WorldWideScience

Sample records for axial form factor

  1. Axial Nucleon form factors from lattice QCD

    CERN Document Server

    Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M

    2010-01-01

    We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.

  2. Further comment on pion electroproduction and the axial form factor

    CERN Document Server

    Bernard, V; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.

    2001-01-01

    We show that a recent claim (H.Haberzettl, Phys. Rev. Lett. 85 (2000) 3576) that one cannot extract the nucleon weak axial form factor G_A (t) from charged pion threshold electroproduction is incorrect. Thus previous calculations remain valid and threshold charged pion electroproduction experiments can indeed be used to determine G_A (t), and they should certainly be pursued.

  3. Axial form factor of the nucleon at large momentum transfers

    CERN Document Server

    Anikin, I V; Offen, N

    2016-01-01

    Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum transfers at Jefferson Laboratory following the 12 GeV upgrade, we provide a short theory summary and an estimate of the nucleon axial form factor for large virtualities in the $Q^2 = 1-10~\\text{GeV}^2$ range using next-to-leading order light-cone sum rules.

  4. Nucleon axial form factors from two-flavour Lattice QCD

    CERN Document Server

    Junnarkar, P M; Djukanovic, D; von Hippel, G; Hua, J; Jäger, B; Meyer, H B; Rae, T D; Wittig, H

    2014-01-01

    We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with $m_\\pi = 340 \\ \\text{MeV}$ and lattice spacing $a \\sim 0.05 \\ \\text{fm}$. The relevant three-point functions were computed with source-sink separations ranging from $t_s \\sim 0.6 \\ \\text{fm}$ to $t_s \\sim \\ 1.4 \\ \\text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.

  5. Axial form factors of the octet baryons in a covariant quark model

    CERN Document Server

    Ramalho, G

    2015-01-01

    We study the weak interaction axial form factors of the octet baryons, within the covariant spectator quark model, focusing on the dependence of four-momentum transfer squared, Q^2. In our model the axial form factors G_A(Q^2) (axial-vector form factor) and G_P(Q^2) (induced pseudoscalar form factor), are calculated based on the constituent quark axial form factors and the octet baryon wave functions. The quark axial current is parametrized by the two constituent quark form factors, the axial-vector form factor g_A^q(Q^2), and the induced pseudoscalar form factor g_P^q(Q^2). The baryon wave functions are composed of a dominant S-state and a P-state mixture for the relative angular momentum of the quarks. First, we study in detail the nucleon case. We assume that the quark axial-vector form factor g_A^q(Q^2) has the same function form as that of the quark electromagnetic isovector form factor. The remaining parameters of the model, the P-state mixture and the Q^2-dependence of g_P^q(Q^2), are determined by a f...

  6. Vector and Axial Form Factors Applied to Neutrino Quasielastic Scattering

    CERN Document Server

    Budd, H; Arrington, J

    2005-01-01

    We calculate the quasielastic cross sections for neutrino scattering on nucleons using up to date fits to the nucleon elastic electromagnetic form factors GEp, GEn, GMp, GMn, and weak form factors. We show the extraction of Fa for neutrino experiments. We show how well \\minerva, a new approved experiment at FNAL, can measure Fa. We show the that Fa has a different contribution to the anti-neutrino cross section, and how the anti-neutrino data can be used to check Fa extracted from neutrino scattering.

  7. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    CERN Document Server

    Meyer, Aaron S; Kronfeld, Andreas S; Li, Ruizi; Simone, James N

    2016-01-01

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.

  8. Axial form factor of the nucleon in the perturbative chiral quark model

    CERN Document Server

    Khosonthongkee, K; Faessler, Amand; Gutsche, T; Lyubovitskij, V E; Pumsa-ard, K; Yan, Y

    2004-01-01

    We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).

  9. Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.

  10. Axial Nucleon to Delta transition form factors on 2+1 flavor hybrid lattices

    CERN Document Server

    Alexandrou, C; Leontiou, Th; Negele, J W; Tsapalis, A; 10.1103/PhysRevD.80.099901

    2009-01-01

    We correct the values of the dominant nucleon to Delta axial transition form factors CA_5 and CA_6 published in C. Alexandrou et.al., Phys. Rev. D 76,094511 (2007). The analysis error affects only the values obtained when using the hybrid action in the low Q^2 regime bringing them into agreement with those obtained with Wilson fermions.

  11. Reply to "Comment about pion electroproduction and the axial form factors"

    CERN Document Server

    Haberzettl, H

    2001-01-01

    It is shown that comments by Guichon [hep-ph/0012126], and also by Bernard, Kaiser, and Mei{\\ss}ner [hep-ph/0101062], regarding my recent criticism [Phys. Rev. Lett. 85, 3576 (2000)] of how the axial form factor is supposed to enter pion electroproduction do not address the main point of my argument and therefore are irrelevant.

  12. N-Delta(1232) axial form factors from weak pion production

    CERN Document Server

    Hernandez, E; Valverde, M; Vicente-Vacas, M J

    2010-01-01

    The N-Delta axial form factors are determined from neutrino induced pion production ANL & BNL data by using a state of the art theoretical model, which accounts both for background mechanisms and deuteron effects. We find violations of the off diagonal Goldberger-Treiman relation at the level of 2 sigma which might have an impact in background calculations for T2K and MiniBooNE low energy neutrino oscillation precision experiments.

  13. Axial vector form factors in Ds to phi semileptonic decays from lattice QCD

    CERN Document Server

    Donald, Gordon; Koponen, Jonna

    2011-01-01

    We calculate axial vector and vector form factors for the semileptonic decay Ds to phi using HISQ valence quarks on MILC ensembles with 2+1 flavours of asqtad sea quarks. Using twisted boundary conditions to tune the quarks' momenta, we compute form factors at q^2 = 0 on coarse lattices. We find V(0)=0.903(67), A_1(0)= 0.603(20), A_2(0)=0.401(80) and A_0(0)=0.686(17), which we compare to experimental data and previous quenched lattice QCD calculations.

  14. Strangeness Vector and Axial-Vector Form Factors of the Nucleon

    Directory of Open Access Journals (Sweden)

    Pate Stephen

    2014-03-01

    Full Text Available A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic form factors GsE(Q2 and GsM(Q2 are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2 is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.

  15. Determination of the Axial Nucleon Form Factor from the MiniBooNE Data

    Energy Technology Data Exchange (ETDEWEB)

    Butkevich, A. V. [Moscow, INR; Perevalov, D. [Fermilab

    2014-03-26

    Both neutrino and antineutrino charged-current quasi-elastic scattering on a carbon target are studied to investigate the nuclear effect on the determination of the axial form factor F_A(Q^2). A method for extraction of F_A(Q^2) from the flux-integrated $d\\sigma/dQ^2$ cross section of (anti)neutrino scattering on nuclei is presented. Data from the MiniBooNE experiment are analyzed in the relativistic distorted-wave impulse approximation, Fermi gas model, and in the Fermi gas model with enhancements in the transverse cross section. We found that the values of the axial form factor, extracted in the impulse approximation and predicted by the dipole approximation with the axial mass M_A~1.37 GeV are in good agreement. On the other hand, the Q^2-dependence of F_A extracted in the approach with the transverse enhancement is found to differ significantly from the dipole approximation.

  16. Axial vector transition form factors of N → Δ in QCD

    Science.gov (United States)

    Kucukarslan, A.; Ozdem, U.; Ozpineci, A.

    2016-12-01

    The isovector axial vector form factors of N → Δ transition are calculated by employing Light-cone QCD sum rules. The analytical results are analyzed by both the conventional method, and also by a Monte Carlo based approach which allows one to scan all of the parameter space. The predictions are also compared with the results in the literature, where available. Although the Monte Carlo analysis predicts large uncertainties in the predicted results, the predictions obtained by the conventional analysis are in good agreement with other results in the literature.

  17. Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor

    CERN Document Server

    Ito, T M; Averett, T; Barkhuff, D; Batigne, G; Beck, D H; Beise, E J; Blake, A; Breuer, H; Carr, R; Clasie, B; Covrig, S D; Danagulyan, A S; Dodson, G; Dow, K; Dutta, D; Farkhondeh, M; Filippone, B W; Franklin, W; Furget, C; Gao, H; Gao, J; Gustafsson, K K; Hannelius, L; Hasty, R; Hawthorne-Allen, A M; Herda, M C; Jones, C E; King, P; Korsch, W; Kowalski, S; Kox, S; Krämer, K; Lee, P; Liu, J; Martin, J W; McKeown, R D; Müller, B; Pitt, M L; Plaster, B; Quéméner, G; Real, J S; Ritter, J; Roche, J; Savu, V; Schiavilla, R; Seely, J; Spayde, D T; Suleiman, R; Taylor, S; Tieulent, R; Tipton, B; Tsentalovich, E; Wells, S P; Yang, B; Yuan, J; Yun, J; Zwart, T

    2004-01-01

    We report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at backward angles at Q2= 0.038 (GeV/c)2. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon, which can potentially receive large electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/- 0.58(sys)ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also consistent with theoretical predictions.

  18. Clean measurements of the nucleon axial-vector and free-neutron magnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre P. [JLAB

    2013-11-01

    We discuss the feasibility of a weak charged current experiment using a low energy electron beam. A first goal is to measure the Q^2 dependence of the axial-vector form factor g_a(Q^2). It can be measured model-independently and as robustly as for electromagnetic form factors from typical electron scattering experiments, in contrast to the methods used so far to measure g_a(Q^2). If g_a(Q^2) follows a dipole form, the axial mass can be extracted with a better accuracy than the world data altogether. The most important detection equipment would be a segmented neutron detector with good momentum and angular resolution that is symmetric about the beam direction, and covers a moderate angular range. A high intensity beam (100 uA) is necessary. Beam polarization is highly desirable as it provides a clean measurement of the backgrounds. Beam energies between 70 and 110 MeV are ideal. This range would provide a Q^2 mapping of g_a between 0.01

  19. Axial-vector form factors of the nucleon within the chiral quark-soliton model and their strange components

    CERN Document Server

    Silva, A; Urbano, D; Göke, K; Silva, Antonio; Kim, Hyun-CHul; Urbano, Diana; Goeke, Klaus

    2005-01-01

    We investigate three different axial-vector form factors of the nucleon, $G_A^{0}$, $G_A^3$, $G_A^8$, within the framework of the SU(3) chiral quark-soliton model, emphasizing their strangeness content. We take into account the rotational $1/N_c$ and linear strange quark ($m_s$) contributions using the symmetry-conserving SU(3) quantization and assuming isospin symmetry. The strange axial-vector form factor is also obtained and they all are discussed in the context of the parity-violating scattering of polarized electrons off the nucleon and its relevance to the strange vector form factors.

  20. A high-statistics study of the nucleon EM form factors, axial charge and quark momentum fraction

    CERN Document Server

    Jäger, B; Capitani, S; Della Morte, M; Djukanovic, D; von Hippel, G; Knippschild, B; Meyer, H B; Wittig, H

    2013-01-01

    We present updated results for the nucleon axial charge and electromagnetic (EM) form factors, which include a significant increase in statistics for all ensembles (up to 4000 measurements), as well as the addition of ensembles with pion masses down to $m_\\pi\\sim195$ MeV. We also present results for the average quark momentum fraction. The new data allows us to perform a thorough study of the systematic effects encountered in the lattice extraction. We concentrate on systematic effects due to excited-state contaminations for each of the quantities, which we check using several different time separations between the operators at the source and sink through a comparison of plateau fits and the summed operator insertion method (which provides a mechanism to suppress the excited-state contamination). We confirm our earlier finding that a reliable extraction of the axial charge must be based on a method which eliminates excited-state contaminations. Similar conclusions apply to our EM form factor calculations . Th...

  1. A Global Analysis of the Strange Vector and Axial Form Factors of the Nucleon and their Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, John [New Mexico State Univ., Las Cruces, NM (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2010-07-01

    We studied the strange contributions to the elastic vector and axial form factors of the nucleon using all available elastic electroweak scattering data. Specifically, we combine elastic nu-p and nubar-p scattering cross-section data from the Brookhaven E734 experiment with elastic ep and quasi-elastic ed and e-4He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, PVA4 and G0 experiments. We not only determined these form factors at individual values of momentum-transfer (Q2), as other groups have done recently, but also fit the Q2-dependence of these form factors using simple functional forms. I present an overview of the G0 backward-angle experiment as well as the results of these fits using existing data, along with some expectations of how we can improve our knowledge of these form factors if the MicroBooNE collaboration completes their experiment.

  2. Forming method of axial micro grooves inside copper heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Yong; XIAO Hui; LIAN Bin; TANG Yong; ZENG Zhi-xin

    2008-01-01

    The high-speed oil-filled ball spinning and drawing process was put forward to manufacture the axially grooved heat pipe with highly efficient heat-transfer performance, and the forming mechanism of micro-grooves inside the pipe was investigated. The key factors influencing the configurations of micro-grooves were analyzed. When the spinning depth varies between 0.4 mm and 0.5 mm, drawing speed varies from 200 mm/min to 450 mm/min, rotary speed is beyond 6 000 r/min and working temperature is less than 50 ℃, the grooved tubes are formed with high quality and efficiency. The ball spinning process uses full oil-filling method to set up the steady dynamic oil-film that reduces the drawing force and improves the surface quality of grooved copper tube.

  3. New determination of the $N$-$\\Delta(1232)$ axial form factors from weak pion production and coherent pion production off nuclei at T2K and MiniBooNE energies revisited

    CERN Document Server

    Hernández, E; Valverde, M; Vicente-Vacas, M J

    2010-01-01

    We re-evaluate our model predictions in Phys. Rev. D 79, 013002 (2009) for different observables in neutrino induced coherent pion production. This comes as a result of the new improved fit to old bubble chamber data of the dominant axial C_5^A nucleon-to-Delta form factor. We find an increase of 20%-30% in the values for the total cross sections. Uncertainties induced by the errors in the determination of C_5^A are computed. Our new results turn out to be compatible within about $1\\sigma$ with the former ones. We also stress the existing tension between the recent experimental determination of the \\sigma(CC coh \\pi^+)}/\\sigma(NC coh \\pi^0)} $ ratio by the SciBooNE Collaboration and the theoretical predictions.

  4. Mesonic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards

    2003-07-22

    We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.

  5. Experimental - theoretical study of axially compressed cold formed steel profiles

    Directory of Open Access Journals (Sweden)

    Bešević Miroslav

    2011-01-01

    Full Text Available Analysis of axially compressed steel members made of cold formed profiles presented in this paper was conducted through both experimental and numerical methods. Numerical analysis was conducted by means of "PAK" finite element software designed for nonlinear static and dynamic analysis of structures. Results of numerical analysis included ultimate bearing capacity with corresponding middle section force-deflection graphs and buckling curves. Extensive experimental investigation were also concentrated on determination of bearing capacity and buckling curves. Experiments were conducted on five series with six specimens each for slenderness values of 50, 70, 90, 110 and 120. Compressed simply supported members were analyzed on Amsler Spherical pin support with unique electronical equipment and software. Besides determination of forcedeflection curves, strains were measured in 18 or 12 cross sections along the height of the members. Analysis included comparisons with results obtained by different authors in this field recently published in international journals. Special attention was dedicated to experiments conducted on high strength and stainless steel members.

  6. Baryon form factors

    CERN Document Server

    Kubis, B; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.

    1999-01-01

    We calculate the form factors of the baryon octet in the framework of heavy baryon chiral perturbation theory. The calculated charge radius of the show that kaon loop effects can play a significant role in the neutron electric form factor. Furthermore. we derive generalized Caldi-Pagels relations between various charge radii which are free of chiral loop effects.

  7. Treatment with tumor necrosis factor inhibitors in axial spondyloarthritis

    DEFF Research Database (Denmark)

    Ciurea, A.; Weber, U.; Stekhoven, D.

    2015-01-01

    Objective. To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. The Journal of Rheumatology, Methods.We compared newly initiated TNF inhibition for axSpA in 363 patients...

  8. eta ' transition form factors

    NARCIS (Netherlands)

    Amo Sanchez, del P.; Raven, H.G.; Snoek, H.; BaBar, Collaboration

    2011-01-01

    eta((')) transition form factors in the momentum-transfer range from 4 to 40 GeV(2). The analysis is based on 469 fb(-1) of integrated luminosity collected at PEP-II with the BABAR detector at e(+)e(-) center-of-mass energies near 10.6 GeV.

  9. Nucleon form factors with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Brinet, M; Carbonell, J; Drach, V; Harraud, P A; Korzec, T; Koutsou, G

    2008-01-01

    The electromagnetic and axial form factors of the nucleon are evaluated in twisted mass QCD with two degenerate flavors of light, dynamical quarks. The axial charge g_A, magnetic moment and the Dirac and Pauli radii are determined for pion masses in the range 300 MeV to 500 MeV.

  10. Form Factors in radiative pion decay

    CERN Document Server

    Mateu, V

    2007-01-01

    We perform an analysis of the form factors that rule the structure-dependent amplitude in the radiative pion decay. The resonance contributions to pion -> e nu_e gamma decays are computed through the proper construction of the vector and axial-vector form factors by setting the QCD driven asymptotic properties of the three-point Green functions VVP and VAP, and by demanding the smoothing of the form factors at high transfer of momentum. A comparison between theoretical and experimental determinations of the form factors is also carried out. We also consider and evaluate the role played by a non-standard tensor form factor. We conclude that, at present and due to the hadronic incertitudes, the search for New Physics in this process is not feasible.

  11. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  12. Axial length as a risk factor to branch retinal vein occlusion

    NARCIS (Netherlands)

    Timmerman, EA; deLavalette, VWR; vandenBrom, HJB

    1997-01-01

    Purpose: To determine whether axial length is a factor in branch retinal vein occlusion. Methods: Axial length measurements in a group of 24 patients with a unilateral branch retinal Vein occlusion were compared with the axial length measurements in a control group. axial length measurements were ta

  13. Nucleon form factors in the canonically quantized Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Acus, A.; Norvaisas, E. [Lithuanian Academy of Sciences, Vilnius (Lithuania). Inst. of Theoretical Physics and Astronomy; Riska, D.O. [Helsinki Univ. (Finland). Dept. of Physics; Helsinki Univ. (Finland). Helsinki Inst. of Physics

    2001-08-01

    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the ab initio quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, f{sub {pi}} and e, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer. (orig.)

  14. Nucleon form factors in the canonically quantized Skyrme model

    CERN Document Server

    Acus, A; Riska, D O

    2001-01-01

    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the {\\it ab initio} quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, $f_\\pi$ and $e$, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer.

  15. Failure mechanism and forming limit of tube axial compressive process

    Institute of Scientific and Technical Information of China (English)

    SUN Zhi-chao; YANG He

    2006-01-01

    Based on minimum energy principle for plastic forming,tearing and buckling failures mechanisms are explored and criteria for them are developed by theoretical analysis and experiment. Combined with finite element software developed forming limit and effects of process parameters on failures are investigated and proper parameters for stable forming are determined. The results show that: 1) The failures and forming limit are mainly determined by geometry and materials parameters of tube blank,fillet radius or half conical angle of die. For the process under fillet die,there exists a maximum fillet radius within which no tearing failure happens,and a maximum radius and a minimum radius range within which no buckling failure happens. For the process under conical die,there exists a maximum and minimum half conical angle range within which no tearing and buckling failures occur. 2) For both forming processes,the higher the value of material strain hardening exponent or the lower the value of relative thickness,the more impossible for tearing and buckling failures to occur,and the larger the ranges of fillet radius and half conical angle. The experiment results verify the reliability and practicability of this research.

  16. Pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)

    1994-04-01

    It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.

  17. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  18. Simple LMFBR axial-flow friction-factor correlation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Y.N.; Todreas, N.E.

    1982-12-01

    Complicated LMFBR axial lead-length averaged friction-factor correlations are reduced to an easy, ready-to-use function of bundle Reynolds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer preprocessor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accurate values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest.

  19. Strange nucleon form-factors

    Science.gov (United States)

    Maas, F. E.; Paschke, K. D.

    2017-07-01

    A broad program measuring parity-violation in electron-nuclear scattering has now provided a large set of precision data on the weak-neutral-current form-factors of the proton. Under comparison with well-measured electromagnetic nucleon form-factors, these measurements reveal the role of the strange quark sea on the low-energy interactions of the proton through the strange-quark-flavor vector form-factors. This review will describe the experimental program and the implications of the global data for the strange-quark vector form-factors. We present here a new fit to the world data.

  20. TRASYS form factor matrix normalization

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1992-01-01

    A method has been developed for adjusting a TRASYS enclosure form factor matrix to unity. This approach is not limited to closed geometries, and in fact, it is primarily intended for use with open geometries. The purpose of this approach is to prevent optimistic form factors to space. In this method, nodal form factor sums are calculated within 0.05 of unity using TRASYS, although deviations as large as 0.10 may be acceptable, and then, a process is employed to distribute the difference amongst the nodes. A specific example has been analyzed with this method, and a comparison was performed with a standard approach for calculating radiation conductors. In this comparison, hot and cold case temperatures were determined. Exterior nodes exhibited temperature differences as large as 7 C and 3 C for the hot and cold cases, respectively when compared with the standard approach, while interior nodes demonstrated temperature differences from 0 C to 5 C. These results indicate that temperature predictions can be artificially biased if the form factor computation error is lumped into the individual form factors to space.

  1. $K_{13}$ transition form factors

    CERN Document Server

    Chueng Ryong Ji

    2001-01-01

    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson bound state amplitudes and the dressed quark-W vertex in a manifestly covariant calculation of the K/sub l3/ transition form factors and decay width in the impulse approximation. With model gluon parameters previously fixed by the chiral condensate, the pion mass and decay constant, and the kaon mass, our results for the K/sub l3/ form factors and the kaon semileptonic decay width are in good agreement with the experimental data. (37 refs).

  2. Nucleon form factors with Nf=2 dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Harraud, P -A; Jansen, K

    2009-01-01

    We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470 MeV. We chirally extrapolate results on the nucleon axial ch arge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and co mpare to experiment.

  3. Effect of Deformation Condition on Axial CompressivePrecision Forming Process of Tube with Curling Die

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rρ/d0, little on tube material properties and friction condition; the relative gap Δ/2rρ of double-walled tubes obtained decreases with increasing rρ/d0, and there is a parameter k for a given t0/d0 or rρ/t0, when rρ,/d0>k, Δ/2rρ<1,otherwise Δ/2rρ>1.

  4. Pseudo-scalar form factors at three loops in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Taushif [The Institute of Mathematical Sciences, IV Cross Road,CIT Campus, Chennai 600 113, Tamil Nadu (India); Gehrmann, Thomas [Department of Physics, University of Zürich,Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Mathews, Prakash [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar,Kolkata 700 064, West Bengal (India); Rana, Narayan; Ravindran, V. [The Institute of Mathematical Sciences, IV Cross Road,CIT Campus, Chennai 600 113, Tamil Nadu (India)

    2015-11-24

    The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark loop. In the limit of large quark mass, it is described by an effective Lagrangian that only admits light degrees of freedom. In this effective theory, we compute the three-loop massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar Higgs boson to gluons. Due to the axial anomaly, the pseudo-scalar operator for the gluonic field strength mixes with the divergence of the axial vector current. Working in dimensional regularization and using the ’t Hooft-Veltman prescription for the axial vector current, we compute the three-loop pseudo-scalar form factors for massless quarks and gluons. Using the universal infrared factorization properties, we independently derive the three-loop operator mixing and finite operator renormalisation from the renormalisation group equation for the form factors, thereby confirming recent results in the operator product expansion. The finite part of the three-loop form factor is an important ingredient to the precise prediction of the pseudo-scalar Higgs boson production cross section at hadron colliders. We discuss potential applications and derive the hard matching coefficient in soft-collinear effective theory.

  5. Baryon Form Factors at Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)

    2012-04-15

    An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.

  6. Ultrasonic Evaluation of the Lens Thickness to Axial Length Factor in Primary Closure Angle Glaucoma

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    Ultrasonic biometry was done in 232 normal eyes and 138 eyes with primary angle closure glaucoma (ACG), using Ultrascan Digital B System IV (10 MHz). The ratio between the lens thickness and the axial length (lens thickness to axial length factor, LAF) was evaluated as a biometric index for assessing the eye with primary ACG in Chinese. LAF of 2.00 was found to be ideal point of demarcation between ACG and normal eyes (i.e., lens thickness equals to 1/5 of axial length). It appears that LAF is helpful i...

  7. Pseudo-scalar Form Factors at Three Loops in QCD

    CERN Document Server

    Ahmed, Taushif; Mathews, Prakash; Rana, Narayan; Ravindran, V

    2015-01-01

    The coupling of a pseudo-scalar Higgs boson to gluons is mediated through a heavy quark loop. In the limit of large quark mass, it is described by an effective Lagrangian that only admits light degrees of freedom. In this effective theory, we compute the three-loop massless QCD corrections to the form factor that describes the coupling of a pseudo-scalar Higgs boson to gluons. Due to the axial anomaly, the pseudo-scalar operator for the gluonic field strength mixes with the divergence of the axial vector current. Working in dimensional regularization and using the 't~Hooft-Veltman prescription for the axial vector current, we compute the three-loop pseudo-scalar form factors for massless quarks and gluons. Using the universal infrared factorization properties, we independently derive the three-loop operator mixing and finite operator renormalisation from the renormalisation group equation for the form factors, thereby confirming recent results in the operator product expansion. The finite part of the three-lo...

  8. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  9. Nucleon form factors and O(a) Improvement

    CERN Document Server

    Capitani, S; Horsley, R; Klaus, B; Oelrich, H; Perlt, H; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G; Schiller, A; Stephenson, P W

    1999-01-01

    Nucleon form factors have been extensively studied both experimentally and theoretically for many years. We report here on new results of a high statistics quenched lattice QCD calculation of vector and axial-vector nucleon form factors at low momentum transfer within the Symanzik improvement programme. The simulations are performed at three kappa and three beta values allowing first an extrapolation to the chiral limit and then an extrapolation in the lattice spacing to the continuum limit. The computations are all fully non-perturbative. A comparison with experimental results is made.

  10. Exploring strange nucleon form factors on the lattice

    CERN Document Server

    Babich, Ronald; Clark, Michael A; Fleming, George T; Osborn, James C; Rebbi, Claudio; Schaich, David

    2010-01-01

    We discuss techniques for evaluating sea quark contributions to hadronic form factors on the lattice and apply these to an exploratory calculation of the strange electromagnetic, axial, and scalar form factors of the nucleon. We employ the Wilson gauge and fermion actions on an anisotropic 24^3 x 64 lattice, probing a range of momentum transfer with Q^2 _0. We discuss the unique systematic uncertainties affecting the latter quantity relative to the continuum, as well as prospects for improving future determinations with Wilson-like fermions.

  11. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.

    2000-01-01

    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...

  12. Minimum Ballistic Factor Problem of Slender Axial Symmetric Missiles

    Directory of Open Access Journals (Sweden)

    V. B. Tawakley

    1979-01-01

    Full Text Available The problem of determining the geometry of slender, axisymmetric missiles of minimum ballistic factor in hypersonic flow has been solved via the calculus of variations under the assumptions that the flow is Newtonian and the surface averaged skin-friction coefficient is constant. The study has been made for conditions of given length and diameter, given diameter and surfacearea, and given surface area and length. The earlier investigations/sup 8/ where only regular shapes were determined has been extended to cover those class of bodies which consist of regular shapes followed or preceded by zero slope shapes.

  13. Localization of type II collagen, long form alpha 1(IX) collagen, and short form alpha 1(IX) collagen transcripts in the developing chick notochord and axial skeleton.

    Science.gov (United States)

    Swiderski, R E; Solursh, M

    1992-06-01

    In this study we compare, by in situ hybridization, the spatial and temporal expression patterns of transcripts of avian type II collagen and the long and short forms of the (alpha 1) chain of type IX collagen during the development of the notochord and axial skeleton. We observed type II collagen and short form type IX collagen transcripts in the developing (stage 25-28) nonchondrogenic notochord. Conversely, long form type IX transcripts were not detectable in the notochord or perinotochordal sheath. Interestingly, all three transcripts colocalized in the developing chondrogenic vertebrae of the axial skeleton as well as in the chondrocranium and Meckel's cartilage. The expression of the short form of type IX collagen in these regions was more restricted than that of the long form. This report provides additional support for a complex regulatory pathway of cartilage marker gene expression in chondrogenic vs. nonchondrogenic tissues during avian embryogenesis.

  14. Parametric Equation of Stress Concentration Factor for Circular X-Joints Under Axial Loads

    Institute of Scientific and Technical Information of China (English)

    QU Shu-ying; ZHANG Guo-dong; ZHANG Bao-feng; WANG Xin-jian

    2007-01-01

    In engineering practice,tubular X-joints have been widely used in offshore structures.The fatigue failure of tubular X-joints in offshore engineering is mainly caused by axial tensile stress.In this study,the stress concentration factor distribution along the weld toe in the hot spot stress region for tubular X-joints subject to axial loads have been analyzed by use of finite element method.Through numerical analysis,it has been found that the peak stress concentration factor is located at the saddle position.Thereafter,80 models have been analyzed,and the effect of the geometric parameters of a tubular X-joint on the stress concentration factor has been investigated.Based on the experimental values of the numerical stress concentration factor,a parametric equation to calculate the stress concentration factor of tubular X-joints has been proposed.The accuracy of this equation has been verified against the requirement of the Fatigue Guidance Review Panel,and the proposed equation is found capable of producing reasonably accurate stress concentration factor values for tubular X-joints subject to axial loads.

  15. Electromagnetic form factors of the baryon octet in the perturbative chiral quark model

    CERN Document Server

    Cheedket, S; Gutsche, T; Faessler, A; Pumsa-ard, K; Yan, Y; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics(weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.

  16. Bound Nucleon Form Factors, Quark-Hadron Duality, and Nuclear EMC Effect

    CERN Document Server

    Tsushima, K; Melnitchouk, W; Saitô, K; Thomas, A W

    2003-01-01

    We discuss the electromagnetic form factors, axial form factors, and structure functions of a bound nucleon in the quark-meson coupling (QMC) model. Free space nucleon form factors are calculated using the improved cloudy bag model (ICBM). After describing finite nuclei and nuclear matter in the quark-based QMC model, we compute the in-medium modification of the bound nucleon form factors in the same framework. Finally, limits on the medium modification of the bound nucleon $F_2$ structure function are obtained using the calculated in-medium electromagnetic form factors and local quark-hadron duality.

  17. TUMOR NECROSIS FACTOR-α INHIBITORS IN THE TREATMENT OF AXIAL SPONDYLOARTHRITIS, INCLUDING ANKYLOSING SPONDYLITIS

    Directory of Open Access Journals (Sweden)

    S. A. Lapshina

    2016-01-01

    Full Text Available The paper provides guidelines for the use of tumor necrosis factor-α  (TNF-α inhibitors in the treatment of patients with axial spondyloarthritis  (axSpA, including ankylosing spondylitis. It gives data on the efficacy of TNF-α inhibitors in patients with non-radiographic axSpA. By using international and Russian guidelines, the authors lay down indications for this therapy and criteria for evaluation of its efficiency and safety.

  18. Soliton form factors from lattice simulations

    CERN Document Server

    Rajantie, Arttu

    2010-01-01

    The form factor provides a convenient way to describe properties of topological solitons in the full quantum theory, when semiclassical concepts are not applicable. It is demonstrated that the form factor can be calculated numerically using lattice Monte Carlo simulations. The approach is very general and can be applied to essentially any type of soliton. The technique is illustrated by calculating the kink form factor near the critical point in 1+1-dimensional scalar field theory. As expected from universality arguments, the result agrees with the exactly calculable scaling form factor of the two-dimensional Ising model.

  19. Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea).

    Science.gov (United States)

    Vittori, Miloš; Srot, Vesna; Žagar, Kristina; Bussmann, Birgit; van Aken, Peter A; Čeh, Miran; Štrus, Jasna

    2016-08-01

    Skeletal elements that are exposed to heavy mechanical loads may provide important insights into the evolutionary solutions to mechanical challenges. We analyzed the microscopic architecture of dactylus claws in the woodlice Porcellio scaber and correlated these observations with analyses of the claws' mineral composition with energy dispersive X-ray spectrometry (EDX), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED). Extraordinarily, amorphous calcium phosphate is the predominant mineral in the claw endocuticle. Unlike the strongly calcified exocuticle of the dactylus base, the claw exocuticle is devoid of mineral and is highly brominated. The architecture of the dactylus claw cuticle is drastically different from that of other parts of the exoskeleton. In contrast to the quasi-isotropic structure with chitin-protein fibers oriented in multiple directions, characteristic of the arthropod exoskeleton, the chitin-protein fibers and mineral components in the endocuticle of P. scaber claws are exclusively axially oriented. Taken together, these characteristics suggest that the claw cuticle is highly structurally anisotropic and fracture resistant and can be explained as adaptations to predominant axial loading of the thin, elongated claws. The nanoscale architecture of the isopod claw may inspire technological solutions in the design of durable machine elements subjected to heavy loading and wear.

  20. Surface nanoscale axial photonics: Robust fabrication of high quality factor microresonators

    CERN Document Server

    Sumetsky, M; Dulashko, Y; Fini, J M; Liu, X; Monberg, E M; Taunay, T F

    2011-01-01

    Recently introduced Surface Nanoscale Axial Photonics (SNAP) makes it possible to fabricate high Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate super-accurate fabrication of high Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using the CO2 laser and the UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2 angstroms in variation of the effective fiber radius.

  1. Charge-symmetry-breaking nucleon form factors

    CERN Document Server

    Kubis, Bastian

    2009-01-01

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for Helium-4.

  2. Calculation of Nucleon Electromagnetic Form Factors

    CERN Document Server

    Renner, D B; Dolgov, D S; Eicker, N; Lippert, T; Negele, J W; Pochinsky, A V; Schilling, K; Lippert, Th.

    2002-01-01

    The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.

  3. Separation energy dependence of hole form factors

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, J.; Langevin-Joliot, H. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Vdovin, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    1996-04-01

    Form factors of fragmented hole states are studied within the quasiparticle-phonon model, using the inhomogeneous equation method. A systematic investigation of form factors is performed for neutron and proton hole states in the valence and first inner shells of {sup 208}Pb. Average characteristics are introduced for groups of levels, namely the mean form factors, summed source terms and correction potentials, and their behaviour is presented. The role of the relative values of the interaction radius parameter and binding well radius is discussed in details. (K.A.). 21 refs.; Submitted to Elsevier Science.

  4. Pseudoscalar meson form factors and decays

    CERN Document Server

    Dorokhov, A E

    2011-01-01

    In this communication we discuss few topics related with modern experimental data on the physics of light pseudoscalar mesons. It includes the contribution of the pseudoscalar mesons to the muon anomalous magnetic moment (AMM), $g-2$, the rare decays of light pseudoscalar mesons to lepton pair, the transition form factors of pseudoscalar mesons at large momentum transfer, the pion transversity form factor. Measuring the muon anomalous magnetic moment $g-2$ and the rare decays of light pseudoscalar mesons into lepton pair $P\\rightarrow l^{+}l^{-} $ serve as important test of the standard model. To reduce the theoretical uncertainty in the standard model predictions the data on the transition form factors of light pseudoscalar mesons play significant role. Recently new data on behavior of these form factors at large momentum transfer was supplied by the BABAR collaboration. Within the nonlocal chiral quark model it shown how to describe these data and how the meson distribution amplitude evolves as a function o...

  5. Separation energy dependence of hole form factors

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Vdovin, A. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France)

    1996-08-05

    Form factors of fragmented hole states are studied within the quasiparticle-phonon model, using the inhomogeneous equation method. The validity of this method is successfully checked by comparison with coupled equation solutions in schematic vibrational model cases. A systematic investigation of form factors is performed for neutron and proton hole states in the valence and first inner shells of {sup 208}Pb. Large fluctuations of form factor radii are observed for individual levels superimposed on a general increase with separation energy. Average characteristics are introduced for groups of levels, namely the mean form factors, summed source terms and correction potentials, and their behaviour is presented. The role of the relative values of the interaction radius parameter and binding well radius is discussed in detail. (orig.).

  6. Electromagnetic Form Factors of the Nucleon

    CERN Document Server

    Bijker, R

    1997-01-01

    We reanalyze the world data on the electromagnetic form factors of the nucleon. The calculations are performed in the framework of an algebraic model of the nucleon combined with vector meson dominance.

  7. Make Projects Small Form Factor PCs

    CERN Document Server

    Wessels, Duane

    2006-01-01

    Shoebox sized and smaller, small-form-factor PCs can pack as much computing muscle as a full-sized desktop computer. They consumer less power, have few or no moving parts, and are very quiet. Whether you plan to use one as a standalone PC or want to embed it in your next hacking project, a small-form-factor PC can be a lot of fun to build. Make Projects: Small Form Factor PCs is the only book available that shows you how to build small-form-factor PCs -- from kits and from scratch -- that are more interesting and more personalized than what a full-sized PC can give you. Included in the book

  8. An Algebraic Approach to Form Factors

    OpenAIRE

    Niedermaier, M. R.

    1994-01-01

    An associative $*$-algebra is introduced (containing a $TTR$-algebra as a subalgebra) that implements the form factor axioms, and hence indirectly the Wightman axioms, in the following sense: Each $T$-invariant linear functional over the algebra automatically satisfies all the form factor axioms. It is argued that this answers the question (posed in the functional Bethe ansatz) how to select the dynamically correct representations of the $TTR$-algebra. Applied to the case of integrable QFTs w...

  9. Predictive Factors of Clinical Response of Infliximab Therapy in Active Nonradiographic Axial Spondyloarthritis Patients

    Science.gov (United States)

    Lin, Zhiming; Liao, Zetao; Huang, Jianlin; Ai, Maixing; Pan, Yunfeng; Wu, Henglian; Lu, Jun; Cao, Shuangyan; Li, Li; Wei, Qiujing; Tang, Deshen; Wei, Yanlin; Li, Tianwang; Wu, Yuqiong; Xu, Manlong; Li, Qiuxia; Jin, Ou; Yu, Buyun; Gu, Jieruo

    2015-01-01

    Objectives. To evaluate the efficiency and the predictive factors of clinical response of infliximab in active nonradiographic axial spondyloarthritis patients. Methods. Active nonradiographic patients fulfilling ESSG criteria for SpA but not fulfilling modified New York criteria were included. All patients received infliximab treatment for 24 weeks. The primary endpoint was ASAS20 response at weeks 12 and 24. The abilities of baseline parameters and response at week 2 to predict ASAS20 response at weeks 12 and 24 were assessed using ROC curve and logistic regression analysis, respectively. Results. Of 70 axial SpA patients included, the proportions of patients achieving an ASAS20 response at weeks 2, 6, 12, and 24 were 85.7%, 88.6%, 87.1%, and 84.3%, respectively. Baseline MRI sacroiliitis score (AUC = 0.791; P = 0.005), CRP (AUC = 0.75; P = 0.017), and ASDAS (AUC = 0.778, P = 0.007) significantly predicted ASAS20 response at week 12. However, only ASDAS (AUC = 0.696, P = 0.040) significantly predicted ASAS20 response at week 24. Achievement of ASAS20 response after the first infliximab infusion was a significant predictor of subsequent ASAS20 response at weeks 12 and 24 (wald χ2 = 6.87, P = 0.009, and wald χ2 = 5.171, P = 0.023). Conclusions. Infliximab shows efficiency in active nonradiographic axial spondyloarthritis patients. ASDAS score and first-dose response could help predicting clinical efficacy of infliximab therapy in these patients. PMID:26273654

  10. Measurement of $K_{e3}^{0}$ form factors

    CERN Document Server

    Lai, A; Bevan, A; Dosanjh, R S; Gershon, T J; Hay, B; Kalmus, George Ernest; Lazzeroni, C; Munday, D J; Olaiya, E; Parker, M A; White, T O; Wotton, S A; Barr, G; Bocquet, G; Ceccucci, A; Çuhadar-Dönszelmann, T; Cundy, Donald C; D'Agostini, G; Doble, Niels T; Falaleev, V; Gatignon, L; Gonidec, A; Gorini, B; Govi, G; Grafström, P; Kubischta, Werner; Lacourt, A; Norton, A; Palestini, S; Panzer-Steindel, B; Taureg, H; Velasco, M; Wahl, H; Cheshkov, C; Khristov, P Z; Kekelidze, Vladimir D; Litov, L; Madigozhin, D T; Molokanova, N A; Potrebenikov, Yu K; Stoynev, S; Zinchenko, A I; Knowles, I; Martin, V; Sacco, R; Walker, A; Contalbrigo, M; Dalpiaz, Pietro; Duclos, J; Frabetti, P L; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Bizzeti, A; Calvetti, M; Collazuol, G; Graziani, G; Iacopini, E; Lenti, M; Martelli, F; Veltri, M; Becker, H G; Eppard, K; Eppard, M; Fox, H; Kalter, A; Kleinknecht, K; Koch, U; Köpke, L; Lopes da Silva, P; Marouelli, P; Pellmann, I A; Peters, A; Renk, B; Schmidt, S A; Schönharting, V; Schué, Yu; Wanke, R; Winhart, A; Wittgen, M; Chollet, J C; Fayard, L; Iconomidou-Fayard, L; Ocariz, J; Unal, G; Wingerter-Seez, I; Anzivino, Giuseppina; Cenci, P; Imbergamo, E; Lubrano, P; Mestvirishvili, A; Nappi, A; Pepé, M; Piccini, M; Bertanza, L; Carosi, R; Casali, R; Cerri, C; Cirilli, M; Costantini, F; Fantechi, R; Giudici, Sergio; Mannelli, I; Pierazzini, G M; Sozzi, M; Chèze, J B; Cogan, J; De Beer, M; Debu, P; Formica, A; Granier de Cassagnac, R; Mazzucato, E; Peyaud, B; Turlay, René; Vallage, B; Holder, M; Maier, A; Ziolkowski, M; Arcidiacono, R; Biino, C; Cartiglia, N; Marchetto, F; Menichetti, E; Pastrone, N; Nassalski, J P; Rondio, Ewa; Szleper, M; Wislicki, W; Wronka, S; Dibon, Heinz; Fischer, G; Jeitler, Manfred; Markytan, Manfred; Mikulec, I; Neuhofer, G; Pernicka, M; Taurok, A; Widhalm, L

    2004-01-01

    The semileptonic decay of the neutral K meson KL -> pi+-e-+v (Ke3), was used to study the strangeness-changing weak interaction of hadrons. A sample of 5.6 million reconstructed events recorded by the NA48 experiment was used to measure the Dalitz plot density. Admitting all possible Lorentz-covariant couplings, the form factors for vector (f+(q^2)), scalar (fs) and tensor (fT) interactions were measured. The linear slope of the vector form factor lambda+=0.0284+-0.0007+-0.0013 and values for the ratios fs/f+(0)=0.015+0.007-0.010 +-0.012 and fT/f+(0)=0.05+0.03-0.04 +-0.03 were obtained. The values for fS and for fT are consistent with zero. Assuming only Vector-Axial vector couplings, lambda+ = 0.02888 +- 0.0004 +- 0.0011 and a good fit consistent with pure V-A couplings were obtained. Alternatively a fit to a dipole form factor yields a pole mass of M = 859 +- 18 MeV, consistent with the K*(892) mass.

  11. Magnetic form factors of the trinucleons

    Energy Technology Data Exchange (ETDEWEB)

    Schiavilla, R; Pandharipande, V R; Riska, Dan-Olof

    1989-11-01

    The magnetic form factors of 3H and 3He are calculated with the Monte Carlo method from variational ground-state wave functions obtained for the Argonne and Urbana two- and three-nucleon interactions. The electromagnetic current operator contains one- and two-body terms that are constructed so as to satisfy the continuity equation with the two-nucleon potential in the Hamiltonian. The results obtained with the Argonne two-nucleon interaction are in overall agreement with the empirical values. It appears that the remaining theoretical uncertainty, in the calculation of these form factors from a given interaction model, is dominated by that in the electromagnetic form factors of the nucleon. It is found that the isovector magnetic form factors are rather sensitive to the details of the isospin-dependent tensor force, and they are much better reproduced with the Argonne than the Urbana potential. The isoscalar magnetic form factors appear to be sensitive to the spin-orbit interactions, and are better reproduced with the Urbana potential. The Argonne potential has a stronger τ1∙τ2 tensor force, while the Urbana one has a shorter-range spin-orbit interaction.

  12. Asymptotics of Heavy-Meson Form Factors

    CERN Document Server

    Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias

    1997-01-01

    Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...

  13. Nucleon Form Factors - A Jefferson Lab Perspective

    Energy Technology Data Exchange (ETDEWEB)

    John Arrington, Kees de Jager, Charles F. Perdrisat

    2011-06-01

    The charge and magnetization distributions of the proton and neutron are encoded in their elastic electromagnetic form factors, which can be measured in elastic electron--nucleon scattering. By measuring the form factors, we probe the spatial distribution of the proton charge and magnetization, providing the most direct connection to the spatial distribution of quarks inside the proton. For decades, the form factors were probed through measurements of unpolarized elastic electron scattering, but by the 1980s, progress slowed dramatically due to the intrinsic limitations of the unpolarized measurements. Early measurements at several laboratories demonstrated the feasibility and power of measurements using polarization degrees of freedom to probe the spatial structure of the nucleon. A program of polarization measurements at Jefferson Lab led to a renaissance in the field of study, and significant new insight into the structure of matter.

  14. The Form Factors of the Nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Perdrisat, Charles F. [William and Mary College, JLAB

    2013-11-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with pre-vious unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high- precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model in- dependently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.

  15. Form factors for semileptonic D decays

    CERN Document Server

    Palmer, Teresa

    2013-01-01

    We study the form factors for semileptonic decays of $D$-mesons. That is, we consider the matrix element of the weak left-handed quark current for the transitions $D \\rightarrow P$ and $D \\rightarrow V$, where $P$ and $V$ are light pseudoscalar or vector mesons, respectively. Our motivation to perform the present study of these form factors are future calculations of non-leptonic decay amplitudes. We consider the form factors within a class of chiral quark models. Especially, we study how the Large Energy Effective Theory (LEET) limit works for $D$-meson decays. Compared to previous work we also introduce light vector mesons $V = \\rho, K^*,...$ within chiral quark models. In order to determine some of the parameters in our model, we use existing data and results based on some other methods like lattice calculations, light-cone sum rules, and heavy-light chiral perturbation theory. We also obtain some predictions within our framework.

  16. The form factors of the nucleons

    Science.gov (United States)

    Perdrisat, C. F.

    2013-11-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double-polarization experiments, in comparison with with previous unpolarized cross section data. Here we will review the experimental data base in view of the new results for the proton and the neutron, obtained at MIT-Bates, JLab and MAMI. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed. In particular, the possibility that the proton is non-spherical in its ground state, and that the transverse charge density are model independently defined in the infinite momentum frame. Likewise, flavor decomposition of the nucleon form factors into dressed u and d quark form factors, may give information about the quark-diquark structure of the nucleon. The current proton radius "crisis" will also be discussed.

  17. Chiral extrapolation of nucleon magnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    P. Wang; D. Leinweber; A. W. Thomas; R.Young

    2007-04-01

    The extrapolation of nucleon magnetic form factors calculated within lattice QCD is investigated within a framework based upon heavy baryon chiral effective-field theory. All one-loop graphs are considered at arbitrary momentum transfer and all octet and decuplet baryons are included in the intermediate states. Finite range regularization is applied to improve the convergence in the quark-mass expansion. At each value of the momentum transfer (Q{sup 2}), a separate extrapolation to the physical pion mass is carried out as a function of m{sub {pi}} alone. Because of the large values of Q{sup 2} involved, the role of the pion form factor in the standard pion-loop integrals is also investigated. The resulting values of the form factors at the physical pion mass are compared with experimental data as a function of Q{sup 2} and demonstrate the utility and accuracy of the chiral extrapolation methods presented herein.

  18. Color-kinematic duality for form factors

    Energy Technology Data Exchange (ETDEWEB)

    Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.

  19. Form factors for $B \\to \\pi l\

    CERN Document Server

    Riazuddin, M; Gilani, A H S; Gilani, Amjad H S

    2000-01-01

    The form factors for the $B-->\\pi$ transition are evaluated in the entire momentum transfer range by using the constraints obtained in the framework combining the heavy quark expansion and chiral symmetry for light quarks and the quark model. In particular, we calculate the valence quark contributions and show that it together with the equal time commutator contribution simulate a B-meson pole q^2-dependence of form factors in addition to the usual vector meson B^{*}-pole diagram for $B --> \\pi l\

  20. Electromagnetic proton form factors: perspectives for PANDA

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson Egle

    2014-03-01

    Full Text Available The PANDA collaboration studies fundamental aspects of the strong interaction in the transition region between non-perturbative and perturbative QCD, investigating charmonium spectroscopy, hybrids and glueballs, hypernuclei, light and heavy meson production with antiproton beams. In this contribution we focus on leptonic final channels which give access to nucleon electromagnetic form factors. The expected precision on the electric and magnetic form factors of the proton in the time-like region and the radiative corrections to be applied to the data are discussed.

  1. $K_{l3}$ transition form factors

    CERN Document Server

    Ji, C R; Ji, Chueng-Ryong; Maris, Pieter

    2001-01-01

    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson bound state amplitudes and the dressed quark-W vertex in a manifestly covariant calculation of the K_{l3} transition form factors and decay width in impulse approximation. With model gluon parameters previously fixed by the chiral condensate, the pion mass and decay constant, and the kaon mass, our results for the K_{l3} form factors and the kaon semileptonic decay width are in good agreement with the experimental data.

  2. Wilson Loop Form Factors: A New Duality

    OpenAIRE

    Chicherin, Dmitry; Heslop, Paul; Korchemsky, Gregory P.; Sokatchev, Emery

    2016-01-01

    We find a new duality for form factors of lightlike Wilson loops in planar $\\mathcal N=4$ super-Yang-Mills theory. The duality maps a form factor involving an $n$-sided lightlike polygonal super-Wilson loop together with $m$ external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality....

  3. Hyperfine splitting in hydrogen with form factors

    CERN Document Server

    Daza, F Garcia; Nowakowski, M

    2010-01-01

    Proton structure corrections to the hyperfine splittings in hydrogen are evaluated using the Breit potential with electromagnetic form factors. In contrast to other methods, several new features emerge: the Breit potential with $q^2$-dependent form factors is just an extension of the standard Breit equation which gives the hyperfine Hamiltonian. Order $\\alpha^5$ corrections are obtained from a one-photon exchange amplitude and time-independent perturbation theory. Structure corrections to $D_{21} = 8 E^{2S}_{hfs} - E^{1S}_{hfs}$ start at order $\\alpha^6$. QED corrections are comparable to structure corrections which must be evaluated ab initio.

  4. Nucleon electromagnetic form factors with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-10-15

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  5. Baryon form factors in chiral perturbation theory

    CERN Document Server

    Kubis, B; Kubis, Bastian; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the \\Sigma^- charge radius and the \\Lambda-\\Sigma^0 transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.

  6. Electromagnetic Form Factor of Charged Scalar Meson

    Institute of Scientific and Technical Information of China (English)

    LI Heng-Mei; CHEN Ning; WANG Zhi-Gang; WAN Shao-Long

    2007-01-01

    Wavefunctions and the electromagnetic form factor of charged scalar mesons are studied with the vector-vectortype flat-bottom potential model under the framework of the spinor spinor Bethe Salpeter equation. The obtained results are in agreement with other theories.

  7. Chiral analysis of baryon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Gail, T.A.

    2007-11-08

    This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)

  8. Electromagnetic Transition form Factor of Nucleon Resonances

    Science.gov (United States)

    Sato, Toru

    2016-10-01

    A dynamical coupled channel model for electron and neutrino induced meson production reactions is developed. The model is an extension of our previous reaction model to describe reactions at finite Q^2. The electromagnetic transition form factors of the first (3/2^+,3/2) and (3/2^-,1/2) resonances extracted from partial wave amplitude are discussed.

  9. From form factors to generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus

    2013-06-15

    I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.

  10. Nucleon and Elastic and Transition Form Factors

    Science.gov (United States)

    Segovia, Jorge; Cloët, Ian C.; Roberts, Craig D.; Schmidt, Sebastian M.

    2014-12-01

    We present a unified study of nucleon and elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector vector contact-interaction. The comparison emphasises that experiments are sensitive to the momentum dependence of the running couplings and masses in the strong interaction sector of the Standard Model and highlights that the key to describing hadron properties is a veracious expression of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: possesses a zero at Q 2 = 9.5 GeV2; any change in the interaction which shifts a zero in the proton ratio to larger Q 2 relocates a zero in to smaller Q 2; there is likely a value of momentum transfer above which ; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the -baryon, we find that, inter alia: the electric monopole form factor exhibits a zero; the electric quadrupole form factor is negative, large in magnitude, and sensitive to the nature and strength of correlations in the Faddeev amplitude; and the magnetic octupole form factor is negative so long as rest-frame P- and D-wave correlations are included. In connection with the transition, the momentum-dependence of the magnetic transition form factor, , matches that of once the momentum transfer is high enough to pierce the meson-cloud; and the electric quadrupole ratio is a keen measure of diquark and orbital angular momentum correlations, the zero in which is obscured by meson-cloud effects on the domain currently accessible to experiment. Importantly, within each framework, identical propagators and vertices are sufficient to describe all properties discussed herein. Our

  11. Resistance of full veneer metal crowns with different forms of axial grooves

    Science.gov (United States)

    Hidayat, A. S.; Masulili, C.; Indrasari, M.

    2017-08-01

    Dental crowns or bridges can occasionally come loose or separate from the tooth during chewing, particularly when they are situated on small, short, and conical teeth. The main cause of this separation is a lack of retention and resistance to the tooth. There are several methods available to increase the retention and resistance of the crown during both inlay and onlay preparation, including parallelism, groove preparation, crown build-up, and surface roughness. The aim of this study was to determine the differences in resistance of full veneer metal crowns with various forms of groove preparation. The study involved the compressive strength testing of a total of 24 specimens, namely six specimens without groove preparation, six specimens with box-shaped grooves, six specimens with V-shaped grooves, and six specimens with half round grooves. The mean values of the metal crowns that separated from the teeth during testing were 27.97 ± 1.08 kgF for the crowns with box-shaped grooves, 6.15 ± 0.22 kgF for those with V-shaped grooves, 1.77 ± 0.12 kgF for those with half round grooves, and 0.95 ± 0.13 kgF for those without grooves. This study found that the resistance is best in crowns with box-shaped grooves, followed by those with V-shaped grooves, half round grooves, and those without groove. When clinicians are working on short and conical molar teeth, it is therefore recommended that box-shaped grooves are used to increase the resistance of the crown.

  12. Pion and Kaon Electromagnetic Form Factors

    CERN Document Server

    Bijnens, J; Bijnens, Johan; Talavera, Pere

    2002-01-01

    We study the electromagnetic form factor of the pion and kaons at low-energies with the use of Chiral Perturbation Theory. The analysis is performed within the three flavour framework and at next-to-next-to-leading order. We explain carefully all the relevant consistency checks on the expressions, present full analytical results for the pion form factor and describe all the assumptions in the analysis. From the phenomenological point of view we make use of our expression and the available data to obtain the charge radius of the pion obtaining $_V^\\pi=(0.452+-0.013) fm^2$, as well as the low-energy constant $L_9^r(m_\\rho)= (5.93+-0.43)10^{-3}$. We also obtain experimental values for 3 combinations of order $p^6$ constants.

  13. Baryon transition form factors at the pole

    Science.gov (United States)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  14. Baryon transition form factors at the pole

    CERN Document Server

    Tiator, L; Workman, R L; Hadžimehmedović, M; Osmanović, H; Omerović, R; Stahov, J; Švarc, A

    2016-01-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  15. Baryon transition form factors at the pole

    Energy Technology Data Exchange (ETDEWEB)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  16. CALCULATION OF KAON ELECTROMAGNETIC FORM FACTOR

    Institute of Scientific and Technical Information of China (English)

    WANG ZHI-GANG; WAN SHAO-LONG; WANG KE-LIN

    2001-01-01

    The kaon meson electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson and Bethe-Salpeter formulation in simplified impulse approximation (dressed vertex) with modified fiat-bottom potential,which is a combination of the flat-bottom potential taking into consideration the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All the numerical results give a good fit to experimental values.

  17. Elastic form factors at higher CEBAF energies

    Energy Technology Data Exchange (ETDEWEB)

    Petratos, G.G. [Kent State Univ., OH (United States)

    1994-04-01

    The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.

  18. On form factors and Macdonald polynomials

    CERN Document Server

    Lashkevich, Michael

    2013-01-01

    We are developing the algebraic construction for form factors of local operators in the sinh-Gordon theory proposed in [B.Feigin, M.Lashkeivch, 2008]. We show that the operators corresponding to the null vectors in this construction are given by the degenerate Macdonald polynomials with rectangular partitions and the parameters $t=-q$ on the unit circle. We obtain an integral representation for the null vectors and discuss its simple applications.

  19. Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    CERN Document Server

    Tsushima, K; Saitô, K; Kim, Hungchong

    2003-01-01

    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors associated with the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive $^{12}$C($nu_mu,mu^-$)$X$ differential and total cross sections, which have been measured by the LSND collaboration at Los Alamos, using a relativistic Fermi gas model with the calculated bound nucleon form factors. It is shown that the bound nucleon form factors reduce the total cross section by about 8% relative to that calculated with the free nucleon form factors, where most of the conventional calculations overestimate the total cross section data by about 30% to 100%.

  20. Towards a four-loop form factor

    CERN Document Server

    Boels, Rutger; Yang, Gang

    2016-01-01

    The four-loop, two-point form factor contains the first non-planar correction to the lightlike cusp anomalous dimension. This anomalous dimension is a universal function which appears in many applications. Its planar part in N = 4 SYM is known, in principle, exactly from AdS/CFT and integrability while its non-planar part has been conjectured to vanish. The integrand of the form factor of the stress-tensor multiplet in N = 4 SYM including the non-planar part was obtained in previous work. We parametrise the difficulty of integrating this integrand. We have obtained a basis of master integrals for all integrals in the four-loop, two-point class in two ways. First, we computed an IBP reduction of the integrand of the N = 4 form factor using massive computer algebra (Reduze). Second, we computed a list of master integrals based on methods of the Mint package, suitably extended using Macaulay2 / Singular. The master integrals obtained in both ways are consistent with some minor exceptions. The second method indic...

  1. Higgs form factors in Associated Production

    CERN Document Server

    Isidori, Gino; CERN

    2014-01-01

    We further develop a form factor formalism characterizing anomalous interactions of the Higgs-like boson (h) to massive electroweak vector bosons (V) and generic bilinear fermion states (F). Employing this approach, we examine the sensitivity of pp -> F ->Vh associated production to physics beyond the Standard Model, and compare it to the corresponding sensitivity of h -> V F decays. We discuss how determining the Vh invariant-mass distribution in associated production at LHC is a key ingredient for model-independent determinations of h V F interactions. We also provide a general discussion about the power counting of the form factor's momentum dependence in a generic effective field theory approach, analyzing in particular how effective theories based on a linear and non-linear realization of the SU(2)_L x U(1)_Y gauge symmetry map into the form factor formalism. We point out how measurements of the differential spectra characterizing h -> V F decays and pp -> F -> Vh associated production could be the leadi...

  2. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    Science.gov (United States)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  3. Nucleon Structure and Hyperon Form Factors from Lattice QCD.

    Energy Technology Data Exchange (ETDEWEB)

    Lin,H.W.

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).

  4. Nucleon Structure and hyperon form factors from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Wen

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).

  5. Axially chiral macrocyclic E-alkene bearing bisazole component formed by sequential C-H homocoupling and ring-closing metathesis.

    Science.gov (United States)

    Nishio, Shotaro; Somete, Takashi; Sugie, Atsushi; Kobayashi, Tohru; Yaita, Tsuyoshi; Mori, Atsunori

    2012-05-18

    Clipping by ring-closing metathesis freezes rotation of a C-C bond to result in forming axial chirality. Treatment of bisbenzimidazole bearing an N-(3-butenyl) substituent with a Grubbs' catalyst undergoes ring-closing metathesis, in which the stereochemistry of the thus formed olefin was exclusively E-form. Analysis by HPLC with a chiral stationary column confirmed clear baseline separation of each enantiomer.

  6. Survey of nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Perdrisat, Charles F. [William and Mary College; Punjabi, Vina A. [Norfolk State U.

    2011-09-20

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double polarization experiments, in compar- ison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at MIT-Bates, MAMI, and JLab. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed.

  7. Neutron electric form factor via recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  8. TCP transcription factors: architectures of plant form.

    Science.gov (United States)

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  9. Measurements of hadron form factors at BESIII

    Science.gov (United States)

    Morales, Cristina Morales

    2016-05-01

    BEPCII is a symmetric e+e--collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct e+e--annihilation and from initial state radiation processes. In this paper, results on e+e- → p p ¯ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on e+e- → Λ Λ ¯ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from e+e- → π+π- using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also explained.

  10. Measurements of Hadron Form Factors at BESIII

    CERN Document Server

    Morales, Cristina Morales

    2016-01-01

    BEPCII is a symmetric $e^+e^-$-collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure hadron form factors both from direct $e^+e^-$-annihilation and from initial state radiation processes. In this paper, results on $e^+e^-\\rightarrow p\\bar{p}$ based on data collected by BESIII in 2011 and 2012 are presented. We also present preliminary results on $e^+e^-\\rightarrow \\Lambda \\bar{\\Lambda}$ based on the same data samples at 4 center-of-mass energies. BESIII results obtained from $e^+e^-\\rightarrow \\pi^+\\pi^-$ using the initial state radiation technique at the center-of-mass energy of 3.773 GeV are also summarized. Finally, expectations on the measurement of baryon electromagnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also reported.

  11. Multivariate Analysis of Factors Associated With Axial Symptoms in Unilateral Expansive Open-Door Cervical Laminoplasty With Miniplate Fixation.

    Science.gov (United States)

    Chen, Hua; Liu, Hao; Deng, Yuxiao; Gong, Quan; Li, Tao; Song, Yueming

    2016-01-01

    Retrospective case-control study.Unilateral expansive open-door cervical laminoplasty with miniplate fixation is an efficient and increasing popular surgery for multilevel cervical spondylotic myelopathy. Axial symptoms are the most frequent complaints after cervical laminoplasty. But the mechanisms have not been fully clarified yet.The objective of this study is to compare the clinical and radiologic data between patients with or without axial symptoms and to investigate the factors associated with axial symptoms by multivariate analysis in cervical laminoplasty with miniplate fixation.A total of 129 patients who underwent cervical laminoplasty with miniplate fixation were comprised from August 2009 to March 2014. Patients were grouped according to whether they suffered from postoperative axial symptoms (PA) or not (NA). The clinical data including gender, age, duration of symptoms, diagnosis type, medical comorbidity, operative level, blood loss, operative time, pre- and post-Japanese Orthopedic Association (JOA) score, JOA recovery rates, and other complications were recorded. The radiologic data including cervical canal diameter, C2-7 Cobb angle, cervical range of motion (ROM), cross-sectional area, open angle, hinge union, and facet joint destroyed would be measured according to X-ray plain and CT scan images. The univariate analysis and multivariate logistic regression analysis were performed.There were 39 patients in PA group and 90 patients in NA group. Both groups gained significant JOA improvement postoperatively (P  0.05). The multivariate analysis showed that the negative change of cervical ROM (OR = 1.062, P = 0.047) and facet joints destroyed (OR = 0.661, P = 0.024) were related to axial symptoms.The change of cervical ROM and facet joints destroyed by miniscrews might be associated with axial symptoms after cervical laminoplasty with miniplate fixation. Cervical spine surgeons should carefully operate to decrease the injury of

  12. Elastic and Transition Form Factors in DSEs

    CERN Document Server

    Segovia, Jorge

    2016-01-01

    A symmetry preserving framework for the study of continuum Quantum Chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking (DCSB), and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector$\\,\\otimes\\,$vector contact-interaction.

  13. Holography, chiral Lagrangian and form factor relations

    CERN Document Server

    Zuo, Fen

    2013-01-01

    We perform a detailed study of mesonic properties in a class of holographic models of QCD, which is described by the Yang-Mills plus Chern-Simons action. By decomposing the 5 dimensional gauge field into resonances and integrating out the massive ones, we reproduce the Chiral Perturbative Theory Lagrangian up to ${\\cal O}(p^6)$ and obtain all the relevant low energy constants (LECs). The numerical predictions of the LECs show minor model dependence, and agree reasonably with the determinations from other approaches. Interestingly, various model-independent relations appear among them. Some of these relations are found to be the large-distance limits of universal relations between form factors of the anomalous and even-parity sectors of QCD.

  14. Elastic and Transition Form Factors in DSEs

    Science.gov (United States)

    Segovia, Jorge

    2016-06-01

    A symmetry preserving framework for the study of continuum quantum chromodynamics (QCD) is obtained from a truncated solution of the QCD equations of motion or QCD's Dyson-Schwinger equations (DSEs). A nonperturbative solution of the DSEs enables the study of, e.g., hadrons as composites of dressed-quarks and dressed-gluons, the phenomena of confinement and dynamical chiral symmetry breaking, and therefrom an articulation of any connection between them. It is within this context that we present a unified study of Nucleon, Delta and Roper elastic and transition form factors, and compare predictions made using a framework built upon a Faddeev equation kernel and interaction vertices that possess QCD-like momentum dependence with results obtained using a symmetry-preserving treatment of a vector ⊗ vector contact-interaction.

  15. Form Factors of Few-Body Systems: Point Form Versus Front Form

    CERN Document Server

    Gómez-Rocha, Maria; Schweiger, Wolfgang

    2011-01-01

    We present a relativistic point-form approach for the calculation of electroweak form factors of few-body bound states that leads to results which resemble those obtained within the covariant light-front formalism of Carbonell et al. Our starting points are the physical processes in which such form factors are measured, i.e. electron scattering off the bound state, or the semileptonic weak decay of the bound state. These processes are treated by means of a coupled-channel framework for a Bakamjian-Thomas type mass operator. A current with the correct covariance properties is then derived from the pertinent leading-order electroweak scattering or decay amplitude. As it turns out, the electromagnetic current is affected by unphysical contributions which can be traced back to wrong cluster properties inherent in the Bakamjian-Thomas construction. These spurious contributions, however, can be separated uniquely, as in the covariant light-front approach. In this way we end up with form factors which agree with tho...

  16. A remark on "Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity"

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Lottin, Jacques

    2002-01-01

    For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out with a L......For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out...

  17. A remark on "Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity"

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Lottin, Jacques

    2002-01-01

    For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out with a L......For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out...

  18. Axial variation in the three-spine stickleback: genetic and environmental factors.

    Science.gov (United States)

    Ahn, D G; Gibson, G

    1999-01-01

    Subtle differences in the pattern of arrangement of types of vertebrae and associated median skeletal structures between a benthic and limnetic species pair of three-spine stickleback from Paxton Lake, British Columbia, are typical of those found throughout the range of the Gasterosteus aculeatus species complex. We established laboratory colonies from just three individuals of each species, and studied the effect of three generations of inbreeding on axial morphology. There was sufficient divergence in the location of individual elements between families to regenerate close to the entire range of axial diversity seen in threespine sticklebacks worldwide. Analysis of the patterns of variance and covariance between the axial locations of elements provides evidence for the action of both meristic and homeotic processes in the generation of morphological divergence within each species. Hybrid sticklebacks produced by the cross of limnetic and benthic parents tend to have intermediate morphologies, with dominance of either parental type evident for some elements. Effects of temperature and salinity were found to be small in direct comparison with between-family effects, and varied according to genetic background. These results demonstrate that considerable genetic variation for axial morphology is maintained in natural populations of three-spine stickleback, and that differences between populations may be brought about rapidly by changes in frequency of alleles that have coordinated effects along the body axis.

  19. Pion transition form factor in k_T factorization

    CERN Document Server

    Li, Hsiang-nan

    2009-01-01

    It has been pointed out that the recent BaBar data on the pi gamma^* -> gamma transition form factor F_{pi gamma}(Q^2) at low (high) momentum transfer squared Q^2 indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k_T factorization theorem: the increase of the measured Q^2F_{pi gamma}(Q^2) for Q^2 > 10 GeV^2 is explained by convoluting a k_T dependent hard kernel with a flat pion distribution amplitude, k_T being a parton transverse momentum. The low Q^2 data are accommodated by including the resummation of alpha_s ln^2x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q^2.

  20. Pion transition form factor in k{sub T} factorization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hsiang-nan [Academica Sinica, Taipei, Taiwan (China). Inst. of Physics; Tsing-Hua Univ., Hsinchu, Taiwan (China). Dept. of Phyiscs; National Cheng-Kung Univ., Tainan, Taiwan (China). Dept. of Physics; National Cheng-Chi Univ, Taipei, Taiwan (China). Inst. of Applied Physics; Mishima, Satoshi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-07-15

    It has been pointed out that the recent BaBar data on the {pi}{gamma}{sup *} {yields} {gamma} transition form factor F{sub {pi}}{sub {gamma}}(Q{sup 2}) at low (high) momentum transfer squared Q{sup 2} indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k{sub T} factorization theorem: the increase of the measured Q{sup 2}FF{sub {pi}}{sub {gamma}}(Q{sup 2}) for Q{sup 2} > 10 GeV{sup 2} is explained by convoluting a k{sub T} dependent hard kernel with a flat pion distribution amplitude, k{sub T} being a parton transverse momentum. The low Q{sup 2} data are accommodated by including the resummation of {alpha}{sub s} ln{sup 2}x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q{sup 2}. (orig.)

  1. Gravitational form factors and nucleon spin structure

    Science.gov (United States)

    Teryaev, O. V.

    2016-10-01

    Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell-Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.

  2. Impact of obesity on the response to tumor necrosis factor inhibitors in axial spondyloarthritis.

    Science.gov (United States)

    Micheroli, Raphael; Hebeisen, Monika; Wildi, Lukas M; Exer, Pascale; Tamborrini, Giorgio; Bernhard, Jürg; Möller, Burkhard; Zufferey, Pascal; Nissen, Michael J; Scherer, Almut; Ciurea, Adrian

    2017-07-19

    Few studies have investigated the impact of obesity on the response to tumor necrosis factor inhibitors (TNFi) in patients with axial spondyloarthritis (axSpA). The aim of our study was to investigate the impact of different body mass index (BMI) categories on TNFi response in a large cohort of patients with axSpA. Patients with axSpA within the Swiss Clinical Quality Management (SCQM) program were included in the current study if they fulfilled the Assessment in Spondyloarthritis International Society (ASAS) criteria for axSpA, started a first TNFi after recruitment, and had available BMI data as well as a baseline and follow-up visit at 1 year (±6 months). Patients were categorized according to BMI: normal (BMI 18.5 to 30). We evaluated the proportion of patients achieving the 40% improvement in ASAS criteria (ASAS40), as well as Ankylosing Spondylitis Disease Activity Score (ASDAS) improvement and status scores at 1 year. Patients having discontinued the TNFi were considered nonresponders. We controlled for age, sex, HLA-B27, axSpA type, BASDAI, BASMI, elevated C-reactive protein (CRP), current smoking, enthesitis, physical exercise, and co-medication with disease-modifying antirheumatic drugs, as well as with nonsteroidal anti-inflammatory drugs in multiple adjusted logistic regression analyses. A total of 624 axSpA patients starting a first TNFi were considered in the current study (332 patients of normal weight, 204 patients with overweight, and 88 obese patients). Obese individuals were older, had higher BASDAI levels, and had a more important impairment of physical function in comparison to patients of normal weight, while ASDAS and CRP levels were comparable between the three BMI groups. An ASAS40 response was reached by 44%, 34%, and 29% of patients of normal weight, overweight, and obesity, respectively (overall p = 0.02). Significantly lower odds ratios (ORs) for achieving ASAS40 response were found in adjusted analyses in obese patients versus

  3. Technique for high axial shielding factor performance of large-scale, thin, open-ended, cylindrical Metglas magnetic shields

    CERN Document Server

    Malkowski, S; Hona, B; Mattie, C; Woods, D; Yan, H; Plaster, B; 10.1063/1.3605665

    2011-01-01

    Metglas 2705M is a low-cost commercially-available, high-permeability Cobalt-based magnetic alloy, provided as a 5.08-cm wide and 20.3-$\\mu$m thick ribbon foil. We present an optimized construction technique for single-shell, large-scale (human-size), thin, open-ended cylindrical Metglas magnetic shields. The measured DC axial and transverse magnetic shielding factors of our 0.61-m diameter and 1.83-m long shields in the Earth's magnetic field were 267 and 1500, for material thicknesses of only 122 $\\mu$m (i.e., 6 foil layers). The axial shielding performance of our single-shell Metglas magnetic shields, obtained without the use of magnetic shaking techniques, is comparable to the performance of significantly thicker, multiple-shell, open-ended Metglas magnetic shields in comparable-magnitude, low-frequency applied external fields reported previously in the literature.

  4. Proton Form Factor Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Charles Perdrisat; Vina Punjabi

    2004-09-27

    In two experiments at Jefferson Lab in Hall A, the first one in 1998 and the second in 2000, the ratio of the electromagnetic form factors of the proton was obtained by measuring P{sub t} and P{sub ell}, the transverse and longitudinal recoil proton polarization components, respectively, in {rvec e}p {yields} e{rvec p}; the ratio G{sub E{sub p}}/G{sub M{sub p}} is proportional to P{sub t}/P{sub {ell}}. Simultaneous measurement of P{sub t} and P{sub {ell}} provides good control of the systematic uncertainty. The first measurement of G{sub E{sub p}}/G{sub M{sub p}} ratio was made to Q{sup 2} = 3.5 GeV{sup 2} and the second measurement to Q{sup 2} = 5.6 GeV{sup 2}. The results from these two experiments indicate that the ratio scales like 1/Q{sup 2}, in stark contrast with cross section data analyzed by the Rosenbluth separation method which gives a constant value for this ratio. The incompatibility of the recoil polarization results with most of the Rosenbluth separation results appears now well established above Q{sup 2} of about 3 GeV{sup 2}. The consensus at the present time is that the interference of the two-photon exchange with the Born term, which had been deemed negligible until recently, might explain the discrepancy between the results of the two techniques; the possibility that the discrepancy is due to incomplete radiative correction has also been recently discussed.

  5. Effects of an electromagnetic quark form factor on meson properties

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, B. E-mail: silvestre@isn.in2p3.fr

    2002-12-30

    A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton-antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data.

  6. The pion form factor from analyticity and unitarity

    Indian Academy of Sciences (India)

    B Ananthanarayan; Irinel Caprini; I Sentitemsu Imsong

    2012-11-01

    Analyticity and unitarity techniques are employed to estimate Taylor coefficients of the pion electromagnetic form factor at = 0 by exploiting the recently evaluated two-pion contribution to the muon ( − 2) and the phase of the pion electromagnetic form factor in the elastic region, known from scattering by Fermi–Watson theorem and the values of the form factor at several points in the space-like region. Regions in the complex -plane are isolated where the form factor cannot have zeros.

  7. MesonNet Workshop on Meson Transition Form Factors

    CERN Document Server

    Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S

    2012-01-01

    The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.

  8. Pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and axial spondyloarthritis: efficacy of anti-tumor necrosis factor α therapy.

    Science.gov (United States)

    Bruzzese, Vincenzo

    2012-12-01

    We report the case of a patient with a simultaneous presence of pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and axial spondyloarthritis. This condition differs from both the PASH (pyoderma gangrenosum, acne, and suppurative hidradenitis) syndrome, in which arthritis is absent, and the PAPA (pyogenic arthritis, pyoderma gangrenosum, and acne) syndrome, in which suppurative hidradenitis is lacking. Our patient failed to respond to etanercept therapy, whereas all dermatologic and rheumatic manifestations completely regressed following infliximab infusion. We therefore propose that simultaneous presence of pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and seronegative spondyloarthritis might represent a distinct syndrome that could be termed the PASS syndrome. Tumor necrosis factor α therapies seem to play selective roles.

  9. Measurement of the Hadronic Form Factors in Ds to phi e nu Decays

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, J

    2006-09-26

    Based on the measured four-dimensional rate for D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e} decays, they have determined the ratios of the three hadronic form factors, {tau}{sub V} = V(0)/A{sub 1}(0) = 1.636 {+-} 0.067 {+-} 0.038 and {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.705 {+-} 0.056 {+-} 0.029, using a simple pole ansatz for the q{sup 2} dependence, with fixed values of the pole masses for both the vector and axial form factors. By a separate fit to the same data, they have also extracted the pole mass for the axial form factors, m{sub A}: {tau}{sub V} = V(0)/A{sub 1}(0) = 1.633 {+-} 0.081 {+-} 0.068, {tau}{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.711 {+-} 0.111 {+-} 0.096 and m{sub A} = (2.53{sub -0.35}{sup +0.54} {+-} 0.54)GeV/c{sup 2}.

  10. Nucleon Form Factors in the Space- and Timelike Regions

    CERN Document Server

    Hammer, H W

    2001-01-01

    Dispersion relations provide a powerful tool to describe the electromagnetic form factors of the nucleon both in the spacelike and timelike regions with constraints from unitarity and perturbative QCD. We give a brief introduction into dispersion theory for nucleon form factors and present results from a recent form factor analysis. Particular emphasis is given to the form factors in the timelike region. Furthermore, some recent results for the spacelike form factors at low momentum transfer from a ChPT calculation by Kubis and Meissner are discussed.

  11. Chou-Yang model and PHI form factor

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-e-Aleem; Saleem, M.; Rafique, M.

    1988-03-01

    By using the deduced differential cross-section data for PHIp elastic scattering at 175 GeV/c in the Chou-Yang model, the PHI form factor has been computed and parametrized. Then in conjunction with the proton form factor this form factor is used in the pristine Chou-Yang model to obtain differential cross-section data at Fermilab energies. The theoretical results agree with the experimental measurements, endorsing the conjecture that the hadronic form factor of neutral particle is proportional to its magnetic form factor.

  12. Nucleon form factors and couplings with $N_\\mathrm{f} = 2 + 1$ Wilson fermions

    CERN Document Server

    Djukanovic, Dalibor; von Hippel, Georg; Junnarkar, Parikshit; Meyer, Harvey B; Wittig, Hartmut

    2016-01-01

    We present updated results on the nucleon electromagnetic form factors and axial coupling calculated using CLS ensembles with $N_\\mathrm{f}=2+1$ dynamical flavours of Wilson fermions. The measurements are performed on large, fine lattices with a pseudoscalar mass reaching down to 200 MeV. The truncated-solver method is employed to reduce the variance of the measurements. Estimation of the matrix elements is challenging due to large contamination from excited states and further investigation is necessary to bring these effects under control.

  13. Axial-vector dominance predictions in quasielastic neutrino-nucleus scattering

    CERN Document Server

    Amaro, J E

    2015-01-01

    We use the minimum meson-dominance ansatz compatible with low- and high energy constrains to model the nucleon axial form factor. The parameters of the resulting axial form factor are the masses and widths of the two axial mesons, incorporated as a product of monopoles. By applying the half width rule in a Monte Carlo simulation a distribution of theoretical predictions can be generated for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the $(\

  14. Nucleon form factors and static properties of baryons in a quark model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N. (Department of Physics, Utkal University, Bhubaneswar 751004, Orissa, India (IN) ); Jena, S.N. (Department of Physics, Berhampur University, Berhampur 760007, Orissa, India (IN)); Rath, D.P. (Department of Physics, Aska Science College, Aska 761110, Orissa, India (IN))

    1990-03-01

    The nucleon electromagnetic form factors {ital G}{sub {ital E}}{sup {ital p}}(q{sup 2}), {ital G}{sub {ital M}}{sup {ital p}}(q{sup 2}), {ital G}{sub {ital M}}{sup {ital n}}(q{sup 2}), and the axial-vector form factor {ital G}{sub {ital A}}(q{sup 2}) are calculated in a simple independent-quark model based on the Dirac equation with a logarithmic confining potential of the form {ital V}{prime}({ital r})=(1+{gamma}{sup 0})a ln({ital r}/{ital b}). The respective rms radii associated with {ital G}{sub {ital E}}{sup {ital p}}(q{sup 2}) and {ital G}{sub {ital A}}(q{sup 2}) come out as ({l angle}{ital r}{sup 2}{r angle}{sub E}{sup P}){sup 1/2}=0.938 fm and {l angle}{ital r}{sub {ital A}}{sup 2}{r angle}{sup 1/2}=0.953 fm. The magnetic moments, charge radii, and axial-vector coupling-constant ratios for octet baryons are also calculated with the appropriate center-of-mass correction. The results so obtained are quite comparable to experimental data.

  15. Axial myopathy

    DEFF Research Database (Denmark)

    Witting, Nanna; Andersen, Linda K; Vissing, John

    2016-01-01

    musculature involvement in the majority of myopathies in which paraspinal musculature was examined. Even in diseases named after a certain pattern of non-axial muscle affection, such as facioscapulohumeral and limb girdle muscular dystrophies, affection of the axial musculature was often severe and early...

  16. THE FACTORS FORMING QUALITY OF GRANULATED SUGAR

    Directory of Open Access Journals (Sweden)

    N. G. Kulneva

    2015-01-01

    Full Text Available Sugar, with good taste and high caloric, is one of the most popular human food. Consumers sugar must be sure that the sugar under normal conditions of use is of high quality and is not harmful to the health of the product. One reason for the decline in the quality of sugar is bacterial contamination. This is because the sugar industry products are good targets for the development of different groups of microorganisms, e.g., Bacillus subtilis, Clostridium perfringes, Leuconostoc dextranicum, Torula alba, Pseudomonas fluorescens, Sarcina lutea and others. These organisms are affected with beets, and then with sugar beet chips and diffusion juice fall into the processing line of sugar production. Their number in the diffusion juice varies and depends on many facto rs such as the quality of raw materials, the quality of cleaning beet root colonization of transporter-washing and the supply of water to the diffusion process, the temperature of the diffusion and others. In the diffusion unit has the most favorable conditions for the development of micro-organisms. Some of them, especially resistant bacteria and thermophilic bacteria or their spores, forming a capsule which protects against external influences occur in the final product sugar. When injected into the fresh crop of product (juice, syrup, they begin to multiply rapidly, causing difficulties in the process. The higher seeding beet microorganisms, the more they decompose and emit sucrose metabolism byproducts. To reduce the negative impact of microbiological and reduce losses from decomposition of sucrose conducted research on the possibility of using chlorine-containing substances in the sugar industry. It was established experimentally that the investigated chlorinated drug has bacteriostatic action and can be recommended for use in sugar beet production.

  17. Progress in the Calculation of Nucleon Transition form Factors

    Science.gov (United States)

    Eichmann, Gernot

    2016-10-01

    We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.

  18. Progress in the calculation of nucleon transition form factors

    CERN Document Server

    Eichmann, Gernot

    2016-01-01

    We give a brief account of the Dyson-Schwinger and Faddeev-equation approach and its application to nucleon resonances and their transition form factors. We compare the three-body with the quark-diquark approach and present a quark-diquark calculation for the low-lying nucleon resonances including scalar, axialvector, pseudoscalar and vector diquarks. We also discuss the timelike structure of transition form factors and highlight the advantages of form factors over helicity amplitudes.

  19. Dispersion Relation for the Nucleon Electromagnetic Form Factors

    CERN Document Server

    Furuichi, Susumu; Watanbe, Keiji

    2010-01-01

    Elastic electromagnetic form factors of nucleons are investigated both for the time-like and the space-like momentums by using the unsubtracted dispersion relation with QCD constraints. It is shown that the calculated form factors reproduce the experimental data reasonably well; they agree with recent experimental data for the neutron magnetic form factors for the space-like data obtained by the CLAS collaboration and are compatible with the ratio of the electric and magnetic form factors for the time-like momentum obtained by the BABAR collaboration.

  20. Analytical evaluation of atomic form factors: application to Rayleigh scattering

    CERN Document Server

    Safari, L; Amaro, P; Jänkälä, K; Fratini, F

    2014-01-01

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wavefunctions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  1. Form factors of charged hadrons and quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-e-Aleem; Rashid, H.; Azhar, I.A.; Rafique, M.

    1988-07-01

    A new parametrization G/sup New//sub p/ of the proton form factor is proposed. It is shown that this and the conventional parametrization G/sup V//sub ..pi../ = (1-t/m/sup 2//sub p/)/sup -1/ of the pion form factor are consistent with the experimental data wherever available, with lattice-QCD-based computations for small -t, and with perturbative QCD calculations for large -t. The hyperon form factors computed by using lattice QCD are also parametrized. The features of these form factors most relevant to the Chou-Yang Model are also discussed.

  2. Influence of the flux axial form on the conversion rate and duration of cycle between recharging for ThPu and U{sub nat} fuels in CANDU reactors; Influence de la forme axiale du flux sur le taux de conversion et la duree du cycle entre rechargements pour du combustible ThPu et U{sub nat} dans les reacteurs CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Richard [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-01-15

    To face the increasing world power demand the world nuclear sector must be continuously updated and developed as well. Thus reactors of new types are introduced and advanced fuel cycles are proposed. The technological and economic feasibility and the transition of the present power park to a renewed park require thorough studies and scenarios, which are highly dependent on the reactor performances. The conversion rate and cycle span between recharging are important parameters in the scenarios studies. In this frame, we have studied the utilisation of thorium in the CANDU type reactors and particularly the influence of axial form of the flux, i.e. of the recharging mode, on the conversion rate and duration of the cycle between recharging. The results show that up to a first approximation the axial form of the flux resulting from the neutron transport calculations for assessing the conversion rate is not necessary to be taken into account. However the time span between recharging differs up to several percents if the axial form of the flux is taken into consideration in transport calculations. Thus if the burnup or the recharging frequency are parameters which influence significantly the deployment scenarios of a nuclear park an approach more refined than a simple transport evolution in a typical cell/assembly is recommended. Finally, the results of this study are not more general than for the assumed conditions but they give a thorough calculation method valid for any recharging/fuel combination in a CANDU type reactor.

  3. Form factors in an algebraic model of the nucleon

    CERN Document Server

    Bijker, R

    1995-01-01

    We study the electromagnetic form factors of the nucleon in a collective model of baryons. In an algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction.

  4. Relativistic quark model for the Omega- electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    G. Ramalho, K. Tsushima, Franz Gross

    2009-08-01

    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.

  5. A relativistic quark model for the Omega- electromagnetic form factors

    CERN Document Server

    Ramalho, G; Gross, Franz

    2009-01-01

    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.

  6. Molecular form factors in X-ray crystallography

    NARCIS (Netherlands)

    Groenewegen, P.P.M.; Feil, D.

    1969-01-01

    The calculation of molecular form factors from ab initio molecular electronic wavefunctions is discussed, and a scheme for application to X-ray diffraction structure analysis is given. The method is used to calculate the form factor of the NH+4 molecular ion from three accurate molecular wavefunctio

  7. Measurement of the forming limit stress curve using a multi-axial tube expansion test with a digital image correlation system

    Science.gov (United States)

    Hakoyama, Tomoyuki; Kuwabara, Toshihiko

    2013-12-01

    A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS) was used to measure the multi-axial plastic deformation behavior of a high-strength steel sheet for a range of strain from initial yield to fracture. The testing machine is capable of applying arbitrary principal stress or strain paths to a tubular specimen using an electrical, closed-loop servo-control system for axial force and internal pressure. Tubular specimens with an inner diameter of 44.6 mm were fabricated from a high-strength steel sheet with a tensile strength of 590 MPa and a thickness of 1.2 mm by roller bending and laser welding. Several linear and non-linear stress paths in the first quadrant of the stress space were applied to the tubular specimens in order to measure the forming limit curve (FLC) and forming limit stress curve (FLSC) of the as-received test material, in addition to the contours of plastic work and the directions of plastic strain rates. The contours of plastic work and the directions of plastic strain rates measured for the linear stress path experiments were compared with those calculated using selected yield functions in order to identify the most appropriate yield function for the test material. Moreover, a Marciniak-Kuczyński type (M-K) forming limit analysis was performed using the most appropriate yield function. The calculated and measured FLC and FLSC were compared in order to validate the M-K approach. The path-dependence of the FLC and FLSC was also investigated.

  8. Octet baryon electromagnetic form factors in nuclear medium

    CERN Document Server

    Ramalho, G; Thomas, A W

    2012-01-01

    We study the octet baryon electromagnetic form factors in nuclear matter using the covariant spectator quark model extended to the nuclear matter regime. The parameters of the model in vacuum are fixed by the study of the octet baryon electromagnetic form factors. In nuclear matter the changes in hadron properties are calculated by including the relevant hadron masses and the modification of the pion-baryon coupling constants calculated in the quark-meson coupling model. In nuclear matter the magnetic form factors of the octet baryons are enhanced in the low $Q^2$ region, while the electric form factors show a more rapid variation with $Q^2$. The results are compared with the modification of the bound proton electromagnetic form factors observed at Jefferson Lab. In addition, the corresponding changes for the bound neutron are predicted.

  9. Flavor decomposition of the nucleon electromagnetic form factors

    CERN Document Server

    Qattan, I A

    2012-01-01

    Background: The spatial distribution of charge and magnetization in the proton and neutron are encoded in the nucleon electromagnetic form factors. The form factors are all approximated by a simple dipole function, normalized to the charge or magnetic moment of the nucleon. The differences between the proton and neutron form factors and the deviation of GEn from zero are sensitive to the difference between up- and down-quark contributions to the form factors. Methods: We combine recent measurements of the neutron form factors with updated extractions of the proton form factors, accounting for two-photon exchange corrections and including an estimate of the uncertainties for all of the form factors to obtain a complete set of measurements up to Q^2 approximately 4 (GeV/c)^2. We use this to extract the up- and down-quark contributions which we compare to recent fits and calculations. Results: We find a large differences between the up- and down-quark contributions to G_E and G_M, implying significant flavor dep...

  10. Isospin violation in the vector form factors of the nucleon

    CERN Document Server

    Kubis, B; Kubis, Bastian; Lewis, Randy

    2006-01-01

    A quantitative understanding of isospin violation is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors from experimental data. We calculate the isospin violating electric and magnetic form factors in chiral perturbation theory to leading and next-to-leading order respectively, and we extract the low-energy constants from resonance saturation. Uncertainties are dominated largely by limitations in the current knowledge of some vector meson couplings. The resulting bounds on isospin violation are sufficiently precise to be of value to on-going experimental studies of the strange form factors.

  11. A note on connected formula for form factors

    CERN Document Server

    He, Song

    2016-01-01

    In this note we study the connected prescription, originally derived from Witten's twistor string theory, for tree-level form factors in ${\\cal N}=4$ super-Yang-Mills theory. The construction is based on the recently proposed four-dimensional scattering equations with $n$ massless on-shell states and one off-shell state, which we expect to work for form factors of general operators. To illustrate the universality of the prescription, we propose compact formulas for super form factors with chiral stress-tensor multiplet operator, and bosonic ones with scalar operators ${\\rm Tr}(\\phi^m)$ for arbitrary $m$.

  12. The structure of the nucleon: Elastic electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, V. [Norfolk State University, Norfolk, VA (United States); Perdrisat, C.F.; Carlson, C.E. [The College of William and Mary, Williamsburg, VA (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brash, E.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Christopher Newport University, Newport News, VA (United States)

    2015-07-15

    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future. (orig.)

  13. Longitudinal vector form factors in weak decays of nuclei

    CERN Document Server

    Simkovic, F; Krivoruchenko, M I

    2015-01-01

    The longitudinal form factors of the weak vector current of particles with spin $ J = 1/2 $ and isospin $ I = 1/2 $ are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.

  14. Light-cone sum rule approach for Baryon form factors

    CERN Document Server

    Offen, Nils

    2016-01-01

    We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.

  15. A note on connected formula for form factors

    Science.gov (United States)

    He, Song; Liu, Zhengwen

    2016-12-01

    In this note we study the connected prescription, originally derived from Witten's twistor string theory, for tree-level form factors in N = 4 super-Yang-Mills theory. The construction is based on the recently proposed four-dimensional scattering equations with n massless on-shell states and one off-shell state, which we expect to work for form factors of general operators. To illustrate the universality of the prescription, we propose compact formulas for super form factors with chiral stress-tensor multiplet operator, and bosonic ones with scalar operators Tr( ϕ m ) for arbitrary m.

  16. Light-Cone Sum Rule Approach for Baryon Form Factors

    Science.gov (United States)

    Offen, Nils

    2016-10-01

    We present the state-of-the-art of the light-cone sum rule approach to Baryon form factors. The essence of this approach is that soft Feynman contributions are calculated in terms of small transverse distance quantities using dispersion relations and duality. The form factors are thus expressed in terms of nucleon wave functions at small transverse separations, called distribution amplitudes, without any additional parameters. The distribution amplitudes, therefore, can be extracted from the comparison with the experimental data on form factors and compared to the results of lattice QCD simulations.

  17. Roaming form factors for the tricritical to critical Ising flow

    CERN Document Server

    Horvath, D X; Takacs, G

    2016-01-01

    We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model. We show that the properly defined roaming limits of certain sinh-Gordon form factors are identical to the form factors of the order and disorder operators for the massless flow. As a by-product, we also construct form factors for a semi-local field in the sinh-Gordon model, which can be associated with the twist field in the ultraviolet limiting free massless bosonic theory.

  18. Pion Electromagnetic Form Factor at Lower and Higher Momentum Transfer

    CERN Document Server

    de Melo, J P B C; Tsushima, Kazuo

    2016-01-01

    The pion electromagnetic form factor is calculated at lower and higher momentum transfer in order to explore constituent quark models and the differences among those models. In particular, the light-front constituent quark model is utilized here to calculate the pion electromagnetic form factor at lower and higher energies. The matrix elements of the electromagnetic current, are calculated with both "plus" and "minus" components of the electromagnetic current in the light-front. Further, the electromagnetic form factor is compared with other models in the literature and experimental data.

  19. Stress intensity factors and crack opening areas for axial through cracks in hollow cylinders under internal pressure loading

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, R.

    1986-01-01

    For a linear-elastic cylinder with an axial through crack subject to internal pressure loading, stress intensity factors and crack opening areas were calculated by the finite element method. Wall thickness and crack length were varied for constant mean radius of the cylinder, thus varying the shell parameter lambda with 2.5 factors depend on lambda as well as on R/t and show considerable differences to solutions based on shallow shell theory even for very short cracks. The range of validity of these solutions is discussed. Starting from the observation that the energy release rate for a semi-infinite crack is finite, a simple interpolation formula is given that retains the proper asymptotic behaviour for very long and very short cracks. Crack opening areas are given and compared to an approximate analytical formula from the literature. Some general limitations of the validity of the present results, particularly the required minimum lengths of the cylinder, are discussed.

  20. Normalization Of Thermal-Radiation Form-Factor Matrix

    Science.gov (United States)

    Tsuyuki, Glenn T.

    1994-01-01

    Report describes algorithm that adjusts form-factor matrix in TRASYS computer program, which calculates intraspacecraft radiative interchange among various surfaces and environmental heat loading from sources such as sun.

  1. nf2 contributions to fermionic four-loop form factors

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2017-07-01

    We compute the four-loop contributions to the photon quark and Higgs quark form factors involving two closed fermion loops. We present analytical results for all nonplanar master integrals of the two nonplanar integral families which enter our calculation.

  2. Proton Form Factors Measurements in the Time-Like Region

    Energy Technology Data Exchange (ETDEWEB)

    Anulli, F.; /Frascati

    2007-10-22

    I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related to the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.

  3. Electromagnetic form factors of baryons in an algebraic approach

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1999-07-01

    We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered. (Author)

  4. Electromagnetic form factors of baryons in an algebraic approach

    CERN Document Server

    Bijker, R

    1999-01-01

    We present a simultaneous analysis of elastic and transition form factors of the nucleon. The calculations are performed in the framework of an algebraic model of baryons. Effects of meson cloud couplings are considered.

  5. The connected prescription for form factors in twistor space

    CERN Document Server

    Brandhuber, Andreas; Panerai, Rodolfo; Spence, Bill; Travaglini, Gabriele

    2016-01-01

    We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in $\\mathcal{N}=4$ super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.

  6. Hadronic Form Factors in Asymptotically Free Field Theories

    Science.gov (United States)

    Gross, D. J.; Treiman, S. B.

    1974-01-01

    The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.

  7. Rare $B$ decays using lattice QCD form factors

    CERN Document Server

    Horgan, R R; Meinel, S; Wingate, M

    2015-01-01

    In this write-up we review and update our recent lattice QCD calculation of $B \\to K^*$, $B_s \\to \\phi$, and $B_s \\to K^*$ form factors [arXiv:1310.3722]. These unquenched calculations, performed in the low-recoil kinematic regime, provide a significant improvement over the use of extrapolated light cone sum rule results. The fits presented here include further kinematic constraints and estimates of additional correlations between the different form factor shape parameters. We use these form factors along with Standard Model determinations of Wilson coefficients to give Standard Model predictions for several observables [arXiv:1310.3887]. The modest improvements to the form factor fits lead to improved determinations of $F_L$, the fraction of longitudinally polarized vector mesons, but have little effect on most other observables.

  8. The connected prescription for form factors in twistor space

    Science.gov (United States)

    Brandhuber, A.; Hughes, E.; Panerai, R.; Spence, B.; Travaglini, G.

    2016-11-01

    We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in {N} = 4 super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.

  9. Elastic and transition form factors of the \\Delta(1232)

    CERN Document Server

    Segovia, Jorge; Cloët, Ian C; Roberts, Craig D; Schmidt, Sebastian M; Wan, Shaolong

    2013-01-01

    Predictions obtained with a confining, symmetry-preserving treatment of a vector-vector contact interaction at leading-order in a widely used truncation of QCD's Dyson-Schwinger equations are presented for \\Delta and \\Omega baryon elastic form factors and the \\gamma N -> \\Delta transition form factors. This simple framework produces results that are practically indistinguishable from the best otherwise available, an outcome which highlights that the key to describing many features of baryons and unifying them with the properties of mesons is a veracious expression of dynamical chiral symmetry breaking in the hadron bound-state problem. The following specific results are of particular interest. The \\Delta elastic form factors are very sensitive to m_\\Delta. Hence, given that the parameters which define extant simulations of lattice-regularised QCD produce \\Delta-resonance masses that are very large, the form factors obtained therewith are a poor guide to properties of the \\Delta(1232). Considering the \\Delta-b...

  10. Low energy analysis of the nucleon electromagnetic form factors

    CERN Document Server

    Kubis, B; Kubis, Bastian; Meissner, Ulf-G.

    2001-01-01

    We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four nucleon form factors for momentum transfer squared up to Q^2 \\simeq 0.4 GeV^2.

  11. Hyperon decay form factors in chiral perturbation theory

    CERN Document Server

    Lacour, Andre; Meißner, Ulf-G

    2007-01-01

    We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p^4).

  12. Future Perspectives on Baryon Form Factor Measurements with BES III

    Science.gov (United States)

    Schönning, Karin; Li, Cui

    2017-03-01

    The electromagnetic structure of hadrons, parameterised in terms of electromagnetic form factors, EMFF's, provide a key to the strong interaction. Nucleon EMFF's have been studied rigorously for more than 60 years but the new techniques and larger data samples available at modern facilities have given rise to a renewed interest for the field. Recently, the access to hyperon structure by hyperon time-like EMFF provides an additional dimension. The BEijing Spectrometer (BES III) at the Beijing Electron Positron Collider (BEPC-II) in China is the only running experiment where time-like baryon EMFF's can be studied in the e+e- → BB̅ reaction. The BES III detector is an excellent tool for baryon form factor measurements thanks to its near 4π coverage, precise tracking, PID and calorimetry. All hyperons in the SU(3) spin 1/2 octet and spin 3/2 decuplet are energetically accessible within the BEPC-II energy range. Recent data on proton and Λ hyperon form factors will be presented. Furthermore, a world-leading data sample was collected in 2014-2015 for precision measurements of baryon form factors. In particular, the data will enable a measurement of the relative phase between the electric and the magnetic form factors for Λ and Λc+ and hyperons. The modulus of the phase can be extracted from the hyperon polarisation, which in turn is experimentally accessible via the weak, parity violating decay. Furthermore, from the spin correlation between the outgoing hyperon and antihyperon, the sign of the phase can be extracted. This means that the time-like form factors can be completely determined for the first time. The methods will be outlined and the prospects of the BES III form factor measurements will be given. We will also present a planned upgrade of the BES III detector which is expected to improve future form factor measurements.

  13. Electromagnetic form factors in a collective model of the nucleon

    CERN Document Server

    Bijker, R; Leviatan, A

    1995-01-01

    We study the electromagnetic form factors of the nucleon in a collective model of baryons. Using the algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction. Effects of spin-flavor symmetry breaking and of swelling of hadrons with increasing excitation energy are considered.

  14. Electromagnetic form factors in a collective model of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Iachello, F.; Leviatan, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 (Mexico)]|[Distrito Federale (Mexico)]|[Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520-8120 (United States)]|[Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-10-01

    We study the electromagnetic form factors of the nucleon in a collective model of baryons. Using the algebraic approach to hadron structure, we derive closed expressions for both elastic and transition form factors, and consequently for the helicity amplitudes that can be measured in electro- and photoproduction. Effects of spin-flavor symmetry breaking and of swelling of hadrons with increasing excitation energy are considered. {copyright} {ital 1996 The American Physical Society.}

  15. Form Factors for Exclusive Semileptonic $B$--Decays

    CERN Document Server

    Kim, C S; Kim, Y G; Lee, K Y; Kim, Jae Kwan; Kim, Yeong Gyun; Lee, Kang Young

    1996-01-01

    We investigate the form factors for exclusive semileptonic decays of $B$-meson to $D,~D^*$, based on the parton picture and helped by the results of the HQET. We obtain the numerical results for the slope of the Isgur-Wise function, which is consistent with the experimental results, and we extracte the dependences of hadronic form factors on $q^2$ by varying input heavy quark fragmentation function without the nearest pole dominance ansätze.

  16. Form factors and other measures of strangeness in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik

    2007-11-15

    We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)

  17. Electromagnetic form factors of the nucleon. Experiments at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Ostrick, M. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany)

    2006-05-15

    Elastic form factors are of fundamental importance for the understanding of microscopic spatial structures. In case of the proton and the neutron, charge and magnetic form factors can be studied in elastic electron scattering. Techniques to accelerate polarised continuous electron beams, the availability of polarised targets as well as modern concepts and instrumentation for coincidence experiments and recoil polarimetry had an enormous impact on these measurements. The developments and experiments at the Mainz Microtron MAMI will be discussed in a general context. (orig.)

  18. Online Soil Science Lesson 3: Soil Forming Factors

    Science.gov (United States)

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  19. On a four-loop form factor in N=4

    CERN Document Server

    Boels, Rutger H; Yang, Gang

    2016-01-01

    We report on progress toward computing a four-loop supersymmetric form factor in maximally supersymmetric Yang-Mills theory. A representative example particle content from the involved supermultiplets is a stress-tensor operator with two on-shell gluons. In previous work, the integrand for this form factor was obtained using color-kinematic duality in a particularly simple form. Here the result of applying integration-by-parts identities is discussed and cross-checks of the result is performed. Rational IBP relations and their reduction are introduced as a potentially useful aide.

  20. Tumor-Induced Osteomalacia Caused by Primary Fibroblast Growth Factor 23 Secreting Neoplasm in Axial Skeleton: A Case Report

    Directory of Open Access Journals (Sweden)

    Gunjan Y. Gandhi

    2012-01-01

    Full Text Available We report the case of a 66-year-old woman with tumor-induced osteomalacia (TIO caused by fibroblast growth factor 23 (FGF-23 secreting mesenchymal tumor localized in a lumbar vertebra and review other cases localized to the axial skeleton. She presented with nontraumatic low back pain and spontaneous bilateral femur fractures. Laboratory testing was remarkable for low serum phosphorus, phosphaturia, and significantly elevated serum FGF-23 level. Magnetic resonance imaging (MRI of the lumbar spine showed a focal lesion in the L-4 vertebra which was hypermetabolic on positron emission tomography (PET scan. A computed tomography (CT guided needle biopsy showed a low grade spindle cell neoplasm with positive FGF-23 mRNA expression by reverse transcriptase polymerase chain reaction (RT-PCR, confirming the diagnosis of a phosphaturic mesenchymal tumor mixed connective tissue variant (PMTMCT. The patient elected to have surgery involving anterior resection of L-4 vertebra with subsequent normalization of serum phosphorus. Including the present case, we identified 12 cases of neoplasms localized to spine causing TIO. To our knowledge, this paper represents the first documented case of lumbar vertebra PMT causing TIO. TIO is a rare metabolic bone disorder that carries a favorable prognosis. When a lesion is identifiable, surgical intervention is typically curative.

  1. Strong couplings and form factors of charmed mesons in holographic QCD

    Science.gov (United States)

    Ballon-Bayona, Alfonso; Krein, Gastão; Miller, Carlisson

    2017-07-01

    We extend the two-flavor hard-wall holographic model of Erlich, Katz, Son, and Stephanov [Phys. Rev. Lett. 95, 261602 (2005), 10.1103/PhysRevLett.95.261602] to four flavors to incorporate strange and charm quarks. The model incorporates chiral and flavor symmetry breaking and provides a reasonable description of masses and weak decay constants of a variety of scalar, pseudoscalar, vector, and axial-vector strange and charmed mesons. In particular, we examine flavor symmetry breaking in the strong couplings of the ρ meson to the charmed D and D* mesons. We also compute electromagnetic form factors of the π , ρ , K , K*, D and D* mesons. We compare our results for the D and D* mesons with lattice QCD data and other nonperturbative approaches.

  2. Watson's theorem and the $N\\Delta(1232)$ axial transition

    CERN Document Server

    Alvarez-Ruso, L; Nieves, J; Vacas, M J Vicente

    2016-01-01

    We present a new determination of the $N\\Delta$ axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al., Phys. Rev. D76, 033005 (2007) is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger $C_5^A(0)$, in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.

  3. Dispersion-theoretical analysis of the nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Belushkin, M.

    2007-09-29

    The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)

  4. Possible diquark signatures in the elastic nucleon form factors

    Science.gov (United States)

    Cates, Gordon

    2013-10-01

    There has been considerable interest in the elastic nucleon form factors ever since the discovery that the proton form-factor ratio, GEp /GMp , decreases nearly linearly above roughly Q2 = 1 GeV2 . More recent measurements of the neutron form-factor ratio, GEn /GMn , up to 3 . 4 GeV2 have made it possible to constrain calculations using both proton and neutron data in the Q2 regime where the interesting behavior of the proton was first observed. Calculations based on QCD's Dyson-Schwinger equations, as well as certain relativistic constituent quark models, suggest that the observed behavior is related to the importance of diquark degrees of freedom. To understand this connection, it is particularly useful to consider the flavor-separated form factors, which can be extracted by combining proton and neutron data, and assuming charge symmetry. Distinctly different behavior is seen for the u - and d - quarks. The behaviors of the different quark flavors and the connection to diquarks can also be understood using naive scaling arguments, although this approach has yet to be made more rigorous. This talk will discuss how measurements of the nucleon form factors at high Q2 provides a rich opportunity to better understand the structure of the nucleon.

  5. Dispersion-theoretical analysis of the nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Belushkin, M.

    2007-09-29

    The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)

  6. $D \\rightarrow a_1, f_1$ transition form factors and semileptonic decays via 3-point QCD sum rules

    CERN Document Server

    Zuo, Yabing; He, Linlin; Yang, Wei; Chen, Yan; Hao, Yannan

    2016-01-01

    By using the 3-point QCD sum rules, we calculate the transition form factors of $D$ decays into the spin triplet axial vector mesons $a_1(1260)$, $f_1(1285) $, $f_1(1420)$. In the calculations, we consider the quark contents of each meson in detail. In view of the fact that the isospin of $a_1(1260)$ is one, we calculate the $D^+ \\rightarrow a_1^0 (1260)$ and $D^0 \\rightarrow a_1^- (1260)$ transition form factors separately. In the case of $ f_1(1285), f_1(1420)$, the mixing between light flavor $SU(3)$ singlet and octet is taken into account. Based on the form factors obtained here, we give predictions for the branching ratios of relevant semileptonic decays, which can be tested in the future experiments.

  7. Nucleon Charges, Form-factors and Neutron EDM

    CERN Document Server

    Gupta, Rajan; Cirigliano, Vincenzo; Lin, Huey-Wen; Yoon, Boram

    2016-01-01

    We present an update of our analysis of statistical and systematic errors in the calculation of iso-vector scalar, axial and tensor charges of the nucleon. The calculations are done using $N_f=2+1+1$ flavor HISQ ensembles generated by the MILC Collaboration at three values of the lattice spacing ($a=0.12,\\ 0.09,$ and $0.06$ fm) and three values of the quark mass ($M_\\pi \\approx 310,\\ 220$ and $130$ MeV); and clover fermions for calculating the correlation functions, i.e., we use a clover-on-HISQ lattice formulation. The all-mode-averaging method allows us to increase the statistics by a factor of eight for the same computational cost leading to a better understanding of and control over excited state contamination. Our current results, after extrapolation to the continuum limit and physical pion mass are $g_A^{u-d} = 1.21(3)$, $g_T^{u-d} = 1.005(59)$ and $g_S^{u-d} = 0.95(12) $. Further checks of control over all systematic errors, especially in $g_A^{u-d}$, are still being performed. Using results for the fl...

  8. Information content of the weak-charge form factor

    CERN Document Server

    Reinhard, P -G; Nazarewicz, W; Agrawal, B K; Paar, N; Rocca-Maza, X

    2013-01-01

    Parity-violating electron scattering provides a model-independent determination of the nuclear weak-charge form factor that has widespread implications across such diverse areas as fundamental symmetries, nuclear structure, heavy-ion collisions, and neutron-star structure. We assess the impact of precise measurements of the weak-charge form factor of ${}^{48}$Ca and ${}^{208}$Pb on a variety of nuclear observables, such as the neutron skin and the electric-dipole polarizability. We use the nuclear Density Functional Theory with several accurately calibrated non-relativistic and relativistic energy density functionals. To assess the degree of correlation between nuclear observables and to explore systematic and statistical uncertainties on theoretical predictions, we employ the chi-square statistical covariance technique. We find a strong correlation between the weak-charge form factor and the neutron radius, that allows for an accurate determination of the neutron skin of neutron-rich nuclei. We determine the...

  9. Nucleon electromagnetic form factors from the covariant Faddeev equation

    Science.gov (United States)

    Eichmann, G.

    2011-07-01

    We compute the electromagnetic form factors of the nucleon in the Poincaré-covariant Faddeev framework based on the Dyson-Schwinger equations of QCD. The general expression for a baryon’s electromagnetic current in terms of three interacting dressed quarks is derived. Upon employing a rainbow-ladder gluon-exchange kernel for the quark-quark interaction, the nucleon’s Faddeev amplitude and electromagnetic form factors are computed without any further truncations or model assumptions. The form-factor results show clear evidence of missing pion-cloud effects below a photon momentum transfer of ˜2GeV2 and in the chiral region, whereas they agree well with experimental data at higher photon momenta. Thus, the approach reflects the properties of the nucleon’s quark core.

  10. Form factor ratio from unpolarized elastic electron-proton scattering

    Science.gov (United States)

    Pacetti, Simone; Tomasi-Gustafsson, Egle

    2016-11-01

    A reanalysis of unpolarized electron-proton elastic scattering data is done in terms of the electric to magnetic form factor squared ratio. This observable is in principle more robust against experimental correlations and global normalizations. The present analysis shows indeed that it is a useful quantity that contains reliable and coherent information. The comparison with the ratio extracted from the measurement of the longitudinal to transverse polarization of the recoil proton in polarized electron-proton scattering shows that the results are compatible within the experimental errors. Limits are set on the kinematics where the physical information on the form factors can be safely extracted. The results presented in this work bring a decisive piece of information to the controversy on the deviation of the proton form factors from the dipole dependence.

  11. Zero modes method and form factors in quantum integrable models

    Directory of Open Access Journals (Sweden)

    S. Pakuliak

    2015-04-01

    Full Text Available We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3-invariant R-matrix. Assuming that the monodromy matrix of the model can be expanded into series with respect to the inverse spectral parameter, we define zero modes of the monodromy matrix entries as the first nontrivial coefficients of this series. Using these zero modes we establish new relations between form factors of the elements of the monodromy matrix. We prove that all of them can be obtained from the form factor of a diagonal matrix element in special limits of Bethe parameters. As a result we obtain determinant representations for form factors of all the entries of the monodromy matrix.

  12. Kaon semileptonic decay form factors with HISQ valence quarks

    CERN Document Server

    Gamiz, E; Bazavov, A; Bernard, C; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gottlieb, Steven; Heller, U M; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, R

    2012-01-01

    We report on the status of our kaon semileptonic form factor calculations using the highly-improved staggered quark (HISQ) formulation to simulate the valence fermions. We present results for the form factor f_+^{K \\pi}(0) on the asqtad N_f=2+1 MILC configurations, discuss the chiral-continuum extrapolation, and give a preliminary estimate of the total error. We also present a more preliminary set of results for the same form factor but with the sea quarks also simulated with the HISQ action; these results include data at the physical light quark masses. The improvements that we expect to achieve with the use of the HISQ configurations and simulations at the physical quark masses are briefly discussed.

  13. Two-Loop SL(2) Form Factors and Maximal Transcendentality

    CERN Document Server

    Loebbert, Florian; Wilhelm, Matthias; Yang, Gang

    2016-01-01

    Form factors of composite operators in the SL(2) sector of N=4 SYM theory are studied up to two loops via the on-shell unitarity method. The non-compactness of this subsector implies the novel feature and technical challenge of an unlimited number of loop momenta in the integrand's numerator. At one loop, we derive the full minimal form factor to all orders in the dimensional regularisation parameter. At two loops, we construct the complete integrand for composite operators with an arbitrary number of covariant derivatives, and we obtain the remainder functions as well as the dilatation operator for composite operators with up to three covariant derivatives. The remainder functions reveal curious patterns suggesting a hidden maximal uniform transcendentality for the full form factor. Finally, we speculate about an extension of these patterns to QCD.

  14. Form factor and width of a quantum string

    CERN Document Server

    Rajantie, Arttu; Weir, David J

    2012-01-01

    In the Yang-Mills theory, the apparent thickness of the confining string is known to grow logarithmically when its length increases. The same logarithmic broadening also happens to strings in other quantum field theories and domain walls in statistical physics models. Even in quantum field theories, the observables used to measure and characterise this phenomenon are largely borrowed from statistical physics. In this paper, we describe it using the string form factor, which is a meaningful quantum observable, and show how the form factor can be obtained from field correlation functions calculated in lattice Monte Carlo simulations. We apply this method to 2+1-dimensional scalar theory in the strong coupling limit, where it is equivalent to the 3D Ising model, and through duality also to 2+1-dimensional $\\mathbb{Z}_2$ gauge theory. We measure the string form factor by simulating the Ising model, and demonstrate that it displays the same logarithmic broadening as statistical physics observables.

  15. The Proton Form Factor Ratio Measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Vina A. [Norfolk State University, Norfolk, VA (United States); Perdrisat, Charles F. [William and Mary College, Williamsburg, VA (United States)

    2014-03-01

    The ratio of the proton form factors, G{sub Ep}/G{sub Mp}, has been measured from Q{sup 2} of 0.5 GeV{sup 2} to 8.5 GeV{sup 2}, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q{sup 2}, for values above ~1 GeV{sup 2}, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, G{sub Ep}, G{sub Mp}, G{sub En} and G{sub Mn}. There is an approved experiment at JLab, GEP(V), to continue the ratio measurements to 12 GeV{sup 2}. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

  16. Master integrals for the four-loop Sudakov form factor

    Directory of Open Access Journals (Sweden)

    Rutger H. Boels

    2016-01-01

    Full Text Available The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4 supersymmetric Yang–Mills theory (SYM in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N=4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.

  17. Reanalysis of Rosenbluth measurements of the proton form factors

    Science.gov (United States)

    Gramolin, Alexander; Nikolenko, Dmitry

    2017-01-01

    We have reanalyzed the elastic electron-proton scattering data from SLAC experiments E140 and NE11. This work was motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the Q2 range from 1 to 8 . 83GeV2 . Our reanalysis brings the combined results of the SLAC experiments into better agreement with the polarization transfer data, but a significant discrepancy remains for Q2 > 3GeV2 .

  18. Pion transition form factor through Dyson-Schwinger equations

    CERN Document Server

    Raya, Khépani

    2016-01-01

    In the framework of Dyson-Schwinger equations (DSE), we compute the $\\gamma^*\\gamma\\to\\pi^0$ transition form factor, $G(Q^2)$. For the first time, in a continuum approach to quantun chromodynamics (QCD), it was possible to compute $G(Q^2)$ on the whole domain of space-like momenta. Our result agrees with CELLO, CLEO and Belle collaborations and, with the well-known asymptotic QCD limit, $2f_\\pi$. Our analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor.

  19. Pion transition form factor through Dyson-Schwinger equations

    Science.gov (United States)

    Raya, Khépani

    2016-10-01

    In the framework of Dyson-Schwinger equations (DSE), we compute the γ*γ→π0 transition form factor, G(Q2). For the first time, in a continuum approach to quantun chromodynamics (QCD), it was possible to compute G(Q2) on the whole domain of space-like momenta. Our result agrees with CELLO, CLEO and Belle collaborations and, with the well- known asymptotic QCD limit, 2ƒπ. Our analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor.

  20. Electromagnetic form factors of the Δ with D-waves

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Gilberto T.F. [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Pena, Maria Teresa [CFTP, Institute Superior Tecnico, Lisbon (Portugal); Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2010-06-01

    The electromagnetic form factors of the Δ baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the Δ wave function. We predict all the four Δ multipole form factors: the electric charge GE0, the magnetic dipole GM1, the electric quadrupole GE2 and the magnetic octupole GM3. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.

  1. Electromagnetic form factors of the Delta with D-waves

    CERN Document Server

    Ramalho, G; Gross, Franz

    2010-01-01

    The electromagnetic form factors of the Delta baryon are evaluated within the framework of a covariant spectator quark model, where S and D-states are included in the $\\Delta$ wave function. We predict all the four Delta multipole form factors: the electric charge GE0, the magnetic dipole GM1, the electric quadrupole GE2 and the magnetic octupole GM3. We compare our predictions with other theoretical calculations. Our results are compatible with the available experimental data and recent lattice QCD data.

  2. Excited state systematics in extracting nucleon electromagnetic form factors

    CERN Document Server

    Capitani, Stefano; von Hippel, Georg; Jäger, Benjamin; Knippschild, Bastian; Meyer, Harvey B; Rae, Thomas D; Wittig, Hartmut

    2012-01-01

    We present updated preliminary results for the nucleon electromagnetic form factors for non-perturbatively $\\mathcal{O}(a)$ improved Wilson fermions in $N_f=2$ QCD measured on the CLS ensembles. The use of the summed operator insertion method allows us to suppress the influence of excited states in our measurements. A study of the effect that excited state contaminations have on the $Q^2$ dependence of the extracted nucleon form factors may then be made through comparisons of the summation method to standard plateau fits, as well as to excited state fits.

  3. Tensor form factors of the octet hyperons in QCD

    CERN Document Server

    kucukarslan, A; Ozpineci, A

    2016-01-01

    Light-cone QCD sum rules to leading order in QCD are used to investigate the tensor form factors of the $\\Sigma-\\Sigma$, $\\Xi-\\Xi$ and $ \\Sigma-\\Lambda$ transitions in the range $1 GeV^2 \\leq Q^2 \\leq 10 GeV^2$. The DAs of $\\Sigma$, $\\Xi$ and $\\Lambda$ baryon have been calculated without higher order terms. Then, study including higher order corrections have been done for $\\Sigma$ and $\\Lambda$ baryon. The result of form factors are obtained using these two DAs. We make a comparison with the predictions of the chiral quark soliton model.

  4. Deuteron form factor measurements at low momentum transfers

    Directory of Open Access Journals (Sweden)

    Schlimme B. S.

    2016-01-01

    Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.

  5. The $B\\to K^*$ form factors on the lattice

    CERN Document Server

    Agadjanov, Andria; Meißner, Ulf-G; Rusetsky, Akaki

    2016-01-01

    The extraction of the $B\\to K^*$ transition form factors from lattice data is studied, applying non-relativistic effective field theory in a finite volume. The possible mixing of $\\pi K$ and $\\eta K$ states is taken into account. The two-channel analogue of the Lellouch-L\\"uscher formula is reproduced. Due to the resonance nature of the $K^*$, an equation is derived, which allows to determine the form factors at the pole position in a process-independent manner. The infinitely-narrow width approximation of the results is discussed.

  6. Pion Form Factor in the Light-Front

    CERN Document Server

    Pacheco-Bicudo-Cabral de Melo, J

    2004-01-01

    The pion electromagnetic form factor is calculated with a light-front quark model. The "plus" and "minus" component of the electromagnetic current are used to calculate the electromagnetic form factor in the Breit frame with two models for the q\\bar{q} vertex. The light front constituent quark models describes very well hadronic wave function for pseudo-scalar and vector particles. Symmetry problems arinsing in the light-front approach are solved by the pole dislocation method. The results are compared with new experimental data and with other quark models.

  7. Sudakov effects in B -> pi l nu form factors

    CERN Document Server

    Descotes, S

    2002-01-01

    In order to obtain information about the Standard Model from exclusive hadronic two-body B-decays, we have to quantify non-perturbative QCD effects. Approaches based on the factorization of mass singularities into hadronic distribution amplitudes and form factors provide a rigorous theoretical framework for the evaluation of these effects in the heavy quark limit. But it is not possible to calculate power corrections in a model-independent way, because of non-factorizing long-distance contributions. It has been argued that Sudakov effects suppress these contributions and render the corresponding corrections perturbatively calculable. In this paper we examine this claim for the related example of semileptonic B -> pi decays and conclude that it is not justified. The uncertainties in our knowledge of the mesons' distribution amplitudes imply that the calculations of the form factors are not sufficiently precise to be useful phenomenologically. Moreover, a significant contribution comes from the non-perturbative...

  8. Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2016-01-01

    We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion {\\it transverse momentum distribution amplitude} (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asymptotic pQCD predictions and show that in the $Q^2 \\lesssim 10$ GeV$^2$ region there is essentially no sensitivity to the shape of the pion distribution amplitude. Furthermore, the magnitude of the one-gluon exchange contribution in this region is estimated to be an order of magnitude below the Jefferson Lab data, thus leaving the Feynman mechanism as the only one relevant to the pion electromagnetic form factor behavior for accessible $Q^2$.

  9. Factorization, resummation and sum rules for heavy-to-light form factors

    CERN Document Server

    Wang, Yu-Ming

    2016-01-01

    Precision calculations of heavy-to-light form factors are essential to sharpen our understanding towards the strong interaction dynamics of the heavy-quark system and to shed light on a coherent solution of flavor anomalies. We briefly review factorization properties of heavy-to-light form factors in the framework of QCD factorization in the heavy quark limit and discuss the recent progress on the QCD calculation of $B \\to \\pi$ form factors from the light-cone sum rules with the $B$-meson distribution amplitudes. Demonstration of QCD factorization for the vacuum-to-$B$-meson correlation function used in the sum-rule construction and resummation of large logarithms in the short-distance functions entering the factorization theorem are presented in detail. Phenomenological implications of the newly derived sum rules for $B \\to \\pi$ form factors are further addressed with a particular attention to the extraction of the CKM matrix element $|V_{ub}|$.

  10. Spin-2 Form Factors at Three Loop in QCD

    CERN Document Server

    Ahmed, Taushif; Mathews, Prakash; Rana, Narayan; Ravindran, V

    2015-01-01

    Spin-2 fields are often candidates in physics beyond the Standard Model namely the models with extra-dimensions where spin-2 Kaluza-Klein gravitons couple to the fields of the SM. Also, in the context of Higgs searches, spin-2 fields have been studied as an alternative to the scalar Higgs boson. In this article, we present the complete three loop QCD radiative corrections to the spin-2 quark-antiquark and spin-2 gluon-gluon form factors in SU(N) gauge theory with $n_f$ light flavors. These form factors contribute to both quark-antiquark and gluon-gluon initiated processes involving spin-2 particle in the hadronic reactions at the LHC. We have studied the structure of infrared singularities in these form factors up to three loop level using Sudakov integro-differential equation and found that the anomalous dimensions originating from soft and collinear regions of the loop integrals coincide with those of the electroweak vector boson and Higgs form factors confirming the universality of the infrared singulariti...

  11. Dispersive analysis of the pion transition form factor

    CERN Document Server

    Hoferichter, Martin; Leupold, Stefan; Niecknig, Franz; Schneider, Sebastian P

    2014-01-01

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the $e^+e^-\\to 3\\pi$ cross section, generalizing previous studies on $\\omega,\\phi\\to3\\pi$ decays and $\\gamma\\pi\\to\\pi\\pi$ scattering, and verify our result by comparing to $e^+e^-\\to\\pi^0\\gamma$ data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below 1 GeV, and extract the slope of the form factor at vanishing momentum transfer $a_\\pi=(30.7\\pm0.6)\\times 10^{-3}$. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  12. Radiative corrections in nucleon time-like form factors measurements

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, Jacques [Universite de Paris-Sud, Institut de Physique Nucleaire, Orsay Cedex (France); Ong, Saro [Universite de Paris-Sud, Institut de Physique Nucleaire, Orsay Cedex (France); Universite de Picardie Jules Verne, Amiens (France)

    2013-02-15

    The completely general radiative corrections to lowest order, including the final- and initial-state radiations, are studied in proton-antiproton annihilation into an electron-positron pair. Numerical estimates have been made in a realistic configuration of the PANDA detector at FAIR for the proton time-like form factors measurements. (orig.)

  13. The Proton Form Factor Ratio Measurements at Jefferson Lab

    CERN Document Server

    Punjabi, Vina

    2014-01-01

    The ratio of the proton form factors, GEp/GMp, has been measured from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The discovery that the proton form factor ratio measured in these experiments decreases approximately linearly with four-momentum transfer, Q2, for values above ? 1 GeV2, is one of the most significant results to come out of JLab. These results have had a large impact on progress in hadronic physics; and have required a significant rethinking of nucleon structure. The increasingly common use of the double-polarization technique to measure the nucleon form factors, in the last 15 years, has resulted in a dramatic improvement of the quality of all four nucleon electromagnetic form factors, GEp, GMp, GEn and GMn. There is an approved experiment at JLab, GEP(V), to continue...

  14. Analytic two-loop form factors in N=4 SYM

    CERN Document Server

    Brandhuber, Andreas; Yang, Gang

    2012-01-01

    We derive a compact expression for the three-point MHV form factors of half-BPS operators in N=4super Yang-Mills at two loops. The main tools of our calculation are generalised unitarity applied at the form factor level, and the compact expressions for supersymmetric tree-level form factors and amplitudes entering the cuts. We confirm that infrared divergences exponentiate as expected, and that collinear factorisation is entirely captured by an ABDK/BDS ansatz. Next, we construct the two-loop remainder function obtained by subtracting this ansatz from the full two-loop form factor and compute it numerically. Using symbology, combined with various physical constraints and symmetries, we find a unique solution for its symbol. With this input we construct a remarkably compact analytic expression for the remainder function, which contains only classical polylogarithms, and compare it to our numerical results. Furthermore, we make the surprising observation that our remainder is equal to the maximally transcendent...

  15. Spin-2 form factors at three loop in QCD

    Science.gov (United States)

    Ahmed, Taushif; Das, Goutam; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2015-12-01

    Spin-2 fields are often candidates in physics beyond the Standard Model namely the models with extra-dimensions where spin-2 Kaluza-Klein gravitons couple to the fields of the Standard Model. Also, in the context of Higgs searches, spin-2 fields have been studied as an alternative to the scalar Higgs boson. In this article, we present the complete three loop QCD radiative corrections to the spin-2 quark-antiquark and spin-2 gluon-gluon form factors in SU(N) gauge theory with n f light flavors. These form factors contribute to both quark-antiquark and gluon-gluon initiated processes involving spin-2 particle in the hadronic reactions at the LHC. We have studied the structure of infrared singularities in these form factors up to three loop level using Sudakov integro-differential equation and found that the anomalous dimensions originating from soft and collinear regions of the loop integrals coincide with those of the electroweak vector boson and Higgs form factors confirming the universality of the infrared singularities in QCD amplitudes.

  16. P and T Violating Form Factors of the Deuteron

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric-dipole and magnetic-quadrupole form factors of the deuteron that arise as a low-energy manifestation of parity and time-reversal violation in quark-gluon interactions. We consider the QCD vacuum angle and the dimension-six operators that originate from physics beyond the st

  17. Measurement of the pion form factor at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Mack, D.J. [CEBAF, Newport News, VA (United States)

    1994-04-01

    One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.

  18. On Form Factors and Correlation Functions in Twistor Space

    CERN Document Server

    Koster, Laura; Staudacher, Matthias; Wilhelm, Matthias

    2016-01-01

    In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers arXiv:1603.04471 and arXiv:1604.00012, we show how to calculate the twistor-space diagrams for general N^kMHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without $\\dot\\alpha$ indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in arXiv:1410.6310.

  19. Ward Identities, B-> \\rho Form Factors and |V_ub|

    CERN Document Server

    Gilani, A H S; Riazuddin, M; Gilani, Amjad Hussain Shah

    2003-01-01

    The exclusive FCNC beauty semileptonic decay B-> \\rho is studied using Ward identities in a general vector meson dominance framework, predicting vector meson couplings involved. The long distance contributions are discussed which results to obtain form factors and |V_ub|. A detailed comparison is given with other approaches.

  20. Determination of Transverse Charge Density from Kaon Form Factor Data

    Science.gov (United States)

    Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina

    2016-09-01

    At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.

  1. Nucleon form factors program with SBS at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Wojtsekhowski, Bogdan B. [JLAB

    2014-12-01

    The physics of the nucleon form factors is the basic part of the Jefferson Laboratory program. We review the achievements of the 6-GeV era and the program with the 12- GeV beam with the SBS spectrometer in Hall A, with a focus on the nucleon ground state properties.

  2. Proton and kaon timelike form factors from BABAR

    CERN Document Server

    Serednyakov, S I

    2015-01-01

    The latest BABAR results on the proton and kaon timelike form factors (FF) are presented. The special emphasize is made on comparison of the spacelike and timelike FFs and the rise of the proton FF near threshold. The behavior of the cross section of e+e- annihilation into hadrons near the nucleon-antinucleon threshold is discussed.

  3. Spin-2 form factors at three loop in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Taushif [The Institute of Mathematical Sciences,IV Cross Road, CIT Campus, Chennai 600 113 (India); Das, Goutam; Mathews, Prakash [Saha Institute of Nuclear Physics,1/AF Bidhan Nagar, Kolkata 700 064 (India); Rana, Narayan; Ravindran, V. [The Institute of Mathematical Sciences,IV Cross Road, CIT Campus, Chennai 600 113 (India)

    2015-12-15

    Spin-2 fields are often candidates in physics beyond the Standard Model namely the models with extra-dimensions where spin-2 Kaluza-Klein gravitons couple to the fields of the Standard Model. Also, in the context of Higgs searches, spin-2 fields have been studied as an alternative to the scalar Higgs boson. In this article, we present the complete three loop QCD radiative corrections to the spin-2 quark-antiquark and spin-2 gluon-gluon form factors in SU(N) gauge theory with n{sub f} light flavors. These form factors contribute to both quark-antiquark and gluon-gluon initiated processes involving spin-2 particle in the hadronic reactions at the LHC. We have studied the structure of infrared singularities in these form factors up to three loop level using Sudakov integro-differential equation and found that the anomalous dimensions originating from soft and collinear regions of the loop integrals coincide with those of the electroweak vector boson and Higgs form factors confirming the universality of the infrared singularities in QCD amplitudes.

  4. Electromagnetic form factors of heavy flavored vector mesons

    Science.gov (United States)

    Priyadarsini, M.; Dash, P. C.; Kar, Susmita; Patra, Sweta P.; Barik, N.

    2016-12-01

    We study the electromagnetic form factors of heavy flavored vector mesons such as (D*,Ds*,J /Ψ ) , (B*,Bs*,ϒ ) via one photon radiative decays (V →P γ ) in the relativistic independent quark (RIQ) model based on a flavor independent average interaction potential in the scalar vector harmonic form. The momentum dependent spacelike (q2<0 ) form factors calculated in this model are analytically continued to the physical timelike region 0 ≤q2≤(MV-MP)2 . The predicted coupling constant gV P γ=FV P(q2=0 ) for real photon case in the limit q2→0 and decay widths Γ (V →P γ ) are found in reasonable agreement with experimental data and other model predictions.

  5. Nucleon form factors, generalized parton distributions and quark angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik

    2013-02-15

    We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.

  6. Semileptonic meson decays in point-form relativistic quantum mechanics: unambiguous extraction of weak form factors

    CERN Document Server

    Gomez-Rocha, Maria

    2014-01-01

    The point-form version of the Bakamjian-Thomas construction is applied to the description of several semileptonic decays of mesons. Weak form factors are extracted without ambiguity for pseudoscalar-to-pseudoscalar as well as for pseudoscalar-to-vector transitions of mesons from the most general covariant decomposition of the weak current. No manifestation of cluster-separability violation appears in the form of non-physical contributions to the structure of such a current, in contrast to what happens in the electromagnetic case. Moreover, no frame dependence is observed when we extract the form factors from the most general covariant decomposition of the current, which contrasts with analogous front-form calculations that involve vector mesons in the transition. We present our results for heavy-light meson decays, i.e. $B\\to D$, as well as for $B$ and $D$ mesons decaying into $\\pi$, $\\rho$ and $K^{(*)}$ and perform a numerical comparison with the analogous front-form approach. Differences between point and f...

  7. Form factors of the finite quantum XY-chain

    Energy Technology Data Exchange (ETDEWEB)

    Iorgov, Nikolai, E-mail: iorgov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2011-08-19

    Explicit factorized formulas for the matrix elements (form factors) of the spin operators {sigma}{sup x} and {sigma}{sup y} between the eigenvectors of the Hamiltonian of the finite quantum periodic XY-chain in a transverse field were derived. The derivation is based on the relations between three models: the model of quantum XY-chain, Ising model on 2D lattice and N = 2 Baxter-Bazhanov-Stroganov {tau}{sup (2)}-model. Due to these relations we transfer the formulas for the form factors of the latter model recently obtained by the use of separation of variables method to the model of quantum XY-chain. Hopefully, the formulas for the form factors will help in analysis of multipoint dynamic correlation functions at a finite temperature. As an example, we re-derive the asymptotics of the two-point correlation function in the disordered phase without the use of the Toeplitz determinants and the Wiener-Hopf factorization method.

  8. Factors Affecting the Form of Substitute Family Care

    Directory of Open Access Journals (Sweden)

    Monika Chrenková

    2015-11-01

    Full Text Available Recently, the system of care for endangered children has changed from the institutional as well as legislative point of view. In one of the partial areas of ongoing changes, research activities realised within the Students’ Grant Competition called The Factors Affecting the Form of Substitute Family Care are being focused. We deal with this topic because various forms of substitute family care are distinguished in the Czech Republic, where children are placed for various reasons, but we do not know the correct context of such placements. The main aim of the realised research was to find out the frequency of choosing a given form of placing children in substitute family care according to followed variables. The research sample of the quantitative research was consisted of children placed in one of the forms of substitute family care in the Moravian-Silesian region.

  9. Master integrals for the four-loop Sudakov form factor

    CERN Document Server

    Boels, Rutger; Yang, Gang

    2016-01-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally ($\\mathcal{N}=4$) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for $\\mathcal{N}=4$ SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The ...

  10. Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

    CERN Document Server

    Radyushkin, A V

    2015-01-01

    We discuss two applications of the {\\it Virtuality Distribution Amplitudes} (VDA) formalism developed in our recent papers. We start with an overview of the main properties of the pion distribution amplitude emphasizing the quantitative measures of its width, and possibility to access them through the pion transition form factor studies. We formulate the basic concepts of the VDA approach and introduce the pion transverse momentum distribution amplitude (TMDA) which plays, in a covariant Lagrangian formulation, a role similar to that of the pion wave function in the 3-dimensional Hamiltonian light-front approach. We propose simple factorized models for soft TMDAs, and use them to describe existing data on the pion transition form factor, thus fixing the scale determining the size of the transverse-momentum effects. Finally, we apply the VDA approach to the one-gluon exchange contribution for the pion electromagnetic form factor. We observe a very late $Q^2 \\gtrsim 20$ GeV$^2$ onset of transition to the asympt...

  11. Form factors for B --> $\\pi$l$\\overline{\

    CERN Document Server

    Burford, D R; Flynn, J M; Gough, B J; Hazel, N M; Nieves, J; Shanahan, H P; Burford, D R; Duong, H D; Flynn, J M; Gough, B J; Hazel, N M; Nieves, J; Shanahan, H P

    1995-01-01

    We present a unified method for analysing form factors in B -> pi l nu-bar_l and B -> K* gamma decays. The analysis provides consistency checks on the q^2 and 1/M extrapolations necessary to obtain the physical decay rates. For the first time the q^2 dependence of the form factors is obtained at the B scale. In the B -> pi l nu-bar_l case, we show that pole fits to f^+ may not be consistent with the q^2 behaviour of f^0, leading to a possible factor of two uncertainty in the decay rate and hence in the value of |V_{ub}|^2 deduced from it. For B -> K* gamma, from the combined analysis of form factors T_1 and T_2, we find the hadronisation ratio R_{K^*} of the exclusive B -> K* gamma to the inclusive b -> s gamma rates is of order 35% or 15% for constant and pole-type behaviour of T_2 respectively.

  12. Factors influencing axial length and the predictive value of axial length for myopia%眼轴长度的影响因素及其近视预测价值

    Institute of Scientific and Technical Information of China (English)

    缪华茂; 莫晓芬

    2013-01-01

    眼轴长度(AL)即眼球前后径的长度,AL延长是导致近视发生发展最主要的因素,对其进行规律探索和机制研究在近视相关研究中具有非常重要的价值.目前已发现多种因素如年龄、性别、身高、父母近视人数、读写时间等可影响AL生长,AL相结合上述因素及其他眼部参数对儿童近视发生具有预测意义.现就AL的影响因素及其近视预测价值作一综述.%Axial length (AL) elongation is the major factor in the development of myopia so it is of great importance to study its growth pattern and mechanism.Factors like age,gender,height,parental myopia,and near work were found to have an influence on AL growth.AL combined with the above factors and other ocular parameters could be of value in predicting the onset of myopia.This article summarizes the risk factors for AL and the predictive value of AL for myopia.

  13. Nucleon form factors on the lattice with light dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-09-15

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  14. η' transition form factor from space- and timelike experimental data

    Science.gov (United States)

    Escribano, R.; Gonzàlez-Solís, S.; Masjuan, P.; Sanchez-Puertas, P.

    2016-09-01

    The η' transition form factor is reanalyzed in view of the recent first observation by BESIII of the Dalitz decay η'→γ e+e- in both space- and timelike regions at low and intermediate energies using the Padé approximants method. The present analysis provides a suitable parametrization for reproducing the measured form factor in the whole energy region and allows one to extract the corresponding low-energy parameters together with a prediction of their values at the origin, related to Γη'→γ γ , and the asymptotic limit. The η - η' mixing is reassessed within a mixing scheme compatible with the large-Nc chiral perturbation theory at next-to-leading order, with particular attention to the Okubo-Zweig-Iizuka-rule-violating parameters. The J /ψ , Z →η(')γ decays are also considered and predictions are reported.

  15. On Form Factors in N=4 SYM Theory and Polytopes

    CERN Document Server

    Bork, L V

    2014-01-01

    In this paper we discuss different recursion relations (BCFW and all-line shift) for the form factors of the operators from the $\\mathcal{N}=4$ SYM stress-tensor current supermultiplet $T^{AB}$ in momentum twistor space. We show that cancelations of spurious poles and equivalence between different types of recursion relations can be naturally understood using geometrical interpretation of the form factors as special limit of the volumes of polytopes in $\\mathbb{C}\\mathbb{P}^4$ in close analogy with the amplitude case. We also show how different relations for the IR pole coefficients can be easily derived using momentum twistor representation. This opens an intriguing question - which of powerful on-shell methods and ideas can survive off-shell ?

  16. Measurement of the gamma gamma* -> pi0 transition form factor

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2009-06-02

    We study the reaction e{sup +}e{sup -} {yields} e{sup +}e{sup -}{pi}{sup 0} in the single tag mode and measure the differential cross section d{sigma}/dQ{sup 2} and the {gamma}{gamma}* {yields} {pi}{sup 0} transition form factor in the mometum transfer range from 4 to 40 GeV{sup 2}. At Q{sup 2} > 10 GeV{sup 2} the measured form factor exceeds the asymptotic limit predicted by perturbative QCD. The analysis is based on 442 fb{sup -1} of integrated luminosity collected at PEP-II with the BABAR detector at e{sup +}e{sup -} center-of-mass energies near 10.6 GeV.

  17. Octet baryon electromagnetic form factors in a relativistic quark model

    CERN Document Server

    Ramalho, G

    2011-01-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  18. Flavor Analysis of Nucleon, Δ , and Hyperon Electromagnetic Form Factors

    Science.gov (United States)

    Rohrmoser, Martin; Choi, Ki-Seok; Plessas, Willibald

    2017-03-01

    By the analysis of the world data base of elastic electron scattering on the proton and the neutron (for the latter, in fact, on ^2H and ^3He) important experimental insights have recently been gained into the flavor compositions of nucleon electromagnetic form factors. We report on testing the Graz Goldstone-boson-exchange relativistic constituent-quark model in comparison to the flavor contents in low-energy nucleons, as revealed from electron-scattering phenomenology. It is found that a satisfactory agreement is achieved between theory and experiment for momentum transfers up to Q^2˜ 4 GeV^2, relying on three-quark configurations only. Analogous studies have been extended to the Δ and the hyperon electromagnetic form factors. For them we here show only some sample results in comparison to data from lattice quantum chromodynamics.

  19. Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Gilberto Ramalho, Kazuo Tsushima

    2011-09-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  20. A reanalysis of Rosenbluth measurements of the proton form factors

    CERN Document Server

    Gramolin, A V

    2016-01-01

    We present a reanalysis of the data from SLAC experiments E140 [R. C. Walker et al., Phys. Rev. D 49, 5671 (1994)] and NE11 [L. Andivahis et al., Phys. Rev. D 50, 5491 (1994)] on elastic electron-proton scattering. This work is motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the $Q^2$ range from 1 to 8.83 $\\text{GeV}^2$. We also provide a complete set of revised formulas to account for radiative corrections in single-arm measurements of unpolarized elastic electron-proton scattering.

  1. Reanalysis of Rosenbluth measurements of the proton form factors

    Science.gov (United States)

    Gramolin, A. V.; Nikolenko, D. M.

    2016-05-01

    We present a reanalysis of the data from Stanford Linear Accelerator Center (SLAC) experiments E140 [R. C. Walker et al., Phys. Rev. D 49, 5671 (1994), 10.1103/PhysRevD.49.5671] and NE11 [L. Andivahis et al., Phys. Rev. D 50, 5491 (1994), 10.1103/PhysRevD.50.5491] on elastic electron-proton scattering. This work is motivated by recent progress in calculating the corresponding radiative corrections and by the apparent discrepancy between the Rosenbluth and polarization transfer measurements of the proton electromagnetic form factors. New, corrected values for the scattering cross sections are presented, as well as a new form factor fit in the Q2 range from 1 to 8.83 GeV2. We also provide a complete set of revised formulas to account for radiative corrections in single-arm measurements of unpolarized elastic electron-proton scattering.

  2. Nucleon electromagnetic form factors in two-flavour QCD

    CERN Document Server

    Capitani, S; Djukanovic, D; von Hippel, G; Hua, J; Knippschild, B Jäger B; Meyer, H B; Rae, T D; Wittig, H

    2015-01-01

    We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall u...

  3. Triton Electric Form Factor at Low-Energies

    CERN Document Server

    Sadeghi, H

    2009-01-01

    Making use of the Effective Field Theory(EFT) expansion recently developed by the authors, we compute the charge form factor of triton up to next-to-next-to-leading order (N$^2$LO). The three-nucleon forces(3NF) is required for renormalization of the three-nucleon system and it effects are predicted for process and is qualitatively supported by available experimental data. We also show that, by including higher order corrections, the calculated charge form factor and charge radius of $^3$H are in satisfactory agreement with the experimental data and the realistic Argonne $v_{18}$ two-nucleon and Urbana IX potential models calculations. This method makes possible a high precision few-body calculations in nuclear physics. Our result converges order by order in low energy expansion and also cut-off independent.

  4. Form factors for semi-leptonic B decays

    CERN Document Server

    Zhou, Ran; Bailey, Jon A; Du, Daping; El-Khadra, Aida X; Jain, R D; Kronfeld, Andreas S; Van de Water, Ruth S; Liu, Yuzhi; Meurice, Yannick

    2012-01-01

    We report on form factors for the B->K l^+ l^- semi-leptonic decay process. We use several lattice spacings from a=0.12 fm down to 0.06 fm and a variety of dynamical quark masses with 2+1 flavors of asqtad quarks provided by the MILC Collaboration. These ensembles allow good control of the chiral and continuum extrapolations. The b-quark is treated as a clover quark with the Fermilab interpretation. We update our results for f_\\parallel and f_\\perp, or, equivalently, f_+ and f_0. In addition, we present new results for the tensor form factor f_T. Model independent results are obtained based upon the z-expansion.

  5. Two-photon transition form factor of c ¯ quarkonia

    Science.gov (United States)

    Chen, Jing; Ding, Minghui; Chang, Lei; Liu, Yu-xin

    2017-01-01

    The two-photon transition of c ¯c quarkonia are studied within a covariant approach based on the consistent truncation scheme of the quantum chromodynamics Dyson-Schwinger equation for the quark propagator and the Bethe-Salpeter equation for the mesons. We find the decay widths of ηc→γ γ and χc 0 ,2→γ γ in good agreement with experimental data. The obtained transition form factor of ηc→γ γ* for a wide range of spacelike photon-momentum-transfer squared is also in agreement with the experimental findings of the BABAR experiment. As a by-product, the decay widths of ηb,χb 0 ,2→γ γ and the transition form factor of ηb,χc 0 ,b 0→γ γ* are predicted, which await experimental testing.

  6. Dirac and Pauli form factors from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2011-06-15

    We present a comprehensive analysis of the electromagnetic form factors of the nucleon from a lattice simulation with two flavors of dynamical O(a)-improved Wilson fermions. A key feature of our calculation is that we make use of an extensive ensemble of lattice gauge field configurations with four different lattice spacings, multiple volumes, and pion masses down to m{sub {pi}}{proportional_to}180 MeV. We find that by employing Kelly-inspired parametrizations for the Q{sup 2}-dependence of the form factors, we are able to obtain stable fits over our complete ensemble. Dirac and Pauli radii and the anomalous magnetic moments of the nucleon are extracted and results at light quark masses provide evidence for chiral non-analytic behavior in these fundamental observables. (orig.)

  7. Massive three-loop form factor in the planar limit

    CERN Document Server

    Henn, Johannes; Smirnov, Vladimir A; Steinhauser, Matthias

    2016-01-01

    We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors $F_1$ and $F_2$ in the large-$N_c$ limit. The analytic results are expressed in terms of Goncharov polylogarithms. This allows for a straightforward numerical evaluation. We also derive series expansions, including power suppressed terms, for three kinematic regions corresponding to small and large invariant masses of the photon momentum, and small velocities of the heavy quarks.

  8. FACTORS AFFECTING FORMING PRECISION IN PATTERNLESS CASTING MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The patternless casting manufacturing(PCM) technique adopts a new method of double scanning which combines the principle of discreteness and deposition with the resin-bonded sand technique.Two main factors, the liquid penetration regularities in the space between particles and the shape and dimension of the agglomeration unit body, are studied qualitatively and quantitatively.This provides the theoretical basis for selecting the forming technical parameters.The experiments verify the analysis.

  9. Calculation of the π Meson Electromagnetic Form Factor

    Institute of Scientific and Technical Information of China (English)

    王志刚; 汪克林; 完绍龙

    2001-01-01

    The modified flat-bottom potential (MFBP) is given by the combination of the flat-bottom potential with considerations for the infrared and ultraviolet asymptotic behaviour of the effective quark-gluon coupling. The πmeson electromagnetic form factor is calculated in the framework of the coupled Schwinger-Dyson equation andthe Bethe-Salpeter equation in the simplified impulse approximation (dressed vertex) with the MFBP. All ournumerical results give a good fit to experimental values.

  10. Low Energy Constants from Kl4 Form-Factors

    CERN Document Server

    Amorós, G; Talavera, P

    2000-01-01

    We have calculated the form-factors F and G in K ---> pi pi e nu decays (Kl4) to two-loop order in Chiral Perturbation Theory (ChPT). Combining this together with earlier two-loop calculations an updated set of values for the L's, the ChPT constants at p^4, is obtained. We discuss the uncertainties in the determination and the changes compared to previous estimates.

  11. Modern Youth Sub-Cultures: Characteristic Features, Forming Factors

    Directory of Open Access Journals (Sweden)

    D A Koltunov

    2011-09-01

    Full Text Available The growing complexity of today's world, faster social and technological innovations and the resulting impossibility to explain the universe in terms of the classical, traditional systems lead to the emergence of new social and cultural patterns, behavioral standards and particular thinking which make up new sub-cultural paradigms. In this article the author attempts to identify the basic factors forming youth sub-cultures and define their peculiar features in contemporary Russian society.

  12. Flavour decomposition of electromagnetic transition form factors of nucleon resonances

    CERN Document Server

    Segovia, Jorge

    2016-01-01

    In Poincar\\'e-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike, interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the nucleon's elastic and nucleon-to-Roper transition electromagnetic form factors, providing flavour-separation versions that can be tested at modern facilities.

  13. Strong CP violation and the neutron electric dipole form factor

    CERN Document Server

    Kuckei, J; Faessler, A; Gutsche, T; Kovalenko, S; Lyubovitskij, V E; Pumsa-ard, K; Dib, Claudio; Faessler, Amand; Gutsche, Th.; Kovalenko, Sergey

    2005-01-01

    We calculate the neutron electric dipole form factor induced by the CP violating theta-term of QCD, within a perturbative chiral quark model which includes pion and kaon clouds. On this basis we derive the neutron electric dipole moment and the electron-neutron Schiff moment. From the existing experimental upper limits on the neutron electric dipole moment we extract constraints on the theta-parameter and compare our results with other approaches.

  14. Pion transverse charge density from timelike form factor data

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Miller, Mark Strikman, Christian Weiss

    2011-01-01

    The transverse charge density in the pion can be represented as a dispersion integral of the imaginary part of the pion form factor in the timelike region. This formulation incorporates information from e+e- annihilation experiments and allows one to reconstruct the transverse density much more accurately than from the spacelike pion form factor data alone. We calculate the transverse density using an empirical parametrization of the timelike pion form factor and estimate that it is determined to an accuracy of ~10% at a distance b ~ 0.1 fm, and significantly better at larger distances. The density is found to be close to that obtained from a zero-width rho meson pole over a wide range and shows a pronounced rise at small distances. The resulting two-dimensional image of the fast-moving pion can be interpreted in terms of its partonic structure in QCD. We argue that the singular behavior of the charge density at the center requires a substantial presence of pointlike configurations in the pion's partonic wave function, which can be probed in other high-momentum transfer processes.

  15. Finite volume form factors and correlation functions at finite temperature

    CERN Document Server

    Pozsgay, Balázs

    2009-01-01

    In this thesis we investigate finite size effects in 1+1 dimensional integrable QFT. In particular we consider matrix elements of local operators (finite volume form factors) and vacuum expectation values and correlation functions at finite temperature. In the first part of the thesis we give a complete description of the finite volume form factors in terms of the infinite volume form factors (solutions of the bootstrap program) and the S-matrix of the theory. The calculations are correct to all orders in the inverse of the volume, only exponentially decaying (residual) finite size effects are neglected. We also consider matrix elements with disconnected pieces and determine the general rule for evaluating such contributions in a finite volume. The analytic results are tested against numerical data obtained by the truncated conformal space approach in the Lee-Yang model and the Ising model in a magnetic field. In a separate section we also evaluate the leading exponential correction (the $\\mu$-term) associate...

  16. Convergent and discriminant validity of the Five Factor Form.

    Science.gov (United States)

    Rojas, Stephanie L; Widiger, Thomas A

    2014-04-01

    The current study tests the convergent and discriminant validity of a modified version of the Five Factor Model Rating Form (FFMRF), a one-page, brief measure of the five-factor model. The Five Factor Form (FFF) explicitly identifies maladaptive variants for both poles of each of the 30 facets of the FFMRF. The purpose of the current study was to test empirically whether this modified version still provides a valid assessment of the FFM, as well as to compare its validity as a measure of the FFM to other brief FFM measures. Two independent samples of 510 and 330 community adults were sampled, one third of whom had a history of some form of mental health treatment. The FFF was compared with three abbreviated and/or brief measures of the FFM (i.e., the FFMRF, the Ten Item Personality Inventory, and the Big Five Inventory), a more extended measure (i.e., International Personality Item Pool-NEO), an alternative measure of general personality (i.e., the HEXACO-Personality Inventory-Revised), and a measure of maladaptive personality functioning (i.e., the Personality Inventory for Diagnostic and Statistical Manual of Mental Disorders, 5th edition). The results of the current study demonstrated convergent and discriminant validity, even at the single-item facet level. © The Author(s) 2013.

  17. Helicity non-conserving form factor of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, E.; Furget, C.; Knox, S. [Universite Joseph Fourier, Grenoble (France)] [and others

    1994-04-01

    The study of the hadron structure in the high Q{sup 2} range contributes to the understanding of the mechanisms responsible for the confinement of quarks and gluons. Among the numerous experimental candidates sensitive to these mechanisms, the helicity non-conserving form factor of the proton is a privileged observable since it is controlled by non-perturbative effects. The authors investigate here the feasibility of high Q{sup 2} measurements of this form factor by means of the recoil polarization method in the context of the CEBAF 8 GeV facility. For that purpose, they discuss the development of a high energy proton polarimeter, based on the H({rvec p},pp) elastic scattering, to be placed at the focal plane of a new hadron spectrometer. It is shown that this experimental method significantly improves the knowledge of the helicity non-conserving form factor of the proton up to 10 GeV{sup 2}/c{sup 2}.

  18. $\\pi_{e3}$ form factor $f_{-}$ near mass shell

    CERN Document Server

    Krivoruchenko, M I

    2014-01-01

    Generalized Ward-Takahashi identity (gWTI) in the pion sector for broken isotopic symmetry is derived and used for the model-independent calculation of the longitudinal form factor $f_{-}$ of the $\\pi_{e3}$ vector vertex. The on-shell $f_{-}$ is found to be proportional to the mass difference of pions and the difference between vector isospin $ T = 1 $ and scalar isospin $ T = 2 $ pion radii. A numerical estimate of the form factor gives a value two times higher than the earlier estimate in the quark model. Off-shell form factors are known to be ambiguous because of the gauge dependence and the freedom in parameterization of the fields. The near-mass-shell $f_{-}$ appears to be an exception, allowing the experimental verification of the gWTI consequences. We calculate the near-mass-shell $f_{-}$ using the gWTI and dispersion techniques. The results are discussed in the context of the conservation of vector current (CVC) condition.

  19. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  20. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  1. [Mechanism of Smad 3 signaling pathway and connective tissue growth factor in the inhibition of form deprivation myopia by pirenzepine].

    Science.gov (United States)

    Ji, Xueying; Zhang, Jinsong; Wang, Yanting; Sun, Hongliang; Jia, Peisheng

    2009-04-01

    To observe the inhibitive effect of pirenzepine on form deprivation myopia in guinea pigs and to explore the mechanism of Smad3 signaling pathway and connective tissue growth factor (CTGF) in the inhibition of myopia by pirenzepine. Forty 1-week-old guinea pigs of either sex were randomly divided into 4 groups: a control group (Group I), a form deprivation group (Group II), a pirenzepine ophthalmic solution group (Group III), and a sodium chloride ophthalmic solution group (Group IV). Translucent blinders were used in the right eyes of Group II, III and IV. The left eyes were not given any treatment as the normal control group. Covered eyes of Group III and IV were given 3% pirenzepine ophthalmic solution and 0.1% azone ophthalmic solution respectively twice every day. Six weeks later, refraction and axial length were measured at the end of the experiment, and immunohistochemistry and Western blot were used to analyze the expression levels of Smad3 and CTGF in the sclera of all 4 groups. There was no significant difference between Group III and I in relative refraction and changes of axial length (P>0.05). The difference of Group II and IV compared with Group I was statistically significant (P0.05), while the difference in Group II, IV and I was significant (P0.05). Pirenzepine ophthalmic solution can inhibit the development of form deprivation myopia. Pirenzepine may affect Smad3 signaling pathway in the sclera by inhibiting the development of form deprivation myopia.

  2. Large-diameter compression arteries as a possible facilitating factor for trigeminal neuralgia: analysis of axial and radial diffusivity

    OpenAIRE

    2016-01-01

    Background Neurovascular compression (NVC) of the trigeminal nerve is associated with trigeminal neuralgia (TN). Some arteries that compress the trigeminal nerve are large, while others are small. This study evaluated the influence of diameter of compression arteries (DCA) on NVC with and without TN using axial diffusivity (AD) and radial diffusivity (RD) of magnetic resonance (MR) imaging. Methods Fifty TN patients with unilateral NVC, 50 asymptomatic patients with unilateral NVC, and 50 hea...

  3. Measurement of the generalized form factors near threshold via $\\gamma^* p \\to n\\pi^+$ at high $Q^2$

    CERN Document Server

    Park, Kijun; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Anghinolfi, Marco; Baghdasaryan, Hovhannes; Ball, Jacques; Battaglieri, Marco; Baturin, Vitaly; Bedlinskiy, Ivan; Bennett, Robert; Biselli, Angela; Bookwalter, Craig; Boyarinov, Sergey; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Charles, Gabriel; Cole, Philip; Contalbrigo, Marco; Crede, Volker; D'Angelo, Annalisa; Daniel, Aji; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Doughty, David; Dupre, Raphael; Alaoui, Ahmed El; Elfassi, Lamiaa; Eugenio, Paul; Fedotov, Gleb; Fradi, Ahmed; Gabrielyan, Marianna; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gohn, Wesley; Golovach, Evgeny; Graham, Lewis; Griffioen, Keith; Guidal, Michel; Guo, Lei; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Heddle, David; Hicks, Kenneth; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jenkins, David; Jo, Hyon-Suk; Joo, Kyungseon; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Kubarovsky, A; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Kvaltine, Nicholas; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Mestayer, Mac; Meyer, Curtis; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Moutarde, Herve; Espitia, Edwin Munevar; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Osipenko, Mikhail; Ostrovidov, Alexander; Paolone, Michael; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, Seungkyung; Pereira, Sergio; Phelps, Evan; Pisano, Silvia; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Procureur, Sebastien; Prok, Yelena; Ricco, Giovanni; Rimal, Dipak; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seraydaryan, Heghine; Sharabian, Youri; Smith, Elton; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Samuel; Stepanyan, Stepan; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tang, Wei; Taylor, Charles; Tian, Ye; Tkachenko, Svyatoslav; Trivedi, Arjun; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voutier, Eric; Watts, Daniel; Weygand, Dennis; Wood, Michael; Zachariou, Nicholas; Zhao, Bo; Zhao, Zhiwen; Kalantarians, N; Hyde, C E

    2012-01-01

    We report the first extraction of the pion-nucleon multipoles near the production threshold for the $n\\pi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $\\rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expected in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. The data analyzed in this work were collected by the nearly $4\\pi$ CEBAF Large Acceptance Spectrometer (CLAS) using a 5.754 $\\rm{GeV}$ electron beam on a proton target. The differential cross section and the $\\pi-N$-multipole $E_{0+}/G_D$ were measured using two different methods, the LCSR and a direct multipole fit. The results from the two methods are found to be consistent and almost $Q^2$ independent.

  4. Evolved QCD predictions for the meson-photon transition form factors: beyond the semiclassical AdS/QCD approximation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U. /Beijing Normal U.; de Teramond, Guy F.; /Costa Rica U.

    2011-11-04

    The QCD evolution of the pion distribution amplitude (DA) {phi}{sub {pi}} (x, Q{sup 2}) is computed for several commonly used models. Our analysis includes the nonperturbative form predicted by lightfront holographic QCD, thus combining the nonperturbative bound state dynamics of the pion with the perturbative ERBL evolution of the pion distribution amplitude. We calculate the meson-photon transition form factors for the {pi}{sup 0}, {eta} and {eta}' using the hard-scattering formalism. We point out that a widely-used approximation of replacing {phi} (x; (1 - x)Q) with {phi} (x;Q) in the calculations will unjustifiably reduce the predictions for the meson-photon transition form factors. It is found that the four models of the pion DA discussed give very different predictions for the Q{sup 2} dependence of the meson-photon transition form factors in the region of Q{sup 2} > 30 GeV{sup 2}. More accurate measurements of these transition form factors at the large Q{sup 2} region will be able to distinguish the four models of the pion DA. The rapid growth of the large Q{sup 2} data for the pion-photon transition form factor reported by the BABAR Collaboration is difficult to explain within the current framework of QCD. If the BABAR data for the meson-photon transition form factor for the {pi}{sup 0} is confirmed, it could indicate physics beyond-the-standard model, such as a weakly-coupled elementary C = + axial vector or pseudoscalar z{sup 0} in the few GeV domain, an elementary field which would provide the coupling {gamma}{sup *}{gamma} {yields} z{sup 0} {yields} {pi}{sup 0} at leading twist. Our analysis thus indicates the importance of additional measurements of the pion-photon transition form factor at large Q{sup 2}.

  5. Electromagnetic rho-meson form factors in point-form relativistic quantum mechanics

    CERN Document Server

    Biernat, Elmar P

    2014-01-01

    The relativistic point-form formalism which we proposed for the study of the electroweak structure of few-body bound states is applied to calculate the elastic form factors of spin-1 mesons, such as the rho, within constituent-quark models. We treat electron-meson scattering as a Poincare-invariant coupled-channel problem for a Bakamjian-Thomas mass operator and extract the meson current from the resulting invariant 1-photon-exchange amplitude. Wrong cluster properties inherent in the Bakamjian-Thomas framework are seen to cause spurious contributions in the current. These contributions, however, can be separated unambiguously from the physical ones and we end up with a meson current with all required properties. Numerical results for the rho-meson form factors are presented assuming a simple harmonic-oscillator bound-state wave function. The comparison with other approaches reveals a remarkable agreement of our results with those obtained within the covariant light-front scheme proposed by Carbonell et al.

  6. Forms and factors of peer violence and victimisation

    Directory of Open Access Journals (Sweden)

    Dinić Bojana

    2014-01-01

    Full Text Available The main aim of this study was to explore the latent structure of violence and victimisation based on the factor analysis of the Peer Violence and Victimisation Questionnaire (PVVQ, as well as to examine the correlates of violence and victimisation. The sample included 649 secondary school students (61.8% male from the urban area. Besides the PVVQ, the Aggressiveness questionnaire AVDH was administered. Based on parallel analysis, three factors were extracted in the violence domain, as well as in the victimisation domain of the PVVQ. The factors were interpreted as a physical, verbal and relational form of violence and victimisation, which is in line with common classifications. The correlations of those forms with the aggressiveness dimensions were positive. The relationships with gender, school grade and school achievement referred to the importance of interaction effects between the mentioned characteristics of students and the tendency towards violence or being exposed to it. The main result is that boys from lower school grades and students with lower school achievement in general, are more prone to manifesting physical violence and more often are the target of physical violence. These groups of students are the target groups for preventive programs. The resulting effects indicated the complexity of the violence phenomenon and pointed to the need to consider the wider context of student’s characteristics in the determination of violence. [Projekat Ministarstva nauke Republike Srbije, br. 179037 i br. 179053

  7. Clostridial pore-forming toxins: powerful virulence factors.

    Science.gov (United States)

    Popoff, Michel R

    2014-12-01

    Pore formation is a common mechanism of action for many bacterial toxins. More than one third of clostridial toxins are pore-forming toxins (PFTs) belonging to the β-PFT class. They are secreted as soluble monomers rich in β-strands, which recognize a specific receptor on target cells and assemble in oligomers. Then, they undergo a conformational change leading to the formation of a β-barrel, which inserts into the lipid bilayer forming functional pore. According to their structure, clostridial β-PFTs are divided into several families. Clostridial cholesterol-dependent cytolysins form large pores, which disrupt the plasma membrane integrity. They are potent virulence factors mainly involved in myonecrosis. Clostridial heptameric β-PFTs (aerolysin family and staphylococcal α-hemolysin family) induce small pores which trigger signaling cascades leading to different cell responses according to the cell types and toxins. They are mainly responsible for intestinal diseases, like necrotic enteritis, or systemic diseases/toxic shock from intestinal origin. Clostridial intracellularly active toxins exploit pore formation through the endosomal membrane to translocate the enzymatic component or domain into the cytosol. Single chain protein toxins, like botulinum and tetanus neurotoxins, use hydrophobic α-helices to form pores, whereas clostridial binary toxins encompass binding components, which are structurally and functionally related to β-PFTs, but which have acquired the specific activity to internalize their corresponding enzymatic components. Structural analysis suggests that β-PFTs and binding components share a common evolutionary origin.

  8. Dispersive analysis of the scalar form factor of the nucleon

    CERN Document Server

    Hoferichter, M; Kubis, B; Meißner, U -G

    2012-01-01

    Based on the recently proposed Roy-Steiner equations for pion-nucleon scattering, we derive a system of coupled integral equations for the pi pi --> N-bar N and K-bar K --> N-bar N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnes problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including K-bar K intermediate states. In particular, we determine the correction Delta_sigma=sigma(2M_pi^2)-sigma_{pi N}, which is needed for the extraction of the pion-nucleon sigma term from pi N scattering, as a function of pion-nucleon subthreshold parameters and the pi N coupling constant.

  9. Electric and magnetic form factors of the proton

    CERN Document Server

    Bernauer, J C; Friedrich, J.; Walcher, Th.; Achenbach, P.; Gayoso, C. Ayerbe; Böhm, R.; Bosnar, D.; Debenjak, L.; Doria, L.; Esser, A.; Fonvieille, H.; Gomez Rodriguez de la Paz, M.; Friedrich, J.M.; Makek, M.; Merkel, H.; Middleton, D.G.; Müller, U.; Nungesser, L.; Pochodzalla, J.; Potokar, M.; Sanchez Majos, S.; Schlimme, B.S.; Sirca, S.; Weinriefer, M.

    2014-01-01

    The paper describes a precise measurement of electron scattering off the proton at momentum transfers of $0.003 \\lesssim Q^2 \\lesssim 1$\\ GeV$^2$. The average point-to-point error of the cross sections in this experiment is $\\sim$ 0.37%. These data are used for a coherent new analysis together with all world data of unpolarized and polarized electron scattering from the very smallest to the highest momentum transfers so far measured. The extracted electric and magnetic form factors provide new insight into their exact shape, deviating from the classical dipole form, and of structure on top of this gross shape. The data reaching very low $Q^2$ values are used for a new determination of the electric and magnetic radii. An empirical determination of the Two-Photon-Exchange (TPE) correction is presented. The implications of this correction on the radii and the question of a directly visible signal of the pion cloud are addressed.

  10. Bonner Prize: The Elastic Form Factors of the Nucleon

    Science.gov (United States)

    Perdrisat, Charles F.

    2017-01-01

    A series of experiments initiated in 1998 at the then new Continuous Electron Beam Accelerator, or CEBAF in Newport News Virginia, resulted in unexpected results, changing significantly our understanding of the structure of the proton. These experiments used a relatively new technique to obtain the ratio of the two form factors of the proton, namely polarization. An intense beam of highly polarized electrons with energy up to 6 GeV was made to interact elastically with un-polarized protons in a hydrogen target. The polarization of the recoiling protons, with energies up to 5 GeV, was measured from a second interaction in a polarimeter consisting of blocs of graphite or CH2 and tracking wire chambers. The scattered electrons were detected in an electromagnetic lead-glass calorimeter, to select elastically scattered events. After a short introduction describing the path which brought me from the University of Geneva to the College of William and Mary in 1966, I will introduce the subject of elastic electron scattering, describe some of the apparatus required for such experiments, and show the results which were unexpected at the time. These results demonstrated unequivocally that the two form factors required to describe elastic ep scattering, electric GE and magnetic GM in the Born approximation, had a drastically different dependence upon the four-momentum squared q2 = q2 -ω2 with q the momentum, and ω the energy transferred in the reaction. The finding, in flagrant disagreement with the data available at the time, which had been obtained dominantly from cross section measurements of the type first used by Nobel Prize R. Hofstadter 60 years ago, have led to a reexamination of the information provided by form factors on the structure of the nucleon, in particular its quark-gluon content. The conclusion will then be a brief outline of several theoretical considerations to put the results in a proper perspective.

  11. Scattering form factors for self-assembled network junctions

    Science.gov (United States)

    Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.

    2007-11-01

    The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.

  12. Measurement of the π0 electromagnetic transition form factor slope

    Directory of Open Access Journals (Sweden)

    C. Lazzeroni

    2017-05-01

    Full Text Available The NA62 experiment collected a large sample of charged kaon decays in 2007 with a highly efficient trigger for decays into electrons. A measurement of the π0 electromagnetic transition form factor slope parameter from 1.11×106 fully reconstructed K±→π±πD0, πD0→e+e−γ events is reported. The measured value a=(3.68±0.57×10−2 is in good agreement with theoretical expectations and previous measurements, and represents the most precise experimental determination of the slope in the time-like momentum transfer region.

  13. Baryon octet electromagnetic form factors in a confining NJL model

    Directory of Open Access Journals (Sweden)

    Manuel E. Carrillo-Serrano

    2016-08-01

    Full Text Available Electromagnetic form factors of the baryon octet are studied using a Nambu–Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp

  14. Kaon Eletromagnetic Form Factor in the Light-Front Formalism

    CERN Document Server

    Pereira, F P; Frederico, T; Tomio, L; Pereira, Fabiano P.; Tomio, Lauro

    2005-01-01

    Numerical calculations are performed and compared to the experimental data for the electromagnetic form factor of the kaon, which is extracted from both components of the electromagnetic current, $J^{+}$ and $J^{-}$, with a pseudo-scalar coupling of the quarks to the kaon. In the case of $J^{+}$ there is no pair term contribution in the Drell-Yan frame ($q^{+}=0$). However, for $J^{-}$, the pair term contribution is different from zero and necessary in order to preserve the rotational symmetry of the current. The free parameters are the quark masses and the regulator mass.

  15. The JLab polarization transfer measurements of proton elastic form factor

    Indian Academy of Sciences (India)

    C F Perdrisat; V Punjabi

    2003-11-01

    The ratio of the electric and magnetic proton form factors, /, has been obtained in two Hall A experiments, from measurements of the longitudinal and transverse polarizations of the recoil proton, ℓ and , in the elastic scattering of polarized electrons, $\\overrightarrow{e}p→ e\\overrightarrow{p}$. Together these experiments cover the 2 range of 0.5 to 5.6 GeV2. A new experiment is currently being prepared, to extend the 2 range to 9 GeV2 in Hall C.

  16. CEBAF at higher energies and the kaon electromagnetic form factor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, O.K.

    1994-04-01

    The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.

  17. Nucleon electromagnetic form factors in twisted mass lattice QCD

    CERN Document Server

    Alexandrou, C; Carbonell, J; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Korzec, T; Papinutto, M

    2011-01-01

    We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.

  18. Minimal form factor digital-image sensor for endoscopic applications

    Science.gov (United States)

    Wäny, Martin; Voltz, Stephan; Gaspar, Fabio; Chen, Lei

    2009-02-01

    This paper presents a digital image sensor SOC featuring a total chip area (including dicing tolerances) of 0.34mm2 for endoscopic applications. Due to this extremely small form factor the sensor enables integration in endoscopes, guide wires and locater devices of less than 1mm outer diameter. The sensor embeds a pixel matrix of 10'000 pixels with a pitch of 3um x 3um covered with RGB filters in Bayer pattern. The sensor operates fully autonomous, controlled by an on chip ring oscillator and readout state machine, which controls integration AD conversion and data transmission, thus the sensor only requires 4 pin's for power supply and data communication. The sensor provides a frame rate of 40Frames per second over a LVDS serial data link. The endoscopic application requires that the sensor must work without any local power decoupling capacitances at the end of up to 2m cabling and be able to sustain data communication over the same wire length without deteriorating image quality. This has been achieved by implementation of a current mode successive approximation ADC and current steering LVDS data transmission. An band gap circuit with -40dB PSRR at the data frequency was implemented as on chip reference to improve robustness against power supply ringing due to the high series inductance of the long cables. The B&W versions of the sensor provides a conversion gain of 30DN/nJ/cm2 at 550nm with a read noise in dark of 1.2DN when operated at 2m cable. Using the photon transfer method according to EMVA1288 standard the full well capacity was determined to be 18ke-. According to our knowledge the presented work is the currently world smallest fully digital image sensor. The chip was designed along with a aspheric single surface lens to assemble on the chip without increasing the form factor. The extremely small form factor of the resulting camera permit's to provide visualization with much higher than state of the art spatial resolution in sub 1mm endoscopic

  19. Tests of Higgs boson compositeness through the HHH form factor

    CERN Document Server

    Gounaris, G J

    2015-01-01

    We show how the $q^2$-dependence of the triple Higgs boson HHH form factor can reveal the presence of various types of new physics contributions, like new particles coupled to the Higgs boson or Higgs boson constituents, without directly observing them. We compare the effect of such new contributions to the one of higher order SM corrections to the point-like HHH coupling, due to triangle, 4-leg and s.e. diagrams. We establish simple analytic expressions describing accurately at high energy these SM corrections, as well as the examples of new physics contributions.

  20. Neutral pion form factor measurement at NA62

    CERN Document Server

    Goudzovski, Evgueni

    2016-01-01

    The NA62 experiment at CERN collected a large sample of charged kaon decays with a highly efficient trigger for decays into electrons in 2007. The kaon beam represents a source of tagged neutral pion decays in vacuum. A measurement of the electromagnetic transition form factor slope of the neutral pion in the time-like region from $1.05\\times10^6$ fully reconstructed $\\pi^0$ Dalitz decay is presented. The limits on dark photon production in $\\pi^0$ decays from the earlier kaon experiment at CERN, NA48/2, are also reported.

  1. Introducing soil forming factors with mini campus field trips

    Science.gov (United States)

    Quinton, John; Haygarth, Phil

    2013-04-01

    Students like field work, yet the proportion of time spent in the field during many soil science courses is small. Here we describe an introductory lecture on the soil forming factors based around a mini field trip in which we spend 45 minutes exploring these factors on the Lancaster University campus. In the 'trip' we visit some woodland to consider the effects of organic matter , vegetation and time on soil development and then take in a football pitch to examine the effects of landscape position, parent material and climate. Student responses are overwhelmingly positive and we suggest that more use can be made of our often mundane surroundings to explore soil formation. Soil functions and soil processes.

  2. Measurement of the Neutral Weak Form Factors of the Proton

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre; Fleck, Andre; Saha, Arunava; Gasparian, Ashot; Frois, Bernard; Wojtsekhowski, Bogdan; Vlahovic, Branislav; Perdrisat, Charles; Cavata, Christian; Jutier, Christophe; De Jager, Cornelis; Neyret, Damien; Dale, Daniel; Armstrong, David; Lhuillier, David; Prout, David; Margaziotis, Demetrius; Kim, Donghee; Burtin, Etienne; Chudakov, Eugene; Hersman, F.; Garibaldi, Franco; Marie, Frederic; Miller, Greg; Rutledge, Gary; Gerstner, George; Petratos, Gerassimos; Quemener, Gilles; Cates, Gordon; Thompson, J.; Martino, Jacques; Gomez, Javier; Jorda, Jean-Paul; Hansen, Jens-Ole; Chen, Jian-Ping; Jardillier, Johann; Calarco, John; LeRose, John; Price, John; Gao, Juncai; McIntyre, Justin; McCormick, Kathy; Fissum, Kevin; Kramer, Kevin; Aniol, Konrad; Kumar, Krishna; Wijesooriya, Krishni; Ewell, Lars; Todor, Luminita; Spradlin, Marcus; Jones, Mark; Leuschner, Mark; Epstein, Martin; Baylac, Maud; Holtrop, Maurik; Finn, Michael; Kuss, Michael; Kim, Min; Falletto, Nicolas; Liyanage, Nilanga; Glamazdin, Oleksandr; Rutt, Paul; Souder, Paul; Ulmer, Paul; Mastromarino, Peter; Djawotho, Pibero; Wilson, Richard; Suleiman, Riad; Holmes, Richard; Madey, Richard; Lourie, Robert; Michaels, Robert; Pomatsalyuk, Roman; Gilman, Ronald; Incerti, Sebastien; Escoffier, Stephanie; Pussieux, Thierry; Humensky, Thomas; Gorbenko, Viktor; Punjabi, Vina; Kahl, William; Meziani, Zein-Eddine

    1999-02-01

    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The kinematic point [(Thetalab) = 12.3r and (Q2) = 0.48 (GeV/c)2] is chosen to provide sensitivity, at a level that is of theoretical interest, to the strange electric form factor GsE. The result, A = - 14.5 + or - 2.2 ppm, is consistent with the electroweak standard model and no additional contributions from strange quarks. In particular, the measurement implies GsE + 0.39GsM = 0.023 + or - 0.034(stat) + or - 0.022(syst) + or - 0.026(delta-GnE), where the last uncertainty arises from the estimated uncertainty in the neutron electric form factor.

  3. Vector meson dominance and the pi^0 transition form factor

    CERN Document Server

    Lichard, Peter

    2010-01-01

    It is shown that the pi^0 transition form factor F(Q_1^2,Q_2^2) differs substantially from its one-real-photon limit F(Q_1^2,0) even for rather small values of Q_2^2 (approx 0.1 GeV^2), which cannot be excluded in experiments with one "untagged" electron. It indicates that the comparison of data with theoretical calculations, which usually assume Q_2^2=0, may be untrustworthy. Our phenomenological model of the pi^0 transition form factor is based on the vector-meson-dominance (VMD) hypothesis and all its parameters are fixed by using the experimental data on the decays of vector mesons. The model soundness is checked in the two-real-photon limit, where it provides a good parameter-free description of the pi^0 -> 2 gamma decay rate, and in the pi^0 Dalitz decay. The dependence of F(Q_1^2,Q_2^2) on Q_1^2 at several fixed values of Q_2^2 is presented and the comparison with existing data performed.

  4. Measurement of the $\\Lambda_{b}^{0}$ Decay Form Factor

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M

    2004-01-01

    The form factor of Lambda_b^0 baryons is estimated using 3.46 10^6 hadronic Z decays collected by the DELPHI experiment between 1992 and 1995. Charmed Lambda_c^+ baryons fully reconstructed in the pK-pi+, pK0_S, and Lambda pi+pi+pi- modes, are associated to a lepton with opposite charge in order to select Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l decays. From a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable w, and using the Heavy Quark Effective Theory (HQET), the slope of the b-baryon form factor is measured to be: rho-hat^2 = 2.03 +/- 0.46 (stat) ^{+0.72}_{-1.00} (syst). The exclusive semileptonic branching fraction Br(Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l) can be derived from rho-hat^2 and is found to be (5.0^{+1.1}_{-0.8} (stat) ^{+1.6}_{-1.2} (syst))%. Limits on other branching fractions are also obtained.

  5. Golimumab for treatment of axial spondyloarthritis.

    Science.gov (United States)

    Rios Rodriguez, Valeria; Poddubnyy, Denis

    2016-02-01

    Axial spondyloarthritis comprises two forms: nonradiographic (nonradiographic axial spondyloarthritis) and radiographic (better known as ankylosing spondylitis), which are often considered as two stages of one disease. Historically, all currently available TNF-α inhibitors were first investigated in ankylosing spondylitis and later on in nonradiographic axial spondyloarthritis. This year, EMA has granted golimumab approval for the treatment of active nonradiographic axial spondyloarthritis based on the recently published data from the GO-AHEAD study. This article summarizes recent data on efficacy and safety of golimumab in the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis.

  6. Electromagnetic form factors and static properties of the nucleon in a relativistic potential model of independent quarks with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-10-01

    Nucleon charge and magnetic form factors G/sub E//sub ,//sub M//sup p//sup ,//sup n/(q/sup 2/) have been presented in a quark model with an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into account. The static properties such as the magnetic moment, charge radius, and axial-vector coupling constant in the neutron-..beta..-decay process are shown to be in excellent agreement with the corresponding experimental values. The role of the finite extension of the quark-pion vertex in determining the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has been studied.

  7. Pion Form Factor in QCD at Intermediate Momentum Transfers

    CERN Document Server

    Braun, V M; Maul, M

    1999-01-01

    We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors the asymptotic profile of the pion distribution amplitude and allows to estimate the deviation: $(\\int du/u \\phi_\\pi(u))/ (\\int du/u \\phi^{\\rm as}_\\pi(u))=$ 1.1$\\pm$ 0.1 at the scale 1 GeV. Special attention is payed to the precise definition and interplay of soft and hard contributions at intermediate momentum transfer, and to matching of the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft (end point) contribution and power suppressed hard contributions of higher twist, so that the total nonperturbative correction to the usual pQCD result turns out to be of order 30% for $Q^2\\sim 1$ GeV$^2$.

  8. Study of the phi-pi0 transition form factor

    CERN Document Server

    Pacetti, Simone

    2009-01-01

    Recently the BaBar Collaboration published new data on the cross section for the annihilation e+e- -> phi pi0, obtained using the initial state radiation technique at a center of mass energy of 10.6 GeV. Such a process represents an interesting test bed for the quark model. Indeed, since the phi-pi0 production via e+e- annihilation proceeds through a mechanism which violates the Okubo-Zweig-Iizuka rule, the corresponding cross section could be characterized by contributions from non-qqbar bound states, like hybrids or tetraquarks. The phi-pi0 cross section is analyzed in connection with other data coming from different processes, that involve the same mesons, using a method which implements the analyticity in the phi-pi0 transition form factor by means of a dispersion relation procedure.

  9. Geometrical form factor calculation using Monte Carlo integration for lidar

    Science.gov (United States)

    Mao, Feiyue; Gong, Wei; Li, Jun

    2012-06-01

    We proposed a geometrical form factor (GFF) calculation using Monte Carlo integration (GFF-MC) for lidar that is practical and can be applied to any laser intensity distribution. Theoretical results have been calculated with our method based on the functions of measured, uniform and Gaussian laser intensity distribution. Two experimental GFF traces on clear days are obtained to verify the validity of the theoretical results. The results indicated that the measured distribution function outperformed the Gaussian and uniform functions. That means that the deviation of the measured laser intensity distribution from an ideal one can be too large to neglect. In addition, the theoretical GFF of the uniform distribution had a larger error than that of the Gaussian distribution. Furthermore, the effects of the inclination angle of the laser beam and the central obstruction of the support structure of the second mirror of the telescope are discussed in this study.

  10. Thin and small form factor cells : simulated behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Clews, Peggy Jane; Pluym, Tammy; Grubbs, Robert K.; Cruz-Campa, Jose Luis; Zubia, David (University of Texas at El Paso, El Paso, TX); Young, Ralph Watson; Okandan, Murat; Gupta, Vipin P.; Nielson, Gregory N.; Resnick, Paul James

    2010-07-01

    Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells, and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.

  11. Meson Form Factors and Deep Exclusive Meson Production Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Tanja [The Catholic Univ. of America, Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Pion and kaon electroproduction data play a unique role in Nature and our understanding of them is essential for explaining hadron structure. Precision longitudinaltransverse separated pion and kaon cross sections are of particular interest. They allow for the extraction of meson form factors and validation of understanding of hard exclusive and semi-inclusive reactions (π+, K+, π0, γ) towards 3D hadron imaging and potential future flavor decomposition. We review recent data and present prospects for deep exclusive pion and kaon electroproduction at the 12 GeV Jefferson Lab including the prospects to use projected charged- and neutral pion data to further determine the spin, charge-parity and flavor of GPDs, including the helicity-flip GPDs.

  12. The neutral pion form factor at NA62

    Science.gov (United States)

    Cenci, Patrizia

    2016-11-01

    In 2007 the NA62 experiment at CERN collected a large sample of charged kaon decays with a highly efficient trigger selecting events with electrons in the final state. The kaon beam represents a rich source of tagged neutral pion decays in vacuum. The electromagnetic transition form factor slope of the π0 in the time-like region has been measured from about 106 fully reconstructed π0 Dalitz decays collected in 2007. The preliminary result a = (3.68 ± 0.51stat ± 0.25syst) × 10-2 is the most precise to date. This value is compatible with theoretical expectations and consistent with the previous measurements.

  13. K -> pi l nu form factors with staggered quarks

    CERN Document Server

    Gamiz, E; El-Khadra, A X; Kronfeld, A S; Mackenzie, P B; Simone, J

    2011-01-01

    We report on the status of the Fermilab-MILC calculation of the form factor f_+^{K pi}(0), needed to extract the CKM matrix element |V_{us}| from experimental data on K semileptonic decays. The HISQ formulation is used in the simulations for the valence quarks, while the sea quarks are simulated with the asqtad action (MILC N_f=2+1 configurations). We discuss the general methodology of the calculation, including the use of twisted boundary conditions to get values of the momentum transfer close to zero and the different techniques applied for the correlators fits. We present initial results for lattice spacings a=0.12fm and a=0.09fm, and several choices of the light quark masses.

  14. Form factors and related quantities in clothed-particle representation

    Directory of Open Access Journals (Sweden)

    Shebeko Alexander

    2017-01-01

    Full Text Available We show new applications of the notion of clothed particles in quantum field theory. Its realization by means of the clothing procedure put forward by Greenberg and Schweber allows one to express the total Hamiltonian H and other generators of the Poincaré group for a given system of interacting fields through the creation (annihilation operators for the so-called clothed particles with physical (observed properties. Here such a clothed particle representation is used to calculate the matrix elements (shortly, form factors of the corresponding Nöther current operators sandwiched between the H eigenstates. Our calculations are performed with help of an iterative technique suggested by us earlier when constructing the NN → πNN transition operators. As an illustration, we outline some application of our approach in the spinor quantum electrodynamics.

  15. Current correlators and form factors in the resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, I. [Departamento de Ciencias Fisicas, Matematicas y de la Computacion, Universidad CEU Cardenal Herrera, c/Sant Bartomeu 55, E-46115 Alfara del Patriarca, Valencia (Spain); IFIC, Universitat de Valencia - CSIC, Apt. Correus 22085, E-46071 Valencia (Spain)

    2009-01-15

    Within Resonance Chiral Theory and in the context of QCD current correlators at next-to-leading order in 1/N{sub C}, we have analyzed the two-body form factors which include resonances as a final state. The short-distance constraints have been studied. One of the main motivations is the estimation of the chiral low-energy constants at subleading order, that is, keeping full control of the renormalization scale dependence. As an application we show the resonance estimation of some coupling, L{sub 10}{sup r}({mu}{sub 0})=(-4.4{+-}0.9).10{sup -3} and C{sub 87}{sup r}({mu}{sub 0})=(3.1{+-}1.1).10{sup -5}.

  16. Exposing strangeness: Projections for kaon electromagnetic form factors

    Science.gov (United States)

    Gao, Fei; Chang, Lei; Liu, Yu-Xin; Roberts, Craig D.; Tandy, Peter C.

    2017-08-01

    A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the experiment, Standard Model hard-scattering formulas are accurate to within 25% at momentum transfers Q2≈8 GeV2. There are measurable differences between the distribution of strange and normal matter within the kaons, e.g. the ratio of their separate contributions reaches a peak value of 1.5 at Q2≈6 GeV2. Its subsequent Q2 evolution is accurately described by the hard scattering formulas. Projections for the ratio of kaon and pion form factors at timelike momenta beyond the resonance region are also presented. These results and projections should prove useful in planning next-generation experiments.

  17. Lattice calculation of composite dark matter form factors

    CERN Document Server

    Appelquist, T; Buchoff, M I; Cheng, M; Cohen, S D; Fleming, G T; Kiskis, J; Lin, M F; Neil, E T; Osborn, J C; Rebbi, C; Schaich, D; Schroeder, C; Syritsyn, S N; Voronov, G; Vranas, P; Wasem, J

    2013-01-01

    Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV.

  18. Form factors and related quantities in clothed-particle representation

    Science.gov (United States)

    Shebeko, Alexander; Arslanaliev, Adam

    2017-03-01

    We show new applications of the notion of clothed particles in quantum field theory. Its realization by means of the clothing procedure put forward by Greenberg and Schweber allows one to express the total Hamiltonian H and other generators of the Poincaré group for a given system of interacting fields through the creation (annihilation) operators for the so-called clothed particles with physical (observed) properties. Here such a clothed particle representation is used to calculate the matrix elements (shortly, form factors) of the corresponding Nöther current operators sandwiched between the H eigenstates. Our calculations are performed with help of an iterative technique suggested by us earlier when constructing the NN → πNN transition operators. As an illustration, we outline some application of our approach in the spinor quantum electrodynamics.

  19. Measurement of Baryon Electromagnetic Form Factors at BESIII

    CERN Document Server

    Morales, Cristina Morales

    2016-01-01

    The Beijing $e^+e^-$-collider (BEPCII) is a double-ring symmetric collider running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows the BESIII-experiment to measure baryon electromagnetic form factors in direct $e^+e^-$-annihilation and in initial state radiation processes. In this paper, results on $e^+e^-\\rightarrow p\\bar{p}$ and $e^+e^-\\rightarrow \\Lambda \\bar{\\Lambda}$ based on data collected by BESIII in 2011 and 2012 are presented. Expectations from the BESIII high luminosity energy scan from 2015 and from radiative return at different center-of-mass energies are also reported.

  20. Conformal anomaly of generalized form factors and finite loop integrals

    CERN Document Server

    Chicherin, Dmitry

    2017-01-01

    We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an $\\ell-$loop integral is a 2nd-order differential equation whose right-hand side is an $(\\ell-1)-$loop integral. We show several examples, in particular the four-dimensional scalar double box.

  1. Form Factor $g$ In Longitudinal Space Charge Impedance

    CERN Document Server

    Baartman, R

    2015-01-01

    In carrying out calculations of the effect of longitudinal space charge on longitudinal motion, the transverse beam size appears in a form factor which is usually written as $g=1+2\\ln (b/a)$. In fact, this expression applies to particles with vanishing betatron amplitude in a beam with uniform transverse distribution. It is argued that an average over the transverse distribution should be used instead of the value on axis. It is shown that for the realistic `binomial' family of distributions the 1 in the above expression for $g$ should be replaced by a value near 0.5 if $a$ is interpreted as twice the rms width of the beam.

  2. On the form factors of semileptonic baryon decays in Heavy Quark Effective Theory

    CERN Document Server

    Jugeau, Frederic

    2012-01-01

    We study consequences of the non-forward amplitude for the semileptonic baryon decay Lambda_b into Lambda_c which will be measured in detail at LHCb. We obtain a sum rule for the subleading elastic Isgur-Wise (IW) function A(w) that originates from the kinetic part of the O(1/mQ) effective Lagrangian perturbation. In the sum rule appear only the intermediate states J^P=1/2+, the same that contribute to the O(1/mQ)^2 correction to the axial-vector form factor G1(w) involved in the differential decay rate at zero recoil w=1. This allows us to obtain a lower bound on the correction -delta^(G1)_(1/mQ^2) in terms of A(w) and the shape of the leading elastic IW function xi(w). Another theoretical implication is that A'(1) must vanish in the limit where the slope of the xi(w) saturates its lower bound. A strong correlation between the leading IW function and the subleading one A(w) is thus established in the case of the baryons.

  3. Algebraic approach to form factors in the complex sinh-Gordon theory

    CERN Document Server

    Lashkevich, Michael

    2016-01-01

    We study form factors of the quantum complex sinh-Gordon theory in the algebraic approach. In the case of exponential fields the form factors can be obtained from the known form factors of the $Z_N$-symmetric Ising model. The algebraic construction also provides an Ansatz for form factors of descendant operators. We obtain generating functions of such form factors and establish their main properties: the cluster factorization and reflection equations.

  4. Algebraic approach to form factors in the complex sinh-Gordon theory

    Science.gov (United States)

    Lashkevich, Michael; Pugai, Yaroslav

    2017-01-01

    We study form factors of the quantum complex sinh-Gordon theory in the algebraic approach. In the case of exponential fields the form factors can be obtained from the known form factors of the ZN-symmetric Ising model. The algebraic construction also provides an Ansatz for form factors of descendant operators. We obtain generating functions of such form factors and establish their main properties: the cluster factorization and reflection equations.

  5. Prevalence and factors associated with disturbed sleep in patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis: a systematic review.

    Science.gov (United States)

    Leverment, Shaaron; Clarke, Emily; Wadeley, Alison; Sengupta, Raj

    2017-02-01

    This review explores the prevalence and factors associated with disturbed sleep for patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis in order to clarify consistent findings in this otherwise disparate research field. The association of physical, demographic and psychological factors correlating with poor sleep was explored, and the effectiveness of interventions assessed. Ten electronic databases were searched: AMED, CINAHL, Embase, Medline, PsycINFO, PubMed, Scopus, Web of Science, OpenGrey and BASE. Following application of inclusion and exclusion criteria, 29 articles were critically assessed on the basis of methodology, experimental design, ethics and quality of sleep data, leading to the selection of 15 studies for final review. Poor sleep was reported in 35-90% of patients with axial spondyloarthritis and is more prevalent within this clinical population compared to healthy control subjects. Disturbed sleep is an important aspect of disease for patients and reflects the severity of disease activity, pain, fatigue and functional disability. However, the direction of this relationship is undetermined. Associations with age, gender, years spent in education, quality of life and depression have also been demonstrated. Anti-TNF medication is effective in reducing poor sleep, and exercise has also produced beneficial results. Future research into poor sleep should take account of its multifactorial nature. There is also a current lack of research investigating non-pharmacological interventions or combination therapies. A standardised, validated measurement of poor sleep, appropriate for regular patient screening, would be a useful first step for future research.

  6. Improving Dark Matter Searches by Measuring the Nucleon Axial Form Factor: Perspectives from MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Miceli, Tia [New Mexico State U.; Papavassiliou, Vassili [New Mexico State U.; Pate, Stephen [New Mexico State U.; Woodruff, Katherine [New Mexico State U.

    2015-11-01

    The MicroBooNE neutrino experiment at Fermilab is constructing a liquid-argon time-projection chamber for the Booster Neutrino Beam to study neutrino oscillations and interactions with nucleons and nuclei, starting in 2014. We describe the experiment and focus on its unique abilities to measure cross sections at low values of $Q^2$. In particular, the neutral-current elastic scattering cross section is especially interesting, as it is sensitive to the contribution of the strange sea quark spin to the angular-momentum of the nucleon, $\\Delta s$. Implications for dark-matter searches are discussed.

  7. 开口冷弯厚壁型钢轴压构件抗震性能研究%Research on the seismic behaviors of opening cold-formed thick-walled steel under the axial cyclic loading

    Institute of Scientific and Technical Information of China (English)

    付小超; 李元齐; 沈祖炎

    2016-01-01

    为研究开口冷弯厚壁型钢构件在轴向滞回荷载作用下的抗震性能,首先选取了3根壁厚t>6 mm的冷弯内卷边槽钢进行轴向滞回试验,然后建立相关的ANSYS有限元模型进行模拟计算,在与试验结果对比的基础上,选取了不同的腹板宽厚比(h/t=25~90)、绕弱轴长细比(λy=30~90)的构件进行参数化分析计算.研究结果表明:宽厚比、长细比是影响冷弯型钢抗震性能的两个主要因素,宽厚比(h/t)越大抗震性能越差,长细比(λy)越大抗震性能同样也越差,设计时应尽量避免选择长细比和宽厚比均较大的构件.%In order to investigate the hysteretic behaviors of opening cold-formed thick-walled steel members under the axial cyclic loading, three cold-formed steel columns were tested. On the basis of compared with the test results, a finite element method ( FEM) in ANSYS was established. The in-fluence of width-thickness ratio ( h/t) rang from 25 to 90 for web and slenderness ratio about the weak axis y (λy ) rang from 30 to 90 of such members were investigated by FEM. Analysis results in-dicated that the width-thickness ratio and the slenderness ratio about the weak axis y are the most important factors to affect the hysteretic behaviors. So, the cold-formed steels which with great width-thickness ratio ( h/t) and great slenderness ratio (λy ) should be avoided in designing, because they will lead to poor seismic performance.

  8. 不锈钢冷成型管截面轴心受压构件的有限元分析%FINITE ELEMENT ANALYSIS OF STAINLESS STEEL COLD-FORMED TUBULAR COLUMNS UNDER AXIAL LOAD

    Institute of Scientific and Technical Information of China (English)

    郑宝锋; 舒赣平; 沈晓明

    2012-01-01

    ANSYS is employed to study the overall buckling properties of stainless steel cold formed tubular columns under axial load. Non-linear property of material, the effect of cold-formed, local and overall imperfection as well as the residual stress are considered in this model. The comparisons between test results and the calculated results are performed in order to verify the FEM model. Comparisons indicate that the developed FEM model could represent the test exactly and the deviations in average are limited in 5%. Then the influences of varieties of factor are valued. The results of parameterized analysis conclude that: the influence of the increase strength in the corner region, the parameters variation of the material property and the amplitude of the overall imperfection could cause considerable changes in the buckling strength of stainless columns; shifts in section types almost do not influence the buckling strength. The conclusion could be regarded as the foundation of the design method for cold-formed stainless steel columns.%采用有限元软件ANSYS对不锈钢冷成型管截面轴心受压长柱进行模拟,有限元模型中考虑不锈钢材料的非线性本构关系、冷加工效应、构件的初始缺陷以及构件中的残余应力。将模拟结果与国内外的试验数据进行对比。对比表明:有限元模型能够准确地模拟不锈钢构件的受力全过程,模拟平均误差小于5%;对影响不锈钢轴心受压构件受力性能的因素进行分析,分析表明:方矩管截面的转角区冷加工效应,不锈钢材料力学性能参数变化以及构件的整体缺陷取值对构件的整体稳定性能影响较大,而不锈钢构件的截面对稳定系数影响很小。分析结论可作为建立不锈钢轴心受压构件稳定承载力设计公式的参考。

  9. An application to calculate the factors which are used to determine the tensile rupture load of a lug under axial, transverse or oblique loading

    Directory of Open Access Journals (Sweden)

    Nicolae APOSTOLESCU

    2013-03-01

    Full Text Available This work describes a computer application to calculate the values of the factors which are used to determine the tensile rupture load of a lug under axial, transverse or oblique loading. It can be used as a procedure for identifying potential failure modes. Lugs are connector-type elements widely used as structural supports for pin connections in aerospace industry. Failure modes in lugs are functions of lug geometry and material mechanical properties. For a lug under axial load three modes of lug failure are considered: tension, shear and bearing. Under transverse load the load to cause rupture or unacceptable permanent deformation of the lug is given. Tension mode failure usually occurs in materials of low ductility. In materials with high ductility, the failure mode of a lug can be either tensile or shear tear-out, depending on the lug geometry. The application has a graphical interface that allows the user to use them with much ease and view immediately the results and provides a flexible ad-hoc print reports and diagrams that allow to present analysis information. It includes Microsoft Excel Object Library as reference to the Excel material properties file.

  10. Nucleon form factors in an independent-quark model based on Dirac equation with power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M.

    1986-01-01

    The nucleon electromagnetic form factors G/sub E//sup p/(qS) and G/sub M//sup p/(qS) and the axial-vector form factor G/sub A/(qS) are investigated in a simple model of relativistic quarks confined by a vector-scalar mixed potential U/sub q/(r) = (1+el)(a/sup nu+1/r/sup / +V0) without taking into account the center-of-mass correction and the pion-cloud effects. The respective rms radii associated with G/sub E//sup p/(qS) and G/sub A/(qS) come out as /sup 1/2/ = 1.07 fm and /sup 1/2/ = 1.17 fm. The possibility of restoring in this model the chiral symmetry in the usual way is discussed and the pion-nucleon form factor G/sub piN/N(qS) is derived. The pion-nucleon coupling constant is obtained as g/sub piN/N = 10.2, as compared to (g/sub piN/N)/sub expt/approx. =13.

  11. The clinical importance of the thyroid nodules during anti-tumor necrosis factor therapy in patients with axial spondyloarthritis.

    Science.gov (United States)

    Terlemez, Rana; Akgün, Kenan; Palamar, Deniz; Boz, Sinan; Sarı, Hidayet

    2017-03-30

    The clinical importance of the thyroid nodules in patients with axial spondyloarthritis (ax-SpA) rests with the need to exclude thyroid malignancy. The aim of this study is to assess the risk of thyroid malignancy in ax-SpA patients receiving anti-TNF therapy. From September 2015 until December 2015, 70 patients diagnosed with ax-SpA were included in the research. Forty of the patients had received anti-TNF therapy, and 30 of the patients were anti-TNF naive. All cases were screened for the presence of nodules in the thyroid gland with ultrasound. Of the patients that received anti-TNF therapy, 15 (37.5%); and of the anti-TNF naive patients, 11 (36.7%) had thyroid nodule(s). Four patients from the anti-TNF group underwent fine needle aspiration biopsy of the nodules, and two of them were diagnosed with papillary thyroid carcinoma. None of the nodules in anti-TNF naive patients required biopsy. When compared to the normal population, the standardized incidence ratio (SIR) was found to be increased in both male (SIR 2.03, 95% CI 1.9 to 18) and female (SIR 2.7, 95% CI 2.6 to 24) cases. It is not yet established whether the development of cancer during the treatment process is the effect of the treatment or if it is a part of the natural course of the disease or if it is coincidental. We saw a mild increase in thyroid malignancies in ax-SpA patients who received anti-TNF therapy. Therefore, we believe that the thyroid gland should also be taken into consideration while screening for malignancy before anti-TNF therapy.

  12. Light axial vector mesons

    CERN Document Server

    Chen, Kan; Liu, Xiang; Matsuki, Takayuki

    2015-01-01

    Inspired by the abundant experimental observation of axial vector states, we study whether the observed axial vector states can be categorized into the conventional axial vector meson family. In this paper we carry out analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial vector mesons, which are valuable to further experimental exploration of the observed and predicted axial vector mesons.

  13. Axial-vector dominance predictions in quasielastic neutrino-nucleus scattering

    Science.gov (United States)

    Amaro, J. E.; Ruiz Arriola, E.

    2016-03-01

    The axial form factor plays a crucial role in quasielastic neutrino-nucleus scattering, but the error of the theoretical cross section due to uncertainties of GA remains to be established. Conversely, the extraction of GA from the neutrino nucleus cross section suffers from large systematic errors due to nuclear model dependencies, while the use of single-parameter dipole fits underestimates the errors and prevents an identification of the relevant kinematics for this determination. We propose to use a generalized axial-vector-meson dominance in conjunction with large-Nc and high-energy QCD constraints to model the nucleon axial form factor, as well as the half-width rule as an a priori uncertainty estimate. The minimal hadronic ansatz comprises the sum of two monopoles corresponding to the lightest axial-vector mesons being coupled to the axial current. The parameters of the resulting axial form factor are the masses and widths of the two axial mesons as obtained from the averaged Particle Data Group values. By applying the half-width rule in a Monte Carlo simulation, a distribution of theoretical predictions can then be generated for the neutrino-nucleus quasielastic cross section. We test the model by applying it to the (νμ,μ ) quasielastic cross section from 12 for the kinematics of the MiniBooNE experiment. The resulting predictions have no free parameters. We find that the relativistic Fermi gas model globally reproduces the experimental data, giving χ2/# bins=0.81 . A Q2-dependent error analysis of the neutrino data shows that the uncertainties in the axial form factor GA(Q2) are comparable to the ones induced by the a priori half-width rule. We identify the most sensitive region to be in the range 0.2 ≲Q2≲0.6 GeV2 .

  14. Brief Report: Clinical Course Over Two Years in Patients With Early Nonradiographic Axial Spondyloarthritis and Patients With Ankylosing Spondylitis Not Treated With Tumor Necrosis Factor Blockers: Results From the German Spondyloarthritis Inception Cohort.

    Science.gov (United States)

    Poddubnyy, Denis; Haibel, Hildrun; Braun, Jürgen; Rudwaleit, Martin; Sieper, Joachim

    2015-09-01

    To investigate the clinical course of disease over 2 years in patients with nonradiographic axial spondylarthritis (SpA) and patients with ankylosing spondylitis (AS). The study group comprised 303 patients with axial SpA (158 patients with AS and a symptom duration of ≤10 years and 145 patients with nonradiographic axial SpA and a symptom duration of ≤5 years) who did not receive tumor necrosis factor (TNF) blockers during 2 years of followup. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) did not differ between patients with nonradiographic axial SpA and those with AS at any time point during followup. The Bath Ankylosing Spondylitis Functional Index was significantly higher in patients with AS at baseline only, but spinal mobility was generally better in patients with nonradiographic SpA compared with those with AS. At all time points, C-reactive protein (CRP) levels were significantly higher in patients with AS compared with patients with nonradiographic axial SpA. Accordingly, the Ankylosing Spondylitis Disease Activity Score (ASDAS) was significantly higher in the patients with AS at 2 of 4 time points. When patients with a BASDAI score of ≥4 plus an elevated CRP level at baseline were analyzed over time, there were no significant differences in the proportions of patients with nonradiographic axial SpA and those with AS who reached low disease activity status at ≥2 time points during 2 years of followup when a clinical definition of low disease activity was used (38% and 35%, respectively, achieved a BASDAI score of <4, and 13% and 15%, respectively, achieved a score of ≤2). When definitions that included the CRP level were used, however, a greater percentage of patients with nonradiographic axial SpA achieved low disease activity (25% of patients with nonradiographic axial SpA and 10% of patients with AS achieved a BASDAI score of <4 and a normal CRP level, and 13% of patients with nonradiographic axial SpA and 3% of those with AS

  15. Local Quark-Hadron Duality and Magnetic Form Factors of Bound Proton

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Min; ZHANG Ben-Ai

    2005-01-01

    We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ~ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.

  16. The reliability and validity of a Korean translation of the ASAS Health Index and Environmental Factors in Korean patients with axial spondyloarthritis.

    Science.gov (United States)

    Choi, Jung-Ho; Kim, Tae-Jong; Shin, Kichul; Choi, Chan-Bum; Kim, Ji-Hyun; Kim, So-Hyun; Kim, Nah-Ihm; Ahn, Min-Joo; Jung, Hyun-Ju; Lee, Kyung-Eun; Park, Dong-Jin; Park, Yong-Wook; Lee, Shin-Seok; Kim, Tae-Hwan

    2014-03-01

    The objective of this study was to develop a Korean version of the Assessment of Spondyloarthritis International Society-Health Index/Environmental Factor (ASAS HI/EF) and to evaluate its reliability and validity in Korean patients with axial spondyloarthritis (SpA). A total of 43 patients participated. Translation and cross-cultural adaptation of the ASAS HI/EF was performed according to international standardized guidelines. We also evaluated validity by calculating correlation coefficients between the ASAS-HI/EF score and the clinical parameters. Test-retest reliability was excellent. The correlations among the mean ASAS-HI score and all tools of assessment for SpA were significant. When it came to construct validity, the ASAS HI score was correlated with nocturnal back pain, spinal pain, patients's global assessment score, the Bath ankylosing spondylitis disease activity index (BASDAI), Bath ankylosing spondylitis functional index (BASFI), Bath ankylosing spondylitis metrology index (BASMI) and EuroQoL visual analogue scale (EQ VAS) (r = 0.353, 0.585, 0.598, 0.637, 0.690, 0.430, and -0.534). The ASAS EF score was also correlated with the patient's global assessment's score, BASDAI, BASFI, BASMI, and EQ VAS score (r = 0.375, 0.490, 0.684, 0.485, and -0.554). The Korean version of the ASAS HI/EF can be used in the clinical field to assess and evaluate the state of health of Korean axial SpA patients.

  17. Bs → f0(980) Transition Form Factors Within the kT Factorization Approach

    Institute of Scientific and Technical Information of China (English)

    ZENG Dai-Min; FANG Zhen-Yun

    2013-01-01

    In the paper,we apply the kT factorization approach to deal with the Bs → f0(980) transition form factors in the large recoil regions,i.e.the small q2 regions.For the purpose,we adopt the B-meson wave-functions ΨB,ψ B and δ that include the three-Fock states contributions to do our discussion.Although the scalar meson f0(980) is widely perceived as the 4-quark bound state (scenario 2),but the distribution amplitudes of 4-quark states are still unknown to us,so we adopt 2-quark model (scenario 1) for scalar meson f0(980) in our discussion.By varying the B-meson wave-function parameters within their reasonable regions,we obtain F0(0) =F+(0) =0.20 ± 0.02,FT(0) =0.24 ± 0.02.Our present results for these form factors are consistent with the light-cone sum rule results obtained in the literature.

  18. Chemical Forms of Mercury in Soils and Their Influencing Factors

    Institute of Scientific and Technical Information of China (English)

    QINGCHANGLE; MOUSHUSEN; 等

    1998-01-01

    Experiments were carried out study the transformation of mercury in soils,Results showed that Hg2+ was immediatel converted into other forms once it entered into soils,Bentonite,humus or CaCO3 accelerated the transformaiton of Hg2+ by various mechanisms.Bentonite could convert Hg2+ into residual form eventually,and application of CaCO3 enhanced the formation of inorganic Hg,Humus competed strongly with clay minerals for binding Hg2+,thus increase of soil hums content led to increased formation of organically bound Hg.

  19. The Neutron Electric Form Factor To The Four-momentum Factor Squared = 1.45 (gev/c) 2

    CERN Document Server

    Plaster, B R

    2004-01-01

    The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measure...

  20. Investigation on influence factors of dual laterologs curve form

    Institute of Scientific and Technical Information of China (English)

    Xiaomin FAN; Lei LU

    2008-01-01

    In order to investigate the influences of caliper, formation thickness and invaded zone on the form of dual laterologs, forward modeling technique were applied to calculate the dual laterologs for different cases. The result shows that the resistivity logs become smoother and lower as the borehole diameter increases, the increase of the contrast between mud resistivity and formation resistivity induce the logs to be more pointed. When the formation thickness is less than 1m, the two-peak on the logs for resistive invasion vanished, and for thickness between 1 m and 4 m, the form of logs does not vary significantly. If the formation thickness is greater than 4 m, a platform appears on the logs at the middle of the formation. The thinner the invaded zone is, the more obvious the invasion feature on the laterologs is. For thick invaded zone the form of logs tend to be that of an uninvaded resistive formation. The form and amplitude of logs depend on the resistivity contrast between invaded zone, uninvaded formation and adjacentlayers.

  1. FACTORS FORMING RELATIONSHIPS AND EVERYDAY RUSSIAN AND BELARUSIANS

    Directory of Open Access Journals (Sweden)

    Emir Nodarievich Tuzhba

    2016-11-01

    Full Text Available Purpose. It consists in the analysis of the factors influencing the process of interaction, the nature of relationships and everyday life of the Russian and Belarusian communities. Methodology. Use the ideas of the system, interactionist, phenomenological and socio-psychological approaches. The empirical base totaled questionnaire data of the Russian population of the Krasnodar Territory; secondary analysis of sociological data of Russian and Belarusian research teams on studies. Results. Identified and analyzed factors of relationships and the culture of everyday life, especially their impact on the processes of interaction between Russian and Belarusian ethnic communities. Practical implications. Knowledge of the factors and content of the mutual influence of ethnic and cultural practices of the ethnic communities of Belarus and Russia will help to predict the interaction processes contribute to their consolidation and integration.

  2. Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor α inhibitors: A study of radiographic progression, inflammation on magnetic resonance imaging, and circulating biomarkers of inflammation

    DEFF Research Database (Denmark)

    Pedersen, Susanne Juhl; Sørensen, Inge Juul; Lambert, Robert G W;

    2011-01-01

    metalloproteinase 3 [MMP-3], and cartilage oligomeric matrix protein [COMP]), and bone turnover (CTX-I and osteocalcin) to inflammation on magnetic resonance imaging (MRI) and radiographic progression in patients with axial spondylarthritis (SpA) beginning tumor necrosis factor a (TNFa) inhibitor therapy....

  3. The role of seasonal factor in congenital abnormality forming

    Directory of Open Access Journals (Sweden)

    O. V. Antonov

    2012-01-01

    Full Text Available The results of prevalence, structure and timerisk study in children birth with malformations inOmskin the period of 1998—2008 are presented. Birth of children with congenital abnormality weight average index accounted for (47.72 ± 0.66%. Musculoskeletal and cardiovascular malformations prevailed in birth abnormality total number structure. Accor­ding to ICD-10 the congenital malformations were united in groups and seasonal variation indices nave been determined for them. Study results indicated the predominance of children conception cases with high risk malformations forming in August, November and December.

  4. The DOF transcription factor Dof5.1 influences leaf axial patterning by promoting Revoluta transcription in Arabidopsis

    KAUST Repository

    Kim, Hyungsae

    2010-10-05

    Dof proteins are transcription factors that have a conserved single zinc finger DNA-binding domain. In this study, we isolated an activation tagging mutant Dof5.1-D exhibiting an upward-curling leaf phenotype due to enhanced expression of the REV gene that is required for establishing adaxialabaxial polarity. Dof5.1-D plants also had reduced transcript levels for IAA6 and IAA19 genes, indicating an altered auxin biosynthesis in Dof5.1-D. An electrophoretic mobility shift assay using the Dof5.1 DNA-binding motif and the REV promoter region indicated that the DNA-binding domain of Dof5.1 binds to a TAAAGT motif located in the 5′-distal promoter region of the REV promoter. Further, transient and chromatin immunoprecipitation assays verified binding activity of the Dof5.1 DNA-binding motif with the REV promoter. Consistent with binding assays, constitutive over-expression of the Dof5.1 DNA-binding domain in wild-type plants caused a downward-curling phenotype, whereas crossing Dof5.1-D to a rev mutant reverted the upward-curling phenotype of the Dof5.1-D mutant leaf to the wild-type. These results suggest that the Dof5.1 protein directly binds to the REV promoter and thereby regulates adaxialabaxial polarity. © 2010 Blackwell Publishing Ltd.

  5. Resource Form Factor and Installation of GFA Controllers

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.; Hammerstrom, Donald J.

    2009-11-15

    The focus of this task is to optimize the form and placement of a controller comprising the Grid Friendly™ appliance (GFA) controller, power supply and power relay (and/or a solid-state power electronic switch) that would command a domestic water heater to shed its load in response to stress on the electric power grid. The GFA controller would disconnect the water heater from its supply circuit whenever it senses a low voltage signal or other indicators of system stress communicated via the electric power distribution system. Power would be reconnected to the appliance when the GFA controller senses the absence of these signals. This project has also considered more frequent cycling of this controller’s relay switch to perform demand-side frequency regulation. The principal criteria considered in this optimization are reliability, cost and life expectancy of the GFA components. The alternative embodiments of the GFA equipment under consideration are: Option 1- installation inside the insulation space of the water heater between the tank and jacket Option 2 containment in a separate nearby electrical enclosure Option 3 - as a modification or adjunct to the distribution panel housing and/or the breaker that protects the water heater supply circuit.

  6. Highly Efficient Small Form Factor LED Retrofit Lamp

    Energy Technology Data Exchange (ETDEWEB)

    Steven Allen; Fred Palmer; Ming Li

    2011-09-11

    This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

  7. Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models

    CERN Document Server

    Hutsalyuk, A; Pakuliak, S Z; Ragoucy, E; Slavnov, N A

    2016-01-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and described by $\\mathfrak{gl}(2|1)$ or $\\mathfrak{gl}(1|2)$ superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t-J model.

  8. Electromagnetic form factor via Minkowski and Euclidean Bethe-Salpeter amplitudes

    CERN Document Server

    Karmanov, V A; Mangin-Brinet, M

    2007-01-01

    The electromagnetic form factors calculated through Euclidean Bethe-Salpeter amplitude and through the light-front wave function are compared with the one found using the Bethe-Salpeter amplitude in Minkowski space. The form factor expressed through the Euclidean Bethe-Salpeter amplitude (both within and without static approximation) considerably differs from the Minkowski one, whereas form factor found in the light-front approach is almost indistinguishable from it.

  9. Form factors of the monodromy matrix entries in gl (2 | 1)-invariant integrable models

    Science.gov (United States)

    Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.

    2016-10-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and described by gl (2 | 1) or gl (1 | 2) superalgebras. We obtain explicit determinant representations for form factors of the monodromy matrix entries. We show that all form factors are related to each other at special limits of the Bethe parameters. Our results allow one to obtain determinant formulas for form factors of local operators in the supersymmetric t- J model.

  10. 冷弯薄壁型钢拼合截面柱轴压承载力计算%Calculation Method for Bearing Capacity of Cold-formed Steel Built-up Columns Under Axial Compression

    Institute of Scientific and Technical Information of China (English)

    周绪红; 李喆; 刘永健; 石宇

    2012-01-01

    In order to investigate bearing capacity of cold-formed steel built-up columns under axial compression, authors used ANSYS finite element program to analyze the cold-formed steel built-up columns at home and abroad. Compared with experimental results, the validity of the finite element method (FEM) was verified. Furthermore, a detailed parametric study by FEM was carried out to mainly determine the influence of cross-section form, cross-section dimension and slenderness ratio of component for the built-up effect. The simplified calculation method to the bearing capacity of cold-formed steel built-up columns under axial compression was extracted. The analytical results show that with the increase of the slenderness ratio, the built-up effect improves. As for these columns connected with screws through web, when width-thickness ratio of flange is certain, with the increase of width-height ratio of cross-section, the integrity of the built-up web increases, which leads the built-up effect to strengthen. But the influences of different areas of cross-sections are not so obvious.%为了研究冷弯薄壁型钢拼合截面柱的轴压承载力,对各国有关冷弯薄壁型钢拼合截面柱的轴压试验进行了ANSYS有限元模拟分析,有限元计算结果与试验结果吻合良好,从而验证了有限元方法的正确性.采用有限元方法分析了构件截面形式、截面尺寸以及长细比对冷弯薄壁型钢拼合截面柱拼合效应的影响,提出了冷弯薄壁型钢拼合截面柱轴压承载力的简化计算方法.分析结果表明:随着长细比的增大,拼合截面柱的拼合效应随之增大.对于主要通过螺钉将腹板进行拼合的构件,当翼缘宽厚比一定时,随着截面宽高比的增大,腹板拼合的整体性增强,从而使拼合效应增大,而截面面积的改变对拼合效应的影响则不是很明显.

  11. Enhancement of Optical Coherence Tomography Axial Resolution by Spectral Shaping

    Institute of Scientific and Technical Information of China (English)

    孙汕; 郭继华; 高湔松; 薛平

    2002-01-01

    We propose a new method of changing the spectrum shape to improve the axial resolution of optical coherencetomography (OCT). Theoretical analysis shows that certain spectral shaping can shorten the coherence length.Comparisons of the simulation and experimental measurements of spectral shape and axial resolution of OCTare given, showing that the axial resolution of OCT is enhanced by a factor of 1.4.

  12. Experimental study and numerical analysis of the behavior of cold-formed steel quadruple-C built-up section members under axial compression%四肢拼合冷弯薄壁型钢截面立柱轴压性能试验研究及数值分析

    Institute of Scientific and Technical Information of China (English)

    周天华; 杨东华; 聂少锋; 吴函恒

    2012-01-01

    对不同长细比的8根四肢拼合冷弯薄壁型钢截面立柱的轴压性能进行试验研究,在试验研究的基础上建立考虑材料、几何和接触非线性的有限元模型,并通过对试验试件的数值模拟,验证有限元方法的正确性。采用数值方法分析长细比、连接螺钉间距、截面翼缘宽厚比对四肢拼合冷弯薄壁型钢截面立柱轴压性能的影响。结果表明:试件最终破坏均呈现局部屈曲和畸变屈曲的破坏模式;四肢拼合冷弯薄壁型钢截面立柱的轴压性能具有“1×4≥4”的拼合效应;随着长细比的增大,四肢拼合立柱的最大承载力和刚度逐渐降低;当螺钉间距在150—450mm之间变化时,四肢拼合立柱的最大承载力和刚度变化不大;减小四肢拼合立柱截面的翼缘宽厚比,可以显著提高其最大承载力。%Eight specimens of quadruple-C built-up section cold-formed steel columns with different slenderness ratios were tested under axial compression load. The load bearing capacity of the specimens was analyzed. The finite element models involving geometric nonlinearity, materials nonlinearity and contact mechanics were presented. The results of finite element method (FEM) are close to those from the tests, proving that the FEM is reasonable. Factors that influence the behavior of members under axial compression, including slenderness ratio, spacing of screws and the width- thickness ratio, were studied. The results show that the failure modes of all specimens are local buckling and distortional buckling, and the axial bearing capacity of quadruple-C built-up section members is four times more than that of single C-section ones. The axial bearing capacity and stiffness of the quadrnple-C built-up section members decrease as the slenderness ratio increases. The effect of the spacing of screws from 150mm to 450mm on the axial bearing capacity and stiffness of quadrnple-C built-up section members

  13. Connection between the elastic GEp/GMp and P to Delta form factors

    CERN Document Server

    Stoler, P

    2003-01-01

    It is suggested that the falloff in Qsq of the P to Delta magnetic form factor GM* is related to the recently observed falloff of the elastic electric form factor GEp/GMp. Calculation is carried out in the framework of a two-body GPD mechanism.

  14. η′-g*-g transition form factor with gluon content contribution tested

    OpenAIRE

    Muta, Taizo; Yang, Mao-Zhi

    2000-01-01

    We study the η′-g*-g transition form factor by using the η′ wave function constrained by the experimental data on the η′-γ*-γ transition form factor provided by CLEO and L3. We also take into account the contribution of the possible gluonic content of the η′ meson.

  15. $\\eta'-g^*-g$ Transition Form Factor with Gluon Content Contribution Tested

    OpenAIRE

    Muta, Taizo; Yang, Mao-Zhi

    1999-01-01

    We study the $\\eta'-g^*-g$ transition form factor by using the $\\eta'$ wave function constrained by the experimental data on the $\\eta'-\\gamma^*-\\gamma$ transition form factor provided by CLEO and L3 . We also take into account the contribution of the possible gluonic content of the $\\eta'$ meson.

  16. $\\eta'-g*-g$ Transition Form Factor with Gluon Content Contribution Tested

    CERN Document Server

    Muta, T; Muta, Taizo; Yang, Mao-Zhi

    2000-01-01

    We study the $\\eta'-g^*-g$ transition form factor by using the $\\eta'$ wave function constrained by the experimental data on the $\\eta'-\\gamma^*-\\gamma$ transition form factor provided by CLEO and L3 . We also take into account the contribution of the possible gluonic content of the $\\eta'$ meson.

  17. BWR AXIAL PROFILE

    Energy Technology Data Exchange (ETDEWEB)

    J. Huffer

    2004-09-28

    The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips. Thus, accounting for axially varying burnup in criticality analyses is also referred to as accounting for the ''end effect'' reactivity. The magnitude of the reactivity change due to ''end effect'' is dependent on the initial assembly enrichment, the assembly average burnup, and the particular axial profile characterizing the burnup distribution. The set of bounding axial profiles should incorporate multiple BWR core designs and provide statistical confidence (95 percent confidence that 95 percent of the population is bound by the profile) that end nodes are conservatively represented. The profiles should also conserve the overall burnup of the fuel assembly. More background on BWR axial profiles is provided in Attachment I.

  18. On super form factors of half-BPS operators in N=4 super Yang-Mills

    CERN Document Server

    Penante, Brenda; Travaglini, Gabriele; Wen, Congkao

    2014-01-01

    We compute form factors of half-BPS operators in N=4 super Yang-Mills dual to massive Kaluza-Klein modes in supergravity. These are appropriate supersymmetrisations T_k of the scalar operators Tr(\\phi^k) for any k, which for k=2 give the chiral part of the stress-tensor multiplet operator. Using harmonic superspace, we derive simple Ward identities for these form factors, which we then compute perturbatively at tree level and one loop. We propose a novel on-shell recursion relation which links form factors with different numbers of fields. Using this, we conjecture a general formula for the n-point MHV form factors of T_k for arbitrary k and n. Finally, we use supersymmetric generalised unitarity to derive compact expressions for all one-loop MHV form factors of T_k in terms of one-loop triangles and finite two-mass easy box functions.

  19. Skyrme-Model $\\pi NN$ Form Factor and Nucleon-Nucleon Interaction

    CERN Document Server

    Holzwarth, G

    1997-01-01

    We apply the strong $\\pi NN$ form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes possible to use a soft pion form factor in the NN system. As a consequence, the $\\pi N$ and the $NN$ systems can be described using the same soft $\\pi NN$ form factor, which is impossible with the monopole.

  20. On-shell Diagrams, Gra{\\ss}mannians and Integrability for Form Factors

    CERN Document Server

    Frassek, Rouven; Nandan, Dhritiman; Wilhelm, Matthias

    2015-01-01

    We apply on-shell and integrability methods that have been developed in the context of scattering amplitudes in N=4 SYM theory to tree-level form factors of this theory. Focussing on the colour-ordered super form factors of the chiral part of the stress-energy multiplet as an example, we show how to systematically construct on-shell diagrams for these form factors with the minimal form factor as an additional building block. Moreover, we obtain analytic representations in terms of Gra{\\ss}mannian integrals in spinor helicity, twistor and momentum twistor variables. While Yangian invariance is broken by the operator insertion, we find that form factors are eigenstates of the integrable transfer matrix. As a consequence, we can construct them via the method of R operators, which also allows to introduce deformations that preserve the integrable structure.

  1. 48 CFR 247.372 - DD Form 1654, Evaluation of Transportation Cost Factors.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false DD Form 1654, Evaluation... Transportation in Supply Contracts 247.372 DD Form 1654, Evaluation of Transportation Cost Factors. Contracting personnel may use the DD Form 1654 to furnish information to the transportation office for development...

  2. [Management of axial spondyloarthritis].

    Science.gov (United States)

    Kiltz, U; Baraliakos, X; Braun, J

    2016-11-01

    The term spondyloarthritis (SpA) is now increasingly used to classify and diagnose patients who are characterized by inflammation in the axial skeleton and peripheral manifestations (arthritis and enthesitis). The management of SpA should be tailored according to the current manifestations of the disease, the disease activity and functional impairment. The current article focuses on diagnosis and therapy in patients with axial SpA. Diagnostic procedures are discussed in light of diagnostic utility and feasibility in daily routine care. Cornerstones of treatment in patients with axial SpA are a combination of regular exercise and pharmacological treatment options aiming at anti-inflammatory strategies.

  3. Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region

    Science.gov (United States)

    Sufian, Raza Sabbir; de Téramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre; Dosch, Hans Günter

    2017-01-01

    We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD) We show that the inclusion of the higher Fock components |q q q q q ¯ ⟩ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter r , required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.

  4. Model-independent determination of the axial mass parameter in quasielastic antineutrino-nucleon scattering

    CERN Document Server

    Bhattacharya, Bhubanjyoti; Tropiano, Anthony J

    2015-01-01

    Understanding the charged current quasielestic (CCQE) neutrino-nucleus interaction is important for precision studies of neutrino oscillations. The theoretical description of the interaction depends on the combination of a nuclear model with the knowledge of form factors. While the former has received considerable attention, the latter, in particular the axial form factor, is implemented using the historical dipole model. Instead, we use a model-independent approach, presented in a previous study, to analyze the muon antineutrino CCQE mineral oil data published by the MiniBooNE collaboration. We combine the cross section for scattering of antineutrinos off protons in carbon and hydrogen, using the same axial form factor for both. The extracted value of the axial mass parameter $m_A = 0.84^{+0.12}_{-0.04} \\pm {0.11} \\, {\\rm GeV}$ is in very good agreement with the model-independent value extracted from MiniBooNE's neutrino data. Going beyond a one-parameter description of the axial form factor, we extract valu...

  5. Chiral perturbation theory study of the axial $N\\to\\Delta(1232)$ transition

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We have performed a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in covariant baryon chiral perturbation theory within a formalism in which the unphysical spin-1/2 components of the $\\Delta$ fields are decoupled.

  6. Bounds on the tau and muon neutrino vector and axial vector charge radius

    CERN Document Server

    Hirsch, M; Restrepo, D A; Hirsch, Martin; Nardi, Enrico; Restrepo, Diego

    2003-01-01

    A Majorana neutrino is characterized by just one flavor diagonal electromagnetic form factor: the anapole moment, that in the static limit corresponds to the axial vector charge radius . Experimental information on this quantity is scarce, especially in the case of the tau neutrino. We present a comprehensive analysis of the available data on the single photon production process $e^+e^- -> \

  7. Etanercept for the treatment of non-radiographic axial spondyloarthritis.

    Science.gov (United States)

    Rios Rodriguez, Valeria; Poddubnyy, Denis

    2016-01-01

    Presently, tumor necrosis factor α antagonist therapy is the only effective alternative treatment to nonsteroidal anti-inflammatory drugs for the entire spectrum of axial spondyloarthritis, including non-radiographic and radiographic (=ankylosing spondylitis) forms. Recently, etanercept has been approved by the European Medicines Agency for the treatment of non-radiographic axial spondyloarthritis, increasing the number of available treatment options for this indication. The latest data on etanercept concerning clinical efficacy and safety in short-term and long-term treatment of patients with non-radiographic axial spondyloarthritis who do not respond to the first-line therapy with non-steroidal anti-inflammatory drugs suggests good efficacy and safety profiles similar to that observed previously in ankylosing spondylitis. This article reviews recent data on the efficacy and safety of etanercept and is focused on the treatment of non-radiographic axial spondyloarthritis. This article will also discuss the role of etanercept in the context of current and developing treatment options.

  8. Dissipative Axial Inflation

    CERN Document Server

    Notari, Alessio

    2016-01-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term $\\frac{\\phi}{f_\\gamma} F \\tilde{F}$, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density $\\rho_R$, which which can lead to inflation without the need of a flat potential. We analyze the system, for momenta $k$ smaller than the cutoff $f_\\gamma$, including numerically the backreaction. We consider the evolution from a given static initial condition and explicitly show that, if $f_\\gamma$ is smaller than the field excursion $\\phi_0$ by about a factor of at least ${\\cal O} (20)$, there is a friction effect which turns on before that the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of...

  9. The neutron electric form factor to Q² = 1.45 (GeV/c)²

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Plaster

    2004-02-01

    The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.

  10. The neutron electric form factor to Q² = 1.45 (GeV/c)²

    Energy Technology Data Exchange (ETDEWEB)

    Plaster, Bradley [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2004-02-01

    The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.

  11. [Axial spondyloarthritis and ankylosing spondylitis].

    Science.gov (United States)

    Nordström, Dan; Kauppi, Markku

    2010-01-01

    Current classification criteria for ankylosing spondylitis do not allow diagnosis before radiographic changes are visible in sacroiliacal joints. The the new axial spondyloarthropathy (SpA) criteria include axial SpA without radiographic changes as well as established ankylosing spondylitis, recognizing them as a continuum of the same disease. This is of major importance as the burden of early SpA is comparable to that of later stage disease. Diagnosis relies on inflammatory MRI findings which is the most significant change compared to earlier criteria. Emerging data on the efficacy of tumor necrosis factor (TNF) alpha blocking therapies already in early but also in established disease have given new promising alternatives for treatment of this often very cumbersome disease, that rarely responds to classic DMARDs.

  12. Axial Halbach Magnetic Bearings

    Science.gov (United States)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  13. Nucleon electromagnetic form factors using lattice simulations at the physical point

    Science.gov (United States)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.

    2017-08-01

    We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.

  14. On-shell diagrams, Graßmannians and integrability for form factors

    Energy Technology Data Exchange (ETDEWEB)

    Frassek, Rouven [Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Meidinger, David; Nandan, Dhritiman; Wilhelm, Matthias [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Gebäude, Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-01-29

    We apply on-shell and integrability methods that have been developed in the context of scattering amplitudes in N=4 SYM theory to tree-level form factors of this theory. Focussing on the colour-ordered super form factors of the chiral part of the stress-tensor multiplet as an example, we show how to systematically construct on-shell diagrams for these form factors with the minimal form factor as further building block in addition to the three-point amplitudes. Moreover, we obtain analytic representations in terms of Graßmannian integrals in spinor helicity, twistor and momentum twistor variables. While Yangian invariance is broken by the operator insertion, we find that the form factors are eigenstates of the integrable spin-chain transfer matrix built from the monodromy matrix that yields the Yangian generators. Constructing them via the method of R operators allows to introduce deformations that preserve the integrable structure. We finally show that the integrable properties extend to minimal tree-level form factors of generic composite operators as well as certain leading singularities of their n-point loop-level form factors.

  15. The Charge Form Factors of the Three- and Four-Body Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    R. Schiavilla; V.R. Pandharipande; D.O. Riska

    1990-01-01

    The charge form factors of 3H, 3He, and 4He are calculated using the Monte Carlo method and variational ground-state wave functions obtained for the Argonne two-nucleon and Urbana-VII three-nucleon interactions. The model for the charge density operator contains the two-body exchange contributions of longest range. With some spread due to the uncertainty in the electromagnetic form factors of the nucleon the calculated charge form factors are in good agreement with the empirical values over the whole experimentally covered range of momentum transfer.

  16. The omega --> pi0 gamma* and phi --> pi0 gamma* transition form factors in dispersion theory

    CERN Document Server

    Schneider, Sebastian P; Niecknig, Franz

    2012-01-01

    We calculate the omega --> pi0 gamma* and phi --> pi0 gamma* electromagnetic transition form factors based on dispersion theory, relying solely on a previous dispersive analysis of the corresponding three-pion decays and the pion vector form factor. We compare our findings to recent measurements of the omega --> pi0 mu+ mu- decay spectrum by the NA60 collaboration, and strongly encourage experimental investigation of the Okubo-Zweig-Iizuka-forbidden phi --> pi0 l+ l- decays in order to understand the strong deviations from vector-meson dominance found in these transition form factors.

  17. On form factors of the conjugated field in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2011-05-15

    Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)

  18. Grassmannians and form factors with $q^2=0$ in N=4 sym theory

    CERN Document Server

    Bork, L V

    2016-01-01

    We consider tree level form factors of operators from stress tensor operator supermultiplet with light-like operator momentum $q^2=0$. We present a conjecture for the Grassmannian integral representation both for these tree level form factors as well as for leading singularities of their loop counterparts. The presented conjecture was successfully checked by reproducing several known answers in $\\mbox{MHV}$ and $\\mbox{N}^{k-2}\\mbox{MHV}$, $k\\geq3$ sectors together with appropriate soft limits. We also discuss the cancellation of spurious poles and relations between different BCFW representations for such form factors on simple examples.

  19. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  20. Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin; Hovhannes Grigoryan

    2007-12-01

    We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.

  1. Generalized vector form factors of the pion in a chiral quark model

    CERN Document Server

    Broniowski, Wojciech

    2008-01-01

    Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.

  2. Electromagnetic form factor via Bethe-Salpeter amplitude in Minkowski space

    CERN Document Server

    Carbonell, J; Mangin-Brinet, M

    2008-01-01

    For a relativistic system of two scalar particles, we find the Bethe-Salpeter amplitude in Minkowski space and use it to compute the electromagnetic form factor. The comparison with Euclidean space calculation shows that the Wick rotation in the form factor integral induces errors which increase with the momentum transfer Q^2. At JLab domain (Q^2=10 GeV^2/c^2), they are about 30%. Static approximation results in an additional and more significant error. On the contrary, the form factor calculated in light-front dynamics is almost indistinguishable from the Minkowski space one.

  3. On form factors of the conjugated field in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2011-05-15

    Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)

  4. The rare decay B -> K ll form factors from lattice QCD

    CERN Document Server

    Bouchard, Chris; Monahan, Christopher; Na, Heechang; Shigemitsu, Junko

    2013-01-01

    We calculate, for the first time using unquenched lattice QCD, form factors for the rare decay B -> K ll in and beyond the Standard Model. Our lattice QCD calculation utilizes NRQCD b and HISQ light valence quarks on the MILC 2+1 asqtad ensembles. The form factor results, based on the z expansion, are valid over the full kinematic range of q^2. We construct the ratios f_0/f_+ and f_T/f_+, which are useful in constraining new physics and verifying effective theory form factor symmetry relations. We also discuss the calculation of Standard Model observables.

  5. An Investigation of the Factor Structure and Convergent and Discriminant Validity of the Five-Factor Model Rating Form

    Science.gov (United States)

    Samuel, Douglas B.; Mullins-Sweatt, Stephanie N.; Widiger, Thomas A.

    2013-01-01

    The Five-Factor Model Rating Form (FFMRF) is a one-page measure designed to provide an efficient assessment of the higher order domains of the Five Factor Model (FFM) as well as the more specific, lower order facets proposed by McCrae and Costa. Although previous research has suggested that the FFMRF's assessment of the lower order facets converge…

  6. A methodology for determining radiation form factors applied to particular plane-sphere configuration

    Directory of Open Access Journals (Sweden)

    Héctor Armando Durán Peralta

    2010-07-01

    Full Text Available The form factor must be calculated when designing ovens and mechanisms heating or cooling systems by radiation, leading to determining heat transfer by radiation between surfaces which are at different temperatures. Heat transfer texts generally deduce and show the equation for obtaining the form factor between two surfaces which exchange heat by radiation for very simple configurations, but do not show how slightly more complex geometries and configurations are calculated. Many students who have studied heat transfer have the impression that form factors are calculated without any difficulty. Other students ask why the texts do not show how to calculate the form factor for slightly more complex configurations or for those which are more real. This document tries to answer these disquietudes as well as presenting a calculation strategy for purely pedagogical ends which can be applied to more complex configurations.

  7. Virtual photons in the pion form factors and the energy-momentum tensor

    CERN Document Server

    Kubis, B; Kubis, Bastian; Mei{\\ss}ner, Ulf-G.

    2000-01-01

    We evaluate the vector and scalar form factor of the pion in the presence of virtual photons at next-to-leading order in two-flavor chiral perturbation theory. We also consider the scalar and tensor pion form factors of the energy-momentum tensor. We find that the intrinsic electromagnetic corrections are very small for the vector and charged pion scalar form factor. The scalar radius of the neutral pion is reduced by two percent. We perform infrared regularization by considering electron-positron annihilation into pions and the decay of a light Higgs boson into a pion pair. We discuss the detector resolution dependent contributions to the various form factors and pion radii.

  8. Constraints on the $\\omega\\pi$ form factor from analyticity and unitarity

    CERN Document Server

    Ananthanarayan, B; Kubis, B

    2014-01-01

    Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic $\\omega\\pi$ form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit the unitarity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor, as well as narrow isoscalar vector meson states. From this information, we derive upper and lower bounds on the modulus of the form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.

  9. Progress on charm semileptonic form factors from 2+1 flavor lattice QCD

    CERN Document Server

    Bailey, Jon A; Bernard, C; Bouchard, C; DeTar, C; El-Khadra, A X; Freeland, E D; Freeman, W; Gamiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Oktay, M B; Di Pierro, M; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S

    2009-01-01

    Lattice calculations of the form factors for the charm semileptonic decays D to K l nu and D to pi l nu provide inputs to direct determinations of the CKM matrix elements |V(cs)| and |V(cd)| and can be designed to validate calculations of the form factors for the bottom semileptonic decays B to pi l nu and B to K l l-bar. We are using Fermilab charm (bottom) quarks and asqtad staggered light quarks on the 2+1 flavor asqtad MILC ensembles to calculate the charm (bottom) form factors. We outline improvements to the previous calculation of the charm form factors and detail our progress. We expect our current round of data production to allow us to reduce the theoretical uncertainties in |V(cs)| and |V(cd)| from 10.5% and 11%, respectively, to about 7%.

  10. Form factors for semi-leptonic and radiative decays of heavy mesons to light mesons

    CERN Document Server

    Stech, B

    1996-01-01

    To know and understand form factors of hadronic currents is of decisive importance for analysing exclusive weak decays. The ratios of different form factors of a given process depend on the relativistic spin structure of initial and final particles. It is shown --- assuming simple properties of the spectator particle --- that these ratios can entirely be expresssed in terms of particle and quark mass parameters. For quark masses large compared to the spectator mass the Isgur-Wise relations follow. The corresponding amplitudes for heavy-to-light transitions show a very similar structure. In particular, the F_0 and A_1 form factors behave again differently from the F_1, A_2, V and T_1 form factors.

  11. Transition electromagnetic form factor in the Minkowski space Bethe-Salpeter approach

    CERN Document Server

    Carbonell, J

    2013-01-01

    Using the solutions of the Bethe-Salpeter equation in Minkowski space for bound and scattering states found in previous works, we calculate the transition electromagnetic form factor describing the electro-disintegration of a bound system.

  12. Scalar and vector form factors of the in-medium nucleon

    CERN Document Server

    Saitô, K

    2003-01-01

    Using the quark-meson coupling model, we calculate the form factors at sigma- and omega-nucleon strong-interaction vertices in nuclear matter. The Peierls-Yoccoz projection technique is used to take account of center of mass and recoil corrections. We also apply the Lorentz contraction to the internal quark wave function. The form factors are reduced by the nuclear medium relative to those in vacuum. At normal nuclear matter density and Q^2 = 1 GeV^2, the reduction rate in the scalar form factor is about 15%, which is almost identical to that in the vector one. We parameterize the ratios of the form factors in symmetric nuclear matter to those in vacuum as a function of nuclear density and momentum transfer.

  13. New Precision Limit on the Strange Vector Form Factors of the Proton

    CERN Document Server

    Ahmed, Z; Aniol, K A; Armstrong, D S; Arrington, J; Baturin, P; Bellini, V; Benesch, J; Beminiwattha, R; Benmokhtar, F; Canan, M; Camsonne, A; Cates, G D; Chen, J -P; Chudakov, E; Cisbani, E; Dalton, M M; de Jager, C W; De Leo, R; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, C; Franklin, G B; Friend, M; Frullani, S; Garibaldi, F; Giusa, A; Glamazdin, A; Golge, S; Grimm, K; Hansen, O; Higinbotham, D W; Holmes, R; Holmstrom, T; Huang, J; Huang, M; Hyde, C E; Jen, C M; Jin, G; Jones, D; Kang, H; King, P; Kowalski, S; Kumar, K S; Lee, J H; LeRose, J J; Liyanage, N; Long, E; McNulty, D; Margaziotis, D; Meddi, F; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R; Munoz-Camacho, C; Mihovilovic, M; Muangma, N; Myers, K E; Nanda, S; Narayan, A; Nelyubin, V; Nuruzzaman,; Oh, Y; Pan, K; Parno, D; Paschke, K D; Phillips, S K; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Rider, K; Riordan, S; Roche, J; Rubin, J; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Silwal, R; Sirca, S; Souder, P A; Sperduto, M; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Zhan, X; Yan, X; Yao, H; Ye, L; Zhao, B; Zheng, X

    2011-01-01

    The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q2 = 0.624 GeV and beam energy E =3.48 GeV to be A_PV = -23.80 +/- 0.78 (stat) +/- 0.36 (syst) parts per million. This result is consistent with zero contribution of strange quarks to the combination of electric and magnetic form factors G_E^s + 0.517 G_M^s = 0.003 +/- 0.010 (stat) +/- 0.004 (syst) +/- 0.009 (ff), where the third error is due to the limits of precision on the electromagnetic form factors and radiative corrections. With this measurement, the world data on strange contributions to nucleon form factors are seen to be consistent with zero and not more than a few percent of the proton form factors.

  14. $\\pi^0\\to\\gamma^*\\gamma$ transition form factor within Light Front Quark Model

    CERN Document Server

    Lih, Chong-Chung

    2012-01-01

    We study the transition form factor of $\\pi^0\\to\\gamma^* \\gamma$ as a function of the momentum transfer $Q^2$ within the light-front quark model (LFQM). We compare our result with the experimental data by BaBar as well as other calculations based on the LFQM in the literature. We show that our predicted form factor fits well with the experimental data, particularly those at the large $Q^2$ region.

  15. Study of pesudoscalar transition form factors within light front quark model

    CERN Document Server

    Geng, Chao-Qiang

    2012-01-01

    We study the transition form factors of the pesudoscalar mesons ($\\pi,\\eta$ and $\\eta^{\\prime}$) as functions of the momentum transfer $Q^2$ within the light-front quark model. We compare our results with the recent experimental data by CELLO, CLEO, BaBar and Belle. By considering the possible uncertainties from the quark masses, we illustrate that our predicted form factors can fit with all the data, including those at the large $Q^2$ regions.

  16. A Form Factor Model for Exclusive B- and D-Decays

    CERN Document Server

    Stech, B

    1996-01-01

    An explicit model is presented which gives the momentum transfer-dependent ratios of form factors of hadronic currents. For the unknown Isgur-Wise function and its generalization for transitions to light particles a simple phenomenological Ansatz is added. The model allows a calculation of all form factors in terms of mass parameters only. It is tested by comparison with experimental data, QCD sum rules and lattice calculations.

  17. Suppression of excited-state effects in lattice determination of nucleon electromagnetic form factors

    CERN Document Server

    von Hippel, G M; Djukanovic, D; Hua, J; Jäger, B; Junnarkar, P; Meyer, H B; Rae, T D; Wittig, H

    2014-01-01

    We study the ability of a variety of fitting techniques to extract the ground state matrix elements of the vector current from ratios of nucleon three- and two-point functions that contain contaminations from excited states. Extending our high-statistics study of nucleon form factors, we are able to demonstrate that the treatment of excited-state contributions in conjunction with approaching the physical pion mass has a significant impact on the $Q^2$-dependence of the form factors.

  18. Constraints on the $K_{l_{3}}$ form factors from analyticity and unitarity

    Indian Academy of Sciences (India)

    Gauhar Abbas; B Ananthanarayan; Irinel Caprini; I Sentitemsu Imsong

    2012-10-01

    The $K $ form factors are investigated at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using as input the values of the form factors at = 0, and at the Callan–Treiman point in the scalar case, stringent constraints are obtained on the slope and curvature parameters of the Taylor expansion at the origin.

  19. The magnetic moments and electromagnetic form factors of the decuplet baryons in chiral perturbation theory

    CERN Document Server

    Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2016-01-01

    We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.

  20. Proton electromagnetic form factors: present status and future perspectives at PANDA

    Directory of Open Access Journals (Sweden)

    Tomasi-Gustafsson E.

    2015-01-01

    Full Text Available Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt. Measurements of the reaction p̅ + p → e+ + e− by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold, through the reaction p̅ + p → e+ + e− + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.

  1. Proton electromagnetic form factors: present status and future perspectives at PANDA

    Science.gov (United States)

    Tomasi-Gustafsson, E.

    2015-05-01

    Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt). Measurements of the reaction p̅ + p → e+ + e- by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold), through the reaction p̅ + p → e+ + e- + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.

  2. Mixed-state form factors of U(1) twist fields in the Dirac theory

    Science.gov (United States)

    Chen, Yixiong

    2016-08-01

    Using the ‘Liouville space’ (the space of operators) of the massive Dirac theory, we define mixed-state form factors of U(1) twist fields. We consider mixed states with density matrices diagonal in the asymptotic particle basis. This includes the thermal Gibbs state as well as all generalized Gibbs ensembles of the Dirac theory. When the mixed state is specialized to a thermal Gibbs state, using a Riemann-Hilbert problem and low-temperature expansion, we obtain finite-temperature form factors of U(1) twist fields. We then propose the expression for form factors of U(1) twist fields in general diagonal mixed states. We verify that these form factors satisfy a system of nonlinear functional differential equations, which is derived from the trace definition of mixed-state form factors. At last, under weak analytic conditions on the eigenvalues of the density matrix, we write down the large distance form factor expansions of two-point correlation functions of these twist fields. Using the relation between the Dirac and Ising models, this provides the large-distance expansion of the Rényi entropy (for integer Rényi parameter) in the Ising model in diagonal mixed states.

  3. Charged pion form factor between $Q^2$=0.60 and 2.45 GeV$^2$. II. Determination of, and results for, the pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Garth; Blok, Henk; Horn, Tanja; Beise, Elizabeth; Gaskell, David; Mack, David; Tadevosyan, Vardan; Volmer, Jochen; Abbott, David; Aniol, Konrad; Anklin, Heinz; Armstrong, Christopher; Arrington, John; Assamagan, Ketevi; Avery, Steven; Baker, O.; Barrett, Robert; Bochna, Christopher; Boeglin, Werner; Brash, Edward; Breuer, Herbert; Chang, C.; Chang, C.C.; Chant, Nicholas; Christy, Michael; Dunne, James; Eden, Thomas; Ent, Rolf; Fenker, Benjamin; Gibson, Edward; Gilman, Ronald; Gustafsson, Kenneth; Hinton, Wendy; Holt, Roy; Jackson, Harold; uk Jin, Seong; Jones, Mark; Keppel, Cynthia; Kim, pyunghun; Kim, Wooyoung; King, Paul; Klein, Andreas; Koltenuk, Douglas; Kovaltchouk, Vitali; Liang, Meihua; Liu, Jinghua; Lolos, George; Lung, Allison; Margaziotis, Demetrius; Markowitz, Pete; Matsumura, Akihiko; McKee, David; Meekins, David; Mitchell, Joseph; Miyoshi, Toshinobu; Mkrtchyan, Hamlet; Mueller, Robert; Niculescu, Gabriel; Niculescu, Maria-Ioana; Okayasu, Yuichi; Pentchev, Lubomir; Perdrisat, Charles; Pitz, David; Potterveld, David; Punjabi, Vina; Qin, Liming; Reimer, Paul; Reinhold, Joerg; Roche, Julie; Roos, Philip; Sarty, Adam; Shin, Ilkyoung; Smith, Gregory; Stepanyan, Stepan; Tang, Liguang; Tvaskis, Vladas; van der Meer, Rob; Vansyoc, Kelley; Van Westrum, Derek; Vidakovic, Sandra; Vulcan, William; Warren, Glen; Wood, Stephen; Xu, Chen; Yan, Chen; Zhao, Wenxia; Zheng, Xiaochao; Zihlmann, Benedikt

    2008-10-01

    DOI: http://dx.doi.org/10.1103/PhysRevC.78.045203
    The charged pion form factor, Fpi(Q2), is an important quantity that can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q2=0.60-2.45 GeV2. Above Q2=1.5 GeV2, the Fpi values are systematically below the monopole parametrization that describes the low Q2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard c

  4. Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

    CERN Document Server

    Huber, G M; Horn, T; Beise, E J; Gaskell, D; Mack, D J; Tadevosyan, V; Volmer, J; Abbott, D; Aniol, K; Anklin, H; Armstrong, C; Arrington, J; Assamagan, K; Avery, S; Baker, O K; Barrett, B; Bochna, C; Boeglin, W; Brash, E J; Breuer, H; Chang, C C; Chant, N; Christy, M E; Dunne, J; Eden, T; Ent, R; Gibson, E; Gilman, R; Gustafsson, K; Hinton, W; Holt, R J; Jackson, H; Jin, S; Jones, M K; Keppel, C E; Kim, P H; Kim, W; King, P M; Klein, A; Koltenuk, D; Kovaltchouk, V; Kiang, M; Liu, J; Lolos, G J; Lung, A; Margaziotis, D J; Markowitz, P; Matsumura, A; McKee, D; Meekins, D; Mitchell, J; Miyoshi, T; Mkrtchyan, H; Müller, B; Niculescu, G; Niculescu, I; Okayasu, Y; Pentchev, L; Perdrisat, C; Pitz, D; Potterveld, D; Punjabi, V; Qin, L M; Reimer, P; Reinhold, J; Roche, J; Roos, P G; Sarty, A; Shin, I K; Smith, G R; Stepanyan, S; Tang, L G; Tvaskis, V; Van der Meer, R L J; Vansyoc, K; Van Westrum, D; Vidakovic, S; Vulcan, W; Warren, G; Wood, S A; Xu, C; Yan, C; Zhao, W -X; Zheng, X; Zihlmann, B

    2008-01-01

    The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.

  5. Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    CERN Document Server

    Gran, R; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, Yu K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, C; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Mayer, B; Vasseur, G; Yéche, C; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martínez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihályi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H; Back, B B

    2006-01-01

    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \\pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.

  6. Transverse Momentum and Sudakov Effects in Exclusive QCD Processes $\\gamma* \\gamma \\pi0$ Form Factor

    CERN Document Server

    Musatov, I V

    1997-01-01

    We analyze effects due to transverse degrees of freedom in QCD calculations of the fundamental hard exclusive amplitude of $\\gamma^*\\gamma \\to \\pi^0$ transition. A detailed discussion is given of the relation between the modified factorization approach (MFA) of Sterman {\\it et al.} and standard factorization (SFA). Working in Feynman gauge, we construct basic building blocks of MFA from the one-loop coefficient function of the SFA, demonstrating that Sudakov effects are distinctly different from higher-twist corrections. We show also that the handbag-type diagram, contrary to naive expectations, does not contain an infinite chain of $(M^2/Q^2)^n$ corrections: they come only from diagrams with transverse gluons emitted from the hard propagator. A simpler picture emerges within the QCD sum rule approach: the sum over soft $\\bar q G \\ldots G q$ Fock components is dual to $\\bar qq$ states generated by the local axial current. We combine the results based on QCD sum rules with pQCD radiative corrections and observ...

  7. Extraction of the isovector magnetic form factor of the nucleon at zero momentum

    CERN Document Server

    Alexandrou, Constantia; Koutsou, Giannis; Ottnad, Konstantin; Petschlies, Marcus

    2014-01-01

    The extraction of the magnetic form factor of the nucleon at zero momentum transfer is usually performed by adopting a parametrization for its momentum dependence and fitting the results obtained at finite momenta. We present position space methods that rely on taking the derivative of relevant correlators to extract directly the magnetic form factor at zero momentum without the need to assume a functional form for its momentum dependence. These methods are explored on one ensemble using $N_f=2+1+1$ Wilson twisted mass fermions.

  8. Single-Spin Polarization Effects and the Determination of Timelike Proton Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2003-10-24

    We show that measurements of the proton's polarization in e{sup +}e{sup -} {yields} p{bar p} strongly discriminate between analytic forms of models which fit the proton form factors in the spacelike region. In particular, the single-spin asymmetry normal to the scattering plane measures the relative phase difference between the timelike G{sub E} and G{sub M} form factors. The expected proton polarization in the timelike region is large, of order of several tens of percent.

  9. Pion charge form factor and constraints from space-time translations

    CERN Document Server

    Desplanques, Bertrand

    2010-01-01

    The role of Poincar\\'e covariant space-time translations is investigated in the case of a relativistic quantum mechanics approach to the pion charge form factor. It is shown that the related constraints are generally inconsistent with the assumption of a single-particle current, which is most often referred to. The only exception is the front-form approach with $q^+=0$. How accounting for the related constraints, as well as restoring the equivalence of different RQM approaches in estimating form factors, is discussed. Some extensions of this work and, in particular, the relationship with a dispersion-relation approach, are presented. Conclusions relative to the underlying dynamics are given.

  10. Determination of the Form Factors for the Decay B0 -> D*- l+ nu_l and of the CKM Matrix Element |V_cb|

    CERN Document Server

    Aubert, B; Boutigny, D; Karyotakis, Yu; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Graugès-Pous, E; López, L; Palano, A; Eigen, G; Ofte, I; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes-Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo-Sánchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schröder, T; Steinke, M; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Bequilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F R; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Fisher, P H; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, Gallieno; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; Leruste, P; Malcles, J; Ocariz, J; Pérez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Röthel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2007-01-01

    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V_{cb}| and of the parameters rho^2, R_1(1), and R_2(1), which fully characterize the form factors for the B0 -> D*- l+ nu_l decay in the framework of HQET. The results, based on a selected sample of about 52,800 B0 -> D*- l+ nu_l decays, recorded by the BaBar detector, are rho2=1.156+-0.094+-0.028, R_1(1)=1.329+-0.131+-0.044, R_2(1)=0.859+-0.077+-0.022, and F(1)|V_cb|=(35.0+-0.4+-1.1)x10^-3. The first error is the statistical and the second is the systematic uncertainty. Combining these measurements with the previous BaBar measurement of the form factors, which employs a different fit technique on a partial sample of the data, we improve the statistical precision of the result, rho2=1.179+-0.048+-0.028, R_1(1)=1.417+-0.061+-0.044, R_2(1)=0.836+-0.037+-0.022, and F(1)|V_cb| = (34.7+-0.3+-1.1)x10^-3. Using lattice calculations for the axial form factor $\\mathcal{F}(1)$, we extract |V_cb| =(37.7+-0.3+-1.2+1.2-1.4)x10^-3, where th...

  11. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    CERN Document Server

    Massen, S E; Grypeos, M E

    1995-01-01

    We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.

  12. Nucleon form factors and moments of generalized parton distributions using N{sub f}= 2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration

    2013-04-15

    We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.

  13. Altered Axial Skeletal Development

    Science.gov (United States)

    The axial skeleton is routinely examined in standard developmental toxicity bioassays and has proven to be sensitive to a wide variety of chemical agents. Dysmorphogenesis in the skull, vertebral column and ribs has been described in both human populations and in laboratory anima...

  14. A combined study of the pion's static properties and form factors

    CERN Document Server

    El-Bennich, B; Frederico, T

    2012-01-01

    We study consistently the pion's static observables and the elastic and \\gamma*\\gamma -> \\pi^0 transition form factors within a light-front model. Consistency requires that all calculations are performed within a given model with the same and single adjusted length or mass-scale parameter of the associated pion bound-state wave function. Our results agree well with all extent data including recent Belle data on the \\gamma*\\gamma -> \\pi^0 form factor at large q^2, yet the BaBar data on this transition form factor resists a sensible comparison. We relax the initial constraint on the bound-state wave function and show the BaBar data can partially be accommodated. This, however, comes at the cost of a hard elastic form factor not in agreement with experiment. Moreover, the pion charge radius is about 40% smaller than its experimentally determined value. It is argued that a decreasing charge radius produces an ever harder form factor with a bound-state amplitude difficultly reconcilable with soft QCD. We also disc...

  15. Feasibility studies of time-like proton electromagnetic form factors at PANDA-FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Dbeyssi, Alaa; Capozza, Luigi; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Mora Espi, Maria Carmen; Noll, Oliver; Rodriguez Pineiro, David; Valente, Roserio; Zambrana, Manuel; Zimmermann, Iris [Helmholtz-Institut Mainz, Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz, Mainz (Germany); Institute of Nuclear Physics, Mainz (Germany); PRISMA Cluster of Excellence, Mainz (Germany); Marchand, Dominique; Tomasi-Gustafsson, Egle; Wang, Ying [Institut de Physique Nucleaire, Orsay (France); Collaboration: PANDA-Collaboration

    2015-07-01

    Electromagnetic form factors are fundamental quantities which describe the intrinsic electric and magnetic distributions of hadrons. Time-like proton form factors are experimentally accessible through the annihilation processes anti p+p <-> e{sup +}+e{sup -}. Their measurement in the time-like region had been limited by the low statistics achieved by the experiments. This contribution reports on the results of Monte Carlo simulations for future measurements of electromagnetic proton form factors at PANDA (antiProton ANnihilation at DArmstadt). In frame of the PANDARoot software, the statistical precision at which the proton form factors will be determined is estimated. The signal (anti p+p → e{sup +}+e{sup -}) identification and the suppression of the main background process (anti p+p → π{sup +}+π{sup -}) are studied. Different methods have been used and/or developed to generate and analyse the processes of interest. The results show that time-like proton form factors will be measured at PANDA with unprecedented statistical accuracy.

  16. Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data

    CERN Document Server

    Duda, G; Kemper, A; Duda, Gintaras; Gondolo, Paolo; Kemper, Ann

    2006-01-01

    Theoretical calculations of neutralino cross sections with various nuclei are of great interest to direct dark matter searches such as CDMS, EDELWEISS, ZEPLIN, and other experiments. These cross sections and direct detection rates are generally computed with standard, one or two parameter model-dependent nuclear form factors, which may not exactly mirror the actual form factor for the particular nucleus in question. As is well known, elastic electron scattering can allow for very precise determinations of nuclear form factors and hence nuclear charge densities for spherical or near-spherical nuclei. We use charge densities derived from elastic electron scattering data to calculate model independent form factors for various target nuclei important in dark matter searches, such as Si, Ge, S, Ca and others. We have found that for nuclear recoils in the range of 1-100 keV significant differences in cross sections and rates exist when the model independent form factors are used. DarkSUSY, a publicly-available adva...

  17. Dissipative axial inflation

    Science.gov (United States)

    Notari, Alessio; Tywoniuk, Konrad

    2016-12-01

    We analyze in detail the background cosmological evolution of a scalar field coupled to a massless abelian gauge field through an axial term phi/fγ F ~F, such as in the case of an axion. Gauge fields in this case are known to experience tachyonic growth and therefore can backreact on the background as an effective dissipation into radiation energy density ρR, which can lead to inflation without the need of a flat potential. We analyze the system, for momenta k smaller than the cutoff fγ, including the backreaction numerically. We consider the evolution from a given static initial condition and explicitly show that, if fγ is smaller than the field excursion phi0 by about a factor of at least Script O (20), there is a friction effect which turns on before the field can fall down and which can then lead to a very long stage of inflation with a generic potential. In addition we find superimposed oscillations, which would get imprinted on any kind of perturbations, scalars and tensors. Such oscillations have a period of 4-5 efolds and an amplitude which is typically less than a few percent and decreases linearly with fγ. We also stress that the curvature perturbation on uniform density slices should be sensitive to slow-roll parameters related to ρR rather than dot phi2/2 and we discuss the existence of friction terms acting on the perturbations, although we postpone a calculation of the power spectrum and of non-gaussianity to future work and we simply define and compute suitable slow roll parameters. Finally we stress that this scenario may be realized in the axion case, if the coupling 1/fγ to U(1) (photons) is much larger than the coupling 1/fG to non-abelian gauge fields (gluons), since the latter sets the range of the potential and therefore the maximal allowed phi0~ fG.

  18. $D$ semileptonic form factors and $|V_{cs(d)}|$ from 2+1 flavor lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Jon A.; Bazavov, A.; El-Khadra, A.X.; Gottlieb, Steven; Jain, R.D.; Kronfeld, A.S.; Van de Water, R.S.; Zhou, R.

    2011-11-01

    The measured partial widths of the semileptonic decays D {yields} K{ell}{nu} and D {yields} {pi}{ell}{nu} can be combined with the form factors calculated on the lattice to extract the CKM matrix elements |V{sub cs}| and |V{sub cd}|. The lattice calculations can be checked by comparing the form factor shapes from the lattice and experiment. We have generated a sizable data set by using heavy clover quarks with the Fermilab interpretation for charm and asqtad staggered light quarks on 2+1 flavor MILC ensembles with lattice spacings of approximately 0.12, 0.09, 0.06, and 0.045 fm. Preliminary fits to staggered chiral perturbation theory suggest that we can reduce the uncertainties in the form factors at q{sup 2} = 0 to below 5%.

  19. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B. [Aligarth Muslim Univ., Aligarth (India). Physics Dept.; Erni, W.; Krusche, B. [Basel Univ. (Switzerland); Collaboration: The PANDA Collaboration; and others

    2016-10-15

    Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e{sup +}e{sup -} is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π{sup +}π{sup -}, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)

  20. Excited state systematics in extracting nucleon electromagnetic form factors from the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Rae, Thomas; Hippel, Georg von; Knippschild, Bastian [PRISMA Cluster of Excellence and Institut fuer Kernphysik, University of Mainz (Germany); Capitani, Stefano; Wittig, Hartmut; Jaeger, Benjamin; Meyer, Harvey; Della Morte, Michele [PRISMA Cluster of Excellence and Institut fuer Kernphysik, University of Mainz (Germany); Helmholtz Institute Mainz, University of Mainz (Germany)

    2013-07-01

    We present recent results for the nucleon electromagnetic form factors using lattice QCD. This includes the determination of the charge radii. The standard approach is to extract the form factors via a plateau fit to the lattice data using a 'large-enough' time separation between the operators at the source and sink. To check that this removes excited state contaminations to an acceptable level, we employ two further extraction methods: a fit that explicitly accounts for the contamination; and the use of a summed operator insertion, which suppresses the contamination. A comparison of the methods allows for the study of systematic effects related to excited state contributions entering in the q{sup 2} dependence of the form factors. We employ the CLS ensembles using non-perturbatively O(a) improved Wilson fermions in N{sub f}=2 QCD.

  1. Effects of nuclear deformation on the form factor for direct dark matter detection

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya-Zheng; CHEN Jun-Mou; LUO Yan-An; SHEN Hong; LI Xue-Qian

    2012-01-01

    For the detection of direct dark matter,in order to extract useful information about the fundamental interactions from the data,it is crucial to properly determine the nuclear form factor.The form factor for the spin-independent cross section of collisions between dark matter particles and the nucleus has been thoroughly studied by many authors.When the analysis was carried out,the nuclei were always supposed to be spherically symmetric.In this work,we investigate the effects of the deformation of nuclei from a spherical shape to an elliptical one on the form factor.Our results indicate that as long as the ellipticity is not too large,such deformation will not cause any substantial effects.In particular,when the nuclei are randomly orientated in room-temperature circumstances,one can completely neglect them.

  2. Electromagnetic form factors of the Delta in a S-wave approach

    CERN Document Server

    Ramalho, G

    2008-01-01

    Without any further adjusting of parameters, a relativistic constituent quark model, successful in the description of the data for the nucleon elastic form factors and the dominant contribution to the nucleon to $\\Delta$ electromagnetic transition, is used here to predict the dominant electromagnetic form factors of the $\\Delta$ baryon. The model considered is based on a simple $\\Delta$ wave function corresponding to a quark-diquark system in an S-state. The results for E0 and M1 are consistent both with experimental results and lattice calculations. The remaining form factors M1 and E2 are negligible for small $Q^2$, as expected, given the symmetric structure considered for the $\\Delta$.

  3. D semileptonic form factors and |V_cs(d)| from 2+1 flavor lattice QCD

    CERN Document Server

    Bailey, Jon A; El-Khadra, A X; Gottlieb, Steven; Jain, R D; Kronfeld, A S; Van de Water, R S; Zhou, R

    2011-01-01

    The measured partial widths of the semileptonic decays D to K l nu and D to pi l nu can be combined with the form factors calculated on the lattice to extract the CKM matrix elements |V_cs| and |V_cd|. The lattice calculations can be checked by comparing the form factor shapes from the lattice and experiment. We have generated a sizable data set by using heavy clover quarks with the Fermilab interpretation for charm and asqtad staggered light quarks on 2+1 flavor MILC ensembles with lattice spacings of approximately 0.12, 0.09, 0.06, and 0.045 fm. Preliminary fits to staggered chiral perturbation theory suggest that we can reduce the uncertainties in the form factors at zero invariant mass to below 5%.

  4. B{yields}D{sup (*)} form factors from QCD light-cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Faller, S. [Universitaet Siegen, Theoretische Physik 1, Fachbereich Physik, Siegen (Germany); CERN, Theory Division, Department of Physics, Geneva 23 (Switzerland); Khodjamirian, A.; Klein, C.; Mannel, T. [Universitaet Siegen, Theoretische Physik 1, Fachbereich Physik, Siegen (Germany)

    2009-04-15

    We derive new QCD sum rules for B{yields}D and B{yields}D{sup *} form factors. The underlying correlation functions are expanded near the light-cone in terms of B-meson distribution amplitudes defined in HQET, whereas the c-quark mass is kept finite. The leading-order contributions of two- and three-particle distribution amplitudes are taken into account. From the resulting light-cone sum rules we calculate all B{yields}D{sup (*)} form factors in the region of small momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the sum rules reduce to a single expression for the Isgur-Wise function. We compare our predictions with the form factors extracted from experimental B{yields}D{sup (*)}l{nu} {sub l} decay rates fitted to dispersive parameterizations. (orig.)

  5. B→ D (*) form factors from QCD light-cone sum rules

    Science.gov (United States)

    Faller, S.; Khodjamirian, A.; Klein, Ch.; Mannel, Th.

    2009-04-01

    We derive new QCD sum rules for B→ D and B→ D * form factors. The underlying correlation functions are expanded near the light-cone in terms of B-meson distribution amplitudes defined in HQET, whereas the c-quark mass is kept finite. The leading-order contributions of two- and three-particle distribution amplitudes are taken into account. From the resulting light-cone sum rules we calculate all B→ D (*) form factors in the region of small momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the sum rules reduce to a single expression for the Isgur-Wise function. We compare our predictions with the form factors extracted from experimental B→(*) l ν l decay rates fitted to dispersive parameterizations.

  6. $B \\to D^{(*)}$ Form Factors from QCD Light-Cone Sum Rules

    CERN Document Server

    Faller, S; Klein, Ch; Mannel, T

    2009-01-01

    We derive new QCD sum rules for $B\\to D$ and $B\\to D^*$ form factors. The underlying correlation functions are expanded near the light-cone in terms of $B$-meson distribution amplitudes defined in HQET, whereas the $c$-quark mass is kept finite. The leading-order contributions of two- and three-particle distribution amplitudes are taken into account. From the resulting light-cone sum rules we calculate all $B\\to \\Dst $ form factors in the region of small momentum transfer (maximal recoil). In the infinite heavy-quark mass limit the sum rules reduce to a single expression for the Isgur-Wise function. We compare our predictions with the form factors extracted from experimental $B\\to \\Dst l \

  7. Feasibility studies of time-like proton electromagnetic form factors at overlinePANDA at FAIR

    Science.gov (United States)

    Singh, B.; Erni, W.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Nicmorus Marinescu, D.; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V. A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A. G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E. K.; Lobanov, Y. Yu.; Lobanov, V. I.; Makarov, A. F.; Malinina, L. V.; Malyshev, V.; Olshevskiy, A. G.; Perevalova, E.; Piskun, A. A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M. G.; Shabratova, G.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J. S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M. N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P. J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J. C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Liu, Z.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H. H.; Lin, D.; Maas, F.; Maldaner, S.; Martínez, M.; Michel, M.; Mora Espí, M. C.; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Rodríguez Piñeiro, D.; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J. P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S.; Kravchenko, E. A.; Kuyanov, I. A.; Martin, K.; Onuchin, A. P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A. K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Ikegami Andersson, W.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Pothodi Chackara, V.; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.

    2016-10-01

    Simulation results for future measurements of electromagnetic proton form factors at overlinePANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel bar{p}p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. bar{p}p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.

  8. New large-$N_c$ relations for the electromagnetic nucleon-to-$\\Delta$ form factors

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2007-12-01

    We establish relations which express the three $N\\to \\Delta$ transition form factors in terms of the nucleon form factors. These relations are based on the known large-$N_c$ relation between the $N\\to \\De$ electric quadrupole moment and the neutron charge radius, and a newly derived large-$N_c$ relation between the electric quadrupole ($E2$) and Coulomb quadrupole ($C2$) transitions. Namely, in the large-$N_c$ limit we find $C2=E2$. We show that these relations provide predictions for the $N\\to\\Delta$ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers. They also provide constraints for the $N \\to \\Delta$ GPDs.

  9. Form Factors and Wave Functions of Vector Mesons in Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hovhannes R. Grigoryan; Anatoly V. Radyushkin

    2007-07-01

    Within the framework of a holographic dual model of QCD, we develop a formalism for calculating form factors of vector mesons. We show that the holographic bound states can be described not only in terms of eigenfunctions of the equation of motion, but also in terms of conjugate wave functions that are close analogues of quantum-mechanical bound state wave functions. We derive a generalized VMD representation for form factors, and find a very specific VMD pattern, in which form factors are essentially given by contributions due to the first two bound states in the Q^2-channel. We calculate electric radius of the \\rho-meson, finding the value < r_\\rho^2>_C = 0.53 fm^2.

  10. Lattice calculation of the pion transition form factor $\\pi^0 \\to \\gamma^* \\gamma^*$

    CERN Document Server

    Antoine, Gérardin; Nyffeler, Andreas

    2016-01-01

    We calculate the pion transition form factor ${\\cal F}_{\\pi^0\\gamma^*\\gamma^*}(q_1^2,q_2^2)$, which describe the interaction of an on-shell pion with two off-shell photons, using lattice QCD simulations with two degenerate flavors of dynamical quarks. This form factor is the main ingredient in the calculation of the pion-pole contribution to hadronic light-by-light scattering in the muon $g-2$, $a_\\mu^{\\mathrm{HLbL}; \\pi^0}$. We focus our study on the spacelike region with photon virtualities up to $1.5~\\mathrm{GeV}^2$, not yet measured experimentally. Several lattice spacings and pion masses are used to extrapolate the results to the physical point and a comparison with different phenomenological models is performed. Finally, we use our extrapolated form factor to provide a lattice determinaiton of $a_\\mu^{\\mathrm{HLbL}; \\pi^0}$.

  11. Form factors of descendant operators: $A^{(1)}_{L-1}$ affine Toda theory

    CERN Document Server

    Alekseev, Oleg

    2009-01-01

    In the framework of the free field representation we obtain exact form factors of local operators in the two-dimensional affine Toda theories of the $A^{(1)}_{L-1}$ series. The construction generalizes Lukyanov's well-known construction to the case of descendant operators. Besides, we propose a free field representation with a countable number of generators for the `stripped' form factors, which generalizes the recent proposal for the sine/sinh-Gordon model. As a check of the construction we compare numbers of the operators defined by these form factors in level subspaces of the chiral sectors with the corresponding numbers in the Lagrangian formalism. We argue that the construction provides a correct counting for operators with both chiralities. At last we study the properties of the operators with respect to the Weyl group. We show that for generic values of parameters there exist Weyl invariant analytic families of the bases in the level subspaces.

  12. JLab Measurements of the 3He Form Factors at Large Momentum Transfers

    CERN Document Server

    Camsonne, A; Olson, M; Acha, A; Allada, K; Anderson, B D; Arrington, J; Baldwin, A; Chen, J -P; Choi, S; Chudakov, E; Cisbani, E; Craver, B; Decowski, P; Dutta, C; Folts, E; Frullani, S; Garibaldi, F; Gilman, R; Gomez, J; Hahn, B; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Huang, J; Iodice, M; Jiang, X; Kelleher, A; Khrosinkova, E; Kievsky, A; Kuchina, E; Kumbartzki, G; Lee, B; LeRose, J J; Lindgren, R A; Lott, G; Lu, H; Marcucci, L E; Margaziotis, D J; Markowitz, P; Marrone, S; Meekins, D; Meziani, Z -E; Michaels, R; Moffit, B; Norum, B; Petratos, G G; Puckett, A; Qian, X; Rondon, O; Saha, A; Sawatzky, B; Segal, J; Shabestari, M; Shahinyan, A; Solvignon, P; Sparveris, N; Subedi, R R; Suleiman, R; Sulkosky, V; Urciuoli, G M; Viviani, M; Wang, Y; Wojtsekhowski, B B; Yan, X; Yao, H; Zhang, W -M; Zheng, X; Zhu, L

    2016-01-01

    The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.

  13. Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    CERN Document Server

    Singh, B.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Marinescu, D. Nicmorus; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C.J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V.A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B.V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A.G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E.K.; Lobanov, Y. Yu.; Lobanov, V.I.; Makarov, A.F.; Malinina, L.V.; Malyshev, V.; Olshevskiy, A.G.; Perevalova, E.; Piskun, A.A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M.G.; Shabratova, G.; Skachkov, N.B.; Skachkova, A.N.; Strokovsky, E.A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S.A.; Zhuravlev, N.I.; Zorin, A.G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R.F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J.S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M.N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P.N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J.C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H.H.; Lin, D.; Maas, F.; Maldaner, S.; Marta, M.; Michel, M.; Espí, M. C. Mora; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Piñeiro, D. Rodríguez; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.

    2016-01-01

    The results of simulations for future measurements of electromagnetic form factors at \\PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision at which the proton form factors can be determined is estimated. The signal channel $\\bar p p \\to e^+ e^-$ is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. the $\\bar p p \\to \\pi^+ \\pi^-$, is studied. Furthermore, the background versus signal efficiency, statistic and systematic uncertainties on the extracted proton form factors are evaluated using to the two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam condition and detector performances.

  14. Research on Design Method of the Full Form Ship with Minimum Thrust Deduction Factor

    Institute of Scientific and Technical Information of China (English)

    张宝吉; 缪爱琴; 张竹心

    2015-01-01

    In the preliminary design stage of the full form ships, in order to obtain a hull form with low resistance and maximum propulsion efficiency, an optimization design program for a full form ship with the minimum thrust deduction factor has been developed, which combined the potential flow theory and boundary layer theory with the optimization technique. In the optimization process, the Sequential Unconstrained Minimization Technique (SUMT) interior point method of Nonlinear Programming (NLP) was proposed with the minimum thrust deduction factor as the objective function. An appropriate displacement is a basic constraint condition, and the boundary layer separation is an additional one. The parameters of the hull form modification function are used as design variables. At last, the numerical optimization example for lines of after-body of 50000 DWT product oil tanker was provided, which indicated that the propulsion efficiency was improved distinctly by this optimal design method.

  15. Constraints on the ωπ form factor from analyticity and unitarity

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian

    2016-05-01

    Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discrepancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ∗. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0.6 GeV, including those from NA60 published in 2016.

  16. Relativistic quark-diquark model of baryons. Non strange spectrum and nucleon electromagnetic form factors

    CERN Document Server

    De Sanctis, M; Santopinto, E; Vassallo, A

    2015-01-01

    We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.

  17. Fourth dimension of the nucleon structure: Spacetime analysis of the timelike electromagnetic proton form factors

    Science.gov (United States)

    Bianconi, Andrea; Tomasi-Gustafsson, Egle

    2017-01-01

    As is well known, spacelike proton form factors expressed in the Breit frame may be interpreted as the Fourier transform of static space distributions of electric charge and current. In particular, the electric form factor is simply the Fourier transform of the charge distribution F (q ) =∫ei q ⃗.r ⃗ρ (r ) d3r . We do not have an intuitive interpretation of the same level of simplicity for the proton timelike form factor appearing in the reactions e+e-↔p ¯p . However, one may suggest that, in the center-of-mass frame, where qμxμ=q t , a timelike electric form factor is the Fourier transform F (q ) =∫ei q tR (t ) d t of a function R (t ) expressing how the electric properties of the forming (or annihilating) proton-antiproton pair evolve in time. Here we analyze in depth this idea and show that the functions ρ (r ) and R (t ) can be formally written as the time and space integrals of a unique correlation function depending on both time and space coordinates.

  18. The fourth dimension of the nucleon structure: spacetime analysis of the timelike electromagnetic proton form factors

    CERN Document Server

    Bianconi, Andrea

    2016-01-01

    As well known, spacelike proton form factors expressed in the Breit frame may be interpreted as the Fourier transform of static space distributions of electric charge and current. In particular, the electric form factor is simply the Fourier transform of the charge distribution $F(q)=\\int e^{i\\vec q \\cdot \\vec r} \\rho(r)d^3r$. We don't have an intuitive interpretation of the same level of simplicity for the proton timelike form factor appearing in the reactions $e^+e^-\\leftrightarrow \\bar{p}p$. However, one may suggest that in the center of mass (CM) frame, where $q_\\mu x^\\mu =qt$, a timelike electric form factor is the Fourier transform $F(q) =\\int e^{iqt} R(t)dt$ of a function $R(t)$ expressing how the electric properties of the forming (or annihilating) proton-antiproton pair evolve in time. Here we analyze in depth this idea, show that the functions $\\rho(r)$ and $R(t)$ can be formally written as the time and space integrals of a unique correlation function depending on both time and space coordinates.

  19. Analysis of the J/psi --> pi^0 gamma^* transition form factor

    CERN Document Server

    Kubis, Bastian

    2014-01-01

    In view of the first measurement of the branching fraction for J/psi --> pi^0 e^+ e^- by the BESIII collaboration, we analyze what can be learnt on the corresponding transition form factor using dispersion theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion intermediate states. Estimating the effects of multi-pion states as well as charmonium, we arrive at a prediction for the complete form factor that should be scrutinized experimentally in the future.

  20. On the pi pi continuum in the nucleon form factors and the proton radius puzzle

    CERN Document Server

    Hoferichter, M; de Elvira, J Ruiz; Hammer, H -W; Meißner, U -G

    2016-01-01

    We present an improved determination of the $\\pi\\pi$ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the $\\pi\\pi\\to\\bar N N$ partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the $\\pi\\pi$ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  1. Light Cone Sum Rules for gamma*N ->Delta Transition Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    V.M. Braun; A. Lenz; G. Peters; A. Radyushkin

    2006-02-01

    A theoretical framework is suggested for the calculation of {gamma}* N {yields} {Delta} transition form factors using the light-cone sum rule approach. Leading-order sum rules are derived and compared with the existing experimental data. We find that the transition form factors in a several GeV region are dominated by the ''soft'' contributions that can be thought of as overlap integrals of the valence components of the hadron wave functions. The ''minus'' components of the quark fields contribute significantly to the result, which can be reinterpreted as large contributions of the quark orbital angular momentum.

  2. Measurement of the γγ*→π0 transition form factor

    Science.gov (United States)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.

    2009-09-01

    We study the reaction e+e-→e+e-π0 in the single tag mode and measure the differential cross section dσ/dQ2 and the γγ*→π0 transition form factor in the momentum transfer range from 4 to 40GeV2. At Q2>10GeV2 the measured form factor exceeds the asymptotic limit predicted by perturbative QCD. The analysis is based on 442fb-1 of integrated luminosity collected at PEP-II with the BABAR detector at e+e- center-of-mass energies near 10.6 GeV.

  3. Lattice study of D and D{sub s} meson form factors with twisted boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning; Wu, Ya-Jie [Xi' an Technological University, School of Science, Xi' an (China)

    2017-03-15

    We present results on the D and D{sub s} meson electromagnetic form factors using N{sub f} = 2 twisted mass Lattice Quantum Chromodynamics (LQCD) gauge configurations. In this simulation, to access spatial components of momenta that are different from the integer multiples of 2π/L, we apply twisted boundary conditions to compute corresponding correlation functions. Electromagnetic form factors with more small four-momentum transfer are determined, and further we fit the electromagnetic charge radius for D and D{sub s} mesons, respectively. (orig.)

  4. Analysis of the J /ψ →π0γ* transition form factor

    Science.gov (United States)

    Kubis, Bastian; Niecknig, Franz

    2015-02-01

    In view of the first measurement of the branching fraction for J /ψ →π0e+e- by the BESIII collaboration, we analyze what can be learned on the corresponding transition form factor using dispersion theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion intermediate states. Estimating the effects of multipion states as well as charmonium, we arrive at a prediction for the complete form factor that should be scrutinized experimentally in the future.

  5. Electromagnetic form factors for spin-1 particles with the light-front

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Clayton S. [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil); Nunes da Silva, Anacé; Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Frederico, T. [Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil)

    2014-06-15

    This work is dedicate to investigate the spin-1 electromagnetic form factors with the light-front quantum field theory approach. All prescriptions with the light-front approach are contamined by the zero-modes contribuitions to the electromagnetic matrix elements of the electromagnetic current with the plus component of the current; however, the Inna Grach prescriptions it is immune for the zero modes contribuitions. We show numerically the contribution of zero-modes for the electromagnetic current in the case of the vector particles in the light-front quantum field theory. Also the electromagnetic observables, like electromagnetic form factors, radius and the decay constant are presented.

  6. Nucleon shape and electromagnetic form factors in the chiral constituent quark model

    CERN Document Server

    Dahiya, Harleen

    2010-01-01

    The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.

  7. Hyperon elastic electromagnetic form factors in the space-like momentum region

    Energy Technology Data Exchange (ETDEWEB)

    Sanchis-Alepuz, Helios [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany); Karl-Franzens-Universitaet Graz, Institut fuer Physik, Graz (Austria); Fischer, Christian S. [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany)

    2016-02-15

    We present a calculation of the electric and magnetic form factors of ground-state octet and decuplet baryons including strange quarks. We work with a combination of Dyson-Schwinger equations for the quark propagator and covariant Bethe-Salpeter equations describing baryons as bound states of three (non-perturbative) quarks. Our form factors for the octet baryons are in good agreement with corresponding lattice data at finite Q{sup 2}; deviations in some isospin channels for the magnetic moments can be explained by missing meson cloud effects. At larger Q{sup 2} our quark core calculation has predictive power for both, the octet and decuplet baryons. (orig.)

  8. Form Factors and Generalized Parton Distributions in Basis Light-Front Quantization

    CERN Document Server

    Adhikari, Lekha; Zhao, Xingbo; Maris, Pieter; Vary, James P; El-Hady, Alaa Abd

    2016-01-01

    We calculate the elastic form factors and the Generalized Parton Distributions (GPDs) for four low-lying bound states of a demonstration fermion-antifermion system, strong coupling positronium ($e \\bar{e}$), using Basis Light-Front Quantization (BLFQ). Using this approach, we also calculate the impact-parameter dependent GPDs $q(x, {\\vec b_\\perp})$ to visualize the fermion density in the transverse plane (${\\vec b_\\perp}$). We compare selected results with corresponding quantities in the non-relativistic limit to reveal relativistic effects. Our results establish the foundation within BLFQ for investigating the form factors and the GPDs for hadronic systems.

  9. Computation of form factors in massless QCD with finite master integrals

    Science.gov (United States)

    von Manteuffel, Andreas; Panzer, Erik; Schabinger, Robert M.

    2016-06-01

    We present the bare one-, two-, and three-loop form factors in massless quantum chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their ɛ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.

  10. On the Computation of Form Factors in Massless QCD with Finite Master Integrals

    CERN Document Server

    von Manteuffel, Andreas; Schabinger, Robert M

    2015-01-01

    We present the bare one-, two-, and three-loop form factors in massless Quantum Chromodynamics as linear combinations of finite master integrals. Using symbolic integration, we compute their $\\epsilon$ expansions and thereby reproduce all known results with an independent method. Remarkably, in our finite basis, only integrals with a less-than-maximal number of propagators contribute to the cusp anomalous dimensions. We report on indications of this phenomenon at four loops, including the result for a finite, irreducible, twelve-propagator form factor integral. Together with this article, we provide our automated software setup for the computation of finite master integrals.

  11. Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.

  12. Nucleon and gamma N -> Delta lattice form factors in a constituent quark model

    CERN Document Server

    Ramalho, G

    2008-01-01

    A covariant quark model, based both on the spectator formalism and on Vector Meson Dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter - the constituent quark mass in the chiral limit. We calculated the Nucleon (N) and the Gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the Nucleon and Gamma N -> Delta form factors lattice data is achieved for light pion masses.

  13. Light-Front Model of Transition Form-Factors in Heavy Meson Decay

    CERN Document Server

    de Melo, J P B C

    2010-01-01

    Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a light-front framework, we calculate electroweak transition form factor for the semileptonic decay of $D$ mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.

  14. On the ππ continuum in the nucleon form factors and the proton radius puzzle

    Science.gov (United States)

    Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.

    2016-11-01

    We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.

  15. Test of the triple Higgs boson form factor in $\\mu^-\\mu^+\\to HH$

    CERN Document Server

    Gounaris, G J

    2016-01-01

    We study the sensitivity of the process $\\mu^-\\mu^+\\to HH$ to the $q^2$-dependence of the $HHH$ form factor, which can reflect the Higgs boson structure, especially in the case of compositeness. We compute the Born and 1 loop SM contribution to this process. We then show how the $\\mu^-\\mu^+\\to HH$ polarized and unpolarized cross sections are modified by the presence of various types of anomalous contributions to the $HHH$ form factor, in particular Higgs constituents in the case of compositeness.

  16. Kaon photoproduction with form factors in a gauge-invariant approach

    CERN Document Server

    Haberzettl, H; Mart, T; Feuster, T

    1998-01-01

    The general gauge-invariant photoproduction formalism given by Haberzettl is applied to kaon photoproduction off the nucleon at the tree level, with form factors describing composite nucleons. We demonstrate that, in contrast to Ohta's gauge-invariance prescription, this formalism allows electric current contributions to be multiplied by a form factor, i.e., they do not need to be treated like bare currents. Numerical results show that Haberzettl's gauge procedure, when compared to Ohta's, leads to much improved $\\chi^2$ values. Moreover, predictions for the new Bonn SAPHIR data for $p(\\gamma,K^+)\\Lambda$ are given.

  17. Phenomenological analysis of near threshold periodic modulations of the proton timelike form factor

    CERN Document Server

    Bianconi, A

    2015-01-01

    We have recently highlighted the presence of a periodically oscillating 10 \\% modulation in the BABAR data on the proton timelike form factors, in the reaction $e^++e^-$ $\\rightarrow$ $\\bar{p}+p$. Here we deepen our previous data analysis, and confirm that in the case of several standard parametrizations it is possible to write the form factor in the form $F_0$ $+$ $F_{osc}$, where $F_0$ is a parametrization expressing the long-range trend of the form factor (for $q^2$ ranging from the $\\bar{p}p$ threshold to 36 GeV$^2$), and $F_{osc}$ is a function of the form $\\exp(-Bp)\\cos(Cp)$, where $p$ is the relative momentum of the final $\\bar{p}p$ pair. Error bars allow for a clean identification of the main features of this modulation for $q^2$ $<$ 10 GeV$^2$. Assuming this oscillatory modulation to be an effect of final state interactions between the forming proton and the antiproton, we propose a phenomenological model based on a double-layer imaginary optical potential. This potential is flux-absorbing when th...

  18. Model-independent constraints on hadronic form factors with above-threshold poles

    Science.gov (United States)

    Caprini, Irinel; Grinstein, Benjamín; Lebed, Richard F.

    2017-08-01

    Model-independent constraints on hadronic form factors, in particular those describing exclusive semileptonic decays, can be derived from the knowledge of field correlators calculated in perturbative QCD, using analyticity and unitarity. The location of poles corresponding to below-threshold resonances, i.e., stable states that cannot decay into a pair of hadrons from the crossed channel of the form factor, must be known a priori, and their effect, accounted for through the use of Blaschke factors, is to reduce the strength of the constraints in the semileptonic region. By contrast, above-threshold resonances appear as poles on unphysical Riemann sheets, and their presence does not affect the original model-independent constraints. We discuss the possibility that the above-threshold poles can provide indirect information on the form factors on the first Riemann sheet, either through information from their residues or by constraining the discontinuity function. The bounds on form factors can be improved by imposing, in an exact way, the additional information in the extremal problem. The semileptonic K →π ℓν and D →π ℓν decays are considered as illustrations.

  19. Eletroweak Form Factors in the Light-Front for Spin-1 Particles

    CERN Document Server

    de Melo, J P B C; 10.1007/s00601-011-0295-9

    2012-01-01

    The contribution of the light-front valence wave function to the electromagnetic current of spin-1 composite particles is not enough to warranty the proper transformation of the current under rotations. The naive derivation of the plus component of the current in the Drell-Yan-West frame within an analytical and covariant model of the vertex leads to the violation of the rotational symmetry. Computing the form-factors in a quasi Drell-Yan-West frame $q^+\\rightarrow 0$, we were able to separate out in an analytical form the contributions from Z-diagrams or zero modes using the instant-form cartesian polarization basis.

  20. Surface nanoscale axial photonics

    CERN Document Server

    Sumetsky, M

    2011-01-01

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger equation. These modes can be steered with dramatically small nanoscale variation of the fiber radius, which is quite simple to introduce in practice. The extremely low loss of SNAP devices is achieved due to the fantastically low surface roughness inherent in a drawn fiber surface. In excellent agreement with the developed theory, we experimentally demonstrate localization of light in quantum wells, halting light by a point source, tunneling through potential barriers, dark states, etc. This demonstration, prototyping basi...

  1. Measurement of the proton form factor by studying e(+)e(-) -> p(p)over-tilde

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2015-01-01

    Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of e(+)e(-) -> p (p) over tilde at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumpti

  2. On the slope of the scalar K$_{l3}$ decay form factor

    CERN Document Server

    Renner, B

    1973-01-01

    Discusses a mechanism, based on exact threshold theorems in the limit of SU(2)*SU(2) symmetry, which can be used to estimate a certain suppression of the scalar K/sub l3/ decay form factor at low momentum transfers, while maintaining the validity of the Callan-Treiman relation. (6 refs).

  3. Nucleon momentum distributions and elastic electron scattering form factors for some 1p-shell nuclei

    Indian Academy of Sciences (India)

    A K Hamoudi; M A Hasan; A R Ridha

    2012-05-01

    The nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for 1p-shell nuclei with = (such as 6Li, 10B, 12C and 14N nuclei) have been calculated in the framework of the coherent density fluctuation model (CDFM) and expressed in terms of the weight function $|f(x)|^2$. The weight function has been expressed in terms of nucleon density distribution (NDD) of the nuclei and determined from the theory and the experiment. The feature of the long-tail behaviour at high-momentum region of the NMDs has been obtained by both the theoretical and experimental weight functions. The experimental form factors $F(q)$ of all the considered nuclei are very well reproduced by the present calculations for all values of momentum transfer . It is found that the contributions of the quadrupole form factors $F_{C2}(q)$ in 10B and 14N nuclei, which are described by the undeformed p-shell model, are essential for obtaining a remarkable agreement between the theoretical and experimental form factors.

  4. A Diquark-Quark Model with Its Use in Nucleon Form Factors

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Min; ZHANG Ben-Ai

    2005-01-01

    The nucleon electromagnetic form factors are investigated within a simple diquark-quark model using the light-front formalism. In this model, baryon is described as a bound state of one quark and one clustering diquark.The calculational results are compared with the experimental ones. We also regard the quarks in a baryon as pointlike constituent quarks.

  5. Urban form and psychosocial factors : Do they interact for leisure-time walking?

    NARCIS (Netherlands)

    Beenackers, Mariëlle A.; Kamphuis, Carlijn B M; Prins, Richard G.; Mackenbach, Johan P.; Burdorf, Alex; Van Lenthe, Frank J.

    2014-01-01

    INTRODUCTION: This cross-sectional study uses an adaptation of a social-ecological model on the hierarchy of walking needs to explore direct associations and interactions of urban-form characteristics and individual psychosocial factors for leisure-time walking. METHODS: Questionnaire data (n = 736)

  6. Factor Structure and Short Form of the Miville-Guzman Universality-Diversity Scale.

    Science.gov (United States)

    Fuertes, Jairo N.; Miville, Marie L.; Mohr, Jonathan J.; Sedlacek, William E.; Gretchen, Denise

    2000-01-01

    Examines the factor structure of the Miville-Guzman Universality-Diversity Scale (M-GUDS) and presents a short form of the scale (M-GUDS-S). Findings suggest that the M-GUDS-S measures Universal-Diverse Orientation as a multidimensional construct with three distinct domains: behavioral, emotional, and cognitive. (Contains 21 references and 3…

  7. Bone forming capacity of cell- and growth factor-based constructs at different ectopic implantation sites.

    NARCIS (Netherlands)

    Ma, K.; Yang, F.; Both, Sanne Karijn; Prins, H.J.; Helder, M.N.; Pan, J.; Cui, F.Z.; Jansen, J.A.; van den Beucken, J.J.

    2015-01-01

    The aim of this study was to compare the effect of implantation site (i.e., subcutaneous, SQ vs. intramuscular, IM) on bone forming capacity of cell-based and growth factor-based scaffolds in athymic nude rats after an implantation period of 8 weeks. Cell-based scaffolds consisted of porous

  8. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M.

    1987-05-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.

  9. Flavour dependence of the pion and kaon form factors and parton distribution functions

    CERN Document Server

    Hutauruk, Parada T P; Thomas, Anthony W

    2016-01-01

    The separate quark flavour contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many of the features of the available empirical data. The larger mass if the strange quark naturally explains the empirical fact that the ratio $u_{K^+}(x)/u_{\\pi^+}(x)$ drops below unity at large $x$, with a value of approximately $M^2_u/M_s^2$ as $x \\to 1$. With regard to the elastic form factors we report a large flavour dependence, with the $u$-quark contribution to the kaon form factor being an order of magnitude smaller than that of the $s$-quark at large $Q^2$, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total $K^+$ and $\\pi^+$ fo...

  10. Influence of crystals fields on the magnetic form factor of samarium

    NARCIS (Netherlands)

    Wijn, H.W. de; Diepen, A.M. van; Buschow, K.H.J.

    1974-01-01

    It is calculated that crstal fields, with inclusion of mixing of higher multiplets into the ground J = 5/2 state, have a substantial effect on the magnetic form factor of Sm3+. From the neutron diffraction data obtained by Koehler and Moon for the cubic site in Sm metal it follows that the quartet Γ

  11. Double-logarithmic asymptotics of the magnetic form factor of electron and quark

    CERN Document Server

    Ermolaev, B I

    1999-01-01

    The asymptotical behaviour of the magnetic form factor for electron and quark is obtained in the double-logarithmic approximation for the Sudakov kinematics, i.e. for the case when the value of the transfer momentum is much greater than the mass of the particle.

  12. Double-logarithmic asymptotics of the electromagnetic form factors of the electron and quark

    CERN Document Server

    Ermolaev, B I

    2000-01-01

    The asymptotic behaviour of the electromagnetic form factors of the electron and quark is obtained in the double-logarithmic approximation for Sudakov kinematics, i.e. for the case that the value of the momentum transfer is much greater than the mass of the particle.

  13. The Short Form of the Five-Factor Narcissism Inventory: Psychometric Equivalence of the Turkish Version

    Science.gov (United States)

    Eksi, Füsun

    2016-01-01

    This study intends to examine the psychometric properties of the Turkish version of the short form of the Five-Factor Narcissism Inventory (FFNI-SF). The study group consists of a total of 526 university students (54% were female) whose ages range from 18 to 32. In the translational equivalence study made over a two-week interval, the FFNI-SF…

  14. $B\\to Kl^+l^-$ decay form factors from three-flavor lattice QCD

    CERN Document Server

    Bailey, Jon A; Bernard, C; Bouchard, C M; DeTar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Jain, R D; Komijani, J; Kronfeld, A S; Laiho, J; Levkova, L; Liu, Yuzhi; Mackenzie, P B; Meurice, Y; Neil, E T; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2015-01-01

    We compute the form factors for the $B \\to Kl^+l^-$ semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy $b$ quark. We present results for the form factors $f_+(q^2)$, $f_0(q^2)$, and $f_T(q^2)$, where $q^2$ is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of $q^2$, and we use the model-independent $z$ expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the $z$ expansion and the correlations between them, where the errors on the coefficients include statistical and all sys...

  15. Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain

    Energy Technology Data Exchange (ETDEWEB)

    Kitanine, N. [Univ. de Bourgogne (France). IMB, UMR 5584 du CNRS; Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M.; Terras, V. [ENS Lyon (France). UMR 5672 du CNRS, Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Inst., Moscow (Russian Federation)

    2011-03-15

    We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system size. Moreover, the corresponding amplitudes can be obtained as a product of a ''smooth'' and a ''discrete'' part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a power-law in the system size with the same critical exponents as in the longdistance asymptotic behavior of the related two-point correlation functions. The methods we develop in this article are rather general and can be applied to other massless integrable models associated to the six-vertex R-matrix and having determinant representations for their form factors. (orig.)

  16. $K_{l3}$ form factors at order $p^{6}$ of chiral perturbation theory

    CERN Document Server

    Post, P; 10.1007/s10052-002-0967-1

    2002-01-01

    This paper describes the calculation of the semileptonic K/sub l3/ decay form factors at order p/sup 6/ of chiral perturbation theory, which is the next-to-leading order correction to the well-known p/sup 4/ result achieved by Gasser and Leutwyler. At order p/sup 6/ the chiral expansion contains one- and two-loop diagrams which are discussed in detail. The irreducible two-loop graphs of the sunset topology are calculated numerically. In addition, the chiral Lagrangian L/sup (6)/ produces direct couplings with the W bosons. Due to these unknown couplings, one can always add linear terms in q /sup 2/ to the predictions of the form factor f/sub -/(q/sup 2/). For the form factor f/sub +/(q/sup 2/), this ambiguity involves even quadratic terms. Making use of the fact that the pion electromagnetic form factor involves the same q/sup 4/ counterterm, the q/sup 4/ ambiguity can be resolved. Apart from the possibility of adding an arbitrary linear term in q/sup 2/ our calculation shows that chiral perturbation theory c...

  17. Electric form factors of the octet baryons from lattice QCD and chiral extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations

    2014-03-15

    We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.

  18. Constraints on the form factors for K ---> pi l nu and implications for |V(us)|

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Richard J.; /Fermilab

    2006-07-01

    Rigorous bounds are established for the expansion coefficients governing the shape of semileptonic K {yields} {pi} form factors. The constraints enforced by experimental data from {tau} {yields} K{pi}{nu} eliminate uncertainties associated with model parameterizations in the determination of |V{sub us}|. The results support the validity of a powerful expansion that can be applied to other semileptonic transitions.

  19. Light-Front Quark Model Analysis of Meson-Photon Transition Form Factor

    CERN Document Server

    Choi, Ho-Meoyng

    2016-01-01

    We discuss $(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma$ transition form factors using the light-front quark model. Our discussion includes the analysis of the mixing angles for $\\eta-\\eta'$. Our results for $Q^2 F_{(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma}(Q^2)$ show scaling behavior for high $Q^2$ consistent with pQCD predictions.

  20. Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory

    NARCIS (Netherlands)

    Kormos, M.; Mussardo, G.; Pozsgay, B.

    2010-01-01

    We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic

  1. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  2. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    Directory of Open Access Journals (Sweden)

    Goswami A.

    2016-01-01

    Full Text Available In this work we present a study of the Dalitz decay η → γe+e−. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it’s decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  3. Vector form factor of the pion in chiral effective field theory

    Directory of Open Access Journals (Sweden)

    D. Djukanovic

    2015-03-01

    Full Text Available The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.

  4. Mesonic Form Factors and the Isgur-Wise Function on the Light-Front

    CERN Document Server

    Cheng, H Y; Hwang, C W; Cheng, Hai-Yang; Cheung, Chi-Yee; Hwang, Chien-Wen

    1997-01-01

    Within the light-front framework, form factors for $P\\to P$ and $P\\to V$ transitions ($P$: pseudoscalar meson, $V$: vector meson) due to the valence-quark configuration are calculated directly in the entire physical range of momentum transfer. The behavior of form factors in the infinite quark mass limit are examined to see if the requirements of heavy-quark symmetry are fulfilled. We find that the Bauer-Stech-Wirbel type of light-front wave function fails to give a correct normalization for the Isgur-Wise function at zero recoil in $P\\to V$ transition. Some of the $P\\to V$ form factors are found to depend on the recoiling direction of the daughter mesons relative to their parents. Thus, the inclusion of the non-valence configuration arising from quark-pair creation is mandatory in order to ensure that the physical form factors are independent of the recoiling direction. The main feature of the non-valence contribution is discussed.

  5. The electric dipole form factor of the nucleon in chiral perturbation theory to subleading order

    NARCIS (Netherlands)

    Mereghetti, E; de Vries, Jordy; Hockings, W.H.; Maekawa, C.M.; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD ¯ term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution

  6. The nucleon electric dipole form factor from dimension-six time-reversal violation

    NARCIS (Netherlands)

    de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.

    2011-01-01

    We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the framewor

  7. Calculation of heavy meson decay form factors using QCD light cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Christoph; Faller, Sven; Khodjamirian, Alexander; Mannel, Thomas [Theoretische Physik 1, Fachbereich Physik, Universitaet Siegen (Germany); Offen, Nils [Laboratoire de Physique Theorique CNRS/Univ. Paris-Sud 11, Orsay (France)

    2009-07-01

    For the determination of CKM-matrix elements from exclusive semileptonic heavy meson decays it is important to know the corresponding form factors, which describe the hadronic dynamics. Since the form factors need some theoretical input, it is crucial to have a few independent calculations to extract the CKM-parameters from experimental data. One of these is the method of QCD sum rules, which will be applied here. In this talk we present our results from the use of different versions of the method of light cone sum rules (LCSR) for the determination of the B{yields} D{sup (*)}- as well as the D{yields}{pi} and D{yields}K-form factors. For B{yields}D{sup (*)} we use the new version of LCSR with B-meson-distribution amplitudes, which is applicable in the kinematical region of high recoil of the produced meson. The results are compared with recent experimental data and their expansion in the heavy quark mass is discussed. Concerning D{yields} {pi},K we employ and update the conventional LCSR with {pi}/K-distribution amplitudes. With the calculated form factors we determine the ratio vertical stroke V{sub cd} vertical stroke / vertical stroke V{sub cs} vertical stroke from new experimental data.

  8. Structure of the neutral pion and its electromagnetic transition form factor

    CERN Document Server

    Raya, K; Bashir, A; Cobos-Martinez, J J; Gutiérrez-Guerrero, L X; Roberts, C D; Tandy, P C

    2015-01-01

    The $\\gamma^\\ast \\gamma \\to \\pi^0$ transition form factor, $G(Q^2)$, is computed on the entire domain of spacelike momenta using a continuum approach to the two valence-body bound-state problem in relativistic quantum field theory: the result agrees with data obtained by the CELLO, CLEO and Belle Collaborations. The analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor, and demonstrates, too, that a fully self-consistent treatment can readily connect a pion PDA that is a broad, concave function at the hadronic scale with the perturbative QCD prediction for the transition form factor in the hard photon limit. The normalisation of that limit is set by the scale of dynamical chiral symmetry breaking, which is a crucial feature of the Standard Model. Understanding of the latter will thus remain incomplete until definitive transition form factor data is available on $Q^2>10\\,$GeV$^2$.

  9. The charge form factor of pseudoscalar mesons in a relativistic constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1994-04-01

    The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.

  10. Nucleon generalized form factors and sigma term from lattice QCD near the physical quark mass

    CERN Document Server

    Bali, G S; Gläßle, B; Göckeler, M; Najjar, J; Rödl, R; Schäfer, A; Schiel, R; Söldner, W; Sternbeck, A; Wein, P

    2013-01-01

    We present new N_f=2 data for the nucleon generalized form factors, varying volume, lattice spacing and pion mass, down to 150 MeV. We also give an update of our direct calculation of the nucleon sigma term for a range of pion mass values including the lightest one.

  11. Nonperturbative study of the 't Hooft-Polyakov monopole form factors

    CERN Document Server

    Rajantie, Arttu

    2011-01-01

    The mass and interactions of a quantum 't Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.

  12. Nonperturbative study of the 't Hooft-Polyakov monopole form factors

    Science.gov (United States)

    Rajantie, Arttu; Weir, David J.

    2012-01-01

    The mass and interactions of a quantum ’t Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.

  13. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  14. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) Two-Photon Exchange Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rimal, Dipak [Florida Intl Univ., Miami, FL (United States)

    2014-05-01

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (ε).

  15. A Relativistic Coupled-Channel Formalism for the Pion Form Factor

    Directory of Open Access Journals (Sweden)

    Klink W.H.

    2010-04-01

    Full Text Available The electromagnetic form factor of a confined quark-antiquark pair is calculated within the framework of point-form relativistic quantum mechanics. The dynamics of the exchanged photon is explicitly taken into account by treating the electromagnetic scattering of an electron by a meson as a relativistic two-channel problem for a Bakamjian-Thomas type mass operator. This approach guarantees Poincare invariance. Using a Feshbach reduction the coupled-channel problem can be converted into a one-channel problem for the elastic electron-meson channel. By comparing the one-photon-exchange optical potential at the constituent and hadronic levels, we are able to unambiguously identify the electromagnetic meson form factor. Violations of cluster-separability properties, which are inherent in the Bakamjian-Thomas approach, become negligible for su?ciently large invariant mass of the electron-meson system. In the limit of an in?nitely large invariant mass, an equivalence with form-factor calculations done in front-form relativistic quantum mechanics is established analytically.

  16. Photon-to-pion transition form factor and pion distribution amplitude from holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Fen [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Research Center for Science Facilities, Beijing (China); Istituto Nazionale di Fisica Nucleare, Secione di Bari, Bari (Italy); Huang, Tao [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Research Center for Science Facilities, Beijing (China)

    2012-01-15

    We try to understand the recently observed anomalous behavior of the photon-to-pion transition form factor in the holographic QCD approach. First the holographic description of the anomalous {gamma}{sup *}{gamma}{sup *}{pi}{sup 0} form factor is reviewed and applied to various models. It is pointed out that the holographic identification of the pion mode from the 5D gauge field strength rather than the gauge potential, as first made by Sakai and Sugimoto, naturally reproduces the scaling behavior of various pion form factors. It is also illustrated that in describing the anomalous form factor, the holographic approach is asymptotically dual to the perturbative QCD (pQCD) framework, with the pion mode {pi}(z){proportional_to}z corresponding to the asymptotic pion distribution amplitude. This indicates some inconsistency in light-front holography, since {pi}(z){proportional_to}z would be dual to {phi}(x){proportional_to}{radical}(x(1-x)) there. This apparently contradictory can be attributed to the fact that the holographic wave functions are effective ones, as observed early by Radyushkin. After clarifying these subtleties, we employ the relation between the holographic and the perturbative expressions to study possible asymptotic violation of the transition form factor. It is found that if one require that the asymptotic form factor possess a pQCD-like expression, the pion mode can only be ultraviolet-enhanced by logarithmic factors. The minimally deformed pion mode will then be of the form {pi}(z){proportional_to}zln(z{lambda}){sup -1}. We suppose that this deformation may be due to the coupling of the pion with a nontrivial open string tachyon field, and then the parameter {lambda} will be related to the quark condensate. Interestingly, this pion mode leads immediately to Radyushkin's logarithmic model, which fitted very well the experimental data in the large-Q{sup 2} region. On the other side, the pQCD interpretation with a flat-like pion distribution

  17. QCD corrections to B→π form factors from light-cone sum rules

    Directory of Open Access Journals (Sweden)

    Yu-Ming Wang

    2015-09-01

    Full Text Available We compute perturbative corrections to B→π form factors from QCD light-cone sum rules with B-meson distribution amplitudes. Applying the method of regions we demonstrate factorization of the vacuum-to-B-meson correlation function defined with an interpolating current for pion, at one-loop level, explicitly in the heavy quark limit. The short-distance functions in the factorization formulae of the correlation function involves both hard and hard-collinear scales; and these functions can be further factorized into hard coefficients by integrating out the hard fluctuations and jet functions encoding the hard-collinear information. Resummation of large logarithms in the short-distance functions is then achieved via the standard renormalization-group approach. We further show that structures of the factorization formulae for fBπ+(q2 and fBπ0(q2 at large hadronic recoil from QCD light-cone sum rules match that derived in QCD factorization. In particular, we perform an exploratory phenomenological analysis of B→π form factors, paying attention to various sources of perturbative and systematic uncertainties, and extract |Vub|=(3.05−0.38+0.54|th.±0.09|exp.×10−3 with the inverse moment of the B-meson distribution amplitude ϕB+(ω determined by reproducing fBπ+(q2=0 obtained from the light-cone sum rules with π distribution amplitudes. Furthermore, we present the invariant-mass distributions of the lepton pair for B→πℓνℓ (ℓ=μ,τ in the whole kinematic region. Finally, we discuss non-valence Fock state contributions to the B→π form factors fBπ+(q2 and fBπ0(q2 in brief.

  18. Vertebrate Axial Patterning: From Egg to Asymmetry.

    Science.gov (United States)

    Houston, Douglas W

    2017-01-01

    The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.

  19. Experimental Investigation into Axial Compressive Behavior of Cold Formed Thin-Walled Steel Columns with Lipped Channel and Openings%开孔冷弯薄壁卷边槽钢柱轴压性能的试验研究

    Institute of Scientific and Technical Information of China (English)

    姚永红; 武振宇; 成博; 邓君宝

    2011-01-01

    为研究腹板开孔具中间加劲肋的冷弯薄壁卷边槽钢构件的受压性能,对两种截面形式的短柱和中长柱共计16根轴压构件的承载力和屈曲模式进行了试验分析.结果表明:所有试件均发生畸变屈曲失效,中长柱试件还伴随有绕弱轴的整体弯曲;腹板孔洞导致构件屈曲模式发生变化,孔洞周边板件有局部屈曲产生;孔洞的存在使试件承载力降低,短柱试件承载力的减小幅度比中长柱试件的大;同组试件中畸变初始缺陷大的,一般承载力较小,畸变变形偏大;极限承载力下开孔构件的畸变变形一般大于未开孔构件.文中还对所有试件进行了有限元模拟,发现有限元分析结果与试验值吻合较好.%In order to investigate the compression behavior of the cold-formed thin-walled steel columns with lipped channel, intermediate stiffener and openings in the web, 16 axial compressive members, including the short and the medium-length columns in two section forms, were experimentally analyzed in the aspects of bearing capacity and buckling mode. The results show that all of the specimens fail due to the distortional buckling and the medium-length columns have additional overall bending around the weak axis, that the openings in the web result in the changes of buckling modes of the members and the local bucklings of the plates occur around the openings, and that, due to the effects of the openings, the bearing capacities of the specimens decrease and the decrement of the bearing capacity of the short column is greater than that of the medium-length one. Moreover, it is found that, for the specimens in the same test group, the columns with larger initial distortional imperfections are of lower bearing capacities and greater deformations induced by the distortional bucklings, and that the openings generally enhance the deformations corresponding to the ultimate bearing capacity. In addition, all of the tested specimens

  20. Bound state structure and electromagnetic form factor beyond the ladder approximation

    CERN Document Server

    Gigante, V; Ydrefors, E; Gutierrez, C; Karmanov, V A; Frederico, T

    2016-01-01

    We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is solved by means of the Nakanishi integral representation and light-front projection. The valence light-front wave function and the elastic electromagnetic form factor beyond the impulse approximation, with the inclusion of the two-body current, generated by the cross-ladder kernel, are computed. The valence wave function and electromagnetic form factor, considering both ladder and ladder plus cross-ladder kernels, are studied in detail. Their asymptotic forms are found to be quite independent of the inclusion of the cross-ladder kernel, for a given binding energy. The asymptotic decrease of form factor agrees with the counting rules. This analysis can be generalized to fermionic systems, with a wide application in the study of the meson structure.

  1. Form factors of descendant operators: Reduction to perturbed $M(2,2s+1)$ models

    CERN Document Server

    Lashkevich, Michael

    2014-01-01

    In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the $\\Phi_{13}$\\=/perturbation of minimal conformal models of the $M(2,2s+1)$ series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents $T_{\\pm2k}$, $\\Theta_{\\pm(2k-2)}$, which correspond to the spin $\\pm(2k-1)$ integrals of motion, for any positive integer~$k$. Furthermore, we obtain all form factors of the operators $T_{2k}T_{-2l}$, which generalize the famous $T\\bar T$ operator. The construction is analytic in the $s$ parameter and, therefore, makes sense in the sine-Gordon theory.

  2. Form factors of descendant operators: reduction to perturbed M(2,2s+1) models

    Energy Technology Data Exchange (ETDEWEB)

    Lashkevich, Michael [Landau Institute for Theoretical Physics,1a prospekt Akademika Semenova, 142432 Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology,9 Institutsky per., 141707 Dolgoprudny (Russian Federation); Kharkevich Institute for Information Transmission Problems,19 Bolshoy Karetny per., 127994 Moscow (Russian Federation); Pugai, Yaroslav [Landau Institute for Theoretical Physics,1a prospekt Akademika Semenova, 142432 Chernogolovka (Russian Federation); Moscow Institute of Physics and Technology,9 Institutsky per., 141707 Dolgoprudny (Russian Federation)

    2015-04-23

    In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the Φ{sub 13}-perturbation of minimal conformal models of the M(2,2s+1) series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents T{sub ±2k}, Θ{sub ±(2k−2)}, which correspond to the spin ±(2k−1) integrals of motion, for any positive integer k. Furthermore, we obtain all form factors of the operators T{sub 2k}T{sub −2l}, which generalize the famous TT̄ operator. The construction is analytic in the s parameter and, therefore, makes sense in the sine-Gordon theory.

  3. Inelastic magnetic electron scattering form factors of the 26Mg nucleus

    Indian Academy of Sciences (India)

    Khalid S Jassim; Raad A Radhi; Najlla M Hussain

    2016-01-01

    Magnetic electron scattering (3) form factors with core polarization effects, energy levels and (3) values to 3+ states of the 26Mg nucleus have been studied using shell model calculations. The universal sd of the Wildenthal interaction, universal sd-shell interaction A, universal sd-shell interaction B, are used for the sd-shell orbits. Core polarization effects according to microscopic theory are taken into account by the excitations of nucleons from the (11/2 13/2 11/2) core and also from valence 15/2 21/2 13/2 orbits into higher shells, with $4\\hbar \\omega$ excitation. In form factor calculations, the universal sd-shell interaction B for the sd-shell is used with the Michigan three-range Yakawa effective NN interaction as a residual interaction for the core polarization calculations. The wave functions of the radial single-particle matrix elements have been calculated using harmonic oscillator potentials. The level schemes are compared with the experimental data up to 9.902 MeV. In this study, very good agreements are obtained for all nuclei. Results from 3 form factor calculations with the inclusion of core polarization and new -factors give good agreement with the experimental data.

  4. The Role of Nerve Growth Factor (NGF and Its Precursor Forms in Oral Wound Healing

    Directory of Open Access Journals (Sweden)

    Karl Schenck

    2017-02-01

    Full Text Available Nerve growth factor (NGF and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA and p75 neurotrophin receptor (p75NTR are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds.

  5. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing.

    Science.gov (United States)

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-02-11

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75(NTR)) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds.

  6. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing

    Science.gov (United States)

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-01-01

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds. PMID:28208669

  7. THE ROLE OF INSTITUTIONAL FACTORS IN THE CREATION OF NEW FORMS OF ENTREPRENEURSHIP

    Directory of Open Access Journals (Sweden)

    M. A. Yakhjyaev

    2016-01-01

    Full Text Available Supporting entrepreneurship in diff erent countries of the world it is realized through the participation of financial and non-financial institutions, which together form the infrastructure for the development of small and medium-sized businesses. In this context, one can not underestimate the infl uence of institutional factors that have a stimulating eff ect on the modeling and the creation of new forms of entrepreneurship.Objectives. The aim of the article is to research and analysis of modern concepts and identifying common trends in the creation of new forms of entrepreneurship.Methodology. Theoretical and methodological basis of research are general scientific principles and laws of economics, analysis and synthesis, review of scientific concepts, leading Russian and foreign specialists in the sphere of small and medium-sized businesses.Results. The role of institutional factors in the creation of new forms of entrepreneurship. The features of the creation of new forms and areas of business through the use of eff ective tools of XXI century, identifies key factors and trends in the development of this market.Conclusions / relevance. The relevance of the article due to the fact that in modern conditions, when the national economy is in the stage of turbulence, it is necessary to find new solutions that will ensure the sustainability of national social and economic development in line with global trends. The theme of the article is selected aspect of sustainable economic development in Russia in view of increase of innovative activity of business that will be achieved, including through the creation of new forms of entrepreneurship.

  8. Development of a Short Form of the Five-Factor Narcissism Inventory: the FFNI-SF.

    Science.gov (United States)

    Sherman, Emily D; Miller, Joshua D; Few, Lauren R; Campbell, W Keith; Widiger, Thomas A; Crego, Cristina; Lynam, Donald R

    2015-09-01

    The Five-Factor Narcissism Inventory (FFNI; Glover, Miller, Lynam, Crego, & Widiger, 2012) is a 148-item self-report inventory of 15 traits designed to assess the basic elements of narcissism from the perspective of a 5-factor model. The FFNI assesses both vulnerable (i.e., cynicism/distrust, need for admiration, reactive anger, and shame) and grandiose (i.e., acclaim seeking, arrogance, authoritativeness, entitlement, exhibitionism, exploitativeness, grandiose fantasies, indifference, lack of empathy, manipulativeness, and thrill seeking) variants of narcissism. The present study reports the development of a short-form version of the FFNI in 4 diverse samples (i.e., 2 undergraduate samples, a sample recruited from MTurk, and a clinical community sample) using item response theory. The validity of the resultant 60-item short form was compared against the validity of the full scale in the 4 samples at both the subscale level and the level of the grandiose and vulnerable composites. Results indicated that the 15 subscales remain relatively reliable, possess a factor structure identical to the structure of the long-form scales, and manifest correlational profiles highly similar to those of the long-form scales in relation to a variety of criterion measures, including basic personality dimensions, other measures of grandiose and vulnerable narcissism, and indicators of externalizing and internalizing psychopathology. Grandiose and vulnerable composites also behave almost identically across the short- and long-form versions. It is concluded that the FFNI-Short Form (FFNI-SF) offers a well-articulated assessment of the basic traits comprising grandiose and vulnerable narcissism, particularly when assessment time is limited.

  9. Measurement of the form factor ratios in semileptonic decays of charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Renata [Stanford Univ., CA (United States)

    1998-05-01

    I have measured the form factor ratios r2 = A2 (0)/A1 (0) and rV = V (0)/A1 (0) in the semileptonic charm meson decay D+ → $\\bar{K}$*0 e+ve from data collected by the Fermilab E791 collaboration. Form factors are introduced in the calculation of the hadronic current in semileptonic decays of strange, charm, or bottom mesons, such as D+ → $\\bar{K}$*0 e+ ve . Semileptonic decays provide insight into quark coupling to the W boson since the leptonic and hadronic amplitudes in the Feynman diagram for the decay are completely separate. There are no strong interactions between the final state leptons and quarks. A number of theoretical models predict the values of the form factors for D+ → $\\bar{K}$*0 e+ ve , though there is a large range of predictions. E791 is a hadroproduction experiment that recorded over 20 billion interactions with a 500 GeV π- beam incident on five thin targets during the 1991-92 Fermilab fixed-target run. Approximately 3000 D+ → $\\bar{K}$*0 e+ ve decays are fully reconstructed. In order to extract the form factor ratios from the data, I implement a multidimensional unbinned maximum likelihood fit with a large sample of simulated (Monte Carlo) D+ → $\\bar{K}$*0 e+ve events. The large E791 data sample provides the most precise measurement of the form factor ratios to date. The measured values for the form factor ratios are r2 = 0.71 ± 0.08 ± 0.09 and rV = 1.84 ± 0.11 ±} 0.08. These results are in good agreement with some Lattice Gauge calculations. However the agreement with quark model predictions is not as good.

  10. Society demands for the quality of education as a factor of modern education space forming

    Directory of Open Access Journals (Sweden)

    Ivanova Svetlana V.

    2016-01-01

    Full Text Available The authors research the problems of increasing in modern conditions society demands for qualitative characteristics of education services. The quality of education is considered as one of the determining factors of forming educational space. The paper analyzes the influence of social and economic conditions inherent in the post-industrial era on forming and transforming of education space at the modern stage of society development, shows the ways to overcome emerging contradictions. The authors pay special attention to the significance of project approach in solving the problems of improving education quality.

  11. Critical Axial Load

    Directory of Open Access Journals (Sweden)

    Walt Wells

    2008-01-01

    Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.

  12. Experimental study on cold-formed steel three limbs built-up section members under axial compression%冷弯薄壁型钢开口三肢拼合立柱轴压性能试验研究

    Institute of Scientific and Technical Information of China (English)

    周天华; 聂少锋; 刘向斌

    2012-01-01

    18 specimens of cold-formed steel three-limb built-up section members were tested under axial compression load. The section forms are divided into A and B categories. A category section is built-up with 3 C section cold- formed steel members. B category section is built-up with 2 C section and 1 U section cold-formed steel members. Load-displacement curves and failure characteristics of specimens were obtained. The test results were compared with the results by effective width method and direct strength method which were calculated according to the specification of China and USA. The results show that the dominant failure characteristics of A and B categories section LC (long column) series columns are flexural-torsional buckling and bending buckling respectively. MC (middle length column) series columns of A categories section are distortional buckling and B categories section are distortionalbuckling and bending buckling. All SC (short column) series columns are local buckling and distortional buckling. The results calculated by AISI effective width method are conservative for LC series column of A and B categories section, while non-conservative for the SC series columns. The calculated results are close to test results as for MC series columns. The results calculated by AISI direct strength method are conservative for LC and MC series columns of A category section, while non-conservative for the SC series columns. As for B category section columns, the errors between direct strength method results and test results are between -16.5% and 11.2%. The results calculated according to ' Technical code of cold-formed thin-wall steel structures' are conservative as for LC series columns. The calculated result are close to test results as for MC and SC series columns, with the error between -8.7% - 4.7% and -7.3% - 13.7% , respectively%对18根冷弯薄壁型钢开口三肢拼合立柱的轴压性能进行了试验研究,试件分为A

  13. EFFECTS OF NEUTRINO ELECTROMAGNETIC FORM FACTORS ON NEUTRINO INTERACTION WITH FINITE TEMPERATURE ELECTRON MATTERS

    Directory of Open Access Journals (Sweden)

    Anto Sulaksono

    2011-11-01

    Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.

  14. OPE for all Helicity Amplitudes II. Form Factors and Data analysis

    CERN Document Server

    Basso, Benjamin; Cordova, Lucia; Sever, Amit; Vieira, Pedro

    2015-01-01

    We present the general flux tube integrand for MHV and non-MHV amplitudes, in planar N = 4 SYM theory, up to a group theoretical rational factor. We find that the MHV and non-MHV cases only differ by simple form factors which we derive. This information allows us to run the operator product expansion program for all sorts of non-MHV amplitudes and to test the recently proposed map with the so called charged pentagons transitions. Perfect agreement is found, on a large sample of non-MHV amplitudes, with the perturbative data available in the literature.

  15. High-throughput spectrometer designs in a compact form-factor: principles and applications

    Science.gov (United States)

    Norton, S. M.

    2013-05-01

    Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.

  16. The electromagnetic form factors of the Λ in the timelike region

    Science.gov (United States)

    Haidenbauer, J.; Meißner, U.-G.

    2016-10-01

    The reaction e+e- → Λ bar Λ is investigated for energies close to the threshold. Specific emphasis is put on the role played by the interaction in the final Λ bar Λ system which is taken into account rigorously. For that interaction a variety of Λ bar Λ potential models is employed that have been constructed for the analysis of the reaction p bar p → Λ bar Λ in the past. The enhancement of the effective form factor for energies close to the Λ bar Λ threshold, seen in pertinent experiments, is reproduced. Predictions for the Λ electromagnetic form factors GM and GE in the timelike region and for spin-dependent observables such as spin-correlation parameters are presented.

  17. Isospin mixing in the nucleon and 4He and the nucleon strange electric form factor

    CERN Document Server

    Viviani, M; Kievsky, A; Kubis, B; Lewis, R; Marcucci, L E; Rosati, S; Schiavilla, R

    2007-01-01

    In order to isolate the contribution of the nucleon strange electric form factor to the parity-violating asymmetry measured in 4He(\\vec e,e')4He experiments, it is crucial to have a reliable estimate of the magnitude of isospin-symmetry-breaking (ISB) corrections in both the nucleon and 4He. We examine this issue in the present letter. Isospin admixtures in the nucleon are determined in chiral perturbation theory, while those in 4He are derived from nuclear interactions, including explicit ISB terms. A careful analysis of the model dependence in the resulting predictions for the nucleon and nuclear ISB contributions to the asymmetry is carried out. We conclude that, at the low momentum transfers of interest in recent measurements reported by the HAPPEX collaboration at Jefferson Lab, these contributions are of comparable magnitude to those associated with strangeness components in the nucleon electric form factor.

  18. High-precision calculation of the strange nucleon electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-26

    We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors GsE and GsM in the kinematic range 0 ≤ Q2 ≤ 1.2GeV2. For the first time, both GsE and GsM are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.

  19. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chris Harris

    2001-08-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  20. A study of the gamma* - f0(980) transition form factors

    CERN Document Server

    Kroll, P

    2016-01-01

    The spin wave function of the f0(980)-meson is constructed under the assumption that the meson is dominantly a quark-antiquark state. This wave function is used in a calculation of the gamma* - f0 transition form factors. In the real-photon limit the results for the transverse form factor are compared to the large momentum transfer data measured by the BELLE collaboration recently. It turns out that, for the momentum-transfer range explored by BELLE, the collinear approximation does not suffer, power corrections to it, modeled as quark transverse moment effects, seem to be needed. Mixing of the f0 with the sigma(500) is also briefly discussed.