WorldWideScience

Sample records for axial loads

  1. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  2. Axial loading cross screw fixation for the Austin bunionectomy.

    Science.gov (United States)

    Rigby, Ryan B; Fallat, Lawrence M; Kish, John P

    2011-01-01

    The Austin procedure has become a common method of osteotomy for the correction of hallux abductovalgus when indicated. The V-type configuration is intrinsically stable but not without complications. One complication encountered is rotation and/or displacement of the capital fragment. We present the use of an axial loading screw in conjunction with a dorsally placed compression screw. The benefit to this technique lies in the orientation of the axial loading screw, because it is directed to resist the ground reactive forces while also providing a second point of fixation in a crossing screw design. In a head-to-head biomechanical comparison, we tested single dorsal screw fixation versus double screw fixation, including both the dorsal and the axial loading screws in 10 metatarsal Sawbones(®) (Pacific Research Laboratories Inc, Vashon, WA). Five metatarsals received single dorsal screw fixation and five received the dorsal screw and the additional axial loading screw. The metatarsals were analyzed on an Instron compression device for comparison; 100% of the single screw fixation osteotomies failed with compression at an average peak load of 205 N. Four of five axial loading double screw fixation osteotomies did not fail. This finding suggests that the addition of an axial loading screw providing cross screw orientation significantly increases the stability of the Austin osteotomy, ultimately decreasing the likelihood of displacement encountered in the surgical repair of hallux abductovalgus. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Analysis of axial compressive loaded beam under random support excitations

    Science.gov (United States)

    Xiao, Wensheng; Wang, Fengde; Liu, Jian

    2017-12-01

    An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.

  4. Study on Predicting Axial Load Capacity of CFST Columns

    Science.gov (United States)

    Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.

    2017-11-01

    This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.

  5. Crippling Strength of Axially Loaded Rods

    Science.gov (United States)

    Natalis, FR

    1921-01-01

    A new empirical formula was developed that holds good for any length and any material of a rod, and agrees well with the results of extensive strength tests. To facilitate calculations, three tables are included, giving the crippling load for solid and hollow sectioned wooden rods of different thickness and length, as well as for steel tubes manufactured according to the standards of Army Air Services Inspection. Further, a graphical method of calculation of the breaking load is derived in which a single curve is employed for determination of the allowable fiber stress. Finally, the theory is discussed of the elastic curve for a rod subject to compression, according to which no deflection occurs, and the apparent contradiction of this conclusion by test results is attributed to the fact that the rods under test are not perfectly straight, or that the wall thickness and the material are not uniform. Under the assumption of an eccentric rod having a slight initial bend according to a sine curve, a simple formula for the deflection is derived, which shows a surprising agreement with test results. From this a further formula is derived for the determination of the allowable load on an eccentric rod. The resulting relations are made clearer by means of a graphical representation of the relation of the moments of the outer and inner forces to the deflection.

  6. Dynamic Response of Axially Loaded Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Bayat, M.; Barari, Amin; Shahidi, M.

    2011-01-01

    The current research deals with application of a new analytical technique called Energy Balance Method (EBM) for a nonlinear problem. Energy Balance Method is used to obtain the analytical solution for nonlinear vibration behavior of Euler-Bernoulli beams subjected to axial loads. Analytical...

  7. Comparison of design methods for axially loaded buckets in sand

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo

    2015-01-01

    A study of the present knowledge about the bucket resistance for axial loading was performed considering analytical and numerical design methods as well as physical models. A case study was performed with two bucket foundations of equal diameter, but different skirt lengths installed in dense san...

  8. Test Procedure for Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina

    The test procedure described in the following is used when examining the effects of static or cyclic loading on the skin friction of an axially loaded pile in dense sand. The pile specimen is only loaded in tension to avoid any contribution from the base resistance. The pile dimensions are chosen...... to resemble full scale dimension of piles used in offshore pile foundations today. In this report is given a detailed description of the soil preparation and pile installation procedures as well data acquisition methods....

  9. Military boot attenuates axial loading to the lower leg.

    Science.gov (United States)

    Yoganandan, Narayan; Schlick, Michael; Arun, Mike W J; Pintar, Frank A

    2014-01-01

    Biomechanical tests to understand injury mechanisms and derive injury tolerance information using Post-Mortem Human Subjects (PMHS) have not used foot protection and they have primarily focused on civilian environments such as automotive and athletic- and sports-related events. As military personnel use boots, tests with the boot are required to understand their effect on attenuating lower leg loads. The purpose of this study was therefore, to determine the modulation of human lower leg kinematics with boot compressions and share of the force absorbed by the boot from underbody blast loading. Axial impacts were delivered to the Hybrid III dummy lower leg in the neutral position. The dummy leg was instrumented with its internal upper and lower tibia load cells, and in addition, a knee load cell was attached to the proximal end. Tests were conducted at 4.4 to 8.9 m/s, with and without boots, and repeat tests were done. Morphologies of the force-time responses were similar at the three load cell locations and for all input combinations and booted and unbooted conditions. However, booted tests resulted in considerably lower maximum forces (approximately two-third reduction) than unbooted tests. These results clearly show that boots can absorb a considerable share of the impact energy and decrease impact loads transmitted to the lower leg under vertical loading, thus necessitating the generation of tolerance data using PMHS for this environment.

  10. Static Tension Tests on Axially Loaded Pile Segments in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    This paper provides laboratory test results of static axially loaded piles in sand. With a newly developed test setup, the pile-soil interface friction was investigated by using an open-ended steel pile segment with a diameter of 0.5 m. Use of a pile length of 1 m enabled the pile-soil interface...... friction to be analyzed at a given soil horizon while increasing the vertical effective stress in the sand. Test results obtained by this approach can be analyzed as single t-z curves and compared to predictions of unit shaft friction from current design methods for offshore foundations. The test results...

  11. Nonlinear vibration of an axially loaded beam carrying rigid bodies

    Directory of Open Access Journals (Sweden)

    O. Barry

    2016-12-01

    Full Text Available This paper investigates the nonlinear vibration due to mid-plane stretching of an axially loaded simply supported beam carrying multiple rigid masses. Explicit expressions and closed form solutions of both linear and nonlinear analysis of the present vibration problem are presented for the first time. The validity of the analytical model is demonstrated using finite element analysis and via comparison with the result in the literature. Parametric studies are conducted to examine how the nonlinear frequency and frequency response curve are affected by tension, rotational inertia, and number of intermediate rigid bodies.

  12. The effects of initial rise and axial loads on MEMS arches

    KAUST Repository

    Tella, Sherif Adekunle

    2017-04-07

    Arch microbeams have been utilized and proposed for many uses over the past few years due to their large tunability and bistability. However, recent experimental data have shown different mechanical behavior of arches when subjected to axial loads. This paper aims to investigate in depth the influence of the competing effects of initial rise and axial loads on the mechanical behavior of micromachined arches; mainly their static deflection and resonant frequencies. Based on analytical solutions, the static response and eigenvalue problems are analyzed for various values of initial rises and axial loads. Universal curves showing the variation of the first three resonance frequencies of the arch are generated for various values of initial rise under both tensile and compressive axial loads. This study shows that increasing the tensile or compressive axial loads for different values of initial rise may lead to either increase in the stiffness of the beam or initial decrease in the stiffness, which later increases as the axial load is increased depending on the dominant effect of the initial rise of the arch and the axial load. The obtained universal curves represent useful design tools to predict the tunability of arches under axial loads for various values of initial rises. The use of the universal curves is demonstrated with an experimental case study. Analytical formulation is developed to predict the point of minimum where the trend of the resonance frequency versus axial loads changes qualitatively due to the competing effects of axial loads and initial curvature.

  13. Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls

    Science.gov (United States)

    Keshava, Mangala; Raghunath, Seshagiri Rao

    2017-12-01

    In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.

  14. Damage Detection of Axially Loaded Beam: A Frequency-Based Method

    Directory of Open Access Journals (Sweden)

    Omid Rezaifar

    2016-06-01

    Full Text Available The present study utilizes an analytical method to formulate the three lowest modal frequencies of axially-loaded notched beam through both crack location and load level in a specific format that can be used in existing frequency-based crack-identification methods. The proposed formula provides a basis to shift into two states, one with axial loading and the other without any loading whatsoever. When any two natural frequencies in simply-supported beam with an open crack, subjected to axial load, are measured, crack position and extent can be determined, using a characteristic equation, which is a function of crack location, sectional flexibility, and eigenvalue (natural frequency. Theoretical results show high accuracy for service axial loads. In this range, errors for crack location and extent are less than 12% and 10%, respectively.

  15. LOAD CARRYING CAPABILITY OF LIQUID FILLED CYLINDRICAL SHELL STRUCTURES UNDER AXIAL COMPRESSION

    Directory of Open Access Journals (Sweden)

    QASIM H. SHAH

    2011-08-01

    Full Text Available Empty and water filled cylindrical Tin (Sn coated steel cans were loaded under axial compression at varying loading rates to study their resistance to withstand accidental loads. Compared to empty cans the water filled cans exhibit greater resistance to axially applied compression loads before a complete collapse. The time and load or stroke and load plots showed three significant load peaks related to three stages during loading until the cylinder collapse. First peak corresponds to the initial structural buckling of can. Second peak occurs when cylindrical can walls gradually come into full contact with water. The third peak shows the maximum load carrying capability of the structure where pressurized water deforms the can walls into curved shape until can walls fail under peak pressure. The collapse process of water filled cylindrical shell was further studied using Smooth Particle Hydrodynamics (SPH technique in LSDYNA. Load peaks observed in the experimental work were successfully simulated which substantiated the experimental work.

  16. Stability Analysis of Two-Segment Stepped Columns with Different End Conditions and Internal Axial Loads

    OpenAIRE

    Pinarbasi, Seval; Okay, Fuad; Akpinar, Erkan; Erdogan, Hakan

    2013-01-01

    Members with varying geometrical and/or material properties are commonly used in many engineering applications. Stepped columns with internal axial loads constitute a special case of such nonuniform columns. Crane columns in industrial buildings or structural columns supporting intermediate floors are important applications of stepped members in civil engineering. Since neither axial load nor stiffness is constant along the column height, the stability analysis of a stepped column is usually ...

  17. Influence of Thread Root Radius on Maximum Local Stresses at Large Diameter Bolts under Axial Loading

    Directory of Open Access Journals (Sweden)

    Cojocaru Vasile

    2014-06-01

    Full Text Available In the thread root area of the threaded bolts submitted to axial loading occur local stresses, higher that nominal stresses calculated for the bolts. These local stresses can generate failure and can reduce the fatigue life of the parts. The paper is focused on the study of the influence of the thread root radius on the maximum local stresses. A large diameter trapezoidal bolt was subjected to a static analysis (axial loading using finite element simulation.

  18. THE EFFECT OF VARIATION CONCRETE CUBE OF AXIAL LOAD ON ULTRASONIC PULSE VELOCITY TRANSMITTER

    Directory of Open Access Journals (Sweden)

    Faqih Ma’arif

    2015-05-01

    The test result showed that the increase of ultrasonic pulse velocity effect on cube II due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0, if compared to the one without axial load, the results were 4,17% and 11,60 respectively. The decrease of pulse velocity on cube III due to axial load variation was at 0,25P0 and 0,7P0; if compared to the one without axial load the result were 0,47% and 20,87% respectively. And the increase of ultrasonic pulse velocity effect on cube IV due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0; if compared to the one without axial load the result were 0,52% and 21,63% respectively. The maximum limit of effective load step at structure experiencing compressive load ranged from 0,35P0 up to 0,4P0. At high stress level, the crack that occurred was spread evenly to the concrete cubic components and was giving an exponential equation y = y= 5,11e0,0467x. The result of analysis of cubes II, III and IV showed that on paired sample t-test 0,00<0,025, the significant value (2-tailed (0,00<(0,025; meaning there was a difference of pulse velocity due to axial load variation on concrete cube.

  19. Optimum design of laminated composite under axial compressive load

    Indian Academy of Sciences (India)

    In the present study optimal design of composite laminates, with and without rectangular cut-out, is carried out for maximizing the buckling load. Optimization study is carried out for obtaining the maximum buckling load with design variables as ply thickness, cut-out size and orientation of cut-out with respect to laminate.

  20. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  1. Progressive buckling under both constant axial load and cyclic distortion

    International Nuclear Information System (INIS)

    Clement, G.; Acker, D.; Lebey, J.

    1988-09-01

    Thin structures submitted to compressive loads must be carefully designed to avoid any risk of ruin by buckling. The aim of this paper is, first, to evidence that the critical buckling load may be notably lowered when cyclic strains are added to the compressive load and, secondly, to propose a practical rule of prevention against the ruin due to the progressive buckling phenomenon. This rule is validated by the results of numerous tests related to the entire range of modes of buckling (i.e. from fully plastic to fully elastic). Practical cases of interest for its use could mainly be those where cyclic thermal stresses are involved

  2. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  3. Optimum design of laminated composite under axial compressive load

    Indian Academy of Sciences (India)

    Paul C 1998 An introduction to genetic algorithms for numerical optimization. Mini-Workshop on Numer- ical Methods in Astrophysics, Oslo. Prabhakara D L, Datta P K 1997 Vibration, buckling and parametric instability of plates with centrally located cutouts subjected to in-plane edge loading (tension and compression).

  4. Laboratory Test Setup for Cyclic Axially Loaded Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2017-01-01

    conditions for all tests. For verifications purposes six static tension tests conducted at three different vertical effective stress levels of 0, 35 and 70 kPa. The load-displacement curves showed that the test setup provides repeatable test results. A preliminary comparison between the unit shaft friction...

  5. Physical Modelling of Bucket Foundations Subjected to Axial Loading

    DEFF Research Database (Denmark)

    Vaitkunaite, Evelina

    Compared to oil and gas structures, marine renewable energy devices are usually much lighter, operate in shallower waters and are subjected to severe cyclic loading and dynamic excitations. These factors result in different structural behaviours. Bucket foundations are a potentially cost-effectiv...

  6. Biomechanical analysis of penile erections: penile buckling behaviour under axial loading and radial compression.

    Science.gov (United States)

    Timm, Gerald W; Elayaperumal, Santhi; Hegrenes, Jami

    2008-07-01

    To characterize the biomechanics of erectile function, as contrary reports have modelled the penis as an isotropic material and state that only axial buckling tests can effectively predict penile rigidity; that assumption is questioned and an alternative structure proposed and validated. Three experimental physical cylindrical models of diameters 1.9, 2.54 and 3.81 cm were fabricated and the relationship between axial loading and radial compression was measured for cylindrical pressures of 8-20 kPa. A finite element analysis (FEA) computer model of the penis was constructed to simulate the response of the corpora cavernosa to axial and radial loading for differing diameters and lengths of the penile shaft. The stresses developed in the tunica albuginea of the corporal bodies of the penis during buckling were assessed using a mathematical analysis. From the analysis of surface stresses under variable axial loading, as the angle of an applied load changes on an isotropic shaft, the magnitude of surface stresses varies up to 50 kPa, and for a pressure vessel the magnitude of surface stresses varies up to 100 kPa. The FEA model showed that nodal displacements were greatest around a ring under radial compression, and for the axially loaded model displacements were greatest at the vessel tip under the force gauge. All displacements were 0.1-1.0 mm. There was an exponential relationship between internal pressure and the axial force required to cause buckling in a thin-walled pressure vessel. There was a nearly constant relationship between circumferential displacement and internal pressure under uniform radial compression. The displacement values on the FEA analysis were approximately equal outside of the areas of high stress which were under the load of the external device (compressive ring or force gauge) in both cases. Physical modelling shows that when a pressurized vessel is under either axial or radial load the internal pressure increases. Vessels at high internal

  7. High-Frequency Axial Fatigue Test Procedures for Spectrum Loading

    Science.gov (United States)

    2016-07-20

    closed-loop digital test frame controller with a command feedback compensation scheme was used to minimize controller error during testing. 15...controller response during variable amplitude loading, and a closed-loop digital test frame controller with a command feedback compensation scheme was...failures beyond 10 7 cycles can be caused by several competing failure mechanisms and may result in a transition from surface dominated crack

  8. Investigation of Axial Strengthened Reinforced Concrete Columns under Lateral Blast Loading

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeilnia Omran

    2017-01-01

    Full Text Available Different factors can affect blast response of structural components. Hence, experimental tests could be the best method for evaluating structures under blast loading. Therefore, an experimental explosion loading has been done on RC members by the authors. Four RC components, with identical geometry and material, with and without axial load were imposed to air blast. Observed data of the members’ response under blast loading was used for validation of finite element modeling process using ABAQUS software. With respect to complexity, limitations, and high costs of experimental tests, analytical studies and software modeling can be good alternatives. Accordingly, in this paper, the behavior of 6 different models of normal and strengthened RC columns under blast loading was evaluated using ABAQUS. Strengthening configurations considered here were designed for enhancing axial capacity of RC columns. Therefore, we can investigate the effectiveness of axial strengthening of column on its blast resistance capacity and residual axial strength. The considered strengthening methods were different steel jacket configurations including steel angle, channel, and plate sections. The results showed that retrofitting significantly improves blast performance of the columns. Moreover, residual strength capacity of the columns strengthened with steel channel is higher than the other models.

  9. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.

    Science.gov (United States)

    Espinoza Orías, Alejandro A; Malhotra, Neil R; Elliott, Dawn M

    2009-03-01

    Rat models with altered loading are used to study disc degeneration and mechano-transduction. Given the prominent role of mechanics in disc function and degeneration, it is critical to measure mechanical behavior to evaluate changes after model interventions. Axial compression mechanics of the rat disc are representative of the human disc when normalized by geometry, and differences between the lumbar and caudal disc have been quantified in axial compression. No study has quantified rat disc torsional mechanics. Compare the torsional mechanical behavior of rat lumbar and caudal discs, determine the contribution of combined axial load on torsional mechanics, and compare the torsional properties of rat discs to human lumbar discs. Cadaveric biomechanical study. Cyclic torsion without compressive load followed by cyclic torsion with a fixed compressive load was applied to rat lumbar and caudal disc levels. The apparent torsional modulus was higher in the lumbar region than in the caudal region: 0.081+/-0.026 (MPa/degrees, mean+/-SD) for lumbar axially loaded; 0.066+/-0.028 for caudal axially loaded; 0.091+/-0.033 for lumbar in pure torsion; and 0.056+/-0.035 for caudal in pure torsion. These values were similar to human disc properties reported in the literature ranging from 0.024 to 0.21 MPa/degrees. Use of the caudal disc as a model may be appropriate if the mechanical focus is within the linear region of the loading regime. These results provide support for use of this animal model in basic science studies with respect to torsional mechanics.

  10. Resistance and elastic stiffness of RHS "T" joints: part I - axial brace loading

    Directory of Open Access Journals (Sweden)

    R.M.M.P. de Matos

    Full Text Available Abstract This paper presents a study on the behaviour of welded "T" joints between RHS sections under brace axial loading. A finite element model was developed to investigate the influence of some geometrical variables on the joint's response. The brace load (always in tension was incremented up to joint failure, while the chord was kept unloaded. In the companion paper (part II a complementary study including chord axial loading is presented. The force-displacement curves corresponding to the different geometries are analyzed and compared, focusing on the failure loads and elastic stiffness. Different failure criteria are discussed and applied to the present curves and a comparison of the numerical results with the Eurocode 3 provisions is presented and discussed.

  11. Axial loaded stress views and kinematic MR imaging evaluation of patellar alignment and tracking

    International Nuclear Information System (INIS)

    Shellock, F.G.; Mink, J.H.; Deutsch, A.; Meeks, T.; Fox, J.; Molnar, T.

    1990-01-01

    This paper evaluates patellar alignment and tracking in patients with suspected abnormalities by obtaining axial loaded stress views to assess dynamic stabilizers and kinematic MR images to assess static stabilizers of the patellofemoral joint. Ninety-eight symptomatic joints were studied; 21 joints had prior realignment surgery. Axial loaded stress views were achieved with a device that simulated weight bearing. Images were obtained with knees flexed at 20 degrees ± 5 degrees while the patient resisted with an isometric contraction. Kinematic MR imaging was performed according to previously described methods. Kinematic MR imaging showed normal findings in six joints, lateral subluxation in 22, medial subluxation in 58, lateral tilt in two, and lateral to medial subluxation in 10. Axial stress views showed normal findings in 30, lateral subluxation in 18, and medial subluxation in 50. Both tests agreed on abnormalities for 63% of the joints, while kinematic MR imaging showed abnormalities for an additional 32%

  12. Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2012-01-01

    For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference...

  13. Off-axis loads cause failure of the distal radius at lower magnitudes than axial loads: A finite element analysis

    Science.gov (United States)

    Troy, Karen L.; Grabiner, Mark D.

    2014-01-01

    Distal radius (Colles’) fractures are a common fall-related injury in older adults and frequently result in long-term pain and reduced ability to perform activities of daily living. Because the occurrence of a fracture during a fall depends on both the strength of the bone and upon the kinematics and kinetics of the impact itself, we sought to understand how changes in bone mineral density (BMD) and loading direction affect the fracture strength and fracture initiation location in the distal radius. A three-dimensional finite element model of the radius, scaphoid, and lunate was used to examine changes of ±2% and ±4% BMD, and both axial and physiologically relevant off-axis loads on the radius. Changes in BMD resulted in similar percent changes in fracture strength. However, modifying the applied load to include dorsal and lateral components (assuming a dorsal view of the wrist, rather than an anatomic view) resulted in a 47% decrease in fracture strength (axial failure load: 2752 N, off-axis: 1448 N). Loading direction also influenced the fracture initiation site. Axially loaded radii failed on the medial surface immediately proximal to the styloid process. In contrast, off-axis loads, containing dorsal and lateral components, caused failure on the dorsal–lateral surface. Because the radius appears to be very sensitive to loading direction, the results suggest that much of the variability in fracture strength seen in cadaver studies may be attributed to varying boundary conditions. The results further suggest that interventions focused on reducing the incidence of Colles’ fractures when falls onto the upper extremities are unavoidable may benefit from increasing the extent to which the radius is loaded along its axis. PMID:17368466

  14. Mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobi; Chen, Jian Yun; Xu, Qiang; Li, Jing [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian (China)

    2015-08-15

    In order to analyze the mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading, a finite element model based on the nuclear power plant containments is demonstrated. This model takes into account the influences of different principal stress directions, the uniaxial or biaxial loading, and biaxial loading ratio. The displacement-controlled load is applied to obtain the stress-strain response. The simulated results indicate that the differences of principal stress axes have great effects on the stress-strain response under uniaxial loading. When the specimens are subjected to biaxial loading, the change trend of stress with the increase of loading ratio is obviously different along different layout directions. In addition, correlation experiments and finite element analyses were conducted to verify the validity and reliability of the analysis in this study.

  15. An intra-bone axial load transducer: development and validation in an in-vitro radius model

    OpenAIRE

    Knowles, Nikolas K.; Gladwell, Michael; Ferreira, Louis M.

    2015-01-01

    Background Accurate measurement of forces through the proximal radius can assess the effects of some surgical procedures on radioulnar load sharing, but is difficult to achieve given the redundant loading nature of the musculoskeletal system. Previously reported devices have relied on indirect measurements that may alter articular joint location and function. An axial load transducer interposed in the diaphysis of the radius may accurately quantify unknown axial loads of the proximal radius, ...

  16. Resistance and Elastic Stiffness of RHS "T" Joints: Part II - Combined Axial Brace and Chord Loading

    Directory of Open Access Journals (Sweden)

    R.M.M.P. de Matos

    Full Text Available Abstract This paper deals with the behaviour of welded "T" joints between RHS sections submitted to tension brace loading combined with chord axial loading. In the companion paper (part I a finite element model and a study without axial load in the chord, focusing on the joint behaviour as a function of the significant geometrical variables, were presented. In this part II paper, tension loading on the brace is incremented up to the joint failure, but is combined with different chord load levels in tension or compression, that are kept constant for each case. The same geometries and geometric variables as in the companion paper are used, and therefore the influence of these features together with the chord load level (in tension or compression on the connection's response is evaluated. The force-displacement curves from the different geometries and chord load levels are analysed and compared, with a special attention on the influence of the chord load on the joint resistance and stiffness. Finally, a comparison of the numerical results with the (Eurocode 3, 2005 and the newer (ISO 14346, 2013 provisions is presented and discussed.

  17. The multi-axial material fatigue under the combined loading with mean stress in three dimensions

    Directory of Open Access Journals (Sweden)

    Fojtík F.

    2009-12-01

    Full Text Available This contribution describes the application of Fuxa's conjugated strength criterion on the experimental results under combined loading of specimens made from common construction steel 11523.0, melt T31052. The specimens were stepwise loaded by the torque amplitude, combination of torque amplitude and tension pre-stress, further by the amplitude of the torque in combination with inner overpressure and axial tension force. The last set of specimens was loaded by the torque amplitude in combination with inner and external overpressure and with axial tension force. To obtain the data required as the input values for the conjugated criterion the stress/strain analysis of the specimens by the finite element method in software ANSYS was performed. The experiments were performed on modified testing machine equipped by overpressure chamber.

  18. Failure Criterion For Isotropic Time Dependent Materials Which Accounts for Multi-Axial Loading

    Science.gov (United States)

    Richardson, D. E.; Anderson, G. L.; Macon, D. J.

    2003-01-01

    The Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle program has recently conducted testing to characterize the effects of multi-axial loading, temperature and time on the failure characteristics of TIGA321, EA913NA, EA946 (three filled epoxy adhesives). From the test data a "Multi-Axial, Temperature, and Time Dependent" or MATT failure criterion was developed. It is shown that this criterion simplifies, for constant load and constant load rate conditions, into a form that can be easily used for stress analysis. Failure for TIGA321 and EA913NA are characterized below their glass transition temperature. Failure for EA946 is characterized for conditions that pass through its glass transition. The MATT failure criterion is shown to be accurate for a wide range of conditions for these adhesives.

  19. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    Science.gov (United States)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels

  20. Behaviour of axially and eccentrically loaded short columns reinforced with GFRP bars

    Science.gov (United States)

    Sreenath, S.; Balaji, S.; Saravana Raja Mohan, K.

    2017-07-01

    The corrosion of steel reinforcing bars is a predominant factor in limiting the life expectancy of Reinforced Cement Concrete (RCC) structures. Corrosion resistant Fibre Reinforced Polymer (FRP) bars can be an effective alternative to steel bars in this context. Recent investigations reported the flexural behaviour of RCC beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars. This study is meant to investigate the suitability of Sand Coated GFRP reinforcement bars in short square columns which when loaded axially and loaded with a minimum eccentricity. Standard tests to assess mechanical properties of GFRP bars and pullout test to quantify the bond strength between the bars and concrete were conducted. GFRP reinforced column specimens with a cross-sectional dimension of 100mm X 100mm and of length 1000mm were cast and tested under axial and eccentric loading. The assessed load carrying capacity was compared with that of conventional steel reinforced columns of the same size. The yield load and ultimate load at failure withstood by the steel reinforced columns were considerably more than that of GFRP reinforced columns. The energy absorption capacity of GFRP reinforced columns was also poor compared to steel reinforced columns. Both the columns exhibited nearly the same ductile behaviour. Hence GFRP reinforcements are not recommendable for compression members.

  1. An exact dynamic stiffness matrix for axially loaded double-beam ...

    Indian Academy of Sciences (India)

    a Galerkin-type state-space approach for studying the transverse vibrations of double-beam sys- tems which was made of two ... First, the coupled governing equations of motion of the axially loaded double-beam system with shear deformation and .... and λ1 is a real root of the following cubic equation λ3 − a2λ2 + (a1a3 ...

  2. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads.

    Science.gov (United States)

    Loveday, Philip W

    2009-03-01

    Predicting the influence of axial loads on the wave propagation in structures such as rails requires numerical analysis. Conventional three-dimensional finite element analysis has previously been applied to this problem. The process is tedious as it requires that a number of different length models be solved and that the user identify the computed modes of propagation. In this paper, the more specialised semi-analytical finite element method is extended to account for the effect of axial load. The semi-analytical finite element method includes the wave propagation as a complex exponential in the element formulation and therefore only a two-dimensional mesh of the cross-section of the waveguide is required. It was found that the stiffness matrix required to describe the effect of axial load is proportional to the mass matrix, which makes the extension to existing software trivial. The method was verified by application to an aluminium rod, where after phase and group velocities of propagating waves in a rail were computed to demonstrate the method.

  3. Concrete-Filled-Large Deformable FRP Tubular Columns under Axial Compressive Loading

    Directory of Open Access Journals (Sweden)

    Omar I. Abdelkarim

    2015-10-01

    Full Text Available The behavior of concrete-filled fiber tubes (CFFT polymers under axial compressive loading was investigated. Unlike the traditional fiber reinforced polymers (FRP such as carbon, glass, aramid, etc., the FRP tubes in this study were designed using large rupture strains FRP which are made of recycled materials such as plastic bottles; hence, large rupture strain (LRS FRP composites are environmentally friendly and can be used in the context of green construction. This study performed finite element (FE analysis using LS-DYNA software to conduct an extensive parametric study on CFFT. The effects of the FRP confinement ratio, the unconfined concrete compressive strength ( , column size, and column aspect ratio on the behavior of the CFFT under axial compressive loading were investigated during this study. A comparison between the behavior of the CFFTs with LRS-FRP and those with traditional FRP (carbon and glass with a high range of confinement ratios was conducted as well. A new hybrid FRP system combined with traditional and LRS-FRP is proposed. Generally, the CFFTs with LRS-FRP showed remarkable behavior under axial loading in strength and ultimate strain. Equations to estimate the concrete dilation parameter and dilation angle of the CFFTs with LRS-FRP tubes and hybrid FRP tubes are suggested.

  4. BUCKLING BEHAVIOUR OF SINGLE-WALLED CARBON NANOTUBES UNDER AXIAL LOADING

    Directory of Open Access Journals (Sweden)

    Grzegorz Litak

    2017-03-01

    Full Text Available We investigate a single walled Carbon Nanotube under an axially directed compressive line loading applied at both of its edges. The expected buckling behavior we study by application of a molecular computation approach. We formulate a global potential and search for its minimum to obtain the equilibrium configuration. Using besides the main parameter, which is the value of the loading, as second parameter the diameter of the tube, we are able to define the critical value of the diameter, for which we obtain the coincident case of local shell buckling.

  5. Reassessing the Plastic Hinge Model for Energy Dissipation of Axially Loaded Columns

    Directory of Open Access Journals (Sweden)

    R. M. Korol

    2014-01-01

    Full Text Available This paper investigates the energy dissipation potential of axially loaded columns and evaluates the use of a plastic hinge model for analysis of hi-rise building column collapse under extreme loading conditions. The experimental program considered seven axially loaded H-shaped extruded aluminum structural section columns having slenderness ratios that would be typical of floor-to-ceiling heights in buildings. All seven test specimens initially experienced minor-axis overall buckling followed by formation of a plastic hinge at the mid-height region, leading to local buckling of the flanges on the compression side of the plastic hinge, and eventual folding of the compression flanges. The experimental energy absorption, based on load-displacement relations, was compared to the energy estimates based on section plastic moment resistance based on measured yield stress and based on measured hinge rotations. It was found that the theoretical plastic hinge model underestimates a column’s actual ability to absorb energy by a factor in the range of 3 to 4 below that obtained from tests. It was also noted that the realizable hinge rotation is less than 180°. The above observations are based, of course, on actual columns being able to sustain high tensile strains at hinge locations without fracturing.

  6. Development of an axial suspended AMB experimental bench for load and disturbance tests

    Directory of Open Access Journals (Sweden)

    R. Gouws

    2015-06-01

    Full Text Available This paper provides the development of an axial suspended active magnetic bearing (AMB experimental bench for load and disturbance tests. This test bench must be capable of levitating a 2 kg steel disc at a stable working distance of 3 mm and a maximum attraction distance of 6 mm. The suspension is accomplished by two electromagnets producing upward and downward attraction forces to support the steel disc. An inductive sensor measures the position of the steel disc and relays this to a PC based controller board (dSPACE® controller. The control system uses this information to regulate the electromagnetic force on the steel disc. The intent is to construct this system using relatively low-cost, low-precision components, and still be able to stably levitate the 2 kg steel disc with high precision. The dSPACE® software (ControlDesk® was used for data acquisition. In this paper, an overview of the system design is presented, followed by the axial AMB model design, inductive sensor design, actuating unit design and controller development and implementation. The paper concludes with results obtained from the dSPACE® controller and evaluation of the axial suspended AMB experimental bench with load and disturbance tests.

  7. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    Science.gov (United States)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  8. Design, fabrication and test of lightweight shell structure. [axial compression loads and torsion stress

    Science.gov (United States)

    Lager, J. R.

    1975-01-01

    A cylindrical shell structure 3.66 m (144 in.) high by 4.57 m (180 in.) diameter was designed using a wide variety of materials and structural concepts to withstand design ultimate combined loading 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion. The overall cylinder geometry and design loading are representative of that expected on a high performance space tug vehicle. The relatively low design load level results in designs that use thin gage metals and fibrous-composite laminates. Fabrication and structural tests of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods. Three of the designs evaluated, honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiber-glass meteoroid protection layers, were selected for further evaluation.

  9. Immediate Loading of Tilted and Axial Posterior Implants in the Edentulous Maxillary Arch: A Retrospective Comparison of 5-Year Outcomes.

    Science.gov (United States)

    Toljanic, Joseph A; Ekstrand, Karl; Baer, Russell A; Thor, Andreas

    The purpose of this study was to retrospectively compare long-term outcomes for immediately loaded tilted and axial implants placed in the posterior region of the edentulous maxillary arch. Data obtained from a 5-year prospective study designed to assess clinical outcomes following immediate loading of implants with screw-retained fixed restorations in the edentulous maxillary arch were retrospectively reviewed. Where insufficient alveolar bone was available for axial placement of the posterior-most implant on each side of the arch, tilted placement was employed. Implant survival and marginal bone level changes for these tilted and axial posterior implants were compared. Fifty-one subjects received 64 tilted and 38 axial posterior implants. Forty subjects with 53 tilted and 34 axial posterior implants returned for follow-up after 5 years. Five tilted and seven axial implants failed, representing an 89% and 86% survival proportion, respectively. The mean marginal bone loss was 0.79 (SD: 1.42) mm for tilted implants and 0.14 (SD: 0.34) mm for axial implants. The differences in survival proportions and marginal bone loss between axial and tilted implants were not statistically significant. Predictable long-term implant rehabilitation may be achieved in the edentulous maxillary arch using posterior tilted implants in combination with immediate loading.

  10. Crashworthiness Analysis of S-Shaped Structures Under Axial Impact Loading

    OpenAIRE

    Esmaeili-Marzdashti, Sobhan; Pirmohammad, Sadjad; Esmaeili-Marzdashti, Sareh

    2017-01-01

    Abstract To mitigate shock forces in collision events, thin-walled members are used as energy absorber. In this article, crashworthiness of single-cell and multi-cell S-shaped members with various cross-sections including triangular, square, hexagonal, decagon and circular were investigated under axial dynamic loading using finite element code LS-DYNA. Furthermore, crashworthiness of the S-rails with the same outer tubes and different inner ones was studied as well. The multi-cell members emp...

  11. Effect of Multi-Axial Loading on Residual Strain Tensor for 12L14 Steel Alloy

    Science.gov (United States)

    Bunn, Jeffrey R.; Penumadu, Dayakar; Lou, Xin; Hubbard, Camden R.

    2014-08-01

    Evaluating the state of residual strain or stress is critically important for structural materials and for reliable design of complex shape components that need to function in extreme environment subjected to large thermo-mechanical loading. When residual stress state is superposed to external loads, it can lead to reduction or increase in failure strength. Past diffraction studies for evaluating the residual strain state involved measuring lattice spacings in three orthogonal directions and do not often correspond to principal directions. To completely resolve the state of strain at a given location, a full strain tensor must be determined. This is especially important when characterizing materials or metallic components exposed to biaxial or complex loading. Neutron diffraction at the second Generation Neutron Residual Stress Facility (NRSF2) at Oak Ridge National Laboratory is used in this study to measure strain tensors associated with different modes of stress path. Hollow cylinder steel samples with 2 mm wall thickness are subjected to either pure axial extension or pure torsion to simulate multi-axial loading conditions. A virgin sample that is not subjected to any deformation, but subjected to identical manufacturing conditions and machining steps involved to obtain hollow cylinder geometry is used for obtaining reference d-spacing for given hkl planes at target spatial location(s). The two samples which are subjected to either pure tension or torsion are loaded to a deformation state that corresponded to equal amount of octahedral shear strain which is an invariant. This procedure is used so that a basis for comparison between the two samples can be made to isolate the stress path effects. A 2-circle Huber orienteer is used to obtain strain measurements on identical gauge volume at a series of φ and ψ values. The residual state of stress tensor corresponding to ex situ (upon unloading) conditions is presented for three lattice planes (211, 110, 200) for

  12. Axial Static Load Dependence Free Vibration Analysis of Helical Springs Based on the Theory of Spatially Curved Bars

    Directory of Open Access Journals (Sweden)

    Vebil Yildirim

    Full Text Available Abstract This work addresses an accurate and detailed axial static load dependence linearly elastic free vibration analysis of cylindrical helical springs based on the theory of spatially curved bars and the transfer matrix method. For a continuous system, governing equations comprise coupled vibration modes namely transverse vibrations in two orthogonal planes, torsional and axial vibrations. The axial and shear deformation effects together with the rotatory inertia effects are all considered based on the first order shear deformation theory and their effects on the frequencies are investigated. The effects of the initial stress resultants on the frequencies are also studied. After buckling, forward-shifting phenomenon of higher frequencies is noticeably demonstrated. It is also revealed that a free/forced vibration analysis with an axial static load should not be performed individually without checking buckling loads.

  13. Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads

    KAUST Repository

    Alcheikh, Nouha

    2017-01-04

    We present a simulation and experimental investigation of bi-directional tunable in-plane clamped-guided arch microbeam resonators. Tensile and compressive axial forces are generated from a bi-directional electrostatic actuator, which modulates the microbeam stiffness, and hence changes its natural frequency to lower or higher values from its as-fabricated value. Several devices of various anchor designs and geometries are fabricated. We found that for the fabricated shallow arches, the effect of the curvature of the arch is less important compared to the induced axial stress from the axial load. We have shown that the first mode resonance frequency can be increased up to twice its initial value. Additionally, the third mode resonance frequency can be increased up to 30% of its initial value. These results can be promising as a proof-of-concept for the realization of wide-range tunable microresonators. The experimental results have been compared to finite-element simulations, showing good agreement among them.

  14. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR

    International Nuclear Information System (INIS)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-01-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays

  15. Analytical investigation of pile-soil interaction in sand under axial and lateral loads

    Science.gov (United States)

    Abdel-Mohti, Ahmed; Khodair, Yasser

    2014-03-01

    This paper presents a numerical study of pile-soil interaction due to application of axial and lateral loads to piles in sand. The pile-soil interaction was analyzed using the finite difference (FD) software LPILE and two finite element (FE) software. The three-dimensional (3D) FE models of pile-soil interaction have been created using Abaqus/Cae and SAP2000. Various types of soft soil were studied, such as loose, medium, and dense sand. A lateral displacement of 2 cm was applied to the top of the pile while maintaining a zero slope in a guided fixation. A combined lateral and axial load of 300 kN was also studied. The paper compared between the bending moments and lateral displacements along the depth of the pile obtained from the FD solutions and FE analyses. A parametric study was conducted to study the effect of crucial design parameters such as the modulus of elasticity of soil and the number of nonlinear soil springs that can be used to model the soil. A good agreement between the results obtained by the FE models and the FD solution was observed. Also, the FE models were capable of predicting the pile-soil interaction for all types of soft soil.

  16. Operating characteristics of heavy loaded cylindrical journal bearing with variable axial profile

    Directory of Open Access Journals (Sweden)

    Stanislaw Strzelecki

    2005-12-01

    Full Text Available During the operation of turbounit its bearings displace as a result of heat elongation of bearings supports. It changes the static deflection line of rotor determined during assembly of the turbounit, causing an increase in the stresses on the bearing edges and a decrease in the dynamic state of the machine. One of possibilities to avoid the edge stresses is to apply the bearings with variable axial profile, e.g. hyperboloidal, convex profile in the axial cross-section of bearing. Application of journal bearings with hyperboloidal profile allows to extend the bearing operation range without the stress concentration on the edges of bush. These bearings successfully carry the extreme load in conditions of misaligned axis of journal and the bush eliminating the necessity of using self-aligning bearings. Operating characteristics of bearing include the resulting force, attitude angle, oil film pressure and temperature distributions, minimum oil film thickness, maximum oil film temperature. In literature there is a lack of data on the operating characteristics of heavy loaded hyperboloidal journal bearings operating at the conditions of adiabatic oil film and static equilibrium position of the journal. For the hyperboloidal bearing the operating characteristics have been obtained. Different values of length to diameter ratio, assumed shape and inclination ratio coefficients have been assumed. Iterative solution of the Reynolds', energy and viscosity equations was applied. Adiabatic oil film, laminar flow in the bearing gap as well as aligned and misaligned orientation of journal in the bush were considered.

  17. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  18. An intra-bone axial load transducer: development and validation in an in-vitro radius model.

    Science.gov (United States)

    Knowles, Nikolas K; Gladwell, Michael; Ferreira, Louis M

    2015-12-01

    Accurate measurement of forces through the proximal radius can assess the effects of some surgical procedures on radioulnar load sharing, but is difficult to achieve given the redundant loading nature of the musculoskeletal system. Previously reported devices have relied on indirect measurements that may alter articular joint location and function. An axial load transducer interposed in the diaphysis of the radius may accurately quantify unknown axial loads of the proximal radius, and maintain articular location. An in-vitro radius model was developed by interposing an axial load transducer in the diaphysis of the proximal radius. Static loads of 20, 40, 60, 80, and 100 N were applied with a servo-hydraulic actuator to the native radial head at angles of 10°, 20°, 30°, and 40° in the anterior, posterior, medial and lateral directions. Linear regression of five repeatability trials showed excellent agreement between the transducer and applied loads (R (2) = 1 for all trials). For off-axis net joint loads, the majority of measured loading errors were within the inter-quartile range for mean loads up to 80 N. Loads below 80 N and outside the inter-quartile range had errors of less than 1 N. The repeatability and off-axis net joint load results of this study validate the effectiveness of the interposed axial load transducer to accurately quantify proximal radius loads. The surgical technique preserves the native articular location and soft-tissue constructs, like the annular ligament. The modular design allows for testing the effects of length-changing osteotomies in subsequent biomechanical studies.

  19. Effects of the combined action of axial and transversal loads on the failure time of a wooden beam under fire

    International Nuclear Information System (INIS)

    Nubissie, A.; Kingne Talla, E.; Woafo, P.

    2012-01-01

    Highlights: ► A wooden beam submitted to fire and axial and transversal loads is considered. ► The failure time is found to increase with the intensity of the loads. ► Implication for safety consideration is indicated. -- Abstract: This paper presents the variations of the failure time of a wooden beam (Baillonella toxisperma also called Moabi) in fire subjected to the combined effect of axial and transversal loads. Using the recommendation of the structural Eurocodes that the failure can occur when the deflection attains 1/300 of the length of the beam or when the bending moment attains the resistant moment, the partial differential equation describing the beam dynamics is solved numerically and the failure time calculated. It is found that the failure time decreases when either the axial or transversal loads increases.

  20. Effect of static axial loads on the lateral vibration attenuation of a beam with piezo-elastic supports

    Science.gov (United States)

    Götz, Benedict; Platz, Roland; Melz, Tobias

    2018-03-01

    In this paper, vibration attenuation of a beam with circular cross-section by resonantly shunted piezo-elastic supports is experimentally investigated for varying axial tensile and compressive beam loads. The beam's first mode resonance frequency, the general electromechanical coupling coefficient and static transducer capacitance are analyzed for varying axial loads. All three parameter values are obtained from transducer impedance measurements on an experimental test setup. Varying axial beam loads manipulate the beam's lateral bending stiffness and, thus, lead to a detuning of the resonance frequencies. Furthermore, they affect the general electromechanical coupling coefficient of transducer and beam, an important modal quantity for shunt-damping, whereas the static transducer capacitance is nearly unaffected. Frequency transfer functions of the beam with one piezoe-elastic support either shunted to an RL-shunt or to an RL-shunt with negative capacitance, the RLC-shunt, are compared for varying axial loads. It is shown that the beam vibration attenuation with the RLC-shunt is less influenced by varying axial beam loads and, therefore, is more robust against detuning.

  1. Properties of axially loaded implant-abutment assemblies using digital holographic interferometry analysis.

    Science.gov (United States)

    Brozović, Juraj; Demoli, Nazif; Farkaš, Nina; Sušić, Mato; Alar, Zeljko; Gabrić Pandurić, Dragana

    2014-03-01

    The aim of this study was to (i) obtain the force-related interferometric patterns of loaded dental implant-abutment assemblies differing in diameter and brand using digital holographic interferometry (DHI) and (ii) determine the influence of implant diameter on the extent of load-induced implant deformation by quantifying and comparing the obtained interferometric data. Experiments included five implant brands (Ankylos, Astra Tech, blueSKY, MIS and Straumann), each represented by a narrow and a wide diameter implant connected to a corresponding abutment. A quasi-Fourier setup with a 25mW helium-neon laser was used for interferometric measurements in the cervical 5mm of the implants. Holograms were recorded in two conditions per measurement: a 10N preloaded and a measuring-force loaded assembly, resulting with an interferogram. This procedure was repeated throughout the whole process of incremental axial loading, from 20N to 120N. Each measurement series was repeated three times for each assembly, with complete dismantling of the implant-loading device in between. Additional software analyses calculated deformation data. Deformations were presented as mean values±standard deviations. Statistical analysis was performed using linear mixed effects modeling in R's lme4 package. Implants exhibited linear deformation patterns. The wide diameter group had lower mean deformation values than the narrow diameter group. The diameter significantly affected the deformation throughout loading sessions. This study gained in vitro implant performance data, compared the deformations in implant bodies and numerically stated the biomechanical benefits of wider diameter implants. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Comparison of Methods to Predict Lower Bound Buckling Loads of Cylinders Under Axial Compression

    Science.gov (United States)

    Haynie, Waddy T.; Hilburger, Mark W.

    2010-01-01

    Results from a numerical study of the buckling response of two different orthogrid stiffened circular cylindrical shells with initial imperfections and subjected to axial compression are used to compare three different lower bound buckling load prediction techniques. These lower bound prediction techniques assume different imperfection types and include an imperfection based on a mode shape from an eigenvalue analysis, an imperfection caused by a lateral perturbation load, and an imperfection in the shape of a single stress-free dimple. The STAGS finite element code is used for the analyses. Responses of the cylinders for ranges of imperfection amplitudes are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. Similar behavior was observed for shells that include a lateral perturbation load and a single dimple imperfection, and the results indicate that the predicted lower bounds are much less conservative than the corresponding results for the cylinders with the mode shape imperfection considered herein. In addition, the lateral perturbation technique and the single dimple imperfection produce response characteristics that are physically meaningful and can be validated via testing.

  3. Experimental Study on Ultrahigh Strength Concrete Filled Steel Tube Short Columns under Axial Load

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhou

    2017-01-01

    Full Text Available Based on the project of Modaoxi Bridge, an experimental study on the compressive behavior of ultrahigh strength concrete filled steel tube (UHSCFST short column was conducted. A total of 9 UHSCFST specimens were tested, and the cube strength (fcu of the core concrete reached 115.4 MPa. Main parameters were the confining factor (ξ=0.608, 0.919, and 1.015, steel ratio (α=14.67%, 20.02%, and 21.98%, and steel strength (fy = 349 MPa, 352 MPa, and 427 MPa. The axially loading test results showed that the visible damage of steel tube occurred under the ultimate load. The higher the confining effect, the less the damage features. And all specimens basically presented a drum-type failure mode. The confining effect of steel tube effectively changed the brittle failure mode of ultrahigh strength concrete (UHSC and tremendously improved the load bearing capacity and ductility of specimens. Moreover, the higher the steel ratio and steel strength of the specimens, the stronger the confining effect. Meanwhile the excellent mechanical properties will be obtained. Also it is recommended that the UHSCFST prefers Q345 or above strength steel tube to ensure sufficient ductility, and the steel ratio should be more than 20%. Furthermore, the confining effect of steel tubes can improve the ultimate bearing capacity of the ultrahigh strength CFST short columns.

  4. The effect of body position and axial load on spinal canal morphology: an MRI study of central spinal stenosis

    DEFF Research Database (Denmark)

    Madsen, Rasmus; Jensen, Tue Secher; Pope, Malcolm

    2007-01-01

    STUDY DESIGN: A method comparison study. OBJECTIVE: To investigate the effect of body position and axial load of the lumbar spine on disc height, lumbar lordosis, and dural sac cross-sectional area (DCSA). SUMMARY OF BACKGROUND DATA.: The effects of flexion and extension on spinal canal diameters...... and DCSA are well documented. However, the effects of axial loading, achieved by upright standing or by a compression device, are still unclear. METHODS: Patients with lumbar spinal stenosis were examined in 2 separate studies, including 16 and 20 patients, respectively. In section 1, magnetic resonance...... imaging (MRI) scans were performed during upright standing and supine positions with and without axial load. In section 2, MRI scans were performed exclusively in supine positions, one with flexion of the lumbar spine (psoas-relaxed position), an extended position (legs straight), and an extended position...

  5. Comminuted supracondylar femoral fractures: a biomechanical analysis comparing the stability of medial versus lateral plating in axial loading

    Directory of Open Access Journals (Sweden)

    Nikolai Briffa

    2016-10-01

    Full Text Available Abstract The aim of this study was to compare the biomechanical properties of medial and lateral plating of a medially comminuted supracondylar femoral fracture. A supracondylar femoral fracture model comparing two fixation methods was tested cyclically in axial loading. One-centimetre supracondylar gap osteotomies were created in six synthetic femurs approximately 6 cm proximal to the knee joint. There were two constructs investigated: group 1 and group 2 were stabilized with an 8-hole LC-DCP, medially and laterally, respectively. Both construct groups were axially loaded. Global displacement (total length, wedge displacement, bending moment and strain were measured. Medial plating showed a significantly decreased displacement, bending moment and strain at the fracture site in axial loading. Medial plating of a comminuted supracondylar femur fracture is more stable than lateral plating.

  6. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2016-11-01

    The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.

  7. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    Directory of Open Access Journals (Sweden)

    Fouad Khairallah

    2013-12-01

    Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.

  8. Multisized Inert Particle Loading for Solid Rocket Axial Combustion Instability Suppression

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2012-01-01

    Full Text Available In the present investigation, various factors and trends, related to the usage of two or more sets of inert particles comprised of the same material (nominally aluminum but at different diameters for the suppression of axial shock wave development, are numerically predicted for a composite-propellant cylindrical-grain solid rocket motor. The limit pressure wave magnitudes at a later reference time in a given pulsed firing simulation run are collected for a series of runs at different particle sizes and loading distributions and mapped onto corresponding attenuation trend charts. The inert particles’ presence in the central core flow is demonstrated to be an effective means of instability symptom suppression, in correlating with past experimental successes in the usage of particles. However, the predicted results of this study suggest that one needs to be careful when selecting more than one size of particle for a given motor application.

  9. A subspace thermodynamic model for shape memory alloy wire elements undergoing combined thermo-mechanical axial and torsional loads

    Science.gov (United States)

    Sumanth, D.; Preetish, K. L.; Srinivasan, S. M.

    2014-08-01

    Given that most applications of shape memory alloys (SMA) are in the wire form, a reduced order model and analysis has been attempted in this paper. It takes into account the fact that the predominant actions are axial (bending inclusive) and torsional. A thermodynamic framework is first developed to simulate the behaviour of the SMA material under thermo-mechanical loading that is a combination of axial and shear stresses arising at a point in a wire due to axial and torsional loads applied to the wire. Since only a few variants relevant to axial-torsion are going to be active in transformation under this kind of loading, a reduced order model that tracks the evolution of four martensite variants and an austenite variant is proposed. It is shown through simulations that these five model parameters amply form a minimal set of model parameters sufficient for simulating response under tension-torsion loading excursions. The model is further applied to the structural member, in this case, a wire of circular cross-section subject to a twist and an axial extension and the capability of the model to simulate the kind of response expected in wires. Incorporation of this model into a large deformation space frame nonlinear analysis will help in the design and analysis of several applications where SMA wire forms are used.

  10. A subspace thermodynamic model for shape memory alloy wire elements undergoing combined thermo-mechanical axial and torsional loads

    International Nuclear Information System (INIS)

    Sumanth, D; Preetish, K L; Srinivasan, S M

    2014-01-01

    Given that most applications of shape memory alloys (SMA) are in the wire form, a reduced order model and analysis has been attempted in this paper. It takes into account the fact that the predominant actions are axial (bending inclusive) and torsional. A thermodynamic framework is first developed to simulate the behaviour of the SMA material under thermo-mechanical loading that is a combination of axial and shear stresses arising at a point in a wire due to axial and torsional loads applied to the wire. Since only a few variants relevant to axial-torsion are going to be active in transformation under this kind of loading, a reduced order model that tracks the evolution of four martensite variants and an austenite variant is proposed. It is shown through simulations that these five model parameters amply form a minimal set of model parameters sufficient for simulating response under tension–torsion loading excursions. The model is further applied to the structural member, in this case, a wire of circular cross-section subject to a twist and an axial extension and the capability of the model to simulate the kind of response expected in wires. Incorporation of this model into a large deformation space frame nonlinear analysis will help in the design and analysis of several applications where SMA wire forms are used. (paper)

  11. Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads

    KAUST Repository

    Alcheikh, Nouha

    2018-02-14

    The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.

  12. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  13. An application to calculate the factors which are used to determine the tensile rupture load of a lug under axial, transverse or oblique loading

    Directory of Open Access Journals (Sweden)

    Nicolae APOSTOLESCU

    2013-03-01

    Full Text Available This work describes a computer application to calculate the values of the factors which are used to determine the tensile rupture load of a lug under axial, transverse or oblique loading. It can be used as a procedure for identifying potential failure modes. Lugs are connector-type elements widely used as structural supports for pin connections in aerospace industry. Failure modes in lugs are functions of lug geometry and material mechanical properties. For a lug under axial load three modes of lug failure are considered: tension, shear and bearing. Under transverse load the load to cause rupture or unacceptable permanent deformation of the lug is given. Tension mode failure usually occurs in materials of low ductility. In materials with high ductility, the failure mode of a lug can be either tensile or shear tear-out, depending on the lug geometry. The application has a graphical interface that allows the user to use them with much ease and view immediately the results and provides a flexible ad-hoc print reports and diagrams that allow to present analysis information. It includes Microsoft Excel Object Library as reference to the Excel material properties file.

  14. Proposed Model of Predicting the Reduced Yield Axial Load of Reinforced Concrete Columns Due to Casting Deficiency Effect

    Directory of Open Access Journals (Sweden)

    Achillopoulou Dimitra

    2014-12-01

    Full Text Available The study deals with the investigation of the effect of casting deficiencies- both experimentally and analytically on axial yield load or reinforced concrete columns. It includes 6 specimens of square section (150x150x500 mm of 24.37 MPa nominal concrete strength with 4 longitudinal steel bars of 8 mm (500 MPa nominal strength with confinement ratio ωc=0.15. Through casting procedure the necessary provisions defined by International Standards were not applied strictly in order to create construction deficiencies. These deficiencies are quantified geometrically without the use of expensive and expertise non-destructive methods and their effect on the axial load capacity of the concrete columns is calibrated trough a novel and simplified prediction model extracted by an experimental and analytical investigation that included 6 specimens. It is concluded that: a even with suitable repair, load reduction up to 22% is the outcome of the initial construction damage presence, b the lower dispersion is noted for the section damage index proposed, c extended damage alters the failure mode to brittle accompanied with longitudinal bars buckling, d the proposed model presents more than satisfying results to the load capacity prediction of repaired columns.

  15. Development of a method of lifetime assessment of power plant components under complex multi-axial vibration loads

    International Nuclear Information System (INIS)

    Fesich, Thomas M.

    2012-01-01

    In general, technical components are loaded and stressed by forces and moments both constant and variable over time. Multi-axial stress conditions can arise as a function of the load on, and/or the geometry of, a component. Assessing the impact on stability of multi-axial stress conditions is a problem for which no generally valid solution has as yet been found, especially when loads and stresses vary over time. This is also due to the fact that the development over time of stresses can give rise to very complex stress conditions. Assessing the lifetime of power plant components subjected to complex vibration loads and stresses often is not reliable if performed by means of conventional codes and approaches, or is associated with high degrees of conservatism. The MPA AIM-Life concept developed at the Stuttgart MPA/IMWF, which is an advanced and verified strength hypothesis based on energy considerations, allows such assessments to be made more reliably, numerically efficient, and avoiding excessive conservatism. (orig.)

  16. Effects of Boundary Conditions on the Parametric Resonance of Cylindrical Shells under Axial Loading

    Directory of Open Access Journals (Sweden)

    T.Y. Ng

    1998-01-01

    Full Text Available In this paper, a formulation for the dynamic stability analysis of circular cylindrical shells under axial compression with various boundary conditions is presented. The present study uses Love’s first approximation theory for thin shells and the characteristic beam functions as approximate axial modal functions. Applying the Ritz procedure to the Lagrangian energy expression yields a system of Mathieu–Hill equations the stability of which is analyzed using Bolotin’s method. The present study examines the effects of different boundary conditions on the parametric response of homogeneous isotropic cylindrical shells for various transverse modes and length parameters.

  17. An exact dynamic stiffness matrix for axially loaded double-beam ...

    Indian Academy of Sciences (India)

    where Pi is a constant compressive axial force acting through the centroid of the cross-section of a beam. Pi can be positive or negative. The boundary value problem, consisting of the governing differential equations and the bound- ary conditions, can be derived conveniently by means of the extended Hamilton's principle,.

  18. Dynamic stability of slender columns with semi-rigid connections under periodic axial load: theory

    Directory of Open Access Journals (Sweden)

    Oliver Giraldo-Londoño

    2014-01-01

    Full Text Available La estabilidad dinámica de una columna elástica prismática esbelta con conexiones semirrígidas en ambos extremos de rigidez idéntica y con desplazamiento lateral entre los dos extremos totalmente inhibido sujetos a cargas axiales paramétricos incluyendo los efectos combinados de inercia rotacional y amortiguación externas se investiga de una manera clásica. Expresiones cerradas que se pueden utilizar para predecir las regiones de inestabilidad dinámica de columnas esbeltas son desarrolladas haciendo uso de la teoría de Floquet. La solución propuesta es capaz de capturar el fenómeno de estabilidad en columnas sometidas a cargas axiales periódicas utilizando un solo elemento de columna. El método propuesto y las ecuaciones correspondientes se pueden utilizar para investigar los efectos del amortiguamiento, la inercia rotacional de la columna, y las conexiones semirrígidas en el análisis de estabilidad de columnas esbeltas sometidas a cargas axiales periódicas. Los efectos producidos por las deformaciones por cizallamiento a lo largo de la columna, así como los producidos por la inercia axial, el acoplamiento entre las deflexiones longitudinales y transversales y la curvatura no se tienen en cuenta. Estudios de sensibilidad que muestran los efectos de la inercia rotacional, el amortiguamiento y las conexiones semi-rígidas en la estabilidad dinámica de columnas sometidas a cargas axiales paramétricas son presentados en una publicación adjunta.

  19. Peri-implant biomechanical responses to standard, short-wide, and double mini implants replacing missing molar supporting hybrid ceramic or full-metal crowns under axial and off-axial loading: an in vitro study.

    Science.gov (United States)

    Elfadaly, Lamiaa Said; Khairallah, Lamiaa Sayed; Al Agroudy, Mona Atteya

    2017-12-01

    The aim of this study was to evaluate the biomechanical response of the peri-implant bone to standard, short-wide, and double mini implants replacing missing molar supporting either hybrid ceramic crowns (Lava Ultimate restorative) or full-metal crowns under two different loading conditions (axial and off-axial loading) using strain gauge analysis. Three single-molar implant designs, (1) single, 3.8-mm (regular) diameter implant, (2) single, 5.8-mm (wide) diameter implant, and (3) two 2.5-mm diameter (double) implants connected through a single-molar crown, were embedded in epoxy resin by the aid of a surveyor to ensure their parallelism. Each implant supported full-metal crowns made of Ni-Cr alloy and hybrid ceramic with standardized dimensions. Epoxy resin casts were prepared to receive 4 strain gauges around each implant design, on the buccal, lingual, mesial, and distal surfaces. Results were analyzed statistically. Results showed that implant design has statistically significant effect on peri-implant microstrains, where the standard implant showed the highest mean microstrain values followed by double mini implants, while the short-wide implant showed the lowest mean microstrain values. Concerning the superstructure material, implants supporting Lava Ultimate crowns had statistically significant higher mean microstrain values than those supporting full-metal crowns. Concerning the load direction, off-axial loading caused uneven distribution of load with statistically significant higher microstrain values on the site of off-axial loading (distal surface) than the axial loading. Implant design, superstructure material, and load direction significantly affect peri-implant microstrains.

  20. Probabilistic model for multi-axial load combinations for wind turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2016-01-01

    The article presents a model describing the joint probability distribution of multiple load components acting on a wind turbine blade cross section. The problem of modelling the probability distribution of load time histories with large periodic components is addressed by dividing the signal...... for determining contemporaneous loads. Using examples with simulated loads on a 10 MW wind turbine,the behavior of the bending moments acting on a blade section is illustrated under different conditions.The loading direction most critical for material failure is determined using a finite-element model...... of the blade cross section on which load combinations with different directions but with equal probability are applied. By defining a joint probability distribution and return-period contours for multiple load components,the suggested procedure is applicable to different aspects of the design of wind turbine...

  1. Characterizing Axial Stiffness of Individual Batter Piles with Emphasis on Elevated, Laterally Loaded, Clustered Pile Groups

    Science.gov (United States)

    2016-11-01

    mudline. The piles are 2 ft diameter, concrete-filled pipe piles. Fortunately, the CPGA software discussed subsequently had enough flexibility to...being an axial stiffness modifier, A designating the cross-sectional area of the concrete-filled pipe pile, E designating the pile’s (composite...stiffness modifier, A designates the cross-sectional area of the concrete-filled pipe pile, E designates its (composite) Young’s Modulus, and Le is the

  2. Nuclear reactor control method for maintaining an appreciably constant axial distribution of power with load variations

    International Nuclear Information System (INIS)

    Morita, Toshio.

    1975-01-01

    A nuclear reactor control method is described in which the power variations of the reactor are controlled partly by varying the concentration of the neutron absorbing element and partly by varying the positions of the control rods, in order to maintain the axial distribution of power appreciably symmetrical during the normal operation of the reactor. The control points are located in the upper and lower halves of the core. The controls are operated to maintain the output power difference between the upper and lower halves of the core, based on the total output power (axial deviation) significantly equal to a predetermined optimum figure during the entire running of the reactor, including when there are power variations. The optimum value is obtained by determining the axial deviation at full power with the xenon in balance and all the control rods withdrawn from the fuel area of the core. This optimum value is recalculated after a period appreciably equal to that of a month's operation at full power. This method applies in particular to PWR type reactors [fr

  3. Experimental Analysis of Repaired Masonry Elements with Flax-FRCM and PBO-FRCM Composites Subjected to Axial Bending Loads

    Directory of Open Access Journals (Sweden)

    Oscar A. Cevallos

    2015-11-01

    Full Text Available In the construction industry, the use of natural fabrics as a reinforcement for cement-based composites has shown great potential. The use of these sustainable composites to provide strengthening or repair old masonry structures that exhibit structural problems mainly due to a poor tensile strength of the mortar/brick joints is revealed to be a promising area of research. One of the most significant load conditions affecting the mechanical response of masonry structures occurs when axial bending loads are applied on the resistant cross-section. In this study, three different types of masonry elements were built using clay bricks and a lime-based mortar. After 28 days, the samples were subjected to concentric and eccentric compressive loads. In order to produce significant bending effects, the compressive loads were applied with large eccentricity, and a sudden failure characterized the behavior of the unreinforced masonry (URM elements. The tested masonry specimens were repaired using fabric-reinforced cementitious matrix (FRCM composites produced using bi-directional flax and polyparaphenylene benzobisoxazole (PBO fabrics. The mechanical behavior of the URM and repaired samples was compared in terms of load-displacement and moment-curvature responses. Furthermore, the results achieved using flax-FRCM composites were compared with those of using PBO-FRCM composites.

  4. Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads

    Directory of Open Access Journals (Sweden)

    Nazar Kamil Ali

    2015-02-01

    Full Text Available In this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400 mm with total height of (14000 mm. The dimensions of side openings were (600*2000 mm. The column was reinforced with (20 mm diameter in longitudinal direction, while (12 mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied. Nonlinear finite element analysis has been carried out using ready computer finite element package (ANSYS to simulate the behavior of the reinforced concrete column with large side openings. Two load cases were considered in this investigation (C1, C2 with three different load values for each case. In the first case (C1 the loads was applied to one side of the column and in the second case (C2 the loads was applied to both sides. An Equilateral triangular load-time function was used for simulation the impact load results from gantry cranes supported by the column with total time duration (0.1 sec. In order to verify the analysis method, as no experimental data exist for comparing the obtained results, another analysis is made for tested conventional column under impact load at mid-height and good agreement has been obtained. For the above mentioned column, the maximum displacements were (33.3, 22.2 mm in the horizontal and longitudinal direction respectively, location of the maximum horizontal displacement was at the crown of the column. By comparing the results of the first loading case with the second one it is shown that in the horizontal direction, maximum displacement increases by (139%, (208%, and (147% respectively, also the maximum vertical displacement increases by (150%, (172%, and (172% respectively.

  5. Dynamic stability of slender columns with semi-rigid connections under periodic axial load: theory

    OpenAIRE

    Giraldo-Londoño, Oliver; Aristizabal Ochoa, Jose Dario

    2014-01-01

    La estabilidad dinámica de una columna elástica prismática esbelta con conexiones semirrígidas en ambos extremos de rigidez idéntica y con desplazamiento lateral entre los dos extremos totalmente inhibido sujetos a cargas axiales paramétricos incluyendo los efectos combinados de inercia rotacional y amortiguación externas se investiga de una manera clásica. Expresiones cerradas que se pueden utilizar para predecir las regiones de inestabilidad dinámica de columnas esbeltas son desarrolladas h...

  6. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    Science.gov (United States)

    Nijhuis, A.; van Lanen, E. P. A.; Rolando, G.

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up-cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained by

  7. Design of hat-stiffened composite panels loaded in axial compression

    Science.gov (United States)

    Paul, T. K.; Sinha, P. K.

    An integrated step-by-step analysis procedure for the design of axially compressed stiffened composite panels is outlined. The analysis makes use of the effective width concept. A computer code, BUSTCOP, is developed incorporating various aspects of buckling such as skin buckling, stiffener crippling and column buckling. Other salient features of the computer code include capabilities for generation of data based on micromechanics theories and hygrothermal analysis, and for prediction of strength failure. Parametric studies carried out on a hat-stiffened structural element indicate that, for all practical purposes, composite panels exhibit higher structural efficiency. Some hybrid laminates with outer layers made of aluminum alloy also show great promise for flight vehicle structural applications.

  8. COMPARATIVE PERFORMANCE STUDY OF GASKETED AND NON-GASKETED FLANGE JOINTS UNDER COMBINED INTERNAL PRESSURE, AXIAL AND BENDING LOADING – AN EXPERIMENTAL STUDY

    OpenAIRE

    Muhammad Abid

    2010-01-01

    In this paper result of an extensive comparative experimental study of a gasketed and non-gasketed flange joint with different assemblies with different combined load combinations is carried out to investigate joint performance i.e. joint strength and sealing capability. Actual joint load capacities are determined under both the design and proof test pressure with maximum additional external loading (axial and bending) that can be applied for safe joint performance. In addition, application o...

  9. The influence of loading eccentricity on the buckling of axially compressed imperfect composite cylinders

    Science.gov (United States)

    Eglitis, E.; Kalnins, K.; Ozolinsh, O.

    2010-12-01

    The buckling of imperfect composite cylinders under concentric and eccentric compression is investigated experimentally and numerically, with particular attention given to the imperfection sensitivity of the shells. A series of glass-fiber-reinforced plastic cylinders have been tested under different load eccentricities to validate the corresponding nonlinear numerical analyses performed in this study. A good agreement between the experimental and numerical results was achieved through use of the ABAQUS/Explicit finite-element code and the introduction of initial imperfections. Both the experimental and the numerical results show that the knockdown factor increases as the loading eccentricity grows.

  10. Use of pile driving analysis for assessment of axial load capacity of piles : [technical summary].

    Science.gov (United States)

    2012-01-01

    The dynamic response of a pile during driving is very : complex, involving the interactions of the hammer, cushion, : pile and soil during application of an impact load. : The first analysis aimed at simulating a hammer blow on : a pile was published...

  11. Dynamic Finite Element Analysis of Bending-Torsion Coupled Beams Subjected to Combined Axial Load and End Moment

    Directory of Open Access Journals (Sweden)

    Mir Tahmaseb Kashani

    2015-01-01

    Full Text Available The dynamic analysis of prestressed, bending-torsion coupled beams is revisited. The axially loaded beam is assumed to be slender, isotropic, homogeneous, and linearly elastic, exhibiting coupled flexural-torsional displacement caused by the end moment. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the vibration and stability of such beams are explored. Using the closed-form solutions of the uncoupled portions of the governing equations as the basis functions of approximation space, the dynamic, frequency-dependent, interpolation functions are developed, which are then used in conjunction with the weighted residual method to develop the Dynamic Finite Element (DFE of the system. Having implemented the DFE in a MATLAB-based code, the resulting nonlinear eigenvalue problem is then solved to determine the coupled natural frequencies of illustrative beam examples, subjected to various boundary and load conditions. The proposed method is validated against limited available experimental and analytical data, those obtained from an in-house conventional Finite Element Method (FEM code and FEM-based commercial software (ANSYS. In comparison with FEM, the DFE exhibits higher convergence rates and in the absence of end moment it produces exact results. Buckling analysis is also carried out to determine the critical end moment and compressive force for various load combinations.

  12. Pullout strength of axially loaded steel rods bonded in glulam at a 45º angle to the grain

    Directory of Open Access Journals (Sweden)

    Julio Cesar Molina

    2009-01-01

    Full Text Available This paper presents an experimental analysis of the pullout strength of bonded and axially loaded steel rods used as connector elements in log-concrete composite bridge decks. Static and cyclic tests were carried out to evaluate the fatigue of the connectors using two species of reforested wood, three types of commercial adhesives and three levels of wood moisture content. It was found that six failure modes (rod interface failure, timber interface failure, combined timber interface/rod interface failure, combined rod interface/timber substrate failure, rod failure, and adhesive failure can occur in the geometry of a single test specimen. The results indicate the good performance of epoxy glued steel rod connectors for use in log-concrete composite bridge decks.

  13. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  14. Comparison of Energy Absorption of Aluminium-composite Tubes Subjected to Axial Loading

    Science.gov (United States)

    Abbas, Tahir; Ya, H. H.; Zaki Abdullah, Mohamad

    2017-06-01

    In this paper, energy absorption capability and failure modes of partially wrapped aluminium tubes have been studied. These tubes are used in the front side of automobiles and aircraft applications. Filament winding technique was used for partial wrapping of these tubes. Partially wrapping on the external surface of aluminium tubes was done with glass fibers, and epoxy resin, which is a composite material. Various composite layers and fiber angles were used in partial wrapping, which includes 4, 6 and 8 composite layers of ± 55° fiber angle. These tubes were subjected to axial crushing using the universal ‎testing machine, and testing speed was 5mm/min. Failure modes and energy absorption analysis were carried out after testing. The experimental results revealed that partially wrapped aluminium tubes are 3.81%, 8.13% and 17.06% more efficient in energy absorption as compared to the tubes without wrapping. Furthermore, the effect of composite layers and failure modes has also been described.

  15. Torsional Buckling of I Beam and Flat Bar Stiffeners under Combined Lateral and Axial Loading.

    Science.gov (United States)

    1985-06-01

    Development of the Virtual Work Equation ......... 20 2.3 Determination of the Critical Buckling Load ...... 23 3. Model II - Torsional Buckling Under... Virtual Work Equation Work is defined as the movement of a force through a distance. ," In the case of Model I then the virtual work done is obtained by...1- sin 2 a dx 4EI a which when integrated becomes: 22 2 P~o+ 67T 2 Bo7r aa + GJ(-) - 4EI 192, a 4 z 28 .. 3.2 Development of the Virtual Work Equation

  16. Present knowledge about Laboratory Testing of Axial Loading on Suction Caissons

    DEFF Research Database (Denmark)

    Manzotti, E.; Vaitkunaite, Evelina; Ibsen, Lars Bo

    on the structure is resisted by push-pull loads on the vertical axis of each suction caisson. Relevant works where this situation is examined by means of laboratory testing are summarized in this article, then different conclusions are followed by discussion and comparison. In the initial theoretical section......, an overview of phenomena related with the case of study is presented. Drained and undrained condition, liquefaction and suction are examined from the theoretical point of view for mechanisms related to the case of study....

  17. The diagnostic value of axial loading imaging of the lumbar spine during CT and MR examination in patients with degeneration disorders

    International Nuclear Information System (INIS)

    Lei Xinwei; Yin Jianzhong; Xia Shuang; Chen Xinjuan; Wu Shengyong; Qi Ji

    2007-01-01

    Objective: To estimate the diagnostic value of axial loading imaging of the lumbar spine during CT and MRI examination in patients with degenerative disorders. Methods: One hundred patients were examined in psoas-relaxed position (PRP) and axially compressed in extension (ACE) supine position of the lumbar spine. Forty patients were examined with CT and 60 patients were with MRI. If a significant decrease (>15 mm 2 ) of dural sac cross-sectional area to values smaller than 75 mm 2 was found during examination in axial loading, or if a suspected disc herniation, narrow lateral recess, narrow intervertebral foramen, or intraspinal synovial cyst changed to being obvious at the axial loading examination, they were regarded as additional information. Results: After axial loading CT examination, AVI was found in 16 of 40 patients. A significant decrease of dural sac area was found in 13 patients. Intervertebral disc herniation was more severe in 7 patients, lateral recess or intervertebral foramen narrowed in 4 patients, no intraspinal synovial cyst was found. After axial loading MRI examination, AVI was found in 19 of 60 patients. A significant decrease of dural sac area was found in 13 patients. Intervertebral disc herniation became severe in 10 patients, lateral recess or intervertebral foramen narrowed in 8 patients, no intraspinal synovial cyst was found. AVI was found in 32 of 79(40.5%) patients with sciatica and 2 of 20(10.0%) patients with low back pain (χ 2 =7.45 P<0.05). Conclusion: Compared with PRP examination, the ACE of CT or MRI can reflect the status of disc, dural sac and lateral recess or intervertebral foramen of the lumbar spine in the erect position. (authors)

  18. Mechanical responses of a-axis GaN nanowires under axial loads

    Science.gov (United States)

    Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun

    2018-03-01

    Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.

  19. Development of a Preliminary Design Method for Subsonic Splittered Blades in Highly Loaded Axial-Flow Compressors

    Directory of Open Access Journals (Sweden)

    Baojie Liu

    2017-03-01

    Full Text Available This paper presents a model for predicting the reference minimum-loss incidence and deviation angles of a blade arrangement with splitter vanes, which is probably a solution for future ultra-highly loaded axial compressor designs. The motivation of the modeling is to guide the blading design in splittered compressor design processes where the additional splitter vanes must be specially considered. The development of the model is based on a blade performance database from systematic numerical simulations. Basic correlations of the model are firstly proposed, which consider dominant blade geometry parameters related to blade loading, including camber angle and solidity. Secondly, geometric and aerodynamic corrections about orientation parameter, blade maximum thickness, inlet Mach number, and three-dimensional (3D effects are empirically incorporated into the basic correlations. Eventually, a subsonic 3D splittered rotor is designed using the correlations coupled with the corrections obtained from the validation of the model. The results indicate that the model is able to achieve a good agreement within an error band of ±1.0° for the predictions of both reference minimum-loss incidence and deviation angles, and the rotor designed using the model accomplishes the desired work input and flow deflection.

  20. COMPARATIVE PERFORMANCE STUDY OF GASKETED AND NON-GASKETED FLANGE JOINTS UNDER COMBINED INTERNAL PRESSURE, AXIAL AND BENDING LOADING – AN EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2010-11-01

    Full Text Available In this paper result of an extensive comparative experimental study of a gasketed and non-gasketed flange joint with different assemblies with different combined load combinations is carried out to investigate joint performance i.e. joint strength and sealing capability. Actual joint load capacities are determined under both the design and proof test pressure with maximum additional external loading (axial and bending that can be applied for safe joint performance. In addition, application of combined load is also discussed in the light of equivalent pressure approach.

  1. Three-dimensional analysis of tarsal bone response to axial loading in patients with hallux valgus and normal feet.

    Science.gov (United States)

    Watanabe, Kota; Ikeda, Yasutoshi; Suzuki, Daisuke; Teramoto, Atsushi; Kobayashi, Takuma; Suzuki, Tomoyuki; Yamashita, Toshihiko

    2017-02-01

    Patients with hallux valgus present a variety of symptoms that may be related to the type of deformity. Weightbearing affects the deformities, and the evaluation of the load response of tarsal bones has been mainly performed using two-dimensional plane radiography. The purpose of this study was to investigate and compare structural changes in the medial foot arch between patients with hallux valgus and normal controls using a computer image analysis technique and weightbearing computed tomography data. Eleven patients with hallux valgus and eleven normal controls were included. Computed tomograms were obtained with and without simulated weightbearing using a compression device. Computed tomography data were transferred into a personal computer, and a three-dimensional bone model was created using image analysis software. The load responses of each tarsal bone in the medial foot arch were measured three-dimensionally and statistically compared between the two groups. Displacement of each tarsal bone under two weightbearing conditions was visually observed by creating three-dimensional bone models. At the first metatarsophalangeal joint, the proximal phalanges of the hallux valgus group showed significantly different displacements in multiple directions. Moreover, opposite responses to axial loading were also observed in both translation and rotation between the two groups. Weightbearing caused deterioration of the hallux valgus deformity three-dimensionally at the first metatarsophalangeal joint. Information from the computer image analysis was useful for understanding details of the pathology of foot disorders related to the deformities or instability and may contribute to the development of effective conservative and surgical treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nonlinear Equilibrium and Stability Analysis of Axially Loaded Piles Under Bilateral Contact Constraints

    Directory of Open Access Journals (Sweden)

    Ricardo A. da Mota Silveira

    Full Text Available AbstractThis paper presents a nonlinear stability analysis of piles under bilateral contact constraints imposed by a geological medium (soil or rock. To solve this contact problem, the paper proposes a general numerical methodology, based on the finite element method (FEM. In this context, a geometrically nonlinear beam-column element is used to model the pile while the geological medium can be idealized as discrete (spring or continuum (Winkler and Pasternak foundation elements. Foundation elements are supposed to react under tension and compression, so during the deformation process the structural elements are subjected to bilateral contact constraints. The errors along the equilibrium paths are minimized and the convoluted nonlinear equilibrium paths are made traceable through the use of an updated Lagrangian formulation and a Newton-Raphson scheme working with the generalized displacement technique. The study offers stability analyses of three problems involving piles under bilateral contact constraints. The analyses show that in the evaluation of critical loads a great influence is wielded by the instability modes. Also, the structural system stiffness can be highly influenced by the representative model of the soil.

  3. Modeling of Axially Loaded Nanowires Embedded in Elastic Substrate Media with Inclusion of Nonlocal and Surface Effects

    Directory of Open Access Journals (Sweden)

    Suchart Limkatanyu

    2013-01-01

    Full Text Available Nonlocal and surface effects are incorporated into a bar-elastic substrate element to account for small-scale and size-dependent effects on axial responses of nanowires embedded in elastic substrate media. The virtual displacement principle, employed to consistently derive the governing differential equation as well as the boundary conditions, forms the core of the displacement-based finite element formulation of the nanowire-elastic substrate element. The element displacement shape functions, analytically derived based on homogeneous solution to the governing differential equilibrium equation of the problem, result in the exact element stiffness matrix and equivalent load vector. Two numerical simulations employing the proposed model are performed to study characteristics and behavior of the nanowire-substrate system. The first simulation involves investigation of responses of the wire embedded in elastic substrate. The second examines influences of several system parameters on the contact stiffness and reveals the size-dependent effect on the effective Young's modulus of the system.

  4. Axial loading screw fixation for chevron type osteotomies of the distal first metatarsal: a retrospective outcomes analysis.

    Science.gov (United States)

    Murphy, Ryan M; Fallat, Lawrence M; Kish, John P

    2014-01-01

    The distal chevron osteotomy is a widely accepted technique for the treatment of hallux abductovalgus deformity. Although the osteotomy is considered to be stable, displacements of the capital fragment has been described. We propose a new method for fixation of the osteotomy involving the axial loading screw (ALS) used in addition to single screw fixation. We believe this method will provide a more mechanically stable construct. We reviewed the charts of 46 patients in whom 52 feet underwent a distal chevron osteotomy that was fixated with either 1 screw or 2 screws that included the ALS. We hypothesized that the ALS group would have fewer displacements and would heal more quickly than the single screw fixation group. We found that the group with ALS fixation had healed at a mean of 6.5 weeks and that the group with single screw fixation had healed at 9.53 weeks (p = .001). Also, 8 cases occurred of displacement of the capital fragment in the single screw, control group compared with 2 cases of displacement in the ALS group. However, this finding was not statistically significant. The addition of the ALS to single screw fixation allowed the patients to heal approximately 3 weeks earlier than single screw fixation alone. The ALS is a fixation option for the surgeon to consider when osseous correction of hallux abducto valgus is performed. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Axial bone-socket displacement for persons with a traumatic transtibial amputation: The effect of elevated vacuum suspension at progressive body-weight loads.

    Science.gov (United States)

    Darter, Benjamin J; Sinitski, Kirill; Wilken, Jason M

    2016-10-01

    Elevated vacuum suspension systems use a pump to draw air from the socket with the intent of reducing bone-socket motion as compared to passive suction systems. However, it remains unknown if elevated vacuum suspension systems decrease limb displacement uniformly during transitions from unloaded to full-body-weight support. To compare limb-socket motion between elevated vacuum and passive suction suspension sockets using a controlled loading paradigm. Comparative analysis. Persons with transtibial amputation were assessed while wearing either an elevated vacuum or passive suction suspension socket. Digital video fluoroscopy was used to measure axial bone-socket motion while the limb was loaded in 20% body-weight increments. An analysis of variance model was used to compare between suspension types. Total axial displacement (0%-100% body weight) was significantly lower using the elevated vacuum (vacuum: 1.3 cm, passive suction: 1.8 cm; p vacuum suspension reduced axial limb-socket motion by maintaining position of the limb within the socket during unloaded conditions. Elevated vacuum provided no meaningful improvement in limb-socket motion past initial loading. Excessive bone-socket motion contributes to poor residual limb health. Our results suggest elevated vacuum suspensions can reduce this axial displacement. Visual assessment of the images suggests that this occurs through the reduction or elimination of the air pocket between the liner and socket wall while the limb is unloaded. © The International Society for Prosthetics and Orthotics 2015.

  6. Forced Transverse Vibration of a Closed Double Single-Walled Carbon Nanotube System Containing a Fluid with Effect of Compressive Axial Load

    Directory of Open Access Journals (Sweden)

    Mehrdad Nasirshoaibi

    2015-01-01

    Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.

  7. Conceptual study of axial offset fluctuations upon stepwise power changes in a thorium–plutonium core to improve load-following conditions

    International Nuclear Information System (INIS)

    Lau, Cheuk Wah; Dykin, Victor; Nylén, Henrik; Björk, Klara Insulander; Sandberg, Urban

    2014-01-01

    Highlights: • Thorium–plutonium mixed oxide to improve nuclear reactors load-following capability. • SIMULATE-3 was the main calculation tool. • The Ringhals-3 PWR unit in Sweden was used as a reference. • Lower xenon poisoning and shorter reactor dead time. - Abstract: The increased share of renewable energy, such as wind and solar power, will increase the demand for load-following power sources, and nuclear reactors could be one option. However, during rapid load-following events, traditional UOX cores could be restricted by the volatile oscillation of the power distribution. Therefore, a conceptual study on stability properties of Th-MOX PWR concerning axial offset power excursion during load-following events are investigated and discussed. The study is performed in SIMULATE-3 for a realistic PWR core (Ringhals-3) at the end of cycle, where the largest amplitude of the axial offset oscillations is expected. It is shown that the Th-MOX core possesses much better stability characteristics and shorter reactor dead time compared with a traditional UOX core, and the main reasons are the lower sensitivity to perturbations in the neutron spectrum, lower xenon poisoning and lower thermal neutron flux

  8. Spatial reliability analysis of a wind turbine blade cross section subjected to multi-axial extreme loading

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Bitsche, Robert; Blasques, José Pedro Albergaria Amaral

    2017-01-01

    This paper presents a methodology for structural reliability analysis of wind turbine blades. The study introduces several novel elements by taking into account loading direction using a multiaxial probabilistic load model, considering random material strength, spatial correlation between materia...

  9. Investigation on the fiber based approach to estimate the axial load carrying capacity of the circular concrete filled steel tube (CFST)

    Science.gov (United States)

    Piscesa, B.; Attard, M. M.; Suprobo, P.; Samani, A. K.

    2017-11-01

    External confining devices are often used to enhance the strength and ductility of reinforced concrete columns. Among the available external confining devices, steel tube is one of the most widely used in construction. However, steel tube has some drawbacks such as local buckling which needs to be considered when estimating the axial load carrying capacity of the concrete-filled-steel-tube (CFST) column. To tackle this problem in design, Eurocode 4 provided guidelines to estimate the effective yield strength of the steel tube material. To study the behavior of CFST column, in this paper, a non-linear analysis using a fiber-based approach was conducted. The use of the fiber-based approach allows the engineers to predict not only the axial load carrying capacity but also the complete load-deformation curve of the CFST columns for a known confining pressure. In the proposed fiber-based approach, an inverse analysis is used to estimate the constant confining pressure similar to design-oriented models. This paper also presents comparisons between the fiber-based approach model with the experimental results and the 3D non-linear finite element analysis.

  10. Impact of the thermal effect on the load-carrying capacity of a slipper pair for an aviation axial-piston pump

    Directory of Open Access Journals (Sweden)

    Hesheng TANG

    2018-02-01

    Full Text Available A thermal hydraulic model based on the lumped parameter method is presented to analyze the load-carrying capacity of a slipper pair in an aviation axial-piston pump under specified operating conditions. Both theoretical and experimental results are presented to demonstrate the validity of the thermal hydraulic model. The results illustrate that the squeezing force and thermal wedge bearing force are the main factors that affect the film thickness and load-carrying capacity. At high oil temperature and high load pressure, the film thickness decreases with increasing clamping force due to a combined action of the squeezing bearing force and the thermal wedge bearing force, but the load-carrying capacity will increase. An increase of the film thickness is proven to be beneficial under high shaft rotational speed but especially dangerous as it strongly increases the ripple amplitude of the film thickness, which leads to decreasing the load-carrying capacity. The structural parameters of the slipper can be optimized to achieve desired performance, such as the slipper radius ratio and orifice length diameter ratio. To satisfy the requirement of the load-carrying capacity, the slipper radius ratio should be selected from 1.4 to 1.8, and the orifice length diameter ratio should be selected from 4 to 5.

  11. Axial loads on implant-supported partial fixed prostheses for external and internal hex connections and machined and plastic copings: strain gauge analysis.

    Science.gov (United States)

    de Vasconcellos, Luis Gustavo Oliveira; Kojima, Alberto Noriyuki; Nishioka, Renato Sussumu; de Vasconcellos, Luana Marotta Reis; Balducci, Ivan

    2015-04-01

    The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (με). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (α = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.

  12. Dynamic stability of slender columns with semi-rigid connections under periodic axial load: verification and examples

    Directory of Open Access Journals (Sweden)

    Oliver Giraldo-Londoño

    2014-01-01

    Full Text Available La estabilidad dinámica de una columna elástica prismática esbelta con conexiones semirrígidas en ambos extremos de rigidez idéntica y con desplazamiento lateral entre los dos extremos totalmente inhibido sujetos a cargas axiales paramétricas incluyendo los efectos combinados de inercia rotacional y amortiguación externas fue presentada en una publicación adjunta. Expresiones cerradas que se pueden utilizar para predecir las regiones inestabilidad dinámica de columnas esbeltas se desarrollan haciendo uso de la teoría de Floquet. Las ecuaciones propuestas son sencillas y fáciles de aplicar. La solución propuesta es capaz de capturar el fenómeno de estabilidad en columnas sometidas a cargas axiales periódicas utilizando un solo elemento de columna. El método propuesto y las ecuaciones correspondientes se pueden utilizar para investigar los efectos del amortiguamiento, la inercia rotacional de la columna, y las conexiones semirrígidas en el análisis de estabilidad de columnas esbeltas sometidas a cargas axiales periódicas. Estudios de sensibilidad presentados en esta publicación muestran los efectos de la inercia rotacional, el amortiguamiento y las conexiones semi-rígidas en la estabilidad dinámica de columnas sometidas a cargas axiales paramétricas. Los estudios analíticos indican que el comportamiento dinámico de columnas bajo carga periódica está fuertemente afectado por la rigidez a la flexión de las conexiones de los dos apoyos y por el amortiguamiento externo, pero no tanto por la inercia rotacional. Tres ejemplos se presentan en detalle y los resultados calculados se comparan con los reportados por otros investigadores.

  13. The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength.

    Science.gov (United States)

    Curtis, Andrew R; Palin, William M; Fleming, Garry J P; Shortall, Adrian C C; Marquis, Peter M

    2009-02-01

    To determine the influence of nano-sized filler particles and agglomerates of nanoparticles ('nanoclusters') in resin-based composite (RBC) materials on the bi-axial flexure strength (BFS) following cyclic pre-loading and storage in a 'dry' or 'wet' environment. Seven commercially available RBC restoratives, Heliomolar (Ivoclar Vivadent, Schaan, Liechtenstein), Z100 MP Restorative, Filtek Z250, Filtek Supreme (3M ESPE, St. Paul, MN, USA) in Body (FSB) and Translucent (FST) shades, Grandio and Grandio Flow (VOCO, Cuxhaven, Germany), containing differing filler particle types and morphologies were investigated. Specimens were pre-loaded at 20, 50 or 100 N for 2000 cycles and stored in a 'dry' or 'wet' environment prior to BFS testing. A general linear model analysis of variance highlighted a reduction in the BFS following pre-loading, however, individual RBC materials responded differently. The RBCs containing agglomerated nano-sized particles or 'nanoclusters' (Filtek Supreme) demonstrated distinctive and unique patterns of response to pre-loading. Cyclic pre-loading at 20 and 50 N significantly increased the Weibull modulus of both FSB (8.53+/-1.91 and 10.23+/-2.29) and FST (16.89+/-3.78 and 10.91+/-2.45) compared with FSB and FST control (no pre-cyclic load) specimens (5.98+/-1.34 and 7.99+/-1.78, respectively). BFS of FSB and FST was maintained or significantly increased compared with the other materials following 20 and 50 N cyclic pre-load (P<0.05). The 'nanoclusters' provided a distinct reinforcing mechanism compared with the microhybrid, microfill or nanohybrid RBC systems resulting in significant improvements to the strength and reliability, irrespective of the environmental storage and testing conditions. Silane infiltration within interstices of the nanoclusters may modify the response to pre-loading induced stress, thereby enhancing damage tolerance and providing the potential for improved clinical performance.

  14. The Effects of Triggering Mechanisms on the Energy Absorption Capability of Circular Jute/Epoxy Composite Tubes under Quasi-Static Axial Loading

    Science.gov (United States)

    Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri

    2018-01-01

    The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.

  15. Immediate loading of full-arch fixed prostheses supported by axial and tilted implants for the treatment of edentulous atrophic mandibles.

    Science.gov (United States)

    Agliardi, Enrico; Clericò, Matteo; Ciancio, Paolo; Massironi, Domenico

    2010-04-01

    This study aimed to evaluate the long-term prognosis of immediately loaded fixed full prostheses for the treatment of edentulous patients with extreme bone atrophy in the posterior mandibular region. Twenty-four edentulous patients with atrophic posterior mandibles were treated by means of a complete prosthesis sustained by both axial and tilted fixtures. The insertion of tilted implants was carefully planned by means of computed tomography scan analysis and measuring width and height of residual bone. Implant type, length, and diameter were chosen, as well as implant angulation, according to the All-on-Four protocol and avoiding the course of the mandibular nerve. The prosthesis was delivered no later than 2 days after implant surgery. Implant survival and prosthesis success were assessed clinically and radiographically up to 42 months of follow-up. Measurement of peri-implant bone loss was based on periapical radiographs after 12 months of loading. All implants survived and all prostheses were successful at the time of this study reporting. The mean follow-up was 30.1 months with a range of 14 to 44 months. The average peri-implant bone loss was 0.85 mm after 12 months (0.8 mm for tilted implants and 0.9 mm for axial implants). No significant difference in marginal bone loss was observed between axial and tilted implants. The immediate rehabilitation of patients with extreme atrophic mandibles can be successful with careful planning and particular attention during the surgical placement of the implants, as shown by the excellent outcomes of the present study.

  16. Multi-axial loading micromechanics of the cement-bone interface in postmortem retrievals and lab-prepared specimens

    NARCIS (Netherlands)

    Miller, M.A.; Race, A.; Waanders, D.; Cleary, R.; Janssen, D.; Verdonschot, N.J.J.; Mann, K.A.

    2011-01-01

    Maintaining adequate fixation between cement and bone is important for successful long term survival of cemented total joint replacements. Mixed-mode loading conditions (combination of tension/compression and shear) are present during in vivo loading, but the micromotion response of the interface to

  17. Dynamic stability of slender columns with semi-rigid connections under periodic axial load: verification and examples

    OpenAIRE

    Oliver Giraldo-Londoño; J. Darío Aristizábal-Ochoa

    2014-01-01

    La estabilidad dinámica de una columna elástica prismática esbelta con conexiones semirrígidas en ambos extremos de rigidez idéntica y con desplazamiento lateral entre los dos extremos totalmente inhibido sujetos a cargas axiales paramétricas incluyendo los efectos combinados de inercia rotacional y amortiguación externas fue presentada en una publicación adjunta. Expresiones cerradas que se pueden utilizar para predecir las regiones inestabilidad dinámica de columnas esbeltas se desarrollan ...

  18. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  19. Experimental investigation of performance and dynamic loading of an axial-flow marine hydrokinetic turbine with comparison to predicted design values from BEM computations

    Science.gov (United States)

    van Ness, Katherine; Hill, Craig; Aliseda, Alberto; Polagye, Brian

    2017-11-01

    Experimental measurements of a 0.45-m diameter, variable-pitch marine hydrokinetic (MHK) turbine were collected in a tow tank at different tip speed ratios and blade pitch angles. The coefficients of power and thrust are computed from direct measurements of torque, force and angular speed at the hub level. Loads on individual blades were measured with a six-degree of freedom load cell mounted at the root of one of the turbine blades. This information is used to validate the performance predictions provided by blade element model (BEM) simulations used in the turbine design, specifically the open-source code WTPerf developed by the National Renewable Energy Lab (NREL). Predictions of blade and hub loads by NREL's AeroDyn are also validated for the first time for an axial-flow MHK turbine. The influence of design twist angle, combined with the variable pitch angle, on the flow separation and subsequent blade loading will be analyzed with the complementary information from simulations and experiments. Funding for this research was provided by the United States Naval Facilities Engineering Command.

  20. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Yusuf Yesilce

    2012-01-01

    Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of

  1. Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

    Directory of Open Access Journals (Sweden)

    M. Zaidabadi nejad

    2018-02-01

    This article proposes a new robust approach to AO control of pressurized water reactors during load-following operation. This method uses robust feedback-linearization control based on the multipoint kinetics reactor model (neutronic and thermal-hydraulic. In this model, the reactor core is divided into four nodes along the reactor axis. Simulation results show that this method improves the reactor load-following capability in the presence of parameter uncertainty and disturbances and can use optimum control rod groups to maneuver with variable overlapping.

  2. Development of a hysteresis model for R/C columns subjected to bi-axial lateral loading

    International Nuclear Information System (INIS)

    Dutta, Sekhar Chandra; Chowdhury, Rajib; Roy, Raghupati; Reddy, G. Rami

    2003-01-01

    Recent investigations on dynamic response of reinforced concrete (R/C) structures have confirmed that the R/C structural members undergo much more inelastic deformation in each of the two mutually perpendicular directions under bi-directional seismic loading, than that observed only under unidirectional ground motion. To predict the seismic response of R/C structure with fair accuracy demands, a faithful model that can incorporate the effect of biaxial bending interaction in column. This model should not have high computational demand but should adequately reflect the stiffness degrading and strength deterioration characteristics of R/C structural members. Present study is an effort to develop such a bi-directional hysteresis model accounting the effect of interaction between lateral loadings in two orthogonal directions. The development of the present model is based on the yield surface approach and it can incorporate both strength and stiffness degradation characteristics, which is unavoidable in R/C structures during cyclic loading. The performance of the proposed model/ is demonstrated through the prediction of available experimental results of a reinforced concrete column, subjected to biaxial loading. (author)

  3. Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Young; Park, Hong Sun; Kang, Min Sung; Lee, Woo Hyung; Choi, Jung Hun; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of)

    2009-04-15

    In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of 0 .deg., 30 .deg. and 45 .deg. were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole({Phi}10mm) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly.

  4. Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion

    International Nuclear Information System (INIS)

    Kim, Sang Young; Park, Hong Sun; Kang, Min Sung; Lee, Woo Hyung; Choi, Jung Hun; Koo, Jae Mean; Seok, Chang Sung

    2009-01-01

    In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of 0 .deg., 30 .deg. and 45 .deg. were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole(Φ10mm) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly

  5. Experimental investigations of the frictional and wear behavior of tungsten carbide cermet ball bearings under axial load in liquid sodium

    International Nuclear Information System (INIS)

    Kleefeldt, K.W.

    1976-01-01

    The paper describes part of the R and D work performed on ball bearings operated in a liquid sodium environment and tested under conditions which are felt to be representative for high precision mechanisms in LMFBR's. After a short introduction, mainly dealing with the experimental results of other authors, a description will be given of the test facility, the test procedure, the ball bearings and the basis for the selection of the materials. The paper covers the experimental phase, which has been carried out in two steps. In the first phase material screening tests demonstrated the tungsten-carbide-cobalt cermet to be superior to the other materials tested with respect to friction and wear. This material, therefore, was selected for a more detailed parameter test programme during phase 2. Up to now a series of tests have been performed with bearing load and speed as parameters, indicating that fatigue is the life limiting factor. It shows that a life-load relationship, similar to that known for conventional ball bearing technology, also seems appropriate for the test conditions and environment investigated here

  6. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    International Nuclear Information System (INIS)

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-01-01

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete

  7. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...

  8. Experimental analysis of energy absorption behaviour of Al-tube filled with pumice lightweight concrete under axial loading condition

    Science.gov (United States)

    Rajak, D. K.; Deshpande, P. G.; Kumaraswamidhas, L. A.

    2017-08-01

    This Paper aimed at experimental investigation of compressive behaviour of square tube filled with pumice lightweight concrete (PLC). Square section of 20×20×30 mm is investigated, which is the backbone structure. The compression deformation result shows the better folding mechanism, displacement value, and energy absorption. PLC concrete filled with aluminium thin-wall tubes has been revealed superior energy absorption capacity (EAC) under low strain rate at room temperature. Superior EAC resulted as a result of mutual deformation benefit between aluminium section and PLC is also analysed. PLC was characterised by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectrometry (EDX) analysis for better understanding of material behaviour. Individual and comparative load bearing graphs is logged for better prospective of analysing. Novel approach aimed at validation of porous lightweight concrete for better lightweight EA filler material.

  9. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation.

    Science.gov (United States)

    Severson, Aaron F; Ling, Lorraine; van Zuylen, Vanessa; Meyer, Barbara J

    2009-08-01

    Faithful transmission of the genome through sexual reproduction requires reduction of genome copy number during meiosis to produce haploid sperm and eggs. Meiosis entails steps absent from mitosis to achieve this goal. When meiosis begins, sisters are held together by sister chromatid cohesion (SCC), mediated by the cohesin complex. Homologs then become linked through crossover recombination. SCC subsequently holds both sisters and homologs together. Separation of homologs and then sisters requires two successive rounds of chromosome segregation and the stepwise removal of Rec8, a meiosis-specific cohesin subunit. We show that HTP-3, a known component of the C. elegans axial element (AE), molecularly links these meiotic innovations. We identified HTP-3 in a genetic screen for factors necessary to maintain SCC until meiosis II. Our data show that interdependent loading of HTP-3 and cohesin is a principal step in assembling the meiotic chromosomal axis and in establishing SCC. HTP-3 recruits all known AE components to meiotic chromosomes and promotes cohesin loading, the first known involvement of an AE protein in this process. Furthermore, REC-8 and two paralogs, called COH-3 and COH-4, together mediate meiotic SCC, but they perform specialized functions. REC-8 alone is necessary and sufficient for the persistence of SCC after meiosis I. In htp-3 and rec-8 mutants, sister chromatids segregate away from one another in meiosis I (equational division), rather than segregating randomly, as expected if SCC were completely eliminated. AE assembly fails only when REC-8, COH-3, and COH-4 are simultaneously disrupted. Premature equational sister separation in rec8 mutants of other organisms suggests the involvement of multiple REC-8 paralogs, which may have masked a conserved requirement for cohesin in AE assembly.

  10. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  11. Axial spondyloarthritis.

    Science.gov (United States)

    Sieper, Joachim; Braun, Jürgen; Dougados, Maxime; Baeten, Dominique

    2015-07-09

    The term axial spondyloarthritis covers both non-radiographic disease and radiographic disease (also known as ankylosing spondylitis). Some studies have been performed to investigate the prevalence of axial spondyloarthritis, although most are limited to patients with radiographic disease. A strong genetic association has been shown between axial spondyloarthritis and human leukocyte antigen-B27 (HLA-B27), but the pathogenetic role of HLA-B27 has not yet been clarified. Tumour necrosis factor (TNF), IL-17, IL-23 and downstream pathways also seem to be important - based on the good results of therapies directed against these molecules - but their exact role in the inflammatory process is also not yet clear. Elucidating the interaction between osteoproliferation and inflammation will be crucial for the prevention of long-term structural damage of the bone. The development of new criteria for classification, diagnosis and screening of patients with axial spondyloarthritis will enable earlier intervention for this chronic inflammatory disease. MRI has become an important tool for the early detection of axial spondyloarthritis. NSAIDs and TNF blockers are effective therapies, including in the early non-radiographic stage. Therapeutic blockade of IL-17 or IL-23 seems to be a promising new treatment option. Tools for measuring quality of life in axial spondyloarthritis have become relevant to assess the impact that the disease has on patients. These diagnostic and therapeutic advances will continue to change the management of axial spondyloarthritis, and new insights into the disease pathogenesis will hopefully accelerate this process. For an illustrated summary of this Primer, visit: http://go.nature.com/51b1af.

  12. Strength Design of Reinforced Concrete Hydraulic Structures. Report 2. Design Aids for Use in the Design and Analysis of Reinforced Concrete Hydraulic Structural Members Subjected to Combined Flexure and Axial Loads.

    Science.gov (United States)

    1981-12-01

    members subjected to combined uniaxial bending and axial loads. They are in- tended to save the designer the effort of performing certain routine...4 pGd ISM Rd 0 0 - Z- 0 00 00 -0 ------- A fl) 4-j 0 0 0 - In "i C- C p q -4 Ism ii i - CAA- 04 0 ’T V- O. .,. - ///’ ,II II"gI -- - - - -1_ - 0 0 o N

  13. Experimental study of columns partially filled with concrete under compressive axial loads Etude expérimentale des colonnes partiellement remplis par le béton sous charge axiale

    Directory of Open Access Journals (Sweden)

    Achoura D.

    2012-09-01

    Full Text Available Dans cette étude, on présente les résultats expérimentaux obtenus sur des poteaux mixtes béton-acier mince réalisés par soudures. Un total de 24 profilés en acier, et en forme de I a été testé sous charge de compression uni-axiale à l’âge de 28 jours. les spécimens ont été réparties comme suit: 4 à vides, 4 partiellement remplies avec un béton ordinaire sans l’addition des connecteurs, 4 renforcés par des connecteurs de cisaillements de type cornière en U, 4 autres l’ont été avec des connecteurs de cisaillements type goujons et 8 restants ont été renforcés avec des liens transversaux d’espacement 100mm, 50mm, soudés aux bouts des ailes opposées. Les principaux paramètres étudiés sont: l’élancement du profilé, le type de connecteur de renforcement. A partir des résultats d’essais obtenus, il est confirmé que les parois minces sont plus sensibles de l’apparition au voilement et la longueur des profilés a un effet considérable sur la capacité portante et le mode de rupture. L’addition des connecteurs de renforcement a confirmé l’augmentation de la charge ultime par rapport aux profilés sans connecteurs. In the present work, results of tests conducted on thin welded steel-concrete stubs are presented. A total of 24 stubs an I steel section were tested under axial compression at 28 days after the date of casting, 4 were empty, 4 filled with normal concrete, 8 columns had shear connecters welded along the centreline of the web, and 8 columns had steel rods welded between the tips of opposing flanges on both sides of the spacing of the transverse link 100 mm and 50 mm. The main parameters studied were: the heel height, and type of connector strengthening. From the test results, it is confirmed that the thin walls are more sensitive to the appearance local buckling and the length of the profiles has a significant effect on the bearing capacity and failure mode. The bearing capacity was increased

  14. Biomechanical properties of orthogonal plate configuration versus parallel plate configuration using the same locking plate system for intra-articular distal humeral fractures under radial or ulnar column axial load.

    Science.gov (United States)

    Kudo, Toshiya; Hara, Akira; Iwase, Hideaki; Ichihara, Satoshi; Nagao, Masashi; Maruyama, Yuichiro; Kaneko, Kazuo

    2016-10-01

    Previous reports have questioned whether an orthogonal or parallel configuration is superior for distal humeral articular fractures. In previous clinical and biomechanical studies, implant failure of the posterolateral plate has been reported with orthogonal configurations; however, the reason for screw loosening in the posterolateral plate is unclear. The purpose of this study was to evaluate biomechanical properties and to clarify the causes of posterolateral plate loosening using a humeral fracture model under axial compression on the radial or ulnar column separately. And we changed only the plate set up: parallel or orthogonal. We used artificial bone to create an Association for the Study of Internal Fixation type 13-C2.3 intra-articular fracture model with a 1-cm supracondylar gap. We used an anatomically-preshaped distal humerus locking compression plate system (Synthes GmbH, Solothurn, Switzerland). Although this is originally an orthogonal plate system, we designed a mediolateral parallel configuration to use the contralateral medial plate instead of the posterolateral plate in the system. We calculated the stiffness of the radial and ulnar columns and anterior movement of the condylar fragment in the lateral view. The parallel configuration was superior to the orthogonal configuration regarding the stiffness of the radial column axial compression. There were significant differences between the two configurations regarding anterior movement of the capitellum during axial loading of the radial column. The posterolateral plate tended to bend anteriorly under axial compression compared with the medial or lateral plate. We believe that in the orthogonal configuration axial compression induced more anterior displacement of the capitellum than the trochlea, which eventually induced secondary fragment or screw dislocation on the posterolateral plate, or nonunion at the supracondylar level. In the parallel configuration, anterior movement of the capitellum or

  15. Analytic study of plastic instabilities during tension or compression tests on a metallic plate bi-axially loaded in its plane: symmetric and antisymmetric modes with respect to the median plane

    International Nuclear Information System (INIS)

    Jouve, Dominique

    2012-01-01

    This report is a continuation of the thesis [23], devoted to the onset of necking plastic instabilities during tension tests on metallic plates bi-axially loaded in their plane. We are also interested here in compression tests, and in the development of antisymmetric defects with respect to the median plane of the plate. As in the thesis, we search for the dominant mode, i.e. the most unstable pair of wavelengths (λ1, λ2) in the loading plane. An approximate analytical formulation for the growth rate is proposed, especially for plane-strain tests in the absence of viscous effects, and for static tests in tension in the x1 and x2 loading directions. In that latter case, we retrieve published results [14][15]. For plane-strain tests, we show that infinitely dense networks of shear bands inclined at 45 deg. with respect to the loading direction instantaneously occur when heat softening prevails over work-hardening. (author)

  16. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.

    Science.gov (United States)

    Lau, Ernest W

    2013-01-01

    The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The pre-calculation of the operating behaviour of axial sliding bearings at high circumferential speeds and high specific loads. Final report; Vorausberechnung des Betriebsverhaltens von Axialgleitlagern bei hohen Umfangsgeschwindigkeiten und hohen spezifischen Belastungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Glienicke, J.; Lindloff, K.; Medhioub, M.

    1997-12-31

    The reliable pre-calculation of the important axial bearing parameters is of decisive importance for the safe running of high speed rotors with high axial thrust. However, the computer programs available now contain simplified assumptions which can lead to considerable discrepancies between measured and calculated values at high speeds of sliding and high specific loads. By expanding the existing sliding bearing computer program, in which the exact segment geometry, the local lubricating film turbulence, the centrifugal forces and entry losses of the oil, the flow resistance, both incoming and outgoing, the thermal conduction in the tracking ring and the bearing, the thermal pocket mixing, the elastic and thermal segment deformation and the coupling of the lubrication films in double-acting axial bearings are now included, good agreement between measured and calculated results is obtained for all bearing shapes examined. (orig./AKF) [Deutsch] Fuer den betriebssicheren Lauf hochtouriger Rotoren mit hohem Axialschub ist die zuverlaessige Vorausberechnung der massgebenden Axiallager-Kennwerte von entscheidender Bedeutung. Die heute verfuegbaren Rechenprogramme enthalten jedoch vereinfachende Annahmen, die bei hohen Gleitgeschwindigkeiten und hohen spezifischen Belastungen zu wesentlichen Abweichungen zwischen Mess- und Rechenwerten fuehren koennen. Durch Erweiterung eines vorhandenen Gleitlager-Rechenprogramms, in dem nun die genaue Segmentgeometrie, die lokale Schmierfilmturbulenz, die Fliehkraefte und Eintrittsverluste des Oels, die Durchflusswiderstaende im Zu- und Abfluss, die Waermeleitung in Spurscheibe und Lager, die thermische Taschenmischung, die elastischen und thermischen Segmentverformungen und die Kopplung der Schmierfilme bei doppeltwirkenden Axiallagern erfasst werden, wird fuer alle untersuchten Lagerbauformen eine gute Uebereinstimmung von Mess- und Rechenwerten erreicht. (orig./AKF)

  18. Light axial vector mesons

    Science.gov (United States)

    Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki

    2015-04-01

    Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.

  19. Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Petr; Frost, Miroslav; Benešová, Barbora; Zineb, T.B.; Šittner, Petr

    2012-01-01

    Roč. 39, DEC 2012 (2012), s. 132-151 ISSN 0749-6419 R&D Projects: GA ČR GAP108/10/1296; GA ČR GA106/09/1573; GA ČR(CZ) GA101/09/0702; GA ČR GAP107/12/0800 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100521 Keywords : shape memory alloys * constitutive modeling * R-phase * non-proportional loading * dissipation function Subject RIV: BJ - Thermodynamics; JJ - Other Materials (FZU-D) Impact factor: 4.356, year: 2012 http://www.sciencedirect.com/science/article/pii/S0749641912001027

  20. Comportamento de cilindros de carbono/epóxi submetidos a cargas compressivas axiais Mechanical behavior of carbon/epoxy cylinders under axial compressive loads

    Directory of Open Access Journals (Sweden)

    Adriano Gonçalves

    2001-06-01

    Full Text Available Para estruturas utilizadas no setor aeroespacial, os requisitos de baixo peso, alta resistência e rigidez, além de estabilidade dimensional, têm propiciado o aumento da utilização de materiais compósitos nas suas manufaturas. Em particular, cascas cilíndricas ou estruturas construídas pela junção de cilindros de paredes finas, confeccionadas em fibra de carbono e resina epóxi, são amplamente utilizadas neste tipo de aplicação. Neste trabalho, um programa experimental foi desenvolvido para determinar as tensões de falha, os módulos de elasticidade e o modo de falha de 47 cilindros com diâmetro interno de 40 mm e espessura nominal de 0,6 mm (com exceção de 2 corpos de prova, fabricados em carbono/epóxi, quando submetidos a cargas compressivas uniaxiais. Os espécimes testados possuíam diferentes razões entre comprimento e diâmetro (variando de 2,50 a 11,25 e seqüências de laminação variadas (orientações de camadas. Os resultados dos ensaios foram comparados aos obtidos em análises realizadas com programas de elementos finitos e os fatores que influenciaram o comportamento mecânico destes cilindros foram analisados.The requirements of low weight and dimensional stability, combined with high strength and stiffness, for aerospace structures has prompted an increasing use of fiber reinforced materials in manufacturing such structures. In particular, carbon/epoxy cylinders have been widely used in aerospace applications. In this work, an experimental program was developed to determine failure loads, modulus of elasticity and failure modes of 47 carbon/epoxy cylinders shells under compressive loads. The specimens tested had several different length/diameter (from 2.50 to 11.25 ratios and laminate lay-up. These results were compared to the analytical results from finite element code and the most important factors influencing the mechanical behavior of this type of structure were analyzed.

  1. Fault detection in bars axially loaded by the analysis of its longitudinal displacement; Deteccao de falhas em barras solicitadas axialmente pela analise do seu deslocamento longitudinal

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, J.L.; Irmao, M.A.S.; Araujo, A.L.; Silva, A.A. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    Structures and mechanical components, subjects to conditions of loading in operation, accumulate faults during your useful lives. The detection and condition monitoring of the faults is essential of the point of view of the efficiency and safety. Efforts have been accomplished, in the sense of constituting models and methodologies that indicate the most opportune moment for the shut down industrial plant, seeking your maintenance. In the present work, it intends an alternative method for the detection and the condition monitoring of faults in a cantilever bar by the analysis of your longitudinal displacement. The methodology is constituted basically in simulating the computational model of the bar for Finite Element Method (FEM), where the faults are characterized by one of the elements with reduced transverse section. The existence of two classes of angular coefficients is noticed, that will be the analysis parameters, where the first tells respect the intact element and the second the damaged element, both different ones for each position and depth of simulated faults. The same ones are thrown as input in a Artificial Neural Networks, that once trained is capable to identify the position and the depth efficiently in that meets the faults. (author)

  2. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  3. Fatigue Limit of Axially Compressed Concrete | Levchich | Nigerian ...

    African Journals Online (AJOL)

    An attempt to evaluate analytically the fatigue limit of axially loaded concrete depending upon the load parameters, number of load cycles and static short-term strength is presented. The conventional limit of concrete microcracking statical sustained strength of concrete, curvelinear relationship between fatigue limit and load ...

  4. Avaliação eletromiográfica de músculos da cintura escapular e braço durante exercícios com carga axial e rotacional Evaluación electromiográfica de músculos de la cintura escapular y brazos durante ejercicios con cargas axial y rotacional Electromyographic assessment of the shoulder girdle and arm muscles during exercises with axial and rotational loads

    Directory of Open Access Journals (Sweden)

    Anamaria Siriani de Oliveira

    2006-02-01

    extremidad libre con la carga rotacional externa (ELCR. Se seleccionaron 20 voluntarias (23,2 años ± 0,9 sedentarias. Ellos estimaron el grosor en mm. de los tríceps del brazo, los bíceps del brazo, pectoral mayor, trapecio y deltoides. El registro electromiográfico de superficie se hizo, durante la realización de los ejercicios con EFCA y de los con ELCR, usando 100% de la resistencia máxima establecidos previamente. Se compararon los valores de RMS normalizados por la reducción máxima voluntaria a través de modelo de efectos mixtos con un nivel de significancia de 5%. En estas condiciones experimentales, los resultados del estudio presente mostraron que ejercicios similares, clasificados por la condición de la extremidad y la dirección de la carga aplicada al miembro superior, promoven niveles similares de electromiografía con actividad en sólo parte de los músculos estudiados. Estos descubrimientos cuestionan la capacidad del sistema de la clasificación usada en este estudio para predecir el tipo de respuesta muscular esperada en el logro de tareas diferentes de misma clasificación.The knowledge of the electromyographic activity produced during shoulder exercises can help in determining its clinical applicability. The purpose of this study was to assess the influence of the load direction and the extremity condition on the electrical activity of the shoulder girdle and upper limb muscles during exercises with fixed distal extremity and external axial load (FEAL and mobile extremity with rotational external load (MERL. Twenty 23.2 ± 0.9 years old female sedentary volunteers were selected. The triceps brachii, biceps brachii, major pectoral, trapezium and deltoid muscles were assessed. The surface electromyography was recorded during two FEAL and two MERL exercises using 100% of the previously established maximal resistance. The RMS values normalized by the maximal voluntary contraction were compared by a mixed effect model with 5% significance level. In

  5. Axial static mixer

    Science.gov (United States)

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  6. Seismic behavior of circular reinforced concrete bridge columns under combined loading including torsion.

    Science.gov (United States)

    2009-12-01

    Reinforced concrete (RC) columns of skewed and curved bridges with unequal spans and column heights can be subjected to : combined loading including axial, flexure, shear, and torsion loads during earthquakes. The combination of axial loads, shear : ...

  7. Lateral loadings on snubber assemblies

    International Nuclear Information System (INIS)

    Raphael, L.S.

    1981-01-01

    This paper examines the installation of snubber assemblies in power plants with respect to transverse or lateral loads as well as axial loads. Evaluation of the effects of low level, lateral loads was performed by analytical means. At higher loadings, the snubber assembly could no longer be treated as a column; therefore, the effects of lateral loadings was determined by test. The test consisted of applying both lateral and axial loads simultaneously. Results of both the analysis and the test showed that the application of lateral loads had a considerable effect on the snubber assemblies

  8. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  9. Flutter of a fan blade in supersonic axial flow

    Science.gov (United States)

    Kielb, Robert E.; Ramsey, John K.

    1988-01-01

    An application of a simple aeroelastic model to an advanced supersonic axial flow fan is presented. Lane's cascade theory is used to determine the unsteady aerodynamic loads. Parametric studies are performed to determine the effects of mode coupling, Mach number, damping, pitching axis location, solidity, stagger angle, and mistuning. The results show that supersonic axial flow fan and compressor blades are susceptible to a strong torsional mode flutter having critical reduced velocities which can be less than one.

  10. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  11. Compton backscattering axial spectrometer

    International Nuclear Information System (INIS)

    Rad'ko, V.E.; Mokrushin, A.D.; Razumovskaya, I.V.

    1981-01-01

    Compton gamma backscattering axial spectrometer of new design with the 200 time larger aperture as compared with the known spectrometers at the equal angular resolution (at E=159 keV) is described. Collimator unit, radiation source and gamma detector are located in the central part of the spectrometer. The investigated specimen (of cylindrical form) and the so called ''black body'' used for absorption of photons, passed through the specimen are placed in the peripheric part. Both these parts have an imaginary symmetry axis that is why the spectrometer is called axial. 57 Co is used as the gamma source. The 122 keV spectral line which corresponds to the 83 keV backscattered photon serves as working line. Germanium disk detector of 10 mm diameter and 4 mm height has energy resolution not worse than 900 eV. The analysis of results of test measurements of compton water profile and their comparison with data obtained earlier show that only finity of detector resolution can essentially affect the form of Compton profile. It is concluded that the suggested variant of the spectrometer would be useful for determination of Compton profiles of chemical compounds of heavy elements [ru

  12. An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy

    Science.gov (United States)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    2010-01-01

    Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions

  13. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum...

  14. The Effects of Loading Rate and Duration on the Axial Behavior of Low-Strength and Medium-Strength Noncircular Concrete Members Confined by Fiber-Reinforced Polymer Sheets

    Directory of Open Access Journals (Sweden)

    Cem Demir

    2014-06-01

    Full Text Available In this study, 36 concrete specimens with square cross-sections and different concrete qualities were tested either under uniaxial compression at different loading rates or subjected to sustained uniaxial stresses after externally jacketing with carbon fiber-reinforced polymer (CFRP sheets. The main test parameters were the loading rate and the applied sustained stress level. Among these parameters, the loading rate varied in the range of 0.0002 and 0.04 strain/min. In the case of short-term creep tests under sustained loads, three stress levels (between 0.73 f'cc and 0.90 f'cc or 2.76 f'cc and 3.37 f'cc for low-strength and four stress levels (between 0.69 f'cc and 0.92 f'cc or 0.89 f'co and 1.20 f'co for medium-strength prisms were applied. The test results showed that the stress-strain behavior of CFRP-confined concrete was affected by the change in loading rate, and external CFRP confinement enhanced the creep performance of concrete significantly. For low-strength concrete specimens, higher strain rates did not bring higher strength values; however, an increase in strength was obvious for medium-strength prisms. On the other hand, for both concrete qualities, the specimens loaded at slower strain rates exhibited better deformability. None of the specimens of the medium-strength concrete failed during the short-term creep tests; however, three of the low-strength concrete prisms failed during the tests. The results of residual strength tests showed that sustained loading did not cause a strength or ultimate deformation capacity loss, but affected the residual strain capacities.

  15. Axial skeletal CT densitometry

    International Nuclear Information System (INIS)

    Lampmann, L.E.H.

    1982-01-01

    Since the discovery of the Roentgen ray a precise and accurate assessment of bone mineral content has been a challenge to many investigators. A number of methods have been developed but no one satisfied. Considering its technical possibilities computed tomography is very promising in determination of bone mineral content (BMC). The new modality enables BMC estimations in the axial skeletal trabecular bone. CT densitometry can be performed on a normal commercially available third generation whole body CT scanner. No dedicated device in a special clinical set-up is necessary. In this study 106 patients, most of them clinically suspected of osteoporosis, were examined. The new method CT densitometry has been evaluated. The results have been correlated to alternative BMC determination methods. (Auth.)

  16. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...

  17. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-12-22

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  18. Study on optimization of the circumferential and axial wavy geometrical configuration of hydrodynamic journal bearing

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaoping; Chen, Jin; Hussain, Sinan H [Chongqung University, Chongqing (China)

    2013-12-15

    This paper is focused on using GA genetic algorithm to find the optimal performance with respect to shape optimization in three dimensions for the hydrodynamic journal bearing. The mathematical model for film thickness was drawn using Fourier series function and axial waviness value (Δ) D to represent the journal bearing in circumferential and axial direction, respectively. The objective was then to determine the Fourier coefficients and axial waviness value (Δ) D that maximized the load capacity subjected to a given set of constraint. Optimized results show that the presence of cos wave in axial direction, with a positive dimensionless amplitude (+A) and waviness number m = 0.633, improves the load capacity by (8-10) % over the cylindrical plain bearing with the same arbitrary shape and size; in general, the increasing order of Fourier series (n), an axial dimensionless amplitude and L/D ratio cause the change in load capacity to become more evident.

  19. Employing a tri-axial accelerometer for estimating energy ...

    African Journals Online (AJOL)

    The Tritrac-R3D, a portable tri-axial accelerometer, was assessed for its ability to estimate energy expenditure during simulated load carrying activities. The Tritrac data were compared to metabolic data collected simultaneously by a MetaMax ergospirometry system while ten, healthy male subjects (aged 20.7 ±1.4 years) ...

  20. first principles derivation of a stress function for axially symmetric

    African Journals Online (AJOL)

    HOD

    found to be identical with the Love stress function. The stress function was then applied to solve the axially symmetric problem of finding the stress fields, strain fields and displacement fields in the semi-infinite linear elastic, isotropic homogeneous medium subject to a point load P acting at the origin of coordinates also ...

  1. Characterization of Multiflux Axial Compressors

    International Nuclear Information System (INIS)

    Brasnarof, Daniel; Kyung Kyu-Hyung; Rivarola, Martin; Gonzalez Jose; Florido, Pablo; Orellano, Pablo; Bergallo, Juan

    2003-01-01

    In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant

  2. Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons

  3. Fluorescence axial nanotomography with plasmonics.

    Science.gov (United States)

    Cade, Nicholas I; Fruhwirth, Gilbert O; Krasavin, Alexey V; Ng, Tony; Richards, David

    2015-01-01

    We present a novel imaging technique with super-resolution axial sensitivity, exploiting the changes in fluorescence lifetime above a plasmonic substrate. Using conventional confocal fluorescence lifetime imaging, we show that it is possible to deliver down to 6 nm axial position sensitivity of fluorophores in whole biological cell imaging. We employ this technique to map the topography of the cellular membrane, and demonstrate its application in an investigation of receptor-mediated endocytosis in carcinoma cells.

  4. Test of critical heat flux with non-uniform axial power shapes in rectangle narrow channel

    International Nuclear Information System (INIS)

    Xiong Wanyu; Wang Fei; Xiao Zejun; Lu Donghua

    2007-01-01

    Critical heat flux for axial non-uniform heat flux distribution in rectangle narrow channel was studied in this report. During the test, electric heating were adopted, and the axial direction power loaded were truncation cosine distribution. The de-ionized water was heated. The test result indicated that CHF with non-uniform axial heat flux distribution was lower than CHF with uniform axial heat flux distribution. A correction factor was used to analyze the test data. The semi-empirical relation of correction factor of CHF with axial non-uniform heat flux distribution had been obtained. Comparing to the existing correction factor models, it revealed that the proposed semi-empirical relation predictive CHF with axial non-uniform heat flux distribution in rectangle narrow channel was most accurate. (authors)

  5. Axial structure of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Veronique Bernard; Latifa Elouadrhiri; Ulf-G Meissner

    2002-01-01

    We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.

  6. Axial stability of Taylor bubbles

    NARCIS (Netherlands)

    Lu, X.; Prosperetti, Andrea

    2006-01-01

    Long gas bubbles rising in a vertical tube are observed to lose axial symmetry and become unstable in a downward liquid flow. In this paper an approximate linear stability analysis of this phenomenon is presented. It is found that, under the combined effect of gravity and the pressure gradient which

  7. Experimental investigations on an axial grooved cryogenic heat pipe

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Muniappan

    2012-01-01

    Full Text Available This paper deals with development and studies of a trapezoidal axial grooved nitrogen heat pipe. A special liquid nitrogen cryostat has been designed and developed for evaluating the performance of heat pipe where the condenser portion is connected to the cold sink externally. Experiments have been performed on the heat pipe as well as on an equivalent diameter copper rod at different heat loads. The steady state performance of the heat pipe is compared with that of copper rod.

  8. Analysis of stability-critical orthotropic cylinders subjected to axial compression

    Science.gov (United States)

    Finley, R. L.; Liu, L. S.; Yang, P. B.

    1967-01-01

    Analytical procedure for determining critical buckling loads of orthotropic cylinders subjected to axial compression loading has been defined. Three modes of instability have been considered - general instability, local instability caused by panel and interframe buckling, and local instability caused by yielding and crippling in areas of stress concentration.

  9. Nitinol stent design - understanding axial buckling.

    Science.gov (United States)

    McGrath, D J; O Brien, B; Bruzzi, M; McHugh, P E

    2014-12-01

    Nitinol׳s superelastic properties permit self-expanding stents to be crimped without plastic deformation, but its nonlinear properties can contribute towards stent buckling. This study investigates the axial buckling of a prototype tracheobronchial nitinol stent design during crimping, with the objective of eliminating buckling from the design. To capture the stent buckling mechanism a computational model of a radial force test is simulated, where small geometric defects are introduced to remove symmetry and allow buckling to occur. With the buckling mechanism ascertained, a sensitivity study is carried out to examine the effect that the transitional plateau region of the nitinol loading curve has on stent stability. Results of this analysis are then used to redesign the stent and remove buckling. It is found that the transitional plateau region can have a significant effect on the stability of a stent during crimping, and by reducing the amount of transitional material within the stent hinges during loading the stability of a nitinol stent can be increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.

    2004-01-01

    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  11. View of the Axial Field Spectrometer

    CERN Multimedia

    1980-01-01

    The Axial Field Spectrometer, with the vertical uranium/scintillator calorimeter and the central drift chamber retracted for service. One coil of the Open Axial Field Magnet is just visible to the right.

  12. Reinforced Concrete Beams under Combined Axial and Lateral Loading.

    Science.gov (United States)

    1982-01-01

    definition of failure used by Bieniawski (5) to describe brittle failure of rocks and Newman (6) to describe the failure of concrete was applied. 83...34, M.S. Thesis, University of Colorado, Boulder, Colorado, 1981. 5. Bieniawski , Z.T., "Mechanics of Brittle Fracture of Rock", Int. Jour. Rock Mech

  13. Optimum design of laminated composite under axial compressive load

    Indian Academy of Sciences (India)

    ... c/a ratio: 0.2. 3. Results and discussion. Both symmetric and anti-symmetric laminates, with simply supported and clamped edges are considered for computation. The validation of the genetic algorithm code is carried out on three sets of problems for which results are available. The tests problems are hard globalization ...

  14. FAST Mast Structural Response to Axial Loading: Modeling and Verification

    Science.gov (United States)

    Knight, Norman F., Jr.; Elliott, Kenny B.; Templeton, Justin D.; Song, Kyongchan; Rayburn, Jeffery T.

    2012-01-01

    The International Space Station s solar array wing mast shadowing problem is the focus of this paper. A building-block approach to modeling and analysis is pursued for the primary structural components of the solar array wing mast structure. Starting with an ANSYS (Registered Trademark) finite element model, a verified MSC.Nastran (Trademark) model is established for a single longeron. This finite element model translation requires the conversion of several modeling and analysis features for the two structural analysis tools to produce comparable results for the single-longeron configuration. The model is then reconciled using test data. The resulting MSC.Nastran (Trademark) model is then extended to a single-bay configuration and verified using single-bay test data. Conversion of the MSC. Nastran (Trademark) single-bay model to Abaqus (Trademark) is also performed to simulate the elastic-plastic longeron buckling response of the single bay prior to folding.

  15. Control of the axial offset in a nuclear reactor at power maneuvering

    Directory of Open Access Journals (Sweden)

    Maksim V. Maksimov

    2014-12-01

    Full Text Available High reliability and security of power unit are basic requirements when the power unit maneuvering mode operation. The reactor stability under disturbances both at steady load and maneuvering load embodies the guarantees of power unit safe and reliable operation. A quantitative measure of the reactor stability is assessed by the axial offset representing the technological characteristics of energy release uniformity, therefore the axial offset minimum deviation is WWER-1000 operation efficiency measure. The power unit capacity automated control systems’ influence on axial offset under maneuvering mode is investigated. Considered is the power unit compromise-combined control program, which maintains a constant axial offset value when power unit switching from one power level to another.

  16. A study on multi-axial fatigue model based on structural stress

    International Nuclear Information System (INIS)

    Kim, Cheol; Kim, Jong Sung; Jin, Tae Eun; Dong, P.

    2004-01-01

    In nuclear components, cyclic loadings that cause complex states of stress are common. Through a reference review, four sources of the multi-axial fatigue data were collected from LBF, University of Illinois, EPRI, and TWI. All these tests were conducted using tube to flange specimens with a circumferential fillet welds. The loading conditions were mostly bending/ torsion combinations, except that TWI used tension/ torsion combinations. None of fatigue correlation parameters have been demonstrated to be satisfactory in correlating the multi-axial fatigue data outside of their own. In this paper, we proposed the characterizing multi-axial fatigue behavior in terms of the structural stress methods by using some of the well-known multi-axial fatigue data available in the references

  17. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  18. Dual-channel phase-contrast spectral optical coherence tomography for simultaneously measuring axial and normal to B-scan off-axial displacements

    Science.gov (United States)

    Dong, Bo; Zhang, Yun; Ye, Shuangli; Zhou, Yanzhou; He, Zhaoshui; Xie, Shengli

    2017-09-01

    A dual-channel phase-contrast spectral optical coherence tomography (DPC-SOCT) method is proposed for measuring axial and normal to B-scan off-axial displacements inside weakly scattering translucent materials. By employing a dual-channel observation structure with depth multiplexing, only one shot before and one shot after the object deformation are required for simultaneously measuring the displacements. To validate the method, a DPC-SOCT system was built and axial and normal to B-scan off-axial displacements inside polymer films were measured at 20 frames per second. The results suggest that the method can be used for investigating inner mechanical properties of materials under different loads. In the future, a method for all orthogonal measurement of displacement components will be developed.

  19. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    Science.gov (United States)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  20. Axial diagnostic package for Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.

    1998-06-01

    The authors have developed and fielded an axial diagnostic package for the 20 MA, 100 ns, z-pinch driver Z. The package is used to diagnose dynamic hohlraum experiments which require an axial line of sight. The heart of the package is a reentrant cone originally used to diagnose ion-beam-driven hohlraums on PBFA-H. It has one diagnostic line of sight at 0 degrees, 4 at 6 degrees, and 4 at 9 degrees. In addition it has a number of viewing, alignment, and vacuum feedthrough ports. The front of the package sits approximately 5 feet from the pinch. This allows much closer proximity to the pinch, with inherently better resolution and signal, than is presently possible in viewing the pinch from the side. Debris that is preferentially directed along the axis is mitigated by two apertures for each line of sight, and by fast valves and imaging pinholes or cross slits for each diagnostic. In the initial run with this package they fielded a time resolved pinhole camera, a five-channel pinhole-apertured x-ray diode array, a bolometer, a spatially resolved time-integrated crystal spectrometer, and a spatially and temporally resolved crystal spectrometer. They present data obtained from these diagnostics in the dynamic hohlraum research conducted on Z

  1. Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders

    Science.gov (United States)

    Schultz, Marc R.; Nemeth, Michael P.

    2010-01-01

    Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.

  2. Dynamic Stability of Euler Beams under Axial Unsteady Wind Force

    Directory of Open Access Journals (Sweden)

    You-Qin Huang

    2014-01-01

    Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.

  3. Effect of CFRP location on flexural and axial behavior of SHS steel columns strengthened using CFRP

    Directory of Open Access Journals (Sweden)

    Amir Hamzeh Keykha

    2017-08-01

    Full Text Available In recent years, the use of Carbon Fiber Reinforced Polymers (CFRP for strengthening and retrofitting of steel structures has been considerably developed. Strengthening and retrofitting of structures have several reasons, including: design and calculation errors, lack of proper construction techniques, change in application after construction, damage caused by natural disasters such as floods and earthquakes, the occurring of fatigue cracking, metals corrosion, and so on. The column is an important member in building structures that has the duty to bear and transferring loads incurred to the structure. The stability in structural steel columns is very important. According to research conducted in literature, a few studies have done on the axial behavior of slender steel columns strengthened using carbon fiber reinforced composite. However, the main purpose of this study is to analyze the ultimate load of compressive and compressive-flexural (interaction loads of square hollow section steel columns strengthened using composite carbon fiber with CFRP in different locations. For modeling and analysis of samples ANSYS software was used. 40 steel columns that strengthened using CFRP were analyzed by nonlinear static under axial compressive load. Three samples of the columns were also analyzed under compressive axial load and flexural moment interaction. The results showed that location, coverage percent and number of layers of CFRP are effective on the ultimate load of SHS steel columns under axial compression load and flexural moment. The results also showed that moving the location of the carbon composite with percentage of defined coverage can be have different effects on the axial compression load of steel columns.

  4. Failure Processes in Embedded Monolayer Graphene under Axial Compression

    Science.gov (United States)

    Androulidakis, Charalampos; Koukaras, Emmanuel N.; Frank, Otakar; Tsoukleri, Georgia; Sfyris, Dimitris; Parthenios, John; Pugno, Nicola; Papagelis, Konstantinos; Novoselov, Kostya S.; Galiotis, Costas

    2014-01-01

    Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of –0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1–2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained. PMID:24920340

  5. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  6. Axial vector mass spectrum and mixing angles

    International Nuclear Information System (INIS)

    Caffarelli, R.V.; Kang, K.

    1976-01-01

    Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)

  7. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    Science.gov (United States)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the

  8. Centrifugal and axial compressor control

    CERN Document Server

    McMillan, Gregory K

    2009-01-01

    Control engineers, mechanical engineers and mechanical technicians will learn how to select the proper control systems for axial and centrifugal compressors for proper throughput and surge control, with a particular emphasis on surge control. Readers will learn to understand the importance of transmitter speed, digital controller sample time, and control valve stroking time in helping to prevent surge. Engineers and technicians will find this book to be a highly valuable guide on compressor control schemes and the importance of mitigating costly and sometimes catastrophic surge problems. It can be used as a self-tutorial guide or in the classroom with the book's helpful end-of-chapter questions and exercises and sections for keeping notes.

  9. Axial channeling of uttrarelativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, V.I.; Khokonov, M.Kh. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki)

    1982-07-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements.

  10. Axial channeling of uttrarelativistic electrons

    International Nuclear Information System (INIS)

    Telegin, V.I.; Khokonov, M.Kh.

    1982-01-01

    The dynamics of motion of ultrarelativistic electrons under axial channeling conditions is investigated. The analysis is based on the solution of the kinetic equation obtained recently by Beloshitsky and Kumakhov. The particle dechanneling function is investigated as depending on the type of a crystal, particle energy and angle of entrance into the single crystal. It is found that for most of the beam the major diffusion mechanism is scattering by electrons. It is shown that an optimal depth range exists for which the fraction of channeled particles sharply increases at the expense of the quasi-channeled particles. In a number of cases the dechanneling length for crystals with high atomic numbers may be greater than that of light elements

  11. Radial and axial compression of pure electron

    International Nuclear Information System (INIS)

    Park, Y.; Soga, Y.; Mihara, Y.; Takeda, M.; Kamada, K.

    2013-01-01

    Experimental studies are carried out on compression of the density distribution of a pure electron plasma confined in a Malmberg-Penning Trap in Kanazawa University. More than six times increase of the on-axis density is observed under application of an external rotating electric field that couples to low-order Trivelpiece-Gould modes. Axial compression of the density distribution with the axial length of a factor of two is achieved by controlling the confining potential at both ends of the plasma. Substantial increase of the axial kinetic energy is observed during the axial compression. (author)

  12. Axial and Radial Oxylipin Transport.

    Science.gov (United States)

    Gasperini, Debora; Chauvin, Adeline; Acosta, Ivan F; Kurenda, Andrzej; Stolz, Stéphanie; Chételat, Aurore; Wolfender, Jean-Luc; Farmer, Edward E

    2015-11-01

    Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Experimental investigation on rectangular reinforced concrete beam subjected to bi-axial shear and torsion

    Directory of Open Access Journals (Sweden)

    Chayanon Hansapinyo

    2003-01-01

    Full Text Available This paper presents the experimental investigation on the failure mechanism and ultimate capacity of rectangular reinforced concrete beam under combined action of bi-axial shear accompanied with torsion through the test of four reinforced concrete members. The simple experimental set-up for a simply-supported beam under one point loading is introduced in this study by applying eccentric load to the tilted beam. This requires only one hydraulic jack to produce the complicated bi-axial shear and torsional loading. The main parameter is the magnitude of torsion induced to specimens which is relatively represented by the torsion-to-shear ratio. In addition, the influence of torsion on ultimate capacity of reinforced concrete with different ratio of two shears is investigated. From the experimental results, it is found that the increase in the magnitude of torsion about 69 percent drastically decreases bi-axial shear capacity as much as 12 to 39 percent according to the ratio of bi-axial shears. The experimental results are compared with the capacities calculated by the available interaction formula between uni-axial shear and torsion in the current design codes. The comparison indicates that the current design codes give quite conservative values of ultimate capacity.

  14. Health and imaging outcomes in axial spondyloarthritis

    NARCIS (Netherlands)

    Machado, P.M.

    2016-01-01

    This thesis focuses on the assessment and monitoring of health and imaging outcomes in axial spondyloarthritis (SpA) and the relationship between these outcomes. Four major contributions to the understanding and management of axial SpA were made: 1) the improvement and facilitation of the assessment

  15. Aryabhata and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Aryabhata and Axial Rotation of Earth. 3. A Brief History. Amartya Kumar Datta is in the Stat-Math Unit of. Indian Statistic.llnstiutte,. Kolkata. His research ... historical account of some of Aryabha~a's views on axial rotation of Earth, ..... and stress on periodic observations and updating of the parameters.

  16. Biomechanical tolerance of whole lumbar spines in straightened posture subjected to axial acceleration.

    Science.gov (United States)

    Stemper, Brian D; Chirvi, Sajal; Doan, Ninh; Baisden, Jamie L; Maiman, Dennis J; Curry, William H; Yoganandan, Narayan; Pintar, Frank A; Paskoff, Glenn; Shender, Barry S

    2017-12-01

    Quantification of biomechanical tolerance is necessary for injury prediction and protection of vehicular occupants. This study experimentally quantified lumbar spine axial tolerance during accelerative environments simulating a variety of military and civilian scenarios. Intact human lumbar spines (T12-L5) were dynamically loaded using a custom-built drop tower. Twenty-three specimens were tested at sub-failure and failure levels consisting of peak axial forces between 2.6 and 7.9 kN and corresponding peak accelerations between 7 and 57 g. Military aircraft ejection and helicopter crashes fall within these high axial acceleration ranges. Testing was stopped following injury detection. Both peak force and acceleration were significant (p process for high rate load application. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Axial anomalies of Lifshitz fermions

    CERN Document Server

    Bakas, Ioannis

    2011-01-01

    We compute the axial anomaly of a Lifshitz fermion theory with anisotropic scaling z=3 which is minimally coupled to geometry in 3+1 space-time dimensions. We find that the result is identical to the relativistic case using path integral methods. An independent verification is provided by showing with spectral methods that the eta-invariant of the Dirac and Lifshitz fermion operators in three dimensions are equal. Thus, by the integrated form of the anomaly, the index of the Dirac operator still accounts for the possible breakdown of chiral symmetry in non-relativistic theories of gravity. We apply this framework to the recently constructed gravitational instanton backgrounds of Horava-Lifshitz theory and find that the index is non-zero provided that the space-time foliation admits leaves with harmonic spinors. Using Hitchin's construction of harmonic spinors on Berger spheres, we obtain explicit results for the index of the fermion operator on all such gravitational instanton backgrounds with SU(2)xU(1) isom...

  18. Axial-Centrifugal Compressor Program

    Science.gov (United States)

    1975-10-01

    was 13 mils and was probably bottoming the aft bearing squeeze film . 3. A rotor critical frequency was not the cause of the vibration but rather a high...Figur 19. Load Cell Calibration. 51 rI The lube supply temperatures to the bearings and oil dampers were measured with Chromel-Alunel thermocouples...made from the nominal angle at constant speed. LUBRICATION SYSTEMS The lubrication system for the vehicle bearings and oil dampers was part of the

  19. Simplifying Touch Data from Tri-axial Sensors Using a New Data Visualization Tool

    Science.gov (United States)

    SALUD, Lawrence H.; KWAN, Calvin; PUGH, Carla M.

    2013-01-01

    Quantification and evaluation of palpation is a growing field of research in medicine and engineering. A newly developed tri-axial touch sensor has been designed to capture a multi-dimensional profile of touch-loaded forces. We have developed a data visualization tool as a first step in simplifying interpretation of touch for assessing hands-on clinical performance. PMID:23400186

  20. Influence of foundation and axial force on the vibration of thin beam ...

    African Journals Online (AJOL)

    The influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity is investigated in this paper. The governing equation is a fourth order partial differential ...

  1. Dynamic Electromechanical Characterization of Axially Poled PZT 95/5

    International Nuclear Information System (INIS)

    Chhabildas, Lalit C.; Furnish, Michael D.; Montgomery, Stephen T.; Setchell, Robert E.

    1999-01-01

    We are conducting a comprehensive experimental study of the electromechanical behavior of poled PZT 95/5 (lead zirconate titanate). As part of this study, eight plane-wave tests have been conducted on axially poled PZT 95/5 at stress levels ranging from 0.9 to 4.6 GPa, using VISAR and electrical diagnostics. Observed wave velocities were slightly decreased from ultrasonic velocity, by contrast' with unpoled samples. Compression waveforms show a step at 0.6 GPa more marked than for normally poled or unpoled samples; this may correspond to a poling effect on the ferroelectric/antiferroelectric transition. A similar step is observed on release. The released charge upon loading to 0.9 GPa is consistent with nearly complete depoling. Loading to higher stresses gave lower currents (factor of 10), suggesting shock-induced conductivity or electrical breakdown

  2. Hysteretic Models Considering Axial-Shear-Flexure Interaction

    Science.gov (United States)

    Ceresa, Paola; Negrisoli, Giorgio

    2017-10-01

    Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.

  3. Bone formation in axial spondyloarthritis.

    Science.gov (United States)

    Lories, Rik J; Haroon, Nigil

    2014-10-01

    The success of targeted therapies directed against tumor necrosis factor for patients with spondyloarthritis has shifted the focus of physicians and scientists towards the prevention of structural damage to the involved structures, in particular the sacroiliac joints and the spine, to avoid loss of function and disability. Structural damage to the skeleton as witnessed by radiography mainly consists of new bone formation potentially progressively leading to spine or joint ankylosis. This important long-term outcome parameter has been difficult to study, not alone because the time window for change may be long but also because human tissues with direct translational relevance are rarely available. Data from rodent models have identified growth factor signaling pathways as relevant targets. Both human and animal studies have tried to understand the link between inflammation and new bone formation. At the current moment, most evidence points towards a strong link between both but with the question still lingering about the sequence of events, disease triggers, and the interdependence of both features of disease. New discoveries such as a masterswitch T cell population that carries the IL23 receptor and the analysis of auto-antibodies directed again noggin and sclerostin are contributing to innovative insights into the pathophysiology of disease. Long-term data with tumor necrosis factor (TNF) inhibitors also suggest that some window of opportunity may exist to inhibit structural disease progression. All these data provide support for a further critical analysis of the available datasets and boost research in the field. The introduction of novel disease definitions, in particular the characterization of non-radiographic axial spondyloarthritis patients, will likely be instrumental in our further understanding of structural damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Diagnostic value of axial CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, Sousuke (Tsukuba Univ., Sakura, Ibaraki (Japan))

    1983-03-01

    Axial CT scan was used to investigate the radiological details of the temporal bone of 33 patients with chronic otitis media, secondary cholesteatoma, sensorineural hearing loss, Meniere disease, vertigo, facial spasm, and neoplasma. The axial scans showed anatomic details of the temporal bone, and at the same time clearly demonstrated the extent of the soft-tissue masses in the middle ears, as well as the destructions of the ossicles. Bone changes of the anterior walls of the epitympanum and external auditory meatus were more clearly demonstrated than by coronary CT scan. However, the axial scan had the disadvantages in demonstrating the stapes, crista transversa, and the mastoid portion of the facial canal.

  5. Axial force measurement for esophageal function testing

    DEFF Research Database (Denmark)

    Gravesen, Flemming Holbæk; Funch-Jensen, Peter; Gregersen, Hans

    2009-01-01

    force (force in radial direction) whereas the bolus moves along the length of esophagus in a distal direction. Force measurements in the longitudinal (axial) direction provide a more direct measure of esophageal transport function. The technique used to record axial force has developed from external...... documented using imaging modalities such as radiography and scintigraphy. This inconsistency using manometry has also been documented by axial force recordings. This underlines the lack of information when diagnostics are based on manometry alone. Increasing the volume of a bag mounted on a probe...

  6. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.

    Science.gov (United States)

    Ranjbartoreh, A R; Su, D; Wang, G

    2012-06-01

    Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.

  7. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  8. Capacitive axial position and speed transduction system

    International Nuclear Information System (INIS)

    Jimenez D, H.; Flores Ll, H.; Cabral P, A.; Ramirez J, F.J.; Galindo, S.

    1984-01-01

    A new and inexpensive circuit arrangement of a capacitive axial position and speed transduction system is described. Design details and the theory of operation of the device are briefly outlined together with performance results. (author)

  9. Two pad axially grooved hydrostatic bearing

    Science.gov (United States)

    San Andres, Luis A. (Inventor)

    1995-01-01

    A hydrostatic bearing having two axial grooves on opposite sides of the bearing for breaking the rotational symmetry in the dynamic force coefficients thus reducing the whirl frequency ratio and increasing the damping and stiffness of the hydrostatic bearing.

  10. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  11. A new bi-axial cantilever beam design for biomechanics force measurements.

    Science.gov (United States)

    Lin, Huai-Ti; Trimmer, Barry A

    2012-08-31

    The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion

    OpenAIRE

    Wang, Pu; Huang, Zhen

    2017-01-01

    This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under di...

  13. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  14. Axial model in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Barcelos-Neto, J.; Farina, C.; Vaidya, A.N.

    1986-12-11

    We study the axial model in a background gravitational field. Using the zeta-function regularization, we obtain explicitly the anomalous divergence of the axial-vector current and the exact generating functional of the theory. We show that, as a consequence of a space-time-dependent metric, all differential equations involved in the theory generalize to their covariantized forms. We also comment on the finite-mass renormalization exhibited by the pseudoscalar field and the form of the fermion propagator.

  15. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  16. High harmonic generation from axial chiral molecules.

    Science.gov (United States)

    Wang, Dian; Zhu, Xiaosong; Liu, Xi; Li, Liang; Zhang, Xiaofan; Lan, Pengfei; Lu, Peixiang

    2017-09-18

    Axial chiral molecules, whose stereogenic element is an axis rather than a chiral center, have attracted widespread interest due to their important application, such as asymmetric synthesis and chirality transfer. We investigate high harmonic generation from axial chiral molecules with bichromatic counterrotating circularly polarized laser fields. High harmonic generation from three typical molecules: (Sa)-3-chloropropa-1,2-dien-1-ol, propadiene, and (Ra)-2,3-pentadiene is simulated with time-dependent density-functional theory and strong field approximation. We found that harmonic spectra for 3D oriented axial chiral molecules exhibit obvious circular dichroism. However, the circular dichroism of High harmonic generation from an achiral molecule is much trivial. Moreover, the dichroism of high harmonic generation still exists when axial chiral molecules are 1D oriented,such as (Sa) -3-chloropropa-1,2-dien-1-ol. For a special form of axial chiral molecules with the formula abC=C=Cab (a, b are different substituents), like (Ra)-2,3-pentadiene, the dichroism discriminations disappear when the molecules are only in 1D orientation. The circular dichroism of high harmonic generation from axial chiral molecules is well explained by the trajectory analysis based on the semiclassical three-step mechanism.

  17. Construction of gas suspended bearings (radial and axial gas ball bearings)

    International Nuclear Information System (INIS)

    Kaspar, G.

    1974-10-01

    This report contains practical and theoretical results that were obtained at IPP in the section of gas suspended bearings. The two air-cushioned, air-driven revolving mirrors and an air-cushioned, air measuring coil drive were built. The latter has a double radial bearing and a single axial bearing. The axial bearing is shaped in such a way that, with slight throttling of the air feed, i.e. at low air intake pressure, a relatively high bearing load can be imposed and the bearing remains at the same time free of the so-called air hammer effect. (orig.) [de

  18. Vector and axial constants of the baryon decuplet

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Blok, B.Y.; Kogan, Y.I.

    1985-01-01

    On the basis of the QCD sum rules for the polarization operator in external axial and vector fields we determine the vector and axial transition constants in the 3/2 + baryon decuplet. We show that the renormalization of the axial constant is due to the interaction of the external axial field with the quark condensate

  19. Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis.

    Science.gov (United States)

    Sugiura, Tsutomu; Yamamoto, Kazuhiko; Horita, Satoshi; Murakami, Kazuhiro; Tsutsumi, Sadami; Kirita, Tadaaki

    2017-08-01

    The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were 30° distally inclined to the axial implants. Vertical and mesiodistal oblique (45° angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.

  20. Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

    Science.gov (United States)

    2017-01-01

    Purpose The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were 30° distally inclined to the axial implants. Vertical and mesiodistal oblique (45° angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment

  1. Nucleon axial form factor from lattice QCD

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Wu, J.M.; Wilcox, W.

    1994-01-01

    Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both the point-split and local currents. They are obtained on a quenched 16 3 x24 lattice at β=6.0 with Wilson fermions for a range of quark masses from strange to twice the charm mass. For each quark mass, we find that the axial form factor falls off slower than the corresponding proton electric form factor. Results extrapolated to the chiral limit show that the q 2 dependence of the axial form factor agrees quite well with experiment. The axial vector coupling constant g A calculated for the point-split and local currents is 1.20±0.11 and 1.18±0.11. The central values are 4% and 6% smaller than the experimental value of 1.254, respectively. We also consider the large ma correction and renormalization for the axial vector current of heavy quarks

  2. Optimization of residual heat removal pump axial thrust and axial bearing

    International Nuclear Information System (INIS)

    Schubert, F.

    1996-01-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies

  3. Optimization of residual heat removal pump axial thrust and axial bearing

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.

    1996-12-01

    The residual heat removal (RHR) pumps of German 1300 megawatt pressurized-water reactor (PWR) power plants are of the single stage end suction type with volute casing or with diffuser and forged circular casing. Due to the service conditions the pumps have to cover the full capacity range as well as a big variation in suction static pressure. This results in a big difference in the axial thrust that has to be borne by the axial bearing. Because these pumps are designed to operate without auxiliary systems (things that do not exist can not fail), they are equipped with antifriction bearings and sump oil lubrication. To minimize the heat production within the bearing casing, a number of PWR plants have pumps with combined axial/radial bearings of the ball type. Due to the fact that the maximum axial thrust caused by static pressure and hydrodynamic forces on the impeller is too big to be borne by that type of axial bearing, the impellers were designed to produce a hydrodynamic axial force that counteracts the static axial force. Thus, the resulting axial thrust may change direction when the static pressure varies.

  4. Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers the procedure for the performance of axial force controlled fatigue tests to obtain the fatigue strength of metallic materials in the fatigue regime where the strains are predominately elastic, both upon initial loading and throughout the test. This practice is limited to the fatigue testing of axial unnotched and notched specimens subjected to a constant amplitude, periodic forcing function in air at room temperature. This practice is not intended for application in axial fatigue tests of components or parts. Note 1-The following documents, although not directly referenced in the text, are considered important enough to be listed in this practice: E 739 Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (-N) Fatigue Data STP 566 Handbook of Fatigue Testing STP 588 Manual on Statistical Planning and Analysis for Fatigue Experiments STP 731 Tables for Estimating Median Fatigue Limits

  5. Simulation of Axial Combustion Instability Development and Suppression in Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    David R. Greatrix

    2009-03-01

    Full Text Available In the design of solid-propellant rocket motors, the ability to understand and predict the expected behaviour of a given motor under unsteady conditions is important. Research towards predicting, quantifying, and ultimately suppressing undesirable strong transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. An updated numerical model incorporating recent developments in predicting negative and positive erosive burning, and transient, frequency-dependent combustion response, in conjunction with pressure-dependent and acceleration-dependent burning, is applied to the investigation of instability-related behaviour in a small cylindrical-grain motor. Pertinent key factors, like the initial pressure disturbance magnitude and the propellant's net surface heat release, are evaluated with respect to their influence on the production of instability symptoms. Two traditional suppression techniques, axial transitions in grain geometry and inert particle loading, are in turn evaluated with respect to suppressing these axial instability symptoms.

  6. Low-pressure reversible axial fan designed with different specific work of elementary stages

    Directory of Open Access Journals (Sweden)

    Bogdanović Božidar P.

    2012-01-01

    Full Text Available Low-pressure axial fan impellers designed according to the principle of equal specific work of all elementary stages have blades whose profile near the fan hub is under a significantly larger inclination angle than at the impeller periphery. In order to minimize the spatial curvature of the fan blades and the fan hub length, impeller blades of low-pressure axial fans can be designed with different specific work of elementary stages, so that the specific work of elementary stages is smaller at the hub than at the periphery. This paper presents the operating characteristics of a low-pressure reversible axial fan with straight blade profiles, designed with different specific work of elementary stages. The fan was tested on a standard test rig, with air intake loading on the suction side of the fan.

  7. Wave propagation in axially moving periodic strings

    DEFF Research Database (Denmark)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2017-01-01

    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives...... for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers....... This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus...

  8. Multiaxial fatigue criterion based on parameters from torsion and axial S-N curve

    Directory of Open Access Journals (Sweden)

    M. Margetin

    2016-07-01

    Full Text Available Multiaxial high cycle fatigue is a topic that concerns nearly all industrial domains. In recent years, a great deal of recommendations how to address problems with multiaxial fatigue life time estimation have been made and a huge progress in the field has been achieved. Until now, however, no universal criterion for multiaxial fatigue has been proposed. Addressing this situation, this paper offers a design of a new multiaxial criterion for high cycle fatigue. This criterion is based on critical plane search. Damage parameter consists of a combination of normal and shear stresses on a critical plane (which is a plane with maximal shear stress amplitude. Material parameters used in proposed criterion are obtained from torsion and axial S-N curves. Proposed criterion correctly calculates life time for boundary loading condition (pure torsion and pure axial loading. Application of proposed model is demonstrated on biaxial loading and the results are verified with testing program using specimens made from S355 steel. Fatigue material parameters for proposed criterion and multiple sets of data for different combination of axial and torsional loading have been obtained during the experiment.

  9. Axial pico turbine - construction and experimental research

    Science.gov (United States)

    Peczkis, G.; Goryca, Z.; Korczak, A.

    2017-08-01

    The paper concerns axial water turbine of power equal to 1 kW. The example of axial water turbine constructional calculations was provided, as well as turbine rotor construction with NACA profile blades. The laboratory test rig designed and built to perform measurements on pico turbine was described. The turbine drove three-phase electrical generator. On the basis of highest efficiency parameters, pico turbine basic characteristics were elaborated. The experimental research results indicated that pico turbine can achieve maximum efficiency close to the values of larger water turbines.

  10. Axial Vircator for Electronic Warfare Applications

    Directory of Open Access Journals (Sweden)

    L. Drazan

    2009-12-01

    Full Text Available This paper deals with a high power microwave generator with virtual cathode – vircator in axial release for electronic warfare applications. The classification of directed energy weapons microwave (DEWM is introduced together with basic block diagrams of a particular class of DEWM. In the paper, methods for designing vircator pulsed power supply, axial vircator structure, measurement methods and experimental results are presented. The vircator in electromagnetic ammunition is powered by magneto-cumulative generator and in weapons for defense of objects (WDO, it is powered by Marx generator. The possible applications of a vircator in the DEWM area are discussed.

  11. Study of axial protections of unloading machines of graphite piles

    International Nuclear Information System (INIS)

    Duco, Jacques; Pepin, Pierre; Cabaret, Guy; Dubor, Monique

    1969-10-01

    As previous studies resulted in the development of a simple calculation formula based on experimental results for the calculation of neutron protection thicknesses for loading machines, this study aimed at determining axial protections of these machines which represent a specific problem: scattering of delayed neutrons in the machine inner cavity may result in an important neutron leakage through the upper part, at the level of the winch enclosure. In an experimental part, this study comprises the measurement of the neutron dose in a 2.60 m long and 54 cm diameter cylindrical cavity, and in the thickness of the surrounding concrete protection. In the second part, the authors present a calculation method which uses the Zeus and Mercure codes to interpret the results [fr

  12. Gearbox Instrumentation for the Investigation of Bearing Axial Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lambert, Scott R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-27

    Failures in gearbox bearings have been the primary source of reliability issues for wind turbine drivetrains, leading to costly downtime and unplanned maintenance. The most common failure mode is attributed to so-called axial cracks or white-etching cracks, which primarily affect the intermediate and high-speed-stage bearings. The high-speed-shaft and bearing loads and sliding will be measured with a specially instrumented gearbox installed in a 1.5-megawatt turbine at the National Wind Technology Center in an upcoming test campaign. Additional instrumentation will also measure the tribological environment of these bearings, including bearing temperatures, lubricant temperature and water content, air temperature and humidity, and stray electrical current across the bearings. This paper fully describes the instrumentation package and summarizes initial results.

  13. The effect of loading rate on pile bearing capacity of saturated sand

    NARCIS (Netherlands)

    Archeewa, E.

    2005-01-01

    Pile load tests are commonly used by engineers to determine its bearing capacity. At present, there are three methods of pile load tests: the static, the dynamic and the quasi-static test. The static pile load test is done by applying an axial load on the pile with a long duration. The dynamic and

  14. Axial magnetic field injection in magnetized liner inertial fusion

    Science.gov (United States)

    Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.

    2017-10-01

    MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.

  15. Analysis of Mechanical Failure of Polymer Microneedles by Axial Force

    Science.gov (United States)

    Park, Jung-Hwan; Prausnitz, Mark R.

    2010-01-01

    A polymeric microneedle has been developed for drug delivery applications. The ultimate goal of the polymeric microneedle is insertion into the specified region without failure for effective transdermal drug delivery. Mechanical failure of various geometries of microneedles by axial load was modeled using the Euler formula and the Johnson formula to predict the failure force of tapered-column microneedles. These formulas were compared with measured data to identify the mechanical behavior of microneedles by determining the critical factors including the actual length and end-fixed factor. The comparison of the two formulas with the data showed good agreement at the end-fixity (K) of 0.7. This value means that a microneedle column has one fixed end and one pinned end, and that part of the microneedle was overloaded by axial load. When the aspect ratio of length to equivalent diameter is 12:1 at 3 GPa of Young’s modulus, there is a transition from the Euler region to the Johnson region by the decreased length and increased base diameter of the microneedle. A polymer having less than 3 GPa of stiffness would follow the Euler formula. A 12:1 aspect ratio of length to equivalent diameter of the microneedle was the mechanical indicator determining the failure mode between elastic buckling and inelastic buckling at less than 3 GPa of Young’s modulus of polymer. Microneedles with below a 12:1 aspect ratio of length-to-equivalent diameter and more than 3 GPa of Young’s were recommended for reducing sudden failure by buckling and for successfully inserting the microneedle into the skin. PMID:21218133

  16. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  17. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  18. Occlusal convergence and strain distribution on the axial surface of cemented gold crowns.

    Science.gov (United States)

    Asbia, S; Ibbetson, R; Reuben, R L

    2008-01-01

    The overall thrust of this work is concerned with the performance of the adhesives used to simulate cementation of gold crowns onto nickel chromium dies under static and dynamic compression. A measurement system, based on the mounting of strain gauges on the outer surface of the crowns, has been developed allowing an indirect semi-quantitative estimate of the state of adhesion. This paper reports an investigation of the effect of increased total occlusal convergence (TOC) of the nickel chromium dies from 12 degrees to 24 degrees with different degrees of cementation, a) un-cemented, b) partially cemented and c) fully cemented. Four nickel chromium dies (12 degrees TOC) and five nickel chromium dies (24 degrees TOC) for each convergence were fabricated using the lost wax technique. The axial height of all dies was 6mm. Two miniature gauges were installed on opposing axial surfaces of each gold crown 1 mm above the crown margin. Axial loading and unloading of the crowns was repeated five times for each crown and the values for strain recorded. The results showed an increase in strain at the axial surfaces with increasing TOC, providing useful design information for the durability of restorative crowns. These findings, along with the findings of earlier work are consistent with a simple model of load transfer between the crown and the die.

  19. Axial crystals macroscopic symmetry and tensor properties

    Czech Academy of Sciences Publication Activity Database

    Janovec, Václav

    2017-01-01

    Roč. 90, č. 1 (2017), s. 1-10 ISSN 0141-1594 Institutional support: RVO:68378271 Keywords : axial * polar * pseudopolar * chiral * enantiomorphism * optical activity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.060, year: 2016

  20. Optimisation of efficiency of axial fans

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Pennings, P.C.; Faasen, R.

    2014-01-01

    A three-stage research project has been executed to develop ducted axial-fans with increased efficiency. In the first stage a design method has been developed in which various conflicting design criteria can be incorporated. Based on this design method, an optimised design has been determined

  1. The design of axial shaftless pump

    Science.gov (United States)

    Schmirler, Michal; Netrebska, Hana

    The axial shaftless pump with a rotary casing has been proposed. The pump is unique in its small space requirements and the ability to draw a liquid with a high content of impurities and fibers. Modern motor with an external commutation was used to propel the pump rotor. The pump can be used for both pumping of liquids and marine propulsion.

  2. VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR by. L. A. Agu. Electrical Engineering Department. University of Nigeria, Nsukka. ABSTRACT. This paper presents the scheme for a very slow speed linear machine which uses conventional laminations and with which speeds of the same low.

  3. Aryabha~ and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. Aryabhata and Axial Rotation of Earth - Naksatra Dina (the Sidereal Day). Amartya Kumar Dutta. General Article Volume 11 Issue 4 April 2006 pp 56-74. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Aryabhala and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 3. Aryabhata and Axial Rotation of Earth - Khagola (The Celestial Sphere). Amartya Kumar Dutta. General Article Volume 11 Issue 3 March 2006 pp 51-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. The axial polarizability of nucleons and nuclei

    International Nuclear Information System (INIS)

    Ericson, M.; Figureau, A.

    1981-02-01

    The part of the static nuclear axial polarizability arising from the nucleonic excitations is derived from the low energy expansion of the πN amplitude. It is shown that the contribution of the Δ intermediate state, though dominant, does not saturate the nucleonic response. A similar effect, though more pronounced, is known to occur for the magnetic susceptibility

  6. Excitation modes in non-axial nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.; Ginnochio, J.N.

    1990-01-01

    Excitation modes of non-axial quadrupole shapes are investigated in the framework of interacting boson models. Both γ-unstable and γ-rigid nuclear shapes are considered for systems with one type of boson as well as with proton-neutron bosons. 6 refs

  7. Excitation modes in non-axial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Ginnochio, J.N.

    1990-01-01

    Excitation modes of non-axial quadrupole shapes are investigated in the framework of interacting boson models. Both {gamma}-unstable and {gamma}-rigid nuclear shapes are considered for systems with one type of boson as well as with proton-neutron bosons. 6 refs.

  8. AERODYNAMIC DESIGN OF HIGH PRESSRE AXIAL FAN

    Directory of Open Access Journals (Sweden)

    Y. A. Ryzhov

    2014-01-01

    Full Text Available The paper presents the results of numerical studies of flow in a high axial fan of H-2, the geometric parameters are carefully designed by the author. The coefficients of performance, the total pressure, efficiency and capacity. Shows the benefits of fan of H-2 on several other fans, expressed in increased efficiency with equal dimensions and angles of blade setting.

  9. Co-axial, high energy gamma generator

    Science.gov (United States)

    Reijonen, Jani Petteri [Princeton, NJ; Gicquel, Frederic [Pennington, NJ

    2011-08-16

    A gamma ray generator includes an ion source in a first chamber. A second chamber is configured co-axially around the first chamber at a lower second pressure. Co-axially arranged plasma apertures separate the two chambers and provide for restricted passage of ions and gas from the first to the second chamber. The second chamber is formed by a puller electrode having at least one long channel aperture to draw ions from the first chamber when the puller electrode is subject to an appropriate applied potential. A plurality of electrodes rings in the third chamber in third pressure co-axially surround the puller electrode and have at least one channel corresponding to the at least one puller electrode aperture and plasma aperture. The electrode rings increase the energy of the ions to a selected energy in stages in passing between successive pairs of the electrodes by application of an accelerating voltage to the successive pairs of accelerator electrodes. A target disposed co-axially around the plurality of electrodes receives the beam of accelerated ions, producing gamma rays.

  10. Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2004-01-01

    Full Text Available In this article, the deflections of a circular cross-section beam presenting a transverse crack of different depths, due to different loads (bending, torsion, shear, and axial loads, are analyzed with the aid of a rather refined 3-D model, which takes into account the nonlinear contact forces in the cracked area. The bending and shear loads are applied in several different angular positions, in order to simulate a rotating load on a fixed beam, or, by changing the reference system, a fixed load on a rotating beam. Torsion and axial loads are instead fixed with respect to the beam.

  11. Deflections and Strains in Cracked Shafts Due to Rotating Loads: A Numerical and Experimental Analysis

    Directory of Open Access Journals (Sweden)

    Nicolò Bachschmid

    2003-01-01

    Full Text Available In this article the deflections of a circular cross-section beam presenting a transverse crack of varying depths caused by various loads (bending, torsion, shear, and axial loads are analyzed with the aid of a rather refined three-dimensional model that takes into account the nonlinear contact forces in the cracked area. The bending and shear loads are applied in several different angular positions in order to simulate a rotating load on a fixed beam or, by changing the reference system, a fixed load on a rotating beam. Torsion and axial loads are fixed with respect to the beam.

  12. Clinical investigation on axial versus tilted implants for immediate fixed rehabilitation of edentulous arches: preliminary results of a single cohort study.

    Science.gov (United States)

    Agnini, Alessandro; Agnini, Andrea Mastrorosa; Romeo, Davide; Chiesi, Manuele; Pariente, Leon; Stappert, Christian F J

    2014-08-01

    The purpose of this clinical investigation was to evaluate full-arch fixed-dental restorations supported by immediate loaded axial and tilted implants in a single-cohort study. Survival rate of axial and tilted implants was compared. From 2006 to 2010, 30 patients were recruited and treated with dental implants. Provisional fixed-dental prostheses were screw-retained over axial or axial and tilted implants within 24 hours after surgery. Follow-ups at 6, 12, and 24 months and annually up to 5 years were scheduled, and radiographic evaluation of peri-implant bone level changes was conducted. Thirty patients (20 females and 10 males) were followed up for an average of 44 months (range 18-67 months). Six patients received both upper and lower implant rehabilitations, resulting in 36 restorations. A total of two hundred two implants were placed (maxilla = 118; mandible = 84) and 46% of the fixtures were evaluated at the 4-year recall. Four axial implants were lost in three patients, leading to 98.02% implant (97.56% axial implants and 100% tilted implants) and 100% prosthetic cumulative survival rate, respectively. No significant difference in marginal bone loss was found between tilted and axial implants in both jaws at 1-year evaluation. Midterm results confirmed that immediate loading of axial and tilted implants provides a viable treatment modality for the rehabilitation of edentulous arches. © 2012 Wiley Periodicals, Inc.

  13. Investigation into Fretting Fatigue Under Cyclic Contact Load and in Conjunction with Plain Fatigue of Titanium Alloy

    National Research Council Canada - National Science Library

    Al-Noaimi, Abdulla

    2008-01-01

    ... difference between the axial and the contact load. The primary goal of this study is to investigate the effect of phase difference between axial and contact loads on fretting fatigue behavior of Ti-6Al-4V alloy and to determine...

  14. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    Science.gov (United States)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  15. A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression

    OpenAIRE

    Yu, Min; Zha, Xiaoxiong; Ye, Jianqiao; Li, Yuting

    2013-01-01

    Current design practice of concrete-filled steel tube (CFST) columns uses different formulas for different section profiles to predict the axial load bearing capacity. It has always been a challenge and practically important issue for researchers and design engineers who want to find a unified formula that can be used in the design of the columns with various sections, including solid, hollow, circular and polygonal sections. This has been driven by modern design requirements for continuous o...

  16. Experimental research of residual stresses kinetics in the hardened hollow cylindrical specimens of D16T alloy at the axial tension under the creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2016-06-01

    Full Text Available We study experimentally the effect of the axial tension load on the residual stresses relaxation in the surface-hardened hollow cylindrical specimens of D16T aluminium alloy at a temperature of 125 ∘C. The surface is hardened by the air shot-peening. We describe the testing machine and the routine of experiment. The experimental curves of hardened specimens creep under the axial loads 353, 385, 406.2, 420 MPa and test duration of 100–160 hours are obtained. The axial and circumferential residual stresses after the hardening and the creep at the given temperature and load conditions are constructed by the method of circles and strips. The significant qualitative and quantitative changes of residual stresses take place under the tension load σ¯ in comparison with the thermal exposure (heat exposal with no load. The relaxation of residual stresses is essentially independent of the thermal exposure. In contrast, the loading leads to the significant residual stresses relaxation and to the changes in the distribution type. The axial and circumferential residual stresses evolve from the compressive to the tension with the increase of the axial tension load. Also the depth of residual stresses location changes with the increase of the axial tension load from the 600 microns in the original state after the air shot-peening to the 250–300 microns after the creep under the given loading. It is very important for the engineering applications to take into account the described behaviours of the residual stresses in the hardened specimens of D16T alloy when predicting the characteristics of endurance of the surface-hardened details operate under the elevated temperatures.

  17. Case Study of CPT-based Design Methods for Axial Capacity of Driven Piles in Sand

    DEFF Research Database (Denmark)

    Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    . Thus, several CPT-based methods have been proposed for the design of offshore driven piles in cohesionless soil such as the UWA-05, ICP-05, and NGI-99 methods. This article treats a case study where the API-method as well as the UWA-05 and NGI-99 methods are compared using CPT-data from an offshore...... loaded offshore driven piles in cohesionless soil has until now been the β-method given in API. The API-method is based on the effective overburden pressure at the depth in question. Previous studies show deviations between full-scale load test measurements of the axial pile capacity and the predictions...

  18. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  19. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    Wagner, J.C.; DeHart, M.D.

    2000-01-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  20. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Ansarifar

    2015-12-01

    Full Text Available One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC, which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  1. Piping inspection carriage having axially displaceable sensor

    Science.gov (United States)

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  2. Ventajas de los motores de flujo axial

    Directory of Open Access Journals (Sweden)

    Alberto M Basanta Otero

    2011-03-01

    Full Text Available Es importante conocer sobre una familia de motores que a diferencia de los convencionales o tradicionales no presentanun flujo rotatorio radial, denominados motores de flujo axial. Dichos motores presentan altos valores de par motriz abajas velocidades, una alta eficiencia y alta densidad de potencia. Este trabajo constituye un breve análisis dealgunos motores de la referencia bibliográfica.  Is important to know about a family of motors that at difference whit the traditional, don't have a rotator radial flux,called, axial flux motors. These motors have high torque for low speed, high efficiency and high power density. Thiswork is a brief analysis of several motors of the bibliographic references.

  3. Cross-flow filtration and axial filtration

    International Nuclear Information System (INIS)

    Kraus, K.A.

    1974-01-01

    Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed

  4. Axial pattern skin flaps in cats.

    Science.gov (United States)

    Remedios, A M; Bauer, M S; Bowen, C V; Fowler, J D

    1991-01-01

    The major direct cutaneous vessels identified in the cat include the omocervical, thoracodorsal, deep circumflex iliac, and caudal superficial epigastric arteries. Axial pattern skin flaps based on the thoracodorsal and caudal superficial epigastric arteries have been developed in cats. Rotation of these flaps as islands allows skin coverage to the carpus and metatarsus, respectively. The thoracodorsal and caudal superficial epigastric flaps provide a practical, one-step option in the reconstruction of large skin defects involving the distal extremities of cats.

  5. Atlanto-axial subluxation: a case report

    OpenAIRE

    Thurlow, Robert D

    1988-01-01

    One of the causes of death in rheumatoid patients is cord compression following atlanto-axial subluxation. Dislocations in the cervical spine are common with patients who have rheumatoid arthritis. Anterior subluxation occurs in up to 35%, followed by vertical subluxation in 22.2%, lateral subluxation in 20.6% and rarely posterior subluxation. A case report is presented to illustrate such a complication.

  6. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  7. Cervical Spine Axial Rotation Goniometer Design

    OpenAIRE

    Emin Ulaş Erdem; Filiz Can

    2012-01-01

    To evaluate the cervical spine rotation movement is quiet harder than other joints. Configuration and arrangement of current goniometers and devices is not always practic in clinics and some methods are quiet expensive. The cervical axial rotation goniometer designed by the authors is consists of five pieces (head apparatus, chair, goniometric platform, eye pads and camera). With this goniometer design a detailed evaluation of cervical spine range of motion can be obtained. Besides, measureme...

  8. Axial gravity, massless fermions and trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica

    2017-08-15

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  9. Axial polarizability and weak currents in nuclei

    International Nuclear Information System (INIS)

    Ericson, M.

    1977-01-01

    The weak interaction nucleonic coupling constants in nuclei are modified by the presence of the neighbouring nucleons. One type of modification is due to the virtual excitation of the isobars through meson exchange. The influence of the isobars is described by means of the nuclear axial polarizability coefficient. This polarizability is known; it is linked to the p-wave πN scattering volume. A relation is derived between the axial nuclear current and the pion field which incorporates the polarizability effects. This relation has an electromagnetic analogue. It is then possible to derive the axial and pseudoscalar coupling constants from a knowledge of the pion field. This field in turn obeys a Klein-Gordon equation which has to include the isobaric excitations. The propagation of the pion field is similar to that of an electromagnetic wave in a dielectric medium. The strong interaction coupling constant is shown to be renormalized in nuclei by the effect of the various types of correlations. (author)

  10. Dynamic control of knee axial deformities

    Directory of Open Access Journals (Sweden)

    E. E. Malyshev

    2013-01-01

    Full Text Available The authors have evaluated the clinical examination of the patients with axial malalignments in the knee by the original method and device which was named varovalgometer. The measurements were conducted by tension of the cord through the spina iliaca anterior superior and the middle of the lower pole of patella. The deviation of the center of the ankle estimated by metal ruler which was positioned perpendicular to the lower leg axis on the level of the ankle joint line. The results of comparison of our method and computer navigation in 53 patients during the TKA show no statistically significant varieties but they differ by average 5° of valgus in clinical examination in comparison with mechanical axis which was identified by computer navigation. The dynamic control of axial malalignment can be used in clinical practice for estimation of the results of treatment of pathology with axial deformities in the knee; for the control of reduction and secondary displacement of the fractures around the knee; for assessment of instability; in planning of correctional osteotomies and intraoperative control of deformity correction; for estimation of Q angle in subluxation and recurrent dislocation of patella; in planning of TKA; during the growth of child it allows to assess the progression of deformity.

  11. Respiratory effects of transient axial acceleration.

    Science.gov (United States)

    Loring, S H; Lee, H T; Butler, J P

    2001-06-01

    Whereas gravity has an inspiratory effect in upright subjects, transient upward acceleration is reported to have an expiratory effect. To explore the respiratory effects of transient axial accelerations, we measured axial acceleration at the head and transrespiratory pressure or airflow in five subjects as they were dropped or lifted on a platform. For the first 100 ms, upward acceleration caused a decrease in mouth pressure and inspiratory flow, and downward acceleration caused the opposite. We also simulated these experimental observations by using a computational model of a passive respiratory system based on anatomical data and normal respiratory characteristics. After 100 ms, respiratory airflow in our subjects became highly variable, no longer varying with acceleration. Electromyograms of thoracic and abdominal respiratory muscles showed bursts of activity beginning 40-125 ms after acceleration, suggesting reflex responses responsible for subsequent flow variability. We conclude that, in relaxed subjects, transient upward axial acceleration causes inspiratory airflow and downward acceleration causes expiratory airflow, but that after ~100 ms, reflex activation of respiratory musculature largely determines airflow.

  12. Atlanto-Axial Subluxation After Adenoidectomy.

    Science.gov (United States)

    Gross, Isabel Theresia; Bahar-Posey, Laleh

    2017-06-01

    Atlanto-axial subluxation is a rare but potentially serious complication after otolaryngological procedures. We are describing a case of a 4-year-old child who developed atlanto-axial subluxation of the cervical spine after adenoidectomy. Our patient underwent adenoidectomy and, 18 days later, presented to the emergency department with her neck tilted to the left in a cock-robin position and complaining of neck pain persisting since the surgery. A multiplanar 3-dimensional computed tomography was obtained and confirmed the diagnosis of an atlanto-axial subluxation (Fielding type 3). She was managed conservatively with the application of a cervical collar, anti-inflammatory medication, and manual reduction under anesthesia later in the course because of persistence of her symptoms. It is important to consider this diagnosis in any child who undergoes ENT surgical procedures complaining of neck pain subsequent to surgery or holding the head in a fixed position persistently after surgery. Early diagnosis is important to reduce the time between the onset of symptoms and reduction to reduce the risk or need for surgical intervention.

  13. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  14. Static Load Distribution in Ball Bearings

    Science.gov (United States)

    Ricci, Mario

    2010-01-01

    A numerical procedure for computing the internal loading distribution in statically loaded, single-row, angular-contact ball bearings when subjected to a known combined radial and thrust load is presented. The combined radial and thrust load must be applied in order to avoid tilting between inner and outer rings. The numerical procedure requires the iterative solution of Z + 2 simultaneous nonlinear equations - where Z is the number of the balls - to yield an exact solution for axial and radial deflections, and contact angles. Numerical results for a 218 angular-contact ball bearing have been compared with those from the literature and show significant differences in the magnitudes of the ball loads, contact angles, and the extent of the loading zone.

  15. The deep structure of Axial Volcano

    Science.gov (United States)

    West, Michael Edwin

    The subsurface structure of Axial Volcano, near the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain in the northeast Pacific, is imaged from an active source seismic experiment. At a depth of 2.25 to 3.5 km beneath Axial lies an 8 km x 12 km region of very low seismic velocities that can only be explained by the presence of magma. In the center of this magma storage chamber at 2--3.5 km below sea floor, the crust is at least 10--20% melt. At depths of 4--5 km there is evidence of additional low concentrations of magma (a few percent) over a larger area. In total, 5--11 km3 of magma are stored in the mid-crust beneath Axial. This is more melt than has been positively identified under any basaltic volcano on Earth. It is also far more than the 0.1--0.2 km3 emplaced during the 1998 eruption. The implied residence time in the magma reservoir of a few hundred to a few thousand years agrees with geochemical trends which suggest prolonged storage and mixing of magmas. The large volume of melt bolsters previous observations that Axial provides much of the material to create crust along its 50 km rift zones. A high velocity ring-shaped feature sits above the magma chamber just outside the caldera walls. This feature is believed to be the result of repeated dike injections from the magma body to the surface during the construction of the volcanic edifice. A rapid change in crustal thickness from 8 to 11 km within 15 km of the caldera implies focused delivery of melt from the mantle. The high flux of magma suggests that melting occurs deeper in the mantle than along the nearby ridge. Melt supply to the volcano is not connected to any plumbing system associated with the adjacent segments of the Juan de Fuca Ridge. This suggests that, despite Axial's proximity to the ridge, the Cobb hot spot currently drives the supply of melt to the volcano.

  16. Molecular Dynamics Modeling of the Effect of Axial and Transverse Compression on the Residual Tensile Properties of Ballistic Fiber

    Directory of Open Access Journals (Sweden)

    Sanjib C. Chowdhury

    2017-02-01

    Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.

  17. Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation.

    Science.gov (United States)

    Sahmani, S; Fattahi, A M

    2017-08-01

    New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Intrinsic carpal ligaments on MR and multidetector CT arthrography: comparison of axial and axial oblique planes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ryan K.L.; Griffith, James F.; Ng, Alex W.H.; Law, Eric K.C. [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince Of Wales Hospital, Hong Kong (China); Tse, W.L.; Wong, Clara W.Y.; Ho, P.C. [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Prince Of Wales Hospital, Hong Kong (China)

    2017-03-15

    To compare axial and oblique axial planes on MR arthrography (MRA) and multidetector CT arthrography (CTA) to evaluate dorsal and volar parts of scapholunate (SLIL) and lunotriquetral interosseous (LTIL) ligaments. Nine cadaveric wrists of five male subjects were studied. The visibility of dorsal and volar parts of the SLIL and LTIL was graded semi-quantitatively (good, intermediate, poor) on MRA and CTA. The presence of a ligament tear was determined on arthrosocopy and sensitivity, specificity and accuracy of tear detection were calculated. Oblique axial imaging was particularly useful for delineating dorsal and volar parts of the LTIL on MRA with overall 'good' visibility increased from 11 % to 78 %. The accuracy of MRA and CTA in revealing SLIL and LTIL tear was higher using the oblique axial plane. The overall accuracy for detecting SLIL tear on CTA improved from 94 % to 100 % and from 89 % to 94 % on MRA; the overall accuracy of detecting LTIL tear on CTA improved from 89 % to 100 % and from 72 % to 89 % on MRA Oblique axial imaging during CT and MR arthrography improves detection of tears in the dorsal and volar parts of both SLIL and LTIL. (orig.)

  19. Buckling of eccentrically stringer-stiffened cylindrical panels under axial compression

    Science.gov (United States)

    Sobel, L. H.; Agarwal, B. L.

    1976-01-01

    The paper presents numerical results, based on Donnell shell theory, for the axial compressive buckling loads for eccentrically stringer-stiffened circular cylindrical panels, in a study of the effect of boundary conditions and panel width on the buckling load. The two cases of inside and outside stiffeners were considered. The complete cylinder buckling load was reached only for panels under classical simply supported boundary conditions. The prevention of circumferential displacement is found to be the most important in-plane boundary condition from the point of view of increasing the buckling load. Clamping is found more effective in increasing the buckling loads of panels with free circumferential edge displacement than of panels with zero edge displacement. When panel width is equal to or greater than 180 deg, the panel buckling loads are within 10% of the complete cylinder load for all cases except one simply supported panel with outside stringers. Buckling loads were higher for outside stringers, except for very narrow panels that are restrained against circumferential edge displacement. Eccentricity effects are generally similar for clamped and simply supported panels with the same in-plane boundary conditions.

  20. Bearing Capacities of Different-Diameter Concrete-Filled Steel Tubes under Axial Compression

    Directory of Open Access Journals (Sweden)

    Wenjing Wang

    2016-01-01

    Full Text Available The bearing capacities of concrete-filled steel tubes are normally derived through experiments with small-scale specimens, but it is uncertain whether such derivations are appropriate for the much larger components used in practical engineering. This study therefore investigates the effect of different diameters (219, 426, 630, and 820 mm on the axial compression of short concrete columns in steel (Q235 tubes. It is found that the peak nominal stress decreases with increasing specimen size and that the axial bearing capacity is determined by three separate components: the cylinder compressive strength of the concrete, the improvement in strength due to the confining effect of the steel tube, and the longitudinal strength of the steel tube. At peak load, increases in the specimen diameter reduce the hoop stresses in the steel tube, thereby reducing the strengthening effect of confinement. Vertical stress in the steel tube is increased with diameter; therefore, the axial bearing capacity of the steel tube is directly related to the specimen size. Size effect coefficients for these three aspects of bearing capacity are defined and used to develop a size-dependent model for predicting the axial bearing capacity of large, concrete-filled steel tubes. The model is then validated against experimental data.

  1. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  2. Automated fuel pin loading system

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  3. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  4. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice.

    Science.gov (United States)

    Moazami, Nader; Fukamachi, Kiyotaka; Kobayashi, Mariko; Smedira, Nicholas G; Hoercher, Katherine J; Massiello, Alex; Lee, Sangjin; Horvath, David J; Starling, Randall C

    2013-01-01

    The recent success of continuous-flow circulatory support devices has led to the growing acceptance of these devices as a viable therapeutic option for end-stage heart failure patients who are not responsive to current pharmacologic and electrophysiologic therapies. This article defines and clarifies the major classification of these pumps as axial or centrifugal continuous-flow devices by discussing the difference in their inherent mechanics and describing how these features translate clinically to pump selection and patient management issues. Axial vs centrifugal pump and bearing design, theory of operation, hydrodynamic performance, and current vs flow relationships are discussed. A review of axial vs centrifugal physiology, pre-load and after-load sensitivity, flow pulsatility, and issues related to automatic physiologic control and suction prevention algorithms is offered. Reliability and biocompatibility of the two types of pumps are reviewed from the perspectives of mechanical wear, implant life, hemolysis, and pump deposition. Finally, a glimpse into the future of continuous-flow technologies is presented. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  5. QCD plasma parameters in axial gauge

    Energy Technology Data Exchange (ETDEWEB)

    Nachbagauer, H. (Technische Univ., Vienna (Austria). Inst. fuer Theoretische Physik)

    1992-11-01

    Within the framework of imaginary time formalism we investigate the structure of the gluon polarization tensor and relate its structure functions to the dispersion relation of plasma eigenmodes. To one loop order, we calculate the transversal structure function to leading order in the high temperature expansion as well as the first subleading order contribution in the long wavelength limit. The result is used to express the dynamical mass and the damping constant for transversal plasma eigenmodes. The aim of our present paper is a systematic discussion of the gauge fixing vector dependence of the damping constant. In the limit of temporal axial gauge we encounter a negative damping constant contradicting previous results. (orig.).

  6. QCD plasma parameters in axial gauge

    Science.gov (United States)

    Nachbagauer, Herbert

    1992-09-01

    Within the framework of imaginary time formalism we investigate the structure of the gluon polarization tensor and relate its structure functions to the dispersion relation of plasma eigenmodes. To one loop order, we calculate the transversal structure function to leading order in the high temperature expansion as well as the first subleading order contribution in the long wavelength limit. The result is used to express the dynamical mass and the damping constant for transversal plasma eigenmodes. The aim of our present paper is a systematic discussion of the gauge fixing vector dependence of the damping constant. In the limit of temporal axial gauge we encounter a negative damping constant contradicting previous results.

  7. Disordered axial movement in Parkinson's disease.

    OpenAIRE

    Steiger, M J; Thompson, P D; Marsden, C D

    1996-01-01

    Axial motor impairments are a common cause of disability in patients with Parkinson's disease, become more prominent with longer disease duration, and have been said to be less responsive to levodopa replacement therapy. The ability to turn in bed while lying supine before and after dopaminergic stimulation was studied in a group of 36 patients with Parkinson's disease; 23 were in Hoehn and Yahr stages 3-5 when "off", and 13 were in stages 1-2. Turning was also compared with postural stabilit...

  8. Water ingestion into jet engine axial compressors

    Science.gov (United States)

    Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    An axial flow compressor has been tested with water droplet ingestion under a variety of conditions. The results illustrate the manner in which the compressor pressure ratio, efficiency and surging characteristics are affected. A model for estimating the performance of a compressor during water ingestion has been developed and the predictions obtained compare favorably with the test results. It is then shown that with respect to five droplet-associated nonlinearly-interacting processes (namely, droplet-blade interactions, blade performance changes, centrifugal action, heat and mass transfer processes and droplet break-up), the initial water content and centrifugal action play the most dominant roles.

  9. Ankylosing Spondylitis versus Nonradiographic Axial Spondyloarthritis

    DEFF Research Database (Denmark)

    Glintborg, Bente; Sørensen, Inge J; Østergaard, Mikkel

    2017-01-01

    OBJECTIVE: To compare baseline disease activity and treatment effectiveness in biologic-naive patients with nonradiographic axial spondyloarthritis (nr-axSpA) and ankylosing spondylitis (AS) who initiate tumor necrosis factor inhibitor (TNFi) treatment and to study the role of potential confounders....../disease duration/TNFi-type/smoking/baseline disease activity) on TNFi adherence and response [e.g., Bath Ankylosing Spondylitis Activity Index (BASDAI) 50%/20 mm]. RESULTS: The study included 1250 TNFi-naive patients with axSpA (29% nr-axSpA, 50% AS, 21% lacked radiographs of sacroiliac joints). Patients...

  10. Cervical Spine Axial Rotation Goniometer Design

    Directory of Open Access Journals (Sweden)

    Emin Ulaş Erdem

    2012-06-01

    Full Text Available To evaluate the cervical spine rotation movement is quiet harder than other joints. Configuration and arrangement of current goniometers and devices is not always practic in clinics and some methods are quiet expensive. The cervical axial rotation goniometer designed by the authors is consists of five pieces (head apparatus, chair, goniometric platform, eye pads and camera. With this goniometer design a detailed evaluation of cervical spine range of motion can be obtained. Besides, measurement of "joint position sense" which is recently has rising interest in researches can be made practically with this goniometer.

  11. Seismic performance of square RC bridge columns under combined loading including torsion with low shear.

    Science.gov (United States)

    2009-12-01

    During earthquake excitations, reinforced concrete bridge columns can be subjected to a combination of axial load, shear force, : flexural moments, and torsional moments. The torsional moment can be much more significant in columns of bridges that ar...

  12. Medullary sponge kidney on axial computed tomography

    International Nuclear Information System (INIS)

    Ginalski, J.-M.; Schnyder, Pierre; Portmann, Luc; Jaeger, Philippe

    1991-01-01

    To evaluate features of medullary sponge kidney (MSK) on computed tomography (CT), 4-mm-thick axial slices without intravenous contrast material were 1st made in 13 patients through 24 kidneys which showed images of MSK on excretory urograms. On CT, papillary calcifications were found in 11 kidneys. In 5 of these, the calcifications were not detectable on plain films. Some hyperdense papillae (attenuation value 55-70 Hounsfield units) without calcification were found in 4 other kidneys. 9 kidneys appeared normal. 10 of the 14 kidneys were reexamined by a 2nd series of 4-mm-thick axial slices, 5 min after intravenous injection of 50 ml of Urografin. Images suggesting possible ectasia of precaliceal tubules were found in only 4 kidneys. These images appear much less obvious and characteristic on CT than on excretory urogram and do nothing more than suggest the possibility of MSK. In conclusion, the sensitivity of CT in the detection of MSK is markedly lower than that of excretory urography. In the most florid cases of the disease, CT can only show images suggesting the possibility of MSK. On the other hand, CT appears much more sensitive than plain films and tomograms of excretory in the detection of papillary calcifications, the most frequent complication of MSK. (author). 13 refs.; 3 figs

  13. Axial tomography in live cell laser microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-09-01

    Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.

  14. Axial vessel widening in arborescent monocots.

    Science.gov (United States)

    Petit, Giai; DeClerck, Fabrice A J; Carrer, Marco; Anfodillo, Tommaso

    2014-02-01

    Dicotyledons have evolved a strategy to compensate for the increase in hydraulic resistance to water transport with height growth by widening xylem conduits downwards. In monocots, the accumulation of hydraulic resistance with height should be similar, but the absence of secondary growth represents a strong limitation for the maintenance of xylem hydraulic efficiency during ontogeny. The hydraulic architecture of monocots has been studied but it is unclear how monocots arrange their axial vascular structure during ontogeny to compensate for increases in height. We measured the vessel lumina and estimated the hydraulic diameter (Dh) at different heights along the stem of two arborescent monocots, Bactris gasipaes (Kunth) and Guadua angustifolia (Kunth). For the former, we also estimated the variation in Dh along the leaf rachis. Hydraulic diameter increased basally from the stem apex to the base with a scaling exponent (b) in the range of those reported for dicot trees (b = 0.22 in B. gasipaes; b = 0.31 and 0.23 in G. angustifolia). In B. gasipaes, vessels decrease in Dh from the stem's centre towards the periphery, an opposite pattern compared with dicot trees. Along the leaf rachis, a pattern of increasing Dh basally was also found (b = 0.13). The hydraulic design of the monocots studied revealed an axial pattern of xylem conduits similar to those evolved by dicots to compensate and minimize the negative effect of root-to-leaf length on hydrodynamic resistance to water flow.

  15. Modeling the axial offset anomaly in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Blok, J.; Chauffriat, S.; Frattini, P. [EPRI, Palo Alto, CA (United States)

    2002-07-01

    Axially un-symmetrical flux depression is defined as axial offset anomaly (AOA) in PWRs. The effect has only been observed in PWR reactor cores operated at high power duty. The threat of AOA limits the aggressiveness of core design, and in extreme form, the effect can decrease shutdown margin near end of cycle (EOC) sufficiently to mandate power reduction. AOA is ultimately the result of boron hideout on fuel. Studies have confirmed that sufficient boron hideout to produce measurable AOA requires relatively large amounts of corrosion products to deposit on the fuel. Because corrosion product deposition is favored in the boiling upper regions of the (high duty) core, the amount of boron uptake in these regions is large in proportion, and core reactivity is affected disproportionately in the upper region of the core. This paper explores possible mechanisms for deposition of corrosion products on fuel and the consequent incorporation of boron compounds. The proposed mechanisms are viewed in the context of corrosion product samples from the Callaway Cycle 9, one of the PWR fuel cycles that exhibited the most severe AOA to date. (author)

  16. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  17. Energy Absorption Characteristics of Coiled Expanded Metal Tubes Under Axial Compression

    Directory of Open Access Journals (Sweden)

    Dimas J. Smith

    Full Text Available Abstract This paper presents an experimental investigation on the axial crushing of coiled expanded metal tubes subjected to quasi-static compressive loading. The investigation aims at comparing the energy absorption characteristics between tubes fabricated with coiled expanded metal meshes and solid plates. Then, a series of quasi-static axial crushing tests were performed to obtain the structural performance on coiled tubes, and then compare these with round and square solid tubes. Coiled tubes were fabricated using circular and square geometries, as well as various cell orientations. The results showed that cell orientation enhance the energy absorption response of the coiled tubes. Regarding these responses in comparison to those of solid tubes, the results showed that for coiled and solid tubes with the same weight, the energy absorption capacity of the former is much lesser than the latter.

  18. Optimization of inverse model identification for multi-axial test rig control

    Directory of Open Access Journals (Sweden)

    Müller Tino

    2016-01-01

    Full Text Available Laboratory testing of multi-axial fatigue situations improves repeatability and allows a time condensing of tests which can be carried out until component failure, compared to field testing. To achieve realistic and convincing durability results, precise load data reconstruction is necessary. Cross-talk and a high number of degrees of freedom negatively affect the control accuracy. Therefore a multiple input/multiple output (MIMO model of the system, capturing all inherent cross-couplings is identified. In a first step the model order is estimated based on the physical fundamentals of a one channel hydraulic-servo system. Subsequently, the structure of the MIMO model is optimized using correlation of the outputs, to increase control stability and reduce complexity of the parameter optimization. The identification process is successfully applied to the iterative control of a multi-axial suspension rig. The results show accurate control, with increased stability compared to control without structure optimization.

  19. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  20. Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators

    Science.gov (United States)

    Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.

    2015-04-01

    The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.

  1. Torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis).

    Science.gov (United States)

    Kerrigan, Shannon M; Kapatkin, Amy S; Garcia, Tanya C; Robinson, Duane A; Guzman, David Sanchez-Migallon; Stover, Susan M

    2018-04-01

    OBJECTIVE To describe the torsional and axial compressive properties of tibiotarsal bones of red-tailed hawks (Buteo jamaicensis). SAMPLE 16 cadaveric tibiotarsal bones from 8 red-tailed hawks. PROCEDURES 1 tibiotarsal bone from each bird was randomly assigned to be tested in torsion, and the contralateral bone was tested in axial compression. Intact bones were monotonically loaded in either torsion (n = 8) or axial compression (8) to failure. Mechanical variables were derived from load-deformation curves. Fracture configurations were described. Effects of sex, limb side, and bone dimensions on mechanical properties were assessed with a mixed-model ANOVA. Correlations between equivalent torsional and compressive properties were determined. RESULTS Limb side and bone dimensions were not associated with any mechanical property. During compression tests, mean ultimate cumulative energy and postyield energy for female bones were significantly greater than those for male bones. All 8 bones developed a spiral diaphyseal fracture and a metaphyseal fissure or fracture during torsional tests. During compression tests, all bones developed a crushed metaphysis and a fissure or comminuted fracture of the diaphysis. Positive correlations were apparent between most yield and ultimate torsional and compressive properties. CONCLUSIONS AND CLINICAL RELEVANCE The torsional and axial compressive properties of tibiotarsal bones described in this study can be used as a reference for investigations into fixation methods for tibiotarsal fractures in red-tailed hawks. Although the comminuted and spiral diaphyseal fractures induced in this study were consistent with those observed in clinical practice, the metaphyseal disruption observed was not and warrants further research.

  2. Using Costal Chondrocytes to Engineer Articular Cartilage with Applications of Passive Axial Compression and Bioactive Stimuli.

    Science.gov (United States)

    Huwe, Le W; Sullan, Gurdeep K; Hu, Jerry C; Athanasiou, Kyriacos A

    2018-03-01

    Generating neocartilage with suitable mechanical integrity from a cell source that can circumvent chondrocyte scarcity is indispensable for articular cartilage regeneration strategies. Costal chondrocytes of the rib eliminate donor site morbidity in the articular joint, but it remains unclear how neocartilage formed from these cells responds to mechanical loading, especially if the intent is to use it in a load-bearing joint. In a series of three experiments, this study sought to determine efficacious parameters of passive axial compressive stimulation that would enable costal chondrocytes to synthesize mechanically robust cartilage. Experiment 1 determined a suitable time window for stimulation by its application during either the matrix synthesis phase, the maturation phase, or during both phases of the self-assembling process. The results showed that compressive stimulation at either time was effective in increasing instantaneous moduli by 92% and 87% in the synthesis and maturation phases, respectively. Compressive stimulation during both phases did not further improve properties beyond a one-time stimulation. The magnitude of passive axial compression was examined in Experiment 2 by applying 0, 3.3, 5.0, or 6.7 kPa stresses to the neocartilage. Unlike 6.7 kPa, both 3.3 and 5.0 kPa significantly increased neocartilage compressive properties by 42% and 48% over untreated controls, respectively. Experiment 3 examined how the passive axial compression regimen developed from the previous phases interacted with a bioactive regimen (transforming growth factor [TGF]-β1, chondroitinase ABC, and lysyl oxidase-like 2). Passive axial compression significantly improved the relaxation modulus compared with bioactive treatment alone. Furthermore, a combined treatment of compressive and bioactive stimulation improved the tensile properties of neocartilage 2.6-fold compared with untreated control. The ability to create robust articular cartilage from passaged costal

  3. Investigation of unsteady flow in axial turbine stage

    Directory of Open Access Journals (Sweden)

    Němec Martin

    2012-04-01

    Full Text Available The never ending process to increase the efficiency of turbine stages introduced an idea to create an axial turbine stage test rig as part of closed loop transonic wind tunnel at Vyzkumny a zkusebni letecky ustav (VZLU. Studying of unsteady flow field behaviours in turbine stages is nowadays essential in the development process. Therefore, the test rig was designed with focusing on possibility of detailed studying of unsteady flow fields in turbine stages. New methodologies and new instrumentations were developed at VZLU and successfully integrated to gain valuable information from experiments with turbine stages. Two different turbine stages were tested during the facility introduction process. The measurement of these two models demonstrated how flexible the test rig is. One of them was an enlarged model of small gas turbine stage. The other was scaled-down model of stage of intermediate-pressure steam turbine. The external characteristics of both models were acquired during experiments as well as the detailed unsteady flow field measurement. Turbine stages were tested in various regimes in order to check the capabilities of the facility, methodology and instrumentation together. The paper presents results of unsteady flow field investigation in the enlarged turbine stage with unshrouded rotor. The interaction of structures developed in a stator with the rotor flow field is depicted and the influence of turbine load on evolution of secondary flows in rotor is analysed.

  4. Static axial overloading primes lumbar caprine intervertebral discs for posterior herniation

    Science.gov (United States)

    Paul, Cornelis P. L.; de Graaf, Magda; Bisschop, Arno; Holewijn, Roderick M.; van de Ven, Peter M.; van Royen, Barend J.; Mullender, Margriet G.; Smit, Theodoor H.; Helder, Marco N.

    2017-01-01

    Introduction Lumbar hernias occur mostly in the posterolateral region of IVDs and mechanical loading is an important risk factor. Studies show that dynamic and static overloading affect the nucleus and annulus of the IVD differently. We hypothesize there is also variance in the effect of overloading on the IVD’s anterior, lateral and posterior annulus, which could explain the predilection of herniations in the posterolateral region. We assessed the regional mechanical and cellular responses of lumbar caprine discs to dynamic and static overloading. Material and methods IVDs (n = 125) were cultured in a bioreactor and subjected to simulated-physiological loading (SPL), high dynamic (HD), or high static (HS) overloading. The effect of loading was determined in five disc regions: nucleus, inner-annulus and anterior, lateral and posterior outer-annulus. IVD height loss and external pressure transfer during loading were measured, cell viability was mapped and quantified, and matrix integrity was assessed. Results During culture, overloaded IVDs lost a significant amount of height, yet the distribution of axial pressure remained unchanged. HD loading caused cell death and disruption of matrix in all IVD regions, whereas HS loading particularly affected cell viability and matrix integrity in the posterior region of the outer annulus. Conclusion Axial overloading is detrimental to the lumbar IVD. Static overloading affects the posterior annulus more strongly, while the nucleus is relatively spared. Hence, static overloading predisposes the disc for posterior herniation. These findings could have implications for working conditions, in particular of sedentary occupations, and the design of interventions aimed at prevention and treatment of early intervertebral disc degeneration. PMID:28384266

  5. Static axial overloading primes lumbar caprine intervertebral discs for posterior herniation.

    Directory of Open Access Journals (Sweden)

    Cornelis P L Paul

    Full Text Available Lumbar hernias occur mostly in the posterolateral region of IVDs and mechanical loading is an important risk factor. Studies show that dynamic and static overloading affect the nucleus and annulus of the IVD differently. We hypothesize there is also variance in the effect of overloading on the IVD's anterior, lateral and posterior annulus, which could explain the predilection of herniations in the posterolateral region. We assessed the regional mechanical and cellular responses of lumbar caprine discs to dynamic and static overloading.IVDs (n = 125 were cultured in a bioreactor and subjected to simulated-physiological loading (SPL, high dynamic (HD, or high static (HS overloading. The effect of loading was determined in five disc regions: nucleus, inner-annulus and anterior, lateral and posterior outer-annulus. IVD height loss and external pressure transfer during loading were measured, cell viability was mapped and quantified, and matrix integrity was assessed.During culture, overloaded IVDs lost a significant amount of height, yet the distribution of axial pressure remained unchanged. HD loading caused cell death and disruption of matrix in all IVD regions, whereas HS loading particularly affected cell viability and matrix integrity in the posterior region of the outer annulus.Axial overloading is detrimental to the lumbar IVD. Static overloading affects the posterior annulus more strongly, while the nucleus is relatively spared. Hence, static overloading predisposes the disc for posterior herniation. These findings could have implications for working conditions, in particular of sedentary occupations, and the design of interventions aimed at prevention and treatment of early intervertebral disc degeneration.

  6. Axial dispersion in a Kureha Crystal Purifier (KCP)

    Science.gov (United States)

    Otawara, K.; Matsuoka, T.

    2002-04-01

    It is widely accepted that the degree of axial back-mixing in the equipment affects the performance of a column crystallizer. Specifically, small such mixing is inevitable for obtaining highly pure crystal. In fact, it is believed that scale-up of some column crystallizers has been terminated due to the large axial back-mixing or maldistribution. Thus, experiments have been performed for estimating axial dispersion coefficients of liquid phase representing axial back-mixing in the column of a Kureha Crystal Purifier (KCP). The effect of the column diameter on such coefficients has been investigated and it has become evident that the axial back-mixing in the column is more significant in the larger column. Nevertheless, the results have also indicated that the axial back-mixing in KCPs of industrial sizes can be substantially smaller than those in other types of column crystallizers.

  7. Axial stress corrosion cracking forming method to metal tube

    International Nuclear Information System (INIS)

    Araki, Kumiko

    1998-01-01

    Generally, it is more difficult in a metal tube, to intentionally cause a stress corrosion cracking in axial direction than in circumferential direction. In the present invention, a bevel is formed on a metal tube and welding is conducted in circumferential direction along the bevel, and welding is conducted in axial direction partially to the portion welded in circumferential direction. Namely, a bevel is formed in circumferential direction to an abutting portion of thick-walled metal tubes with each other, welding is conducted in circumferential direction along the bevel, and welding is conducted in axial direction partially to a portion welded in circumferential direction. With such procedures, since tensile stress in the circumferential direction is increased partially at a portion welded in axial direction, stress corrosion cracking is caused in axial direction at the portion. Then, stress corrosion cracking in axial direction can thus be formed on the thick-walled metal tube. (N.H.)

  8. Revisiting the vector and axial-vector vacuum susceptibilities

    International Nuclear Information System (INIS)

    Chang Lei; Liu Yuxin; Sun Weimin; Zong Hongshi

    2008-01-01

    We re-investigate the vector and axial-vector vacuum susceptibilities by taking advantage of the vector and axial-vector Ward-Takahashi identities. We show analytically that, in the chiral limit, the vector vacuum susceptibility is zero and the axial-vector vacuum susceptibility equals three fourths of the square of the pion decay constant. Besides, our analysis reproduces the Weinberg sum rule

  9. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...... of fan efficiency in a design interval of flow rates,thus designinga fan which operates well over a range of different flow conditions.The optimization scheme was used to investigate the dependence ofmaximum efficiency on1: the number of blades,2: the width of the design interval and3: the hub radius...

  10. Geometric inequalities for axially symmetric black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2012-01-01

    A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)

  11. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  12. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  13. Axial flux data for fuel measurement

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, R.P.

    1964-02-11

    A survey of the PITA-18 nonpoisonous spline program was conducted in conjunction with a study to determine the best method of eliminating the variability of axial flux on the fuel performance parameter, q. The results of this survey and the conclusions reached in the rupture coefficient study were found to be inter-dependent such that both are presented in this report. The data from the PITA-18 nonpoisonous spline program, as received, is the output of the NOLA-2 computer program. One quantity of interest is the rupture potential relative to a cosine, commonly referred to as the relative rupture potential. As programmed, the relative rupture potential, which was derived by applying the rupture model to individual fuel elements, might be expected to vary linearly with the rupture rate. The use of the relative rupture potential was studied over the period of July 1962 through December 1963. The results of this study are presented.

  14. Composite Axial Flow Propulsor for Small Aircraft

    Directory of Open Access Journals (Sweden)

    R. Poul

    2005-01-01

    Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element  Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail. 

  15. Estimation of ocular volume from axial length.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Logan, Nicola S

    2014-12-01

    To determine which biometric parameters provide optimum predictive power for ocular volume. Sixty-seven adult subjects were scanned with a Siemens 3-T MRI scanner. Mean spherical error (MSE) (D) was measured with a Shin-Nippon autorefractor and a Zeiss IOLMaster used to measure (mm) axial length (AL), anterior chamber depth (ACD) and corneal radius (CR). Total ocular volume (TOV) was calculated from T2-weighted MRIs (voxel size 1.0 mm(3)) using an automatic voxel counting and shading algorithm. Each MR slice was subsequently edited manually in the axial, sagittal and coronal plane, the latter enabling location of the posterior pole of the crystalline lens and partitioning of TOV into anterior (AV) and posterior volume (PV) regions. Mean values (±SD) for MSE (D), AL (mm), ACD (mm) and CR (mm) were -2.62±3.83, 24.51±1.47, 3.55±0.34 and 7.75±0.28, respectively. Mean values (±SD) for TOV, AV and PV (mm(3)) were 8168.21±1141.86, 1099.40±139.24 and 7068.82±1134.05, respectively. TOV showed significant correlation with MSE, AL, PV (all p<0.001), CR (p=0.043) and ACD (p=0.024). Bar CR, the correlations were shown to be wholly attributable to variation in PV. Multiple linear regression indicated that the combination of AL and CR provided optimum R(2) values of 79.4% for TOV. Clinically useful estimations of ocular volume can be obtained from measurement of AL and CR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Axial compression behaviour of reinforced wallettes fabricated using wood-wool cement panel

    Science.gov (United States)

    Noh, M. S. Md; Kamarudin, A. F.; Mokhatar, S. N.; Jaudin, A. R.; Ahmad, Z.; Ibrahim, A.; Muhamad, A. A.

    2018-04-01

    Wood-wool cement composite panel (WWCP) is one of wood based composite material that produced in a stable panel form and suitable to be used as building wall system to replace non-ecofriendly material such as brick and other masonry element. Heavy construction material such as brick requires more manpower and consume a lot of time to build the wall panel. WWCP is a lightweight material with a density range from 300 kg/m3 to 500 kg/m3 and also capable to support an imposed load from the building. This study reported on the axial compression behaviour of prefabricated reinforced wallettes constructed with wood-wool cement panel. A total of six specimens were fabricated using two layers of cross laminated WWCP bonded with normal mortar paste (Portland cement) at a mix ratio of 1:3 (cement : sand). As part of lifting mechanism, the wallettes were equipped with three steel reinforcement (T12) that embedded inside the core of wallettes. Three replicates of wallettes specimens with dimension 600 mm width and 600 mm length were fabricated without surface plaster and with 16 mm thickness of surface plaster. The wallettes were tested under axial compression load after 28 days of fabrication until failure. The result indicated that, the application of surface plaster significantly increases the loading capacity about 35 % and different orientation of the panels improve the bonding strength of the wall.

  17. Behavior of concrete cylinders confined by a ferro-geopolymer jacket in axial compression

    Directory of Open Access Journals (Sweden)

    Kothay Heng

    2017-06-01

    Full Text Available It is beneficial to utilize geopolymers for their potential properties to rehabilitate concrete structures. These properties include high adhesion to Ordinary Portland Cement (OPC concrete even at low degrees of interfacial roughness, high durability and good fire resistance. This paper introduces use of a ferro-geopolymer jacket to strengthen concrete columns. It is a kind of jacket constructed with a geopolymer mortar reinforced with a wire mesh. This study was conducted to investigate the behavior of concrete cylinders confined with a ferro-geopolymer jacket in axial compression. OPC concrete cylinders with 100 mm diameter and 200 mm height were fabricated. High calcium fly ash-based geopolymer mortar, activated with sodium hydroxide (NaOH and sodium silicate (Na2SiO3, cured at a temperature of 25 ºC was used. Ferro-geopolymer jackets with a25 mm thickness, were reinforced with 1, 2 and 3 layers of expanded metal mesh and cast around concrete cylinders. The study results revealed that the compressive load carrying capacity and axial stiffness of concrete cylinders were improved. A monolithic failure mode was obtained as a result of a strong adhesion between the geopolymer and the concrete core. Enhancement of compressive load carrying capacity of the jacketed concrete cylinders was caused by a combination of a confinement effect and the compressive load resistance of the jacket transferred from concrete core through bonding.

  18. ZZ PWR-AXBUPRO-GKN, Measured Axial Burnup Profiles, NPP Neckarewstheim

    International Nuclear Information System (INIS)

    Neuber, Jens-Christian; Lamprecht, Thomas

    1999-01-01

    Description or function: PWR-AXBUPRO-GKN12 contains Axial Burnup Shapes released by Siemens AG Power Generation Group. It contains data sets relative to following NPP and initial enrichment: - NPP Neckarwestheim 1, Fuel assemblies with an initial enrichment of 3.5 wt.-% 235-U; - NPP Neckarwestheim 2, Fuel assemblies with an initial enrichment of 3.5 wt.-% 235-U; - NPP Neckarwestheim 2, Fuel assemblies with an initial enrichment of 3.8 wt.-% 235-U; - NPP Neckarwestheim 2, Fuel assemblies with an initial enrichment of 4.0 wt.-% 235-U. In each of these files the axial shapes are listed one after the other. Each shape is characterised by: - the number of the cycle; - the number of the fuel assembly. - axial burnup shape characteristics: - height (in centimeter) of the nodes with respect to the active length of the fuel assemblies normalized to the cold, unirradiated state. - the nodal burnup (in MWd/kg U). - fuel assembly design data as well as core geometry and operating data pertinent to depletion calculations: NPP Neckarwestheim 1 (GKN1) - (square pitch lattice 15X15 - thermal Power 2497 MW)thermal Power 2497 MW); More than 700 EOC axial shapes from cycle 18 up. From cycle 18 to cycle 20 a change from an Out-In-Loading to an In-Out-Loading has taken place. Fuel assemblies up to number 1093 have spacer grids made of Inconel, whereas all the fuel assemblies from number 1094 up have spacer grids made of Zircaloy. Discharge burnups range from: 9.7 to 52.8 MWd/kg. NPP Neckarwestheim 2 (GKN2) - (square pitch lattice 18X18 - thermal Power 3850 MW) more than 500 EOC axial shapes from cycle 5 up: - More than 170 shapes for an initial fuel enrichment of 3.5 wt.-% 235-U, discharge burnup ranges from 16.3 to 44.4 MWd/kg; - more than 170 shapes for an initial fuel enrichment of 3.8 wt.-% 235-U, discharge burnup ranges from 14.0 to 52.8 MWd/kg; - more than 180 shapes for an initial fuel enrichment of 4.0 wt.-% 235-U. discharge burnup ranges from 15.5 to 48.9 MWd/kg. PWR AXBUPRO

  19. Axial and coronal orientation of subaxial cervical zygapophysial joints and their effect on axial rotation and lateral bending.

    Science.gov (United States)

    Hsu, Wen-Hsing; Benzel, Edward C; Chen, Tzu-Yung; Chen, Yao-Liang

    2008-10-15

    Computerized tomography and image processing methodologies were used to analyze the axial and coronal orientation of cervical zygapophysial joints in asymptomatic adults. Surface motions of axial rotation and lateral bending were simulated. The study was designed to obtain the normal distribution and variation of facet orientation (FO) in axial and coronal planes to investigate factors affecting FO and to study the effects of FO on axial rotation and lateral bending. The FO of the subaxial cervical spine is usually evaluated in the sagittal plane. Cervical spine axial and coronal FO is usually considered to be horizontal. The literature reveals no statistical data for axial or coronal FO. Serial thin-sliced computed tomography scans of the cervical spine in asymptomatic adults were input into Image J, National Institutes of Health, image processing software. Bilateral zygapophysial joint angles from C2-C3 to C6-C7 were measured in the axial and coronal planes and collected from 100 subjects. The effect of gender, age, and correlation was analyzed. The surface motions of axial rotation and lateral bending were simulated in Abaqus CAE 6.5. Mathematical facet contact and range of motion were computed. The FO was widely distributed at each level. Gender had no significant association with FO. Age affected FO at most levels. Axial and coronal FO were significantly correlated. The zygapophysial joint of internally rotated/inverted FO contacted more perpendicularly to each other, and mathematical range of motion was smaller. The axial or coronal FO of the subaxial cervical spine was found with more variability. Age was significantly related to FO. Geometrically, internally rotated/inverted FO of axial rotation/lateral bending was morerestricted. The extent of axial rotation and lateral bending was correlated with each other.

  20. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology

    International Nuclear Information System (INIS)

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-01-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 ± 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function

  1. Measurement of the axial force during primary peristalsis in the oesophagus using a novel electrical impedance technology.

    Science.gov (United States)

    Gravesen, F H; McMahon, B P; Drewes, A M; Gregersen, H

    2008-03-01

    The oesophagus serves to transport food and fluid from the pharynx to the stomach. Oesophageal function is usually evaluated by means of manometry which is a proxy of the force in the radial direction. However, force measurements in the axial direction will provide a better measure of oesophageal transport function. The aim of this study was to develop a probe based on electrical impedance measurements to quantify the axial force generated by oesophageal contractions, i.e. probe elongation was associated with the axial force. Calibration with weights up to 200 g was done. The dispersion, creep, temperature and bending dependence were studied at the bench. Subsequently, the probe was tested in vivo in a healthy human volunteer. The probe showed good reproducibility and the dispersion was <0.04. Some dependence on temperature, creep and bending was found. Interpolation of the calibration curves made it possible to compensate for temperature fluctuations. The maximum deviation was 6.1 +/- 3.7% at loads of 50 g. The influence of creep showed a maximum net creep of 6.1 g after 8 s. The swallowed bolus size correlated with the axial force measurements (P = 0.038) but not with manometric measurements. In conclusion, the new technique measures axial force in the oesophagus and may in the future provide valuable information about oesophageal function.

  2. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  3. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  4. Aerothermal optimization of partially shrouded axial turbines[Dissertation 17138

    Energy Technology Data Exchange (ETDEWEB)

    Porreca, L.

    2007-07-01

    This work presents the results of an aerodynamic and thermal study of three different shrouded axial turbine configurations (turbomachinery). The blade geometry of the turbine stages and the tip clearances of the test cases under investigation are identical although the shroud design is different. The first test case (RRD) is representative of a full shroud geometry while the second (CPS) and third (EPS) test cases adopt different partial shroud arrangements. In the EPS case, a shroud platform is added to cover the blade throat. Partial shrouds are sometimes used in industrial application in order to benefit from the aerodynamic advantage of shrouded configuration as well as reducing thermal load and mechanical stress on the blade root. However, the optimal compromise between mechanical issues and aerodynamic performances is still an open issue due to the resulting highly 3-dimensional unsteady flow field, difficulty of achieve an optimal cooling and severe heat load on the shroud sealing fins. An experimental investigation is carried out in order to quantify the effect of the shroud geometry on the aerodynamic performances and to study the resultant flow field in all test cases. The analysis has been conducted in an experimental low-speed axial turbine facility at the Turbomachinery Laboratory at ETH Zurich. Steady and fast response aerodynamic probe technology (FRAP) has been used to characterize the flow field. Moreover, a stereoscopic PIV technique has been design and applied in this experimental facility for the first time. The flow field analysis shows that the effect of the shroud geometry is significant from 60% blade height span to the tip. Tip leakage vortex in the first rotor is originated in the partial shroud test cases while the full shroud case present only a weak indigenous tip passage vortex. Secondary flows development in the following second stator resulted to be greatly affected by the leakage/main flow interaction of the first rotor. The

  5. Ratcheting of 316L stainless steel thin wire under tension-torsion loading

    Directory of Open Access Journals (Sweden)

    Sichao Fu

    2016-10-01

    Full Text Available A series of cyclic tension-torsion tests under symmetric shear strain and asymmetric axial stress control in various loading paths are conducted on 100 μm-diameter 316L steel wires applying a micro tensiontorsion fatigue testing apparatus. The ratcheting strain of the thin wire increases with increasing axial mean stress and decreases in a sequence of linear, rhombic and circular paths. The macro-scale based cyclic plastic constitutive models with kinematic hardening rules of the Ohno-Wang (OW and the Chen-Jiao-Kim (C-J-K are evaluated for the thin wire. Comparing with the O-W, the C-J-K predicts more accurately under high axial stress. While the loading path effects on ratcheting for wire specimens are basically simulated, the macro-based models tend to under-estimate the effect of phase difference between axial and torsional loadings and the ratcheting evolution in the initial 50 cycles

  6. Equation of motion for the axial gravitational superfield

    International Nuclear Information System (INIS)

    Ogievetsky, V.; Sokatchev, E.

    1980-01-01

    Transformation properties of the axial supergravitational field variants are investigated. The equation of motion for the axial gravitational superfield is derived by direct variation of the N = 1 supergravity action. The left-hand side of this equation is a component of the torsion tensor, and the right-hand side is the supercurrent. The question about the cosmological term in supergravity is discussed

  7. Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device

    Science.gov (United States)

    Smith, P. Alex; Cohn, William; Metcalfe, Ralph

    2017-11-01

    A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.

  8. Load application for the contact mechanics analysis and wear prediction of total knee replacement.

    Science.gov (United States)

    Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin

    2017-05-01

    Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.

  9. Load applied on bone-anchored transfemoral prosthesis: Characterization of a prosthesis—A pilot study

    OpenAIRE

    Laurent Frossard, PhD; Eva Häggström, CPO; Kerstin Hagberg, PhD; Rickard Brånemark, MD, PhD

    2013-01-01

    The objectives of this study were to (1) record the inner-prosthesis loading during activities of daily living (ADLs), (2) present a set of variables comparing loading data, and (3) provide an example of characterization of two prostheses. The load was measured at 200 Hz using a multi-axial transducer mounted between the residuum and the knee of an individual with unilateral transfemoral amputation fitted with a bone-anchored prosthesis. The load was measured while using two different prosthe...

  10. Reliability Assessment of Long Span Suspension Bridges Subjected to Dead Loads

    OpenAIRE

    Antonsen, Kristin

    2016-01-01

    In the present study the influence of standardized safety factors in large and heavy structures, where the major loading arises from self-weight of the structure itself, is considered. For this purpose, a reliability analysis of the Hardanger Bridge is performed. The loading is assumed to originate from the self-weight of the bridge deck, hangers and main cables only, i.e. all other loads are neglected. The reliability analysis is performed by comparing axial loading and resistance capaci...

  11. Investigation on the Behavior of Rigid Polyvinylchloride Pipes Subjected to Uniaxial Compression Loads

    OpenAIRE

    Abdullah A.N. Alhamati; Abdul H. Ghazali; Jamalodin Norzaie; Norzaie A. Mohammed; Mohd R.A. Kadir

    2006-01-01

    The objective of this research was to investigate the capability of rigid Polyvinylchloride (PVC-U) pipes to sustain axial loads. The behavior of PVC-U pipes specimens subjected to short-term uniaxial compression loads was experimentally investigated. Results of the load-displacement tests on pipes of different wall thickness, diameter and specimen heights were recorded. The experimental test results show that the PVC-U pipes are capable of supporting loads greater than the required design lo...

  12. Bi-axial quartz as a stress indicator

    Science.gov (United States)

    Starkey, John

    2000-03-01

    Experiments confirm that stress causes quartz to become biaxial with the optical axial plane parallel to the direction of maximum applied stress. Five tectonites were studied for which published data indicate strong patterns of preferred orientation of quartz. Conoscopic investigation, using an optical universal stage, reveals that the quartz in these rocks is biaxial with the 2V as large as 22°. The optic axial planes display strong patterns of preferred orientation. In the natural tectonites the maximum stress directions deduced from the orientations of the optical axial planes cannot be correlated with the supposed tectonic framework responsible for the quartz orientation fabric. The ease with which quartz can be made biaxial experimentally suggests that the orientation of the optic axial planes may be sensitive to tectonic events which affected the rocks subsequent to the development of the quartz orientation fabrics. The analysis of the orientation of optic axial planes in biaxial quartz may provide a tool for the investigation of neotectonics.

  13. Poroelastic behaviour of the degenerating human intervertebral disc: a ten-day study in a loaded disc culture system

    NARCIS (Netherlands)

    Emanuel, K. S.; Vergroesen, P.-P. A.; Peeters, M.; Holewijn, R. M.; Kingma, I.; Smit, T. H.

    2015-01-01

    The intervertebral disc (IVD) allows flexibility to the vertebral column, and transfers the predominant axial loads during daily activities. Its axial biomechanical behaviour is poroelastic, due to the water-binding and releasing capacity of the nucleus pulposus. Degeneration of the intervertebral

  14. Relation between axial length and ocular parameters

    Directory of Open Access Journals (Sweden)

    Xue-Qiu Yang

    2013-09-01

    Full Text Available AIM: To investigatethe relation between axial length(AL, age and ocular parameters.METHODS: A total of 360 subjects(360 eyeswith emmetropia or myopia were recruited. Refraction, center corneal thickness(CCT, AL, intraocular pressure(IOPwere measured by automatic-refractor, Pachymeter, A-mode ultrasound and non-contact tonometer, respectively. Corneal curvature(CC, anterior chamber depth(ACDand white-to-white distance(WWDwere measured by Orbscan II. Three dimensional frequency domain coherent optical tomography(3D-OCTwas used to examine the retinal nerve fiber layer thickness(RNFLT. The Pearson correlation coefficient(rand multiple regression analysis were performed to evaluate the relationship between AL, age and ocular parameters.RESULTS: The average AL was 24.15±1.26mm. With elongation of the AL, spherical equivalent(SE(r=-0.742,Pr=-0.395, Pr=-0.374, Pr=0.411, Pr=0.099, P=0.060and WWD(r=0.061, P=0.252. There was also a significant correlation between AL and age(P=0.001, SE(PPPCONCLUSION: In longer eyes, there is a tendency toward myopia, a flatter cornea, a deeper ACD and a thinner RNFLT. Age is an influencing factor for the AL as well.

  15. Nucleon axial coupling from Lattice QCD

    Science.gov (United States)

    Cheng Chang, Chia; Nicholson, Amy; Rinaldi, Enrico; Berkowitz, Evan; Garron, Nicolas; Brantley, David; Monge-Camacho, Henry; Monahan, Chris; Bouchard, Chris; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Orginos, Kostas; Vranas, Pavlos; Walker-Loud, André

    2018-03-01

    We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, gA, using Möbius Domain-Wall fermions solved on the dynamical Nf = 2 + 1 + 1 HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of mπ {400, 350, 310, 220, 130} MeV, three lattice spacings of a {0.15, 0.12, 0.09} fm, and we do a dedicated volume study with mπL {3.22, 4.29, 5.36}. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of gA = 1.285(17), with a relative uncertainty of 1.33%.

  16. Axial sheath dynamics in a plasma focus

    International Nuclear Information System (INIS)

    Soliman, H.M.; El-Khalafawy, T.A.; Masoud, M.M.

    1990-01-01

    This paper presents the result of investigation with a 10 kJ Mather type plasma focus. It is operated in hydrogen gas at ambient pressure of 0.15--1 torr and charging voltage of 8--11 kV. Radial distribution of the current sheath density with axial distance has been estimated. Plasma rotation in the expansion chamber in the absence of external magnetic field has been detected. A plasma flare from the plasma focus region propagating in the radial direction has been observed. Streak photography shows two plasma streams flowing simultaneously out of the muzzle. The mean energy of the electron beam ejected from the pinch region of the focused plasma, was measured by retarding field analyzer to be 0.32 keV. The electron temperature of the plasma focus at peak compression was determined by measuring the X-ray intensity as a function of absorber thickness at a distance of 62 cm from the focus. The electron temperature has been found to 3 keV

  17. Mechanical design, analysis, and laboratory testing of a dental implant with axial flexibility similar to natural tooth with periodontal ligament.

    Science.gov (United States)

    Pektaş, Ömer; Tönük, Ergin

    2014-11-01

    At the interface between the jawbone and the roots of natural teeth, a thin, elastic, shock-absorbing tissue, called the periodontal ligament, forms a cushion which provides certain flexibility under mechanical loading. The dental restorations supported by implants, however, involve comparatively rigid connections to the jawbone. This causes overloading of the implant while bearing functional loading together with neighboring natural teeth, which leads to high stresses within the implant system and in the jawbone. A dental implant, with resilient components in the upper structure (abutment) in order to mimic the mechanical behavior of the periodontal ligament in the axial direction, was designed, analyzed in silico, and produced for mechanical testing. The aims of the design were avoiding high levels of stress, loosening of the abutment connection screw, and soft tissue irritations. The finite element analysis of the designed implant revealed that the elastic abutment yielded a similar axial mobility with the natural tooth while keeping stress in the implant at safe levels. The in vitro mechanical testing of the prototype resulted in similar axial mobility predicted by the analysis and as that of a typical natural tooth. The abutment screw did not loosen under repeated loading and there was no static or fatigue failure. © IMechE 2014.

  18. Compression response of tri-axially braided textile composites

    Science.gov (United States)

    Song, Shunjun

    2007-12-01

    This thesis is concerned with characterizing the compression stiffness and compression strength of 2D tri-axially braided textile composites (2DTBC). Two types of 2DTBC are considered differing only on the resin type, while the textile fiber architecture is kept the same with bias tows at 45 degrees to the axial tows. Experimental, analytical and computational methods are described based on the results generated in this study. Since these composites are manufactured using resin transfer molding, the intended and as manufactured composite samples differ in their microstructure due to consolidation and thermal history effects in the manufacturing cycle. These imperfections are measured and the effect of these imperfections on the compression stiffness and strength are characterized. Since the matrix is a polymer material, the nonuniform thermal history undergone by the polymer at manufacturing (within the composite and in the presence of fibers) renders its properties to be non-homogenous. The effects of these non-homogeneities are captured through the definition of an equivalent in-situ matrix material. A method to characterize the mechanical properties of the in-situ matrix is also described. Fiber tow buckling, fiber tow kinking and matrix microcracking are all observed in the experiments. These failure mechanisms are captured through a computational model that uses the finite element (FE) technique to discretize the structure. The FE equations are solved using the commercial software ABAQUS version 6.5. The fiber tows are modeled as transversely isotropic elastic-plastic solids and the matrix is modeled as an isotropic elastic-plastic solid with and without microcracking damage. Because the 2DTBC is periodic, the question of how many repeat units are necessary to model the compression stiffness and strength are examined. Based on the computational results, the correct representative unit cell for this class of materials is identified. The computational models and

  19. Numerical modeling of stresses and buckling loads of isogrid lattice ...

    African Journals Online (AJOL)

    Isogrid composite lattice cylindrical structure with or without skins which consists of a system of ±ϕ (with respect to the shell axis) helical ribs and circumferential ribs, and has no skins or has skins was studied in a numerical method using ANSYS software, where in this model axial compression and/or pressure loads are ...

  20. Modeling of material orientation effects on AHSS crush and fracture behavior in axial crush tests.

    Science.gov (United States)

    Chen, Guofei; Link, Todd M; Shi, Ming F; Tyan, Tau

    2013-01-01

    Due to the rolling manufacturing process, most advanced high-strength steels (AHSS) demonstrate in-plane anisotropic material behavior. This study investigates the effects of material orientation on the axial crush behavior and fracture of AHSS with axial crush tests and computer simulations. Crush simulation models considering material anisotropy and damage evolution were developed in LS-DYNA based on the drop-tower crush test results and coupon characterization test data for DP780 steel. The modified Mohr-Coulomb (MMC) isotropic fracture model was employed in the crush simulation models for fracture prediction. The 12-sided components fabricated in the transverse (T) direction of the sheet exhibited slightly higher crush loads and reduced crush distances compared to those in the longitudinal (L) direction. The crush behavior in each direction was generally proportional to ultimate tensile strength. All of the materials investigated in this study showed some cracking in the crush tests for both component orientations, but only DP780 showed significant anisotropy in fracture behavior with more cracking for the T direction compared to the L direction. Overall, the amount of cracking observed in the tests had little or no significant effect on the axial crush performance. The MMC fracture loci in both the L and T directions were determined using a reverse engineering approach, and the stress-strain curves beyond the uniform elongation point were extended using an optimization method. Both material models MAT103 and MAT224 predicted the crush and fracture behavior with reasonably good accuracy. The predicted fracture mode and force-displacement curves agreed well with the test data for both the L and T directions in axial crush tests of the 12-sided components. The simple isotropic material model MAT224 is adequate for crush simulations to predict material orientation effects on AHSS component crush performance and fracture behavior.

  1. Models of Restoring Force Characteristics for Anchor-Bolt-Yield-Type Exposed Column-Base under Bi-Axial-Bending

    OpenAIRE

    高松,隆夫; 玉井,宏章; 山西,央朗; 松村,高良; 山石,健司

    2009-01-01

    An experimental study of slip-type and non-slip-type exposed column bases subjected to cyclic bi-axial bending moment was made to investigate restoring force characteristics. Based on the test results the following conclusions were drawn: 1) Non-slip-type column bases showed non-slip-type multi-linear cyclic curves, linear from the origin at each loading cycle. 2) Slip-type column bases showed complicated slip-type cyclic curves, especially in 45-degrees cyclic loading because of plastic elon...

  2. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles, task 6 - FRP composite pile axial compression testing.

    Science.gov (United States)

    2015-04-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP : composite piles for load-bearing in bridges. This report covers Task 6, FRP Composite Pile Axial Compression : Testing. : Hollow and conc...

  3. Test and Analyses of a Composite Multi-Bay Fuselage Panel Under Uni-Axial Compression

    Science.gov (United States)

    Li, Jian; Baker, Donald J.

    2004-01-01

    A composite panel containing three stringers and two frames cut from a vacuum-assisted resin transfer molded (VaRTM) stitched fuselage article was tested under uni-axial compression loading. The stringers and frames divided the panel into six bays with two columns of three bays each along the compressive loading direction. The two frames were supported at the ends with pins to restrict the out-of-plane translation. The free edges of the panel were constrained by knife-edges. The panel was modeled with shell finite elements and analyzed with ABAQUS nonlinear solver. The nonlinear predictions were compared with the test results in out-of-plane displacements, back-to-back surface strains on stringer flanges and back-to-back surface strains at the centers of the skin-bays. The analysis predictions were in good agreement with the test data up to post-buckling.

  4. Conservative axial burnup distributions for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Kang, C.; Lancaster, D.

    1997-11-01

    Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit

  5. Axial elongation following prolonged near work in myopes and emmetropes.

    Science.gov (United States)

    Woodman, Emily C; Read, Scott A; Collins, Michael J; Hegarty, Katherine J; Priddle, Scott B; Smith, Josephine M; Perro, Judd V

    2011-05-01

    To investigate the influence of a period of sustained near work upon axial length in groups of emmetropes (EMM) and myopes. Forty young adult subjects (20 myopes and 20 emmetropes) were recruited for the study. Myopes were further classified as early onset (EOM), late onset (LOM), stable (SM) or progressing (PM) subgroups. Axial length was measured with the IOLMaster instrument before, immediately after and then again 10 min after a continuous 30 min near task of 5 D accommodation demand. Measures of distance objective refraction were also collected. Significant changes in axial length were observed immediately following the near task. EOM axial length elongated on average by 0.027±0.021 mm, LOM by 0.014±0.020 mm, EMM by 0.010±0.015 mm, PM by 0.031±0.022 mm and SM by 0.014±0.018 mm. At the conclusion of the 10 min regression period, axial length measures were not significantly different from baseline values. Axial elongation was observed following a prolonged near task. Both EOM and PM groups showed increases in axial length that were significantly greater than emmetropes.

  6. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    Science.gov (United States)

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dispositivos de asistencia ventricular de tipo axial

    Directory of Open Access Journals (Sweden)

    Albert Miralles Cassina

    2009-04-01

    Full Text Available El uso de dispositivos de asistencia ventricular se ha ido extendiendo en las últimas décadas. La mejora de los resultados ha ido acompañada del diseño de nuevos aparatos más pequeños y eficientes como son las bombas de flujo axial. las características técnicas básicas de estos dispositivos se hallan en la generación de un flujo continuo unidireccional conseguido mediante sistemas de turbina que obtienen su alimentación de una fuente eléctrica. Las ventajas principales de estos dispositivos son: su facilidad de implantación por su tamaño reducido, su prolongada durabilidad gracias a su sencillo diseño y su eficiencia energética al utilizar energía eléctrica. Su utilidad se ha podido demostrar en diferentes indicaciones de asistencia circulatoria mecánica, como en el caso de puente al trasplante o dispositivo de recuperación miocárdica, si bien donde radica más interés es en su uso como sistemas de asistencia circulatoria mecánica definitiva. Existe una variedad de modelos de diversos diseños. Son dispositivos que permiten soporte normalmente univentricular izquierdo, que se implantan en el tórax con cánula de entrada a nivel ventricular y cánula de salida a nivel aórtico. En este artículo se efectúa una descripción de los principales sistemas disponibles en la actualidad, comentando las características técnicas, ventajas e inconvenientes y un resumen de la experiencia existente.

  8. Application of Selected Multi-axial Fatigue Criteria Are Using Fifth-dimensional Space on the Results of Fatigue Experiments

    Directory of Open Access Journals (Sweden)

    František FOJTÍK

    2013-12-01

    Full Text Available The paper describes the experimental results obtained for the combined loading of the specimens in the region of high-cycle fatigue. The specimens were manufactured from common structural steel 11523.1. There has been realized a set of proportional and non-proportional experiments in the area of high-cycle fatigue for basic methods of loading, namely: tension/compression, bending and torsion and its mutual combinations. By selected experiments, the specimens were additionally loaded by constant inner/outer pressure and axial prestress for a various loading levels. Experiments were realized on testing machines, situated at author´s workplace. The experimental results were undergone to application of selected and known criteria of fatigue strength and subsequently carried out its modification according to the results. For gaining necessary input values for criteria of fatigue strength, there was a need to realize a FEM simulation of test specimens.

  9. Practical evaluation of the MiL-Lx lower leg when subjected to simulated vehicle under belly blast load conditions

    CSIR Research Space (South Africa)

    Pandelani, T

    2010-09-01

    Full Text Available transmit high amplitude, short duration axial loads to the foot/ankle/tibia complex of the occupants. Depending on the size of the initial blast wave and its attenuation through armour, foot rests and other protection systems, the axial loads may proceed... Methodology of Protection against Asymmetric Threats to Armoured Vehicles, 4th European Survivability Workshop (ESW), Malvern, UK, 2010. [11] T. Pandelani, D. Reinecke, and F. Beetge, (2010).The evaluation of the South African surrogate leg for landmine...

  10. Measurement for cobalt target activity and its axial distribution

    International Nuclear Information System (INIS)

    Li Xingyuan; Chen Zigen.

    1985-01-01

    Cobalt target activity and its axial distribution are measured in process of producing radioactive isotopes 60 Co by irradiation in HFETR. Cobalt target activity is obtained with measured data at 3.60 m and 4.60 m, relative axial distribution of cobalt target activity is obtained with one at 30 cm, and axial distribution of cobalt target activity(or specific activity) is obtained with both of data. The difference between this specific activity and measured result for 60 Co teletherapy sources in the end is less than +- 5%

  11. Axial weak currents in the Wess-Zumino term

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1985-03-01

    The conventional axial gauging of the Wess-Zumino term leads to the results which do not necessarily agree with the expectations on the basis of quark level Ward-Takahashi identities. This discrepancy arises from the fact that the quark level anomalous identities reflect the short distance structure of QCD, whereas the gauging of the Wess-Zumino term reflects the axial symmetry in the spontaneously broken chiral phase. The low energy theorem for axial weak fields is not sharply defined, in contrast to the case of vector fields where no such complications arise. (author)

  12. The Design Method of Axial Flow Runners Focusing on Axial Flow Velocity Uniformization and Its Application to an Ultra-Small Axial Flow Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2016-01-01

    Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.

  13. Ankle Joint Contact Loads and Displacement With Progressive Syndesmotic Injury.

    Science.gov (United States)

    Hunt, Kenneth J; Goeb, Yannick; Behn, Anthony W; Criswell, Braden; Chou, Loretta

    2015-09-01

    Ligamentous injuries to the distal tibiofibular syndesmosis are predictive of long-term ankle dysfunction. Mild and moderate syndesmotic injuries are difficult to stratify, and the impact of syndesmosis injury on the magnitude and distribution of forces within the ankle joint during athletic activities is unknown. Eight below-knee cadaveric specimens were tested in the intact state and after sequential sectioning of the following ligaments: anterior-inferior tibiofibular, anterior deltoid (1 cm), interosseous/transverse (IOL/TL), posterior-inferior tibiofibular, and whole deltoid. In each condition, specimens were loaded in axial compression to 700 N and then externally rotated to 20 N·m torque. During axial loading and external rotation, both the fibula and the talus rotated significantly after each ligament sectioning as compared to the intact condition. After IOL/TL release, a significant increase in posterior translation of the fibula was observed, although no syndesmotic widening was observed. Mean tibiotalar contact pressure increased significantly after IOL/TL release, and the center of pressure shifted posterolaterally, relative to more stable conditions, after IOL/TL release. There were significant increases in mean contact pressure and peak pressure along with a reduction in contact area with axial loading and external rotation as compared to axial loading alone for all 5 conditions. Significant increases in tibiotalar contact pressures occur when external rotation stresses are added to axial loading. Moderate and severe injuries are associated with a significant increase in mean contact pressure combined with a shift in the center of pressure and rotation of the fibula and talus. Considerable changes in ankle joint kinematics and contact mechanics may explain why moderate syndesmosis injuries take longer to heal and are more likely to develop long-term dysfunction and, potentially, ankle arthritis. © The Author(s) 2015.

  14. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  15. SIMULATION OF FRICTIONAL DISSIPATION UNDER BIAXIAL TANGENTIAL LOADING WITH THE METHOD OF DIMENSIONALITY REDUCTION

    Directory of Open Access Journals (Sweden)

    Andrey V. Dimaki

    2017-08-01

    Full Text Available The paper is concerned with the contact between the elastic bodies subjected to a constant normal load and a varying tangential loading in two directions of the contact plane. For uni-axial in-plane loading, the Cattaneo-Mindlin superposition principle can be applied even if the normal load is not constant but varies as well. However, this is generally not the case if the contact is periodically loaded in two perpendicular in-plane directions. The applicability of the Cattaneo-Mindlin superposition principle guarantees the applicability of the method of dimensionality reduction (MDR which in the case of a uni-axial in-plane loading has the same accuracy as the Cattaneo-Mindlin theory. In the present paper we investigate whether it is possible to generalize the procedure used in the MDR for bi-axial in-plane loading. By comparison of the MDR-results with a complete three-dimensional numeric solution, we arrive at the conclusion that the exact mapping is not possible. However, the inaccuracy of the MDR solution is on the same order of magnitude as the inaccuracy of the Cattaneo-Mindlin theory itself. This means that the MDR can be also used as a good approximation for bi-axial in-plane loading.

  16. The Nonradiographic Axial Spondyloarthritis, the Radiographic Axial Spondyloarthritis, and Ankylosing Spondylitis: The Tangled Skein of Rheumatology

    Science.gov (United States)

    Rawat, Roopa; Agrawal, Neha; Patil, Nilesh S.

    2017-01-01

    Since 1984 the diagnosis of ankylosing spondylitis (AS) has been based upon the modified New York (mNY) criteria with mandatory presence of radiographic sacroiliitis, without which the diagnosis is not tenable. However, it may take years or decades for radiographic sacroiliitis to develop delaying the diagnosis for long periods. It did not matter in the past because no effective treatment was available. However, with the availability of a highly effective treatment, namely, tumour necrosis factor-α inhibitors (TNFi), the issue of early diagnosis of AS acquired an urgency. The Assessment of SpondyloArthritis International Society (ASAS) classification criteria published in 2009 was a significant step towards this goal. These criteria described an early stage of the disease where sacroiliitis was demonstrable only on MRI but not on standard radiograph. Therefore, this stage of the disease was labelled “nonradiographic axial SpA” (nr-axSpA). But questions have been raised if, in search of early diagnosis, specificity was compromised. The Federal Drug Administration (FDA, USA) withheld approval for the use of TNFi in patients with nr-axSpA because of issues related to the specificity of these criteria. This review attempts to clarify some of these aspects of the nr-axSpA-AS relationship and also tries to answer the question whether ASAS classifiable radiographic axial spondyloarthritis (r-axSpA) term can be interchangeably used with the term AS. PMID:28555158

  17. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  18. The relation between anomalous magnetic moment and axial anomaly

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    1990-12-01

    The conservation of total angular momentum of spinor particle leads to a simple relation between the famous Schwinger and Adler coefficients determining axial anomaly and anomalous magnetic moment, respectively. (author). 8 refs, 1 fig

  19. Defining active sacroiliitis on MRI for classification of axial spondyloarthritis

    DEFF Research Database (Denmark)

    Lambert, Robert G W; Bakker, Pauline A C; van der Heijde, Désirée

    2016-01-01

    OBJECTIVES: To review and update the existing definition of a positive MRI for classification of axial spondyloarthritis (SpA). METHODS: The Assessment in SpondyloArthritis International Society (ASAS) MRI working group conducted a consensus exercise to review the definition of a positive MRI...... for inclusion in the ASAS classification criteria of axial SpA. Existing definitions and new data relevant to the MRI diagnosis and classification of sacroiliitis and spondylitis in axial SpA, published since the ASAS definition first appeared in print in 2009, were reviewed and discussed. The precise wording....... CONCLUSION: The definition of a positive MRI for classification of axial SpA should continue to primarily depend on the imaging features of 'active sacroiliitis' until more data are available regarding MRI features of structural damage in the sacroiliac joint and MRI features in the spine and their utility...

  20. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  1. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  2. Pole prescription in axial gauge at finite temperature

    Science.gov (United States)

    Kreuzer, Maximilian; Nachbagauer, Herbert

    1991-11-01

    We establish Yang-Mills theory at finite temperature in axial gauge. We encounter the breakdown of the Hata-Kugo expression for the partition function in the special choice of temporal axial gauge. For n ≠ 0 the finite temperature propagator is calculated in both the imaginary time formalism and the real time formalism. In the latter we recover the Leibbrandt-Mandelstam prescription in the lijit T→0. As a check we calculate the mean energy to lowest order.

  3. Pole prescription in axial gauge at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M.; Nachbagauer, H. (Technische Univ., Vienna (Austria). Inst. fuer Theoretische Physik)

    1991-11-14

    We establish Yang-Mills theory at finite temperature in axial gauge. We encounter the breakdown of the Hata-Kugo expression for the partition function in the special choice of temporal axial gauge. For n {ne} 0 the finite temperature propagator is calculated in both the imaginary time formalism and the real time formalism. In the latter we recover the Leibbrandt-Mandelstam prescription in the limit T {yields} 0. As a check we calculate the mean energy to lowest order. (orig.).

  4. Axial myopia in computed and magnetic resonance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Beyer-Enke, S.A.; Goerich, J.; Gamroth, A.

    1987-08-01

    The case of a 44-year old woman suffering from amblyopia on the left eye with unilateral proptosis caused by axial (progressive) myopia is presented. The clinical and radiological findings were discussed in reference to the literature. The diagnosis was established by ruling out neoplastic, inflammatory or endocrine causes for the exophtalmos. CT and MR scans revealed an enlarged left globe without evidence of orbital masses. The findings were regarded as typical for the diagnosis at axial myopia.

  5. Design and fabrication of tri-axial capillary needles in flow focusing for microencapsulation of multiple drugs and imaging agents

    Science.gov (United States)

    Si, Ting; Feng, Hanxin; Xie, Bin; Xu, Ronald

    2014-03-01

    Microencapsulation of multiple drugs and imaging agents is significant for various biomedical applications. In this work we describe a novel method based on flow focusing geometry using tri-axial metallic capillary needles manufactured by a laser beam welding process. The tri-axial needle can be readily cleaned, assembled, and aligned. With this needle assembly, we develop a tri-axial capillary flow focusing device in which different combinations of liquids are focused in the core of a high-speed gas stream coflowing through a small orifice. Under appropriate working conditions, stable cone-jet configurations with three layers of liquids in an external gas stream can be obtained, resulting in multilayered microparticles with outer shell, middle layer, and inner core. The new design of tri-axial needles enables reliable encapsulation of multiple drugs and imaging agents in biodegradable microcapsules with the enhanced size distribution, increased productivity, and improved drug-loading efficiency. Furthermore, in this method the outer and the middle shell fluids can be released to produce monodisperse microparticles at smaller scales which have potential applications in multi-modal imaging, drug delivery, material processing and biomedicine.

  6. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    OpenAIRE

    Khairallah, Fouad

    2013-01-01

    While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC) under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC), its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC und...

  7. Dynamic Multi-Axial Loading Response and Constitutive/Damage Modeling of Titanium and Titanium Alloys

    Science.gov (United States)

    2006-06-24

    Tungsten and Refractory Metals, McLean, VA, Metal Powder Industries Federation, Princeton, NJ, p. 489. Cheng, J., Nemat-Nasser, S., 2000. A model for...Congress on Tungsten and Refractory Metals, McLean, VA, Metal Powder Industries Federation, Princeton, NJ, p. 489. Chichili, D. R., Ramesh, K. T...constants were incorporated into the ABAQUS /explicit FE code to predict the tensile response of the alloys. They concluded that the ZA model was unable to

  8. Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading

    Directory of Open Access Journals (Sweden)

    Valentino Paolo Berardi

    2012-11-01

    Full Text Available Polymer concretes (PCs represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section. The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.

  9. Guided wave propagation as a measure of axial loads in rails

    CSIR Research Space (South Africa)

    Loveday, PW

    2010-03-01

    Full Text Available the solution to the eigenvalue problem with respect to ω: 020102 2 =⎥⎦ ⎤⎢⎣ ⎡ −++⎟⎟⎠ ⎞⎜⎜⎝ ⎛ +∂ ∂ ψωκρσκψω MKK MKT , leading to an expression which can be rearranged to obtain vg = dω/dκ as the subject. If instead the eigenvalue solution...

  10. Deflection and Supporting Force Analysis of a Slender Beam under Combined Transverse and Tensile Axial Loads

    Science.gov (United States)

    2016-05-01

    testing, digital filtering of flight test data , nonlinear optimisation, and spectral analysis. His recent work has been in the areas of structural shape...formula [2]: = 4 8 (26) 3.3 Nonlinear FEA solution for tension force T ≥ 0 case The Abaqus 6.14-2 finite element analysis code...accurately determine the peak deflection and its location along the span of the beam. The Abaqus beam element type B23 was used, which corresponds to a 2

  11. Comparison of Response from Combined Axial and Blast Loads Calculated with SDOF and Finite Element Methods

    Science.gov (United States)

    2010-07-01

    function of degree of fixity at the supports (e.g. simple supports or fixed supports) because the degree of fixity does not directly affect the magnitude...of the applied P-delta effect, even though fixity allows a component to resist the P-delta moment with lower stresses. Since the ELL representing the...conservative overall. The case of any support fixity also decreases the average deflection factor across the wall and can be conservatively neglected

  12. Reactive control of subsonic axial fan noise in a duct.

    Science.gov (United States)

    Liu, Y; Choy, Y S; Huang, L; Cheng, L

    2014-10-01

    Suppressing the ducted fan noise at low frequencies without varying the flow capacity is still a technical challenge. This study examines a conceived device consisting of two tensioned membranes backed with cavities housing the axial fan for suppression of the sound radiation from the axial fan directly. The noise suppression is achieved by destructive interference between the sound fields from the axial fan of a dipole nature and sound radiation from the membrane via vibroacoustics coupling. A two-dimensional model with the flow effect is presented which allows the performance of the device to be explored analytically. The air flow influences the symmetrical behavior and excites the odd in vacuo mode response of the membrane due to kinematic coupling. Such an asymmetrical effect can be compromised with off-center alignment of the axial fan. Tension plays an important role to sustain the performance to revoke the deformation of the membrane during the axial fan operation. With the design of four appropriately tensioned membranes covered by a cylindrical cavity, the first and second blade passage frequencies of the axial fan can be reduced by at least 20 dB. The satisfactory agreement between experiment and theory demonstrates that its feasibility is practical.

  13. Axial design of nuclear fuel using path relinking; Diseno axial de combustible nuclear utilizando path relinking

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, A.; Torres, M.; Ortiz, J. J.; Perusquia, R.; Hernandez, J. L.; Montes, J. L. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2008-07-01

    In the present work the preliminary results were obtained with the zoctli system whose purpose is the axial design of assembly of nuclear fuel under certain considerations. For the mentioned design well-know cells were already used and that they have been proven in diverse cycles of operation in the nuclear power plant of Laguna Verde. The design contemplates fuels assemblies of 10x10 and with 2 water channels. The assembly was distributed in 6 axial zones according to its structure. In order to take to end the optimization is was used the well-known technique like Path relinking and to find the group of previous solutions required by this technique uses the technical Taboo search. In order to work with Path relinking, 5 trajectories was taken in to account from a set of 5 previous solutions generated with theTaboo search, the update of the group of solutions is carried out in dynamic form. In the case of the Taboo search it was used a list of variable size, it was implement an aspiration approach, it was used the vector of frequencies and due to the cost of the evaluation of the objective function, only it was review 5% of the vicinity. For the objective function was considered the limit thermal, the axial profile of power, the effective multiplication factor and the margin of having turned off in cold. In order to prove the design system, it was used a balance cycle with a value of reference of 0.9928 for the effective multiplication factor that is equivalent to a produced energy of 10896 MWd/TU at the end of operation to full power. The designed assemblies were placed both in one of lots different from fresh assemblies on which it counts the referred cycle. At the end one a comparison with the results obtained with other techniques and under similar conditions is made. The results obtained until the moment show an appropriate performance of the system. It is possible to indicate that a small inconvenient is the amount of consumed resources of calculation during

  14. Investigation of Bearing Axial Cracking: Benchtop and Full-Scale Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gould, Benjamin [Argonne National Lab. (ANL), Argonne, IL (United States); Greco, Aaron [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-16

    The most common failure mode in wind turbine gearboxes is axial cracking in intermediate and high-speed-stage bearings, also commonly called white-etching cracks (WECs). Although these types of cracks have been reported for over a decade, the conditions leading to WECs, the process by which this failure culminates, and the reasons for their apparent prevalence in wind turbine gearboxes are all highly debated. This paper summarizes the state of a multipronged research effort to examine the causes of WECs in wind turbine gearbox bearings. Recent efforts have recreated WECs on a benchtop test rig in highly loaded sliding conditions, wherein it was found that the formation of a dark etching microstructure precedes the formation of a crack, and a crack precedes the formation of white-etching microstructure. A cumulative frictional sliding energy criterion has been postulated to predict the presence of WECs. Bearing loads have also been measured and predicted in steady state and transient drivetrain operations in dynamometer testing. In addition, both loads and sliding at full scale will be measured in planned uptower drivetrain testing. If the cumulative frictional sliding energy is the dominant mechanism that causes WECs, understanding the amount of frictional sliding energy that wind turbine bearings are subjected to in typical operations is the next step in the investigation. If highly loaded sliding conditions are found uptower, similar to the examined benchtop levels, appropriate mitigation solutions can be examined, ranging from new bearing coatings and improved lubricants to changes in gearbox designs and turbine operations.

  15. Free-edge delamination - Laminate width and loading conditions effects

    Science.gov (United States)

    Murthy, Pappu L. N.; Chamis, Christos C.

    1989-01-01

    The width and loading conditions effects on free-edge stress fields in composite laminates are investigated using a three-dimensional finite element analysis. This analysis includes a special free-edge region refinement or superelement with progressive substructuring (mesh refinement) and finite thickness interply layers. The different loading conditions include in-plane and out-of-plane bending, combined axial tension and in-plane shear, twisting, uniform temperature and uniform moisture. Results obtained indicate that: axial tension causes the smallest magnitude of interlaminar free edge stress compared to other loading conditions; free-edge delamination data obtained from laboratory specimens cannot be scaled to structural components; and composite structural components are not likely to delaminate.

  16. High Precision Axial Coordinate Readout for an Axial 3-D PET Detector Module using a Wave Length Shifter Strip Matrix

    CERN Document Server

    Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, P; De Leo, R; Nappi, E; Lustermann, W; Schinzel, D; Johnson, I; Renker, D; Albrecht, S

    2007-01-01

    We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-dimensional spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the wavelength shifting strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).

  17. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-11-15

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  18. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion.

    Science.gov (United States)

    Wang, Pu; Huang, Zhen

    2017-01-01

    This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

  19. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion.

    Directory of Open Access Journals (Sweden)

    Pu Wang

    Full Text Available This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

  20. An experimental study of the dynamic response of the fluid-filled co-axial cylinder in the horizontal and the vertical excitation

    International Nuclear Information System (INIS)

    Chiba, T.; Mieda, T.; Jitu, K.

    1993-01-01

    The dynamic characteristics of the co-axial cylinder subjected to the seismic loading was studied. This paper presents the analytical and the experimental results of the modal parameters of the fluid filled co-axial cylinders in the horizontal and the vertical excitations. Also, the effects of the annular space and the input level on the dynamic response of the cylinder are discussed. It is of interest to note that as the annular space becomes smaller, the dynamic response of the vertical direction increases. The nonlinear dynamic response is observed in the coupled excitation of the horizontal and the vertical directions at a narrow annular space

  1. Hoists having load support in the event of hoist failure

    International Nuclear Information System (INIS)

    Webb, J.

    1984-01-01

    A hoist having lifting means for a very heavy load also has rotatable threaded rod load supporters depending from the hoist to which the load is coupled by nuts and arms. The supporters are rotated by a slipping drive so that the nuts try to move in advance of a rise or fall of the load. The advance drive applies a raising or lowering force to the supporters which are free to move axially within small tolerances. At the limit of the tolerances brakes are applied to the rotation of the supporters. In the event of the hoist releasing the load, the load becomes supported by the arms and nuts on the supporters with the supporters firmly braked. (author)

  2. Prosthetic abutment influences bone biomechanical behavior of immediately loaded implants

    Directory of Open Access Journals (Sweden)

    Germana de Villa CAMARGOS

    2016-01-01

    Full Text Available Abstract This study aimed to evaluate the influence of the type of prosthetic abutment associated to different implant connection on bone biomechanical behavior of immediately and delayed loaded implants. Computed tomography-based finite element models comprising a mandible with a single molar implant were created with different types of prosthetic abutment (UCLA or conical, implant connection (external hexagon, EH or internal hexagon, IH, and occlusal loading (axial or oblique, for both immediately and delayed loaded implants. Analysis of variance at 95%CI was used to evaluate the peak maximum principal stress and strain in bone after applying a 100 N occlusal load. The results showed that the type of prosthetic abutment influences bone stress/strain in only immediately loaded implants. Attachment of conical abutments to IH implants exhibited the best biomechanical behavior, with optimal distribution and dissipation of the load in peri-implant bone.

  3. Load Bearing Equipment for Bone and Muscle Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Shackelford, Linda

    2015-01-01

    Axial skeletal loads coupled with muscle torque forces around joints maintain bone. Astronauts working in pairs to exercise can provide high eccentric loads for each other that are most effective. A prototype of load bearing equipment that will allow astronauts to perform exercises using each other for counter force generation in a controlled fashion and provide eccentric overload is proposed. A frame and attachments that can be rapidly assembled for use and easily stored will demonstrate feasibility of a design that can be adapted for ISS testing and Orion use.

  4. Multi-axial active isolation for seismic protection of buildings

    Science.gov (United States)

    Chang, Chia-Ming

    Structural control technology has been widely accepted as an effective means for the protection of structures against seismic hazards. Passive base isolation is one of the common structural control techniques used to enhance the performance of structures subjected to severe earthquake excitations. Isolation bearings employed at the base of a structure naturally increase its flexibility, but concurrently result in large base displacements. The combination of base isolation with active control, i.e., active base isolation, creates the possibility of achieving a balanced level of control performance, reducing both floor accelerations as well as base displacements. Many theoretical papers have been written by researchers regarding active base isolation, and a few experiments have been performed to verify these theories; however, challenges in appropriately scaling the structural system and modeling the complex nature of control-structure interaction have limited the applicability of these results. Moreover, most experiments only focus on the implementation of active base isolation under unidirectional excitations. Earthquakes are intrinsically multi-dimensional, resulting in out-of-plane responses, including torsional responses. Therefore, an active isolation system for buildings using multi-axial active control devices against multi-directional excitations must be considered. The focus of this dissertation is the development and experimental verification of active isolation strategies for multi-story buildings subjected to bi-directional earthquake loadings. First, a model building is designed to match the characteristics of a representative full-scale structure. The selected isolation bearings feature low friction and high vertical stiffness, providing stable behavior. In the context of the multi-dimensional response control, three, custom-manufactured actuators are employed to mitigate both in-plane and out-of-plane responses. To obtain a high-fidelity model of the

  5. Axial Lengths in Children with Recessive Cornea Plana.

    Science.gov (United States)

    Al Hazimi, Amro; Khan, Arif O

    2015-06-01

    While flat keratometry contributes to the hyperopia and associated refractive accommodative esotropia that is part of recessive cornea plana, whether or not axial lengths are abnormally short in the disease is unclear. In this study we assess this possibility. Prospective (2010-2012) axial length measurement (IOLmaster; Carl Zeiss, Oberkochen, Germany) of affected right eyes and comparison to right eyes with refractive accommodative esotropia only. Keratometry and refraction were also performed. For eight affected right eyes (age 10-12 years; seven families) axial length ranged from 21.46-24.80 mm (mean 23.34). Best corrected visual acuity ranged from 20/25 to 20/50, keratometry from 25.33-39.80 diopters (D) [mean 31.80], and refraction from +2.00 to +14.00 D (mean +7.22). For 50 control right eyes (age 4-12 years), axial length ranged from 19.87-23.66 mm (mean 21.6). Best-corrected visual acuity was 20/25 or better, keratometry ranged from 39.81-46.25 D (mean 42.42), and refraction from +2.25 to +8.00 D (mean 4.71). Axial lengths were longer in the affected group (2-tailed unpaired t-test p value 0.000005) despite greater hyperopia (2-tailed unpaired t-test p value 0.001). Despite greater hyperopia, axial lengths were longer in eyes with recessive cornea plana, evidence that axial lengths are not shortened by the disease. Keratometry in children with cornea plana was below the range of controls and was the major factor underlying the phenotype's hyperopia.

  6. Gearbox Reliability Collaborative Investigation of High-Speed-Shaft Bearing Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    The loads and contact stresses in the bearings of the high speed shaft section of the Gearbox Reliability Collaborative gearbox are examined in this paper. The loads were measured though strain gauges installed on the bearing outer races during dynamometer testing of the gearbox. Loads and stresses were also predicted with a simple analytical model and higher-fidelity commercial models. The experimental data compared favorably to each model, and bearing stresses were below thresholds for contact fatigue and axial cracking.

  7. Burst pressure of super duplex stainless steel pipes subject to combined axial tension, internal pressure and elevated temperature

    International Nuclear Information System (INIS)

    Lasebikan, B.A.; Akisanya, A.R.

    2014-01-01

    The burst pressure of super duplex stainless steel pipe is measured under combined internal pressure, external axial tension and elevated temperature up to 160 °C. The experimental results are compared with existing burst pressure prediction models. Existing models are found to provide reasonable estimate of the burst pressure at room temperature but significantly over estimate the burst pressure at elevated temperature. Increasing externally applied axial stress and elevated temperature reduces the pressure capacity. - Highlights: • The burst pressure of super duplex steel is measured under combined loading. • Effect of elevated temperature on burst pressure is determined. • Burst pressure decreases with increasing temperature. • Existing models are reliable at room temperature. • Burst strength at elevated temperature is lower than predictions

  8. A simplified technique for shakedown load determination

    International Nuclear Information System (INIS)

    Abdalla, H.F.; Younan, M.Y.A.; Megahed, M.M.

    2005-01-01

    In this paper a simple technique is presented to determine the limit shakedown load of a structure or a component using the finite element method. Through the proposed technique, the limit shakedown load is determined without performing time consuming cyclic loading simulations or iterative elastic techniques. Instead, it is determined by performing only two analyses namely, an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the limit shakedown load of the structure is determined through the calculation of the residual stresses. The technique is applied and verified using two bench mark shakedown problems namely: the two-bar structure subjected to constant axial force and cyclic thermal loading, and the Bree cylinder subjected to constant internal pressure and cyclic high heat fluxes across its wall. The results of the proposed technique showed very good correlation with the, analytically determined, Bree diagrams of both structures. Moreover, the outcomes of the proposed technique showed very good results in comparison to full cyclic loading elasto-plastic finite element simulations of both structures. (authors)

  9. Continuous millennial decrease of the Earth's magnetic axial dipole

    Science.gov (United States)

    Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe

    2018-01-01

    Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.

  10. Amphiregulin Antibody and Reduction of Axial Elongation in Experimental Myopia

    Directory of Open Access Journals (Sweden)

    Wen Jun Jiang

    2017-03-01

    Full Text Available To examine the mechanism of ocular axial elongation in myopia, guinea pigs (age: 2–3 weeks which either underwent unilateral or bilateral lens-induced myopization (group 1 or which were primarily myopic at baseline (group 2 received unilateral intraocular injections of amphiregulin antibody (doses: 5, 10, or 15 μg three times in intervals of 9 days. A third group of emmetropic guinea pigs got intraocular unilateral injections of amphiregulin (doses: 0.25, 0.50 or 1.00 ng, respectively. In each group, the contralateral eyes received intraocular injections of Ringer's solution. In intra-animal inter-eye comparison and intra-eye follow-up comparison in groups 1 and 2, the study eyes as compared to the contralateral eyes showed a dose-dependent reduction in axial elongation. In group 3, study eyes and control eyes did not differ significantly in axial elongation. Immunohistochemistry revealed amphiregulin labelling at the retinal pigment epithelium in eyes with lens-induced myopization and Ringer's solution injection, but not in eyes with amphiregulin antibody injection. Intraocular injections of amphiregulin-antibody led to a reduction of lens-induced axial myopic elongation and of the physiological eye enlargement in young guinea pigs. In contrast, intraocularly injected amphiregulin in a dose of ≤1 ng did not show a significant effect. Amphiregulin may be one of several essential molecular factors for axial elongation.

  11. Development and Testing of an Axial Halbach Magnetic Bearing

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA Glenn Research Center has developed and tested a revolutionary Axial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic thrust bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help to reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Axial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Axial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical systems, computer memory systems, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Axial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  12. Modeling Effects of Axial Extension on Arterial Growth and Remodeling

    Science.gov (United States)

    Valentín, A.; Humphrey, J.D.

    2013-01-01

    Diverse mechanical perturbations elicit arterial growth and remodeling responses that appear to optimize structure and function so as to achieve mechanical homeostasis. For example, it is well known that functional adaptations to sustained changes in transmural pressure and blood flow primarily affect wall thickness and caliber to restore circumferential and wall shear stresses toward normal. More recently, however, it has been shown that changes in axial extension similarly prompt dramatic cell and matrix reorganization and turnover, resulting in marked changes in unloaded geometry and mechanical behavior that presumably restore axial stress toward normal. Because of the inability to infer axial stress from in vivo measurements, simulations are needed to examine this hypothesis and to guide the design of future experiments. In this paper, we show that a constrained mixture model predicts salient features of observed responses to step increases in axial extension, including marked increases in fibrous constituent production, leading to a compensatory lengthening that restores original mechanical behavior. Because axial extension can be modified via diverse surgical procedures, including bypass operations and exploited in tissue regeneration research, there is a need for increased attention to this important aspect of arterial biomechanics and mechanobiology. PMID:19649667

  13. Limit state equations for circular cross sections subjected to combined loading

    International Nuclear Information System (INIS)

    Patil, Ajinkya S.; Sonavane, Devraj M.; Desai, Suhasini

    2016-01-01

    Quick information about the capacity of any cross section for combined loading is very useful information at the early stages of engineering design. These combined loads can be pressure, axial force, bending moment and torsion, depending on application of cross section. Interaction formula based on limit loads is a very useful equation to estimate the capacity of any cross section for a combination of loads. For hollow circular cross section the complexity of interaction formulae depends on definition of limit state and type of loads. Interaction formulae for circular cross section with different limit state assumptions are easily available in literature for pressure, axial force and bending moment. This paper proposes interaction formulae for circular cross section with additional term of torsional moment at elastic limit load. - Highlights: • The behaviour of circular cross section under combined loading of axial force, bending moment, internal pressure and torsion is analyzed. • Load interaction equations for circular cross sections for the elastic limit state have been formulated. • FEA is carried out to check the validation of the results obtained from proposed formulae. • The proposed formulae give quick and accurate results about the strength utilization of the circular cross section to resist the applied loads. • The error between analytical and FEA results is within 4% accuracy.

  14. Análise da rotação ombro-quadril e co-contração muscular do tronco durante um movimento de rotação axial com manuseio de carga

    OpenAIRE

    Monteiro, João André Bernini [UNESP

    2015-01-01

    Back pain affect 80% of the general population. The manual occupational lifting are widely related to lumbar disorders as well as axial rotation of the trunk. The axial rotation of the trunk alone is the cause of 33% of all spinal injuries, a fact that needs to be better understood, especially when it is performed together with the manual loading. The aim of this study was to analyze the activity of the erector and abdominal muscles, the load-carrying task agonists with asymmetry, and the rel...

  15. Design and Analysis of an Axially Laminated Reluctance Motor for Variable-Speed Applications

    Directory of Open Access Journals (Sweden)

    BESER, E. K.

    2013-02-01

    Full Text Available In this paper, an axially laminated reluctance motor is presented. First, a set of a finite element analysis (FEA on three different axially laminated rotor geometries was carried out and torque profiles of the rotors were predicted. The effect of the stator slot skewing on the torque profiles were also examined in the analysis. After deciding the rotor geometry, the mathematical model of the proposed motor was formed in terms of a,b,c variables and simulations were performed. Motor prototype and motor drive were introduced. Torque profiles of the motor were measured for different current values and load test were realized. Experimental results were compared to analysis and simulation results. There is a good accordance between experimental and simulation results. When the proposed motor is operated with electrical 120? mode as a brushless DC motor, the torque versus speed characteristic shows a DC series motor characteristic and speed of the motor can be easily controlled by regulating the bus voltage. These features make the proposed motor convenient for variable-speed applications such as electrical vehicles.

  16. Local heat transfer performance and exit flow characteristics of a miniature axial fan

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2010-01-01

    Dimensional restrictions in electronic equipment have resulted in miniaturization of many existing cooling technologies. In addition to this, cooling solutions are required to dissipate increased thermal loads to maintain component reliability. Axial fans are widely used in electronics cooling to meet such thermal demands. However, if the extent of non-uniform heat transfer rates, produced by highly three-dimensional air patterns is unknown in the design stages, premature component failure may result. The current study highlights these non-uniformities in heat transfer coefficient, using infrared thermography of a miniature axial fan impinging air on a flat plate. Fan rotational speed and distance from the flat plate are varied to encompass heat transfer phenomena resultant from complex exit air flow distribution. Local peaks in heat transfer coefficient have been shown to be directly related to the air flow and fan motor support interaction. Optimum locations for discrete heat source positioning have been identified which are a function of fan to plate spacing and independent of fan rotational speed when the Reynolds number effect is not apparent.

  17. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors

    Science.gov (United States)

    Gui, Xingmin; Zhu, Fang; Wan, Ke; Jin, Donghai

    2013-10-01

    Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr. Wennerstrom in the 1980s. However, some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency, vibration and reliability. Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation (CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade. The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper. The results show that the CF source items which originate from design parameters, such as the spanwise distributions of the loading and blading geometries, contribute to the changing of averaged incidence spanwise distribution, and further more affect the performance of axial fans/compressors with swept blades.

  18. Empirical Correlation of the Morphology of Coiled Carbon Nanotubes with Their Response to Axial Compression

    Directory of Open Access Journals (Sweden)

    Jabulani R. Barber

    2014-01-01

    Full Text Available The mechanical response of thirteen different helical multi-walled carbon nanocoils to axial compression is reported. Each nanocoil was attached to the apex of a cantilever probe tip; its dimensions and orientation relative to the tip apex were determined with scanning electron microscopy. The atomic force microscope was employed to apply a cyclic axial load on the nanocoil. Its mechanical response was determined by simultaneous collection of the thermal resonance frequency, displacement, and oscillation amplitude of the cantilever-nanotube system in real time. Depending upon compression parameters, each coil underwent buckling, bending, and slip-stick motion. Characteristic features in the thermal resonance spectrum and in the force and oscillation amplitude curves for each of these responses to induced stress are presented. Following compression studies, the structure and morphology of each nanocoil were determined by transmission electron microscopy. The compression stiffness of each nanocoil was estimated from the resonant frequency of the cantilever at the point of contact with the substrate surface. From this value, the elastic modulus of the nanocoil was computed and correlated with the coiled carbon nanotube’s morphology.

  19. Advanced axial field D.C. motor development for electric passenger vehicle

    Science.gov (United States)

    Jones, W. J.

    1982-01-01

    A wound-field axial-flux dc motor was developed for an electric vehicle drive system. The motor is essentially an axial-flux version of the classical Gramme-ring winding motor, but the active conductors are recessed into slots cut into the two opposite faces of the laminated tape-wound core ring. Three motors were built and tested in the program. The second (functional) model was a six-pole machine which weighed 88.5 kg. It developed 16.9 km (33.0 hp), and a max speed of 4800 rpm. Full load efficiency was 92% and predicted SAE D-cycle efficiency was 88%. The last engineering) model was a 4-pole machine with compoles, allowing a weight reduction to 45 kg (100 lbs.) while addressing some manufacturability problems. The engineering model was rated at 13.2 kw (17.6 hp) at 3000 rpm, with a peak power of 19.8 km (26.4 hp) and a max speed of 7200 rpm. Initial test results on this motor showed poor commutation and efficiency; the program was terminated without resolution of these problems.

  20. Review of design codes of concrete encased steel short columns under axial compression

    Directory of Open Access Journals (Sweden)

    K.Z. Soliman

    2013-08-01

    Full Text Available In recent years, the use of encased steel concrete columns has been increased significantly in medium-rise or high-rise buildings. The aim of the present investigation is to assess experimentally the current methods and codes for evaluating the ultimate load behavior of concrete encased steel short columns. The current state of design provisions for composite columns from the Egyptian codes ECP203-2007 and ECP-SC-LRFD-2012, as well as, American Institute of Steel Construction, AISC-LRFD-2010, American Concrete Institute, ACI-318-2008, and British Standard BS-5400-5 was reviewed. The axial capacity portion of both the encased steel section and the concrete section was also studied according to the previously mentioned codes. Ten encased steel concrete columns have been investigated experimentally to study the effect of concrete confinement and different types of encased steel sections. The measured axial capacity of the tested ten composite columns was compared with the values calculated by the above mentioned codes. It is concluded that non-negligible discrepancies exist between codes and the experimental results as the confinement effect was not considered in predicting both the strength and ductility of concrete. The confining effect was obviously influenced by the shape of the encased steel section. The tube-shaped steel section leads to better confinement than the SIB section. Among the used codes, the ECP-SC-LRFD-2012 led to the most conservative results.

  1. Low-pressure reversible axial fan with straight profile blades and relatively high efficiency

    Directory of Open Access Journals (Sweden)

    Spasić Živan T.

    2012-01-01

    Full Text Available The paper presents the design and operating characteristics of a model of reversible axial fan with only one impeller, whose reversibility is achieved by changing the direction of rotation. The fan is designed for the purpose of providing alternating air circulation in wood dryers in order to reduce the consumption of electricity for the fan and increase energy efficiency of the entire dryer. To satisfy the reversibility of flow, the shape of the blade profile is symmetrical along the longitudinal and transversal axes of the profile. The fan is designed with equal specific work of all elementary stages, using the method of lift forces. The impeller blades have straight mean line profiles. The shape of the blade profile was adopted after the numerical simulations were carried out and high efficiency was achieved. Based on the calculation and conducted numerical simulations, a physical model of the fan was created and tested on a standard test rig, with air loading at the suction side of the fan. The operating characteristics are shown for different blade angles. The obtained maximum efficiency was around 0.65, which represents a rather high value for axial fans with straight profile blades.

  2. Effect of gravity loading on inelastic seismic response of reinforced concrete structures

    International Nuclear Information System (INIS)

    Chowdhury, Rajib; Reddy, G. Rami; Roy, Raghupati; Dutta, Sekhar Chandra

    2003-01-01

    The effect of gravity loading is not considered in inelastic seismic response to avoid complexity and to reduce the number of influencing parameters. However, the possibility of considerable effect of this factor is indicated in many studies on inelastic seismic behaviour of structures. Hence, it is necessary to study the nature and extent of this effect on inelastic seismic behaviour of structures. The present paper attempts to fulfill this objective by studying the variation of energy dissipation due to presence of various level of axial load. The study is further extended to see the effect of axial force due to gravity loading on the ductility demand of hysteretic energy demand arising in structural elements of a simple one storey structures. The study shows that the presence of axial force may increase the energy dissipation capacity of structure leading to a reduction in ductility demand. (author)

  3. Transhumeral loading during advanced upper extremity activities of daily living.

    Directory of Open Access Journals (Sweden)

    Alex J Drew

    Full Text Available Percutaneous osseointegrated (OI implants for direct skeletal attachment of upper extremity prosthetics represent an alternative to traditional socket suspension that may yield improved patient function and satisfaction. This is especially true in high-level, transhumeral amputees where prosthetic fitting is challenging and abandonment rates remain high. However, maintaining mechanical integrity of the bone-implant interface is crucial for safe clinical introduction of this technology. The collection of population data on the transhumeral loading environment will aid in the design of compliance and overload protection devices that mitigate the risk of periprosthetic fracture. We collected marker-based upper extremity kinematic data from non-amputee volunteers during advanced activities of daily living (AADLs that applied dynamic loading to the humerus. Inverse dynamic analysis was applied to calculate the axial force, bending and torsional moments at three virtual amputation levels representing 25, 50, and 75% residual humeral length. The influences of amputation level, elbow flexion constraint, gender and anthropometric scaling were assessed. Results indicate that the proximal (25% amputation level experienced significantly higher axial forces and bending moments across all subjects when compared to distal amputation levels (p≤0.030. Constraining elbow flexion had a limited influence on peak transhumeral loads. Male subjects experienced higher axial forces during all evaluated activities (p≤0.023. Peak axial force for all activities occurred during jumping jacks (174.5N. Peak bending (57.6Nm and torsional (57.2Nm moments occurred during jumping jacks and rapid internal humeral rotation, respectively. Calculated loads fall within the range of implant fixation failure loads reported in cadaveric investigations of humeral stem fixation; indicating that periprosthetic fracture may occur during non-contact AADLs. These kinematic data, collected

  4. Thermocapillary Convection in Floating Zone with Axial Magnetic Fields

    Science.gov (United States)

    Liang, Ruquan; Yang, Shuo; Li, Jizhao

    2014-02-01

    Numerical simulations on the effects of axial magnetic fields on the thermocapillary convection in a liquid bridge of silicone-oil-based ferrofluid under zero gravity have been conducted. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the mass conserving level set approach is used to capture the free surface deformation of the liquid bridge. The obvious effects of the magnetic fields on the flow pattern as well as the velocity and temperature distributions in the liquid bridge can be detected. The axial magnetic fields suppress the thermocapillary convection and a stagnant flow zone is formed between the circulating flow and the symmetric axis as the magnetic fields increase. The axial magnetic fields affect not only the velocity level inside the liquid bridge but also the velocity level on the free surface. The temperature contours near the free surface illustrates conduction-type temperature profiles at moderate strength fields.

  5. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  6. Improvement of axial power distribution synthesis methodology in CPC

    International Nuclear Information System (INIS)

    Kim, H. H.; Gee, S. G.;; Kim, Y. B.; In, W. K.

    2003-01-01

    The capability of axial power distribution synthesis in CPC plays an important role in determining the DNBR and LPD trip caused by CPC. The axial power distribution is synthesized using the cubic spline function based on the three excore detector signals. The axial power distributions are categorized into 8 function sets and each sets are stored as pre-calculated values in CPC to save the calculation time. In this study, the additional function sets, the real break-point function sets and the polynomial function are suggested to evaluate the possibility of improving the synthesis capability in CPC. In addition, RMS errors are compared and evaluated for each synthesis method. As a result, it was confirmed that the function sets stored in CPC were not optimal. The analysis result showed that RMS error could be reduced by selecting the proper function sets suggested in this study

  7. Axially modulated arch resonator for logic and memory applications

    KAUST Repository

    Hafiz, Md Abdullah Al

    2018-01-17

    We demonstrate reconfigurable logic and random access memory devices based on an axially modulated clamped-guided arch resonator. The device is electrostatically actuated and the motional signal is capacitively sensed, while the resonance frequency is modulated through an axial electrostatic force from the guided side of the microbeam. A multi-physics finite element model is used to verify the effectiveness of the axial modulation. We present two case studies: first, a reconfigurable two-input logic gate based on the linear resonance frequency modulation, and second, a memory element based on the hysteretic frequency response of the resonator working in the nonlinear regime. The energy consumptions of the device for both logic and memory operations are in the range of picojoules, promising for energy efficient alternative computing paradigm.

  8. Program for beam optical computation of axial symmetrical electrostatic systems

    International Nuclear Information System (INIS)

    Ke Jianlin; Wu Chunlei; Zhou Changgeng

    2012-01-01

    The beam optical computation of axial symmetrical electrostatic systems is very important in the design and test of low-energy accelerators such as Cock-Croft and Van de Graaf accelerators. In this paper, a program for the beam optical computation of these structures has been developed using transfer matrix method. The electrostatic field region is divided into several small intervals in the program, and then the beam envelope is calculated interval-to-interval from the axial potential distribution, which is calculated by other electromagnetic field simulation software such as Maxwell SV. Space charge effect is included so that the program can be used in the computation of intense beam, while nonlinear effect is beyond its ability. The program can be used in the calculation of beam optics in most complicated axial symmetrical electrostatic fields, and the computing time required is very short. (authors)

  9. Progressive atlanto-axial subluxation in Behcet's disease

    International Nuclear Information System (INIS)

    Kim, Sang-hyuk; Eoh, Whan

    2010-01-01

    Behcet's disease is a chronic inflammatory condition involving several organs, such as the skin, mucous membranes, eyes, joints, intestines, lungs and central nervous system. It rarely affects the spinal column. We describe a case of progressive atlanto-axial subluxation in a 44-year-old woman with Behcet's disease. The patient started complaining of posterior neck pain 10 years after the diagnosis of her Behcet's disease. Initial radiographs showed no abnormal finding, but follow-up radiographs 6 month later demonstrated atlanto-axial subluxation. To the best of our knowledge, this is the second reported case in the worldwide literature of an atlanto-axial instability in a patient with Behcet's disease. (orig.)

  10. Bifurcation and chaos of an axially accelerating viscoelastic beam

    International Nuclear Information System (INIS)

    Yang Xiaodong; Chen Liqun

    2005-01-01

    This paper investigates bifurcation and chaos of an axially accelerating viscoelastic beam. The Kelvin-Voigt model is adopted to constitute the material of the beam. Lagrangian strain is used to account for the beam's geometric nonlinearity. The nonlinear partial-differential equation governing transverse motion of the beam is derived from the Newton second law. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. By use of the Poincare map, the dynamical behavior is identified based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented in the case that the mean axial speed, the amplitude of speed fluctuation and the dynamic viscoelasticity is respectively varied while other parameters are fixed. The Lyapunov exponent is calculated to identify chaos. From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially accelerating viscoelastic beam

  11. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    Science.gov (United States)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  12. Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.

    Science.gov (United States)

    Miho, Otoaki; Sato, Toru; Matsukubo, Takashi

    2015-01-01

    The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.

  13. Reducing gait speed affects axial coordination of walking turns.

    Science.gov (United States)

    Forsell, Caroline; Conradsson, David; Paquette, Caroline; Franzén, Erika

    2017-05-01

    Turning is a common feature of daily life and dynamic coordination of the axial body segments is a cornerstone for safe and efficient turning. Although slow walking speed is a common trait of old age and neurological disorders, little is known about the effect of walking speed on axial coordination during walking turns. The aim of this study was to investigate the influence of walking speed on axial coordination during walking turns in healthy elderly adults. Seventeen healthy elderly adults randomly performed 180° left and right turns while walking in their self-selected comfortable pace and in a slow pace speed. Turning velocity, spatiotemporal gait parameters (step length and step time), angular rotations and angular velocity of the head and pelvis, head-pelvis separation (i.e. the angular difference in degrees between the rotation of the head and pelvis) and head-pelvis velocity were analyzed using Wilcoxon signed-rank tests. During slow walking, turning velocity was 15% lower accompanied by shorter step length and longer step time compared to comfortable walking. Reducing walking speed also led to a decrease in the amplitude and velocity of the axial rotation of the head and pelvis as well as a reduced head-pelvis separation and angular velocity. This study demonstrates that axial coordination during turning is speed dependent as evidenced by a more 'en bloc' movement pattern (i.e. less separation between axial segments) at reduced speeds in healthy older adults. This emphasizes the need for matching speed when comparing groups with diverse walking speeds to differentiate changes due to speed from changes due to disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Myopia: frequency of lattice degeneration and axial length].

    Science.gov (United States)

    Martín Sánchez, M D; Roldán Pallarés, M

    2001-05-01

    To evaluate the relationship between lattice retinal degeneration and axial length of the eye in different grades of myopia. A sample of 200 eyes from 124 myopic patients was collected by chance. The average age was 34.8 years (20-50 years) and the myopia was between 0.5 and 20 diopters (D). The eyes were grouped according to the degree of refraction defect, the mean axial length of each group (Scan A) and the frequency of lattice retinal degeneration and the relationship between these variables was studied. The possible influence of age on our results was also considered. For the statistical analysis, the SAS 6.07 program with the variance analysis for quantitative variables, and chi(2) test for qualitative variables with a 5% significance were used. A multivariable linear regression model was also adjusted. The highest frequency of lattice retinal degeneration occurred in those myopia patients having more than 15 D, and also in the group of myopia patients between 3 and 6 D, but this did not show statistical significance when compared with the other myopic groups. If the axial length is assessed, a greater frequency of lattice retinal degeneration is also found when the axial length is 25-27 mm and 29-30 mm, which correspond, respectively, to myopias between 3-10 D and more than 15 D. When the multivariable linear regression model was adjusted, the axial length showed the existence of lattice retinal degeneration (beta 0.41 mm; p=0.08) adjusted by the number of diopters (beta 0.38 mm; plattice retinal degeneration was found for myopias with axial eye length between 29-30 mm (more than 15 D), and 25-27 mm (between 3-10 D).

  15. Electrical load detection aparatus

    DEFF Research Database (Denmark)

    2010-01-01

    A load detection technique for a load comprising multiple frequency-dependant sub-loads comprises measuring a representation of the impedance characteristic of the load; providing stored representations of a multiplicity of impedance characteristics of the load; each one of the stored representat...

  16. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable...... application. The design was approached from an lectromagnetic point of view in this article. Two types of axial flux permanent magnet generators were designed: one with an iron yoke, which is commonly used to reduce the machine volume and demand of permanent magnets, and a second without the iron yoke...

  17. Manufacture of axially insulated large-area diodes

    International Nuclear Information System (INIS)

    Ma Weiyi; Zhou Kungang; Wang Youtian; Zhang Dong; Shan Yusheng; Wang Naiyan

    1999-01-01

    The author describes the design and construction of the axially insulated large-area diodes used in the 'Heaven-1'. The four axially insulated large-area diodes are connected to the 10 ohm pulse transmission lines via the vacuum feed through tubes. The experimental results with the diodes are given. The diodes can steadily work at the voltage of 650 kV, and the diode current density is about 80 A per cm 2 with a pulse width of 220 ns. The electron beams with a total energy of 25 kJ are obtained

  18. Periodicity effects of axial waves in elastic compound rods

    DEFF Research Database (Denmark)

    Nielsen, R. B.; Sorokin, S. V.

    2015-01-01

    Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin......Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase...

  19. Spectral analysis in thin tubes with axial heterogeneities

    KAUST Repository

    Ferreira, Rita

    2015-01-01

    In this paper, we present the 3D-1D asymptotic analysis of the Dirichlet spectral problem associated with an elliptic operator with axial periodic heterogeneities. We extend to the 3D-1D case previous 3D-2D results (see [10]) and we analyze the special case where the scale of thickness is much smaller than the scale of the heterogeneities and the planar coefficient has a unique global minimum in the periodic cell. These results are of great relevance in the comprehension of the wave propagation in nanowires showing axial heterogeneities (see [17]).

  20. A simple approach to the ABJ axial anomaly

    International Nuclear Information System (INIS)

    Horejsi, J.

    1985-01-01

    A very simple semi-quantitative derivation of the Adler-Bell-Jackiw (ABJ) axial anomaly is given, based on an investigation of the absorptive part of the VVA triangle graph and dispersion relations. Essential ingredients of our discussion are: normal Ward identities for the absorptive part of the relevant diagram, dimensional analysis, unitarity, and energy-momentum conservation. An explanation of the physical origin of axial anomaly, proposed in some earlier treatments within such a dispersive framework, is critically examined. In particular, the interpretation of the ABJ anomaly as an analogy of the Lee-Nauenberg effect occurring in the massless limit of spinor electrodynamics is shown to be fallacious

  1. Light-front view of the axial anomaly

    International Nuclear Information System (INIS)

    Ji, C.; Rey, S.

    1996-01-01

    Motivated by an apparent puzzle of the light-front vacua incompatible with the axial anomaly, we have considered the two-dimensional massless Schwinger model for an arbitrary interpolating angle of Hornbostel close-quote s interpolating quantization surface. By examining spectral deformation of the Dirac sea under an external electric field semiclassically, we have found that the axial anomaly is quantization angle independent. This indicates an intricate nontrivial vacuum structure present even in the light-front limit. copyright 1996 The American Physical Society

  2. Computed tomographic myelography (CTM) in atlanto-axial rheumatoid arthritis

    International Nuclear Information System (INIS)

    Laasonen, E.M.; Servo, A.; Kankaanpaeae, U.; Paukku, P.; Sandelin, J.; Slaetis, P.

    1985-01-01

    Thirty-two patients with severe cervical rheumatoid arthritis were investigated preoperatively with cervical myelography (CeM) and computed tomographic myelography (CTM). The severity of their clinical symptoms correlated excellently with a combination of the deformation of the spinal cord at the atlanto-axial level, the lateral dislocation of the cord at the same level, and the deformation of the cord at some lower cervical level. Obstructing softtissue excrescences seemed to have little value. No correlation was found in this study between the deformation of the cord and the main findings of the plain films: the atlanto-axial subluxation (AAS), the vertical subluxation (VS), or their combination. (orig.)

  3. Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves

    Science.gov (United States)

    Zhang, R. P.

    2017-04-01

    A mathematical model is developed for predicting the transient heat transfer and fluid flow of heat pipe with axially swallow-tailed microgrooves. The effects of liquid convective heat transfer in the microgrooves, liquid-vapor interfacial phase-change heat transfer and liquid-vapor interfacial shear stress are accounted for in the present model. The coupled non-linear control equations are solved numerically. Mass flow rate at the interface is obtained from the application of kinetic theory. Time variation of wall temperature is studied from the initial startup to steady state. The numerical results are verified by experiments. Time constants for startup and shutdown operation are defined to determine how fast a heat pipe responds to an applied input heat flux, which slightly decreases with increasing heat load.

  4. Dynamic responses of concrete-filled steel tubular member under axial compression considering creep effect

    Science.gov (United States)

    Jiang, X. T.; Wang, Y. D.; Dai, C. H.; Ding, M.

    2017-08-01

    The finite element model of concrete-filled steel tubular member was established by the numerical analysis software considering material nonlinearity to analyze concrete creep effect on the dynamic responses of the member under axial compression and lateral impact. In the model, the constitutive model of core concrete is the plastic damage model, that of steel is the Von Mises yield criterion and kinematic hardening model, and the creep effect at different ages is equivalent to the change of concrete elastic modulus. Then the dynamic responses of concrete-filled steel tubular member considering creep effects was simulated, and the effects of creep on contact time, impact load, deflection, stress and strain were discussed. The fruits provide a scientific basis for the design of the impact resistance of concrete filled steel tubular members.

  5. Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades

    Directory of Open Access Journals (Sweden)

    Li Yang

    2007-01-01

    Full Text Available This paper presents an experimental study of the optimization of blade skew in low pressure axial fan. Using back propagation (BP neural network and genetic algorithm (GA, the optimization was performed for a radial blade. An optimized blade is obtained through blade forward skew. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the optimized blade demonstrated improvements in efficiency, total pressure ratio, stable operating range, and aerodynamic noise. Detailed flow measurement was performed in outlet flow field for investigating the responsible flow mechanisms. The optimized blade can cause a spanwise redistribution of flow toward the blade midspan and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at midspan. In addition, the measured spectrums show that the broadband noise of the impeller is dominant.

  6. Effect of axial groove and resin luting cements on the retention of complete cast metal crowns

    Directory of Open Access Journals (Sweden)

    K Rajkumar

    2009-01-01

    Full Text Available Background : The design of the tooth preparation and the cementing medium are important consid-erations in the retention of crowns and fixed partial dentures. The purpose of this invitro study was to determine the effect of axial groove on the retention of complete cast metal crowns using two resin luting cements. Methods: Forty freshly extracted intact human molar teeth were prepared in their long axis to receive complete cast metal crowns. The specimens were randomly divided into two groups (one control and one study group. An axial groove of uniform size and shape was made on the prepared teeth under the study group. Axial surface area of prepared teeth specimens was measured. Complete cast metal crowns were fabricated for each specimen. Specimens of each group were divided into subgroups of 10 samples and were cemented with two resin luting cements, RelyX Unicem® and Calibra®, re-spectively. The cemented crowns were loaded in tension using a Universal Instron testing machine. The maximal tensile strength was recorded. Data were compared using the Mann-Whitney U test (α=0.05. Results: No significant differences in the tensile stress values were noted between the control (mean: 5.76±0.392 MPa and study (mean: 5.93±0.751 MPa groups cemented with RelyX Unicem. No sig-nificant differences in the tensile stress values were noted between the control (mean: 4.92±0.641 MPa and study (mean: 5.15 ±0.478 MPa groups cemented with Calibra. However, significant dif-ference in the tensile stress values was found between the two resin cements in the control and study groups. Conclusion: Axial groove placed in tooth preparations for resin bonded complete cast metal crowns had no statistically significant effect on retention. The use of (RelyX Unicem® yielded greater reten-tion values when compared to Calibra®.

  7. The effect of impact duration on the axial fracture tolerance of the isolated tibia during automotive and military impacts.

    Science.gov (United States)

    Martinez, Alberto A; Chakravarty, Avery B; Quenneville, Cheryl E

    2018-02-01

    Axial impacts to the lower leg during debilitating events such as frontal automotive collisions and military underbody blasts can cause significant injuries to the tibia. Several studies have conducted axial impact tests to determine the injury limits of the lower leg, mostly focused on automotive intrusions, resulting in an established force criterion for injury assessments. Due to the viscoelastic properties of bone, it remains unclear whether results from automotive experiments can be applied to higher-rate military blasts. Twelve male isolated cadaveric tibias (from six pairs, mean age: 62 ± 8 years) were subjected to axial impact loads using a custom-built pneumatic impactor, with one specimen from each pair tested at velocity and impact durations representative of a military blast condition, and the contralateral under conditions representing an automotive collision. Impacts were applied in increasing levels of intensity (defined using energy levels) until fracture occurred. Fracture risk was influenced by projectile velocity, kinetic energy, impulse, and load rate, and there was a significant difference in peak force (p = 0.023), impulse (p = 0.09), and load rate (p = 0.025) between the automotive and military test conditions causing fracture. A 10% risk of fracture corresponded to an impact force of 9.0kN for the automotive condition and 12.2kN for the military condition. These results suggest that fracture tolerances developed in studies that simulate automotive impacts cannot be directly applied to military impacts of shorter duration. The number of factors identified to predict injury also suggests that fracture is not controlled by a single variable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structure Optimal Design of Electromagnetic Levitation Load Reduction Device for Hydroturbine Generator Set

    Directory of Open Access Journals (Sweden)

    Qingyan Wang

    2015-01-01

    Full Text Available Thrust bearing is one part with the highest failure rate in hydroturbine generator set, which is primarily due to heavy axial load. Such heavy load often makes oil film destruction, bearing friction, and even burning. It is necessary to study the load and the reduction method. The dynamic thrust is an important factor to influence the axial load and reduction design of electromagnetic device. Therefore, in the paper, combined with the structure features of vertical turbine, the hydraulic thrust is analyzed accurately. Then, take the turbine model HL-220-LT-550, for instance; the electromagnetic levitation load reduction device is designed, and its mathematical model is built, whose purpose is to minimize excitation loss and total quality under the constraints of installation space, connection layout, and heat dissipation. Particle swarm optimization (PSO is employed to search for the optimum solution; finally, the result is verified by finite element method (FEM, which demonstrates that the optimized structure is more effective.

  9. Distribution load estimation (DLE)

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A.; Lehtonen, M. [VTT Energy, Espoo (Finland)

    1998-08-01

    The load research has produced customer class load models to convert the customers` annual energy consumption to hourly load values. The reliability of load models applied from a nation-wide sample is limited in any specific network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to find improvements to the load models or, in general, improvements to the load estimates. In Distribution Load Estimation (DLE) the measurements from the network are utilized to improve the customer class load models. The results of DLE will be new load models that better correspond to the loading of the distribution network but are still close to the original load models obtained by load research. The principal data flow of DLE is presented

  10. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading...... distribution which in terms results in less mechanical deterioration during loading....

  11. Portable 90 degree proof loading device

    Science.gov (United States)

    Bird, R. G.; Berson, L. A.

    1985-12-01

    A hydraulically actuated device is described for applying a test load to a bearing or the like to prove the integrity of its mounting or staking within a bore in a housing such as gear case. To accommodate limited access situations, the device is constructed in a right angle configuration in which a hydraulic cylinder applies axial pressure to a first thrust rod assemly which includes a first thrust rod through a threated spindle driving a linearly translated cam. Cam follower wheel transfers the translation to a second thrust rod assembly which includes a horizontal shaft and a spindle within a cross-arm housing portion and a tubular housing portion. The same second thrust direction applies the bearing loading in either of two directions depending upon the shape of the interface parts. The interface parts can bear on the bearing from either side with respect to the bearing mounting structural part.

  12. Supersymmetric axial anomalies and the Wess-Zumino action

    International Nuclear Information System (INIS)

    Harada, K.; Shizuya, K.

    1988-01-01

    We derive, by an algebraic method, a manifestly supersymmetric extension of Bardeen's minimal form of axial anomalies, which obeys the Wess-Zumino consistency condition. The left-right symmetric form of the anomalies is also obtained by a reduction procedure. We construct the supersymmetric Wess-Zumino effective action and study its low-energy features. (orig.)

  13. Axial Torsion of Gangrenous Meckel's Diverticulum Causing Small ...

    African Journals Online (AJOL)

    dividing the band. Resection and anastomosis of the small bowel including the MD was performed. We hereby report a rare and unusual complication of a MD. Although treatment outcome is generally good, pre-operative diagnosis is often difficult. Key words: Axial torsion, Meckel's diverticulum, small bowel obstruction.

  14. A cylindrical drift chamber with azimuthal and axial position readout

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Adams, T.; Bishop, J.M.; Cason, N.M.; Sanjari, A.H.; LoSecco, J.M.; Manak, J.J.; Shephard, W.D.; Stienike, D.L.; Taegar, S.A.; Thompson, D.R.; Brown, D.S.; Pedlar, T.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Massachusetts Univ., North Dartmouth, MA (United States)]|[Brookhaven National Laboratory, Upton, L.I., NY 11973 (United States)]|[Indiana University, Bloomington, IN 47405 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Northwestern University, Evanston, IL 60208 (United States)]|[Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    1997-02-21

    A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in {pi}{sup -}p interactions. We describe the chamber`s design considerations, details of its construction, electronics, and performance characteristics. (orig.).

  15. Studi Regangan Axial dan Lateral pada Tanah Ekspansif

    Directory of Open Access Journals (Sweden)

    Lisa Fitriyana

    2017-07-01

    Full Text Available Swelling and shrinkage abilities of soils are dangerous for buildings. According to Hardiyatmo (2014 There are two types of swelling in expansive soils that are the movement of lateral (horizontal and axial (vertical. Oftentimes the deformation of soils cannot be supported by building stiffness. This damage can be seen in retaining walls, tunnel walls, and etc. With the aims to identify an expansive soil and to know its lateral and axial strains, an experimental study was performed. Swelling tests were conducted in a specimen having diameter (d of 4,5 cm and height (h0 of 2 cm with the variations in : 1 water content wopt = 31% and 18%; 2 vertical pressure (pv 1 kPa, 3.5 kPa and 6.9 kPa; and 3 membrane thickness (t 0.7 mm and 0.5 mm. The strain in the axial direction was measured with a dial gauge that was set vertically parallel whereas the lateral strain is by measuring changes in diameter of the specimen with a digital caliper measurement tools. Based on the analysis on the identification results, the observed soil is classified as expansive soil with the expansion potential is high average. The test results show the same potential for the occurrence of lateral and lateral strain if the lateral retention (e.g. retaining wall is weak. The largest lateral and axial soil development occurred at water content w0 = 18% are 15.7% and 15.8% respectively.

  16. Axial-Gap Induction Motor For Levitated Specimens

    Science.gov (United States)

    Sridharan, Govind; Rhim, Won-Kyu; Barber, Dan; Chung, Sang

    1992-01-01

    Motor does not obscure view of specimen. Axial-gap induction motor applies torque to rotate electrostatically or electromagnetically levitated specimen of metal. Possible applications include turning specimens for uniform heating under focused laser beams and obtaining indirect measurements of resistivities or of surface tensions in molten specimens.

  17. On aspects of vibration of axially moving continua

    NARCIS (Netherlands)

    Hageraats-Ponomareva, S.

    2009-01-01

    In axially moving structures like conveyor belt systems, magnetic tapes, and so on, vibrations occur due to the presence of different kinds of imperfections in the systems. For these structures internal resonances can lead to severe vibrations. Resonance free conveyor belt systems can be constructed

  18. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)

    2017-12-05

    Dec 5, 2017 ... variously described as determined by the ocular biometric variables. There have been many studies on the relationship between refractive error and ocular axial length (AL), anterior chamber depth, corneal radius of curvature (CR), keratometric readings as well as other ocular biometric variables such as ...

  19. Solution of the gauge identities in the axial gauge

    International Nuclear Information System (INIS)

    Delbourgo, R.

    1981-01-01

    Starting from the spectral representation of the two-point functions in the axial gauge, the gauge identities are solved so as to express the higher-point Green functions linearly in terms of the two-point spectral function. The four-point functions are an important input for investigations of scalar electrodynamics and vector chromodynamics based on the gauge technique. (author)

  20. 3-D Simulation of Vertical-Axial Tidal Current Turbine

    Directory of Open Access Journals (Sweden)

    Zhiyang Zhang

    2016-12-01

    Full Text Available Vertical-axial tidal current turbine is the key for the energy converter, which has the advantages of simple structure, adaptability to flow and uncomplex convection device. It has become the hot point for research and application recently. At present, the study on the hydrodynamic performance of vertical-axial tidal current turbine is almost on 2-D numerical simulation, without the consideration of 3-D effect. CFD (Computational Fluid Dynamics method and blade optimal control technique are used to improve accuracy in the prediction of tidal current turbine hydrodynamic performance. Numerical simulation of vertical-axial tidal current turbine is validated. Fixed and variable deflection angle turbine are comparatively studied to analysis the influence of 3-D effect and the character of fluid field and pressure field. The method, put the plate on the end of blade, of reduce the energy loss caused by 3-D effect is proposed. The 3-D CFD numerical model of vertical-axial tidal current turbine hydrodynamic performance in this study may provide theoretical, methodical and technical reference for the optimal design of turbine.

  1. View of the Axial Field Spectrometer (R807)

    CERN Multimedia

    1980-01-01

    In this view of the Axial Field Spectrometer at I8, the vertical uranium/scintillator hadron calorimeter (just left of centre) is retracted to give access to the cylindrical central drift chamber. The yellow iron structure served as a filter to identify muons, with MWPCs and the array of Cherenkov counters to the right.

  2. Landforms along transverse faults parallel to axial zone of folded ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India. Khayingshing ... Keywords. Himalayan Frontal Thrust; outer Kumaun Himalaya; transverse structure; folded mountain front.

  3. sizing of wind powered axial flux permanent magnet alternator using

    African Journals Online (AJOL)

    user

    2016-10-04

    Oct 4, 2016 ... Using analytical calculations, the design parameters of the alternator's main dimensions were obtained in a ... SIZING OF WIND POWERED AXIAL FLUX PERMANENT MAGNET ALTERNATOR USING ANALYTICAL APPROACH,. A. O. Otuoze, et al .... then be expressed as. Equation (7) can be re-written as.

  4. Evaluation of electromagnetic shielding effectiveness of multi-axial ...

    Indian Academy of Sciences (India)

    Abstract. The usage of electrical and electronic equipments has been increasing in daily life, which has a potential hazardous impact on humans and other living organisms. In this paper, multi-axial fabrics containing steel yarns and carbon filaments, and their polyester (PES) resin-reinforced composites have been ...

  5. Ocular Axial Length and Keratometry Readings of Normal Eyes in ...

    African Journals Online (AJOL)

    Aim: To provide average axial length and keratometry readings in healthy eyes of people in Rivers and surrounding states in southern Nigeria. This may guide the purchase of intraocular lens in the study area. Materials and methods: Four hundred consecutive patients with 800 non-cataractous eyes attending the eye clinic ...

  6. Axial drive to nonlinear flow between rotating cylinders

    Science.gov (United States)

    Ashrafi, Nariman; Hazbavi, Abbas

    2014-02-01

    Stability of pseudoplastic rotational flow between cylinders in presence of an independent axial component is investigated. The fluid is assumed to follow the Carreau model and mixed boundary conditions are imposed. The conservation of mass and momentum equations give rise to a four-dimensional low-order dynamical system, including additional nonlinear terms in the velocity components originated from the shear-dependent viscosity. In absence of the axial flow, as the pseudoplasticity effects increases, the purely-azimuthal base flow loses its stability to the vortex structure at a lower critical Taylor number. Emergence of the vortices corresponds to the onset of a supercritical bifurcation also present in the flow of a linear fluid. However, unlike the Newtonian case, pseudoplastic Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Existence of an axial flow induced by a pressure gradient appears to further advance each critical point on the bifurcation diagram. In continuation, complete flow field together with viscosity maps is analyzed for different flow scenarios. Through evaluation of the Lyapunov exponent, flow stability and temporal behavior of the system for cases with and without axial flow are brought to attention.

  7. Numerical simulation of breakup and detachment of an axially ...

    Indian Academy of Sciences (India)

    Kishore Singh Patel

    Abstract. The extensional, breakup and detachment dynamics of an axially stretching Newtonian liquid bridge are investigated numerically with a dynamic domain multiphase incompressible flow solver. The mul- tiphase flow solver employs a Cahn–Hilliard phase field model to describe the evolution of the diffuse interface.

  8. Computation of the lateral and axial point spread functions in ...

    Indian Academy of Sciences (India)

    ... confocal scanning microscopes for the above-mentioned amplitude filters. These results of axial and lateral irradiances are graphically represented by constructing a computer program using MATLAB. The obtained results are compared with that obtained in case of circular, annular, and Martinez-Corral apodized aperture ...

  9. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... Aim/Background: Associations between axial length (AL) to corneal radius of curvature (CR) ratio and refractive status in a healthy Nigerian adult population were studied. Materials and Methods: Healthy students and members of staff of Obafemi Awolowo Teaching Hospitals Complex, Ile-Ife, South West ...

  10. Axial heterogeneous core concept applied for super phoenix reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.; Waintraub, M.; Santos Bastos, W. dos; Brito Aghina, L.O. de.

    1991-11-01

    Always maintaining the current design rules, this paper presents a parametric study on the type of axial heterogeneous core concept (CHA), utilizing a core of fast reactor Super Phenix type, reaching a maximum thermal burnup rate of 150000 M W d/t and being managed in single batch. (author)

  11. Fission gas retention and axial expansion of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1986-05-01

    Out-of-reactor experiments utilizing direct electrical heating and infrared heating techniques were performed on irradiated metallic fuel. The results indicate accelerated expansion can occur during thermal transients and that the accelerated expansion is driven by retained fission gases. The results also demonstrate gas retention and, hence, expansion behavior is a function of axial position within the pin

  12. Evaluation of electromagnetic shielding effectiveness of multi-axial ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... ... Lecture Workshops · Refresher Courses · Symposia. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Evaluation of electromagnetic shielding effectiveness of multi-axial fabrics and their reinforced PES composites. RAMAZAN ERDEM. Volume 39 Issue 4 August 2016 pp 963-970 ...

  13. Evaluation of electromagnetic shielding effectiveness of multi-axial ...

    Indian Academy of Sciences (India)

    The usage of electrical and electronic equipments has been increasing in daily life, which has a potential hazardous impact on humans and other living organisms. In this paper, multi-axial fabrics containing steel yarns and carbon filaments, and their polyester (PES) resin-reinforced composites have been prepared for ...

  14. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Science.gov (United States)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  15. Kinetics and equilibria for the axial ligation of bromomethyl (aqua ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 6. Kinetics and equilibria for the axial ligation of bromomethyl (aqua)cobaloxime with pyridines - Isolation characterization and DNA binding. Kotha Laxma Reddy K Ashwini Kumar N Ravi Kumar Reddy Penumaka Nagababu A Panasa Reddy S ...

  16. Axial anomaly and magnetism of nuclear and quark matter

    Science.gov (United States)

    Son, D. T.; Stephanov, M. A.

    2008-01-01

    We consider the response of the QCD ground state at finite baryon density to a strong magnetic field B. We point out the dominant role played by the coupling of neutral Goldstone bosons, such as π0, to the magnetic field via the axial triangle anomaly. We show that, in vacuum, above a value of B˜mπ2/e, a metastable object appears—the π0 domain wall. Because of the axial anomaly, the wall carries a baryon number surface density proportional to B. As a result, for B≳1019G a stack of parallel π0 domain walls is energetically more favorable than nuclear matter at the same density. Similarly, at higher densities, somewhat weaker magnetic fields of order B≳1017 1018G transform the color-superconducting ground state of QCD into new phases containing stacks of axial isoscalar (η or η') domain walls. We also show that a quark-matter state known as “Goldstone current state,” in which a gradient of a Goldstone field is spontaneously generated, is ferromagnetic due to the axial anomaly. We estimate the size of the fields created by such a state in a typical neutron star to be of order 1014 1015G.

  17. Modelling the cardiac transverse-axial tubular system

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Šimurda, J.; Christé, G.; Orchard, C.

    2008-01-01

    Roč. 96, - (2008), s. 226-246 ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : cardiac cell * transverse-axial tubular system * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  18. Axial and focal-plane diffraction catastrophe integrals

    International Nuclear Information System (INIS)

    Berry, M V; Howls, C J

    2010-01-01

    Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X 9 diffraction catastrophes. These representations reveal unexpected relations between the integrals.

  19. Atlanto-axial instability in rheumatoid arthritis: a review | Omar ...

    African Journals Online (AJOL)

    Objectives: The purpose of this literature review is to identify common lesions present in the rheumatoid neck with specific emphasis to atlanto-axial instability, review its clinical presentation, imaging findings and management. Study design: A review of the English medical literature was done with focus on recent studies ...

  20. Axial Length/Corneal Radius of Curvature Ratio and Refractive ...

    African Journals Online (AJOL)

    Aim/Background: Associations between axial length (AL) to corneal radius of curvature (CR) ratio and refractive status in a healthy Nigerian adult population were studied. Materials and Methods: Healthy students and members of staff of Obafemi Awolowo Teaching Hospitals Complex, Ile‑Ife, South West Nigeria, free of ...

  1. Ocular Axial Length Measurement Among Normal Adults Using ...

    African Journals Online (AJOL)

    2017-07-26

    Jul 26, 2017 ... Background/Introduction: Macrophthalmia and microphthalmia are cardinal signs of many orbito-ocular and systemic diseases which are seen in northern Nigeria. Some cases of refractive error may also be directly related to the ocular axial length (AL). The need for an imaging parameter that will aid their ...

  2. Axial Torsion of Gangrenous Meckel's Diverticulum Causing Small ...

    African Journals Online (AJOL)

    Meckel's diverticulum (MD) is a commonly encountered congenital anomaly of the small intestine. We report an extremely unusual case of an axially torted, gangrenous MD presenting as acute intestinal obstruction. A 26-year-old male patient presented to our emergency department with 3 days history of abdominal pain, ...

  3. Computation of the lateral and axial point spread functions in ...

    Indian Academy of Sciences (India)

    scanning microscopes for the above-mentioned amplitude filters. These results of axial and lateral irradiances are graphically represented by constructing a computer program using MATLAB. The obtained results are compared with that obtained in case of circular, annular, and Martinez-Corral apodized aperture. Keywords ...

  4. Severe vertical atlanto-axial subluxation in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Sílvia Fernandes

    2015-01-01

    Full Text Available The authors present the imaging study of a case of severe vertical atlanto-axial subluxation in a 60-year-old male with long-term rheumatoid arthritis with severe polyarticular involvement (Class IV of Steinbrocker functional classification.

  5. Report on the Dynamical Evolution of an Axially Symmetric Quasar ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The role of the angular momentum in the regular or chaotic character of motion in an axially symmetric quasar model is examined. It is found that, for a given value of the critical angular momentum , there are two values of the mass of the nucleus for which transition from regular to chaotic motion ...

  6. Report on the Dynamical Evolution of an Axially Symmetric Quasar ...

    Indian Academy of Sciences (India)

    Abstract. The role of the angular momentum in the regular or chaotic character of motion in an axially symmetric quasar model is examined. It is found that, for a given value of the critical angular momentum Lzc, there are two values of the mass of the nucleus Mn for which transition from regular to chaotic motion occurs.

  7. Axial-flow fan with eccentric rotor | Blaho | Zede Journal

    African Journals Online (AJOL)

    Axial-flow fan with eccentric rotor. M Blaho. Abstract. No Abstract. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals ...

  8. Interfacial characteristics of hybrid nanocomposite under thermomechanical loading

    Science.gov (United States)

    Choyal, Vijay; Kundalwal, Shailesh I.

    2017-12-01

    In this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.

  9. The Nucleon Axial Form Factor and Staggered Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron Scott [Chicago U.

    2017-01-01

    The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very same nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum dependence

  10. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  11. Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2010-01-01

    Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.

  12. Density measurements with computed tomography in patients with extra-axial hematoma can quantitatively estimate a degree of brain compression.

    Science.gov (United States)

    Nguyen, Ha Son; Li, Luyuan; Patel, Mohit; Mueller, Wade

    2016-10-01

    Extra-axial hematoma can cause significant brain compression. Guidelines for surgical evacuation include imaging findings (midline shift and hematoma thickness/volume) in conjunction with Glasgow Coma Scale (GCS) scores and/or intracranial pressure (ICP) monitoring. Physiologically, overall brain density should also change with compression. In our observational study, we explored whether overall brain density, defined using computed tomography Hounsfield Units (CT HU), changes after surgical evacuation of extra-axial hematoma. Only patients with a surgical acute epidural hematoma or subacute/chronic subdural hematoma were considered. Other exclusion criteria were concurrent intraparenchymal pathology, bilateral pathology, or incomplete follow-up imaging. Between fall 2012 and spring 2015, 22 patients were included in the study. CT head imaging (preoperative, postoperative, and at ∼1- to 2-month clinic visit) were loaded into OsiriX (Pixmeo, Switzerland). All the intracranial regions were selected and all extra-axial features were removed; subsequently, software was used to calculate a global CT HU value. A repeated-measures ANOVA found significant time effect, p brain, can cause an elevation in global CT HU value; moreover, surgical decompression is associated with lower global CT HU values. The use of global CT HU values in selected populations may serve as an adjunct for the evaluation of surgical lesions. © The Author(s) 2016.

  13. The Effect of Material Property on the Critical Velocity of Randomly Excited Nonlinear Axially Travelling Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    M. Abedi

    Full Text Available Abstract In this paper, the critical axial speeds of three types of sigmoid, power law and exponential law functionally graded plates for both isotropic and orthotropic cases are obtained via a completely analytic method. The plates are subjected to lateral white noise excitation and show evidence of large deformations. Due to randomness, the conventional deterministic methods fail and a statistical approach must be selected. Here, the probability density function is evaluated analytically for prescribed plates and used to investigate the critical axial velocity of them. Specifically the effect of in-plane forces, mean value of lateral load and the material property on the critical axial speed are studied and discussed for both isotropic and orthotropic functionally graded plates. Since the governing equation is transformed to a non dimensional format, the results can be used for a wide range of plate dimensions. It is shown that the material heterogeneity palys an essential and significant role in increasing or decreasing the critical speed of both isotropic and orthotropic functionally graded plates.

  14. Design and characterization of axial flux permanent magnet energy harvester for vehicle magnetorheological damper

    International Nuclear Information System (INIS)

    Dong, Xiaomin

    2016-01-01

    An axial flux permanent magnet energy harvester (AFPMEH) is proposed and analyzed for a vehicle magneto-rheological (MR) damper. The relationship between the output voltage and the input excitations are analytically developed. Under different constant rotation speeds and sinusoidal excitations, the harvesting energy is numerically computed for different loads of pure resistance and coil in the MR damper. To check the performance of the proposed AFPMEH for the MR damper, the AFPMEH and MR damper are fabricated individually. Experiments are performed to measure the harvesting energy of the AFPMEH and the damping characteristics of the MR damper under different excited conditions. The excited conditions include three constant rotation speeds and sinusoidal inputs. Load inputs of the pure resistance and the coil of the MR damper are considered. The results show that the time history of the generated voltage of the AFPMEH in experiment is agreed well with that of the AFPMEH in simulation. Under constant rotation speeds, the root mean square (rms) of loaded voltage will increase with the increment of load, whereas the rms of power will be affected by the amplitude of load. The MR damper powered by the AFPMEH can almost obtain the similar damping characteristics of that external power supply. Under sinusoidal inputs, the rms of loaded voltage will increase with the increment of external loads, whereas the rms of power will be almost kept as a constant. The damping range of the MR damper can also be enlarged over 30% comparing to off-state damping force. A quarter car model with an MR damper powered by the AFPMEH is developed to investigate the control performance. The on–off skyhook control is adopted to tune the input current of the MR damper. The vibration performance of the MR suspension is investigated under different roads and vehicle speeds. The numerical results show that the MR suspension with the AFPMEH under on–off skyhook control can achieve better ride

  15. Model-based framework for multi-axial real-time hybrid simulation testing

    Science.gov (United States)

    Fermandois, Gaston A.; Spencer, Billie F.

    2017-10-01

    Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-offreedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the frame is represented physically in the laboratory as a cantilevered steel column. For realtime execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six

  16. Modeling the progressive axial crushing of foam-filled aluminum tubes using smooth particle hydrodynamics and coupled finite element model/smooth particle hydrodynamics

    OpenAIRE

    Aktay, Levent; Johnson, Alastair F.; Toksoy, Ahmet Kaan; Kröplin, Bernd Helmut; Güden, Mustafa

    2008-01-01

    As alternatives to the classical finite element model (FEM), a meshless smooth particle hydrodynamics (SPH) method, in which the discrete particles represent a solid domain, and a coupled FEM/SPH modeling technique were investigated for the numerical simulation of the quasi-static axial crushing of polystyrene foam-filled aluminum thin-walled aluminum tubes. The results of numerical simulations, load-deformation histories, fold lengths and specific absorbed energies, were found to show satisf...

  17. Non-steroidal anti-inflammatory drugs (NSAIDs) for axial spondyloarthritis (ankylosing spondylitis and non-radiographic axial spondyloarthritis)

    NARCIS (Netherlands)

    Kroon, Feline P. B.; van der Burg, Lennart R. A.; Ramiro, Sofia; Landewé, Robert B. M.; Buchbinder, Rachelle; Falzon, Louise; van der Heijde, Désirée

    2015-01-01

    Axial spondyloarthritis (axSpA) comprises ankylosing spondylitis (radiographic axSpA) and non-radiographic (nr-)axSpA and is associated with psoriasis, uveitis and inflammatory bowel disease. Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended as first-line drug treatment. To determine

  18. Two-dimensional nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed

    International Nuclear Information System (INIS)

    Ghayesh, Mergen H.; Amabili, Marco; Farokhi, Hamed

    2013-01-01

    In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs)

  19. Plutonium immobilization -- Can loading

    International Nuclear Information System (INIS)

    Kriikku, E.

    2000-01-01

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed

  20. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ 2 ) test for goodness of fit to normal distributions was not satisfied

  1. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  2. Influence of transverse shear on plasticity around an axial crack in a cylindrical shell

    International Nuclear Information System (INIS)

    Krenk, S.

    1977-01-01

    A plasticity model for a semi-elliptical axial surface crack is developed. It generalizes Dugdale's assumption of a concentrated yield zone in the plane of the crack, and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory to model a three-dimensional problem can be overcome when the crack is sufficiently deep and the material is so ductile that full yield of the section around the crack develops before failure. In that case the calculations confirm the initial assumption of separation of the crack surfaces and the sides of the yield zone. The model is used to analyse published test data on surface cracked pressurized pipes. The analysis consists in COD evaluation and estimate of failure as consequence of plastic instability. COD values are found at the crack front and bottom. The plastic instability treated here is due to occurence of large plastic strains around the crack causing the section to be contracted. Thus the effective crack size is somewhat larger than the initial size. For sufficiently high loads this mechanism may lead to instability. A method is proposed which deals with the problem by simultaneous analysis of a number of cracks with increasing depth. The method avoids iterations and enables for any load and crack length the calculation of the smallest crack depth, which wo

  3. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  4. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  5. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  6. Simulation Analysis and Experiment of Variable-Displacement Asymmetric Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Youshan Gao

    2017-03-01

    Full Text Available The variable displacement pump control system has greater energy-saving advantages and application prospects than the valve control system. However, the variable displacement pump control of differential cylinder is not concurrent with the existing technologies. The asymmetric pump-controlled cylinder is, therefore, used to balance the unequal volume flow through a single rod cylinder in closed-circuit system. This is considered to be an effective method. Nevertheless, the asymmetric axial piston pump (AAPP is a constant displacement pump. In this study, variable-displacement asymmetric axial piston pump (VAPP is investigated according to the same principle used in investigating AAPP. This study, therefore, aims at investigating the characteristics of VAPP. The variable-displacement output of VAPP is implemented by controlling the swash plate angle with angle feedback control circuit, which is composed of a servo proportional valve and an angular displacement sensor. The angular displacement sensor is connected to the swash plate. The simulation model of VAPP, which is set up through the ITI-SimulationX simulation platform, is used to predict VAPP’s characteristics. The purpose of implementing the experiment is to verify the theoretical results. Both the simulation and the experiment results demonstrated that the swash plate angle is controlled by a variable mechanism; when the swash plate angle increases, the flow of Port B and Port T increases while the response speed of Port B and Port T also accelerates. When the swash plate angle is constant, the flow of Port B and Port T increases along with the increase of pump speed, although the pressure-response speed of Port B is faster than that of Port T. Consequently, the flow pulsation of Port B and Port T tends to decrease gradually along with the increase of pump speed. When the pressure loaded on Port B equals to that of Port T, the flow ripple cycle of Port B is longer than that of Port T

  7. Shear Performance of Horizontal Joints in Short Precast Concrete Columns with Sleeve Grouted Connections under Cyclic Loading

    OpenAIRE

    Feng, Bo; Xiong, Feng; Liu, Bingyu; Chen, Jiang; Zhang, Yiping

    2016-01-01

    In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compres...

  8. Axial segregation in spherical and cylindrical rotating tumblers

    Directory of Open Access Journals (Sweden)

    D’Ortona Umberto

    2017-01-01

    Full Text Available Monodisperse and bidisperse granular flows are studied in rotating tumblers using DEM. In spherical tumblers, flowing particles’ trajectories do not follow straight lines but are curved. At the same time particles near the surface drift toward the pole, inducing two global recirculation cells. Combined with radial segregation, drift and curvature compete to impose the axial segregation pattern: Small-Large-Small (SLS or Large-Small-Large (LSL. Fill level, rotation speed and wall roughness influence drift and curvature, and modify the resulting segregation pattern. In cylindrical tumblers, equivalent recirculation cells occur next to the end walls. A second pair of recirculation cells with a weak drift in the opposite direction appears at the center for long enough tumblers. Unlike the sphere case, curvature and drift in the primary cells combine to push large particles toward the end walls, explaining why large particle bands appear at the end walls for axial segregation in cylinder.

  9. Classical theory of the Kumakhov radiation in axial channeling

    International Nuclear Information System (INIS)

    Khokonov, M.K.; Komarov, F.F.; Telegin, V.I.

    1984-01-01

    The paper considers radiation of ultrarelativistic electrons in axial channeling initially predicted by Kumakhov. The consideration is based on the results of solution of the Fokker-Planck equation. The spectral-angular characteristics of the Kumakhov radiation in thick single crystals are calculated. It is shown that in heavy single crystals the energy losses on radiation can amount to a considerable portion of the initial beam energy. The possibility of a sharp increase of radiation due to a decrease of crystal temperature is discussed. It is shown that radiation intensity in axial channeling is weakly dependent on the initial angle of the electron entrance into the channel if this angle changes within the limits of a critical one. (author)

  10. Impaired bed mobility: quantitative torque analysis with axial inertial sensors.

    Science.gov (United States)

    Bhidayasiri, Roongroj; Sringean, Jirada; Thanawattano, Chusak

    2017-08-01

    Difficulty in turning in bed is rated as the most troublesome night-time symptom among Parkinson's disease (PD) patients. To develop a practical objective method for home assessment of a patient's ability to turn in bed. Nocturnal parameters and torque of self-turning in bed from 17 PD couples were assessed and compared using a wearable axial sensor for two nights in their homes. The torque of axial rotation which indicates the ability of PD patients to turn in bed was significantly less than their spouses (p turning in bed and total unified Parkinson's Disease Rating Scale score (r = 0.71; p = 0.001), and total Nocturnal Akinesia Dystonia and Cramp score (r = 0.634; p = 0.006). Our study confirms a decreased ability in turning in PD.

  11. Vector and axial nucleon form factors: A duality constrained parameterization

    International Nuclear Information System (INIS)

    Bodek, A.; Avvakumov, S.; Bradford, R.; Budd, H.

    2008-01-01

    We present new parameterizations of vector and axial nucleon form factors. We maintain an excellent descriptions of the form factors at low momentum transfers, where the spatial structure of the nucleon is important, and use the Nachtman scaling variable ξ to relate elastic and inelastic form factors and impose quark-hadron duality constraints at high momentum transfers where the quark structure dominates. We use the new vector form factors to re-extract updated values of the axial form factor from neutrino experiments on deuterium. We obtain an updated world average value from ν μ d and pion electroproduction experiments of M A =1.014±0.014 GeV/c 2 . Our parameterizations are useful in modeling neutrino interactions at low energies (e.g. for neutrino oscillations experiments). The predictions for high momentum transfers can be tested in the next generation electron and neutrino scattering experiments. (orig.)

  12. Computerized axial tomography : the tool in osseointegrated dental implants

    International Nuclear Information System (INIS)

    Fernandez-Lopez, Otton

    2002-01-01

    Failure rates in rehabilitations with osseointegrated implants are handled through appropriate radiographic preoperative planning. The appropriate length of the implant without running the risk of a perforation of vital structures, has been determined by a radiographic diagnosis. Computerized and conventional axial tomography have proved to be invaluable elements for pre-surgical evaluation. A radiologic guidance is elaborated to perform a computerized axial tomography (CT) of maxillary bones in totally edentulous patients. Surgical guides are constructed from a wax-up emanated from the information of the CT. The CT has proven to be an radiographic indispensable element to achieve the surgical-prosthetic success in osseointegrated dental implants. The CT has allowed the realization of a precise wax-up for making of surgical guide and a precise temporary prostheses in positioning of osseointegrated implants, with the consequent saving time and money for the rehabilitator and patient [es

  13. [Inflammatory spinal diseases: axial spondyloarthritis : Central importance of imaging].

    Science.gov (United States)

    Baraliakos, X; Fruth, M; Kiltz, U; Braun, J

    2017-03-01

    The diagnosis of axial spondyloarthritis (axSpA) includes classical ankylosing spondylitis (AS) as well as earlier stages and abortive courses of the disease, in which structural alterations have not yet occurred. These are classified as non-radiographic axSpA (nr-axSpa). Inflammatory changes in the entire axial skeleton are characteristic for axSpA and can be visualized by magnetic resonance imaging (MRI), while in most patients structural alterations, such as new bone formation with syndesmophytes and ankylosis develop in the later course of the disease. These bony alterations can best be visualized by conventional radiography and by computed tomography. Certain MRI sequences are nowadays considered as the standard method for depiction of inflammatory changes in axSpA. The introduction of MRI has led to a paradigm shift for this disease because the inflammatory lesions characteristic for the disease can be visualized at an early stage using appropriate MRI sequences.

  14. Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds.

    Science.gov (United States)

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho

    2016-02-04

    Axially, planar, and helical chiral compounds are indispensable building blocks in modern organic synthesis. A wide variety of chiral ligands and catalysts were designed based on these chiral scaffolds, and these chiral ligands and catalysts were used for various catalytic asymmetric transformations to produce important chiral compounds in an optically enriched form. Furthermore, these chiral skeletons are found in the structure of biologically active natural products. Thus, the development of efficient enantioselective methods for the synthesis of these chiral compounds is an important task in the field of organic chemistry. In the last few years, organocatalyzed approaches, which are one of the most reliable catalytic asymmetric methods, became a hot topic. This Focus Review summarizes asymmetric organocatalytic methods for the synthesis of axially, planar, and helical chiral compounds as useful chiral building blocks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An Axial Sliding Test for machine elements surfaces

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2012-01-01

    are necessary: a press to provide the normal pressure and a tensile machine to perform the axial movements. The test is calibrated so that the correspondence between the normal pressure and the container advancement is found. Finally, preliminary tests are carried out involving a multifunctional and a fine......Throughout the years, it has become more and more important to find new methods for reducing friction and wear occurrence in machine elements. A possible solution is found in texturing the surfaces under tribological contact, hence the development and spread of plateau-honed surface for cylinder...... liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper a new test rig simulating pure sliding conditions is presented, dubbed Axial Sliding Test. It presents four major components: a rod, a sleeve...

  16. Axial positrons emission tomography: from mouse to human brain imaging

    International Nuclear Information System (INIS)

    Brard, Emmanuel

    2013-01-01

    Positrons emission tomography is a nuclear imaging technics using nuclear decays. It is used both in clinical and preclinical studies. The later requires the use of small animals such as the mouse. The objective is to obtain the best signal with the best spatial resolution. Yet, a weight ratio between humans and mice indicates the need of a sub-millimeter resolution. A conventional scanner is based on detection modules surrounding the object to image and arranged perpendicularly. This implies a strong relationship between efficiency and spatial resolution. This work focuses on the axial geometry in which detection modules are arranged parallel to the object. This limits the relationship between the figures of merit, leading to both high spatial resolution and efficiency. The simulations of prototypes showed great perspectives in term of sub-millimeter resolution with efficiencies of 15 or 40% according to the scanner's axial extension. These results indicate great perspectives for both clinical and preclinical imaging. (author)

  17. Involvement of the axial skeleton in psoriatic arthritis

    Directory of Open Access Journals (Sweden)

    E. E. Gubar

    2017-01-01

    Full Text Available The involvement of the spine in psoriatic arthritis (PsA is observed in a large number of cases; however, a unified approach to solving this problem has not yet been formed. Criteria for the diagnosis of psoriatic spondylitis have not been clearly defined; internationally accepted definitions for this concept are absent; criteria for a PsA exacerbation and remission have not been formulated with regard to spondylitis. The specialists of GRAPPA (Group for Research and Assessment of Psoriasis and Psoriatic Arthritis have no their own recommendations for the treatment of axial involvement in PsA now. The therapeutic tactics used in the treatment of axial spondylitis and ankylosing spondylitis is borrowed in this area. The involvement of the spine calls for further investigation.

  18. Axial Ge/Si nanowire heterostructure tunnel FETs

    Energy Technology Data Exchange (ETDEWEB)

    Picraux, Sanuel T [Los Alamos National Laboratory; Daych, Shadi A [Los Alamos National Laboratory

    2010-01-01

    The vapor-liquid-solid (VLS) growth of semiconductor nanowires allows doping and composition modulation along their axis and the realization of axial 1 D heterostructures. This provides additional flexibility in energy band-edge engineering along the transport direction which is difficult to attain by planar materials growth and processing techniques. We report here on the design, growth, fabrication, and characterization of asymmetric heterostructure tunnel field-effect transistors (HTFETs) based on 100% compositionally modulated Si/Ge axial NWs for high on-current operation and low ambipolar transport behavior. We discuss the optimization of band-offsets and Schottky barrier heights for high performance HTFETs and issues surrounding their experimental realization. Our HTFET devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a measured current drive exceeding 100 {mu}A/{mu}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios.

  19. Accuracy Improvement of Axial Power Shape Reconstruction Using GMDH Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Seongpil; Kim, Jaemin; Park, Minyong; Choe, Jiwon; Zhang, Peng; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper applies Group Method of Data Handling (GMDH) algorithm to improve the reconstruction accuracy. Reference three-dimensional power distributions are generated for Shinkori Unit 1 Cycle 3 by simulating Xe transients in BOC, MOC, and EOC, which include saddle, top- and bottom-skewed shapes. Using these power distributions, the axial power distributions were reconstructed by GMDH and the 5th order Fourier series method. It was shown that GMDH algorithm reduced the average Root-Mean-Square-Error (RMSE) from 1.01% of Fourier series method, down to 0.17%. This paper presents the accuracy improvement of axial power reconstruction using GMDH algorithm with the first order polynomial basis function compared to the COLSS Fourier series expansion algorithm.

  20. Axial weak currents in the Wess-Zumino term

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    1986-01-01

    In a simplified model lagrangian of 3 quarks with an SU(2)sub(L) gauging of chiral SU(3)sub(L)xSU(3)sub(R) to introduce W-boson, we analyse certain complications associated with the low-energy theorem including axial weak fields. We first show that the low-energy amplitude is independent of the form of the quark-level anomalous identity, whether in the covariant form or the consistent form. However, the interplay of the short-distance dynamics (anomalous identity) and the long-distance dynamics (low-energy theorem) becomes involved in the presence of axial fields. We then discuss what kinds of conditions single out the gauged Wess-Zumino term as a low-energy effective action. The connection of the low-energy theorem with the 't Hooft anomaly matching condition is also discussed. (orig.)