进行对比分析;将ANSYS中的负载油隙磁感应强度数据导入MATLAB进行傅里叶分析,得到基波和高次谐波的分布情况.研究结果表明:带有12个条形冷却流道的电机泵铁心不易饱和,谐波影响最小.研究结果为永磁同步驱动轴向柱塞液压电机泵的设计与优化提供理论依据.

  11. Axial shock wave heating of reversed-field theta-pinch plasmas

    International Nuclear Information System (INIS)

    Reversed-field theta pinches are known to contract rapidly in the axial direction soon after the radial implosion. Under certain conditions the axial implosion can be quite strong. A model is described which simulates both the radial and axial implosions. Among the important features included are realistic plasma density profiles, and current-driven anomalous transport. Given input parameters such as initial fill pressure, bias magnetic field, coil size, applied voltage (or electric field) and compression magnetic field, the model predicts the final plasma temperature, density, radial and axial dimensions, trapped magnetic flux and fraction of particles trapped within the separatrix. The results indicate very strong axial shock heating for high bias field, which leads to temperatures up to several times that predicted for simple field-free plasmas. The model is applied to parameters charcteristic of two recent experiments, and several features of the calculated results are shown to be consistent with experimental observations. It is also applied to a fusion reactor scale plasma: as a result of strong axial shock heating, the model predicts that fusion ignition (e.g., a temperature of 8 keV) can be achieved without resort to large electric field or large magnetic compression

  12. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    Science.gov (United States)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-08-01

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.

  13. Magnetic Propeller for Uniform Magnetic Field Levitation

    CERN Document Server

    Krinker, Mark

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.

  14. Faults Analysis of the Axial Magnetic Field Switched Reluctance Drive System%轴向磁场开关磁阻电机系统的故障分析∗

    Institute of Scientific and Technical Information of China (English)

    李洋; 王德明; 张广明; 梅磊

    2014-01-01

    The structure of an axial magnetic field switched reluctance motor was briefly introduced, and the winding faults and power converter were analyzed. The fault of power converter frequently occurs in the axial magnetic field switched reluctance drive system and the winding is the weakest part of the motor. The mechanism of these two faults was illustrated, and the conception of fault tolerant control method of switched reluctance motor was put forward.%介绍了轴向磁场开关磁阻电机的结构,对功率变换器的故障和电机本体的绕组故障进行分析。功率变换器是开关磁阻电机系统中发生故障比较频繁的环节之一,电机的绕组是开关磁阻电机本体上最薄弱的部分。详细说明了这两类故障的发生机理,并提出开关磁阻电机容错控制方法的构想。

  15. PROCESS OF PLANETS’ MAGNETIC FIELDS FORMATION

    OpenAIRE

    E.V. Savich

    2013-01-01

    Heated melt of the cores of the Sun and the planets is the basis of their permanent magnetic fields that, in interaction with the large-scale magnetic field of the Galaxy, condition on the action of their dynamo mechanisms which, on the basis of the speed of the Sun and the planets axial rotation in the galactic magnetic space, provide formation of variable magnetic fields of the Solar System planets.

  16. PROCESS OF PLANETS’ MAGNETIC FIELDS FORMATION

    Directory of Open Access Journals (Sweden)

    E.V. Savich

    2013-06-01

    Full Text Available Heated melt of the cores of the Sun and the planets is the basis of their permanent magnetic fields that, in interaction with the large-scale magnetic field of the Galaxy, condition on the action of their dynamo mechanisms which, on the basis of the speed of the Sun and the planets axial rotation in the galactic magnetic space, provide formation of variable magnetic fields of the Solar System planets.

  17. Axial preloading of a 20 TESLA prototype of a single turn Tokamak toroidal field coil

    International Nuclear Information System (INIS)

    An axial preloading system has been designed and built as part of the 0.06 scale prototype toroidal field (TF) magnet for the IGNITEX experiment. In the prototype TF coil, as in the full size IGNITEX tokamak, the peak stresses in the inner leg during discharge are made more isotropic (hence the von Mises stress intensity is lowered) through axial preloading. Although preliminary (nonpreloaded) tests of the TF magnet should produce fields as high as 15 T, preloading will permit demonstration of the high (20 T) on-axis magnetic field to be achieved in the IGNITEX device. The preloading system for the prototype is a hydraulic press capable of a load of 580 tons. The press is designed with a short stroke which takes the press from a condition of noncontact to full preloading. During the magnet's pulse and subsequent thermal growth, the hydraulic system of the press maintains the preload force

  18. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  19. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  20. Nuclear Axial Currents in Chiral Effective Field Theory

    OpenAIRE

    Baroni, A.; Girlanda, L.; Pastore, S.; Schiavilla, R.; Viviani, M

    2015-01-01

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and...

  1. Magnetic and axial-vector transitions of the baryon antidecuplet

    CERN Document Server

    Kim, H -Ch; Göke, K

    2007-01-01

    We report the recent results of the magnetic transitions and axial-vector transitions of the baryon antidecuplet within the framework of the chiral quark-soliton model. The dynamical model parameters are fixed by experimental data for the magnetic moments of the baryon octet, for the hyperon semileptonic decay constants, and for the singlet axial-vector constant. The transition magnetic moments $\\mu_{\\Lambda\\Sigma}$ and $\\mu_{N\\Delta}$ are well reproduced and other octet-decuplet and octet-antidecuplet transitions are predicted. In particular, the present calculation of $\\mu_{\\Sigma\\Sigma^*}$ is found to be below the upper bound $0.82\\mu_N$ that the SELEX collaboration measured very recently. The results explains consistently the recent findings of a new $N^*$ resonance from the GRAAL and Tohoku LNS group. We also obtain the transition axial-vector constants for the $\\Theta^+\\to KN$ from which the decay width of the $\\Theta^{+}$ pentaquark baryon is determined as a function of the pion-nucleon sigma term $\\Si...

  2. 盘式无铁心永磁同步发电机3D电磁场分析%3D Electromagnetic Field Analysis of Axial Flux Coreless Permanent Magnet Synchronous Generator

    Institute of Scientific and Technical Information of China (English)

    罗玲; 李丹; 吕晓威; 王震

    2012-01-01

    According to the special structure and complex electromagnetic field distribution of axial flux coreless permanent magnet synchronous generator, a 3D prototype model was established and its boundary conditions was set for solving by using electromagnetic finite element simulation software MagNet. No-load air-gap magnetic field was analyzed by using 3D static solver and no-load back-electromotive force at different speed was calculated by using 3D transient with motion solver. Finally, no-load characteristic of the prototype generator was tested. The test results show that the simulation model is reasonable and the analysis method is effective.%针对盘式无铁心永磁同步风力发电机结构的特殊性及其电磁场分布的复杂性,采用电磁场有限元分析软件MagNet对一台样机进行了3D建模;设置了求解所需的边界条件;利用静态求解器得到了磁场分布规律;通过动态求解器计算了不同转速下的空载电压,并绘制了样机的空载特性曲线;最后通过空载试验验证了仿真模型的合理性及计算方法的正确性.

  3. Magnetic field mapper

    Science.gov (United States)

    Masters, R. M.; Stenger, F. J.

    1969-01-01

    Magnetic field mapper locates imperfections in cadmium sulphide solar cells by detecting and displaying the variations of the normal component of the magnetic field resulting from current density variations. It can also inspect for nonuniformities in other electrically conductive materials.

  4. View of the Axial Field Spectrometer (R807)

    CERN Multimedia

    1980-01-01

    In this view of the Axial Field Spectrometer at I8, the vertical uranium/scintillator hadron calorimeter (just left of centre) is retracted to give access to the cylindrical central drift chamber. The yellow iron structure served as a filter to identify muons, with MWPCs and the array of Cherenkov counters to the right.

  5. AN ANALYSIS OF AXISYMMETRIC MAGNETIC FIELD OF LINEAR OSCILLATION MOTOR

    Institute of Scientific and Technical Information of China (English)

    汪玉凤; 臧小杰; 和乔

    2000-01-01

    In this paper, using axial-field finite analysis method, the field of a movable core-type linear oscillation motor is analyzed. The program of axial-field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.

  6. Axial electric wake field inside the induction gap exited by the intense electron beam

    Institute of Scientific and Technical Information of China (English)

    ZHANG Kai-Zhi; ZHANG Huang; LONG Ji-Dong; YANG Guo-Jun; HE Xiao-Zhong; WANG Hua-Cen

    2008-01-01

    While an intense electron beam passes through the accelerating gaps of a linear induction accelerator,a strong wake field will be excited.In this paper a relatively simple model is established based on the interaction between the transverse magnetic wake field and the electron beam,and the numerical calculation in succession generates a magnetic wake field distribution along the accelerator and along the beam pulse as well.The axial electric wake field is derived based on the relation between field components of a resonant mode.According to some principles in existence,the influence of this field on the high voltage properties of the induction gap is analyzed.The Dragon-I accelerator is taken as an example,and its maximum electric wake field is about 17 kV/cm,which means the effect of the wake field is noticeable.

  7. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  8. Lasers plasmas and magnetic field

    International Nuclear Information System (INIS)

    We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertial Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a re-collimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the re-collimation point could explain the 'puzzling' observations of stationary X ray emission zones embedded within astrophysical jets. (author)

  9. Analysis of the axial electric field in a plasma-loaded-helix travelling wave tube

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Quan; Liu Pu-Kun

    2006-01-01

    A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.

  10. Flow field interference characteristic of axial ring wing configuration

    OpenAIRE

    Qi, Duo; Jinfu, Feng; Jiaqiang, Zhang; Yongli, Li

    2016-01-01

    To analyze the air flow interference between upper and lower wings in axial ring wing configuration, NASA SC(2)-1006 supercritical airfoil is chosen as the basic airfoil. Flow field around the double-wing structure with different relative distances between upper and lower wings is numerically simulated, using SST  turbulence model, and the numerical conclusion about the influence of relative distance D/L on the aerodynamic performance is drawn. It is shown that, at the speed Ma = 0.8, reflect...

  11. Design, Development and Finite Element Magnetic Analysis of an Axial Flux PMLOM

    Directory of Open Access Journals (Sweden)

    Ashoke K. Ganguli

    2010-04-01

    Full Text Available Several well-known analytical techniques exist for the force profile analysis of permanent-magnet linear oscillating motors (PMLOMs. These techniques, however, make significant simplifications in order to obtain the magnetic field distribution in the air gap. From the field distribution, the force profile can be found. These widelyused techniques provide a reasonable approximation for force profile analysis, but fail to give really accurate results in the sense of the exact shape of the force profile caused by effects that due to simplification are not fully included. To obtain the exact shape for the force profile in these cases, the computationally expensive finite-element method (FEM is often applied. In this from the resulting field distribution, the force profile is calculated by means of the Maxwell stress tensor. The objective of this paper is to determine the forces for aluminium mover embedded with Nd-Fe-B Rare Earth Permanent Magnet experimentally and analytically through FEMLAB6.2 WITH MATHWORKS software and develop microcontroller based IGBT Inverter for its control. In this paper Development, Finite Element Analysis of Magnetic field distribution, performance , control and Testing of a New axial flux permanent magnet linear oscillating motor (PMLOM along with a suitable speed and thrust control technique is described.

  12. A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations

    CERN Document Server

    Brousseau, D; Parent, J; Ruel, H J; Borra, Ermanno F.; Brousseau, Denis; Parent, Jocelyn; Ruel, Hubert-Jean

    2006-01-01

    We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

  13. Cosmological magnetic field survival

    CERN Document Server

    Barrow, John D

    2011-01-01

    It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generi...

  14. Magnetic fields from reionisation

    CERN Document Server

    Langer, M; Puget, J L; Langer, Mathieu; Aghanim, Nabila; Puget, Jean-Loup

    2005-01-01

    We present a complementary study to a new model for generating magnetic fields of cosmological interest. The driving mechanism is the photoionisation process by photons provided by the first luminous sources. Investigating the transient regime at the onset of inhomogeneous reionisation, we show that magnetic field amplitudes as high as $2 \\times 10^{-16}$ Gauss can be obtained within a source lifetime. Photons with energies above the ionisation threshold accelerate electrons, inducing magnetic fields outside the Stroemgren spheres which surround the ionising sources. Thanks to their mean free path, photons with higher energies propagate further and lead to magnetic field generation deeper in the neutral medium. We find that soft X-ray photons could contribute to a significant premagnetisation of the intergalactic medium at a redshift of z=15.

  15. Investigation of the space charge axial oscillations in the cross fields

    International Nuclear Information System (INIS)

    The space charge oscillations are prominent in the performance of the cross fields devices Two main types of oscillations are known: radially-symmetrical oscillations (RSO) and running wave oscillations (RWO). Alongside with the RSO and RWO the space charge oscillations along the magnetic field B are possible in the cross field systems. The possibility of axial electron movement is indicated by some authors. The exis- tance of the space charge cooperative oscillations along the magnetic field (axial oscillations-AO) in M-type amplifier has shown from analysis of the end current high-frequency modulation. In order to find out AO regularities the further investigations in the various systems with the cross fields are necessary. In the present work AO were studied in the magnetron diode (MD) with the smooth anode (20mm in diameter) and cold CuBeAl alloy cathode (13mm in diameter). The pressure in the diode changed from 10-6 to 10-4 Torr. MD starting was accomplished with auxiliary starting thermo-cathode located not far from the end of the basic cathode. (Auth.)

  16. Axial Liquid Dispersion Characteristics in Magnetically Stabilized Bed%磁稳定床轴向液体分散特性

    Institute of Scientific and Technical Information of China (English)

    张东利; 张艳君; 张金利; 李晓芳; 卢立祥; 孟祥坤; 慕旭宏

    2006-01-01

    Axial liquid dispersion was experimentally studied in liquid-solid and gas-liquid-solid magnetically stabilized beds using the ferromagnetic catalyst of SRNA-4 as the solid phase. The effects of operating factors and fluid characters, such as superficial liquid velocity, superficial gas velocity, magnetic field intensity, liquid viscosity and surface tension, on axial dispersion coefficients of liquid were investigated. The dispersion coefficients increased with the increase of superficial liquid velocity and superficial gas velocity, and decreased with the increase of liquid viscosity, liquid surface tension and magnetic field intensity. A correlation equation of Peclet number was obtained for both liquid-solid and gas-liquid-solid magnetically stabilized bed.

  17. Magnetic Propeller for Uniform Magnetic Field Levitation

    OpenAIRE

    Krinker, Mark; Bolonkin, Alexander

    2008-01-01

    Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symm...

  18. Bi axially textured YBCO coated tape prepared using dynamic magnetic grain alignment

    International Nuclear Information System (INIS)

    A new magnetic grain alignment technique has been applied to produce bi axially aligned YBCO coated tapes. A bi axially aligned dispersion of orthorhombic Y2Ba4Cu7O15 (Y-247) powder was settled on un textured silver substrates. The Y-247 tapes were then melt processed to achieve high critical current YBa2Cu3O7 (Y-123) tapes with CuO as a secondary phase. The biaxial alignment is preserved after the densification process and a clear enhancement of Jc relative to identically prepared un textured or uniaxially textured samples is obtained. Critical current densities of up to 5000 A cm-2 at 77 K in self-field and 1500 A cm-2 in 0.5 T magnetic field at 65 K were obtained in films from 20 to 40 μm thick. Problems were experienced in achieving fully densified thick films while retaining biaxial texture. The initial grain size distribution was found to have a major influence on the final microstructure. Provided significant improvements in Jc can be obtained this method offers an alternative to coated tape processes based on epitaxial growth which has the advantage that it does not require textured substrates. The biaxial alignment technique described here intrinsically acts on the bulk material rather than at surfaces. This offers the possibility of texturing without thickness limitations. (author)

  19. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    Directory of Open Access Journals (Sweden)

    Andrew N. Guarendi

    2013-01-01

    Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  20. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    Science.gov (United States)

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  1. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    Science.gov (United States)

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  2. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  3. Axial myopia in computed and magnetic resonance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Beyer-Enke, S.A.; Goerich, J.; Gamroth, A.

    1987-08-01

    The case of a 44-year old woman suffering from amblyopia on the left eye with unilateral proptosis caused by axial (progressive) myopia is presented. The clinical and radiological findings were discussed in reference to the literature. The diagnosis was established by ruling out neoplastic, inflammatory or endocrine causes for the exophtalmos. CT and MR scans revealed an enlarged left globe without evidence of orbital masses. The findings were regarded as typical for the diagnosis at axial myopia.

  4. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-03-31

    The case of axisymmetric ILC type cavities with titanium helium vessels is investigated. A first order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  5. Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG

    Science.gov (United States)

    Sun, Jinji; Wang, Chun'e.; Le, Yun

    2016-08-01

    To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB.

  6. Solar Magnetic Fields

    Indian Academy of Sciences (India)

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  7. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    Science.gov (United States)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  8. Nongeocentric axial dipole field behavior during the Mono Lake excursion

    Science.gov (United States)

    Negrini, Robert M.; McCuan, Daniel T.; Horton, Robert A.; Lopez, James D.; Cassata, William S.; Channell, James E. T.; Verosub, Kenneth L.; Knott, Jeffrey R.; Coe, Robert S.; Liddicoat, Joseph C.; Lund, Steven P.; Benson, Larry V.; Sarna-Wojcicki, Andrei M.

    2014-04-01

    A new record of the Mono Lake excursion (MLE) is reported from the Summer Lake Basin of Oregon, USA. Sediment magnetic properties indicate magnetite as the magnetization carrier and imply suitability of the sediments as accurate recorders of the magnetic field including relative paleointensity (RPI) variations. The magnitudes and phases of the declination, inclination, and RPI components of the new record correlate well with other coeval but lower resolution records from western North America including records from the Wilson Creek Formation exposed around Mono Lake. The virtual geomagnetic pole (VGP) path of the new record is similar to that from another high-resolution record of the MLE from Ocean Drilling Program (ODP) Site 919 in the Irminger Basin between Iceland and Greenland but different from the VGP path for the Laschamp excursion (LE), including that found lower in the ODP-919 core. Thus, the prominent excursion recorded at Mono Lake, California, is not the LE but rather one that is several thousands of years younger. The MLE VGP path contains clusters, the locations of which coincide with nonaxial dipole features found in the Holocene geomagnetic field. The clusters are occupied in the same time progression by VGPs from Summer Lake and the Irminger Basin, but the phase of occupation is offset, a behavior that suggests time-transgressive decay and return of the principal field components at the beginning and end of the MLE, respectively, leaving the nonaxial dipole features associated with the clusters dominant during the excursion.

  9. Magnetic Field Control of Combustion Dynamics

    Science.gov (United States)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  10. Magnetic field of Mercury

    International Nuclear Information System (INIS)

    The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 1022G cm3 in the same direction as the earth's dipole), approx.-113 γR/sub M/4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ

  11. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  12. Magnetic helicity and cosmological magnetic field

    OpenAIRE

    Semikoz, V. B.; Sokoloff, D. D.

    2004-01-01

    The magnetic helicity has paramount significance in nonlinear saturation of galactic dynamo. We argue that the magnetic helicity conservation is violated at the lepton stage in the evolution of early Universe. As a result, a cosmological magnetic field which can be a seed for the galactic dynamo obtains from the beginning a substantial magnetic helicity which has to be taken into account in the magnetic helicity balance at the later stage of galactic dynamo.

  13. The role of multipolar magnetic fields in pulsar magnetospheres

    CERN Document Server

    Asséo, E; Asseo, Estelle; Khechinashvili, David

    2002-01-01

    We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centered multipolar fields. In configurations involving axially symmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high order multipoles. Consequently, such configurations are unable to provide an efficient pair creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axially symmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow sub-regions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair production p...

  14. Magnetic nanoparticle motion in external magnetic field

    International Nuclear Information System (INIS)

    A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director. - Highlights: • There are three different modes of the unit magnetization vector precession for a free magnetic nanoparticle in uniform external magnetic field. • The high-frequency mode is similar to the conventional ferromagnetic resonance. The frequencies of the low-frequency modes can be two orders of magnitude lower. • The characteristic relaxation

  15. The magnetic field of a permanent hollow cylindrical magnet

    Science.gov (United States)

    Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.

    2016-09-01

    Based on the rational version of M AXWELL's equations according to T RUESDELL and T OUPIN or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider M AXWELL's equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.

  16. Cosmological Magnetic Fields vs. CMB

    OpenAIRE

    Kahniashvili, Tina

    2004-01-01

    I present a short review of the effects of a cosmological magnetic field on the CMB temperature and polarization anisotropies. Various possibilities for constraining the magnetic field amplitude are discussed.

  17. Magnetic field switchable dry adhesives.

    Science.gov (United States)

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  18. Magnetic field structure evolution in RMF plasmas

    Science.gov (United States)

    Petrov, Yuri; Yang, Xiaokang; Huang, Tian-Sen

    2007-11-01

    A study of magnetic field structure evolution during 40-ms plasma discharge had been performed in 80 cm long / 40 cm OD cylindrical chamber. Plasma current Ip˜2--3 kA is produced by applied 500 kHz rotating magnetic field. In experiments, the 2D profile of plasma current is changed by feeding a 10-ms pulse current to additional magnetic coil located at the midplane. Using newly developed magnetic field pick-up coils system, we scanned the magnetic field in cross-section of plasma. Two experimental regimes were studied: without external toroidal field (TF), and with TF produced by applied axial current. When a relatively small current (<0.5 kA) is applied to the midplane coil, in both cases the total plasma current measured with Rogowski coil experiences a jump (up to 100%), but the profile of current remains almost unchanged. When a larger current (1--2 kA) is applied to the midplane coil, the total plasma current drops; the magnetic structure changes differently in two regimes. In regime without TF, the magnetic field of plasma current is reversed at Rmagnetic field evolves during initial 1--3 ms transitional period of plasma formation.

  19. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  20. Neutral fermion with magnetic moment in external electromagnetic fields

    International Nuclear Information System (INIS)

    The Dirac-Pauli equation describes interaction of a substantial neutral fermion having μ magnetic dipole moment with the external electromagnetic field. One determined the precise solutions of that equation and the relevant spectrum of energies for the external magnetic field with axial symmetry. The spin-orbital interaction of a neutral fermion with magnetic moment is shown to govern both the specific features of quantum states and the spectrum of fermion energies. These are the bound states of neutral fermion with magnetic moment in some external electrical fields even if the Dirac-Pauli equation does not have a member with fermion mass

  1. Superhorizon magnetic fields

    CERN Document Server

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  2. Non-Abelian fields in AdS$_4$ spacetime: axially symmetric, composite configurations

    CERN Document Server

    Kichakova, Olga; Radu, Eugen; Shnir, Yasha

    2014-01-01

    We construct new finite energy regular solutions in Einstein-Yang-Mills-SU(2) theory. They are static, axially symmetric and approach at infinity the anti-de Sitter spacetime background. These configurations are characterized by a pair of integers $(m, n)$, where $m$ is related to the polar angle and $n$ to the azimuthal angle, being related to the known flat space monopole-antimonopole chains and vortex rings. Generically, they describe composite configurations with several individual components, possesing a nonzero magnetic charge, even in the absence of a Higgs field. Such Yang-Mills configurations exist already in the probe limit, the AdS geometry supplying the attractive force needed to balance the repulsive force of Yang-Mills gauge interactions. The gravitating solutions are constructed by numerically solving the elliptic Einstein-DeTurck--Yang-Mills equations. The variation of the gravitational coupling constant $\\alpha$ reveals the existence of two branches of gravitating solutions which bifurcate at...

  3. Analyses of magnetic field in spiral steel pipe

    Science.gov (United States)

    Zhang, Yu; Huang, Xinjing; Chen, Shili; Guo, Shixu; Jin, Shijiu

    2015-02-01

    In order to confirm the feasibility of identifying the girth welds using the magnetic field in spiral pipelines, the distributions of the magnetic field in spiral steel pipes with different sizes and different magnetizations were analyzed using the equivalent magnetic charge method, and were verified experimentally. The magnetic field inside spiral steel pipes is generally uniform with very small magnetic sudden changes at the spiral welds, whereas the magnetic field near the pipe ends has very big local changes. The size of spiral pipes, including its wall thickness, length, diameter, and the lift-off, has various influences on the local magnetic sudden changes at the spiral welds (LMASW) and the magnetic incremental near the pipe ends (MINPE), whereas the difference between LMASW and MINPE is always quite considerable. The bigger the radial magnetization component is, the bigger the difference between LMASW and MINPE is. When the radial magnetization component is small, changes of the circumferential and axial magnetization components can reduce this difference. Since the magnetizations of each pipe are seldom identical, the magnetic field inside each pipe is usually quite different. Thus there will be a big local magnetic sudden change at the girth weld inside the spiral pipeline, and this sudden change is much stronger than LMASW. Therefore, we can still consider identifying the girth welds using the magnetic field in spiral pipelines to improve the positioning accuracy of the in-pipe detector.

  4. Photonic Magnetic Field Sensor

    Science.gov (United States)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  5. Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel

    OpenAIRE

    Shit, G. C.; Roy, M.; E. Y. K. Ng

    2010-01-01

    Of concern in this paper is an investigation of peristaltic transport of a physiological fluid in an asymmetric channel under long wave length and low-Reynolds number assumptions. The flow is assumed to be incompressible, viscous, electrically conducting micropolar fluid and the effect of induced magnetic field is taken into account. Exact analytical solutions obtained for the axial velocity, microrotation component, stream line pattern, magnetic force function, axial-induced magnetic field a...

  6. Magnetic field therapy: a review.

    Science.gov (United States)

    Markov, Marko S

    2007-01-01

    There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation. PMID:17454079

  7. Seiberg Witten Map and the Axial Anomaly in Noncommutative Field Theory

    OpenAIRE

    Banerjee, Rabin; Ghosh, Subir

    2001-01-01

    Using the point-splitting regularisation, we calculate the axial anomaly in an arbitrary even dimensional Non-Commutative (NC) field theory. Our result is (star) gauge invariant in its {\\it unintegrated} form, to the leading order in the NC parameter. Exploiting the Seiberg Witten map, this result gets transformed to the familiar Adler-Bell-Jackiw anomaly in ordinary space-time. Furthermore, using this map, we derive an expression for the unintegrated axial anomaly for constant fields in NC s...

  8. Flow field determination at axial pump impeller tip section

    International Nuclear Information System (INIS)

    In most applications the principal limitation on the performance of an axial-flow pump is its cavitation-free operating range, characterized by the nett positive suction head (NPSH). The adverse effects of cavitation are not restricted to impaired performance; noise and vibration levels tend to increase and mechanical integrity of components can be jeopardised, sometimes severely. Cavitation may occur in the inlet region or, in some instances, in the stator blades; however the most usual source of cavitation occurrence is the impeller blading, specifically the tip section

  9. Mercury's magnetic field and interior

    International Nuclear Information System (INIS)

    The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain

  10. 3D FEM Modeling of Ironless Axial Flux Permanent Magnet Motor/Generators

    OpenAIRE

    Santiago, Juan; BERNHOFF Hans

    2011-01-01

    There are different simulation methods for coreless Axial-Flux Permanent Magnet (AFPM) machines, but no general consent on the most efficient technique. The inherent three-dimensional (3D) geometry of axial-flux machines makes the reduction to a 2D analysis more difficult than for radial-flux machines. This paper discusses a 3D finite element method (FEM) to model coreless machines as compared to analytical and 2D FEM solutions and proposes a method to calculate eddy current losses in the win...

  11. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    Science.gov (United States)

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  12. An electric arc in the magnetic field of a solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Ungurs, I.A.; Shilova, Ye.I.

    1982-01-01

    A qualitative experiment is described, enabling investigation of the structure of the arc discharge between rod and ring electrodes, and evaluation of the speed of the axial flux created by electromagnetic forces. It is shown that placement of the plasma stream during discharge in the magnetic field of the solenoid provides the possibility of controlling this stream.

  13. Vestibular stimulation by magnetic fields

    Science.gov (United States)

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  14. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  15. Magnetic response to applied electrostatic field in external magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  16. Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas.

    Science.gov (United States)

    Wang, Huapei; Kent, Dennis V; Rochette, Pierre

    2015-12-01

    The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene-Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain-behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼ 60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 10(22) A ⋅ m(2). PMID:26598664

  17. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  18. Mass Effect on Axial Charge Dynamics

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We studied effect of finite quark mass on the dynamics of axial charge using the D3/D7 model in holography. The mass term in axial anomaly equation affects both the fluctuation (generation) and dissipation of axial charge. We studied the dependence of the effect on quark mass and external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a non-monotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and magnetic field.

  19. Magnetic fields during galaxy mergers

    OpenAIRE

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally l...

  20. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    Science.gov (United States)

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump. PMID:25407124

  1. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  2. Magnetic field synthesis for microwave magnetics

    Science.gov (United States)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  3. Optimization of an axial-flux permanent-magnet generator for a small wind energy application

    OpenAIRE

    Vansompel, Hendrik; Sergeant, Peter; Dupré, Luc

    2011-01-01

    Axial-flux permanent-magnet synchronous machines have a high torque output at low speeds and are therefore very suitable for direct drive wind energy applications. This research focuses on: measures to improve the efficiency of the energy conversion; simplification of the construction and easy maintenance by introduction of a modular stator construction; adaptations required to obtain an efficient power conversion in direct drive wind energy applications.

  4. Simulation of the acoustic behavior of an axial-flux permanent-magnet machine

    OpenAIRE

    Simbierowicz, Gabriela

    2014-01-01

    This study investigates the vibro-acoustic phenomena of an axial-flux permanent magnet machine, used as hoisting equipment for low and middle rise elevators. The primary aim of this work is to develop a method that can be used in the elevator industry, for understanding and influencing the factors affecting the acoustic behaviour of the machine. For this purpose, a multiphysics finite element model was built, coupling the electromagnetic, mechanical and acoustic environments created by the...

  5. Magnetic fields in ring galaxies

    CERN Document Server

    Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R

    2016-01-01

    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...

  6. Current Sheets Formation in Tangled Coronal Magnetic Fields

    CERN Document Server

    Rappazzo, A F

    2013-01-01

    We investigate the dynamical evolution of magnetic fields in closed regions of solar and stellar coronae. To understand under which conditions current sheets form, we examine dissipative and ideal reduced magnetohydrodynamic models in cartesian geometry, where two magnetic field components are present: the strong guide field $B_0$, extended along the axial direction, and the dynamical orthogonal field $\\mathbf{b}$. Magnetic field lines thread the system along the axial direction, that spans the length $L$, and are line-tied at the top and bottom plates. The magnetic field $b$ initially has only large scales, with its gradient (current) length-scale of order $\\ell_b$. We identify the magnetic intensity threshold $b/B_0 \\sim \\ell_b/L$. For values of $b$ below this threshold, field-line tension inhibits the formation of current sheets, while above the threshold they form quickly on fast ideal timescales. In the ideal case, above the magnetic threshold, we show that current sheets thickness decreases in time unti...

  7. Can slow roll inflation induce relevant helical magnetic fields?

    CERN Document Server

    Durrer, Ruth; Jain, Rajeev Kumar

    2010-01-01

    We study the generation of helical magnetic fields during inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with $B^2 \\propto k$. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. The magnetic energy density at the end of inflation is too small to back-react on the background dynamics of the inflaton. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. The final magnetic fields turn out to be far too weak to provide the seeds for the observed fields in galaxies and clusters.

  8. The Parker instability in axisymmetric filaments: Final equilibria with longitudinal magnetic field

    CERN Document Server

    Sanchez-Salcedo, F J

    2010-01-01

    We study the final equilibrium states of the Parker instability arising from an initially unstable cylindrical equilibrium configuration of gas in the presence of a radial gravitational field and a longitudinal magnetic field. The aim of this work is to compare the properties of the nonlinear final equilibria with those found in a system with Cartesian geometry. Maps of the density and magnetic field lines, when the strength of the gravitational field is constant, are given in both geometries. In the axisymmetric model, the magnetic field tends to expand in radius, forming magnetic arcades, while knots of gas are formed because the plasma drains radially and strangulates the magnetic field lines, leading to the formation of magnetic bottlenecks. We find that the magnetic buoyancy and the drainage of gas along field lines are less efficient under axial symmetry than in a Cartesian atmosphere. As a consequence, the column density enhancement arising in gas condensations in the axially-symmetric model is smaller...

  9. Submarine Magnetic Field Extrapolation Based on Boundary Element Method

    Institute of Scientific and Technical Information of China (English)

    GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui

    2007-01-01

    In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.

  10. Preflare magnetic and velocity fields

    Science.gov (United States)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  11. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  12. Low-magnetic-field magnetars

    CERN Document Server

    Turolla, R

    2013-01-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.

  13. Magnetic fields and scintillator performance

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.; Ronzhin, A. [Fermi National Accelerator Lab., Batavia, IL (United States); Hagopian, V. [Florida State Univ., Tallahasse, FL (United States)

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.

  14. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  15. Design of axial-flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines

    Energy Technology Data Exchange (ETDEWEB)

    Parviainen, A.

    2005-07-01

    This thesis presents an alternative approach to the analytical design of surface-mounted axial-flux permanent-magnet machines. Emphasis has been placed on the design of axial-flux machines with a one-rotor-two-stators configuration. The design model developed in this study incorporates facilities to include both the electromagnetic design and thermal design of the machine as well as to take into consideration the complexity of the permanent-magnet shapes, which is a typical requirement for the design of high-performance permanent-magnet motors. A prototype machine with rated 5 kW output power at 300 min{sup -1} rotation speed has been designed and constructed for the purposes of ascertaining the results obtained from the analytical design model. A comparative study of low-speed axial-flux and low-speed radial-flux permanent-magnet machines is presented. The comparative study concentrates on 55 kW machines with rotation speeds 150 min{sup -1}, 300 min{sup -1} and 600 min{sup -1} and is based on calculated designs. A novel comparison method is introduced. The method takes into account the mechanical constraints of the machine and enables comparison of the designed machines, with respect to the volume, efficiency and cost aspects of each machine. It is shown that an axial-flux permanent-magnet machine with one-rotor-two-stators configuration has generally a weaker efficiency than a radial-flux permanent-magnet machine if for all designs the same electric loading, air-gap flux density and current density have been applied. On the other hand, axial-flux machines are usually smaller in volume, especially when compared to radial-flux machines for which the length ratio (axial length of stator stack vs. air-gap diameter) is below 0.5. The comparison results show also that radial-flux machines with a low number of pole pairs, p < 4, outperform the corresponding axial-flux machines. (orig.)

  16. Cosmology with inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    We review spacetime dynamics in the presence of large-scale electromagnetic fields and then consider the effects of the magnetic component on perturbations to a spatially homogeneous and isotropic universe. Using covariant techniques, we refine and extend earlier work and provide the magnetohydrodynamic equations that describe inhomogeneous magnetic cosmologies in full general relativity. Specialising this system to perturbed Friedmann-Robertson-Walker models, we examine the effects of the field on the expansion dynamics and on the growth of density inhomogeneities, including non-adiabatic modes. We look at scalar perturbations and obtain analytic solutions for their linear evolution in the radiation, dust and inflationary eras. In the dust case we also calculate the magnetic analogue of the Jeans length. We then consider the evolution of vector perturbations and find that the magnetic presence generally reduces the decay rate of these distortions. Finally, we examine the implications of magnetic fields for the evolution of cosmological gravitational waves

  17. Characteristics of a magnetic fluid seal and its motion in an axial variable seal gap

    Institute of Scientific and Technical Information of China (English)

    QIAN Ji-guo; YANG Zhi-yi

    2008-01-01

    With suitable assumptions a hydrodynamic model for the magnetic fluid motion in an axial variable gap seal was constructed, and the solution to the equations of the model was deduced. The characteristics of a magnetic fluid seal and its motion,including the speed and pressure distribution, and the seal capacity of a magnetic fluid rotating seal were systematically described.The factors affecting seal capacity and ways to improve seal capacity based on the hydrodynamic model are discussed. The basic condition for dynamic seal availability is presented. The rotating speed and radius of the shafts should be decreased. The work can provide proof of a seal design or suggest ways to improve the seal capacity of magnetic fluid seals.

  18. Neutron scattering in magnetic fields

    International Nuclear Information System (INIS)

    The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two general areas of application can be distinguished. In one the field acts to change the properties of the scattering sample; in the second the field acts on the neutron itself. Several examples are discussed. Precautions necessary for high precision polarized beam measurements are reviewed. 33 references

  19. Dynamic characteristics of multi-walled carbon nanotubes under a transverse magnetic field

    Indian Academy of Sciences (India)

    S Li; H J Xie; X Wang

    2011-02-01

    This paper reports the results of an investigation into the effect of transverse magnetic fields on dynamic characteristics of multi-walled carbon nanotubes (MWNTs). Couple dynamic equations of MWNTs subjected to a transverse magnetic field are derived and solved by considering the Lorentz magnetic forces induced by a transverse magnetic field exerted on MWCNTs. Results show that the transverse magnetic field exerted on MWNTs makes the lowest frequency of the MWNTs nonlinearly decrease and the highest frequency, changeless. When the strength of applied transverse magnetic fields is larger than a given value the two walls of MWNTs appear in the radial and axial coaxial vibration phenomena.

  20. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  1. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  2. Neutron in Strong Magnetic Fields

    CERN Document Server

    Andreichikov, M A; Orlovsky, V D; Simonov, Yu A

    2013-01-01

    Relativistic world-line Hamiltonian for strongly interacting 3q systems in magnetic field is derived from the path integral for the corresponding Green's function. The neutral baryon Hamiltonian in magnetic field obeys the pseudomomentum conservation and allows a factorization of the c.m. and internal motion. The resulting expression for the baryon mass in magnetic field is written explicitly with the account of hyperfine, OPE and OGE (color Coulomb) interaction. The neutron mass is fast decreasing with magnetic field, losing 1/2 of its value at eB~0.25 GeV^2 and is nearly zero at eB~0.5 GeV^2. Possible physical consequences of the calculated mass trajectory of the neutron, M_n(B), are presented and discussed.

  3. Mercury: magnetic field and interior

    International Nuclear Information System (INIS)

    Between 1965 and 1975, knowledge of Mercury and its physical characteristics improved dramatically. Radar studies of the planetary orbit and rotation rate and Mariner 10 spacecraft studies of its surface, atmosphere, magnetic field and plasma environment provided startling new results on what had been the least understood member of the terrestrial planets. With a highly cratered surface and a modest magnetic field, Mercury is a differentiated planet with fractionally the largest iron core of all. (Auth.)

  4. The magnetic field of Mercury

    International Nuclear Information System (INIS)

    The USA Mariner 10 spacecraft encountered Mercury three times in 1974-1975. The 1st and 3rd encounters provided detailed observations of a well developed, detached bow shock wave which results from the interaction of the solar wind. The planet possesses a global magnetic field, and modest magnetosphere, which deflects the solar wind. The field is approximately dipolar, with orientation in the same sense as Earth, tilted 120 from the rotation axis. The magnetic moment, 5x1022 Gauss-cm3, corresponds to an undistorted equatorial field intensity of 350γ, approximately 1% of Earth's. The origin of the field, while unequivocally intrinsic to the planet, is uncertain. It may be due to remanent magnetization acquired from an extinct dynamo or a primordial magnetic field or due to a presently active dynamo. Among these possibilities, the latter appears more plausible at present. In any case, the existence of the magnetic field provides very strong evidence of a mature, differentiated planetary interior with a large core, Rsub(c) approximately 0.7Rsub(M), and a record of the history of planetary formation in the magnetization of the crustal rocks. (Auth.)

  5. Characteristics of 2D magnetic field sensor based on magnetic sensitivity diodes

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhao

    2015-04-01

    Full Text Available A two-dimensional (2D magnetic field sensor is proposed in this paper. It contains two Wheatstone bridges composed of four magnetic sensitivity diodes(MSDswith similar characteristics and four loading resistances. In order to realize the axial symmetric distribution of four MSDs, two MSDs with opposite magnetic sensitive directions were located along the x and −x axes, and two with opposite magnetic sensitive directions were located along the y and −y axes. The experimental results indicate that when VDD = 5.0 V, the magnetic sensitivities of the 2D magnetic sensor can reach SxB  =  544 mV/T and SyB  =  498 mV/T in the x and y directions, respectively. Consequently, it is possible to measure the two-dimensional magnetic field.

  6. Cold atmospheric plasma jet in an axial DC electric field

    Science.gov (United States)

    Lin, Li; Keidar, Michael

    2016-08-01

    Cold atmospheric plasma (CAP) jet is currently intensively investigated as a tool for new and potentially transformative cancer treatment modality. However, there are still many unknowns about the jet behavior that requires attention. In this paper, a helium CAP jet is tested in an electrostatic field generated by a copper ring. Using Rayleigh microwave scattering method, some delays of the electron density peaks for different ring potentials are observed. Meanwhile, a similar phenomenon associated with the bullet velocity is found. Chemical species distribution along the jet is analyzed based on the jet optical emission spectra. The spectra indicate that a lower ring potential, i.e., lower DC background electric field, can increase the amount of excited N2, N2+, He, and O in the region before the ring, but can decrease the amount of excited NO and HO almost along the entire jet. Combining all the results above, we discovered that an extra DC potential mainly affects the temporal plasma jet properties. Also, it is possible to manipulate the chemical compositions of the jet using a ring with certain electric potentials.

  7. Magnetic Energy of Force-Free Fields with Detached Field Lines

    Institute of Scientific and Technical Information of China (English)

    Guo-Qiang Li; You-Qiu Hu

    2003-01-01

    Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasmaβ (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energylarger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.

  8. Bi-based superconductors fabricated in high magnetic fields

    Institute of Scientific and Technical Information of China (English)

    LU X Y; A. NAGATA; K. SUGAWARA; K. WATANABE; T. NOJIMA

    2006-01-01

    The microstructure and superconducting properties of Bi-2223 superconductor fabricated in high magnetic fields were investigated. The results shows that the Bi-2212 grains with their c-axis parallel to the magnetic field were formed after the partial-melting and solidification in 8 T magnetic field,and transformed into the Bi-2223 grains with c-axis alignment during the further sintering process at 840 ℃ without magnetic field. The conversion of Bi-2212 grains to Bi-2223 grains has the heredity in grain alignment. The mixed structures of the Bi-2223 and the Bi-2212 grains with their c-axis parallel to the magnetic field are formed in samples sintered at 850-855 ℃ in 10 T magnetic field. When sintered in 10 T below 845 ℃,a high proportion of Bi-2223 phase is obtained,however no preferred orientation is observed. The Bi-2223 grains with their c-axis parallel to the axial direction of the vertical tube furnace are formed not only on the surface,but also in the center of the sample sintered at 850 ℃ for 120 h in a 15 ℃/cm temperature gradient without magnetic field. Moreover,the samples sintered in the temperature gradient and in a 10 T magnetic field have a stronger c-axis alignment of Bi-2223 phase.

  9. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    Science.gov (United States)

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh

    2009-07-01

    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  10. Can slow roll inflation induce relevant helical magnetic fields?

    Science.gov (United States)

    Durrer, Ruth; Hollenstein, Lukas; Jain, Rajeev Kumar

    2011-03-01

    We study the generation of helical magnetic fields during single field inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with B2(k)proptok, as long as the theory is treated perturbatively. The magnetic energy density at the end of inflation is found to be typically too small to backreact on the background dynamics of the inflaton. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. We conclude that except for low scale inflation with very strong coupling, the magnetic fields generated by such an axial coupling in single field slow roll inflation with perturbative coupling to the inflaton are too weak to provide the seeds for the observed fields in galaxies and clusters.

  11. Magnetic fields in ring galaxies

    Science.gov (United States)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  12. Realization of inhomogeneous magnetic field for prism-type mass analyzer

    Directory of Open Access Journals (Sweden)

    P.O. Kuzema

    2012-06-01

    Full Text Available The configuration of magnet polar tips, which form in its gap the inhomogeneous magnetic field with the axial symmetry, has been determined and the technology of their production has been described. It is shown that for the given value of the polar tip apex angle, the necessary heterogeneity of magnetic field can be provided by the corresponding choice of the interpolar gap width of the mass analyzer magnet.

  13. Matter in Strong Magnetic Fields

    CERN Document Server

    Lai, D

    2001-01-01

    The properties of matter are significantly modified by strong magnetic fields, $B>>2.35\\times 10^9$ Gauss ($1 G =10^{-4} Tesla$), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, with $10^9G << B < 10^{16}G$. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also di...

  14. Parallax error in long-axial field-of-view PET scanners—a simulation study

    Science.gov (United States)

    Schmall, Jeffrey P.; Karp, Joel S.; Werner, Matt; Surti, Suleman

    2016-07-01

    There is a growing interest in the design and construction of a PET scanner with a very long axial extent. One critical design challenge is the impact of the long axial extent on the scanner spatial resolution properties. In this work, we characterize the effect of parallax error in PET system designs having an axial field-of-view (FOV) of 198 cm (total-body PET scanner) using fully-3D Monte Carlo simulations. Two different scintillation materials were studied: LSO and LaBr3. The crystal size in both cases was 4  ×  4  ×  20 mm3. Several different depth-of-interaction (DOI) encoding techniques were investigated to characterize the improvement in spatial resolution when using a DOI capable detector. To measure spatial resolution we simulated point sources in a warm background in the center of the imaging FOV, where the effects of axial parallax are largest, and at several positions radially offset from the center. Using a line-of-response based ordered-subset expectation maximization reconstruction algorithm we found that the axial resolution in an LSO scanner degrades from 4.8 mm to 5.7 mm (full width at half max) at the center of the imaging FOV when extending the axial acceptance angle (α) from  ±12° (corresponding to an axial FOV of 18 cm) to the maximum of  ±67°—a similar result was obtained with LaBr3, in which the axial resolution degraded from 5.3 mm to 6.1 mm. For comparison we also measured the degradation due to radial parallax error in the transverse imaging FOV; the transverse resolution, averaging radial and tangential directions, of an LSO scanner was degraded from 4.9 mm to 7.7 mm, for a measurement at the center of the scanner compared to a measurement with a radial offset of 23 cm. Simulations of a DOI detector design improved the spatial resolution in all dimensions. The axial resolution in the LSO-based scanner, with α  =  ± 67°, was improved from 5.7 mm to 5.0 mm by

  15. Magnetic Field Generation in Stars

    CERN Document Server

    Ferrario, Lilia; Zrake, Jonathan

    2015-01-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...

  16. Commutation of Laser Induced Magnetic Field by a Z-pinch Device

    International Nuclear Information System (INIS)

    A central filament is assumed to be axially positioned inside a cylindrical shell collapsing by the Z-pinch effect. Generating a high magnetic field between the cylindrical shell and the filament induces the accumulation (i.e. concentration) process. The initial magnetic field (of order of few MegaGauss) is generated by a circular polarized laser light (CPLL). The inverse Faraday effect induces an axial magnetic field between the shell and the filament. Assuming a dissipations approach, it is shown that this problem is equivalent to two point particles moving in a potential

  17. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  18. GigaGauss magnetic fields in under-dense plasma

    CERN Document Server

    Lecz, Zsolt; Seryi, Andrei; Andreev, Alexander

    2016-01-01

    Magnetic fields have a crucial role in physics at all scales, from synchrotrons and laser-driven plasma accelerators to astrophysics and nanotechnology. Large field strengths, beside the guiding of relativistic particles along a shorter curvature, allows the investigation of material in extreme conditions existing only in exotic astro-objects like neutron stars or pulsars. Here we propose a method for generating magnetic field on the GigaGauss level in under-dense plasma using high intensity laser pulses with azimuthally non-uniform intensity distribution. The interaction is studied with the help of three-dimensional particle-in-cell plasma simulation code. Beside the standard wake-field and bubble generation, such laser beam induces the rotational motion of electrons at the edge of evacuated plasma region. The combined axial magnetic and electric fields form a compact source of both high frequency radiation, due to coherent synchrotron emission, and low emittance, high density relativistic electron bunches. ...

  19. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  20. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... Experiments Stories Lessons Topics Games Activities Lessons MENU What are Electric and Magnetic Fields? (EMF) Kids Homepage ... electric power is something we take for granted. What are electric and magnetic fields? Electric and magnetic ...

  1. Magnetic Fields in Spiral Galaxies

    CERN Document Server

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...

  2. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail: kim@ec.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Ikegami, T.; Matsunaga, J.; Fujii, Y. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Onodera, H. [Japan Science and Technology Agency–Core Research for Evolutional Science and Technology (JST–CREST), Tokyo 102-0076 (Japan)

    2013-11-15

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method.

  3. Observations of Mercury's magnetic field

    Science.gov (United States)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1975-01-01

    Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.

  4. Satellite to study earth's magnetic field

    Science.gov (United States)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  5. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  6. Magnetic fields during galaxy mergers

    CERN Document Server

    Rodenbeck, Kai

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength reported by Drzazga et al. (2011) in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, there is a physical enhancement of t...

  7. Origin of axial current in scyllac

    International Nuclear Information System (INIS)

    The origin of the axial current observed in Scyllac (a high beta stellarator experiment) is discussed. A shaped coil and/or helical winding produce rotational transform which links magnetic lines of force to the plasma column and the axial current is induced electromagnetically. This phenomenon is inherent in a pulsed high-beta stellarator. The rotational transform produced by the induced axial current is much smaller than that associated with the l = 1, 0 equilibrium fields. The effect of the axial current on the equilibrium and stability of the plasma column is thus small. It is also shown that the magnetic field shear near a plasma surface is very strong

  8. Low-degree Structure in Mercury's Planetary Magnetic Field

    Science.gov (United States)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.

    2012-01-01

    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  9. Low-magnetic-field magnetars

    OpenAIRE

    Turolla, R.; Esposito, P.

    2013-01-01

    It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these `magnetar candidates' exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (~4.4E+13 G). The recent discovery of fully-qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, wi...

  10. Partially conserved axial-vector current and model chiral field theories in nuclear physics

    International Nuclear Information System (INIS)

    We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology

  11. Particle capture in axial magnetic filters with power law flow model

    CERN Document Server

    Abbasov, T; Koksal, M

    1999-01-01

    A theory of capture of magnetic particle carried by laminar flow of viscous non-Newtonian (power law) fluid in axially ordered filters is presented. The velocity profile of the fluid flow is determined by the Kuwabara-Happel cell model. For the trajectory of the particle, the capture area and the filter performance simple analytical expressions are obtained. These expressions are valid for particle capture processes from both Newtonian and non-Newtonian fluids. For this reason the obtained theoretical results make it possible to widen the application of high-gradient magnetic filtration (HGMF) to other industrial areas. For Newtonian fluids the theoretical results are shown to be in good agreement with the experimental ones reported in the literature. (author)

  12. Catastrophe of coronal magnetic flux ropes in fully open magnetic field

    Institute of Scientific and Technical Information of China (English)

    LI; Guoqiang(李国强); HU; Youqiu(胡友秋)

    2002-01-01

    The catastrophe of coronal magnetic flux ropes is closely related to solar explosive phenomena, such as prominence eruptions, coronal mass ejections, and two-ribbon solar flares. Using a 2-dimensional, 3-component ideal MHD model in Cartesian coordinates, numerical simulations are carried out to investigate the equilibrium property of a coronal magnetic flux rope which is embedded in a fully open background magnetic field. The flux rope emerges from the photosphere and enters the corona with its axial and annular magnetic fluxes controlled by a single "emergence parameter". For a flux rope that has entered the corona, we may change its axial and annular fluxes artificially and let the whole system reach a new equilibrium through numerical simulations. The results obtained show that when the emergence parameter, the axial flux, or the annular flux is smaller than a certain critical value, the flux rope is in equilibrium and adheres to the photosphere. On the other hand, if the critical value is exceeded, the flux rope loses equilibrium and erupts freely upward, namely, a catastrophe takes place. In contrast with the partly-opened background field, the catastrophic amplitude is infinite for the case of fully-opened background field.

  13. ATLAS cavern magnetic field calculations

    International Nuclear Information System (INIS)

    A new approach has been adopted in an attempt to produce a complete ATLAS cavern B-field map using a more precise methodological approach (variable magnetisation, depending on the external field) and the latest design taking into account of the structural elements. The basic idea was to produce a dedicated basic TOSCA model and then to insert a series of ferromagnetic structure elements to monitor the perturbative effect on the basic field map. Eventually, it was found: the bedplate field perturbation is an order of magnitude above the permissible level; manufacturing of the bedplates from nonmagnetic material or careful evaluation of their field contribution in the event reconstruction codes is required; the field value at the rack positions is higher than the permissible one; the final position of racks should be chosen taking into account the detailed magnetic field distribution

  14. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  15. Mechanism of Fast Axially--Symmetric Reversal of Magnetic Vortex Core

    OpenAIRE

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

    2012-01-01

    The magnetic vortex core in a nanodot can be switched by an alternating transversal magnetic field. We propose a simple collective coordinate model which describes comprehensive vortex core dynamics, including resonant behavior, weakly nonlinear regimes, and reversal dynamics. A chaotic dynamics of the vortex polarity is predicted. All analytical results were confirmed by micromagnetic simulations.

  16. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  17. Numerical Solution of Flow Field Diagnosis Dproblem in Multistage Axial Compressors

    Institute of Scientific and Technical Information of China (English)

    Z.C.Zhang; J.Liu; 等

    1995-01-01

    A mathematical model is developed for the flow field diagnosis problem in multistage axial compressors.In view of the ill-posedness of the diagnostic problem,an effective measure is adopted to transfer the diagnostic problem into a variational problem which is solved by a regularization method.Two numerical results demonstrate the rationality of the flow diagnosis problem and the effectiveness of the computational method。

  18. Chiral extrapolation of nucleon axial charge $g_A$ in effective field theory

    CERN Document Server

    Li, Hongna

    2016-01-01

    The extrapolation of nucleon axial charge $g_A$ is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated $g_A$ are all smaller than the experimental value.

  19. Primordial Generation of Magnetic Fields

    CERN Document Server

    Pandey, Arun Kumar

    2015-01-01

    We reexamine generation of the primordial magnetic fields, at temperature $T>80$TeV, by applying a consistent kinetic theory framework which is suitably modified to take the quantum anomaly into account. The modified kinetic equation can reproduce the known quantum field theoretic results upto the leading orders. We show that our results qualitatively matches with the earlier results obtained using heuristic arguments. The modified kinetic theory can give the instabilities responsible for generation of the magnetic field due to chiral imbalance in two distinct regimes: a) when the collisions play a dominant role and b) when the primordial plasma can be regarded as collisionless. We argue that the instability developing in the collisional regime can dominate over the instability in the collisionless regime.

  20. 磁力泵轴向力测试方法%Axial Force Test Methods for Magnetic Driving Pump

    Institute of Scientific and Technical Information of China (English)

    左占库

    2015-01-01

    This paper presents a test method of axial force. Special tooling is used to test axial force of the produced magnetic pump, and judge whether the pump should be accepted or adjusted according the test results. The test method can improve controllability of the magnetic shaft axial force, so the working life of magnetic pump is improved.%提出一种磁力泵轴向力的测试方法,通过专用工装,对已生产完成的成品磁力泵进行轴向力测试,并通过测试结果来判断是进行调整还是可以接受,提高了磁力泵轴向力的可控性,从而延长磁力泵运行寿命。

  1. Modeling and analysis of magnetic dipoles in weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

  2. Strains and axial outflows in the field of a rotating black hole

    CERN Document Server

    Bini, Donato; Geralico, Andrea

    2014-01-01

    We study the behaviour of an initially spherical bunch of accelerated particles emitted along trajectories parallel to the symmetry axis of a rotating black hole. We find that, under suitable conditions, curvature and inertial strains compete to model the shape of axial outflows of matter contributing to generate jet-like structures. This is of course a purely kinematical effect which does not account by itself for physical processes underlying the formation of jets. In our analysis a crucial role is played by a property of the electric and magnetic part of the Weyl tensor to be Lorentz-invariant boosting along the axis of symmetry in Kerr spacetime.

  3. Oxide superconductors under magnetic field

    Science.gov (United States)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  4. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Universite Mouloud Mammeri de Tizi Ouzou (Algeria); LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Bouabdallah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Merah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); M' hamed Bougara University, Boumerdes (Algeria); Oualli, H. [EMP, Bordj ElBahri, Algiers (Algeria)

    2012-12-15

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  6. Instability of ferrofluid magnetic drops under magnetic field

    OpenAIRE

    Bacri, J.C.; Salin, D.

    1982-01-01

    We have followed the evolution of the shape of ferrofluid magnetic drops in presence of a magnetic field. The prolate ellipsoid shape of the drop becomes unstable for a certain magnetic field threshold : the drop jumps from a slightly elongated shape to a much more elongated shape. When decreasing the magnetic field the same feature occurs for a smaller threshold. This instability is simply understood from a balance between magnetic energy and interfacial tension energy.

  7. Development of high-vacuum planar magnetron sputtering using an advanced magnetic field geometry

    International Nuclear Information System (INIS)

    A permanent magnet in a new magnetic field geometry (namely, with the magnetization in the radial direction) was fabricated and used for high-vacuum planar magnetron sputtering using Penning discharge. Because of the development of this magnet, the discharge current and deposition rate were increased two to three times in comparison with the values attainable with a magnet in the conventional geometry. This improvement was because the available space for effective discharge of the energetic electrons for the ionization increased because the magnetic field distribution increased in both the axial and radial directions of discharge

  8. Development of high-vacuum planar magnetron sputtering using an advanced magnetic field geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Takahiro; Yagyu, Daisuke; Saito, Shigeru, E-mail: saito@ee.kagu.tus.ac.jp; Ohno, Yasunori; Itoh, Masatoshi; Uhara, Yoshio; Miura, Tsutomu [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Nakano, Hirofumi [Ikazuti Ltd., 3-28-10 Kikunodai, Chofu, Tokyo 182-0007 (Japan)

    2015-11-15

    A permanent magnet in a new magnetic field geometry (namely, with the magnetization in the radial direction) was fabricated and used for high-vacuum planar magnetron sputtering using Penning discharge. Because of the development of this magnet, the discharge current and deposition rate were increased two to three times in comparison with the values attainable with a magnet in the conventional geometry. This improvement was because the available space for effective discharge of the energetic electrons for the ionization increased because the magnetic field distribution increased in both the axial and radial directions of discharge.

  9. Analysis of magnetic electron lens with secant hyperbolic field distribution

    CERN Document Server

    Pany, S S; Dubey, B P

    2014-01-01

    Electron-optical imaging instruments like Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) use specially designed solenoid electromagnets for focusing of electron beam probe. Indicators of imaging performance of these instruments, like spatial resolution, have strong correlation with focal characteristics of the magnetic lenses which in turn have been shown to be functions of the spatial distribution of axial magnetic field generated by them. Owing to complicated design of practical lenses, empirical mathematical expressions are deemed convenient for use in physics based calculations of their focal properties. So, degree of closeness of such models to the actual field distribution determines accuracy of the calculations. Mathematical models proposed by Glaser[1] and Ramberg[1] have historically been put into extensive use. In this paper the authors discuss one such model with secant-hyperbolic type magnetic field distribution function, and present a comparison among these models, ...

  10. RESICALC: Magnetic field modeling program

    International Nuclear Information System (INIS)

    RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference

  11. Stress Field of Straight Edge Dislocation in Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-long; HU Hai-yun; FAN Tian-you

    2007-01-01

    To study the changes in mechanical properties of materials within magnetic fields and the motion of dislocations,stress fields of dislocation in magnetic field need to be calculated.The straight edge dislocation is of basic importance in various defects.The stress field of straight edge dislocation in an external static magnetic field is determined by the theory of elasticity and electrodynamics according to the Volterra dislocation model for continuous media.This reduces to the known stress field when the magnet field is zero.The results can be used for further study on the strain energy of dislocations and the interactions between dislocations in magnetic fields.

  12. Diagnosis of solar chromospheric magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hongqi(张洪起)

    2002-01-01

    This paper discusses the measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic fields. Some questions in the study of the chromospheric magnetic field are also presented.

  13. Bound electrons in critical magnetic fields

    International Nuclear Information System (INIS)

    We determined the threshold for spontaneous electron-positron pair creation for various combinations of a nuclear Coulomb field and an external homogeneous magnetic field. The dependence of electron binding energies of the nuclear charge and the magnetic field strength is investigated. Our exact solutions of the Dirac equation are compared with approximative methods valid for weak and rather strong magnetic fields. (orig.)

  14. Magnetic field of a combined plasma trap

    Science.gov (United States)

    Kotenko, V. G.; Moiseenko, V. E.; Ågren, O.

    2012-06-01

    This paper presents numerical simulations performed on the structure of a magnetic field created by the magnetic system of a combined plasma trap. The magnetic system includes the stellarator-type magnetic system and one of the mirror-type. For the stellarator type magnetic system the numeric model contains a magnetic system of an l=2 torsatron with the coils of an additional toroidal magnetic field. The mirror-type magnetic system element is considered as being single current-carrying turn enveloping the region of existence of closed magnetic surfaces of the torsatron. The calculations indicate the existence of a vast area of the values of the additional magnetic field magnitude and magnetic field of the single turn where, in principle, the implementation of the closed magnetic surface configuration is quite feasible.

  15. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  16. Quark stars in strong magnetic fields

    Science.gov (United States)

    Chu, Peng-Cheng; Chen, Lie-Wen; Wang, Xin

    2014-09-01

    Within the confined isospin- and density-dependent mass model, we study the properties of strange quark matter (SQM) and quark stars (QSs) in strong magnetic fields. The equation of state of SQM under a constant magnetic field is obtained self-consistently and the pressure perpendicular to the magnetic field is shown to be larger than that parallel to the magnetic field, implying that the properties of magnetized QSs generally depend on both the strength and the orientation of the magnetic fields distributed inside the stars. Using a density-dependent magnetic field profile which is introduced to mimic the magnetic field strength distribution in a star, we study the properties of static spherical QSs by assuming two extreme cases for the magnetic field orientation in the stars, i.e., the radial orientation in which the local magnetic fields are along the radial direction, and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial direction. Our results indicate that including the magnetic fields with radial (transverse) orientation can significantly decrease (increase) the maximum mass of QSs, demonstrating the importance of the magnetic field orientation inside the magnetized compact stars.

  17. Understanding the focusing of charged particle for 2D sheet beam in a cusped magnetic field

    CERN Document Server

    Banerjee, Tusharika S; Reddy, K T V

    2016-01-01

    The requirement of axial magnetic field for focusing and transportation of sheet beam using cusped magnets is less as compared to solenoid magnetic fields which is uniform. There is often some confusion about how a cusped magnetic field focuses high current density sheet beam because it is generally understood that non-uniform magnetic field cannot guide the particle beam along its axis of propagation .In this paper, we perform simple analysis of the dynamics of sheet beam in a cusped magnetic field with single electron model and emphasize an intuitive understanding of interesting features (as beam geometry, positioning of permanent magnets, particle radius,particle velocity,radius of curvature of particle inside cusped magnetic field)

  18. Design of an axial flux PM motor using magnetic and thermal equivalent network

    Science.gov (United States)

    Mignot, Romain-Bernard; Glises, Raynal; Espanet, Christophe; Saint Ellier, Emeline; Dubas, Frédéric; Chamagne, Didier

    2013-09-01

    This paper deals with the development of a new generation of electric motors (7.5-15 kW) for automotive powertrains. The target is a full electric direct drive vehicle, for the particular application to heavy quadricycles. An original axial flux PM structure is proposed due to the simplicity of its manufacturing. However it leads to a 3D structure, difficult to study. The paper deals with analytical models that can be used to achieve the analysis and the sizing of the motor. The electromagnetic behavior is modeled using a simple magnetic equivalent network and the thermal behavior is analyzed with a thermal network. Finally, the analytical results are compared to those experimentally obtained and it proves the interest of the proposed structure: the construction is simple and the performances are satisfying.

  19. Mini hemoreliable axial flow LVAD with magnetic bearings: part 2: design description.

    Science.gov (United States)

    Goldowsky, Michael

    2002-01-01

    This paper gives the preliminary configuration of the flow geometry used to eliminate bearing thrombus by forced pressure wash-out of the bearing gaps. This left ventricular assist device (LVAD) is physiologically controllable without extraneous sensors based on the measurement of pump differential pressure using the magnetic bearings. Knowing the LVAD differential pressure allows safe cyclic variation of impeller rpm with feedback around differential pressure, which obtains desired pressure pulsatility. Flow pulsatility is known to be of major benefit for minimizing thrombus in both the pump and arteries. It also results in improved perfusion of many organs. The ability of a conventional virtual zero power feedback loop to axially control the bearing in a long-term drift free manor is also explained.

  20. Field and Thermal Characteristics of Magnetizing Fixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  1. Cluster Magnetic Fields from Galactic Outflows

    CERN Document Server

    Donnert, J; Lesch, H; Müller, E

    2008-01-01

    We performed cosmological, magneto-hydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields are galactic outflows during the star-burst phase of galactic evolution. To do this we coupled a semi-analytical model for magnetized galactic winds as suggested by Bertone et.al. (2006) to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy clusters fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude...

  2. The magnetic field of $\\zeta$ Ori A

    OpenAIRE

    Blazère, A.; Neiner, C.; Bouret, J-C.; Tkachenko, A.; MiMeS collaboration

    2014-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of...

  3. Spline techniques for magnetic fields

    International Nuclear Information System (INIS)

    This report is an overview of B-spline techniques, oriented toward magnetic field computation. These techniques form a powerful mathematical approximating method for many physics and engineering calculations. In section 1, the concept of a polynomial spline is introduced. Section 2 shows how a particular spline with well chosen properties, the B-spline, can be used to build any spline. In section 3, the description of how to solve a simple spline approximation problem is completed, and some practical examples of using splines are shown. All these sections deal exclusively in scalar functions of one variable for simplicity. Section 4 is partly digression. Techniques that are not B-spline techniques, but are closely related, are covered. These methods are not needed for what follows, until the last section on errors. Sections 5, 6, and 7 form a second group which work toward the final goal of using B-splines to approximate a magnetic field. Section 5 demonstrates how to approximate a scalar function of many variables. The necessary mathematics is completed in section 6, where the problems of approximating a vector function in general, and a magnetic field in particular, are examined. Finally some algorithms and data organization are shown in section 7. Section 8 deals with error analysis

  4. Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel

    CERN Document Server

    Shit, G C; Ng, E Y K; 10.1002/cnm.1397

    2010-01-01

    Of concern in this paper is an investigation of peristaltic transport of a physiological fluid in an asymmetric channel under long wave length and low-Reynolds number assumptions. The flow is assumed to be incompressible, viscous, electrically conducting micropolar fluid and the effect of induced magnetic field is taken into account. Exact analytical solutions obtained for the axial velocity, microrotation component, stream line pattern, magnetic force function, axial-induced magnetic field as well as the current density distribution across the channel. The flow phenomena for the pumping characteristics, trapping and reflux are also investigated. The results presented reveal that the velocity decreases with the increase of magnetic field as well as the coupling parameter. Moreover, the trapping fluid can be eliminated by the application of an external magnetic field. Thus, the study bears the promise of important applications in physiological systems.

  5. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  6. Intermittent magnetic field excitation by a turbulent flow of liquid sodium

    CERN Document Server

    Nornber, M D; Kendrick, R D; Jacobson, C M; Forest, C B

    2006-01-01

    The magnetic field measured in the Madison Dynamo Experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.

  7. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  8. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  9. Pulsed magnetic field distribution near conducting rings

    International Nuclear Information System (INIS)

    Measurements and calculations of the magnetic field distribution in the vicinity of stainless steel rings immersed in a pulsed magnetic field are compared. The computer code TRIDIF is found to produce results in good agreement with the measurements. The perturbations in magnetic field due to the rings are found to be considerably less than one would expect from one-dimensional skin depth considerations

  10. Primordial magnetic field limits from cosmological data

    International Nuclear Information System (INIS)

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  11. Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populations.

    Science.gov (United States)

    Bedard, Claude; Destexhe, Alain

    2014-10-01

    Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magnetoencephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multiscale mean-field theory where the neuron is considered in interaction with a "mean" extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.

  12. Manifestations of Magnetic Field Inhomogeneities

    Indian Academy of Sciences (India)

    Lawrence Rudnick

    2011-12-01

    Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.

  13. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming; Fan; Zhenfu; Luo; Yuemin; Zhao; Qingru; Chen; Daniel; Tao; Xiuxiang; Tao; Zhenqiang; Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  14. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  15. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  16. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    Science.gov (United States)

    Ahmed, D.; Ahmad, A.

    2013-06-01

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  17. An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine

    International Nuclear Information System (INIS)

    Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.

  18. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku

    2016-02-01

    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  19. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  20. A Simple Method of FLow Field DIagnosis in Multistage Axial Flow Compressors

    Institute of Scientific and Technical Information of China (English)

    JieLiu; DajunYe

    1994-01-01

    The calculating method of flow field diagnosis in multistage axial compressors is presented in this paper.The distributions of loss and deviation angle of every blade row,and blockage factors are evalusted using tested total temperature and total pressure at inlet and outlet of compressor,as well as the endwall static pressures.One operating Mode of a two-stage fan is presented comparing results from the diagnostic method with measurements,and the results have demonstrated the important effects of diagnostic method.

  1. Penning trap with an inclined magnetic field

    Science.gov (United States)

    Yaremko, Yurij; Przybylska, Maria; Maciejewski, Andrzej J.

    2016-08-01

    A modified Penning trap with a spatially uniform magnetic field B inclined with respect to the axis of rotational symmetry of the electrodes is considered. The inclination angle can be arbitrary. Canonical transformation of phase variables transforming the Hamiltonian of the considered system into a sum of three uncoupled harmonic oscillators is found. We determine the region of stability in space of two parameters controlling the dynamics: the trapping parameter κ and the squared sine of the inclination angle ϑ 0 . If the angle ϑ 0 is smaller than 54°, a charge occupies a finite spatial volume within the processing chamber. A rigid hierarchy of trapping frequencies is broken if B is inclined at the critical angle: the magnetron frequency reaches the modified cyclotron frequency while the axial frequency exceeds them. Apart from this resonance, we reveal the family of resonant curves in the region of stability. In the relativistic regime, the system is not linear. We show that it is not integrable in the Liouville sense. The averaging over the fast variable allows to reduce the system to two degrees of freedom. An analysis of the Poincaré cross-sections of the averaged systems shows the regions of effective stability of the trap.

  2. Magnetic field effect on fluid flow characteristics in a pipe for laminar flow

    International Nuclear Information System (INIS)

    The influence of a magnetic field on the skin friction factor of steady fully-developed laminar flow through a pipe was studied experimentally. A mathematical model was introduced and a finite difference scheme used to solve the governing equations in terms of vorticity- stream function. The model predictions agree favourably with experimental results. It is observed that the pressure drop varies in proportion to the square of the product of the magnetic field and the sine of the magnetic field angle. Also, the pressure drop is proportional to the flow rate. This situation is similar to what applies in the absence of a magnetic field. It is found that a transverse magnetic field changes the axial velocity profile from the parabolic to a relatively flat shape. At first, the radial velocity rises more rapidly and then gradually decreases along the pipe until falling to zero. A numerical correlation can be written for the considerable distance required for the new axial velocity profile to establish. Owing to the changes taking place in the axial velocity profile, it exhibits a higher skin friction factor. The new axial velocity profile asymptotically approaches its limit as the Hartmann number becomes large

  3. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    Science.gov (United States)

    Andersen, Søren B.; Enemark, Søren; Santos, Ilmar F.

    2013-12-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity. Such an abrupt unstable behaviour and its reasons are thoroughly theoretically as well as experimentally investigated in this work. In this context, this paper gives theoretical as well as experimental contributions to the problem of two dimensional passive magnetic levitation and one dimensional pointwise contact stability dictated by mechanical-magnetic interaction. Load capacity and stiffness of passive multicylinder magnetic bearings (MCMB) are thoroughly investigated using two theoretical approaches followed by experimental validation. The contact dynamics between the clutch and the rotor supported by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its contact to the clutch and (b) an accurate prediction of the threshold of stability based on the nonlinear rotor-bearing model, i.e. maximum angular velocity before the rotor misses its contact to the clutch as a function of rotor, bearing and clutch design parameters. passive cylinder-magnet bearings, imbalance ring with a screw, passive rotating cylinder-magnets, rotor, Pointwise contact clutch, and DC-motor. The rotor (4) is levitated in the two horseshoe-shaped bearing houses (1) which contain several cylinder-magnets arranged in a circular pattern. These permanent magnets form a magnetic field around the rotor which repels similar cylinder-magnets (3) embedded in the rotor, thereby counteracting the gravity forces. As the shape of the magnetic field generated by the

  4. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  5. Pulsed field magnets at the US NHMFL

    International Nuclear Information System (INIS)

    The pulsed field facility of the National High Magnetic Field Laboratory (NHMFL) consists of four components. Now available are (1) explosive flux compression, (2) capacitor-driven magnets, and (3) a 20 T superconducting magnet. The fourth component, a 60 T quasi-continuous magnet, has been designed and is scheduled for installation in early 1995. All magnets have He-4 cryostats giving temperatures from room temperature (RT) to 2.2-1.5 K. Dilution refrigerators for the superconducting 20 T magnet and the 50 T pulsed magnet will be installed by early 1994. A wide range of experiments have been completed within the past year. ((orig.))

  6. Elevator mode convection in flows with strong magnetic fields

    International Nuclear Information System (INIS)

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed

  7. Elevator mode convection in flows with strong magnetic fields

    Science.gov (United States)

    Liu, Li; Zikanov, Oleg

    2015-04-01

    Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  8. Elevator mode convection in flows with strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Michigan (United States)

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  9. Quark stars under strong magnetic fields

    CERN Document Server

    Chu, Peng-Cheng; Wang, Xin

    2014-01-01

    Within the confined-isospin-density-dependent-quark-mass model, we study the properties of strange quark matter (SQM) and quark stars (QSs) under strong magnetic fields. The equation of state of SQM under a constant magnetic field is obtained self-consistently and the pressure perpendicular to the magnetic field is shown to be larger than that parallel to the magnetic field, implying that the properties of magnetized QSs generally depend on both the strength and the orientation of the magnetic fields distributed inside the stars. Using a density-dependent magnetic field profile which is introduced to mimic the magnetic field strength distribution in a star, we study the properties of static spherical QSs by assuming two extreme cases for the magnetic field orientation in the stars, i.e., the radial orientation in which the local magnetic fields are along the radial direction and the transverse orientation in which the local magnetic fields are randomly oriented but perpendicular to the radial direction. Our r...

  10. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd-Ba-Cu-O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization process

  11. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke

    Science.gov (United States)

    Ainslie, M. D.; Fujishiro, H.; Mochizuki, H.; Takahashi, K.; Shi, Y.-H.; Namburi, D. K.; Zou, J.; Zhou, D.; Dennis, A. R.; Cardwell, D. A.

    2016-07-01

    Investigating and predicting the magnetization of bulk superconducting materials and developing practical magnetizing techniques is crucial to using them as trapped field magnets in engineering applications. The pulsed field magnetization (PFM) technique is considered to be a compact, mobile and relative inexpensive way to magnetize bulk samples, requiring shorter magnetization times (on the order of milliseconds) and a smaller and less complicated magnetization fixture; however, the trapped field produced by PFM is generally much smaller than that of slower zero field cooling or field cooling techniques, particularly at lower operating temperatures. In this paper, the PFM of two, standard Ag-containing Gd–Ba–Cu–O samples is carried out using two types of magnetizing coils: (1) a solenoid coil, and (2) a split coil, both of which make use of an iron yoke to enhance the trapped magnetic field. It is shown that a significantly higher trapped field can be achieved using a split coil with an iron yoke, and in order to explain these how this arrangement works in detail, numerical simulations using a 2D axisymmetric finite element method based on the H -formulation are carried to qualitatively reproduce and analyze the magnetization process from both electromagnetic and thermal points of view. It is observed that after the pulse peak significantly less flux exits the bulk when the iron core is present, resulting in a higher peak trapped field, as well as more overall trapped flux, after the magnetization process is complete. The results have important implications for practical applications of bulk superconductors as such a split coil arrangement with an iron yoke could be incorporated into the design of a portable, high magnetic field source/magnet to enhance the available magnetic field or in an axial gap-type bulk superconducting electric machine, where iron can be incorporated into the stator windings to (1) improve the trapped field from the magnetization

  12. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  13. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... to be spatially constant and equal to the applied field, thus neglecting the demagnetizing field. Furthermore, the experimental magnetocaloric properties used (adiabatic temperature change, isothermal entropy change and specific heat) are often not corrected for demagnetization. The demagnetizing field in an AMR...

  14. The effect of residual axial gravity on the stability of liquid columns subjected to electric fields

    Science.gov (United States)

    Gonzalez, Heliodoro; Castellanos, Antonio

    1993-04-01

    The stability criterion for almost cylindrical dielectric liquid bridges subjected to axial electric fields in the presence of residual axial gravity is obtained. In its absence, a perfectly cylindrical equilibrium solution is allowed for all values of the relevant parameters, which are the slenderness of the liquid bridge, the electrical Bond number and the relative permittivity between the outer and inner media. This basic solution is unstable beyond a critical slenderness which varies with the electrical parameters (Gonzalez et al. 1989). The destabilization takes place axisymmetrically. The inclusion of the gravitational Bond number as a new, small parameter may be treated by means of the Liapunov-Schmidt Method, a well-known projection technique that gives the local bifurcation diagram relating the admissible equilibrium amplitudes for the liquid bridge and the aforementioned parameters. As in the absence of applied electric field, the gravitational Bond number breaks the pitchfork diagram into two isolated branches of axisymmetric equilibrium solutions. The stable one has a turning point whose location determines the new stability criterion. Quantitative results are presented after solving the resulting set of linear recursive problems by means of the method of lines.

  15. High-rate axial-field ionization chamber for particle identification of radioactive beams

    CERN Document Server

    Vadas, J; Visser, G; Alexander, A; Hudan, S; Huston, J; Wiggins, B B; Chbihi, A; Famiano, M; Bischak, M M; deSouza, R T

    2016-01-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV/A) the detector presents only three 0.5 $\\mu$m/cm$^2$ foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate. Tests with an $\\alpha$ source establish the detector energy resolution as $\\sim$8 $\\%$ for an energy deposit of $\\sim$3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A $^{39}$K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3 x 10$^5$ ions/s the energy resolution has degraded to 14% with a pileup of 12%. The go...

  16. Kr II and Xe II axial velocity distribution functions in a cross-field ion source

    International Nuclear Information System (INIS)

    Laser induced fluorescence measurements were carried out in a cross-field ion source to examine the behaviour of the axial ion velocity distribution functions (VDFs) in the expanding plasma. In the present paper, we focus on the axial VDFs of Kr II and Xe II ions. We examine the contourplots in a 1D-phase space (x,vx) representation in front of the exhaust channel and along the centerline of the ion source. The main ion beam, whose momentum corresponds to the ions that are accelerated through the whole potential drop, is observed. A secondary structure reveals the ions coming from the opposite side of the channel. We show that the formation of the neutralized ion flow is governed by the annular geometry. The assumption of a collisionless shock or a double layer due to supersonic beam interaction is not necessary. A non-negligible fraction of slow ions originates in local ionization or charge-exchange collision events between ions of the expanding plasma and atoms of the background residual gas. Slow ions that are produced near the centerline in the vicinity of the exit plane are accelerated toward the source body with a negative velocity leading to a high sputtering of front face. On the contrary, the ions that are produced in the vicinity of the channel exit plane are partially accelerated by the extended electric field.

  17. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  18. Exploring Magnetic Fields with a Compass

    Science.gov (United States)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  19. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  20. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  1. Magnetic field concentrator for probing optical magnetic metamaterials.

    Science.gov (United States)

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-01

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  2. Effects of Traveling Magnetic Field on Dynamics of Solidification

    Science.gov (United States)

    2003-01-01

    The Lorentz body force induced in electrically conducting fluids can be utilized for a number of materials processing technologies. An application of strong static magnetic fields can be beneficial for damping convection present during solidification. On the other hand, alternating magnetic fields can be used to reduce as well as to enhance convection. However, only special types of time dependent magnetic fields can induce a non-zero time averaged Lorentz force needed for convection control. One example is the rotating magnetic field. This field configuration induces a swirling flow in circular containers. Another example of a magnetic field configuration is the traveling magnetic field (TMF). It utilizes axisymmetric magnetostatic waves. This type of field induces an axial recirculating flow that can be advantageous for controlling axial mass transport, such as during solidification in long cylindrical tubes. Incidentally, this is the common geometry for crystal growth research. The Lorentz force induced by TMF can potentially counter-balance the buoyancy force, diminishing natural convection, or even setting up the flow in reverse direction. Crystal growth process in presence of TMF can be then significantly modified. Such properties as the growth rate, interface shape and macro segregation can be affected and optimized. Melt homogenization is the other potential application of TMF. It is a necessary step prior to solidification. TMF can be attractive for this purpose, as it induces a basic flow along the axis of the ampoule. TMF can be a practical alloy mixing method especially suited for solidification research in space. In the theoretical part of this work, calculations of the induced Lorentz force in the whole frequency range have been completed. The basic flow characteristics for the finite cylinder geometry are completed and first results on stability analysis for higher Reynolds numbers are obtained. A theoretical model for TMF mixing is also developed

  3. Electrolytic tiltmeters inside magnetic fields: Some observations

    International Nuclear Information System (INIS)

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths

  4. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  5. From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.

  6. A Novel superconducting toroidal field magnet concept using advanced materials

    Science.gov (United States)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  7. Near-Field Characterization of Radial and Axial Blast Waves From a Cylindrical Explosive Charge

    Science.gov (United States)

    McNesby, Kevin; Homan, Barrie

    This paper uses experiment (high speed imaging) and simulation (ALE-3D) to investigate radial and axial blast waves produced by uncased, cylindrical charges of TNT (trinitrotoluene). Recently there has been work reported on predicting secondary blast waves in the explosive mid-field (approximately 1 meter from charge center of mass) for cylindrical charges of RDX (trimethylenetrinitramine)/binder formulations. The work we will present seeks to provide complementary information in the explosive near-field, including the approach to chemical ``freeze out'', for end-detonated, right circular cylinders of TNT. Additionally, this work attempts to retrieve state variables (temperature, pressure, velocities) from high-definition images of the explosive event. Keywords: cylindrical charges, blast, shock waves

  8. Magnetic field and performance analysis of a tubular permanent magnet linear synchronous motor applied in elevator door system

    Institute of Scientific and Technical Information of China (English)

    Xiao LIU; Yun-yue YE; Zhuo ZHENG; Qin-fen LU

    2008-01-01

    A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.

  9. Modeling and Analysis of Coupling Performance of Dynamic Stiffness Models for a Novel Combined Radial-Axial Hybrid Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available The combined radial-axial magnetic bearing (CRAMB with permanent magnet creating bias flux can reduce the size, cost, and mass and save energy of the magnetic bearing. The CRAMB have three-degree-of-freedom control ability, so its structure and magnetic circuits are more complicated compared to those of the axial magnetic bearing (AMB or radial magnetic bearing (RMB. And the eddy currents have a fundamental impact on the dynamic performance of the CRAMB. The dynamic stiffness model and its cross coupling problems between different degrees of freedom affected for the CRAMB are proposed in this paper. The dynamic current stiffness and the dynamic displacement stiffness models of the CRAMB are deduced by using the method of equivalent magnetic circuit including eddy current effect, but the dynamic current stiffness of the RMB unit is approximately equal to its static current stiffness. The analytical results of an example show that the bandwidth of the dynamic current stiffness of the AMB unit and the dynamic displacement stiffness of the CRAMB is affected by the time-varying control currents or air gap, respectively. And the dynamic current stiffness and the dynamic displacement stiffness between the AMB unit and the RMB unit are decoupled due to few coupling coefficients.

  10. Plasma shielding with a rotating magnetic field for a space elevator

    International Nuclear Information System (INIS)

    Plasma shielding with a rotating magnetic field from high-energy protons and electrons in the Van Allen radiation belts is numerically studied for a space elevator that is proposed as a future transportation system. Orbits of space electrons in the rotating magnetic field are calculated, and the density and flow velocity are estimated by a particle-in-cell method. It is found that the electron current can be driven successfully. However, the axial inductive electric field enhances axial acceleration of the electrons, which can result in radial electric field generation. High energy particle shielding by the poloidal magnetic field generated by the toroidal electron ring current is also studied with a concept of the Störmer region. In order to shield 1-MeV electrons in the radiation belts, electron density higher than 1013 m-3 is found to be needed. (author)

  11. Magnetic fields of Sun-like stars

    CERN Document Server

    Fares, R

    2013-01-01

    Magnetic fields play an important role at all stages of stellar evolution. In Sun-like stars, they are generated in the outer convective layers. Studying the large-scale magnetic fields of these stars enlightens our understanding of the field properties and gives us observational constraints for the field generation models. In this review, I summarise the current observational picture of the large-scale magnetic fields of Sun-like stars, in particular solar-twins and planet-host stars. I discuss the observations of large-scale magnetic cycles, and compare these cycles to the solar cycle.

  12. Quarks and gluons in a magnetic field

    CERN Document Server

    Watson, Peter

    2013-01-01

    The quark gap equation under the rainbow truncation, with two versions of a phenomenological one-gluon exchange interaction and in the presence of a uniform magnetic field is considered. It is argued that in order to describe the quark condensate in the limit of vanishing magnetic fields, one must sum over the Landau levels. The resulting chiral quark condensate rises quadratically for small magnetic fields and linearly for large fields, in qualitative agreement with various recent lattice results. It is observed that when discussing quarks, the magnitude of the magnetic field must be considered relative to the scale of the strong interaction.

  13. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  14. Two density peaks in low magnetic field helicon plasma

    International Nuclear Information System (INIS)

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion

  15. Two density peaks in low magnetic field helicon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Zhao, G.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Liu, Z. W. [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600 (China); Chen, Q., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 102600 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an (China)

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.

  16. Spin polarization in high density quark matter under a strong external magnetic field

    CERN Document Server

    Tsue, Yasuhiko; Providencia, Constanca; Yamamura, Masatoshi; Bohr, Henrik

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the Nambu-Jona-Lasinio model with axial vector-type four-point interaction or tensor-type four-point interaction between quarks. In the axial vector-type interaction, it is shown that a quark spin polarized phase is realized in all region of the quark chemical potential under a strong external magnetic field within the lowest Landau level approximation. Each phase is characterized by the chiral condensate or dynamical quark mass. On the other hand, in the tensor-type interaction, it is also shown that the quark spin polarized phase does not appear even if there exists the strong external magnetic field. However, if the anomalous magnetic moment of quark is taken into account, it may be possible to realize the quark spin polarized phase.

  17. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  18. Open Cavity Solutions to the rf in Magnetic Field Problem

    CERN Document Server

    Palmer, R; Fernow, R; Gallardo, J C; Kirk, H

    2008-01-01

    It has been observed \\cite{break} that breakdown in an 805 MHz pill-box cavi ty occurs at much lower gradients as an external axial magnetic field is inc reased. This effect was not observed with on open iris cavity. It is propose d that this effect depends on the relative angles of the magnetic and maximu m electric fields: parallel in the pill-box case; at an angle in the open ir is case. If so, using an open iris structure with solenoid coils in the iris es should perform even better. A lattice, using this principle, is presented, for use in 6D cooling for a Muon Collider. Experimental layouts to test th is principle are proposed.

  19. Experimental Investigation of the Flow Field in a Multistage Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    B. Lakshminarayana

    1996-01-01

    Full Text Available The nature of the flow field in a three stage axial flow compressor, including a detailed survey at the exit of an embedded stator as well as the overall performance of the compressor is presented and interpreted in this paper. The measurements include area traverse of a miniature five hole probe (1.07 mm dia downstream of stator 2, radial traverses of a miniature five hole probe at the inlet, downstream of stator 3 and at the exit of the compressor at various circumferential locations, area traverse of a low response thermocouple probe downstream of stator 2, radial traverses of a single sensor hot-wire probe at the inlet, and casing static pressure measurements at various circumferential and axial locations across the compressor at the peak efficiency operating point. Mean velocity, pressure and total temperature contours as well as secondary flow contours at the exit of the stator 2 are reported and interpreted. Secondary flow contours show the migration of fluid particles toward the core of the low pressure regions located near the suction side casing endwall corner.

  20. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  1. Magnetic surfaces in the reversed field geometry

    International Nuclear Information System (INIS)

    The achievement of field reversal is shown not to ensure a closed magnetic geometry. The closure of the reversed field geometry is found to be critically dependent on the shape of the toroidal component of the magnetic field no matter how small it may be

  2. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  3. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  4. Behaviour of ferrocholesterics under external magnetic fields

    Science.gov (United States)

    Petrescu, Emil; Motoc, Cornelia

    2001-08-01

    The influence of an external magnetic field on the orientational behaviour of a ferrocholesteric with a positive magnetic anisotropy is investigated. Both the phenomena arising when the field was switched on or switched off are considered. It is found that the field needed for a ferrocholesteric-ferronematic transition BFC↑ is higher when compared to that obtained for the pure cholesteric ( BC↑). A similar result was obtained when estimating the critical field for the homeotropic ferronematic-ferrocholesteric (focal conic) transition, occurring when the magnetic field was decreased or switched off. We found that BFC↓> BC↓. These results are explained when considering that the magnetic moments of the magnetic powder are not oriented parallel to the liquid crystal molecular directors, therefore hindering their orientation under a magnetic field.

  5. New knowledge of the Galactic magnetic fields

    CERN Document Server

    Han, J L

    2009-01-01

    The magnetic fields of our Milky Way galaxy are the main agent for cosmic rays to transport. In the last decade, much new knowledge has been gained from measurements of the Galactic magnetic fields. In the Galactic disk, from the RMs of a large number of newly discovered pulsars, the large-scale magnetic fields along the spiral arms have been delineated in a much larger region than ever before, with alternating directions in the arm and interarm regions. The toroidal fields in the Galactic halo were revealed to have opposite directions below and above the Galactic plane, which is an indication of an A0 mode dynamo operating in the halo. The strength of large-scale fields obtained from pulsar RM data has been found to increase exponentially towards the Galactic center. Compared to the steep Kolmogorov spectrum of magnetic energy at small scales, the large-scale magnetic fields show a shallow broken spatial magnetic energy spectrum.

  6. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  7. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Science.gov (United States)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  8. QCD vacuum structure in strong magnetic fields

    CERN Document Server

    Kabat, D; Weinberg, Erick J; Kabat, Daniel; Lee, Kimyeong; Weinberg, Erick

    2002-01-01

    We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u-ubar pairs is energetically favorable for fields B > B_crit \\sim 10 GeV^2. We contrast the resulting u-ubar condensate with the quark condensate which is present at zero magnetic field, and we estimate the corresponding magnetization as a function of B.

  9. Noncommutativity in space and primordial magnetic field

    International Nuclear Information System (INIS)

    In this paper we show that noncommutativity in spatial coordinates can generate magnetic field in the early Universe on a horizon scale. The strength of such a magnetic field depends on tin number density of massive charged particles present at a given moment. This allows us to trace back the temperature dependence of the noncommutativity scale from the bounds on primordial magnetic field coming from nucleosynthesis. (author)

  10. Minimizing magnetic fields for precision experiments

    CERN Document Server

    Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  11. Free oscillations of magnetic fluid in strong magnetic field

    Science.gov (United States)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  12. Numerical Simulation of Level Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.

  13. Magnetic field screening effect in electroweak model

    CERN Document Server

    Bakry, A; Zhang, P M; Zou, L P

    2014-01-01

    It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

  14. Magnetized quark matter with a magnetic-field dependent coupling

    CERN Document Server

    Li, Chang-Feng; Wen, Xin-Jian; Peng, Guang-Xiong

    2016-01-01

    It was recently derived that the QCD running coupling is a function of the magnetic field strength under the strong magnetic field approximation. Inspired by this progress and based on the self-consistent solutions of gap equations, the properties of 2-flavor and 3-flavor quark matter are studied in the framework of the Nambu-Jona-Lasinio model with a magnetic-field dependent running coupling. We find that the dynamical quark masses as a function of the magnetic field strength is not monotonous in the fully chirally broken phase. Furthermore, the stability of magnetized quark matter with the running coupling is enhanced by lowering the free energy per baryon, which is expected to be more stable than that of the conventional coupling constant case. It is concluded that the magnetized strange quark matter described by running coupling can be absolutely stable.

  15. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  16. The strongest magnetic fields in the universe

    CERN Document Server

    Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA

    2016-01-01

    This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.

  17. Rydberg EIT in High Magnetic Field

    Science.gov (United States)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  18. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  19. The Axial Double Probe and Fields Signal Processing for the MMS Mission

    Science.gov (United States)

    Ergun, R. E.; Tucker, S.; Westfall, J.; Goodrich, K. A.; Malaspina, D. M.; Summers, D.; Wallace, J.; Karlsson, M.; Mack, J.; Brennan, N.; Pyke, B.; Withnell, P.; Torbert, R.; Macri, J.; Rau, D.; Dors, I.; Needell, J.; Lindqvist, P.-A.; Olsson, G.; Cully, C. M.

    2016-03-01

    The Axial Double Probe (ADP) instrument measures the DC to ˜100 kHz electric field along the spin axis of the Magnetospheric Multiscale (MMS) spacecraft (Burch et al., Space Sci. Rev., 2014, this issue), completing the vector electric field when combined with the spin plane double probes (SDP) (Torbert et al., Space Sci. Rev., 2014, this issue, Lindqvist et al., Space Sci. Rev., 2014, this issue). Two cylindrical sensors are separated by over 30 m tip-to-tip, the longest baseline on an axial DC electric field ever attempted in space. The ADP on each of the spacecraft consists of two identical, 12.67 m graphite coilable booms with second, smaller 2.25 m booms mounted on their ends. A significant effort was carried out to assure that the potential field of the MMS spacecraft acts equally on the two sensors and that photo- and secondary electron currents do not vary over the spacecraft spin. The ADP on MMS is expected to measure DC electric field with a precision of ˜1 mV/m, a resolution of ˜25 μV/m, and a range of ˜±1 V/m in most of the plasma environments MMS will encounter. The Digital Signal Processing (DSP) units on the MMS spacecraft are designed to perform analog conditioning, analog-to-digital (A/D) conversion, and digital processing on the ADP, SDP, and search coil magnetometer (SCM) (Le Contel et al., Space Sci. Rev., 2014, this issue) signals. The DSP units include digital filters, spectral processing, a high-speed burst memory, a solitary structure detector, and data compression. The DSP uses precision analog processing with, in most cases, >100 dB in dynamic range, better that -80 dB common mode rejection in electric field ( E) signal processing, and better that -80 dB cross talk between the E and SCM ( B) signals. The A/D conversion is at 16 bits with ˜1/4 LSB accuracy and ˜1 LSB noise. The digital signal processing is powerful and highly flexible allowing for maximum scientific return under a limited telemetry volume. The ADP and DSP are

  20. Control of dendrite growth by a magnetic field during directional solidification

    Science.gov (United States)

    Dai, Yanchao; Du, Dafan; Hou, Long; Gagnoud, Annie; Ren, Zhongming; Fautrelle, Yves; Moreau, Rene; Li, Xi

    2016-04-01

    In this work, the alignment behavior of three kinds of dendrites (Al3Ni, α-Al and Al2Cu dendrites) with a remarkable crystalline anisotropy during directional solidification under an axial magnetic field is studied by the EBSD technology. Experimental results reveal that the magnetic field is capable of tailoring the dendrite alignment during directional solidification. Further, based on the crystalline anisotropy, a method to control the dendrite alignment by adjusting the angle between the magnetic field and the solidification direction is proposed.

  1. Stability of magnetic fields in non-barotropic stars: an analytic treatment

    CERN Document Server

    Akgün, Taner; Mastrano, Alpha; Marchant, Pablo

    2013-01-01

    Magnetic fields in upper main-sequence stars, white dwarfs, and neutron stars are known to persist for timescales comparable to their lifetimes. From a theoretical perspective this is problematic, as it can be shown that simple magnetic field configurations are always unstable. In non-barotropic stars, stable stratification allows for a much wider range of magnetic field structures than in barotropic stars, and helps stabilize them by making it harder to induce radial displacements. Recent simulations by Braithwaite and collaborators have shown that, in stably stratified stars, random initial magnetic fields evolve into nearly axisymmetric configurations with both poloidal and toroidal components, which then remain stable for some time. It is desirable to provide an analytic study of the stability of such fields. We write an explicit expression for a plausible equilibrium structure of an axially symmetric magnetic field with both poloidal and toroidal components of adjustable strengths, in a non-barotropic st...

  2. Magnetic resonance imaging analysis of surgical trans-sacral axial L5/S1 interbody fusion

    Institute of Scientific and Technical Information of China (English)

    YAN Ning; HE Shi-sheng; ZHANG Hai-long; GU Guang-fei; LIU Bi-feng; LIU Yan-bin; ZHANG Li-guo; GU Xin; DING Yue; GUO Cheng-bin

    2011-01-01

    Background Trans-sacral axial L5/S1 interbody fusion (AxiaLIF), a novel surgical procedure, recently adopted in clinical practice, has excellent clinical outcomes. However, there is inadequate data on the feasibility of the approach in all adult patients and the optimal surgical approach is currently unclear; therefore, further studies are required. In order to enhance the surgical approach for AxiaLIF, prospective anatomical imaging optimization is necessary. The objective of this study was to investigate the ability of magnetic resonance imaging (MRI) to achieve an optimal procedural setting.Methods The subjects (n=40) underwent lumbosacral MRI examination. The median sagittal MRI images were analyzed and four measurement markers were defined as follows: the center of the L5/S1 disc (A), the anterior margin of the S1/2 disc space (B), the sacrococcygeal junction (C), and the coccygeal tip (D). The measurement markers were connected to each other to produce five lines (AB, AC, AD, BC, and BD), as reference lines for surgical approaches. The distance between each reference line and the anterior and posterior margins of the L5 and S1 vertebral bodies was measured to determine the safety of the respective approaches.Results In all patients, Lines AB and AC satisfied the imaging safety criteria. Line AB would result in a significant deviation from the median and was determined to be unsuitable for AxiaLIF. Line AD satisfied the imaging safety criteria in 39 patients. However, the anal proximity of the puncture point proved to be limiting. For lines BC and BD, the imaging safety criteria were satisfied in 70% and 45% of patients, respectively.Conclusions The AxiaLIF procedure is a safe technique for insertion of fusion implants in all subjects. Line AC is a favorable reference line for surgical approach and safe for all subjects, while line BC is not suitable for all subjects.

  3. Isotope production 98Mo and 100Mo electromagnetic separators on system axisymmetric magnetic fields with two reverse fields

    International Nuclear Information System (INIS)

    The paper demonstrates the possibility of separating 98Mo and 100Mo isotopes by means of the electromagnetic separator in the system of axially symmetric magnetic fields with two field reversals. The advantage of the method lies in the separation of the 100M o isotope in its pure form, without being contaminated with other isotopes. Of apparent interest is the proposed here method of increasing the productive capacity of the electromagnetic technique of isotope separation.

  4. MDI Synoptic Charts of Magnetic Field: Interpolation of Polar Fields

    Science.gov (United States)

    Liu, Yang; Hoeksema, J. T.; Zhao, X.; Larson, R. M.

    2007-05-01

    In this poster, we compare various methods for interpolation of polar field for the MDI synoptic charts of magnetic field. By examining the coronal and heliospheric magnetic field computed from the synoptic charts based on a Potential Field Source Surface model (PFSS), and by comparing the heliospheric current sheets and footpoints of open fields with the observations, we conclude that the coronal and heliospheric fields calculated from the synoptic charts are sensitive to the polar field interpolation, and a time-dependent interpolation method using the observed polar fields is the best among the seven methods investigated.

  5. Efficient magnetic fields for supporting toroidal plasmas

    CERN Document Server

    Landreman, Matt

    2016-01-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...

  6. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  7. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    Science.gov (United States)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  8. Magnetic fields and halos in spiral galaxies

    OpenAIRE

    Krause, Marita

    2014-01-01

    Radio continuum observations allow to reveal the magnetic field structure in the disk and halo of nearby spiral galaxies, their magnetic field strength and vertical scale heights. The spiral galaxies studied so far show a similar magnetic field pattern which is of spiral shape along the disk plane and X-shaped in the halo, sometimes accompanied by strong vertical fields above and below the central region of the disk. The strength of the halo field is comparable to that of the disk. The total ...

  9. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  10. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  11. The magnetic field of $\\zeta$ Ori A

    CERN Document Server

    Blazère, A; Bouret, J-C; Tkachenko, A

    2014-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of $\\zeta$ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in $\\zeta$ Ori A. We identify that it belongs to $\\zeta$ Ori Aa and characterize it.

  12. The magnetic field of ζ Ori A

    Science.gov (United States)

    Blazère, A.; Neiner, C.; Bouret, J.-C.; Tkachenko, A.

    2015-01-01

    Magnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.

  13. Flow Fields with Vortex in a Small Semi-open Axial Fan

    Institute of Scientific and Technical Information of China (English)

    Norimasa. Shiomi; Yoichi Kinoue; Ying zi Jin; Toshiaki Setoguchi; Kenji Kaneko

    2009-01-01

    In order to clarify the effect of tip clearance (TC) size on fan performance and the flow field at rotor outlet in a small semi-open axial fan, the experimental investigation was carried out. The tip diameter of test fan rotor was 180mm and test TC sizes were 1 mm (TC=1 mm) and 4mm (TC=4mm). Fan characteristics tests were carried out for two cases of TC size and three-dimensional velocity fields at rotor outlet were measured using a single slant hot-wire probe at four flow-rate conditions. As a result, it was found that the pressure -flow-rate characteristics curves for two cases showed almost the same tendency. However, the ensemble averaged velocity profiles along radial measurement stations of TC=4mm largely changed compared with that of TC=1mm in cases of small flow-rate condition. From the phase-locked averaging results, it was also found that the vortex existed in the rotor outlet flow field of high flow-rate condition for each TC case. Compared with the vortices for TC=1mm and TC=4mm, the vortex for TC=4mm was stronger than that for TC=1mm.

  14. The magnetic field of zeta Orionis A

    OpenAIRE

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J. -C.; Rivinius, Th.; collaboration, the MiMeS

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at...

  15. Magnetic fields in Neutron Stars

    CERN Document Server

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  16. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  17. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    Y. J. Chen; G.-Y. Zhao; Z.-Q. Shen

    2014-09-01

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  18. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  19. Vacuum magnetic fields with dense flux surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J R

    1982-05-01

    A procedure is given for eliminating resonances and stochasticity in nonaxisymmetric vacuum toroidal magnetic field. The results of this procedure are tested by the surface of section method. It is found that one can obtain magnetic fields with increased rotational transform and decreased island structure while retaining basically the same winding law.

  20. Modeling the evolution of galactic magnetic fields

    International Nuclear Information System (INIS)

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means

  1. Strong magnetic field generation in laser plasma

    International Nuclear Information System (INIS)

    An attempt has been made to solve the magnetic field evolution equation by using Green function and taking convective, diffusion and nabla n x nabla T as a dominant source term. The maximum magnetic field is obtained to be an order of megagauss. (author). 14 refs, 1 fig

  2. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  3. Autoionization in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lemoigne, J.P.; Grandin, J.P.; Husson, X.; Kucal, H. (Institut des Sciences de la Matiere du Rayonnement, 14 - Caen (FR) Caen Univ., 14 (FR)); Zakrzewski, J.; Dohnalik, T. (Uniwersytet Jagiellonski, Krakow, (PL). Inst. Fizyki); Marcinek, R. (Wyzsza Szkola Pedagogiczna, Cracow (PL))

    1991-04-15

    The autoionization in the presence of a strong magnetic field is studied experimentally for 11s'(1/2) 1 argon level. It is shown that autoionizing resonance properties are strongly affected by the magnetic-field-induced modification of the continuum in which the resonance is embedded. A simple theoretical model explains essential features of the phenomenon.

  4. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  5. Magnetic field quality requirements for PEP

    International Nuclear Information System (INIS)

    The field quality of the cell quadrupole magnets of PEP was previously studied. With an improved formula, which takes into account the synchrotron oscillations, the field quality of the bending magnets and of the insertion quadrupole magnets is studied. An attempt is made to give a quality parameter. The instability prediction given by the betatron frequency shifts is compared with the instability prediction given by a particle tracing program

  6. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  7. Axial Myopia Is Associated with Visual Field Prognosis of Primary Open-Angle Glaucoma.

    Directory of Open Access Journals (Sweden)

    Chen Qiu

    Full Text Available To identify whether myopia was associated with the visual field (VF progression of primary open-angle glaucoma (POAG.A total of 270 eyes of 270 POAG followed up for more than 3 years with ≥9 reliable VFs by Octopus perimetry were retrospectively reviewed. Myopia was divided into: mild myopia (-2.99 diopter [D], 0, moderate myopia (-5.99, 3.00 D, marked myopia (-9.00, -6.00 D and non-myopia (0 D or more. An annual change in the mean defect (MD slope >0.22 dB/y and 0.30 dB/y was defined as fast progression, respectively. Logistic regression was performed to determine prognostic factors for VF progression.For the cutoff threshold at 0.22 dB/y, logistic regression showed that vertical cup-to-disk ratio (VCDR; p = 0.004 and the extent of myopia (p = 0.002 were statistically significant. When logistic regression was repeated after excluding the extent of myopia, axial length (AL; p = 0.008, odds ratio [OR] = 0.796 reached significance, as did VCDR (p = 0.001. Compared to eyes with AL≤23 mm, the OR values were 0.334 (p = 0.059, 0.309 (p = 0.044, 0.266 (p = 0.019, 0.260 (p = 0.018, respectively, for 23 26 mm. The significance of vertical cup-to-disk ratio of (p = 0.004 and the extent of myopia (p = 0.008 did not change for the cutoff threshold at 0.30dB/y.VCDR and myopia were associated with VF prognosis of POAG. Axial myopia may be a protective factor against VF progression.

  8. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    Science.gov (United States)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  9. The magnetic field of rotating bodies

    International Nuclear Information System (INIS)

    The paper discusses the possibility of interpreting the magnetic fields of astronomical bodies in the framework of a unified field theory. Using one of the solutions of the generalized field theory, a direct relation between the polar magnetic field, the angular velocity and the gravitational potential of the body considered, is obtained. The model used for applications has spherical symmetry. The predictions of the theoretical formula, obtained from the model, are compared with available observational data, and with the empirical relation of Blackett. The theoretical formula gives a possible interpretation of a seed magnetic field which will develop and produce the largescale magnetic field observed for celestial objects. The formula shows that the field may be generated as a result of the rotation of the massive object. (author). 24 refs, 3 figs, 1 tab

  10. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  11. Structure of magnetic fields in intracluster cavities

    CERN Document Server

    Gourgouliatos, Konstantinos Nektarios; Lyutikov, Maxim

    2010-01-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the AGN jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and evaluate the rotation measure for radiation traversing the bubble.

  12. Delayed quarkonium formation in a magnetic field

    CERN Document Server

    Suzuki, Kei

    2016-01-01

    Formation time of heavy quarkonia in a homogeneous magnetic field is analyzed by using a phenomenological ansatz of the vector current correlator. Because the existence of a magnetic field mixes vector quarkonia ($J/\\psi$, $\\psi^\\prime$) and their pseudoscalar partners ($\\eta_c$, $\\eta_c^\\prime$), the properties of the quarkonia can be modified through such a spin mixing. This means that the formation time of quarkonia is also changed by the magnetic field. We show the formation time of vector quarkonia is delayed by an idealized constant magnetic field, where the formation time of the excited state becomes longer than that of the ground state. As a more realistic situation in heavy-ion collisions, effects by a time-dependent magnetic field are also discussed.

  13. Tracing magnetic field orientation in starless cores

    Science.gov (United States)

    Maheswar, G.; Ramaprakash, A. N.; Lee, C. W.; Dib, S.

    It is now well understood that stars are formed in the interiors of dense, gravitationally bound molecular cloud cores that are both magnetized and turbulent. But the relative role played by the magnetic field and the turbulence in cloud formation and evolution and in the subsequent star formation is a matter of debate. In a magnetically dominated scenario, the magnetic field geometry of the cores is expected to be inherited unchanged from their low-density envelope, even for an hour glass geometry of the field, unless the action of turbulence disturbs it. We carried out polarimetry of stars projected on starless molecular clouds, LDN 183 and LDN 1544, in R-filter. The comparison of these fields with those in the interiors of the cloud cores inferred from the sub-mm polarization shows that both magnetic field and turbulence are important in the cloud formation and evolution of star formation.

  14. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  15. How do galaxies get their magnetic fields?

    Science.gov (United States)

    Beck, Alexander M.

    2016-06-01

    The origin of magnetic fields in high-redshift and present-day galaxies is a long-standing problem. In this talk, we present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions.Our model explains the origin of strong magnetic fields of μG amplitude within the first starforming protogalactic structures shortly after the first stars have formed.We present cosmological simulations with the GADGET code of Milky Way-like galactic halo formation using a standard LCDM cosmology and analyse the strength and distribution of the evolving magnetic field.Within starforming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shape magnetic field at a rate of nG/Gyr. Subsequently, the magnetic field strength increases exponentially on timescales of a few ten million years within the innermost regions of the halo.Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z=0, the entire galactic structures are magnetized and the field amplitude is of the order of a few microG in the center of the halo and nG at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over redshift. The mean halo intrinsic RM peaks between redshifts z=4 and z=2 and reaches absolute values around 1000 rad/m^2. Towards redshift z=0, the intrinsic RM values decline to a mean value below 10 rad/m^2. At high redshifts, the distribution of individual starforming and thus magnetized regions is widespread leading to a widespread distribution of large intrinsic RMs. Our model for the evolution of galactic magnetic fields solves the joint problem of magnetic field seeding and subsequent amplification and distribution. The

  16. Bending of magnetic filaments under a magnetic field

    Science.gov (United States)

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  17. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    International Nuclear Information System (INIS)

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H− ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H− ion generation in volume-produced negative hydrogen ion sources

  18. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Young, E-mail: beacoolguy@snu.ac.kr; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-02-15

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H{sup −} ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H{sup −} ion generation in volume-produced negative hydrogen ion sources.

  19. Warm inflation in presence of magnetic fields

    CERN Document Server

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-01-01

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

  20. The magnetic field of ζ Orionis A

    Science.gov (United States)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  1. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  2. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    of presenting marine magnetic data. The Generic Mapping Tools (GMT) software package (Wessel, P. and Smith, W. H. F.,1995), which can be downloaded over the internet is a very useful software package for presentation of marine magnetic data. This software...

  3. Magnetic fields of rotating bodies

    International Nuclear Information System (INIS)

    After a short historical review of the magnetism of rotating bodies a new model, based on Stochastic Electrodynamics, is briefly presented. It is shown how the theory of cooperative phenomena applies to this model. The outcome of the theory is used to analyse results obtained in a laboratory experiment on the magnetism of rotating bodies

  4. External-field-free magnetic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  5. Magnetic monopole field exposed by electrons

    CERN Document Server

    Béché, A; Van Tendeloo, G; Verbeeck, J

    2013-01-01

    Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

  6. Magnetic resonance imaging of skeletal muscle in patients with Duchenne muscular dystrophy; Serial axial and sagittal section studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Hideo (Ehime Univ., Matsuyama (Japan). Faculty of Education); Morimoto, Takehiko; Sano, Nozomi; Takahashi, Mitsugi; Nagai, Hironao; Tawa, Ritsuko; Yoshimatsu, Makoto; Woo Young-Jong; Matsuda, Hiroshi

    1991-01-01

    Magnetic resonance imaging of skeletal muscles in thirteen patients with Duchenne muscular dystrophy was performed to estimate pathological changes. Serial axial and sagittal sections of the right lower extremity were recorded. In the early stage, the T{sub 1} values of gastrocnemius and soleus muscles were slightly lower than the control values, and in the late stage, the values were much lower in all muscles examined. In sagittal sections, the gastrocnemius muscle in the early stage showed a high density area at the distal region adjacent to soleus muscle, and the soleus muscle showed a high density area adjacent to the gestrocnemius muscle. In serial axial sections, high density areas of the anterior and posterior tibialis muscles appeared first at their proximal and peripheral regions. It was concluded that the sequence of appearance of pathological changes was different not only among individual muscles but also among various regions of each muscle; the high density changes appeared first at myotendon junctions. (author).

  7. Compact low field magnetic resonance imaging magnet: Design and optimization

    Science.gov (United States)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  8. Design and characterization of axial flux permanent magnet energy harvester for vehicle magnetorheological damper

    Science.gov (United States)

    Dong, Xiaomin

    2016-01-01

    An axial flux permanent magnet energy harvester (AFPMEH) is proposed and analyzed for a vehicle magneto-rheological (MR) damper. The relationship between the output voltage and the input excitations are analytically developed. Under different constant rotation speeds and sinusoidal excitations, the harvesting energy is numerically computed for different loads of pure resistance and coil in the MR damper. To check the performance of the proposed AFPMEH for the MR damper, the AFPMEH and MR damper are fabricated individually. Experiments are performed to measure the harvesting energy of the AFPMEH and the damping characteristics of the MR damper under different excited conditions. The excited conditions include three constant rotation speeds and sinusoidal inputs. Load inputs of the pure resistance and the coil of the MR damper are considered. The results show that the time history of the generated voltage of the AFPMEH in experiment is agreed well with that of the AFPMEH in simulation. Under constant rotation speeds, the root mean square (rms) of loaded voltage will increase with the increment of load, whereas the rms of power will be affected by the amplitude of load. The MR damper powered by the AFPMEH can almost obtain the similar damping characteristics of that external power supply. Under sinusoidal inputs, the rms of loaded voltage will increase with the increment of external loads, whereas the rms of power will be almost kept as a constant. The damping range of the MR damper can also be enlarged over 30% comparing to off-state damping force. A quarter car model with an MR damper powered by the AFPMEH is developed to investigate the control performance. The on-off skyhook control is adopted to tune the input current of the MR damper. The vibration performance of the MR suspension is investigated under different roads and vehicle speeds. The numerical results show that the MR suspension with the AFPMEH under on-off skyhook control can achieve better ride comfort

  9. Quantitative modeling of planetary magnetospheric magnetic fields

    Science.gov (United States)

    Walker, R. J.

    1979-01-01

    Three new quantitative models of the earth's magnetospheric magnetic field have recently been presented: the Olson-Pfitzer model, the Tsyganenko model, and the Voigt model. The paper reviews these models in some detail with emphasis on the extent to which they have succeeded in improving on earlier models. The models are compared with the observed field in both magnitude and direction. Finally, the application to other planetary magnetospheres of the techniques used to model the earth's magnetospheric magnetic field is briefly discussed.

  10. Debye relaxation in high magnetic fields

    OpenAIRE

    Brooks, J. S.; Vasic, R.; Kismarahardja, A.; Steven, E.; Tokumoto, T.; Schlottmann, P.; Kelly, S.

    2008-01-01

    Dielectric relaxation is universal in characterizing polar liquids and solids, insulators, and semiconductors, and the theoretical models are well developed. However, in high magnetic fields, previously unknown aspects of dielectric relaxation can be revealed and exploited. Here, we report low temperature dielectric relaxation measurements in lightly doped silicon in high dc magnetic fields B both parallel and perpendicular to the applied ac electric field E. For B//E, we observe a temperatur...

  11. Particle Transport in Therapeutic Magnetic Fields

    Science.gov (United States)

    Puri, Ishwar K.; Ganguly, Ranjan

    2014-01-01

    Iron oxide magnetic nanoparticles, in ferrofluids or as magnetic microspheres, offer magnetic maneuverability, biochemical surface functionalization, and magnetic relaxation under the influence of an alternating field. The use of these properties for clinical applications requires an understanding of particles, forces, and scalar transport at various length scales. This review explains the behavior of magnetic nano- and microparticles during magnetic drug targeting and magnetic fluid hyperthermia, and the microfluidic transport of these particles in bioMEMS (biomedical microelectromechanical systems) devices for ex vivo therapeutic and diagnostic applications. Magnetic particle transport, the momentum interaction of these particles with a host fluid in a flow, and thermal transport in a particle-infused tissue are characterized through the governing electrodynamic, hydrodynamic, and scalar transport equations.

  12. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    CERN Document Server

    Petrie, G J D

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex than straight line and ring current fields sometimes used in solar flux rope models. The axial flux in magnetic fields around confined current structures may be affected by the writhe of these current structures such that the field twists preferentially with the same handedness as the writhe. This property of fields around confined current structures with writhe may be relevant to classes of coronal magnetic flux rope, including structures observed to have sigmoidal forms in soft X-rays and prominence magnetic fields. For ex...

  13. Instability of strong magnetic field and neutrino magnetic dipole moment

    CERN Document Server

    Lee, Hyun Kyu

    2016-01-01

    Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the "standard model...

  14. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    With a piece of magnet embeded in mouse body tomeasure the electrophoretic velocity of erythrocyte for ob-servation onthe biological effect of magnetic field.1Experi mental Material and Method1 .1Experi mental materialUsing permanent magnet was made of alloys fromCe .Co.Cu.Fe .,of which the force of magnetic field is500Gs ,formseems cylinder andthe weight is 0 .5 mg.1 .2Ani mals and groupingThere were eighteen mice that were choosed on ran-dom,theirs weight was 18-22gto divide equallyinthreegroups ,each gro...

  15. Computation of magnetic fields in hysteretic media

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A.; Mayergoyz, I.D.; Gomez, R.D.; Burke, E.R. (Univ. of Maryland, College Park, MD (United States))

    1993-11-01

    A newly developed vector Preisach-type model of hysteresis is applied to the computation of static magnetic fields in media with hysteresis. Time stepping technique is used to trace the time evolution of local magnetic fields which form the history of magnetizing process. At each time step, the magnetostatic problem is formulated in terms of an integral equation and an efficient iterative algorithm is employed for solving this problem. The technique has been used to simulate some magnetic recording processes. Sample results of these simulations are given in the paper.

  16. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  17. Quark matter under strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Peres Menezes, Debora [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Laercio Lopes, Luiz [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Campus VIII, Centro Federal de Educacao Tecnologica de Minas Gerais, Varginha, MG (Brazil)

    2016-02-15

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  18. Quark matter under strong magnetic fields

    International Nuclear Information System (INIS)

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  19. Alignment of magnetic uniaxial particles in a magnetic field: Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Golovnia, O.A., E-mail: golovnya@imp.uran.ru [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Popov, A.G [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Sobolev, A.N. [South Ural State University (National Research University), av. Lenina, 76, 454080 Chelyabinsk (Russian Federation); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)

    2014-09-01

    The numerical investigations of the process of alignment of magnetically uniaxial Nd–Fe–B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient. - Highlights: • We simulate the magnetic alignment of ensemble of Nd–Fe–B spherical uniaxial particles. • Anisotropic particles as a combination of spherical particles are constructed. • Influence of the particle shape anisotropy and friction on the alignment is analyzed. • We compare calculated and experimental data on field dependence of magnetic alignment. • The results render the experimental dependence.

  20. Sensitivity assessment of wide Axial Field of View PET systems via Monte Carlo simulations of NEMA-like measurements

    International Nuclear Information System (INIS)

    The sensitivity characteristics of Positron Emission Tomography (PET) systems with wide Axial Field of View (AFOV) was studied by MonteCarlo simulations complemented by an approximate analytical model, aiming at full-body human PET systems with AFOV in the order of 200 cm. Simulations were based on the GEANT4 package and followed closely the NEMA NU-2 1994 norm. The sensitivity, dominated by the solid angle, grows strongly with the AFOV and with the axial acceptance angle, while the scatter fraction is almost independent from the geometry

  1. Magnetic field induced transition in vanadium spinels.

    Science.gov (United States)

    Mun, E D; Chern, Gia-Wei; Pardo, V; Rivadulla, F; Sinclair, R; Zhou, H D; Zapf, V S; Batista, C D

    2014-01-10

    We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at μ0H≈40  T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field. PMID:24483929

  2. The magnetic field of Mercury, part 1

    Science.gov (United States)

    Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.

    1974-01-01

    An updated analysis and interpretation is presented of the magnetic field observations obtained during the Mariner 10 encounter with the planet Mercury. The combination of data relating to position of the detached bow shock wave and magnetopause, and the geometry and magnitude of the magnetic field within the magnetosphere-like region surrounding Mercury, lead to the conclusion that an internal planetary field exists with dipole moment approximately 5.1 x 10 the 22nd power Gauss sq cm. The dipole axis has a polarity sense similar to earth's and is tilted 7 deg from the normal to Mercury's orbital plane. The magnetic field observations reveal a significant distortion of the modest Hermean field (350 Gamma at the equator) by the solar wind flow and the formation of a magnetic tail and neutral sheet which begins close to the planet on the night side. The composite data is not consistent with a complex induction process driven by the solar wind flow.

  3. The National High Magnetic Field Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schneider-Muntau, H.J.; Brandt, B.L.; Brunel, L.C.; Cross, T.A.; Edison, A.S.; Marshall, A.G.; Reyes, A.P

    2004-04-30

    We describe two of the main user facilities of the National High Magnetic Field Laboratory (NHMFL): (a) the General Purpose DC Field Facility with nine resistive and hybrid magnet stations with continuous fields between 20 and 45 T, and (b) the CIMAR Facilities with 17 spectrometers for the NMR Spectroscopy and Imaging Program, the Fourier Transform ICR Mass Spectrometry Program and the Electron Magnetic Resonance Spectroscopy Program. The facilities are located in Tallahassee, and Gainesville, FL. Members of the worldwide science and engineering communities can access NHMFL facilities, generally without cost, through a peer-reviewed proposal process.

  4. The magnetic field in the Coma cluster

    OpenAIRE

    Feretti, L.; D. Dallacasa; Giovannini, G.; Tagliani, A.

    1995-01-01

    The polarization data of the radio galaxy NGC4869, belonging to the Coma cluster and located in its central region, allow us to obtain information on the structure of magnetic field associated with the cluster itself. A magnetic field of $\\sim$ 8.5 $\\mu$G, tangled on scales of the order of less than 1 kpc, is required to explain the observed fluctuations of the rotation measure. This magnetic field is more than one order of magnitude stronger than the equipartition value obtained for Coma C. ...

  5. Thermal diffusivity measurements in magnetic field

    International Nuclear Information System (INIS)

    This paper presents the first observation of thermal diffusivity in magnetic field on superconducting oxides. The measurements are performed on sintered samples using a high resolution a.c. technique from 30 to 120 K in magnetic field up to 7 T. In magnetic field higher than 1 T the thermal diffusivity below the critical temperature decreases and the authors suggest this is due to the scattering between the phonons and the flux lines inside the grains. The cross section σ related to such a scattering is calculated; the authors obtain values from 1 to 7 x 10-7 cm when the temperature increases from 30 to 70 K

  6. Conformal anomaly and primordial magnetic fields

    OpenAIRE

    Agullo, Ivan; Navarro-Salas, Jose

    2013-01-01

    The conformal symmetry of the quantized electromagnetic field breaks down in curved space-time. We point out that this conformal anomaly is able to generate a sizable magnetic field during a phase of slow-roll inflation. Such primordial magnetism is characterized by the expectation value of the squared of the magnetic field for comoving observers, which at leading order in slow-roll takes the value $\\ =\\frac{8}{15(4\\pi)^2}\\, H^4\\epsilon$, where $\\epsilon$ is the standard slow-ro...

  7. The Pregalactic Origin for Galactic Magnetic Fields

    Science.gov (United States)

    Kulsrud, R.; Chandran, B.; Yamada, M.

    1996-11-01

    It has been generally accepted that there is no natural mechanism to create a strong primordial magnetic field. For this reason all the attention has been concentrated on the generation of the magnetic field by hydrodynamic turbulence in the galactic disk. But this approach suffers from the problem of the rapid amplification of small scale magnetic fields(R. Kulsrud and S. Anderson ApJ 306, 606, 1992). However, as the result of numerical simulations, it is now clear that there is a lot of turbulence present in the pregalactic state, when the galaxy is arising out of gravitational instabilities. The simulations further show that the thermolelectric term in Ohm's law produces a weak magnetic field, even from zero initial conditions. Further, the smallest eddy of the turbulence turns over several hundred times before the galaxy collapses to a virial state. This many turnovers amplifies the weak magnetic field by a large enough factor for it to reach saturation with the hydrodynamic turbulence at a considerable field strength. Lastly, it appears from a physical argument, and also by a DIA calculation that when the field becomes strong enough it straightens itself out and becomes coherent on a galactic scale. this coherence arises even in the absence of an `` α '' effect! It is proposed that this pregalactic process is the true origin of the galactic magnetic field. .

  8. Field simulations for large dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lazzaro, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy) and Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)]. E-mail: cappuzzello@lns.infn.it; Cunsolo, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Cavallaro, M. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN - Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Khouaja, A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Orrigo, S.E.A. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Winfield, J.S. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)

    2007-01-01

    The problem of the description of magnetic field for large bending magnets is addressed in relation to the requirements of modern techniques of trajectory reconstruction. The crucial question of the interpolation and extrapolation of fields known at a discrete number of points is analysed. For this purpose a realistic field model of the large dipole of the MAGNEX spectrometer, obtained with finite elements three dimensional simulations, is used. The influence of the uncertainties in the measured field to the quality of the trajectory reconstruction is treated in detail. General constraints for field measurements in terms of required resolutions, step sizes and precisions are thus extracted.

  9. Dispersion of Magnetic Fields in Molecular Clouds

    CERN Document Server

    Hildebrand, Roger H; Dotson, Jessie L; Houde, Martin; Vaillancourt, John E

    2008-01-01

    We describe a method for determining the dispersion of magnetic field vectors about local mean fields in turbulent molecular clouds. The method is designed to avoid inaccurate estimates of MHD or turbulent dispersion - and hence to avoid inaccurate estimates of field strengths - due to large-scale, non-turbulent field structure when using the well-known method of Chandrasekhar and Fermi. Our method also provides accurate, independent estimates of the turbulent to mean magnetic field strength ratio. We discuss applications to the molecular clouds Orion, M17, and DR21.

  10. The field of a screened magnetic dipole

    Science.gov (United States)

    Greene, J. M.; Miller, R. L.

    1994-01-01

    The purpose of this note is to quantitatively study the asymptotic behavior of the dipole magnetic field in the tail region of a paraboloidal or cylindrical model of the magnetosphere, assuming the complete screening of the internal field by magnetopause currents. This screening assumption is equivalent to imposing the boundary condition that the normal component of the magnetic field is zero at the magnetopause. With this boundary condition, the screened dipole field falls off exponentially with distance down the tail, in sharp constrast to the bare dipole field. Analytic expressions for a cylindrical and paraboloidal magnetopause are given.

  11. Magnetic fields in early protostellar disk formation

    CERN Document Server

    González-Casanova, Diego F; Lazarian, Alexander

    2016-01-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...

  12. Solving outside-axial-field-of-view scatter correction problem in PET via digital experimentation

    Science.gov (United States)

    Andreyev, Andriy; Zhu, Yang-Ming; Ye, Jinghan; Song, Xiyun; Hu, Zhiqiang

    2016-03-01

    Unaccounted scatter impact from unknown outside-axial-field-of-view (outside-AFOV) activity in PET is an important degrading factor for image quality and quantitation. Resource consuming and unpopular way to account for the outside- AFOV activity is to perform an additional PET/CT scan of adjacent regions. In this work we investigate a solution to the outside-AFOV scatter problem without performing a PET/CT scan of the adjacent regions. The main motivation for the proposed method is that the measured random corrected prompt (RCP) sinogram in the background region surrounding the measured object contains only scattered events, originating from both inside- and outside-AFOV activity. In this method, the scatter correction simulation searches through many randomly-chosen outside-AFOV activity estimates along with known inside-AFOV activity, generating a plethora of scatter distribution sinograms. This digital experimentation iterates until a decent match is found between a simulated scatter sinogram (that include supposed outside-AFOV activity) and the measured RCP sinogram in the background region. The combined scatter impact from inside- and outside-AFOV activity can then be used for scatter correction during final image reconstruction phase. Preliminary results using measured phantom data indicate successful phantom length estimate with the method, and, therefore, accurate outside-AFOV scatter estimate.

  13. Optical signatures of dissolved organic matter from the Endeavour and Axial vent fields

    Science.gov (United States)

    Stubbins, A.; Butterfield, D.; Rossel, P. E.; Dittmar, T.

    2011-12-01

    Recent studies have revealed that hydrothermal systems in the deep ocean are both sources and processors of dissolved organic matter (DOM). Sub-floor stores of fossil organic carbon may be exported to the deep ocean directly adding fossil C to the deep ocean dissolved organic carbon (DOC) pool and altering its apparent age. Fossil methane and carbon dioxide are also exported from vents. These C sources can then be utilized by chemotrophs and later enter the DOM pool as fossil DOC. Finally, when deep ocean waters are entrained into vent systems, the resultant heating may alter the chemical and optical properties of the DOM in these deep ocean waters. Dissolved organic matter (DOM) samples were collected from vents ranging in temperature from 10 to over 300 degrees centigrade across the Endeavour and Axial fields along the Juan de Fuca ridge. Elevated DOC and protein-like fluorescence reveal the vents to fuel the chemotrophic production of organic matter either in the adjacent water column or local sediments. High DOC and increased humic-like fluorescence in the hottest vent fluids, suggests the thermal degradation of DOM either from buried fossil sources or the entrainment of local waters enriched in DOC due to chemotrophic productivity. Natural and radio-carbon analyses are underway and will provide further insight into the ultimate source of this colored, fluorescent hydrothermal DOM.

  14. Magnetic field considerations in fusion power plant environs

    Energy Technology Data Exchange (ETDEWEB)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions.

  15. Mechanism of magnetic field effect in cryptochrome

    OpenAIRE

    Solov'yov, Ilia A.; Schulten, Klaus

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow...

  16. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  17. Relationship between the magnetic field distribution and attractive force of single domain YBCO bulk under different field cooling processes

    Institute of Scientific and Technical Information of China (English)

    Yang Wan-Min; Zhou Lian; Feng Yong; Zhang Ping-Xiang; R. Nicolsky

    2004-01-01

    The levitation forces under different field cooling states were measured at 77K by changing the field cooling distance 0Zfc between a YBCO bulk and a permanent magnet. It is found that the relationship between the absolute maximum attractive force (Fmaf) and the corresponding gap distance (Zmaf) to Fmaf can be well described by exponential laws as a function of Zfc, which allow us to predict these values according to Zfc. It is also found that the distance between the Z0fa (gap distance corresponding to the zero force) and Zmaf in the ascending process is a constant value, which is closely related to the constant reduction factor of the axial component of flux density along the axial line of the magnet if Zmaf - Z0fa is a constant value. These results are very interesting for fundamental research and helpful in practical designing and applications.

  18. Topological approach to examine the singularity of the axial-vector current in an Abelian gauge field theory (QED)

    Institute of Scientific and Technical Information of China (English)

    BAO Ai-Dong; YAO Hai-Bo; WU Shi-Shu

    2009-01-01

    A topological way to distinguish divergences of the Abelian axial-vector current in quantum field theory is proposed. By usirg the properties of the Atiyah-Singer index theorem, the non-trivial Jacobian factor of the integration measure in the path-integral formulation of the theory is connected with the topological properties of the gauge field. The singularity of the fermion current related to the topological character can be correctly examined in a gauge background.

  19. Diagnostic utility of candidate definitions for demonstrating axial spondyloarthritis on magnetic resonance imaging of the spine

    DEFF Research Database (Denmark)

    Weber, Ulrich; Zhao, Zheng; Rufibach, Kaspar;

    2015-01-01

    patients with nonspecific back pain. A threshold of ≥6 CILs had moderate to substantial diagnostic utility (positive LR 13.26 and 6.74 in cohorts A and B, respectively) in nonradiographic axial SpA, while ≥4 CILs showed small diagnostic utility (positive LR 3.83 and 2.72 in cohorts A and B, respectively...

  20. Juno and Jupiter's Magnetic Field (Invited)

    Science.gov (United States)

    Bloxham, J.; Connerney, J. E.; Jorgensen, J. L.

    2013-12-01

    The Juno spacecraft, launched in August 2011, will reach Jupiter in early July 2016, where it will enter a polar orbit, with an 11 day period and a perijove altitude of approximately 5000 km. The baseline mission will last for one year during which Juno will complete 32 orbits, evenly spaced in longitude. The baseline mission presents an unparalleled opportunity for investigating Jupiter's magnetic field. In many ways Jupiter is a better planet for studying dynamo-generated magnetic fields than the Earth: there are no crustal fields, of course, which otherwise mask the dynamo-generated field at high degree; and an orbiting spacecraft can get proportionately much closer to the dynamo region. Assuming Jupiter's dynamo extends to 0.8 Rj, Juno at closet approach is only 0.3 Rc above the dynamo, while Earth orbiting magnetic field missions sample the field at least 1 Rc above the dynamo (where Rc is the respective outer core or dynamo region radius). Juno's MAG Investigation delivers magnetic measurements with exceptional vector accuracy (100 ppm) via two FGM sensors, each co-located with a dedicated pair of non-magnetic star cameras for attitude determination at the sensor. We expect to image Jupiter's dynamo with unsurpassed resolution. Accordingly, we anticipate that the Juno magnetic field investigation may place important constraints on Jupiter's interior structure, and hence on the formation and evolution of Jupiter.

  1. Studies of Solar Vector Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Jingxiu

    2011-01-01

    In this article, we report a few advances in the studies based on the solar vector magnetic field observations which were carried out mainly with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station in the 1990s. (1) We developed necessary methodology and concepts in vector magnetogram analysis (Wang et al. 1996). For the first time, we proposed to use the photospheric free magnetic energy to quantify the major flare productivity of solar active regions (ARs), and it had been proved to be the best parameter in representing the major flare activity. (2) We revealed that there was always a dominant sense of magnetic shear in a given AR (Wang 1994), which was taken as the premise of the helicity calculation in ARs; we made the first quantitative estimation of magnetic helicity evolution in ARs (Wang 1996). (3) We identified the first group of evidence of magnetic reconnection in the lower solar atmosphere with vector magnetic field observations and proposed a two-step reconnection flare model to interpret the observed association of flux cancellation and flares (Wang and Shi 1993). Efforts to quantify the major flare productivity of super active regions with vector magnetic field observations have been also taken.

  2. The magnetic field of zeta Orionis A

    CERN Document Server

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  3. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenologica...

  4. On The Interaction of Gravitational Waves with Magnetic and Electric Fields

    CERN Document Server

    Barrabes, C

    2010-01-01

    The existence of large--scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a `spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the M...

  5. Diamond-nitrogen-vacancy electronic and nuclear spin-state anticrossings under weak transverse magnetic fields

    Science.gov (United States)

    Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-08-01

    We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.

  6. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    OpenAIRE

    Sebastian Altmeyer; Younghae Do; Ying-Cheng Lai

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. W...

  7. Current Sheets in Stressed Coronal Magnetic Fields

    Science.gov (United States)

    Labonte, B. J.

    2003-12-01

    The extrapolation of magnetic fields into the solar corona generally assumes that the fields are fully relaxed - all possible reconnection has occurred. This assumption is in conflict with the low magnetic diffusivity in the corona. I will present initial results on extrapolation based on stressed magnetic fields - those for which no reconnection has occurred. As an opposite extreme to traditional methods, stressed fields offer a different view of coronal fields. The locations of current sheets between flux systems are directly determined. Observational evidence of coronal reconnection can test the completeness of the extrapolation, as the field lines spanning flux systems must be in contact prior to reconnection. This work is supported by NASA SEC GI grant NAG5-13020.

  8. A Topology for the Penumbral Magnetic Fields

    CERN Document Server

    Almeida, J Sanchez

    2009-01-01

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild...

  9. KEK effort for high field magnets

    CERN Document Server

    Nakamoto, T

    2011-01-01

    KEK has emphasized efforts to develop the RHQNb3Al superconductor and a sub-scale magnet reaching 13 T towards the HL-LHC upgrade in last years. In addition, relevant R&D regarding radiation resistance has been carried out. For higher field magnets beyond 15 T, HTS in combination with A15 superconductors should be one of baseline materials. However, all these superconductors are very sensitive to stress and strain and thorough understanding of behaviour is truly desired for realization of high field magnets. KEK has launched a new research subject on stress/strain sensitivity of HTS and A15 superconductors in collaboration with the neutron diffraction facility at J-PARC and High Field Laboratory in Tohoku University. Present activity for high field magnets at KEK is reported.

  10. Magnetic Fields in Limb Solar Flares

    Science.gov (United States)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  11. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 109G; in the second the magnetic field ranges between 109 and 1011G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author)

  12. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  13. A Holographic Bound on Cosmic Magnetic Fields

    CERN Document Server

    McInnes, Brett

    2015-01-01

    Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description. We show that holography imposes an upper bound on the intensity of magnetic fields (scaled by the squared temperature) in these circumstances, and that the values expected in some models of cosmic magnetism come close to attaining that bound.

  14. Split-Field Magnet facility upgraded

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  15. Magnetic Field Amplification in Young Galaxies

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2013-01-01

    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...

  16. Magnetic fields and massive star formation

    International Nuclear Information System (INIS)

    Massive stars (M > 8 M ☉) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 103 AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  17. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris

    2012-01-01

    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  18. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......-resolved Landau levels the interplay between these two factors leads to characteristic features in both the magnetic field and the temperature dependence of rho(21). Numerical results are compared with recent experiments....

  19. The magnetic field investigation on Cluster

    Science.gov (United States)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  20. High Precision Physics in Low Magnetic Fields

    OpenAIRE

    Lins, Tobias

    2016-01-01

    The search for particle EDMs is a key approach in understanding the origin of matter. The new neutron EDM experiment at TUM aims to improve the current sensitivity by two orders of magnitude. In this thesis, a concept to fully track magnetic field changes in 4 pi is introduced. A devised mechanism to actively damp external field changes as well as the measurements of the temporal stability of the full shield is presented. Finally, two approaches to search for magnetic monopoles are discussed.

  1. Chiral magnetic effect by synthetic gauge fields

    CERN Document Server

    Hayata, Tomoya

    2016-01-01

    We study the dynamical generation of the chiral chemical potential in a Weyl metal constructed from a three-dimensional optical lattice and subject to synthetic gauge fields. By numerically solving the Boltzmann equation with the Berry curvature in the presence of parallel synthetic electric and magnetic fields, we find that the spectral flow and the ensuing chiral magnetic current emerge. We show that the spectral flow and the chiral chemical potential can be probed by time-of-flight imaging.

  2. Statics and field-driven dynamics of transverse domain walls in biaxial nanowires under uniform transverse magnetic fields

    Science.gov (United States)

    Lu, Jie

    2016-06-01

    In this work, we report analytical results on transverse domain wall (TDW) statics and field-driven dynamics in quasi-one-dimensional biaxial nanowires under arbitrary uniform transverse magnetic fields (TMFs) based on the Landau-Lifshitz-Gilbert equation. Without axial driving fields, the static TDW should be symmetric about its center while twisted in its azimuthal angle distribution. By decoupling polar and azimuthal degrees of freedom, an approximate solution is provided which reproduces these features to a great extent. When an axial driving field is applied, the dynamical behavior of a TDW is viewed as the response of its static profile to external excitations. By means of the asymptotic expansion method, the TDW velocity in the traveling-wave mode is obtained, which provides the extent and boundary of the "velocity-enhancement" effect of TMFs on TDWs in biaxial nanowires. Finally, numerical simulations are performed and strongly support our analytics.

  3. Untwisting magnetic fields in the solar corona

    Science.gov (United States)

    Bhattacharyya, Ramit; Smolarkiewicz, Piotr; Chye Low, Boon

    2012-07-01

    The solar corona is the tenuous atmosphere of the Sun characterized by a temperature of the order of million degrees Kelvin, an ambient magnetic field of 10 to 15 Gauss and a very high magnetic Reynolds number because of which it qualifies as a near-ideal magnetofluid system. It is well known that for such a system, the magnetic flux across every fluid surface remains effectively constant to a good approximation. Under this so called ``frozen-in'' condition then, it is possible to partition this magnetofluid into contiguous magnetic subvolumes each entrapping its own subsystem of magnetic flux. Thin magnetic flux tubes are an elementary example of such magnetic subvolumes evolving in time with no exchange of fluid among them. The internal twists and interweaving of these flux tubes, collectively referred as the magnetic topology, remains conserved under the frozen-in condition. Because of the dynamical evolution of the magnetofluid, two such subvolumes can come into direct contact with each other by expelling a third interstitial subvolume. In this process, the magnetic field may become discontinuous across the surface of contact by forming a current sheet there. Because of the small spatial scales generated by steepening of magnetic field gradient, the otherwise negligible resistivity becomes dominant and allows for reconnection of field lines which converts magnetic energy into heat. This phenomenon of spontaneous current sheet formation and its subsequent resistive decay is believed to be a possible mechanism for heating the solar corona to its million degree Kelvin temperature. In this work the dynamics of spontaneous current sheet formation is explored through numerical simulations and the results are presented.

  4. Four-Dimensional Magnetic Resonance Imaging Using Axial Body Area as Respiratory Surrogate: Initial Patient Results

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-03-15

    Purpose: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Methods and Materials: Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquired across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. Results: The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. Conclusions: The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its

  5. Magnetic Field Measurement on a Refined Kicker

    CERN Document Server

    Fan, Tai-Ching; Lin, Fu-Yuan

    2005-01-01

    To prepare for the operation of top-up mode and increase the efficiency of injection at storage ring, National Synchrotron Radiation Research Center (NSRRC) has upgraded the kicker magnets and power supply. We have built up a new magnetic field measurement system to test the kicker. This system, including a search coil and a coil loop, can map the field and take the first integral of field automatically. We also simulate the trajectory of electron beam by pulsed wire method of field measurement. We analyze the performance of the kicker system in this paper.

  6. Helical Fields Possessing Mean Magnetic Wells

    International Nuclear Information System (INIS)

    Recently Furth and Rosenbluth pointed out that a particular magnetic field having helical symmetry could provide a mean magnetic well, that is provide regions in which ∫dℓ/B decreases away from a magnetic axis (or equivalently a region in which V'' is negative). In this paper we examine helical fields in general and the circumstances in which they may exhibit the negative V'' property. This investigation is made possible by the use of the stream function formalism which provides a simple picture of the field geometry, The existence of negative V'' is related to the topology of the magnetic surfaces which in turn is connected with the positions of the stationary points of the stream function ψ. Detailed calculations are given of the shape of the flux surfaces and of the shape of the magnetic well (the variation of ∫dℓ/B across it) for several examples of helical fields. These include the Furth-Rosenbluth configuration and a new configuration which provides a mean magnetic well without the necessity for a central conductor. A survey is also made of the magnetic well properties of these two classes of helical field in terms of two simple criteria: (1) the ratio Q of the field strength on the axis and on the separatrix (which provides an estimate of the overall well depth); and (2) the value of V'' on the magnetic axis (which provides a measure of the ''curvature'' of the well). This latter quantity is calculated analytically by using a general expression for the value of V'' on an arbitrary magnetic axis; It is pointed out that Q alone does not provide a realistic indication of the well shape. (author)

  7. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  8. Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei

    CERN Document Server

    Ring, P; Lalazissis, G A

    1997-01-01

    A Fortran program for the calculation of the ground state properties of axially deformed even-even nuclei in the relativistic framework is presented. In this relativistic mean field (RMF) approach a set of coupled differential equations namely the Dirac equation with potential terms for the nucleons and the Glein-Gordon type equations with sources for the meson and the electromagnetic fields are to be solved self-consistently. The well tested basis expansion method is used for this purpose. Accordingly a set of harmonic oscillator basis generated by an axially deformed potential are used in the expansion. The solution gives the nucleon spinors, the fields and level occupancies, which are used in the calculation of the ground state properties.

  9. Magnetic fields in early-type stars

    OpenAIRE

    Grunhut, Jason H.; Neiner, Coralie

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these s...

  10. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  11. Magnetic fields in early-type stars

    Science.gov (United States)

    Grunhut, Jason H.; Neiner, Coralie

    2015-10-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M ⊙) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.

  12. Growth of Czochralski silicon under magnetic field

    Institute of Scientific and Technical Information of China (English)

    XU Yuesheng; LIU Caichi; WANG Haiyun; ZHANG Weilian; YANG Qingxin; LI Yangxian; REN Binyan; LIU Fugui

    2004-01-01

    Growth of Czochralski (CZ) silicon crystals under the magnetic field induced by a cusp-shaped permanent magnet of NdFeB has been investigated. It is found that the mass transport in silicon melt was controlled by its diffusion while the magnetic intensity at the edge of a crucible was over 0.15 T. In comparison with the growth of conventional CZ silicon without magnetic field, the resistivity homogeneity of the CZ silicon under the magnetic field was improved. Furthermore, the Marangoni convection which has a significant influence on the control of oxygen concentration was observed on the surface of silicon melt. It is suggested that the crystal growth mechanism in magnetic field was similar to that in micro-gravity if a critical value was reached, named the growth of equivalent micro-gravity. The relationship of the equivalent micro-gravity and the magnetic intensity was derived as g=(v0/veff)g0. Finally, the orders of the equivalent micro-gravity corresponding to two crucibles with characteristic sizes were calculated.

  13. Magnetic Field Evolution During Neutron Star Recycling

    CERN Document Server

    Cumming, A

    2004-01-01

    I describe work on two aspects of magnetic field evolution relevant for the "recycling" scenario for making millisecond radio pulsars. First, many of the theoretical ideas for bringing about accretion-induced field decay rely on dissipation of currents in the neutron star crust. I discuss field evolution in the crust due to the Hall effect, and outline when it dominates Ohmic decay. This emphasises the importance of understanding the impurity level in the crust. Second, I briefly discuss the progress that has been made in understanding the magnetic fields of neutron stars currently accreting matter in low mass X-ray binaries. In particular, thermonuclear X-ray bursts offer a promising probe of the magnetic field of these neutron stars.

  14. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  15. Stealth magnetic field in de Sitter spacetime

    CERN Document Server

    Mukohyama, Shinji

    2016-01-01

    In the context of a U(1) gauge theory non-minimally coupled to scalar-tensor gravity, we find a cosmological attractor solution that represents a de Sitter universe with a homogeneous magnetic field. The solution fully takes into account backreaction of the magnetic field to the geometry and the scalar field. Such a solution is made possible by scaling-type global symmetry and fine-tuning of two parameters of the theory. If the fine-tuning is relaxed then the solution is deformed to an axisymmetric Bianchi type-I universe with constant curvature invariants, a homogeneous magnetic field and a homogeneous electric field. Implications to inflationary magnetogenesis are briefly discussed.

  16. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    Science.gov (United States)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  17. Effect of biquadratic exchange on the axial Heisenberg model: Application to the magnetic phase transitions in UNi2Si2

    International Nuclear Information System (INIS)

    The influence of biquadratic exchange on the Heisenberg model with strong axial anisotropy is examined for the case of spins on a body-centered tetragonal lattice with competing bilinear exchange interactions along the c axis. Contrary to the usual axial next-nearest-neighbor Ising model with third-neighbor exchange also included, a low-temperature spin-wave calculation reveals that biquadratic exchange can stabilize the sequence of phases period 3→period 2. Mean-field analysis, with support from Monte Carlo simulations, suggests a higher-temperature transition to an incommensurate state. This sequence of phase transitions has recently been observed in UNi2Si2. The importance of fluctuations is emphasized

  18. Magnetic Field Suppression of Flow in Semiconductor Melt

    Science.gov (United States)

    Fedoseyev, A. I.; Kansa, E. J.; Marin, C.; Volz, M. P.; Ostrogorsky, A. G.

    2000-01-01

    One of the most promising approaches for the reduction of convection during the crystal growth of conductive melts (semiconductor crystals) is the application of magnetic fields. Current technology allows the experimentation with very intense static fields (up to 80 KGauss) for which nearly convection free results are expected from simple scaling analysis in stabilized systems (vertical Bridgman method with axial magnetic field). However, controversial experimental results were obtained. The computational methods are, therefore, a fundamental tool in the understanding of the phenomena accounting during the solidification of semiconductor materials. Moreover, effects like the bending of the isomagnetic lines, different aspect ratios and misalignments between the direction of the gravity and magnetic field vectors can not be analyzed with analytical methods. The earliest numerical results showed controversial conclusions and are not able to explain the experimental results. Although the generated flows are extremely low, the computational task is a complicated because of the thin boundary layers. That is one of the reasons for the discrepancy in the results that numerical studies reported. Modeling of these magnetically damped crystal growth experiments requires advanced numerical methods. We used, for comparison, three different approaches to obtain the solution of the problem of thermal convection flows: (1) Spectral method in spectral superelement implementation, (2) Finite element method with regularization for boundary layers, (3) Multiquadric method, a novel method with global radial basis functions, that is proven to have exponential convergence. The results obtained by these three methods are presented for a wide region of Rayleigh and Hartman numbers. Comparison and discussion of accuracy, efficiency, reliability and agreement with experimental results will be presented as well.

  19. Plasma separation from magnetic field lines in a magnetic nozzle

    Science.gov (United States)

    Kaufman, D. A.; Goodwin, D. G.; Sercel, J. C.

    1993-01-01

    This paper discusses conditions for separation of a plasma from the magnetic field of a magnetic nozzle. The analysis assumes a collisionless, quasineutral plasma, and therefore the results represent a lower bound on the amount of detachment possible for a given set of plasma conditions. We show that collisionless separation can occur because finite electron mass inhibits the flow of azimuthal currents in the nozzle. Separation conditions are governed by a parameter G which depends on plasma and nozzle conditions. Several methods of improving plasma detachment are presented, including moving the plasma generation zone downstream from the region of strongest magnetic field and using dual magnets to focus the plasma beam. Plasma detachment can be enhanced by manipulation of the nozzle configuration.

  20. Magnetic Field Analysis of a Permanent-Magnet Induction Generator

    Science.gov (United States)

    Tsuda, Toshihiro; Fukami, Tadashi; Kanamaru, Yasunori; Miyamoto, Toshio

    The permanent-magnet induction generator (PMIG) is a new type of induction machine that has a permanent-magnet rotor inside a squirrel-cage rotor. In this paper, a new technique for the magnetic field analysis of the PMIG is proposed. The proposed technique is based on the PMIG's equivalent circuit and the two-dimensional finite-element analysis (2D-FEA). To execute the 2D-FEA, the phasors of primary and secondary currents are calculated from the equivalent circuit, and the input data for the 2D-FEA is found by converting these phasors into the space vectors. As a result, the internal magnetic fields of the PMIG can be easily analyzed without complicated calculations.

  1. QCD thermodynamics and magnetization in nonzero magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Ezzelarab, Nada; Shalaby, Asmaa G

    2016-01-01

    In nonzero magnetic field, the magnetic properties and thermodynamics of the quantum-chromodynamic (QCD) matter is studied in the hadron resonance gas and the Polyakov linear-sigma models and compared with recent lattice calculations. Both models are fairly suited to describe the degrees of freedom in the hadronic phase. The partonic ones are only accessible by the second model. It is found that the QCD matter has paramagnetic properties, which monotonically depend on the temperature and are not affected by the hadron-quark phase-transition. Furthermore, raising the magnetic field strength increases the thermodynamic quantities, especially in the hadronic phase but reduces the critical temperature, i.e. inverse magnetic catalysis.

  2. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  3. The Magnetic Field of Solar Spicules

    CERN Document Server

    Centeno, R; Ramos, A Asensio

    2009-01-01

    Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.

  4. Cyclic evolution and reversal of the solar magnetic field. I. The large-scale magnetic fields

    OpenAIRE

    Ikhsanov, R. N.; V. G. Ivanov

    2003-01-01

    On the base of the solar magnetic field measurements obtained in Stanford in 1976--2003 the properties of the cyclic evolution of the large-scale magnetic field are investigated. Some regularities are found in longitudinal and latitudinal evolution of the magnetic field in cycles 21, 22 and 23. The cyclic development of the large-scale magnetic field can be divided into two main phases. The phase I, which includes a period approximately from two years before and until three years after the ma...

  5. Interaction of magnetic resonators studied by the magnetic field enhancement

    OpenAIRE

    Yumin Hou

    2013-01-01

    It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE osci...

  6. Measurements of Photospheric and Chromospheric Magnetic Fields

    Science.gov (United States)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  7. Magnetizing a complex plasma without a magnetic field

    CERN Document Server

    Kählert, H; Bonitz, M; Löwen, H; Greiner, F; Piel, A

    2012-01-01

    We propose and demonstrate a concept that mimics the magnetization of the heavy dust particles in a complex plasma while leaving the properties of the light species practically unaffected. It makes use of the frictional coupling between a complex plasma and the neutral gas, which allows to transfer angular momentum from a rotating gas column to a well-controlled rotation of the dust cloud. This induces a Coriolis force that acts exactly as the Lorentz force in a magnetic field. Experimental normal mode measurements for a small dust cluster with four particles show excellent agreement with theoretical predictions for a magnetized plasma.

  8. Magnetic nanoparticles for applications in oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  9. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  10. Axial radial magnetic bearing in magnetic suspending switched reluctance motor application%一种磁悬浮开关磁阻电机用轴向径向磁轴承

    Institute of Scientific and Technical Information of China (English)

    赵旭升; 邓智泉; 汪波

    2011-01-01

    To overcome the defects of the present permanent magnet biased axial radial magnetic bearing,a new permanent magnet biased axial radial magnetic bearing(PARMB) was studied,which was used in magnetic suspending switched reluctance motor application.The configuration and fundamental principle of PARMB were analyzed.The equivalent magnetic circuit was established to deduce the mathematical models of PARMB.The parameter design and calculation were presented.The parameters of the proposed prototype were also given.The 3-D magnetic field simulation was performed by using the finite element software.The theory analysis and the simulation show that the presented PARMB has smaller volume compared to the existed structure,here is no coupling between axial and radial directions,the control is easier than before.Therefore,the proposed PARMB is more suitable for the high speed or low loss occasions.%为了克服现有永磁偏置轴向径向磁轴承的缺陷,研究了一种新型结构的磁悬浮开关磁阻电机用永磁偏置轴向径向磁轴承.分析其结构及工作原理,利用等效磁路法进行分析,得出了轴向悬浮力及径向悬浮力的数学模型,并对数学模型进行了线性化处理,得出了其轴向、径向位移刚度和电流刚度.给出了磁极面积、控制线圈安匝数、定转子结构等主要参数的设计方法,给出了样机参数,用有限元对样机进行了三维仿真分析.理论研究和仿真分析表明:该永磁偏置轴向径向磁轴承结构紧凑,轴向控制磁通和径向控制磁通彼此解耦,控制更加容易,适用于高速、低功耗等场合.

  11. Passive magnetic shielding in static gradient fields

    Science.gov (United States)

    Bidinosti, C. P.; Martin, J. W.

    2014-04-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

  12. DC-magnetic field vector measurement

    Science.gov (United States)

    Schmidt, R.

    1981-01-01

    A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.

  13. Primordial magnetic fields from the string network

    Science.gov (United States)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  14. Galactic magnetic fields and hierarchical galaxy formation

    CERN Document Server

    Rodrigues, Luiz Felippe S; Fletcher, Andrew; Baugh, Carlton

    2015-01-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in the cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulence magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxies populations as well as the typical strength of the large-scale magnetic field in galax...

  15. Magnetic field on the baseball coil

    International Nuclear Information System (INIS)

    An expression is developed in spherical harmonics for the magnetic field of a baseball coil. A simple dipole-layer model for the coil, and the computer program, MAFCO, yield comparable expansion coefficients, and give practically identical fields near the center of the baseball. 13 refs

  16. Coronal Diffusion-weighted Magnetic Resonance Imaging of the Kidney: Agreement with Axial Diffusion-weighted Magnetic Imaging in Terms of Apparent Diffusion Coefficient Values

    Institute of Scientific and Technical Information of China (English)

    Hai-Yi Wang; Jia Wang; Ye-Huan Tang; Hui-Yi Ye; Lin Ma

    2015-01-01

    Background:Coronal diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient (ADC) values have gradually become applied (following conventional axial DW-MRI) in the renal analysis.To explore whether data obtained using coronal DW-MRI are comparable with those derived using axial DW-MRI,this preliminary study sought to assess the agreement in renal ADC values between coronal DW-MRI and axial DW-MRI.Methods:Thirty-four healthy volunteers were enrolled in the study; written consents were obtained.All subjects underwent respiratory-triggered axial and coronal DW-MRI using a 1.5-MR system with b values of 0 and 800 s/mm2.The signal-to-noise ratios (SNRs) of the two DW-MRI sequences were measured and statistically compared using the paired t-test.The extent of agreement of ADC values of the upper pole,mid-pole,and lower pole of the kidney; the mean ADC values of the left kidney and right kidney; and the mean ADC values of the bilateral kidneys were evaluated via calculation of intraclass correlation coefficients (ICCs) or Bland-Altman method between the two DW-MRI sequences.Results:The SNR of coronal DW-MR images was statistically inferior to that of axial DW-MR images (P < 0.001).The ICCs of the ADC values of each region of interest,and the mean ADC values of bilateral kidneys,between the two sequences,were greater than 0.5,and the mean ADCs of the bilateral kidneys demonstrated the highest ICC (0.869; 95% confidence interval:0.739-0.935).In addition,94.1% (32/34),94.1% (32/34),and 97.1% (31/34) of the ADC bias was inside the limits of agreement in terms of the mean ADC values of the left kidneys,right kidneys,and bilateral kidneys when coronal and axial DWI-MRI were compared.Conclusions:ADC values derived using coronal DW-MRI exhibited moderate-to-good agreement to those of axial DW-MRI,rendering the former an additional useful DW-MRI method,and causing the ADC values derived using the two types of DW-MRI to be comparable.

  17. Opening the cusp. [using magnetic field topology

    Science.gov (United States)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  18. Magnetic fields of young solar twins

    Science.gov (United States)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  19. String field theory solution corresponding to constant background magnetic field

    CERN Document Server

    Ishibashi, Nobuyuki; Takahashi, Tomohiko

    2016-01-01

    Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.

  20. Inference of magnetic fields in inhomogeneous prominences

    CERN Document Server

    Milic, Ivan; Atanackovic, Olga

    2016-01-01

    Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D...

  1. Jets, magnetic fields and the central engine

    International Nuclear Information System (INIS)

    Reviewing recent observations of jets unconfined by external pressure, the author suggests that self-confinement may be common. This requires current-carrying jets with helical magnetic fields. Such beams occur in the laboratory, in lightning, and in the Crab Nebula, where currents are apparently carried over distances greater than a light year. Self-confined jets require a significant torodial magnetic field emerging from the nozzle. The author suggests that the parallel/azimuthal magnetic field ratio may be the crucial nozzle parameter, causing asymmetries. Helical field configurations have remarkable stability properties and can evolve naturally as synchrotron losses in the jet lead to minimizing Lorentz forces. Current-carrying jets may provide a valuable clue to the physics of the central source. (Auth.)

  2. Magnetic fields during high redshift structure formation

    CERN Document Server

    Schleicher, Dominik R G; Schober, Jennifer; Schmidt, Wolfram; Bovino, Stefano; Federrath, Christoph; Niemeyer, Jens; Banerjee, Robi; Klessen, Ralf S

    2012-01-01

    We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with \\sim10^7 M_solar, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of \\sim10^{-5} G can be expected at number densities of \\sim5 cm^{-3}.

  3. Magnetohydrodynamic experiments on cosmic magnetic fields

    CERN Document Server

    Stefani, Frank; Gerbeth, Gunter

    2008-01-01

    It is widely known that cosmic magnetic fields, including the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamica...

  4. Magnetic Field Amplification via Protostellar Disc Dynamos

    CERN Document Server

    Dyda, Sergei; Ustyugova, Galina V; Koldoba, Alexander V; Wasserman, Ira

    2015-01-01

    We model the generation of a magnetic field in a protostellar disc using an \\alpha-dynamo and perform axisymmetric magnetohydrodynamics (MHD) simulations of a T Tauri star. We find that for small values of the dimensionless dynamo parameter $\\alpha_d$ the poloidal field grows exponentially at a rate ${\\sigma} \\propto {\\Omega}_K \\sqrt{\\alpha_d}$ , before saturating to a value $\\propto \\sqrt{\\alpha_d}$ . The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order $10^{-9} M_{\\odot}/\\rm{yr}$ for T Tauri stars. For large values of $\\alpha_d$ magnetic loops are generated over the entire disc. These quickly come to dominate the disc dynamics and cause the disc to break up due to the magnetic pressure.

  5. Vector magnetic field in solar polar region

    Institute of Scientific and Technical Information of China (English)

    邓元勇; 汪景秀; 艾国祥

    1999-01-01

    By means of ’deep integration’ observations of a videomagnetograph the vector magnetic field was first systematically measured near the solar south polar region on April 12, 1997 when the Sun was in the minimal phase between the 22nd and 23rd solar cycle. It was found that the polar magnetic field deviated from the normal of solar surface by about 42.2°±3.2°, a stronger magnetic element may have smaller inclination, and that within the polar cap above heliolatitude of 50°, the unsigned and net flux densities were 7.8×10-4 T and -3.4×10-4 T, respectively, and consequently, the unsigned and net fluxes were about 5.5×1022 and -2.5×1022 Mx. The net magnetic flux, which belongs to the large-scale global magnetic field of the Sun, roughly approaches the order of the interplanetary magnetic field (IMF) measured at distance of 1 AU.

  6. Magnetic fields of young solar twins

    CERN Document Server

    Rosén, L; Hackman, T; Lehtinen, J

    2016-01-01

    The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and, the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100Myr to 250Myr while there is no significant age dependence of the mean magnetic field str...

  7. Measurements of Photospheric and Chromospheric Magnetic Fields

    CERN Document Server

    Lagg, Andreas; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-01-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Conseque...

  8. Magnetic fields in gaps surrounding giant protoplanets

    CERN Document Server

    Keith, Sarah L

    2015-01-01

    Giant protoplanets evacuate a gap in their host protoplanetary disc, which gas must cross before it can be accreted. A magnetic field is likely carried into the gap, potentially influencing the flow. Gap crossing has been simulated with varying degrees of attention to field evolution (pure hydrodynamical, ideal, and resistive MHD), but as yet there has been no detailed assessment of the role of the field accounting for all three key non-ideal MHD effects: Ohmic resistivity, ambipolar diffusion, and Hall drift. We present a detailed investigation of gap magnetic field structure as determined by non-ideal effects. We assess susceptibility to turbulence induced by the magnetorotational instability, and angular momentum loss from large-scale fields. As full non-ideal simulations are computationally expensive, we take an a posteriori approach, estimating MHD quantities from the pure hydrodynamical gap crossing simulation by Tanigawa et al. (2012). We calculate the ionisation fraction and estimate field strength an...

  9. Magnetic Field Strengths in Photodissociation Regions

    CERN Document Server

    Balser, Dana S; Jeyakumar, S; Bania, T M; Montet, Benjamin T; Shitanishi, J A

    2015-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four HII regions with the Green Bank Telescope (GBT) to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi (2007) suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic (MHD) waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 micro Gauss in W3 and NGC6334A. Our results for W49 and NGC6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 micro Gauss. HI and OH Zeeman measurements of the line-of-sight magnetic field strength (B_los), taken from the literature, are between a facto...

  10. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  11. Dissipation function in a magnetic field (Review)

    Science.gov (United States)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  12. Magnetic Fields and Massive Star Formation

    CERN Document Server

    Zhang, Qizhou; Girart, Josep M; Hauyu,; Liu,; Tang, Ya-Wen; Koch, Patrick M; Li, Zhi-Yun; Keto, Eric; Ho, Paul T P; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juarez, Carmen

    2014-01-01

    Massive stars ($M > 8$ \\msun) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 $\\mu$m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of $\\lsim$ 0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within $40^\\circ$ of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the ...

  13. Electric and magnetic field optimization procedure for Penning trap mass spectrometers

    CERN Document Server

    Beck, D; Bollen, G; Delahaye, P; George, S; Guénaut, C; Herfurth, F; Herlert, A; Lunney, D; Schweikhard, L; Yazidjian, C

    2009-01-01

    Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectrometer ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.

  14. Whistler modes with wave magnetic fields exceeding the ambient field.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  15. Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnejad, Yahya; Hosseini, Reza, E-mail: hoseinir@aut.ac.ir; Saffar-avval, Majid

    2015-09-01

    The forced convection heat transfer of ferrofluid steady state laminar flow through a circular axisymmetric horizontal pipe under different magnetic field is the focus of this study. The pipe is under constant heat flux while different linear axial magnetic fields were applied on the ferrofluid with equal magnetic energy. In this scenario, viscosity of ferrofluid is temperature dependent, to capture ferrofluid real behavior a nonlinear Langevin equation was considered for equilibrium magnetization. For this purpose, the set of nonlinear governing PDEs was solved using proper CFD techniques: the finite volume method and SIMPLE algorithm were used to discretize and numerically solve the governing equation in order to obtain thermohydrodynamic flow characteristics. The numerical results show a promising enhancement of up to 135.7% in heat transfer as a consequence of the application of magnetic field. The magnetic field also increases pressure loss of up to 77% along the pipe; but effectiveness (favorable to unfavorable effect ratio) of the magnetic field as a performance index economically justifies its application such that higher magnetic field intensity causes higher effectiveness of up to 1.364. - Highlights: • In this numerical study, the thermohydrodynamic characteristics of a laminar steady state ferroconvection was investigated in circular axisymmetric pipe under constant heat flux. • A magnetic field causes an increase in both pressure loss and heat transfer such that performance index remain acceptable for all linear distributions. • In constant total magnetic energy, an increase of magnetic field gradient tends to decrease the effectiveness slightly. • Magnetic field of lower gradient with high intensity is the best choice for both saving energy and heat transfer enhancement increase of up to 1.3638 and 135.65% respectively.

  16. Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, M., E-mail: manisankarir@yahoo.co [Department of Mathematics, Kyungpook National University, 1370 Sangyeok-Dong, Buk-Gu, Daegu 702-701 (Korea, Republic of); Department of Mathematics, East Point College of Engineering and Technology, Bangalore 560 049 (India); Venkatachalappa, M. [UGC Centre for Advanced Studies in Fluid Mechanics, Department of Mathematics, Bangalore University, Bangalore 560 001 (India); Do, Younghae [Department of Mathematics, Kyungpook National University, 1370 Sangyeok-Dong, Buk-Gu, Daegu 702-701 (Korea, Republic of)

    2011-04-15

    The main objective of this article is to study the effect of magnetic field on the combined buoyancy and surface tension driven convection in a cylindrical annular enclosure. In this study, the top surface of the annulus is assumed to be free, and the bottom wall is insulated, whereas the inner and the outer cylindrical walls are kept at hot and cold temperatures respectively. The governing equations of the flow system are numerically solved using an implicit finite difference technique. The numerical results for various governing parameters of the problem are discussed in terms of the streamlines, isotherms, Nusselt number and velocity profiles in the annuli. Our results reveal that, in tall cavities, the axial magnetic field suppresses the surface tension flow more effectively than the radial magnetic field, whereas, the radial magnetic field is found to be better for suppressing the buoyancy driven flow compared to axial magnetic field. However, the axial magnetic field is found to be effective in suppressing both the flows in shallow cavities. From the results, we also found that the surface tension effect is predominant in shallow cavities compared to the square and tall annulus. Further, the heat transfer rate increases with radii ratio, but decreases with the Hartmann number.

  17. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  18. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    International Nuclear Information System (INIS)

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible

  19. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tevzadze, Alexander G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128 (Georgia); Kisslinger, Leonard; Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Brandenburg, Axel, E-mail: aleko@tevza.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  20. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  1. Control of Active Axial Magnetic Bearings for Flywheel-based Energy Storage System

    OpenAIRE

    Morís Gómez, Juan

    2014-01-01

    This thesis deals with the design and implementation of the control system for a Flywheel-based Energy Storage System (FESS) with active magnetic bearings. The thesis focuses on the construction of realistic model of the system according to experimental tests. The simulation model will be used to control the thrust magnetic bearings in order to withstand the flywheel in levitation.

  2. Evolution of primordial magnetic fields in mean-field approximation

    Science.gov (United States)

    Campanelli, Leonardo

    2014-01-01

    We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier-Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in the radiation- and the matter-dominated era. The three possible viscous free-streaming phases are characterized by a drag term in the Navier-Stokes equation which depends on the free-streaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity and the magnetic correlation length evolve asymptotically with the temperature, , as and . Here, , , and are, respectively, the temperature, the number of magnetic domains per horizon length, and the bulk velocity at the onset of the particular regime. The coefficients , , , , , and , depend on the index of the assumed initial power-law magnetic spectrum, , and on the particular regime, with the order-one constants and depending also on the cutoff adopted for the initial magnetic spectrum. In the helical case, the quasi-conservation of the magnetic helicity implies, apart from logarithmic corrections and a factor proportional to the initial fractional helicity, power-like evolution laws equal to those in the non-helical case, but with equal to zero.

  3. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    Science.gov (United States)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  4. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  5. Magnetic resonance signal moment determination using the Earth's magnetic field

    Science.gov (United States)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  6. Magnetic fields in early-type stars

    CERN Document Server

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  7. Focus on Materials Analysis and Processing in Magnetic Fields

    OpenAIRE

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in...

  8. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    Science.gov (United States)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  9. The magnetic fields of hot subdwarf stars

    CERN Document Server

    Landstreet, John D; Fossati, Luca; Jordan, Stefan; O'Toole, Simon J

    2012-01-01

    Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars. We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results. All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of ...

  10. Magnetic field reconstruction based on sunspot oscillations

    CERN Document Server

    Löhner-Böttcher, J; Schmidt, W

    2016-01-01

    The magnetic field of a sunspot guides magnetohydrodynamic waves toward higher atmospheric layers. In the upper photosphere and lower chromosphere, wave modes with periods longer than the acoustic cut-off period become evanescent. The cut-off period essentially changes due to the atmospheric properties, e.g., increases for larger zenith inclinations of the magnetic field. In this work, we aim at introducing a novel technique of reconstructing the magnetic field inclination on the basis of the dominating wave periods in the sunspot chromosphere and upper photosphere. On 2013 August 21st, we observed an isolated, circular sunspot (NOAA11823) for 58 min in a purely spectroscopic multi-wavelength mode with the Interferometric Bidimensional Spectro-polarimeter (IBIS) at the Dunn Solar Telescope. By means of a wavelet power analysis, we retrieved the dominating wave periods and reconstructed the zenith inclinations in the chromosphere and upper photosphere. The results are in good agreement with the lower photosphe...

  11. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George

    2012-01-01

    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  12. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; Gonzalez, J. F.; Ilyin, I.;

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We...... also give new measurements of the eclipsing system ARAur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS...

  13. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  14. Diffusive shock acceleration and magnetic field amplification

    CERN Document Server

    Schure, K M; Drury, L O'C; Bykov, A M

    2012-01-01

    Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.

  15. Near-field aperture-probe as a magnetic dipole source and optical magnetic field detector

    CERN Document Server

    Denkova, Denitza; Silhanek, Alejandro V; Van Dorpe, Pol; Moshchalkov, Victor V

    2014-01-01

    Scanning near-field field optical microscopy (SNOM) is a technique, which allows sub-wavelength optical imaging of photonic structures. While the electric field components of light can be routinely obtained, imaging of the magnetic components has only recently become of interest. This is so due to the development of artificial materials, which enhance and exploit the typically weak magnetic light-matter interactions to offer extraordinary optical properties. Consequently, both sources and detectors of the magnetic field of light are now required. In this paper, assisted by finite-difference time-domain simulations, we suggest that the circular aperture at the apex of a metal coated hollow-pyramid SNOM probe can be approximated by a lateral magnetic dipole source. This validates its use as a detector for the lateral magnetic near-field, as illustrated here for a plasmonic nanobar sample. Verification for a dielectric sample is currently in progress. We experimentally demonstrate the equivalence of the reciproc...

  16. Analytical Newtonian models of finite thin disks in a magnetic field

    CERN Document Server

    Cardona-Rueda, Edinson

    2013-01-01

    Axially symmetric Newtonian thin disks of finite extension in presence of magnetic field are studied based on the well-known Morgan-Morgan solutions. The source of the magnetic field is constructed separating the equation corresponding to the Ampere's law of electrodinamic in spheroidal oblate coordinates. This produces two associated Legendre equations of first order for the magnetic potential and hence that can be expressed as a series of associated Legendre functions of the same order. The discontinuity of its normal derivate across the disk allows us interpreter the source of the magnetic field as a ringlike current distribution extend on the plane of the disk. We also study the motion of charged test particles around of the disks. In particular we analysis the circular speed curves or rotation curve for equatorial circular orbits of particles both inside and outside the disk. The stability of the orbits is analyzed for radial perturbation using a extension of the Rayleigh criterion.

  17. Theory and modeling of the magnetic field measurement in LISA PathFinder

    CERN Document Server

    Diaz-Aguilo, M; Lobo, A

    2009-01-01

    The magnetic diagnostics subsystem of the LISA Technology Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set of four tri-axial fluxgate magnetometers, intended to measure with high precision the magnetic field at their respective positions. However, their readouts do not provide a direct measurement of the magnetic field at the positions of the test masses, and hence an interpolation method must be designed and implemented to obtain the values of the magnetic field at these positions. However, such interpolation process faces serious difficulties. Indeed, the size of the interpolation region is excessive for a linear interpolation to be reliable while, on the other hand, the number of magnetometer channels does not provide sufficient data to go beyond the linear approximation. We describe an alternative method to address this issue, by means of neural network algorithms. The key point in this approach is the ability of neural networks to learn from suitable training data representing t...

  18. The Drift of Dust Grains Induced by Transient Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    华建军; 叶茂福; 王龙

    2003-01-01

    Our experiment shows that the dust grains, suspended on the edge of the sheath of a radio-frequency discharge, undergo a contraction when switching a vertical magnetic field on, and an expansion when switching the magnetic field off. We call this kind of magnetic field "transient magnetic field". A primary analysis is proposed for the phenomenon.

  19. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  20. Vertical gradients of sunspot magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Hagyard, M.J.; Teuber, D.; West, E.A.; Tandberg-Hanssen, E.; Henze, W. Jr.; Beckers, J.M.

    1983-04-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.