Axial and Centrifugal Compressor Mean Line Flow Analysis Method
Veres, Joseph P.
2009-01-01
This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.
The New Performance Calculation Method of Fouled Axial Flow Compressor
Directory of Open Access Journals (Sweden)
Huadong Yang
2014-01-01
Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.
Development of throughflow calculation code for axial flow compressors
International Nuclear Information System (INIS)
Kim, Ji Hwan; Kim, Hyeun Min; No, Hee Cheon
2005-01-01
The power conversion systems of the current HTGRs are based on closed Brayton cycle and major concern is thermodynamic performance of the axial flow helium gas turbines. Particularly, the helium compressor has some unique design challenges compared to the air-breathing compressor such as high hub-to-tip ratios throughout the machine and a large number of stages due to the physical property of the helium and thermodynamic cycle. Therefore, it is necessary to develop a design and analysis code for helium compressor that can estimate the design point and off-design performance accurately. KAIST nuclear system laboratory has developed a compressor design and analysis code by means of throughflow calculation and several loss models. This paper presents the outline of the development of a throughflow calculation code and its verification results
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
The Application of the Probabilistic Collocation Method to a Transonic Axial Flow Compressor
Loeven, G.J.A.; Bijl, H.
2010-01-01
In this paper the Probabilistic Collocation method is used for uncertainty quantification of operational uncertainties in a transonic axial flow compressor (i.e. NASA Rotor 37). Compressor rotors are components of a gas turbine that are highly sensitive to operational and geometrical uncertainties.
Directory of Open Access Journals (Sweden)
DilipkumarBhanudasji Alone
2016-09-01
Full Text Available This paper presents the experimental results to understand the performance of moderately loaded high speed single stage transonic axial flow compressor subjected to various configurations of axial extensions of bend skewed casing treatment with moderate porosity. The bend skewed casing treatment of 33% porosity was coupled with rectangular plenum chamber of depth equal to the slots depth. The five axial extensions of 20%, 40%, 60%, 80% and 100% were used for the experimental evaluations of compressor performance. The main objective was to identify the optimum extension of the casing treatment with reference to rotor leading edge which results in maximum stall margin improvements with minimum loss in the stage efficiency. At each axial extension the compressor performance is distinctive. The improvement in the stall margin was very significant at some axial extensions with 4%–5% penalty in the stage efficiency. The compressors stage shows recovery in terms of efficiency at lower axial extensions of 20% and 40% with increase in the peak stage efficiency. Measurements of flow parameters showed the typical behaviors at near stall flow conditions. Hot wire sensor was placed at the rotor upstream in the tip region to capture the oscillations in the inlet axial and tangential velocities at stall conditions. In the absence of casing treatment the compressor exhibit abrupt stall with very high oscillations in the inlet axial and tangential velocity of the flow. The extents of oscillations reduce with bend skewed casing treatment. Few measurements were also performed in the plenum chamber and salient results are presented in this paper.
An Algorithm for the Design of an Axial Flow Compressor of a Power ...
African Journals Online (AJOL)
This paper focuses on the development of an algorithm for designing an axial flow compressor for a power generation gas turbine and attempts to bring to the public domain some parameters regarded as propriety data by plant manufacturers. The theory used in this work is based on simple thermodynamics and ...
Discussion of boundary-layer characteristics near the casing of an axial-flow compressor
Mager, Artur; Mahoney, John J; Budinger, Ray E
1951-01-01
Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.
Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors
1999-01-01
modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero
Effects of casing treatment on a small, transonic axial-flow compressor
Holman, F. F.; Kidwell, J. R.
1975-01-01
Improved axial compressor surge margin through effective rotor casing treatment has been identified from test results on large axial compressors. A modified scale of a large compressor was built and tested to determine if similar improvements in surge margin could be duplicated in small-size turbomachinery. In addition, the effects of rotor radial running clearance, both with and without casing treatment, were investigated and are discussed. Test results of the scale configuration are presented and compared to the parent compressor.
Study on the Influence of Blade Roughnesson Axial Flow Compressor Stage Performance
Directory of Open Access Journals (Sweden)
Shi Xudong
2017-01-01
Full Text Available A typically actual inlet stage NASA Stage 36 is chosen to study the influence of surface roughness on axial compressor performance. Firstly, a geometry model is created by blade design software BladeGen using transferred coordinates data of blade profile and flow path. Secondly, validation of simulation model is conducted by comparing computational data and field experiment data. Lastly, SST k-ω turbulence model is chosen to study the influence of blade surface roughness on performance parameters under different work points. It shows that adding roughness will significantly reduce axial compressor stage’s adiabatic efficiency and total pressure ratio and cause stage characteristic map shift toward left. It should not neglect the influence of surface roughness of stator near stall region under 100% design speed; Mach number shows a big difference after adding surface roughness, and it can be considered as a sensibility parameter of roughness.
A numerical investigation on the unstable flow in a single stage of an axial compressors
Farhanieh, B; Ghorbanian, K
2003-01-01
An unsteady two-dimensional finite-volume solver was developed based on Van Leer's flux splitting algorithm in conjunction with sup M onotonic Upstream Scheme for Conservation Laws sup l imiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the experimental data and a good agreement validated the solver. Finally, the solver was used for the flow through a multi-blade stage of an axial compressor in its off-design condition. The computed results showed a rotating stall-like instability with a periodic behavior. To investigate the flow properties during the instability condition, the flow pattern, vortex properties and the axial velocity were studied. It was concluded that the instability vortices in the multi-blade cascade do not have the same generation history of the separated vortices over a single body.
Loss reduction in axial-flow compressors through low-speed model testing
Wisler, D. C.
1984-01-01
A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.
Effect of blade sweep on inlet flow in axial compressor cascades
Directory of Open Access Journals (Sweden)
Hao Chang
2015-02-01
Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.
Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades
Directory of Open Access Journals (Sweden)
Han XU
2017-10-01
Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.
Research on flow characteristics of supercritical CO2 axial compressor blades by CFD analysis
International Nuclear Information System (INIS)
Takagi, Kazuhisa; Muto, Yasushi; Ishizuka, Takao; Kikura, Hiroshige; Aritomi, Masanori
2010-01-01
A supercritical CO 2 gas turbine of 20MPa is suitable to couple with the Na-cooled fast reactor since Na - CO 2 reaction is mild at the outlet temperature of 800K, the cycle thermal efficiency is relatively high and the size of CO 2 gas turbine is very compact. In this gas turbine cycle, a compressor operates near the critical point. The property of CO 2 and then the behavior of compressible flow near the critical point changes very sharply. So far, such a behavior is not examined sufficiently. Then, it is important to clarify compressible flow near the critical point. In this paper, an aerodynamic design of the axial supercritical CO 2 compressor for this system has been carried out based on the existing aerodynamic design method of Cohen. The cycle design point was selected to achieve the maximum cycle thermal efficiency of 43.8%. For this point, the compressor design conditions were determined. They are a mass flow rate of 2035kg/s, an inlet temperature of 308K, an inlet static pressure of 8.26MPa, an outlet static pressure of 20.6MPa and a rotational speed of 3600rpm. The mean radius was constant through axial direction. The design point was determined so as to keep the diffusion factor and blade stress within the allowable limits. Number of stages and an expected adiabatic efficiency was 14 and 87%, respectively. CFD analyses by FLUENT have been done for this compressor blade. The blade model consists of one set of a guide vane, a rotor blade and a stator blade. The analyses were conducted under the assumption both of the real gas properties and also of the modified ideal gas properties. Using the real gas properties, analysis was conducted for the 14th blade, whose condition is remote from the critical point and the possibility of divergence is very small. Then, the analyses were conducted for the blade whose conditions are nearer to the critical point. Gradually, divergence of calculation was encountered. Convergence was relatively easy for the modified
Analysis of Three-dimension Viscous Flow in the Model Axial Compressor Stage K1002L
Tribunskaia, K.; Kozhukhov, Y. V.
2017-08-01
The main investigation subject considered in this paper is axial compressor model stage K1002L. Three simulation models were designed: Scheme 1 - inlet stage model consisting of IGV (Inlet Guide Vane), rotor and diffuser; Scheme 2 - two-stage model: IGV, first-stage rotor, first-stage diffuser, second-stage rotor, EGV (Exit Guide Vane); Scheme 3 - full-round model: IGV, rotor, diffuser. Numerical investigation of the model stage was held for four circumferential velocities at the outer diameter (Uout=125,160,180,210 m/s) within the range of flow coefficient: ϕ = 0.4 - 0.6. The computational domain was created with ANSYS CFX Workbench. According to simulation results, there were constructed aerodynamic characteristic curves of adiabatic efficiency and the adiabatic head coefficient calculated for total parameters were compared with data from the full-scale test received at the Central Boiler and Turbine Institution (CBTI), thus, verification of the calculated data was carried out. Moreover, there were conducted the following studies: comparison of aerodynamic characteristics of the schemes 1, 2; comparison of the sector and full-round models. The analysis and conclusions are supplemented by gas-dynamic method calculation for axial compressor stages.
Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility
Bozak, Richard F.
2018-01-01
Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.
Characterization of Multiflux Axial Compressors
International Nuclear Information System (INIS)
Brasnarof, Daniel; Kyung Kyu-Hyung; Rivarola, Martin; Gonzalez Jose; Florido, Pablo; Orellano, Pablo; Bergallo, Juan
2003-01-01
In the present work the results of analytical models of performance are compared with experimental data acquired in the multi flux axial compressor test facility, built in The Pilcaniyeu Technological Complex for the SIGMA project.We describe the experimental circuit and the data of the dispersion inside the axial compressor obtained using a tracer gas through one of the annular inlets.The attained results can be used to validate the design code for the multi flux axial compressors and SIGMA industrial plant
Aerodynamic Analysis and Three-Dimensional Redesign of a Multi-Stage Axial Flow Compressor
Directory of Open Access Journals (Sweden)
Tao Ning
2016-04-01
Full Text Available This paper describes the introduction of three-dimension (3-D blade designs into a 5-stage axial compressor with multi-stage computational fluid dynamic (CFD methods. Prior to a redesign, a validation study is conducted for the overall performance and flow details based on full-scale test data, proving that the multi-stage CFD applied is a relatively reliable tool for the analysis of the follow-up redesign. Furthermore, at the near stall point, the aerodynamic analysis demonstrates that significant separation exists in the last stator, leading to the aerodynamic redesign, which is the focus of the last stator. Multi-stage CFD methods are applied throughout the three-dimensional redesign process for the last stator to explore their aerodynamic improvement potential. An unconventional asymmetric bow configuration incorporated with leading edge re-camber and re-solidity is employed to reduce the high loss region dominated by the mainstream. The final redesigned version produces a 13% increase in the stall margin while maintaining the efficiency at the design point.
Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor
Wang, Yannian; Wu, Peizhi; Liu, Chengtao
2017-09-01
To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.
Wall boundary layer development near the tip region of an IGV of an axial flow compressor
Lakshminarayana, B.; Sitaram, N.
1983-01-01
The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.
Directory of Open Access Journals (Sweden)
Mahesh Varpe
2013-01-01
Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.
Computational analysis of a multistage axial compressor
Mamidoju, Chaithanya
Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.
Rotating stall simulation for axial and centrifugal compressors
Halawa, Taher; Gadala, Mohamed S.
2017-05-01
This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.
Axial-Centrifugal Compressor Program
1975-10-01
Assembly . .. . .... ..... 33 5 Tie Bolt...... .. .. .. .. . *.. .. .. .. .. .. ... 34 6 Axial Compressor Rotor Assembly Runouts . . .. . 34 7 CCV Blow...1.796 Impeller Slip Factor ’Ce2/U 2 ) .91 Impeller Wheel Speed ft/sec 1992.2 Impellet ’.ip Radius in. 3.780 Blade Tip Metal Angle- deg 0 Numbec of Blades...test item to the next Phase V component test. The test vehicle final balance levels and rotor runouts were normal at teardown, and no rubsI were
Centrifugal and axial compressor control
McMillan, Gregory K
2009-01-01
Control engineers, mechanical engineers and mechanical technicians will learn how to select the proper control systems for axial and centrifugal compressors for proper throughput and surge control, with a particular emphasis on surge control. Readers will learn to understand the importance of transmitter speed, digital controller sample time, and control valve stroking time in helping to prevent surge. Engineers and technicians will find this book to be a highly valuable guide on compressor control schemes and the importance of mitigating costly and sometimes catastrophic surge problems. It can be used as a self-tutorial guide or in the classroom with the book's helpful end-of-chapter questions and exercises and sections for keeping notes.
Optimization of the axial compressor flow passage to reduce the circumferential distortion
Popov, G.; Kolmakova, D.; Shklovets, A.; Ermakov, A.
2015-08-01
This work is motivated by the necessity to reduce the effects of the flow circumferential distortion in the flow passage of the aircraft gas turbine engine (GTE). In previous research, the authors have proposed the approaches to decrease of the flow circumferential distortion arising from the mid-support racks of GTE compressor and having a negative impact on the blade rows, located upstream. In particular, the idea of introducing the circumferentially non-uniform blade pitch and profile stagger angle of guide vanes located in front of the support was contributed in order to redistribute the flow and decrease the dynamic stresses in the rotor wheel of the same stage. During the research presented in this paper, another principal of reduction of the flow circumferential distortion was chosen. Firstly, the variants of upgrading the existing support racks were found. Secondly, the new design of support was offered. Both the first and the second version of the support design variation took into account the availability of technological and structural limitations associated with the location of oil pipes, springs and others elements in the support racks. Investigations of modified design showed that the support with altered racks provides a reduction of dynamic stresses by 20% at resonance with the most dangerous harmonic, and the new design of support can give the decrease of 30%.
The UCOR pilot plant and the development of axial flow compressors
International Nuclear Information System (INIS)
Grant, W.
1984-01-01
This article discusses some of the mechanical aspects of the Uranium Enrichment Corporation of South Africa (Pty) Ltd. (UCOR) pilot plant. The most important mechanical components in a typical stage in the pilot plant, consists of a compressor which is used to compress the process gas mixture. After air cooling to almost room temperature, the mixture is fed through the separation elements. Other components are two pressure vessels connected to the compressor. The development and characteristics of the pilot plant is described in the article
Directory of Open Access Journals (Sweden)
Xingen Lu
2006-01-01
tip-clearance flow manipulation. The repositioning of the tip-clearance vortex further towards the trailing edge of the blade passage and delaying the movement of incoming/tip-clearance flow interface to the leading edge plane are the physical mechanisms responsible for extending the compressor stall margin.
Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred
1950-01-01
A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.
Modeling and control of compressor flow instabilities
Willems, F.P.T.; Jager, de A.G.
1999-01-01
Compressors are widely used for the pressurization of fluids. Applications involve air compression for use in aircraft engines and pressurization and transportation of gas in the process and chemical industries. The article focuses on two commonly used types of continuous flow compressors: the axial
Axial forces in centrifugal compressor couplings
Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.
2017-08-01
The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.
Small axial compressor technology, volume 1
Holman, F. F.; Kidwell, J. R.; Ware, T. C.
1976-01-01
A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%.
Yeung, Chung-Hei (Simon)
The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are
Flow Range of Centrifugal Compressor Being Extended
Skoch, Gary J.
2001-01-01
General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.
Energy Technology Data Exchange (ETDEWEB)
Boos, P.; Moeeckel, H.; Mueller, R.; Sauer, H.; Wolf, E. (Technische Univ. Dresden (Germany))
1999-01-01
In this paper the results obtained from flow-technical investigations at low velocity compressor in Dresden were presented. They were supposed to give little insight on the focus of current research works in the field of axial flow compressors. A detailed solution of the flow structure applying the conventional pneumatic measuring technology as well as the hot-wire, microphone, culite, laser and light-section measuring technology enables to understand flow parameter better and to find approaches for improving power density, efficiency, environmental friendliness and operational stability. The large-scale research plant was constructed in approximately Two and a half years. The low velocity compressor in Dresden constitutes a tool in Germany and Europe that enables the manufacturers of stationary gas turbine plants and steel jet engines to improve various parameters of their products. The MTU in Munich already pointed out this fact in its contribution to the final report on the construction phase. It noted that this plant is going to extend the possibilities of research and development in Europe in the field of aerodynamics of axial flow compressors in an excellent way. (orig.)
International Nuclear Information System (INIS)
Farhanieh, B.; Amanifard, N.; Ghorbanian, K.
2002-01-01
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Mon tonic Upstream Scheme for Conservation Laws was added to flux splitting schemes. The Baldwin-Lo max (B L) turbulence model was implemented to solve the turbulent case studies. Implicit solution was also provided using Lower and Upper (L U) decomposition technique to compare with explicit solutions. To validate the numerical procedure, two test cases are prepared and flow over a Na Ca 0012 airfoil was investigated and the pressure coefficients were compared to the reference data. The numerical solver was implemented to study the flow passing over a compressor cascade. The results of various combinations of splitting schemes and the Mon tonic Upstream Scheme for Conventional Laws limiter were compared with each other to find the suitable methods in cascade problems. Finally the convergence histories of implemented schemes were compared to each other to show the behavior of the solver in using various methods before implementation of them in flow instability studies
International Nuclear Information System (INIS)
Lim, Byeung Jun; Kwon, Se Jin; Park, Tae Choon
2014-01-01
Characteristic changes in the stall inception in a single-stage transonic axial compressor with an axial skewed slot casing treatment were investigated experimentally. A rotating stall occurred intermittently in a compressor with an axial skewed slot, whereas spike-type rotating stalls occurred in the case of smooth casing. The axial skewed slot suppressed stall cell growth and increased the operating range. A mild surge, the frequency of which is the Helmholtz frequency of the compressor system, occurred with the rotating stall. The irregularity in the pressure signals at the slot bottom increased decreasing flow rate. An autocorrelation-based stall warning method was applied to the measured pressure signals. Results estimate and warn against the stall margin in a compressor with an axial skewed slot.
NASA Glenn's Single-Stage Axial Compressor Facility Upgraded
Brokopp, Richard A.
2004-01-01
NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when
Development of Performance Analysis Program for an Axial Compressor with Meanline Analysis
International Nuclear Information System (INIS)
Park, Jun Young; Park, Moo Ryong; Choi, Bum Suk; Song, Je Wook
2009-01-01
Axial-flow compressor is one of the most important parts of gas turbine units with axial turbine and combustor. Therefore, precise prediction of performance is very important for development of new compressor or modification of existing one. Meanline analysis is a simple, fast and powerful method for performance prediction of axial-flow compressors with different geometries. So, Meanline analysis is frequently used in preliminary design stage and performance analysis for given geometry data. Much correlations for meanline analysis have been developed theoretically and experimentally for estimating various types of losses and flow deviation angle for long time. In present study, meanline analysis program was developed to estimate compressor losses, incidence angles, deviation angles, stall and surge conditions with many correlations. Performance prediction of one stage axial compressors is conducted with this meanline analysis program. The comparison between experimental and numerical results show a good agreement. This meanline analysis program can be used for various types of single stage axial-flow compressors with different geometries, as well as multistage axial-flow compressors
Experimental Investigation of Inlet Distortion in a Multistage Axial Compressor
Rusu, Razvan
The primary objective of this research is to present results and methodologies used to study total pressure inlet distortion in a multi-stage axial compressor environment. The study was performed at the Purdue 3-Stage Axial Compressor Facility (P3S) which models the final three stages of a production turbofan engine's high-pressure compressor (HPC). The goal of this study was twofold; first, to design, implement, and validate a circumferentially traversable total pressure inlet distortion generation system, and second, to demonstrate data acquisition methods to characterize the inter-stage total pressure flow fields to study the propagation and attenuation of a one-per-rev total pressure distortion. The datasets acquired for this study are intended to support the development and validation of novel computational tools and flow physics models for turbomachinery flow analysis. Total pressure inlet distortion was generated using a series of low-porosity wire gauze screens placed upstream of the compressor in the inlet duct. The screens are mounted to a rotatable duct section that can be precisely controlled. The P3S compressor features fixed instrumentation stations located at the aerodynamic interface plane (AIP) and downstream and upstream of each vane row. Furthermore, the compressor features individually indexable stator vanes which can be traverse by up to two vane passages. Using a series of coordinated distortion and vane traverses, the total pressure flow field at the AIP and subsequent inter-stage stations was characterized with a high circumferential resolution. The uniformity of the honeycomb carrier was demonstrated by characterizing the flow field at the AIP while no distortion screens where installed. Next, the distortion screen used for this study was selected following three iterations of porosity reduction. The selected screen consisted of a series of layered screens with a 100% radial extent and a 120° circumferential extent. A detailed total
Active surge control for variable speed axial compressors.
Lin, Shu; Yang, Chunjie; Wu, Ping; Song, Zhihuan
2014-09-01
This paper discusses active surge control in variable speed axial compressors. A compression system equipped with a variable area throttle is investigated. Based on a given compressor model, a fuzzy logic controller is designed for surge control and a proportional speed controller is used for speed control. The fuzzy controller uses measurements of the change of pressure rise as well as the change of mass flow to determine the throttle opening. The presented approach does not require the knowledge of system equilibrium or the surge line. Numerical simulations show promising results. The proposed fuzzy logic controller performs better than a backstepping controller and is capable to suppress surge at different operating points. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David
2015-01-01
The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow
Matveev, V. N.; Baturin, O. V.; Kolmakova, D. A.; Popov, G. M.
2017-01-01
Circumferential nonuniformity of gas flow is one of the main problems in the gas turbine engine. Usually, the flow circumferential nonuniformity appears near the annular frame located in the flow passage of the engine. The presence of circumferential nonuniformity leads to the increased dynamic stresses in the blade rows and the blade damage. The goal of this research was to find the ways of the flow non-uniformity reduction, which would not require a fundamental changing of the engine design. A new method for reducing the circumferential nonuniformity of the gas flow was proposed that allows the prediction of the pressure peak values of the rotor blades without computationally expensive CFD calculations.
Investigation of axial positioning for flexural compressors
Riggle, Peter
1991-01-01
The testing of the research compressor is presented. The research compressor was assembled and disassembled in order to show the consistency in which the piston and rod could be aligned with a .0004 inch radial gap around the piston. A full set of tests was completed for the first assembly, which is referred to as assembly no. 1. The compressor was disassembled and assembled a second time (assembly no. 2). Assembly no. 2 was only tested statically due to the time constraint. Results are discussed.
Energy Technology Data Exchange (ETDEWEB)
Boos, P.; Moeeckel, H.; Mueller, R.; Sauer, H.; Wolf, E. [Technische Univ. Dresden (Germany)
1999-12-01
In this paper the results obtained from flow-technical investigations at low velocity compressor in Dresden were presented. They were supposed to give little insight on the focus of current research works in the field of axial flow compressors. A detailed solution of the flow structure applying the conventional pneumatic measuring technology as well as the hot-wire, microphone, culite, laser and light-section measuring technology enables to understand flow parameter better and to find approaches for improving power density, efficiency, environmental friendliness and operational stability. The large-scale research plant was constructed in approximately Two and a half years. The low velocity compressor in Dresden constitutes a tool in Germany and Europe that enables the manufacturers of stationary gas turbine plants and steel jet engines to improve various parameters of their products. The MTU in Munich already pointed out this fact in its contribution to the final report on the construction phase. It noted that this plant is going to extend the possibilities of research and development in Europe in the field of aerodynamics of axial flow compressors in an excellent way. (orig.) [Deutsch] Im Vortrag wurden beispielhaft erreichte Ergebnisse stroemungstechnischer Untersuchungen am Niedergeschwindigkeitsverdichter in Dresden dargestellt. Sie sollten einen kleinen Einblick in die Moeglichkeiten der Bearbeitung von Forschungsschwerpunkten geben, die gegenwaertig fuer Axialverdichter bedeutungsvoll sind. Eine detaillierte messtechnische Aufloesung der Stroemungsstrukturen unter Anwendung der konventionellen pneumatischen Messtechnik sowie der Hitzdraht-, Mikrofon-, Kulite-, Laser- und Lichtschnittmesstechnik schafft die Voraussetzung, die Stroemungsphaenomene besser zu verstehen und Ansatzpunkte fuer Verbesserungen der Leistungsdichte, des Wirkungsgrades, der Umweltvertraeglichkeit und der Betriebsstabilitaet zu finden. In ca. 2 1/2 Jahren konnte die Grossforschungsanlage
Cevik, Mert
Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research
A cryogenic axial-centrifugal compressor for superfluid helium refrigeration
Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L
1997-01-01
CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.
Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.
Directory of Open Access Journals (Sweden)
L.G. Volyanskaya
2005-02-01
Full Text Available The article considers the research results of D-27 gas turbine engine thrust-economical characteristics change due to of axial compressor flow path optimization. The applied procedure of optimization takes into account a difference in the shapes of axial compressor stage blades at rest and design mode, redistribution of kinetic energy losses along the blade height. The estimation of parameters of a gas flow in the stage flow path is made by the solution of Navier-Stokes equation complete set.
Design, Test, and Evaluation of a Transonic Axial Compressor Rotor with Splitter Blades
2013-09-01
INTRODUCTION A. MOTIVATION Over the course of turbomachinery history splitter vanes have been used extensively in centrifugal compressors . Axial...TEST, AND EVALUATION OF A TRANSONIC AXIAL COMPRESSOR ROTOR WITH SPLITTER BLADES by Scott Drayton September 2013 Dissertation Co...AXIAL COMPRESSOR ROTOR WITH SPLITTER BLADES 5. FUNDING NUMBERS 6. AUTHOR(S) Scott Drayton 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES
Performance of a Low Speed Axial Compressor Rotor Blade Row under Different Inlet Distortions
Directory of Open Access Journals (Sweden)
R. Taghavi Zenouz
2017-05-01
Full Text Available Responses of an axial compressor isolated rotor blade row to various inlet distortions have been investigated utilizing computational fluid dynamic technique. Distortions have been imposed by five screens of different geometries, but with the same blockage ratio. These screens were embedded upstream of the rotor blade row. Flow fields are simulated in detail for compressor design point and near stall conditions. Performance curves for distorted cases are extracted and compared to the undisturbed case. Flow simulations and consequent performance characteristics show that the worst cases belong to non-symmetric blockages, i.e., those of partial circumferential configurations. These cases produce the largest wakes which can disturb the flow, considerably. Superior performances correspond to the inner and outer continuous circumferential distortion screens. Since, they produce no significant disturbances to the main flow in comparison to the non-symmetric screens.
Flow and pressure characteristics within a screw compressor
Guerrato, D.; Nouri, J. M.; Stosic, N.; Arcoumanis, C.
2007-10-01
The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90°C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5° was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2Vp in mean (where Vp is the axial pitched velocity) for male rotor and 5.4Vp for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.
Flow and pressure characteristics within a screw compressor
Energy Technology Data Exchange (ETDEWEB)
Guerrato, D; Nouri, J M; Stosic, N; Arcoumanis, C [Centre for Energy and the Environment, School of Engineering and Mathematical Sciences, City University, Northampton Square, London, EC1V OHB (United Kingdom)
2007-10-15
The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90{sup 0}C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5{sup 0} was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2V{sub p} in mean (where V{sub p} is the axial pitched velocity) for male rotor and 5.4V{sub p} for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs.
Flow and pressure characteristics within a screw compressor
International Nuclear Information System (INIS)
Guerrato, D; Nouri, J M; Stosic, N; Arcoumanis, C
2007-01-01
The angle-resolved mean and turbulence characteristics of the axial air flow inside a screw compressor with both male and female rotors have been measured, using a laser Doppler velocimeter (LDV) with high spatial and temporal resolution at different radial and axial locations for speeds of 800-1600 rpm, discharge pressures of 1-1.6 bar and discharge temperatures of 33-90 0 C. The velocity measurements were performed through a special transparent window fixed near the discharge port. The results confirmed the ability of the LDV technique to characterise the flow inside the compressor working chamber; an angular resolution of 1.5 0 was able to fully describe the velocity field within the machine. The flow variation between the different working chambers was established as well as the spatial variation of the axial mean velocity and turbulence velocity fluctuation within the working chamber. The effect of discharge port opening on the axial mean and RMS velocities was found to be significant near the leading edge of the rotors causing an increase in the mean and RMS velocities of the order of 4.2V p in mean (where V p is the axial pitched velocity) for male rotor and 5.4V p for, female rotor and this effect is less pronounced on the flow near the root of the rotor. Moreover, to obtain a better understanding of the flow motion, a high sampling rate pressure transducer was used to provide the internal angular static pressure variation. These measurements are used to validate the in-house CFD model of the fluid flow within twin screw compressors which, in turn, allows reliable optimisation of various compressor designs
Numerical Calculation of the Flow in a Centrifugal Compressor Volute
International Nuclear Information System (INIS)
Seong, Seon Mo; Kang, Shin Hyoung; Cho, Kyung Seok; Kim, Woo June
2007-01-01
Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational domain contained inlet passage, impeller, radial and axial diffuser, and volute. The volute grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has the inlet passage like steps and axial diffuser after radial diffuser because of the shape of the motor cooling fins and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The loss in through the inlet passage was considerable and the flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue
Experimental study of flow through compressor Cascade
Directory of Open Access Journals (Sweden)
Satyam Panchal
2017-09-01
Full Text Available The objective of this research work is to study the behaviour of flow at the inlet, within the blade passage and at the exit of a compressor cascade. For this purpose, a cascade with six numbers of aerofoil blades was designed and constructed. The cascade was fitted on the cascade test tunnel. Out of six blades two were instrumented for measuring the pressure distribution on the pressure and suction surface. The blades had a parabolic camber line, with a maximum camber position at 40% of the chord from the leading edge of the blade. The profile of the blade was C4, height of the blade was 160 mm, chord length was 80 mm, camber angle was 45° and stagger angle was 30°. Similarly, the length of the cascade was 300 mm, span was 160 mm, pitch was 60 mm, the actual chord of the cascade was 80 mm, the axial chord of the cascade was 70 mm, the stagger angle of the cascade was 30° and the pitch-chord ratio was 0.75. The data was taken and analyzed at −500% of the axial chord before the cascade, −25% of the axial chord before the leading edge, 25%, 50%, 75% and 150% of the axial chord from the leading edge of the blade. The readings were taken from the cascade wall to the mid span position along the pitch wise direction. The angle of incidence was also changed during the experiment and varied from i=−50°, −30°, −10° to 5°.
Operational Experience with a Cryogenic Axial-Centrifugal Compressor
Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L
1998-01-01
The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.
Alleviation of spike stall in axial compressors utilizing grooved casing treatment
Directory of Open Access Journals (Sweden)
Reza Taghavi-Zenouz
2015-06-01
Full Text Available This article deals with application of grooved type casing treatment for suppression of spike stall in an isolated axial compressor rotor blade row. The continuous grooved casing treatment covering the whole compressor circumference is of 1.8 mm in depth and located between 90% and 108% chord of the blade tip as measured from leading edge. The method of investigation is based on time-accurate three-dimensional full annulus numerical simulations for cases with and without casing treatment. Discretization of the Navier–Stokes equations has been carried out based on an upwind second-order scheme and k-ω-SST (Shear Stress Transport turbulence modeling has been used for estimation of eddy viscosity. Time-dependent flow structure results for the smooth casing reveal that there are two criteria for spike stall inception known as leading edge spillage and trailing edge backflow, which occur at specific mass flow rates in near-stall conditions. In this case, two dominant stall cells of different sizes could be observed. The larger one is caused by the spike stall covering roughly two blade passages in the circumferential direction and about 25% span in the radial direction. Spike stall disturbances are accompanied by lower frequencies and higher amplitudes of the pressure signals. Casing treatment causes flow blockages to reduce due to alleviation of backflow regions, which in turn reduces the total pressure loss and increases the axial velocity in the blade tip gap region, as well as tip leakage flow fluctuation at higher frequencies and lower amplitudes. Eventually, it can be concluded that the casing treatment of the stepped tip gap type could increase the stall margin of the compressor. This fact is basically due to retarding the movement of the interface region between incoming and tip leakage flows towards the rotor leading edge plane and suppressing the reversed flow around the blade trailing edge.
Centrifugal compressor tip clearance and impeller flow
Energy Technology Data Exchange (ETDEWEB)
Jaatinen-Varri, Ahti; Tiainen, Jonna; Turunen-Saaresti, Teemu; Gronman, Aki; Ameli, Alireza; Backman, Jari [Laboratory of Fluid Dynamics, LUT School of Energy Systems, Lappeenranta University of Technology, Lappeenranta (Finland); Engeda, Abraham [Turbomachinery Laboratory, Dept. of Mechanical Engineering, Michigan State University, East Lansing (United States)
2016-11-15
Compressors consume a considerable portion of the electricity used in the industrial sector. Hence, improvements in compressor efficiency lead to energy savings and reduce environmental impacts. The efficiency of an unshrouded centrifugal compressor suffers from leakage flow over the blade tips. The effect of tip leakage flow on the passage flow differs between the full and splitter blade passages. In this study, the differences in the flow fields between the full and splitter blade passages were studied numerically in detail. An industrial high-speed compressor with a design pressure ratio of 1.78 was modelled. Numerical studies were conducted with six different tip clearances and three different diffuser widths. The results show that increasing tip clearance considerably increases the reversed flow into the impeller with an unpinched diffuser. The reversed flow then partly mixes into the flow in the same blade passage it entered the impeller and the rest migrates over the blade, mixing with the tip clearance flow. Furthermore, as the reversed and clearance flow mix into the wake, the wake is weakened. As pinch reduces both the reversed flow and clearance flow, the passage wakes are stronger with pinches. However, the pinch is beneficial as the losses at the impeller outlet decrease.
Centrifugal compressor tip clearance and impeller flow
International Nuclear Information System (INIS)
Jaatinen-Varri, Ahti; Tiainen, Jonna; Turunen-Saaresti, Teemu; Gronman, Aki; Ameli, Alireza; Backman, Jari; Engeda, Abraham
2016-01-01
Compressors consume a considerable portion of the electricity used in the industrial sector. Hence, improvements in compressor efficiency lead to energy savings and reduce environmental impacts. The efficiency of an unshrouded centrifugal compressor suffers from leakage flow over the blade tips. The effect of tip leakage flow on the passage flow differs between the full and splitter blade passages. In this study, the differences in the flow fields between the full and splitter blade passages were studied numerically in detail. An industrial high-speed compressor with a design pressure ratio of 1.78 was modelled. Numerical studies were conducted with six different tip clearances and three different diffuser widths. The results show that increasing tip clearance considerably increases the reversed flow into the impeller with an unpinched diffuser. The reversed flow then partly mixes into the flow in the same blade passage it entered the impeller and the rest migrates over the blade, mixing with the tip clearance flow. Furthermore, as the reversed and clearance flow mix into the wake, the wake is weakened. As pinch reduces both the reversed flow and clearance flow, the passage wakes are stronger with pinches. However, the pinch is beneficial as the losses at the impeller outlet decrease
Heat flows in piston compressors
Lekic, U.; Kok, J.B.W.; van der Meer, T.H.; van Steenhoven, A.A.; Stoffels, G.G.M.
2008-01-01
Piston compressors are widely used in today's engineering applications. Among the most important applications is however the compression of thermal carrier gas in Rankine and Stirling refrigeration cycles. Fluids used in these cycles are commonly Ammonia and Helium. In order to improve the design
Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes
Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi
2012-04-01
The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.
Erler, Engin
Tip clearance flow is the flow through the clearance between the rotor blade tip and the shroud of a turbomachine, such as compressors and turbines. This flow is driven by the pressure difference across the blade (aerodynamic loading) in the tip region and is a major source of loss in performance and aerodynamic stability in axial compressors of modern aircraft engines. An increase in tip clearance, either temporary due to differential radial expansion between the blade and the shroud during transient operation or permanent due to engine wear or manufacturing tolerances on small blades, increases tip clearance flow and results in higher fuel consumption and higher risk of engine surge. A compressor design that can reduce the sensitivity of its performance and aerodynamic stability to tip clearance increase would have a major impact on short and long-term engine performance and operating envelope. While much research has been carried out on improving nominal compressor performance, little had been done on desensitization to tip clearance increase beyond isolated observations that certain blade designs such as forward chordwise sweep, seem to be less sensitive to tip clearance size increase. The current project aims to identify through a computational study the flow features and associated mechanisms that reduces sensitivity of axial compressor rotors to tip clearance size and propose blade design strategies that can exploit these results. The methodology starts with the design of a reference conventional axial compressor rotor followed by a parametric study with variations of this reference design through modification of the camber line and of the stacking line of blade profiles along the span. It is noted that a simple desensitization method would be to reduce the aerodynamic loading of the blade tip which would reduce the tip clearance flow and its proportional contribution to performance loss. However, with the larger part of the work on the flow done in this
International Nuclear Information System (INIS)
Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong
2017-01-01
In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.
International Nuclear Information System (INIS)
Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.H.; Khalkhali, A.
2008-01-01
Over the past 15 years there have been several research efforts to capture the stall inception nature in axial flow compressors. However previous analytical models could not explain the formation of short-length-scale stall cells. This paper provides a new model based on evolved GMDH neural network for transient evolution of multiple short-length-scale stall cells in an axial compressor. Genetic Algorithms (GAs) are also employed for optimal design of connectivity configuration of such GMDH-type neural networks. In this way, low-pass filter (LPF) pressure trace near the rotor leading edge is modelled with respect to the variation of pressure coefficient, flow rate coefficient, and number of rotor rotations which are defined as inputs
Energy Technology Data Exchange (ETDEWEB)
Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong [Inha Univ., Incheon (Korea, Republic of)
2017-01-15
In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.
Centrifugal Compressors, Flow Phenomena and Performance.
1980-11-01
r2 = 1.975 situated near diffuser exit/ collector entrance. Total temperature measure- ments have been performed at the compressor inlet and exit...non-square mesh is used in a two-dimensional flow calculation. In fact, this term is compounded of the product of a constant coefficient multiplying the...terms of the finite difference equations are evaluated from the zeroth approximation, i.e., the solution of Katsanis and McNally (1), while parabolic
Directory of Open Access Journals (Sweden)
Mario Eck
2017-03-01
Full Text Available Axial compressors in aero engines are prone to suffering a breakdown of orderly flow when operating at the peak of the pressure rise characteristic. The damaging potential of separated flows is why a safe distance has to be left between every possible operating point and an operating point at which stall occurs. During earlier investigations of stall inception mechanisms, a new type of prestall instability has been found. In this study, it could be demonstrated that the prestall instability characterised by discrete flow disturbances can be clearly assigned to the subject of “Rotating Instabilities”. Propagating disturbances are responsible for the rise in blade passing irregularity. If the mass flow is reduced successively, the level of irregularity increases until the prestall condition devolves into rotating stall. The primary objective of the current work is to highlight the basic physics behind these prestall disturbances by complementary experimental and numerical investigations. Before reaching the peak of the pressure rise characteristic flow, disturbances appear as small vortex tubes with one end attached to the casing and the other attached to the suction surface of the rotor blade. These vortex structures arise when the entire tip region is affected by blockage and at the same time the critical rotor incidence is not exceeded in this flow regime. Furthermore, a new stall indicator was developed by applying statistical methods to the unsteady pressure signal measured over the rotor blade tips, thus granting a better control of the safety margin.
Unsteady flow measurements in centrifugal compressors
International Nuclear Information System (INIS)
Bammert, K.; Mobarak, A.; Rautenberg, M.
1976-01-01
Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required high pressure ratios, highly loaded centrifugal compressors are built. The paper deals with unsteady flow measurements on highly loaded centrifugal impellers. Measurements of the approaching flow have been done with hot wires. The method of measurement enabled us to get the velocity distribution across the pitch ahead of the inducer. The static pressure signals along the shroud line has been discussed on the basis of some theoretical considerations. Accordingly the form of flow in the impeller and the wave flow or separation zones in the impeller can now be better interpreted. The importance of the unsteady nature of the relative flow, especially at impeller exit, is clearly demonstrated. Measurements with high responsive total pressure probes in the vicinity of impeller exit and the subsequent calculations have shown, that the instantaneous energy transfer at a certain point after the impeller may differ by more than 30% from the Euler work. Lastly, unsteady pressure measurements along the shroud line have been performed during surge and rotating stall. The surge signal have been analyzed in more detail and the mechanism of flow rupture and pressure recovery during a surge cycle is thoroughly discussed. (orig.) [de
Modernization of the Transonic Axial Compressor Test Rig
2017-12-01
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302, and to the Office of Management and Budget, Paperwork... maintenance requirements in the system by replacing the turbine drive with an electric drive train. The replacement of the turbine is the first phase in...stage compressor that consumes 1 MW of electric power. This work seeks improved efficiency and decreased maintenance requirements in the system by
International Nuclear Information System (INIS)
Lee, Sae Il; Lee, Dong Ho; Kim, Kyu Hong; Park, Tae Choon; Lim, Byeung Jun; Kang, Young Seok
2013-01-01
The multidisciplinary design optimization method, which integrates aerodynamic performance and structural stability, was utilized in the development of a single-stage transonic axial compressor. An approximation model was created using artificial neural network for global optimization within given ranges of variables and several design constraints. The genetic algorithm was used for the exploration of the Pareto front to find the maximum objective function value. The final design was chosen after a second stage gradient-based optimization process to improve the accuracy of the optimization. To validate the design procedure, numerical simulations and compressor tests were carried out to evaluate the aerodynamic performance and safety factor of the optimized compressor. Comparison between numerical optimal results and experimental data are well matched. The optimum shape of the compressor blade is obtained and compared to the baseline design. The proposed optimization framework improves the aerodynamic efficiency and the safety factor.
The development of an air injection system for the forced response testing of axial compressors
CSIR Research Space (South Africa)
Wegman, Erik J
2013-06-01
Full Text Available A phase-controllable, air injection exciter system was developed to enable measurement of the forced response properties of a transonic axial compressor blisk. The project was performed as part of the FP7 European framework program project FUTURE...
Optimization of the working process of the axial compressor according to the criterion of efficiency
Baturin, O. V.; Popov, G. M.; Goryachkin, E. S.; Novikova, Yu D.
2017-01-01
The paper shows search results of the optimal shape of low pressure compressor blades of the industrial gas turbine plant using methods of computational fluid dynamics and multicriteria methods of mathematical optimization. The essence of the methods is that an increase in compressor efficiency should be achieved by increasing the degree of compression up to 2%, and reducing the air flow to 8% relative to basic engine parameters. However, the compressor design elements should be retained as maximally unchanged as possible. During the work, the calculation model of the workflow in the test compressor has been developed and verified in the NUMECA software package, the automated algorithm of the blades shape change has been also developed using a small number of variables, while maintaining its stress-strain state. It allows reducing the number of changeable variables more than twofold. As the result of this study, the option of compressor performance was found, which can increase its efficiency by 1.3% (abs.).
Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements
Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter
2009-01-01
In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.
Compressor Part II: Volute Flow Predictions
Directory of Open Access Journals (Sweden)
Yu-Tai Lee
1999-01-01
Full Text Available A numerical method that solves the Reynolds-averaged Navier-Stokes equations is used to study an inefficient component of a shipboard air-conditioning HCFC-124 compressor system. This high-loss component of the centrifugal compressor was identified as the volute through a series of measurements given in Part I of the paper. The predictions were made using three grid topologies. The first grid closes the connection between the cutwater and the discharge diffuser. The other two grids connect the cutwater area with the discharge diffuser. Experiments were performed to simulate both the cutwater conditions used in the predictions. Surface pressures along the outer wall and near the inlet of the volute were surveyed for comparisons with the predictions. Good agreements between the predicted results and the measurements validate the calculations. Total pressure distributions and flow stream traces from the prediction results support the loss distribution through the volute. A modified volute configuration is examined numerically for further loss comparison.
An experimental description of the flow in a centrifugal compressor from alternate stall to surge
Moënne-Loccoz, V.; Trébinjac, I.; Benichou, E.; Goguey, S.; Paoletti, B.; Laucher, P.
2017-08-01
The present paper gives the experimental results obtained in a centrifugal compressor stage designed and built by SAFRAN Helicopter Engines. The compressor is composed of inlet guide vanes, a backswept splittered unshrouded impeller, a splittered vaned radial diffuser and axial outlet guide vanes. Previous numerical simulations revealed a particular S-shape pressure rise characteristic at partial rotation speed and predicted an alternate flow pattern in the vaned radial diffuser at low mass flow rate. This alternate flow pattern involves two adjacent vane passages. One passage exhibits very low momentum and a low pressure recovery, whereas the adjacent passage has very high momentum in the passage inlet and diffuses efficiently. Experimental measurements confirm the S-shape of the pressure rise characteristic even if the stability limit experimentally occurs at higher mass flow than numerically predicted. At low mass flow the alternate stall pattern is confirmed thanks to the data obtained by high-frequency pressure sensors. As the compressor is throttled the path to instability has been registered and a first scenario of the surge inception is given. The compressor first experiences a steady alternate stall in the diffuser. As the mass flow decreases, the alternate stall amplifies and triggers the mild surge in the vaned diffuser. An unsteady behavior results from the interaction of the alternate stall and the mild surge. Finally, when the pressure gradient becomes too strong, the alternate stall blows away and the compressor enters into deep surge.
Marchukov, E.; Egorov, I.; Popov, G.; Baturin, O.; Goriachkin, E.; Novikova, Y.; Kolmakova, D.
2017-08-01
The article presents one optimization method for improving of the working process of an axial compressor of gas turbine engine. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. Optimization was performed by changing the form of the middle line in the three sections of each blade and shifts of three sections of the guide vanes in the circumferential and axial directions. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.
International Nuclear Information System (INIS)
Han, Feng Hui; Mao, Yi Jun; Tan, Ji Jian
2016-01-01
Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets
Energy Technology Data Exchange (ETDEWEB)
Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)
2016-11-15
Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.
Numerical Calculation of the Swirling Flow in a Centrifugal Compressor Volute
International Nuclear Information System (INIS)
Seong, Seon Mo; Kang, Shin Hyoung; Cho, Kyung Seok; Kim, Woo June
2007-01-01
Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has axial diffuser after radial diffuser because of the shape of inlet duct and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue. The calculation results show circumferential variations of the swirl and through flow velocity and pressure distribution. The mechanism deciding flow structure is explained by considering the force balance in volute cross section. And static pressure recovery and total pressure loss are estimated from the calculated results and compared with Japikse model
Chen, X.; Qin, G.; Ai, Z.; Ji, Y.
2017-08-01
As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.
International Nuclear Information System (INIS)
Kim, Sangjo; Son, Changmin; Kim, Kuisoon
2017-01-01
Aim of this work is to provide evidence of the effectiveness of combined use of the variable guide vanes (VGVs) and bleed air on the thermodynamic performance of aircraft engine system. This paper performed the comparative study to evaluate the overall thermal performance of an aircraft engine with optimized VGVs and bleed air, separately or simultaneously. The low-bypass ratio turbofan engine has been modeled with a 0D/1D modeling approach. The genetic algorithm is employed to find the optimum schedule of VGVs and bleed air. There are four types of design variables: (1) the inlet guide vane (IGV) angle, (2) the IGV and 1st stator vane (SV) angles, (3) bleed air mass flow rate at the exit of the axial compressor, and (4) both type 2 and type 3. The optimization is conducted with surge margin constraints of more than 10% and 15% in the axial compressor. The results show that the additional use of the bleed air increases the efficiency of the compressors. Overall, the percentage reductions of the total fuel consumption for the engine with the IGV, 1st SV and bleed air schedule is 1.63% for 15% surge margin constraints when compared with the engine with the IGV schedule. - Highlights: • The effect of combined use of variable guide vanes and bleed air is evaluated. • The genetic algorithm is employed to find the optimum setting angle and bleed air. • A low bypass ratio mixed turbofan engine is analyzed for optimization. • Additional use of the bleed air shows improved overall performance of the engine.
Internal flow measurement in transonic compressor by PIV technique
Wang, Tongqing; Wu, Huaiyu; Liu, Yin
2001-11-01
The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.
International Nuclear Information System (INIS)
Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kunitomi, Kazuhiko; Inagaki, Yoshiyuki
2009-01-01
Aerodynamic performance test was carried out using a 1/3 scale, 4-stage model of the helium gas compressor to investigate an effect of end-wall over-camber to prevent decrease of axial velocity in the end-wall boundary layer. The model compressor consists of a rotor, 500 mm in diameter, which is driven by an electric motor at a rotational speed of 10800 rpm. The rotor blade span of the first stage is 34 mm. The test was carried out under the condition that the helium gas pressure of 0.88 MPa, temperature of 30degC, and mass flow rate of 12.47 kg/s at the inlet. A 3-dimensional aerodynamic code, which was verified using the test data, showed that axial velocity was lowered by using a blade which increased the inlet blade angle around the end-wall region of the casing side in comparison with that using the original design blade, because the inlet flow angle mismatched with the inlet blade angle of the rotor blade, as opposed to the prediction by a conventional air compressor design method. The overall adiabatic efficiency of the full scale 20-stage helium gas compressor was predicted 89.7% from the Reynolds number dependency of the test data by using the original design blade. (author)
Toward Understanding Tip Leakage Flows in Small Compressor Cores Including Stator Leakage Flow
Berdanier, Reid A.; Key, Nicole L.
2017-01-01
The focus of this work was to provide additional data to supplement the work reported in NASA/CR-2015-218868 (Berdanier and Key, 2015b). The aim of that project was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearances were studied with nominal tip clearance gaps of 1.5 percent, 3.0 percent, and 4.0 percent based on a constant annulus height. Overall compressor performance was previously investigated at four corrected speedlines (100 percent, 90 percent, 80 percent, and 68 percent) for each of the three tip clearance configurations. This study extends the previously published results to include detailed steady and time-resolved pressure data at two loading conditions, nominal loading (NL) and high loading (HL), on the 100 percent corrected speedline for the intermediate clearance level (3.0 percent). Steady detailed radial traverses of total pressure at the exit of each stator row are supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data were combined with existing three-component velocity measurements to identify a novel technique for calculating blockage in a multistage compressor. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100 percent corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements reveal new knowledge about the
Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann
2016-02-01
Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the
Design and analysis of an axial bypass compressor blade in a supercritical CO2 gas turbine
International Nuclear Information System (INIS)
Ishizuka, Takao; Muto, Yasushi; Aritomi, Masanori; Tsuzuki, Nobuyoshi; Kikura, Hiroshige
2010-01-01
A supercritical carbon dioxide gas turbine can generate power at a high cycle thermal efficiency, even at modest temperatures of 500-550degC. Consequently, a more reliable and economically advantageous power generation system is achieved by coupling with a Na-cooled fast reactor. This paper mainly describes the bypass compressor (a key component) design and thermal hydraulic analysis using CFD (with FLUENT code). Fluid conditions of the bypass compressor are determined by the cycle calculation of this system. Aerodynamic design was conducted using the loss model described by Cohen et al., which enables the use of several stages while providing total adiabatic efficiency of 21 and 87%, respectively. Blade shapes were prepared based on flow angles and chord length obtained for the aerodynamic design. In the CFD analysis, the calculated value of the mass flow rate for each stage was adjusted to that of the design. The value of the design outlet pressure was reached at stage No. 16, which is fewer stages than that for design, No. 21. The difference between these stage numbers is attributed to the three-dimensional effect in design. If these effects are eliminated, then the design calculation yields an almost identical number of stages. Therefore, it was concluded that the existing design method is applicable to the supercritical CO 2 bypass compressor. Furthermore, CFD analysis appears to be an effective aerodynamic design tool, but these conclusions should be verified experimentally. (author)
An investigation of rotor tip leakage flows in the rear-block of a multistage compressor
Brossman, John Richard
An effective method to improve gas turbine propulsive efficiency is to increase the bypass ratio. With fan diameter reaching a practical limit, increases in bypass ratio can be obtained from reduced core engine size. Decreasing the engine core, results in small, high pressure compressor blading, and large relative tip clearances. At general rule of 1% reduction in compressor efficiency with a 1% increase in tip clearance, a 0.66% change in SFC indicates the entire engine is sensitive to high pressure compressor tip leakage flows. Therefore, further investigations and understanding of the rotor tip leakage flows can help to improve gas turbine engine efficiency. The objectives of this research were to investigate tip leakage flows through computational modeling, examine the baseline experimental steady-stage performance, and acquire unsteady static pressure, over-the rotor to observe the tip leakage flow structure. While tip leakage flows have been investigated in the past, there have been no facilities capable of matching engine representative Reynolds number and Mach number while maintaining blade row interactions, presenting a unique and original flow field to investigate at the Purdue 3-stage axial compressor facility. To aid the design of experimental hardware and determine the influence of clearance geometry on compressor performance, a computational model of the Purdue 3-stage compressor was investigated using a steady RANS CFD analysis. A cropped rotor and casing recess design was investigated to increase the rotor tip clearance. While there were small performance differences between the geometries, the tip leakage flow field was found independent of the design therefore designing future experimental hardware around a casing recess is valid. The largest clearance with flow margin past the design point was 4% tip clearance based on the computational model. The Purdue 3-stage axial compressor facility was rebuilt and setup for high quality, detailed flow
Experimental investigation on a high subsonic compressor cascade flow
Directory of Open Access Journals (Sweden)
Zhang Haideng
2015-08-01
Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.
CFD study of leakage flows in shroud cavities of a compressor impeller
Soldatova, K.
2017-08-01
The flow character in a gap between shroud disc of an impeller and a stator surface (shroud cavity) influences disc friction loss, labyrinth seal loss (parasitic losses) and thrust force. Flow calculations inside the shroud cavity of a model of centrifugal compressor stage and its labyrinth seal in a range of flow rates and axial width and radial gap are presented. The results are presented in terms of non-dimensional coefficients of flow, disc friction and seal leakage losses coefficients and pressure coefficient. The distributions meridional and tangential flow velocities correspond to the continuity and equilibrium equations - flow radial circulation exists in wide cavity and is absent in narrow cavities. The radial pressure distributions as measured and calculated are not fully comparable. The possible reason is that CFD-calculated leakage coefficient is less than calculated by A.Stodola formula. The influence of a cavity width on the losses and the thrust force requires a balanced design.
Energy Technology Data Exchange (ETDEWEB)
Melake, A [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Antriebstechnik
1997-12-31
A computer program has been developed to calculate the three-dimensional tip leakage flow in axial turbomachinery based on the Navier-Stokes equation. This program has been applied to investigate the leakage flow within the gap between the blade fip and casing in an annular compressor cascade. A block structured computational mesh has been used in order to resolve the flow details within the gap and the passage flow. Flow characteristics like boundary layer separation, vortex genesis and interaction of the leakage flow with the secondary flow have been investigated and compared with existing experimental data. By varying the incidence angle and the tip gap the above mentioned flow phenomena have been analysed in an annular compressor cascade and a shrouded propfan rotor respectively. Furthermore, the relationship between the total pressure loss, the axial velocity deficit and the divergence of the tip leakage vortex has been investigated. Streamlines, limited streamlines and the critical point theory have been used extensively to analyse the boundary layer separation on the casing and its roll up to form the tip clearance vortex. (orig.). 59 figs., 3 tabs., 110 refs. [Deutsch] Es wurde ein Rechenprogramm zur Berechnung der dreidimensionalen Spaltstroemung im radialen Schaufelspalt axialer Turbomaschinen auf der Basis der Navier-Stokes`schen Gleichungen entwickelt und angewendet. Um die Stroemung innerhalb des Spaltes und der Schaufelpassage besser aufloesen zu koennen, wurde eine blockstrukturierte Netztopologie verwendet. Stroemungseigenschaften wie Grenzschichtabloesung, Entstehung des Spaltwirbels, Interaktion der Spaltstroemung mit der Sekundaerstroemung werden untersucht und mit vorhandenen experimentellen Daten verglichen. Im weiteren werden durch Variation der Inzidenz und der Spaltweite die oben genannten Stroemungsphaenomene an einem axialen Verdichterringgitter und an einem ummantelten Propfan analysiert. Ferner werden die Korrelation zwischen
Kopasakis, George; Connolly, Joseph W.; Cheng, Larry
2015-01-01
This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Internal and external axial corner flows
Kutler, P.; Shankar, V.; Anderson, D. A.; Sorenson, R. L.
1975-01-01
The inviscid, internal, and external axial corner flows generated by two intersecting wedges traveling supersonically are obtained by use of a second-order shock-capturing, finite-difference approach. The governing equations are solved iteratively in conical coordinates to yield the complicated wave structure of the internal corner and the simple peripheral shock of the external corner. The numerical results for the internal flows compare favorably with existing experimental data.
Berdanier, Reid Adam
The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Cross-flow filtration and axial filtration
International Nuclear Information System (INIS)
Kraus, K.A.
1974-01-01
Two relatively novel alternative solid-liquid-separation techniques of filtration are discussed. In cross-flow filtration, the feed is pumped past the filtering surface. While in axial filtration the filter, mounted on a rotor, is moved with respect to the feed. While large-scale application of the axial filter is still in doubt, it permits with little expenditure of time and money, duplication of many hydrodynamic aspects of cross-flow filtration for fine-particle handling problems. The technique has been applied to municipal wastes, low-level radioactive waste treatment plant, lead removal from industrial wastes, removal of pulp-mill contaminants, textile-mill wastes, and pretreatment of saline waters by lime-soda process in preparation for hyperfiltration. Economics and energy requirements are also discussed
Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec
Owen, A. K.
1994-01-01
Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.
Supercharging an internal combustion engine by aid of a dual-rotor bi-flux axial compressor
Grǎdinariu, Andrei Cristian; Mihai, Ioan
2016-12-01
Internal combustion engines can be supercharged in order to enhance their performances [1-3]. Engine power is proportional to the quantity of fresh fluid introduced into the cylinder. At present, the general tendency is to try to obtain actual specific powers as high as possible, for as small as possible cylinder capacity, without increasing the generated pollution hazards. The present paper investigates the impact of replacing a centrifugal turbo-compressor with an axial double-rotor bi-flux one [4]. The proposed method allows that for the same number of cylinders, an increase in discharged airflow, accompanied by a decrease in fuel consumption. Using a program developed under the MathCad environment, the present work was aimed at studying the way temperature modifies at the end of isentropic compression under supercharging conditions. Taking into account a variation between extreme limits of the ambient temperature, its influence upon the evolution of thermal load coefficient was analyzed considering the air pressure at the compressor cooling system outlet. This analysis was completed by an exergetical study of the heat evacuated through cylinder walls in supercharged engine conditions. The conducted investigation allows verification of whether significant differences can be observed between an axial, dual-rotor, bi-flux compressor and centrifugal compressors.
Liu, Jianyong; Lu, Yajun; Li, Zhiping
2010-05-01
Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.
International Nuclear Information System (INIS)
Choi, Min Suk; Baek, Je Hyun; Chung, Hee Taeg; Oh, Seong Hwan; Ko, Han Young
2008-01-01
A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton's loss model, and the effects of the low Reynolds number on the performance were analyzed in detail
Energy Technology Data Exchange (ETDEWEB)
Choi, Min Suk; Baek, Je Hyun [Pohang University of Science and Technology, Pohang (Korea, Republic of); Chung, Hee Taeg [Gyeongsang National University, Jinju (Korea, Republic of); Oh, Seong Hwan; Ko, Han Young [Agency for Defense Development, Daejeon (Korea, Republic of)
2008-02-15
A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton's loss model, and the effects of the low Reynolds number on the performance were analyzed in detail.
Simulation and Modeling of Flow in a Gas Compressor
Directory of Open Access Journals (Sweden)
Anna Avramenko
2015-01-01
Full Text Available The presented research demonstrates the results of a series of numerical simulations of gas flow through a single-stage centrifugal compressor with a vaneless diffuser. Numerical results were validated with experiments consisting of eight regimes with different mass flow rates. The steady-state and unsteady simulations were done in ANSYS FLUENT 13.0 and NUMECA FINE/TURBO 8.9.1 for one-period geometry due to periodicity of the problem. First-order discretization is insufficient due to strong dissipation effects. Results obtained with second-order discretization agree with the experiments for the steady-state case in the region of high mass flow rates. In the area of low mass flow rates, nonstationary effects significantly influence the flow leading stationary model to poor prediction. Therefore, the unsteady simulations were performed in the region of low mass flow rates. Results of calculation were compared with experimental data. The numerical simulation method in this paper can be used to predict compressor performance.
Directory of Open Access Journals (Sweden)
Yangwei Liu
2014-11-01
Full Text Available Control of corner separation has attracted much interest due to its improvement of performance and energy utilization in turbomachinery. Numerical studies have been performed under both design and off-design flow conditions to investigate the effects of boundary layer suction (BLS on corner separation in a highly loaded compressor cascade. Two new BLS slot configurations are proposed and a total of five suction slot configurations were studied and compared. Averaged static pressure rise, exit loss coefficient, passage blockage and flow turning angle have been given and compared systematically over a range of operation incidence angles. Distributions of significant loss removal, blade loading, exit deviation and total pressure loss at 3 degree and 7 degree incidence have also been studied. Under the same suction mass flows of 0.7% of the inlet mass flows, the pitchwise suction slot on the endwall shows a better optimal performance over the whole operation incidence among single suction slots. By using of the new proposed compound slot configuration with one spanwise slot on the blade suction side and one pitchwise slot on the endwall, the maximum reduction of total pressure loss at 7 degree incidence can be 39.4%.
Oil flow at the scroll compressor discharge: visualization and CFD simulation
Xu, Jiu; Hrnjak, Pega
2017-08-01
Oil is important to the compressor but has other side effect on the refrigeration system performance. Discharge valves located in the compressor plenum are the gateway for the oil when leaving the compressor and circulate in the system. The space in between: the compressor discharge plenum has the potential to separate the oil mist and reduce the oil circulation ratio (OCR) in the system. In order to provide information for building incorporated separation feature for the oil flow near the compressor discharge, video processing method is used to quantify the oil droplets movement and distribution. Also, CFD discrete phase model gives the numerical approach to study the oil flow inside compressor plenum. Oil droplet size distributions are given by visualization and simulation and the results show a good agreement. The mass balance and spatial distribution are also discussed and compared with experimental results. The verification shows that discrete phase model has the potential to simulate the oil droplet flow inside the compressor.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
Koplow, Jeffrey P.
2016-02-16
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.
Composite Axial Flow Propulsor for Small Aircraft
Directory of Open Access Journals (Sweden)
R. Poul
2005-01-01
Full Text Available This work focuses on the design of an axial flow ducted fan driven by a reciprocating engine. The solution minimizes the turbulization of the flow around the aircraft. The fan has a rotor - stator configuration. Due to the need for low weight of the fan, a carbon/epoxy composite material was chosen for the blades and the driving shaft.The fan is designed for optimal isentropic efficiency and free vortex flow. A stress analysis of the rotor blade was performed using the Finite Element Method. The skin of the blade is calculated as a laminate and the foam core as a solid. A static and dynamic analysis were made. The RTM technology is compared with other technologies and is described in detail.
Design features of fans, blowers, and compressors
Cheremisinoff, N. P.; Cheremisinoff, P. N.
Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.
Boundary layer flow past a circular cylinder in axial flow
International Nuclear Information System (INIS)
Sawchuk, S.P.; Zamir, M.; Camiletti, S.E.
1985-01-01
This paper discusses a study of the laminar boundary layer on a semi-infinite circular cylinder in axial incompressible flow. Unlike previous studies, the present study investigates a full range of this boundary layer problem to determine skin friction, heat transfer and other integral properties of the boundary layer
Evaluation of the Performance and Flow in an Axial Compressor.
1982-10-01
A Exit Rake P 11.00-P tP noz P2noz -PA SP-1 PHub - PA Exit Rake Pt11.50-Pt p - PA SP-1 PTip - PA Exit Rake Pt2.00-PPtpipe ATp Att Pspipe - PA SP-2...PTip - PA Exit Rake Pt6.50-Pt Inlet Rake Pt14.40-PA SP-8 PTip - PA Exit Rake Pt 17.00-Pt Inlet Rake Pt 1.30-PA SP-8 PHub - PA Exit Rake Pt17.50-Pt...Determination from Probe Pressures Pt (1) =((Pt=(1) + Phub ) + (Pt(1) + Pt(2)))/3 P t(2) P t(2) Pt (3) = t(3) P t(4) = (P t(3) + P t(4))/2 P t(5) =P t(4) Pt
Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser
International Nuclear Information System (INIS)
Tamaki, Hideaki
2013-01-01
Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.
Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser
Energy Technology Data Exchange (ETDEWEB)
Tamaki, Hideaki [IHI Corporation, Yokoham (Japan)
2013-06-15
Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.
National Aeronautics and Space Administration — ATA Engineering, Inc. (ATA) proposes a small business innovation research (SBIR) program for a novel compressor heat-extraction development program in response to...
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, S.F.; Castleberry, K.N.
1998-06-16
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.
Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors
Kim, Woohyun; Braun, James E.
2012-01-01
The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...
Devices and methods of operation thereof for providing stable flow for centrifugal compressors
Skoch, Gary J. (Inventor); Stevens, Mark A. (Inventor); Jett, Thomas A. (Inventor)
2008-01-01
Centrifugal compressor flow stabilizing devices and methods of operation thereof are disclosed that act upon the flow field discharging from the impeller of a centrifugal compressor and modify the flow field ahead of the diffuser vanes such that flow conditions contributing to rotating stall and surge are reduced or even eliminated. In some embodiments, shaped rods and methods of operation thereof are disclosed, whereas in other embodiments reverse-tangent air injection devices and methods are disclosed.
Directory of Open Access Journals (Sweden)
Cui Michael M.
2005-01-01
Full Text Available To reduce vibration and noise level, the impeller and diffuser blade numbers inside an industrial compressor are typically chosen without common divisors. The shapes of volutes or collectors in these compressors are also not axis-symmetric. When impeller blades pass these asymmetric structures, the flow field in the compressor is time-dependent and three-dimensional. To obtain a fundamental physical understanding of these three-dimensional unsteady flow fields and assess their impact on the compressor performance, the flow field inside the compressors needs to be studied as a whole to include asymmetric and unsteady interaction between the compressor components. In the current study, a unified three-dimensional numerical model was built for a transonic centrifugal compressor including impeller, diffusers, and volute. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was simulated with a Navier-Stokes solver using the k−ϵ turbulent model. The overall performance parameters are obtained by integrating the field quantities. Both the unsteady flow field and the overall performance are analyzed comparatively for each component. The compressor was tested in a water chiller system instrumented to obtain both the overall performance data and local flow-field quantities. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow-field quantities is defined. The methodology developed and data obtained in these studies can be applied to the centrifugal compressor design and optimization.
Kato, Hiromasa; Taniguchi, Hideo; Matsuda, Kazunari; Funazaki, Ken-Ichi; Kato, Dai; Pallot, Guillaume
2011-12-01
High flow rate aeroengines typically employ axial flow compressors, where aerodynamic loss is predominantly due to secondary flow features such as tip leakage and corner vortices. In very high altitude missions, turbomachinery operates at low density ambient atmosphere, and the recent trend toward more compact engine core inevitably leads to the reduction of blade size, which in turn increases the relative height of the blade tip clearance. Low Reynolds number flowfield as a result of these two factors amplifies the relative importance of secondary flow effects. This paper focuses on the behavior of tip leakage flow, investigating by use of both experimental and numerical approaches. In order to understand the complex secondary flow behavior, cascade tests are usually conducted using intrusive probes to determine the loss. However relatively few experimental studies are published on tip leakage flows which take into account the interaction between a rotating blade row and its casing wall. Hence a new linear cascade facility has been designed with a moving belt casing in order to reproduce more realistic flowfield as encountered by a rotating compressor row. Numerical simulations were also performed to aid in the understanding of the complex flow features. The experimental results indicate a significant difference in the flowfield when the moving belt casing is present. The numerical simulations reveal that the leakage vortex is pulled by the shearing motion of the endwall toward the pressure side of the adjacent blade. The results highlight the importance of casing wall relative motion in analyzing leakage flow effects.
Computational analysis of supercritical carbon dioxide flow around a turbine and compressor BLADE
International Nuclear Information System (INIS)
Kim, Tae W.; Kim, Nam H.; Suh, Kune Y.; Kim, Seung O.
2007-01-01
The turbine and compressor isentropic efficiencies are one of the major parameters affecting the overall Brayton cycle efficiency. Thus, the optimal turbine and compressor design should contribute to the economics of future nuclear fission and fusion energy systems. A computation analysis was performed utilizing CFX for the supercritical carbon dioxide (SCO 2 ) flow around a turbine and compressor blade to check on the potential efficiency of the turbine and compressor which determine such basic design values as the blade (or impeller) and nozzle (or diffuser) types, blade height, and minimum and maximum radii of the hub and tip. Basic design values of the turbine and compressor blades based on the Argonne National Laboratory (ANL) design code was generated by ANSYS BladeGen TM . The boundary conditions were based on the KALIMER-600 secondary loop. Optimal SCO 2 turbine and compressor blades were developed for high efficiency of 90% by the computational analysis. (author)
The research on flow pulsation characteristics of axial piston pump
Wang, Bingchao; Wang, Yulin
2017-01-01
The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.
Optimization of plasma flow parameters of the magnetoplasma compressor
International Nuclear Information System (INIS)
Dojcinovic, I P; Kuraica, M M; Obradovc, B M; Cvetanovic, N; Puric, J
2007-01-01
Optimization of the working conditions of the magnetoplasma compressor (MPC) has been performed through analysing discharge and compression plasma flow parameters in hydrogen, nitrogen and argon at different pressures. Energy conversion rate, volt-ampere curve exponent and plasma flow velocities have been studied to optimize the efficiency of energy transfer from the supply source to the plasma. It has been found that the most effective energy transfer from the supply to the plasma is in hydrogen as a working gas at 1000 Pa pressure. It was found that the accelerating regime exists for hydrogen up to 3000 Pa pressures, in nitrogen up to 2000 Pa and in argon up to 1000 Pa pressure. At higher pressures MPC in all the gases works in the decelerating regime. At pressures lower than 200 Pa, high cathode erosion is observed. MPC plasma flow parameter optimization is very important because this plasma accelerating system may be of special interest for solid surface modification and other technology applications
Sajben, Miklos; Freund, Donald D.
1998-01-01
The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study
Directory of Open Access Journals (Sweden)
Yasuyuki Nishi
2016-01-01
Full Text Available We proposed a portable and ultra-small axial flow hydraulic turbine that can generate electric power comparatively easily using the low head of open channels such as existing pipe conduits or small rivers. In addition, we proposed a simple design method for axial flow runners in combination with the conventional one-dimensional design method and the design method of axial flow velocity uniformization, with the support of three-dimensional flow analysis. Applying our design method to the runner of an ultra-small axial flow hydraulic turbine, the performance and internal flow of the designed runner were investigated using CFD analysis and experiment (performance test and PIV measurement. As a result, the runners designed with our design method were significantly improved in turbine efficiency compared to the original runner. Specifically, in the experiment, a new design of the runner achieved a turbine efficiency of 0.768. This reason was that the axial component of absolute velocity of the new design of the runner was relatively uniform at the runner outlet in comparison with that of the original runner, and as a result, the negative rotational flow was improved. Thus, the validity of our design method has been verified.
A study on the oil flow characteristics in the inverter rotary compressor
International Nuclear Information System (INIS)
Kim, H J; Kim, Y J
2013-01-01
In order to secure the reliability of the oil in the inverter rotary compressor used in the system multi-air conditioners in heating and cooling modes, it is necessary to study the oil flow characteristics which affect to the compressor efficiency. In this study, sight glasses were installed at the compressor and accumulator for oil flow measurements, and various experiments were performed to measure the amount of discharged oil for different refrigerant pipe lengths. On the basis of the experimental measurements, we compared the OCR (Oil Circulation Rate) results of the system multi-air conditioner for various operating conditions. The results are graphically depicted
Preliminary Validation and Verification of TURBO{sub D}ESIGN for S-CO{sub 2} Axial Compressor
Energy Technology Data Exchange (ETDEWEB)
Lee, Je Kyoung; Lee, Jeong Ik; Ahn, Yoon Han; Kim, Seong Gu [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Yoon, Ho Joon; Addad, Yacine [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)
2012-05-15
To use the advantages of Supercritical CO{sub 2}(S-CO{sub 2}) Brayton cycle for nuclear power plant, KAIST-Khalifa University joint research team has been focusing on S-CO{sub 2} turbomachinery development. TURBO{sub D}ESIGN code is one of the products of our researches to design a turbomachinery. The major feature of TURBO{sub D}ESIGN is that the formulation is based on the real gas and none of the ideal gas assumption was applied to the code. Thus, TURBO{sub D}ESIGN has high flexibility regarding the type of gases. In this paper, preliminary code validation and verification of TURBO{sub D}ESIGN will be discussed for axial type compressor design
Tsukamoto, Kaname; Okada, Mizuki; Inokuchi, Yuzo; Yamasaki, Nobuhiko; Yamagata, Akihiro
2017-04-01
For centrifugal compressors used in automotive turbochargers, the extension of the surge margin is demanded because of lower engine speed. In order to estimate the surge line exactly, it is required to acquire the compressor characteristics at small or negative flow rate. In this paper, measurement and numerical simulation of the characteristics at small or negative flow rate are carried out. In the measurement, an experimental facility with a valve immediately downstream of the compressor is used to suppress the surge. In the numerical work, a new boundary condition that specifies mass flow rate at the outlet boundary is used to simulate the characteristics around the zero flow rate region. Furthermore, flow field analyses at small or negative flow rate are performed with the numerical results. The separated and re-circulated flow fields are investigated by visualization to identify the origin of losses.
Computational Analysis of Flow Through a Transonic Compressor Rotor
National Research Council Canada - National Science Library
Bochette, Nikolaus J
2005-01-01
.... In examining this problem two Computational Fluid Dynamic (CFD) codes have been used by the Naval Postgraduate School to predict the performance of a transonic compressor rotor that is being tested with steam ingestion...
Lawless, Patrick B.; Fleeter, Sanford
1991-01-01
A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.
Guillou, Erwann
Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed
Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035
Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.
2014-01-01
A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422
A study on two phase flows of linear compressors for the prediction of refrigerant leakage
International Nuclear Information System (INIS)
Hwang, Il Sun; Lee, Young Lim; Oh, Won Sik; Park, Kyeong Bae
2015-01-01
Usage of linear compressors is on the rise due to their high efficiency. In this paper, leakage of a linear compressor has been studied through numerical analysis and experiments. First, nitrogen leakage for a stagnant piston with fixed cylinder pressure as well as for a moving piston with fixed cylinder pressure was analyzed to verify the validity of the two-phase flow analysis model. Next, refrigerant leakage of a linear compressor in operation was finally predicted through 3-dimensional unsteady, two phase flow CFD (Computational fluid dynamics). According to the research results, the numerical analyses for the fixed cylinder pressure models were in good agreement with the experimental results. The refrigerant leakage of the linear compressor in operation mainly occurred through the oil exit and the leakage became negligible after about 0.4s following operation where the leakage became lower than 2.0x10 -4 kg/s.
International Nuclear Information System (INIS)
Tu, Qiu; Zou, Deqiu; Deng, Chenmian; Zhang, Jie; Hou, Lifeng; Yang, Min; Nong, Guicai; Feng, Yuhai
2016-01-01
Highlights: • The control model of compressor output capacity has been built. • The control strategy of compressor switching has been presented. • The switching process of standard compressor has been described. • The characteristics of EER and noise have been presented. • The control strategy and model have been proved by experiments. - Abstract: A set of 14 HP variable refrigerant flow air conditioning system (VRF AC) with multi-compressor has been designed, and the output capacity control strategy of compressor(s) including the switching control model of standard compressor has been built. In the output capacity control model, a certain suction pressure is used as the pressure control target to adjust the output capacity of compressors, and a little pressure fluctuation is taken into account to amend the target pressure. Furthermore, in the compressor switching control model, the most favorable operation frequency region is determined on base of the energy efficiency characteristic and noise characteristic of the compressor. And, in order to solve the large fluctuation problem of the system running and frequent ON-OFF action of the standard compressor, the equal output capacity switching principle can be used to determine the thermo-on and thermo-off switched frequency points, and control the switching process of the compressor. Experiments demonstrate the feasibility of this control strategy to ensure the stability and reliability, improve the energy efficiency and reduce the compressor noise.
Observations of the Growth and Decay of Stall Cells during Stall and Surge in an Axial Compressor
Directory of Open Access Journals (Sweden)
Adam R. Hickman
2017-01-01
Full Text Available This research investigated unsteady events such as stall inception, stall-cell development, and surge. Stall is characterized by a decrease in overall pressure rise and nonaxisymmetric throughflow. Compressor stall can lead to surge which is characterized by quasi-axisymmetric fluctuations in mass flow and pressure. Unsteady measurements of the flow field around the compressor rotor are examined. During the stall inception process, initial disturbances were found within the rotor passage near the tip region. As the stall cell develops, blade lift and pressure ratio decrease within the stall cell and increase ahead of the stall cell. The stall inception event, stall-cell development, and stall recovery event were found to be nearly identical for stable rotating stall and surge cases. As the stall cell grows, the leading edge of the cell will rotate at a higher rate than the trailing edge in the rotor frame. The opposite occurs during stall recovery. The trailing edge of the stall cell will rotate at the approximate speed as the fully developed stall cell, while the leading edge decreases in rotational speed in the rotor frame.
Directory of Open Access Journals (Sweden)
Yohan Jung
2012-01-01
Full Text Available This paper presents a numerical investigation of the effects of a nonuniform tip clearance profile on the performance and flow field in a centrifugal compressor with a vaneless diffuser. This study focuses in particular on the magnitude and location of the wake. Six impellers with different tip clearance profiles were tested in the flow simulations. The accuracy of the numerical simulations was assessed by comparing the experimental data with the computational results for a system characterized by the original tip clearance. Although the performance improved for low tip clearances, a low tip clearance at the trailing edge improved the compressor performance more significantly than a low tip clearance at the leading edge. The flow field calculated for a system characterized by a low tip clearance at the trailing edge produced a more uniform velocity distribution both in the circumferential and in the axial directions at the impeller exit because the wake magnitude was reduced. As a consequence, this impeller provided a better potential for diffusion processes inside a vaneless diffuser.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang
2013-03-01
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
A Novel Quasi-3D Method for Cascade Flow Considering Axial Velocity Density Ratio
Chen, Zhiqiang; Zhou, Ming; Xu, Quanyong; Huang, Xudong
2018-03-01
A novel quasi-3D Computational Fluid Dynamics (CFD) method of mid-span flow simulation for compressor cascades is proposed. Two dimension (2D) Reynolds-Averaged Navier-Stokes (RANS) method is shown facing challenge in predicting mid-span flow with a unity Axial Velocity Density Ratio (AVDR). Three dimension (3D) RANS solution also shows distinct discrepancies if the AVDR is not predicted correctly. In this paper, 2D and 3D CFD results discrepancies are analyzed and a novel quasi-3D CFD method is proposed. The new quasi-3D model is derived by reducing 3D RANS Finite Volume Method (FVM) discretization over a one-spanwise-layer structured mesh cell. The sidewall effect is considered by two parts. The first part is explicit interface fluxes of mass, momentum and energy as well as turbulence. The second part is a cell boundary scaling factor representing sidewall boundary layer contraction. The performance of the novel quasi-3D method is validated on mid-span pressure distribution, pressure loss and shock prediction of two typical cascades. The results show good agreement with the experiment data on cascade SJ301-20 and cascade AC6-10 at all test condition. The proposed quasi-3D method shows superior accuracy over traditional 2D RANS method and 3D RANS method in performance prediction of compressor cascade.
Modelling of fluid flow and heat transfer in a reciprocating compressor
Tuhovcak, J.; Hejcik, J.; Jicha, M.
2015-08-01
Efficiency of reciprocating compressor is strongly dependent on several parameters. The most important are valve behaviour and heat transfer. Valves affect the flow through the suction and discharge line. Heat flow from the walls to working fluid increases the work of the cycle. Understanding of these phenomena inside the compressor is a necessary step in the development process. Commercial CFD tools offer wide range of opportunities how to simulate the flow inside the reciprocating compressor nowadays, however they are too demanding in terms of computational time and mesh creation. Several approaches using various correlation equation exist to describe the heat transfer inside the cylinder, however none of them was validated by measurements due to the complicated settings. The goal of this paper is to show a comparison between these correlations using in-house code based on energy balance through the cycle.
Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case
Directory of Open Access Journals (Sweden)
Irina Carmen ANDREI
2014-06-01
Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.
Transonic airfoil and axial flow rotary machine
Nagai, Naonori; Iwatani, Junji
2015-09-01
Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.
The effect of inlet distorted flow on steady and unsteady performance of a centrifugal compressor
International Nuclear Information System (INIS)
Park, Jae Hyoung; Kang, Shin Hyoung
2005-01-01
Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed at the lower flow rate for high speed. For 50,000 rpm stall occurs as the flow rate decreases, however disappears for the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases
PIV investigation of the flow induced by a passive surge control method in a radial compressor
Energy Technology Data Exchange (ETDEWEB)
Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim [University of Cincinnati, Department of Aerospace Engineering, Cincinnati, OH (United States); Mohamed, Ashraf [Honeywell Turbo Technologies, Greater Los Angeles, CA (United States)
2012-09-15
Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a ''ported shroud.'' This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved. (orig.)
PIV investigation of the flow induced by a passive surge control method in a radial compressor
Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf
2012-09-01
Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.
Study of High Efficiency Flow Regulation of VIGV in Centrifugal Compressor
Directory of Open Access Journals (Sweden)
Chunjun Ji
2016-01-01
Full Text Available Variable inlet guide vane (VIGV is used to control the mass flow and generate prewhirl in centrifugal compressors. Due to the tip clearance of the guide vanes and the defect of the traditional guide vane profiles, the mass flow regulation of VIGV is limited, resulting in a large waste of compressed gas. Two kinds of inlet flow channels were proposed to eliminate the influence of tip clearance. These structures were numerically investigated at different setting angles. The results show that the improved channels not only expand the range of mass flow regulation, but also reduce the power and increase the efficiency of the compressor. Ten kinds of guide vane profiles, including different thickness distribution, camber line profile, were selected to compare with the original one and with each other. In the premise of ensuring the performance of compressor, the best guide vane profile was selected. The results show that reducing the guide vane thickness, increasing the guide vane camber angle, and increasing the distance between the maximum camber position and the leading edge of guide vane can help expand the range of mass flow regulation. The achievement of this research can effectively improve the flow regulation ability of VIGV and the performance of compressor.
International Nuclear Information System (INIS)
Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok; Yi, Sun
2016-01-01
In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.
Energy Technology Data Exchange (ETDEWEB)
Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)
2016-08-15
In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.
A CFD analysis of blade row interactions within a high-speed axial compressor
Richman, Michael Scott
Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.
Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field
Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.
1993-01-01
An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.
Energy Technology Data Exchange (ETDEWEB)
Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)
2009-11-15
Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)
Numerical study on the three-dimensional scroll volute flow of centrifugal compressor
International Nuclear Information System (INIS)
Bae, Hwang; Chang, Keun Shik; Yoon, Ju Sig; Park, Ki Cheol
2005-01-01
Three dimensional turbulent flow in the scroll volute of centrifugal compressor has been numerically investigated in this paper by solving the Navier-Stokes equations and k -ε equation model. The computational grid for the flow field of the scroll volute has been constructed based on the multi-block grid, which is good to avoid the central grid singularity as well as to make grid stretching toward the volute wall. Numerical result has been obtained for the three-dimensional flow of scroll volute. The straight conical volute flow is also solved and compared with the scroll volute data. This comparison contributed to comprehend the effect of scroll in the three-dimensional volute flow of a centrifugal compressor
Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium
Babcock, Dale A.
1995-01-01
A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.
Stress Analysis of Fuel Rod under Axial Coolant Flow
Energy Technology Data Exchange (ETDEWEB)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)
2010-05-15
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
Stress Analysis of Fuel Rod under Axial Coolant Flow
International Nuclear Information System (INIS)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok
2010-01-01
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
High pressure axial flow fans for modern coal power stations
Energy Technology Data Exchange (ETDEWEB)
Cyrus, Vaclav [AHT Energetika s.r.o., Praha (Czech Republic); Koci, Petr [ZVVZ Milevsko a.s. (Czech Republic)
2008-07-01
Brown coal fired power stations, located in Northern Bohemia, have mostly older boiler blocks with an output of 110 and 200 MWe. Flue gases are cleaned by the desulphurization plants installed between 1993 and 1997. Usually, each boiler block has two air fans and one to three flue gas fans. Flue gas fans operate in severe conditions; fan blades should be resistant to the flue gases containing sulphur and acid drops with the operating temperature at 170 C to 190 C. Additionally, flue gas also often contains ash particles. Currently, some boiler blocks are gradually being refurbished. New blocks with an electrical power output of 600 to 700 MWe are at the design stage. Submitted paper shows our design study of one stage axial flow fan for the new blocks. Results from the new aerodynamic research of the axial flow stages were used in the fan design. (orig.)
Compressor Performance Scaling in the Presence of Non-Uniform Flow
Hill, David Jarrod
Fuselage-embedded engines in future aircraft will see increased flow distortions due to the ingestion of airframe boundary layers. This reduces the required propulsive power compared to podded engines. Inlet flow distortions mean that localized regions of flow within the fan and first stage compressor are operating at off-design conditions. It is important to weigh the benefit of increased vehicle propulsive efficiency against the resultant reduction in engine efficiency. High computational cost has limited most past research to single distortion studies. The objective of this thesis is to extract scaling laws for transonic compressor performance in the presence of various distortion patterns and intensities. The machine studied is the NASA R67 transonic compressor. Volumetric source terms are used to model rotor and stator blade rows. The modelling approach is an innovative combination of existing flow turning and loss models, combined with a compressible flow correction. This approach allows for a steady calculation to capture distortion transfer; as a result, the computational cost is reduced by two orders of magnitude. At peak efficiency, the rotor work coefficient and isentropic efficiency are matched within 1.4% of previously published experimental results. A key finding of this thesis is that, in non-uniform flow, the state-of-the-art loss model employed is unable to capture the impact of variations in local flow coefficient, limiting the analysis of local entropy generation. New insight explains the mechanism governing the interaction between a total temperature distortion and a compressor rotor. A parametric study comprising 16 inlet distortions reveals that for total temperature distortions, upstream flow redistribution and rotor diffusion factor changes are shown to scale linearly with distortion severity. Linear diffusion factor scaling does not hold true for total pressure distortions. For combined total temperature and total pressure distortions, the
Visualization study of flow in axial flow inducer.
Lakshminarayana, B.
1972-01-01
A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.
Moving blade for steam turbines with axial flow
International Nuclear Information System (INIS)
Raschke, K.; Wehle, G.
1976-01-01
The invention concerns the improvement of the production of moving blades for steam turbines with axial flow, especially of multi-blades produced by welding of the top plates. It is proposed to weld the top plates before the moving blades are fitted into the rotor. Welding is this made much easier and can be carried out under protective gas and with better results. (UWI) [de
Numerical analysis of the transient flow in a scroll refrigeration compressor
Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi
2017-08-01
In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.
Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.
2018-05-01
Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.
Berdanier, Reid A.; Key, Nicole L.
2015-01-01
The focus of this work was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearance heights were studied with nominal tip clearance heights of 1.5%, 3.0%, and 4.0% based on a constant annulus height. Overall compressor performance was investigated at four corrected speedlines (100%, 90%, 80%, and 68%) for each of the three tip clearance configurations using total pressure and total temperature rakes distributed throughout the compressor. The results have confirmed results from previous authors showing a decrease of total pressure rise, isentropic efficiency, and stall margin which is approximately linear with increasing tip clearance height. The stall inception mechanisms have also been evaluated at the same corrected speeds for each of the tip clearance configurations. Detailed flow field measurements have been collected at two loading conditions, nominal loading (NL) and high loading (HL), on the 100% corrected speedline for the smallest and largest tip clearance heights (1.5% and 4.0%). Steady detailed radial traverses of total pressure at the exit of each stator row have been supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data have helped to quantify the size of the leakage flow at the exit of each rotor. Thermal anemometry has also been implemented to evaluate the time-resolved three-dimensional components of velocity throughout the compressor and calculate blockage due to the rotor tip leakage flow throughout the compressor. These
Positive feedback stabilization of centrifugal compressor surge
Willems, Frank; Heemels, W.P.M.H.; de Jager, Bram; Stoorvogel, Antonie Arij
Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to
Positive feedback stabilization of centrifugal compressor surge
Willems, F.P.T.; Heemels, W.P.M.H.; Jager, de A.G.; Stoorvogel, A.A.
2002-01-01
Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to
Flow measurements using noise signals of axially displaced thermocouples
Energy Technology Data Exchange (ETDEWEB)
Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))
1990-01-01
Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).
International Nuclear Information System (INIS)
Galindo, J.; Tiseira, A.; Navarro, R.; López, M.A.
2015-01-01
Highlights: • Centrifugal compressor aeroacoustics sensitivity to tip clearance is investigated. • 3 different clearance ratios are set in accordance to expected operating values. • Pressure spectra do not depend on tip clearance ratio in near-surge conditions. • DES performs better than URANS in predicting compressor acoustic signature. • Flow field observation reveals that tip clearance is immersed in rotating backflow. - Abstract: CFD has become an essential tool for researchers to analyze centrifugal compressors. Tip leakage flow is usually considered one of the main mechanisms that dictate compressor flow field and stability. However, it is a common practice to rely on CAD tip clearance, even though the gap between blades and shroud changes when compressor is running. In this paper, sensitivity of centrifugal compressor flow field and noise prediction to tip clearance ratio is investigated. 3D CFD simulations are performed with three different tip clearance ratios in accordance to expected operating values, extracted from shaft motion measurements and FEM predictions of temperature and rotational deformation. Near-surge operating conditions are simulated with URANS and DES. DES shows superior performance for acoustic predictions. Cases with reduced tip clearance present higher pressure ratio and isentropic efficiency, but no significant changes in compressor acoustic signature are found when varying clearance. In this working point, tip clearance is immersed in a region of strongly swirling backflow. Therefore, tip leakage cannot establish any coherent noise source mechanism
National Research Council Canada - National Science Library
Brown, Peter
2002-01-01
An investigation of vortex shedding downstream of a cascade of second-generation, controlled-diffusion, compressor stator blades, at off-design inlet-flow angles of 31, 33 and 35 degrees and Reynolds...
Centrifugal Compressor Surge Controlled
Skoch, Gary J.
2003-01-01
It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.
Li, L.; Zhao, Y.; Wang, L.; Yang, Q.; Liu, G.; Tang, B.; Xiao, J.
2017-08-01
In this paper, the background of performance testing of in-service process flow compressors set in user field are introduced, the main technique barriers faced in the field test are summarized, and the factors that result in real efficiencies of most process flow compressors being lower than the guaranteed by manufacturer are analysed. The authors investigated the present operational situation of process flow compressors in China and found that low efficiency operation of flow compressors is because the compressed gas is generally forced to flow back into the inlet pipe for adapting to the process parameters variety. For example, the anti-surge valve is always opened for centrifugal compressor. To improve the operation efficiency of process compressors the energy efficiency monitoring technology was overviewed and some suggestions are proposed in the paper, which is the basis of research on energy efficiency evaluation and/or labelling of process compressors.
The analysis of the flow with water injection in a centrifugal compressor stage using CFD simulation
Michal, Tomášek; Richard, Matas; Tomáš, Syka
2017-09-01
This text deals with the principle of direct cooling of the pressure gas in a centrifugal compressor based on evaporation of the additional fluid phase in a control domain. A decrease of the gas temperature is reached by taking the heat, which is required for evaporation of the fluid phase. The influence of additional fluid phase on the parameters of the multiphase flow is compared with the ideal gas simulation in the defined domain and with the same boundary conditions.
Towards Large Eddy Simulation of gas turbine compressors
McMullan, W. A.; Page, G. J.
2012-07-01
With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.
Numerical simulation of air flow through turbocharger compressors with dual volute design
Energy Technology Data Exchange (ETDEWEB)
Jiao, Kui; Li, Xianguo; Wu, Hao [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada); Sun, Harold; Schram, Tim [Ford Motor Company, Dearborn, MI 48126 (United States); Krivitzky, Eric; Larosiliere, Louis M. [Concepts NREC, White River Junction, VT 05001 (United States)
2009-11-15
In this paper, turbocharger centrifugal compressors with dual volute design were investigated by using Computational Fluid Dynamics (CFD) method. The numerical simulation focused on the air flow from compressor impeller inlet to volute exit, and the overall performance level and range are predicted. The numerical investigation revealed that the dual volute design could separate the compressor into two operating regions: ''high efficiency'' and ''low efficiency'' regions with different air flow characteristics, and treating these two regions separately with dual diffuser design showed extended stable operating range and improved efficiency by comparing with conventional single volute design. The ''dual sequential volute'' concept also showed the potential to further extend the stable operating range by closing one of the volutes at low air flow rates. Furthermore, by comparing with other alternate designs such as variable diffuser vanes and variable inlet guide vanes, the operation of the dual sequential volute also features relatively simple control and calibration. (author)
Vibration mechanism of fuel rod in axial flow
International Nuclear Information System (INIS)
Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Song, Kee Nam
1998-08-01
This is a review on the previous researches for the vibration of fuel rod induced by axial flow. The analysis methods are classified into three categories accordingly as the researchers postulate the vibration to be self-excited, forced and parametric; the self-excited mechanism by Burgreen and Quinn, the forced one by Reavis, Gorman, kanazawa, and S. Chen, and the parametric one by Y. Chen. Quinn supposed that the centrifugal force by flow exaggerated the natural bow in the cylinder, and the flexural force by it diminished the bow by turns; this interactive motion leaded cylinder to vibration. The supporters to the forced mechanism considered the forces arising from pressure perturbation within the boundary layers as vibrating sources. Y. Chen insisted that the cylinder could only be excited to vibration in resonance by the small oscillation of mean flow velocity. The previous studies were based on the simple boundary conditions such as hinged-hinged or fixed-fixed single span. Therefore, for the more accurate prediction of the fuel rod vibration in reactor, the further studies need to reflect the actual boundary conditions of the fuel rod like axial force and continuous supports by grids. (author). 25 refs
Modeling the Design Flow Coefficient of a Centrifugal Compressor Impeller
Directory of Open Access Journals (Sweden)
A. A. Drozdov
2017-01-01
Full Text Available In calculating gas-dynamic characteristics by the universal modeling method it is necessary to determine a non-incidence flow rate through the blades of an impeller because of its relationship with the magnitude of incidence losses. The flow area decreased by the blades of finite thickness and the blades load have impact on the critical streamline direction. The universal modeling method in primary designing uses for this a scheme of replacing the influence of the blade load by the vortex effect with identical circulation. Finally, calculating the inviscid flow around the blades allows selecting a value of the inlet blade angle. For impellers with small design flow coefficients, the condition of the non-incidence inlet for the primary design and for the calculation of the inviscid flow is significantly different. The calculating correctness of the non-incidence regime for the non-viscous flow was checked earlier by measurements of the flow in the impellers. The paper presents CFD calculations of twenty impellers in a tenfold range of design flow coefficients. To provide correct comparison, it takes into account the differences in the value of the loading factor calculated by the programs of inviscid quasi-three-dimensional calculation and CFD programs. Shows the identity of inlet conditions for both methods. To increase primary design accuracy, the calculation model was refined. The formula for calculating vortex-induced velocity involves an empirical coefficient. The analysis of data for 32 impellers with different blade profiling allowed working out formulas for calculating empirical coefficient, depending on the type of an impeller, the blade load and the width of the throat at an impeller inlet. The new scheme-based calculation with the empirical coefficient is accurate enough for the primary design.
Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor
Directory of Open Access Journals (Sweden)
B. B. Novickii
2015-01-01
Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor
Investigation of Transitional Flows on Compressor Blades in Cascade
2011-09-01
shedding at various off- design inlet flow angles and Re. B. PURPOSE The purpose of this study was to refurbish the cascade Inlet Guide Vanes ( IGVs ...characteristics are listed in Table 1. To attain uniform inlet-flow the tunnel was brought to Re = 640K (See Section III.A for Re calculations) and the IGVs ...Prior to this study, all IGV trailing edges were machined down to a uniform thickness, re-pinned as needed, re-shimmed for clearance and their shafts
Fleming, William A.
1948-01-01
An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow
CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-09-01
Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.
Directory of Open Access Journals (Sweden)
Ahti Jaatinen-Värri
2014-01-01
Full Text Available The effect of the width of the vaneless diffuser on the stage performance and flow fields of a centrifugal compressor is studied numerically and experimentally. The diffuser width is varied by reducing the diffuser flow area from the shroud side (i.e., pinching the diffuser. Seven different diffuser widths are studied with numerical simulation. In the modeling, the diffuser width b/b2 is varied within the range 1.00 to 0.50. The numerical results are compared with results obtained in previous studies. In addition, two of the diffusers are further investigated with experimental measurement. The main finding of the work is that the pinch reduces losses in the impeller associated with the tip-clearance flow. Furthermore, it is shown that a too large width reduction causes the flow to accelerate excessively, resulting in a highly nonuniform flow field and flow separation near the shroud.
Experimental Investigation of the Compressor Cascade under an Active Flow Control
Directory of Open Access Journals (Sweden)
Lukáč J.
2013-04-01
Full Text Available The paper is concerned with flow past compressor blade cascade (NACA 65 with thickened trailing edge at off-design regimes, which are characteristic by partial or complete flow separation on the suction surface of the blades. An attempt has been made to moderate the flow separation using continuous or periodic blowing from the sidewalls. The flow field was visualized using schlieren technique and surface paint visualization. The visualizations were complemented by measurement of the static pressure distribution on the suction surface of the blades. In agreement with the literature, the visualizations confirmed a complexity of the 3-dimensional flow separation, which was intensified by influence of the sidewall boundary layers developing from upstream parts of the test section. Furthermore, it was found out that the effect of both continuous and periodic blowing was rather minor. Finally, the results agree with the available literature showing that it is highly difficult to considerably control the complex 3-dimensional flow separation in the compressor cascade by control jets issuing (only from the sidewalls
Surge Flow in a Centrifugal Compressor Measured by Digital Particle Image Velocimetry
Wernet, Mark P.
2000-01-01
A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.
Dietz, Robert O.; Kuenzig, John K.
1947-01-01
Investigations were conducted in the Cleveland altitude wind tunnel to determine the performance and operational characteristics of the 19B-2, 19B-8, and 19XS-1 turbojet engines. One objective was to determine the effect of altitude, flight Mach number, and tail-pipe-nozzle area on the performance characteristics of the six-stage and ten-stage axial-flow compressors of the 19B-8 and 19XB-1 engines, respectively, The data were obtained over a range of simulated altitudes and flight Mach numbers. At each simulated flight condition the engine was run over its full operable range of speeds. Performance characteristics of the 19B-8 and 19XB-1 compressors for the range of operation obtainable in the turboJet-engine installation are presented. Compressor characteristics are presented as functions of air flow corrected to sea-level conditions, compressor Mach number, and compressor load coefficient. For the range of compressor operation investigated, changes in Reynolds number had no measurable effect on the relations among compressor Mach number, corrected air flow, compressor load coefficient, compressor pressure ratio, and compressor efficiency. The operating lines for the 19B-8 compressor lay on the low-air-flow side of the region of maximum compressor efficiency; the 19B-8 compressor operated at higher average pressure coefficients per stage and produced a lower over-all pressure ratio than did the 19XB-1 compressor.
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
Computer aided hydraulic design of axial flow pump impeller
International Nuclear Information System (INIS)
Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.
1994-01-01
Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs
Experiments on the Taylor system with an axial flow
International Nuclear Information System (INIS)
Tsameret, Avraham.
1993-02-01
This work is an experimental study of the Taylor system with a superimposed axial flow. The convective and absolute instability lines which are associated with the propagating Taylor vortices are measured. A quantitative agreement is found with the theoretical predictions. Noise-sustained structures are found to exist in the convectively unstable region, above a critical value of the through flow. These structures are propagating Taylor vortices that are characterized by a noisy power spectrum and irregular temporal dynamics of velocity amplitude. At the absolute instability line the power spectrum of the propagating Taylor vortices exhibits transition to a sharp peak, and the amplitude of the propagating Taylor vortices becomes stationary. The mechanism that generates the noise-sustained structures is identified with a process of permanent amplification of noise that is generated mainly near the inlet boundary. The intrinsic noise in the system is studied. This study is motivated by the question of whether the noise which generates the noise-sustained structures is thermal. The intensity of the intrinsic noise is estimated by several methods, which includes a comparison of data with numerical simulations of the amplitude equation with a noise term. It is found that the intrinsic noise is not thermal, although its intensity reaches the thermal noise level at small through-flow velocities. Novel states are manifested in the system as a result of interaction between the propagating Taylor vortices and spiral modes. These states are studied and their spatial and temporal properties are analyzed. (author)
Numerical study of effect of compressor swirling flow on combustor design in a MTE
Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang
2017-08-01
An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.
International Nuclear Information System (INIS)
Hass, U.; Haupt, U.; Jansen, M.; Kassens, K.; Knapp, P.; Rautenberg, M.
1978-01-01
During the past 10 years new measuring techniques have been developed for the experimental investigation of highly loaded centrifugal compressors. These measuring techniques take into account the time dependency of the fluctuating physical quantities such as pressure, temperature, and velocity. Some key points of these experimental techniques are shown and explained in this paper. An important basis for such measurements is the accurate dynamic calibration of the measuring apparatus. In addition, some problems involved analyzing measured signals are dealt with and pressure measurements and their interpretation are shown. Finally optical, acoustical and vibrational measuring procedures are described which are additionally used for the investigation of non-stationary flow phenomena. (orig.) [de
High ratio recirculating gas compressor
Weinbrecht, J.F.
1989-08-22
A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.
Numerical investigation on vibration and noise induced by unsteady flow in an axial-flow pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Eryun; Ma, Zui Ling; Yang, Ai Ling; Nan, Guo Fang [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai (China); Zhao, Gai Ping [School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai (China); Li, Guo Ping [Shanghai Marine Equipment Research Institute, Shanghai (China)
2016-12-15
Full-scale structural vibration and noise induced by flow in an axial-flow pump was simulated by a hybrid numerical method. An unsteady flow field was solved by a large eddy simulation-based computational fluid dynamics commercial code, Fluent. An experimental validation on pressure fluctuations was performed to impose an appropriate vibration exciting source. The consistency between the computed results and experimental tests were interesting. The modes of the axial-flow pump were computed by the finite element method. After that, the pump vibration and sound field were solved using a coupled vibro-acoustic model. The numerical results indicated that the the blade-passing frequency was the dominant frequency of the vibration acceleration of the pump. This result was consistent with frequency spectral characteristics of unsteady pressure fluctuation. Finally, comparisons of the vibration acceleration between the computed results and the experimental test were conducted. These comparisons validated the computed results. This study shows that using the hybrid numerical method to evaluate the flow-induced vibration and noise generated in an axial-flow pump is feasible.
Development of high-performance and low-noise axial-flow fan units in their local operating region
Energy Technology Data Exchange (ETDEWEB)
Heo, Seung; Ha, Min Ho; Cheong, Cheol Ung [Pusan National University, Busan (Korea, Republic of); Kim, Tae Hoon [LG Electronics Inc., Changwon (Korea, Republic of)
2015-09-15
Aerodynamic and aeroacoustic performances of an axial-flow fan unit are improved by modifying its housing structure without changing the fan blade. The target axial-flow fan system is used to lower temperature of a compressor and a condenser in the machine room of a household refrigerator which has relatively high system resistance due to complex layout of structures inside it. First, the performance of the fan system is experimentally characterized by measuring its volume flow rate versus static pressure using a fan performance tester satisfying the AMCA (Air Movement and Control Association) regulation, AMCA 210-07. The detailed structure of flow driven by the fan is numerically investigated using a virtual fan performance tester based on computational fluid dynamics techniques. The prediction result reveals possible loss due to radial and tangential velocity components in the wake flow downstream of the fan. The length of the fan housing is chosen as a design parameter for improving the aerodynamic and aeroacoustic performances of the fan unit by reducing the identified radial and tangential velocity components. Three fan units with different housing lengths longer than the original are analyzed using the virtual fan performance tester. The results confirm the improved aerodynamic performance of the proposed three designs. The flow field driven by the proposed fan unit is closely examined to find the causes for the observed performance improvements, which ensures that the radial and tangential velocity components in the wake flow are reduced. Finally, the improved performance of the proposed fan systems is validated by comparing the P-Q and efficiency curves measured using the fan performance tester. The noise emission from the household refrigerator is also found to be lessened when the new fan units are installed.
Tip clearance effect on through-flow and performance of a centrifugal compressor
International Nuclear Information System (INIS)
Eum, Hark Jin; Kang, Young Seok; Kang, Shin Hyoung
2004-01-01
Numerical simulations have been performed to investigate tip clearance effect on through-flow and performance of a centrifugal compressor which has the same configuration of impeller with six different tip clearances. Secondary flow and loss distribution have been surveyed to understand the flow mechanism due to the tip clearance. Tip leakage flow strongly interacts with mainstream flow and considerably changes the secondary flow and the loss distribution inside the impeller passage. A method has been described to quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop. The tip clearance has caused specific work reduction and additional entropy generation. The former, which is called inviscid loss, is independent of any internal loss and the latter, which is called viscous loss, is dependent on every loss in the flow passage. Two components equally affected the performance drop as the tip clearances were small, while the efficiency drop was influenced by the viscous component alone. The additional entropy generation was modeled with all the kinetic energy of the tip leakage flow. Therefore, the present paper can provide how to quantitatively estimate the tip clearance effect on the performance and efficiency
Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors
Skoch, Gary J.
1999-01-01
The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is
A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor
Moore, John; Moore, Joan G.
1990-01-01
A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.
Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors
Tun, Min Thaw; Sakaguchi, Daisaku
2016-06-01
High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.
The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor
Lakshminarayana, B.; Ristic, D.; Chu, S.
1998-01-01
A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.
EFFECTS OF SLOTTED BLADING ON SECONDARY FLOW IN HIGHLY LOADED COMPRESSOR CASCADE
Directory of Open Access Journals (Sweden)
RAMZI MDOUKI
2013-10-01
Full Text Available With the aim to increase allowable blade loadings and enlarge stable operating range in highly loaded compressor, this work is carried out in order to explore the potential of passive control via slotted bladings in linear cascade configurations under both design and stall conditions. Through an extensive 2D-numerical study, the effects of location, width and slope of slots were analysed and the best configuration was identified. Based on the optimal slot, the 3D aerodynamic performances of cascade were studied and the influence of slotted blading to control endwall flow was investigated. Both 2D and 3D calculations are performed on steady RANS solver with standard k-epsilon turbulence model and low Mach number regime. The total loss coefficient, turning angle and flow visualizations on the blade and end-wall surfaces are adopted to describe the different configurations. The obtained results show, for 2D situation, that a maximum of 28.3% reduction in loss coefficient had been reached and the flow turning was increased with approximately 5°. Concerning 3D flow fields the slots marked their benefit at large incoming flow angles which delays the separation on both end wall and blade suction surface at mid span. However, at design conditions, the slotted blades are not able to control secondary flows near the wall and so, lose their potential.
Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage
Ristic, D.; Lakshminarayana, B.
1997-01-01
The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On
Energy Technology Data Exchange (ETDEWEB)
Silva, Nagib F. da; Vieira, Francisco A. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); Campos, Michel F.; Moura, Newton R. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)
2004-07-01
One of the main problems for the installation of new natural gas stations has been the high investment for compressor acquisition. Out of 900 thousand Reais, which is an average value for the construction of a supplying structure, 600 thousand are destined for the acquisition of the compression system (average outflow of 800 Nm{sup 3}/hour at 20 deg C, 1 atm), approach commonly used in Brazil. To be economically feasible, it is necessary that the fueling station has a supplying volume of at least 600 vehicles/day. Niches of NGV market have been identified to new potentials, where the compressed gas demand is lower, therefore not justifying an investment in compression systems of high capacity. A solution for reduction of this investment would be the introduction in the Brazilian market of compression systems of medium and low outflow and with lower cost. In this context, CTGAS has a project into RedeGasEnergia in partnership with PETROBRAS, funded by FINEP/CTPETRO, to develop, to acquire, and to mount prototypes of compression systems of small and medium capacities. To attend the objectives of this project, a compressor was developed in a partnership with a national manufacturer, MOVITEC, and participation of CENPES, with an outflow of 200 Nm{sup 3}/hour (at 20 deg C 1 atm.), for a demand of up to 200 vehicles/day. Another alternative, for the case of small consumers with supplying demand of up to 15 vehicles/day is being made possible by the introduction in the Brazilian market of two compression systems of outflow with up to 13,0 Nm{sup 3}/h (at 20 deg C 1 atm). The installation of these systems will assist in the economical and technical feasibility studies. At this moment, there are some companies interested in knowing this new technology for using the compressor in their installations, thus demonstrating the success of this project, as well as the wakening of a new consuming market. (author)
Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.
1991-01-01
A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.
Preliminary Design and Model Assessment of a Supercritical CO2 Compressor
Directory of Open Access Journals (Sweden)
Zhiyuan Liu
2018-04-01
Full Text Available The compressor is a key component in the supercritical carbon dioxide (SCO2 Brayton cycle. In this paper, the authors designed a series of supercritical CO2 compressors with different parameters. These compressors are designed for 100 MWe, 10 MWe and 1 MWe scale power systems, respectively. For the 100 MWe SCO2 Brayton cycle, an axial compressor has been designed by the Smith chart to test whether an axial compressor is suitable for the SCO2 Brayton cycle. Using a specific speed and a specific diameter, the remaining two compressors were designed as centrifugal compressors with different pressure ratios to examine whether models used for air in the past are applicable to SCO2. All compressors were generated and analyzed with internal MATLAB programs coupled with the NIST REFPROP database. Finally, the design results are all checked by numerical simulations due to the lack of reliable experimental data. Research has found that in order to meet the de Haller stall criterion, axial compressors require a considerable number of stages, which introduces many additional problems. Thus, a centrifugal compressor is more suitable for the SCO2 Brayton cycle, even for a 100 MWe scale system. For the performance prediction model of a centrifugal compressor, the stall predictions are compared with steady numerical calculation, which indicates that past stall criteria may also be suitable for SCO2 compressors, but more validations are needed. However, the accuracy of original loss models is found to be inadequate, particularly for lower flow and higher pressure ratio cases. Deviations may be attributed to the underestimation of clearance loss according to the result of steady simulation. A modified model is adopted which can improve the precision to a certain extent, but more general and reasonable loss models are needed to improve design accuracy in the future.
Compressor performance aerodynamics for the user
Gresh, Theodore
2001-01-01
Compressor Performance is a reference book and CD-ROM for compressor design engineers and compressor maintenance engineers, as well as engineering students. The book covers the full spectrum of information needed for an individual to select, operate, test and maintain axial or centrifugal compressors. It includes basic aerodynamic theory to provide the user with the ""how's"" and ""why's"" of compressor design. Maintenance engineers will especially appreciate the troubleshooting guidelines offered. Includes many example problems and reference data such as gas propert
Direct implementation of an axial-flow helium gas turbine tool in a system analysis tool for HTGRs
International Nuclear Information System (INIS)
Kim, Ji Hwan; No, Hee Cheon; Kim, Hyeun Min; Lim, Hong Sik
2008-01-01
This study concerns the development of dynamic models for a high-temperature gas-cooled reactor (HTGR) through direct implementation of a gas turbine analysis code with a transient analysis code. We have developed a streamline curvature analysis code based on the Newton-Raphson numerical application (SANA) to analyze the off-design performance of helium gas turbines under conditions of normal operation. The SANA code performs a detailed two-dimensional analysis by means of throughflow calculation with allowances for losses in axial-flow multistage compressors and turbines. To evaluate the performance in the steady-state and load transient of HTGRs, we developed GAMMA-T by implementing SANA in the transient system code, GAMMA, which is a multidimensional, multicomponent analysis tool for HTGRs. The reactor, heat exchangers, and connecting pipes were designed with a one-dimensional thermal-hydraulic model that uses the GAMMA code. We assessed GAMMA-T by comparing its results with the steady-state results of the GTHTR300 of JAEA. We concluded that the results are in good agreement, including the results of the vessel cooling bypass flow and the turbine cooling flow
L2F and LDV velocimetry measurement and analysis of the 3-D flow field in a centrifugal compressor
Fagan, John R., Jr.; Fleeter, Sanford
1989-01-01
The flow field in the Purdue Research Centrifugal Compressor is studied using a laser two-focus (L2F) velocimeter. L2F data are obtained which quantify: (1) the compressor inlet flow field; (2) the steady-state velocity field in the impeller blade passages; and (3) the flow field in the radial diffuser. The L2F data are compared with both laser Doppler velocimetry (LDV) data and predictions from three-dimensional inviscid and viscous flow models. In addition, a model is developed to calculate the effect on the measurement volume geometry of refraction by curved windows. Finally, the advantages and disadvantages of using the L2F for turbomachinery measurements is discussed in terms of measurement accuracy, ease of use, including sample time per correlated event and the ability to make measurements in regions of high noise due to stray radiation from wall reflections.
Study of different aerodynamics modifications for small axial flow fan
Bin Abdul Jalil, Anas
2017-01-01
En este proyecto, se investigaron los efectos de los álabes en el comportamiento aerodinámico de pequeños ventiladores axiales para disminuir la turbulencia del flujo en su superficie y generalmente para mejorar el rendimiento aerodinámico. Se estudiaron mediante simulación dos modificaciones en la superficie de los alabes de un pequeño ventilador axial (modelo 1, prototipo): la situación de un “winglet” en el extremo del álabe (modelo 2) y el diseño denominado de “aleta de tiburón” (modelo 3...
Barstad, Bjørn Ove
2010-01-01
The compressor recycle system is the main focus of this thesis. When the mass flow through a compressor becomes too low, the compressor can plunge into surge. Surge is a term that is used for axisymmetric oscillation through a compressor and is highly unwanted. The recycle system feeds compressed gas back to the intake when the mass flow becomes too low, and thereby act as a safety system.A mathematical model of the recycle system is extended and simulated in SIMULINK. The mathematical model ...
Electric and thermodynamic properties of plasma flows created by a magnetoplasma compressor
International Nuclear Information System (INIS)
Puric, J; Dojcinovic, I P; Astashynski, V M; Kuraica, M M; Obradovic, B M
2004-01-01
A magnetoplasma compressor of compact geometry (MPC-CG) with a semi-transparent electrode system that operates in the ion current transfer regime was constructed and studied. The electric and thermodynamic parameters of the discharge and the plasma flow created in different gases and their mixtures (hydrogen, nitrogen, argon and Ar + 3% H 2 ) have been measured to optimize the working conditions within the 100-3000 Pa pressure range for input energy up to 6.4 kJ. A special construction of the accelerator electrode system shielded by the self-magnetic field results in protection from erosion, which is the main cause of the high current cut-off in conventional plasma accelerators. It was found that the compression plasma flow velocity, electron density and temperature predominantly depend on the energy conversion rate from the energy supply to the plasma, since the current cut-off is avoided. The maximum energy conversion rate for MPC-CG was found when operating in hydrogen. The plasma flow velocity and electron density maximum values are measured close to 100 km s -1 and 10 17 cm -3 , respectively, for input energy of 6.4 kJ at 1000 Pa pressure in hydrogen. Our results appear in good agreement with existing theoretical and experimental data
Hybrid simulations of current-carrying instabilities in Z-pinch plasmas with sheared axial flow
International Nuclear Information System (INIS)
Sotnikov, Vladimir I.; Makhin, Volodymyr; Bauer, Bruno S.; Hellinger, Petr; Travnicek, Pavel; Fiala, Vladimir; Leboeuf, Jean-Noel
2002-01-01
The development of instabilities in z-pinch plasmas has been studied with three-dimensional (3D) hybrid simulations. Plasma equilibria without and with sheared axial flow have been considered. Results from the linear phase of the hybrid simulations compare well with linear Hall magnetohydrodynamics (MHD) calculations for sausage modes. The hybrid simulations show that sheared axial flow has a stabilizing effect on the development of both sausage and kink modes
Lou, Fangyuan
The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication
Directory of Open Access Journals (Sweden)
Xiangjun Li
2017-01-01
Full Text Available To address the situations where the casing treatment needs to be used to stabilize axial compressors through strong recirculation, this paper initiated a CFD study to investigate how the flow could be suitably controlled in the casing treatment to minimize the efficiency penalty and increase the flow range. A counter-swirl self-recirculation casing treatment was first designed on a low speed axial fan rotor as a baseline case. Then three different slot positions and the influence of including the noise baffle were numerically studied. Based on the understanding of their coeffects, the shorter noise baffle was considered and it was found that the highest efficiency was achieved in the case of the upstream slot when the length of baffle was suitably adjusted to balance the incoming flow and recirculation. The largest flow range was achieved by locating the slot at the most downstream position and using a 50% length baffle since it suitably controlled the recirculating flow and relieved the separation at the low-span region. An optimization study showed that the optimum length of the baffle for efficiency was always larger than for the flow range. Both of the two optimum values reduce as the slot moves downstream.
Numerical Simulation of single-stage axial fan operation under dusty flow conditions
Minkov, L. L.; Pikushchak, E. V.
2017-11-01
Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.
Wasserbauer, C. A.; Hathaway, M. D.
1994-01-01
Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.
Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.
Sung, H W; Yoganathan, A P
1990-01-01
It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.
Displacement compressors - acceptance tests
International Organization for Standardization. Geneva
1996-01-01
ISO 1217:2009 specifies methods for acceptance tests regarding volume rate of flow and power requirements of displacement compressors. It also specifies methods for testing liquid-ring type compressors and the operating and testing conditions which apply when a full performance test is specified.
Kaneko, Masanao; Tsujita, Hoshio; Hirano, Toshiyuki
2013-04-01
A single stage ultra micro centrifugal compressor constituting ultra micro gas turbine is required to operate at high rotational speed in order to achieve the pressure ratio which establishes the gas turbine cycle. As a consequence, the aerodynamic losses can be increased by the interaction of a shock wave with the boundary layer on the blade surface. Moreover, the centrifugal force which exceeds the allowable stress of the impeller material can act on the root of blades. On the other hand, the restrictions of processing technology for the downsizing of impeller not only relatively enlarge the size of tip clearance but also make it difficult to shape the impeller with the three-dimensional blade. Therefore, it is important to establish the design technology for the impeller with the two-dimensional blade which possesses the sufficient aerodynamic performance and enough strength to bear the centrifugal force caused by the high rotational speed. In this study, the flow in two types of impeller with the two-dimensional blade which have different meridional configuration was analyzed numerically. The computed results clarified the influence of the meridional configuration on the loss generations in the impeller passage.
DEFF Research Database (Denmark)
Fossen, T. I.; Blanke, Mogens
2000-01-01
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...
Bifurcation of cubic nonlinear parallel plate-type structure in axial flow
International Nuclear Information System (INIS)
Lu Li; Yang Yiren
2005-01-01
The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)
Flow past an axially aligned spinning cylinder: Experimental Study
Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva
2017-11-01
Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.
Axial and radial velocities in the creeping flow in a pipe
Directory of Open Access Journals (Sweden)
Zuykov Andrey L'vovich
2014-05-01
Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.
Particle flow of ceramic breeder pebble beds in bi-axial compression experiments
International Nuclear Information System (INIS)
Hermsmeyer, S.; Reimann, J.
2002-01-01
Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)
The amplitude of fluid-induced vibration of cylinders in axial flow
Energy Technology Data Exchange (ETDEWEB)
Paidoussis, M. P.
1965-03-15
This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)
The amplitude of fluid-induced vibration of cylinders in axial flow
International Nuclear Information System (INIS)
Paidoussis, M.P.
1965-03-01
This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)
Performance Limiting Flow Processes in High-State Loading High-Mach Number Compressors
National Research Council Canada - National Science Library
Tan, Choon S
2008-01-01
In high-stage loading high-Mach number (HLM) compressors, counter-rotating pairs of discrete vortices are shed at the trailing edge of the upstream blade row at a frequency corresponding to the downstream rotor blade passing frequency...
Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki
2013-03-01
This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.
Simple LMFBR axial-flow friction-factor correlation
International Nuclear Information System (INIS)
Chan, Y.N.; Todreas, N.E.
1981-09-01
Complicated LMFBR axial lead-length averaged friction factor correlations are reduced to an easy, ready-to-use function of bundle Reyonlds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer pre-processor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accuracte values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest
Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow
International Nuclear Information System (INIS)
Divaret, Lise
2014-01-01
This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the
Numerical simulation of the flow through a compressor-valve model using an immersed-boundary method
Directory of Open Access Journals (Sweden)
Franco Barbi
2016-01-01
Full Text Available Hermetic reciprocating compressors are widely used in small- and medium-size refrigeration systems based on the vapor-compression cycle. One of the main parts of this type of compressor is the automatic valve system used to control the suction and discharge processes. As the suction and discharge losses represent a large amount of the total thermodynamic losses (47%, a small improvement in the suction and discharge processes can produce expressive increases in the thermodynamic efficiency of the compressor. In this work, a new numerical methodology is applied to solve the flow through reed-type valves. The numerical results were experimentally validated through the pressure distribution acting on the frontal disk of a radial diffuser, which is a geometry usually used to model this type of valve. The numerical results for the velocity and pressure fields were comprehensively explored during the opening and closing movement imposed to the reed. The good quality of these results show that the numerical methodology is very promising in terms of solving the flow in the actual dynamics of reed-type valves.
NASA low speed centrifugal compressor
Hathaway, Michael D.
1990-01-01
The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.
Crystallinity of polyethylene in uni-axial extensional flow
DEFF Research Database (Denmark)
Wingstrand, Sara Lindeblad; van Drongelen, Martin; Mortensen, Kell
Flow history of polymer melts in processing greatly influences the crystallinity and hence the solid properties of the final material. A wide range of polymer processes involve extensional flows e.g. fiber spinning, blow moulding etc. However, due to instrumental difficulties, experimental studies...... on polymer crystallization in controlled uniaxial extension are quite rare compared to studies of crystallization in shear. Inherently uniaxial extensional flows are strong and simple relative to shear flows, in the sense that chain stretch is easily obtained and that the molecules experience no tumbling...... such that crystallization from a stretched state can take place. In this work we explore this feature in the attempt to link the nonlinear extensional rheology to the final morphology. We investigate polyethylenes (PE) of various chain architectures and observe that, even for complex architectures like long chain branched...
The flow field investigations of no load conditions in axial flow fixed-blade turbine
Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.
2014-03-01
During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.
Vibration signature analysis of compressors in the gaseous diffusion process for uranium enrichment
International Nuclear Information System (INIS)
Harbarger, W.B.
1975-01-01
Continuous operation of several thousand axial-flow and centrifugal compressors is vital to the gaseous diffusion process for uranium enrichment. Vibration signature analysis using a minicomputer-based Fast Fourier Transform Analyzer is being applied to the evaluation and surveillance of compressor performance at the Portsmouth Gaseous Diffusion Plant. Three areas of application include: (1) new blade design and prototype compressor evaluation; (2) corrective and preventive maintenance of machinery components; and (3) evaluation of machinery health. The present system is being used to monitor signals from accelerometers mounted on the load-bearing housings of 16 on-line compressors. These signals are transmitted by hard-wire to the analyzer for daily monitoring. A program for expansion of this system to monitor more than a thousand compressors and automation of the signature comparison process is planned for all three gaseous diffusion plants operated for the United States Energy Research and Development Administration. (auth)
International Nuclear Information System (INIS)
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.
2015-01-01
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F
2015-09-01
Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)
2015-09-15
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.
International Nuclear Information System (INIS)
Galindo, J.; Serrano, J.R.; Margot, X.; Tiseira, A.; Schorn, N.; Kindl, H.
2007-01-01
Due to the packaging constraints to which turbocharged engines are submitted in passenger cars, the inlet duct of the centrifugal compressor often requires a 90 o bend. The compressor inlet perpendicular to its axis disturbs the flow and reduces the compressor performance. This paper presents an interesting solution based on a specifically designed inlet swirl-generator device (SGD) that palliates these negative effects. In addition, the SGD can be used to extend the surge margin of the compressor if the position of the SGD blades is modified in function of the reciprocating engine operation conditions. The paper describes how the swirl level and the pressure losses generated by the device have been characterized in a continuous flow test rig. After this the SGD plus a centrifugal compressor from a turbocharger unit have been tested in a specific turbocharger test bench. The results obtained show the influence of the SGD blades position on the compressor performance. In order to better understand the influence of the SGD on the turbocharger behaviour, the flow velocity triangles near the inducer have been reconstructed using an approach based on CFD calculations
Prediction of flow- induced dynamic stress in an axial pump impeller using FEM
International Nuclear Information System (INIS)
Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L
2013-01-01
Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life
Directory of Open Access Journals (Sweden)
Jin J.H.
2013-05-01
Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.
Investigation of the flow through an axial turbine stage
Energy Technology Data Exchange (ETDEWEB)
Svensdotter, S.; Wei Ning [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology
1995-12-31
In this licentiate thesis the classical turbine theory and experimental results from the test turbine at KTH have been studied. The theory for the data evaluation program has also been studied and the loss models by Traupel and Denton have been investigated and applied to the measured results. The work has been performed to prepare for a theory concerning aerodynamic design of so called compound leaned blades and for future experiments on this non-conventional blade design with a new measurement system. A literature survey shows that the compound lean can be an effective three-dimensional technique in turbine designs, with significantly improved flow conditions, especially near the end-wall regions. A new measurement system, PSI, has been installed and the first preliminary tests shows good agreement with the existing system. The speed of the global measurements has been improved from about 10 minutes to about 12 seconds. The system reliability and documentation is also improved with the PSI system. The accuracy of the PSI-system is significantly better on the pressure measurement side, while the analogue side has somewhat less accuracy for the moment. From the analysis of the measurement results on the 25 mm stage, the tendencies of parameter variation versus pressure and velocity ratios were gained by the authors. The results show high secondary flow loss cores near the end-walls downstream the stator. The result is similar with those from the literature survey. The radial positions of the secondary flow cores change when simulating stator leakage flow. 140 refs, 54 figs, 14 tabs, 14 appendices
Stall Margin Improvement in a Centrifugal Compressor through Inducer Casing Treatment
Directory of Open Access Journals (Sweden)
V. V. N. K. Satish Koyyalamudi
2016-01-01
Full Text Available The increasing trend of high stage pressure ratio with increased aerodynamic loading has led to reduction in stable operating range of centrifugal compressors with stall and surge initiating at relatively higher mass flow rates. The casing treatment technique of stall control is found to be effective in axial compressors, but very limited research work is published on the application of this technique in centrifugal compressors. Present research was aimed to investigate the effect of casing treatment on the performance and stall margin of a high speed, 4 : 1 pressure ratio centrifugal compressor through numerical simulations using ANSYS CFX software. Three casing treatment configurations were developed and incorporated in the shroud over the inducer of the impeller. The predicted performance of baseline compressor (without casing treatment was in good agreement with published experimental data. The compressor with different inducer casing treatment geometries showed varying levels of stall margin improvement, up to a maximum of 18%. While the peak efficiency of the compressor with casing treatment dropped by 0.8%–1% compared to the baseline compressor, the choke mass flow rate was improved by 9.5%, thus enhancing the total stable operating range. The inlet configuration of the casing treatment was found to play an important role in stall margin improvement.
Study on an Axial Flow Hydraulic Turbine with Collection Device
Directory of Open Access Journals (Sweden)
Yasuyuki Nishi
2014-01-01
Full Text Available We propose a new type of portable hydraulic turbine that uses the kinetic energy of flow in open channels. The turbine comprises a runner with an appended collection device that includes a diffuser section in an attempt to improve the output by catching and accelerating the flow. With such turbines, the performance of the collection device, and a composite body comprising the runner and collection device were studied using numerical analysis. Among four stand-alone collection devices, the inlet velocity ratio was most improved by the collection device featuring an inlet nozzle and brim. The inlet velocity ratio of the composite body was significantly lower than that of the stand-alone collection device, owing to the resistance of the runner itself, the decreased diffuser pressure recovery coefficient, and the increased backpressure coefficient. However, at the maximum output tip speed ratio, the inlet velocity ratio and the loading coefficient were approximately 31% and 22% higher, respectively, for the composite body than for the isolated runner. In particular, the input power coefficient significantly increased (by approximately 2.76 times owing to the increase in the inlet velocity ratio. Verification tests were also conducted in a real canal to establish the actual effectiveness of the turbine.
Model for transversal turbulent mixing in axial flow in rod bundles
International Nuclear Information System (INIS)
Carajilescov, P.
1990-01-01
The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)
Simulation of Casing Treatments of a Transonic Compressor Stage
Directory of Open Access Journals (Sweden)
M. Hembera
2008-01-01
Full Text Available This article presents the study of casing treatments on an axial compressor stage for improving stability and enhancing stall margin. So far, many simulations of casing treatments on single rotor or rotor-stator configurations were performed. But as the application of casing treatments in engines will be in a multistage compressor, in this study, the axial slots are applied to a typical transonic first stage of a high-pressure 4.5-stage compressor including an upstream IGV, rotor, and stator. The unsteady simulations are performed with a three-dimensional time accurate Favre-averaged Navier-stokes flow solver. In order to resolve all important flow mechanisms appearing through the use of casing treatments, a computational multiblock grid consisting of approximately 2.4 million nodes was used for the simulations. The configurations include axial slots in 4 different variations with an axial extension ranging into the blade passage of the IGV. Their shape is semicircular with no inclination in circumferential direction. The simulations proved the effectiveness of casing treatments with an upstream stator. However, the results also showed that the slots have to be carefully positioned relative to the stator location.
Design and Analysis of Horizontal Axial Flow Motor Shroud
Wang, Shiming; Shen, Yu
2018-01-01
The wind turbine diffuser can increase the wind energy utilization coefficient of the wind turbine, and the addition of the shroud to the horizontal axis wind turbine also plays a role of accelerating the flow of the condensate. First, the structure of the shroud was designed and then modeled in gambit. The fluent software was used to establish the mathematical model for simulation. The length of the shroud and the opening angle of the shroud are analyzed to determine the best shape of the shroud. Then compared the efficiency with or without the shroud, through the simulation and the experiment of the water tank, it is confirmed that the horizontal axis of the shroud can improve the hydrodynamic performance.
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
Fluidelastic vibration of cylinder arrays in axial and cross flow--state of the art
International Nuclear Information System (INIS)
Paidoussis, M.P.
1981-01-01
A critical assessment of the state of the art for flow-induced vibrations of cylinder arrays in cross and axial flow is presented. An historical review highlights the contributions which advanced understanding of the flow-induced vibration phenomena involved and/or predictive ability. In the case of axial-flow-induced vibration, the absence of separated flow regions has contributed towards the development of analytical predictive tools. The designer may predict the onset of fluidelastic instabilities, which generally occur at very high flow velocities, with greater confidence. In contrast, in the case of cross-flow-induced vibration, the complexity of the flow has encouraged more heuristic approaches to be adopted. The state of the art in this case is discussed with the aid of a new classification of the flow-induced vibration phenomena involved, to unify and clarify the contradictory claims facing the designer. It is concluded that, although the physical understanding of cross-flow-induced vibration phenomena is not good, useful design guidelines do exist. These are capable of predicting vibration characteristics to within a factor of 2 to 10. A comprehensive bibliography is included. 115 refs
Directory of Open Access Journals (Sweden)
Till Heinemann
2017-08-01
Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.
The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells
Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer
2013-03-01
Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.
Wave Augmented Diffuser for Centrifugal Compressor
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
Investigation of flow in axial turbine stage without shroud-seal
Directory of Open Access Journals (Sweden)
Straka Petr
2015-01-01
Full Text Available This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the ”mixing plane” interface and the unsteady flow using the ”sliding mesh” interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a positive and b negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.
Lee, Daniel H.
The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.
CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner
Directory of Open Access Journals (Sweden)
Yohannis Mitiku Tobo
2015-10-01
Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner to be used to drive a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling, simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.
Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device
Smith, P. Alex; Cohn, William; Metcalfe, Ralph
2017-11-01
A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.
Flow of conductive fluid between parallel disks in an axial magnetic field, (2)
International Nuclear Information System (INIS)
Koike, Kazuo; Kamiyama, Shin-ichi
1981-01-01
The basic characteristics of the flow in a disc type non-equilibrium MHD power generator were studied. The flow of conductive fluid between parallel disks in an axial magnetic field was analyzed as the subsonic MHD turbulent approach flow of viscous compressible fluid, taking the electron temperature dependence of conductivity into account. The equations for the flow between disks are described by ordinary electromagnetic hydrodynamic approximation. Practical numerical calculation was performed for the non-equilibrium argon plasma seeded with potassium. The effects of the variation of characteristics of non-equilibrium plasma in main flow and boundary layer on the flow characteristics became clear. The qualitative tendency of the properties of MHD generators can be well explained. (Kato, T.)
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
Energy Technology Data Exchange (ETDEWEB)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)
2016-12-15
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
International Nuclear Information System (INIS)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum
2016-01-01
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition
Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.
2016-04-12
A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
Mixing and axial dispersion in Taylor-Couette flow: experimental and numerical study
International Nuclear Information System (INIS)
Nemri, M.
2013-01-01
Taylor-Couette flows between two concentric cylinders have great potential applications in chemical engineering. They are particularly convenient for two-phase small scale devices enabling solvent extraction operations. An experimental device was designed with this idea in mind. It consists of two concentric cylinders with the inner one rotating and the outer one fixed. Taylor-Couette flows take place in the annular gap between them, and are known to evolve towards turbulence through a sequence of successive instabilities. Macroscopic quantities, such as axial dispersion and mixing index, are extremely sensitive to these flow structures, which may lead to flawed modelling of the coupling between hydrodynamics and mass transfer. This particular point has been studied both experimentally and numerically. The flow and mixing have been characterized by means of flow visualization and simultaneous PIV (Particle Imaging Velocimetry) and PLIF (Planar Laser Induced Fluorescence) measurements. PLIF visualizations showed clear evidences of different transport mechanisms including 'intra-vortex mixing' and 'inter-vortex mixing'. Under WVF and MWVF regimes, intra-vortex mixing is controlled by chaotic advection, due to the 3D nature of the flow, while inter-vortex transport occurs due to the presence of waves between neighboring vortices. The combination of these two mechanisms results in enhanced axial dispersion. We showed that hysteresis may occur between consecutive regimes depending on flow history and this may have a significant effect on mixing for a given Reynolds number. The axial dispersion coefficient Dx evolution along the successive flow states was investigated thanks to dye Residence Time Distribution measurements (RTD) and particle tracking (DNS). Both experimental and numerical results have confirmed the significant effect of the flow structure and history on axial dispersion. Our study confirmed that the commonly used 1-parameter chemical engineering models (e
Development of a magnetic fluid shaft seal for an axial-flow blood pump.
Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook
2003-10-01
A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.
Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2011-09-01
In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.
SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES
Directory of Open Access Journals (Sweden)
A. Osman KURBAN
1997-01-01
Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.
Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller
International Nuclear Information System (INIS)
Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok
2015-01-01
This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design
Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller
Energy Technology Data Exchange (ETDEWEB)
Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)
2015-11-15
This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.
International Nuclear Information System (INIS)
Foster, R.E.; Neely, R.S.
1987-01-01
The Fairchild 7B centrifugal compressor used in the X-326 isotopic ''top'' cascade at the Portsmouth Gaseous Diffusion Plant has been modeled using a proprietary computer code called COMPAL by Concepts E.T.I., Inc. of Norwich, VT. The 7B compressor is described and some results of the modeling calculations are presented. Performance characteristics curves (PR/sub b/vs. flow and PR/sub a/) are included for UF 6 gas for two compressor inlet temperatures
Performance test of 100 W linear compressor
Energy Technology Data Exchange (ETDEWEB)
Ko, J; Ko, D. Y.; Park, S. J.; Kim, H. B.; Hong, Y. J.; Yeom, H. K. [Korea Institute of Machinery and Materials, Daejeon(Korea, Republic of)
2013-09-15
In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.
Cooled spool piston compressor
Morris, Brian G. (Inventor)
1993-01-01
A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.
Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis
International Nuclear Information System (INIS)
Doriot, Pierre-Andre
2003-01-01
Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis
Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis
Doriot, Pierre-André
2003-01-01
Mechanical stresses in arterial walls are known to be implicated in the development of atherosclerosis. While shear stress and circumferential stress have received a lot of attention, axial stress has not. Yet, stenoses can be intuitively expected to produce a supplementary axial stress during flow systole in the region immediately proximal to the constriction cone. In this paper, a model for the estimation of this effect is presented, and ten numerical examples are computed. These examples show that the cyclic increase in axial stress can be quite considerable in severe stenoses (typically 120% or more of the normal stress value). This result is in best agreement with the known mechanical or morphological risk factors of stenosis progression and restenosis (hypertension, elevated pulse pressure, degree of stenosis, stenosis geometry, residual stenosis, etc). The supplementary axial stress generated by a stenosis might create the damages in the endothelium and in the elastic membranes which potentiate the action of the other risk factors (hyperlipidaemia, diabetes, etc). It could thus be an important cause of stenosis progression and of restenosis.
Pressure drop redistribution experimental analysis in axial flow along the bundles
International Nuclear Information System (INIS)
Bastos Franco, C. de; Carajilescov, P.
1992-01-01
Fuel elements of PWR type nuclear reactors are composed of rod bundles, arranged in square arrays, held by grid type spacers. The coolant flows axially along the bundle. Although such elements are laterally open, pressure drop experiments are performed in closed type test sections, originating the appearance of subchannels of different geometries. Utilizing a test section of two bundles of 4 x 4 pins and performing experiments with and without separation between the bundles, the flow redistribution factors, the friction, and the grid drag coefficients were determined for the interior subchannels. 03 refs, 06 figs, 02 tabs. (B.C.A.)
Modeling of scroll compressors - Improvements
Energy Technology Data Exchange (ETDEWEB)
Duprez, Marie-Eve; Dumont, Eric; Frere, Marc [Thermodynamics Department, Universite de Mons - Faculte Polytechnique, 31 bd Dolez, 7000 Mons (Belgium)
2010-06-15
This paper presents an improvement of the scroll compressors model previously published by. This improved model allows the calculation of refrigerant mass flow rate, power consumption and heat flow rate that would be released at the condenser of a heat pump equipped with the compressor, from the knowledge of operating conditions and parameters. Both basic and improved models have been tested on scroll compressors using different refrigerants. This study has been limited to compressors with a maximum electrical power of 14 kW and for evaporation temperatures ranging from -40 to 15 C and condensation temperatures from 10 to 75 C. The average discrepancies on mass flow rate, power consumption and heat flow rate are respectively 0.50%, 0.93% and 3.49%. Using a global parameter determination (based on several refrigerants data), this model can predict the behavior of a compressor with another fluid for which no manufacturer data are available. (author)
Inception mechanism and suppression of rotating stall in an axial-flow fan
International Nuclear Information System (INIS)
Nishioka, T
2013-01-01
Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan
Little, David A.; Schilp, Reinhard; Ross, Christopher W.
2016-03-22
A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).
International Nuclear Information System (INIS)
Migliavacca, S.C.P.
1991-01-01
A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)
Le Saout, M.; Clague, D. A.; Paduan, J. B.
2017-12-01
Axial Seamount is characterized by a robust magma supply resulting from the interaction between the Cobb hotspot and the Juan de Fuca Ridge. During the last two decades, magmatic activity was focused within the summit caldera and upper and middle portions of the two rift zones, with eruptions in 1998, 2011, and 2015. However, the distal ends of both rift zones have experienced numerous eruptions in the past. The most voluminous flows are located near the extreme ends, greater than 40 kilometers from the caldera. Where Axial's South Rift Zone overlaps with the Vance Segment of the Juan de Fuca Ridge, the 2015 MBARI expedition mapped 16 km2 of the seafloor with our AUV, and collected 33 rocks and 33 sediment cores during two ROV dives. The data were used to confirm the boundaries of an extensive flow tentatively identified using modern ship based bathymetry. This flow is 18 km wide and 6 km long for a total surface area of 63 km2. The flow is modified by superficial ( 5 m deep) and deep (25 to 45 m deep) subsidence pits, with the deepest pits giving an indication of the minimum thickness of the flow. The maximum thickness of 100 m is measured at the margins of the flow. We thus estimate a volume between 2.5 and 6 km3, making this flow the most voluminous known on the global mid ocean ridge system. The minimum volume is equivalent to the present volume of the summit caldera. Radiocarbon ages of foraminifera from the basal sections of sediment cores suggest that this flow is 1000 years old. This flow travelled east and partially filled the axial valley of the adjacent Vance Segment. Since emplacement, this part of the flow has experienced deformation by fissures and faults aligned with the trend of the Vance Segment. The horizontal extension across these features allows us to estimate a local deformation rate of 3 cm/yr of tectonic extension on the northern end of Vance Segment during the last 1000 years.
Wave Augmented Diffusers for Centrifugal Compressors
Paxson, Daniel E.; Skoch, Gary J.
1998-01-01
A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.
International Nuclear Information System (INIS)
Jung, Byung Ryul; Park, Hu Shin; Chung, Duk Muk; Baik, Se Jin
2000-01-01
The effects of feedwater flow fraction introduced into the downcomer region have been evaluated in terms of steam generator performance based on the same steam generator thermal output for the Korea Standard Nuclear Power Plant (KSNP) steam generator. The KSNP steam generator design has an integral axial flow economizer which is designed such that most of the feedwater is introduced through the economizer region and only a portion of feedwater through the downcomer region. The feedwater flow introduced into the downcomer region is not normally controlled during the power operation. However, the actual feedwater fraction into the downcomer region may differ from the design flow depending on the as-built system and component characteristics. Investigated in this paper were the downcomer feedwater flow effects on the steam pressure, circulation ratio, internal void fraction and velocity distribution in the tube bundle region at the steady state operation using SAFE and ATHOS3 codes. The results show that the steam pressure increases and the resultant total feedwater flow increases with reducing the downcomer feedwater flow fraction for the same steam generator thermal output. The slight off-design condition of downcomer feedwater flow fraction renders no significant effect on the steam generator performance such as circulation ratios, steam qualities, void fractions and internal velocity distributions. The evaluation shows that the slight off-design downcomer feedwater flow fraction deviation up to ± 5% is acceptable for the steam generator performance
The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma
International Nuclear Information System (INIS)
Zhang Yang
2005-01-01
A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)
International Nuclear Information System (INIS)
Tonkovic, Zdenko; Skozrit, Ivica; Alfirevic, Ivo
2008-01-01
The influence of the choice of flow stress on the plastic collapse estimation of axially cracked steam generator (SG) tubes is considered. The plastic limit and collapse loads of thick-walled tubes with external axial semi-elliptical surface cracks are investigated by three-dimensional non-linear finite element (FE) analyses. The limit pressure solution as a function of the crack depth, length and tube geometry has been developed on the basis of extensive FE limit load analyses employing the elastic-perfectly plastic material behaviour and small strain theory. Unlike the existing solutions, the newly developed analytical approximation of the plastic limit pressure for thick-walled tubes is applicable to a wide range of crack dimensions. Further, the plastic collapse analysis with a real strain-hardening material model and a large deformation theory is performed and an analytical approximation for the estimation of the flow stress is proposed. Numerical results show that the flow stress, defined by some failure assessment diagram (FAD) methods, depends not only on the tube material, but also on the crack geometry. It is shown that the plastic collapse pressure results, in the case of deeper cracks obtained by using the flow stress as the average of the yield stress and the ultimate tensile strength, can become unsafe
A study on tip leakage vortex dynamics and cavitation in axial-flow pump
Energy Technology Data Exchange (ETDEWEB)
Shi, Lei; Zhang, Desheng; Jin, Yongxin; Shi, Weidong [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Esch, B P M van, E-mail: zds@ujs.edu.cn [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands)
2017-06-15
The tip leakage flows and related cavitation in the tip region of an axial-flow pump were investigated in detail using the numerical and experimental methods. The numerical results of the pump model performance were in good agreement with experimental data. The flow structures in the tip clearance were clarified clearly with detailed data involving the axial velocity and turbulent kinetic energy. When depicting the feature of vortex core, the advanced vortex identification method λ {sub 2}-criterion was used. Simultaneously, the minimum tension criterion was also applied to predict the cavitation inception for different flow rates and it is consistent with the distributions of vorticity and pressure in the vortex core. The roll-up process of TLV is highly three-dimensional and the entrainment would follow different paths. Then, both the numerical and experimental approaches show the cavitation patterns for different cavitation conditions, and it also finds that slight cavitation would promote the development of tip leakage vortex (TLV) while the TLV seems to be eliminated for a low cavitation number, especially before a specific location of blade tip due to the blade loading change induced by cavitation possibly. (paper)
Guan, Changbin; Jiao, Zongxia; He, Shouzhan
2014-01-01
Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used ...
Cooled-Spool Piston Compressor
Morris, Brian G.
1994-01-01
Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.
Wei, Jun; Zhong, Fangyuan
Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.
Energy Technology Data Exchange (ETDEWEB)
NONE
1990-05-01
With an objective to research and develop a 300-kW class regenerative single-shaft axial-flow turbine having inlet temperature of 1,350 degrees C and thermal efficiency of 42% or higher, activities were performed in the following three fields: 1) heat resistant ceramic members, 2) elementary technologies, and 3) studies on design, prototype fabrication, and operation. In Item 1, a mass production technology was discussed on stator blades and heat transfer pipes for a heat exchanger as the component manufacturing technology, and injection molding conditions were studied and mechanical strength measurement was performed on rotor blades of a separate type axial-flow turbine. In addition, a molding condition producing no cracks was discovered in an integrated type axial-flow turbine whose embedded section has a tapered shape, and the mass production technology was discussed. With regard to the bonding technology, preliminary discussions were given on bonding agents under a prerequisite that a bonding agent shall be used. In Item 2, detailed discussions were launched on the turbine, combustor, heat exchanger, and compressor, including shape decision on the turbine, for example, by using aerodynamic analysis, In Item 3, the basic design was performed following the conceptual design, and a metallic turbine was designed. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
Bernstein, W.; Bernhard, H.; Biesinger, T.; Boos, P.; Moeckel, H.; Sauer, H.
1996-12-01
In this report, the design, manufacture and construction of the low speed compressor, the build-up of the compressor test rig and the measurement technique used are described. The first measured results obtained after setting to work and the start of experimental operation on the rotational symmetry at the compressor inlet and outlet and of a flow field behind the rotor and stator of the third stage are described. The operating period of 540 hours to the end of the subject shows faultfree operation of the experimental plant. (orig./AKF) [Deutsch] Im vorliegenden Bericht werden Konstruktion, Fertigung und Aufbau des Niedergeschwindigkeitsverdichters, der Aufbau des Verdichterpruefstandes und die verwendete Messtechnik beschrieben. Die nach der Inbetriebnahme und Aufnahme des Versuchsbetriebes erhaltenen ersten Messergebnisse zur Rotationssymmetrie am Ein- und Austritt des Verdichters und von einem Stroemungsfeld hinter dem Rotor und Stator der dritten Stufe werden geschildert. Die zum Abschluss des Themas erreichte Betriebszeit von 540 Stunden weist auf einen stoerungsfreien Betrieb der Versuchsanlage hin. (orig./AKF)
Design and test of a high pressure centrifugal compressor
International Nuclear Information System (INIS)
Choi, Jae Ho; Han, Chak Heui; Paeng, Ki Seok; Chen, Seung Bae; Kim, Yong Ryun
2005-01-01
This paper presents an aerodynamic design, flow analysis and performance test of a pressure ratio 4:1 centrifugal compressor for gas turbine engine. The compressor is made up of a centrifugal impeller, a two-stage diffuser consisted of radial and axial types. The impeller has a 45 degree backswept angle and the design running tip clearance is 5% of impeller exit height. Three-dimensional numerical analysis is performed to analyze the flows in the impeller, diffuser and deswirler considering the impeller tip clearance. Test module and rig facilities for the compressor stage performance test are designed and fabricated. The overall compressor stage performances as well as the static pressure fields on the impeller and diffuser are measured. Two diffusers of wedge and airfoil types are tested with an impeller. The calculation and test results show that flow fields downstream the deswirler at the design and off-design points are highly nonuniform and the airfoil diffuser has the better aerodynamic characteristics than those of wedge diffuser
Helium compressor aerodynamic design considerations for MHTGR circulators
International Nuclear Information System (INIS)
McDonald, C.F.
1988-01-01
Compressor aerodynamic design considerations for both the main and shutdown cooling circulators in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) plant are addressed in this paper. A major selection topic relates to the impeller type (i.e., axial or radial flow), and the aerothermal studies leading to the selection of optimum parameters are discussed. For the conceptual designs of the main and shutdown cooling circulators, compressor blading geometries were established and helium gas flow paths defined. Both circulators are conservative by industrial standards in terms of aerodynamic and structural loading, and the blade tip speeds are particularly modest. Performance characteristics are presented, and the designs embody margin to ensure that pressure-rise growth potential can be accomodated should the circuit resistance possibly increase as the plant design advances. The axial flow impeller for the main circulator is very similar to the Fort St. Vrain (FSV) helium compressor which performs well. A significant technology base exists for the MHTGR plant circulators, and this is highlighted in the paper. (author). 15 refs, 16 figs, 12 tabs
Directory of Open Access Journals (Sweden)
B. F. Shorr
2014-01-01
Full Text Available Ingestion of hailstones and shedding ice in operating aircraft engine can lead to damage of compressor rotating blades, as well as to change of gas-dynamic characteristics, and loss of engine thrust.The paper presents a computational and experimental study results of an ice impact against a thin edge of the steel plate, which simulates a compressor blade.Impacts of the ice bricks against the plate with a velocity corresponding to the circumference rate of blades rotation were realized by the pneumatic gunshots. The trials were carried out under various angles attack between the direction of the ice flight and the plate plane. The experiments has shown that on impact the ice brick is covered by numerous cracks and collapsed just at the very beginning of the interaction with a plate. Thus, a leading edge of the plate has a smoothly bending form without appearing cracks.For modeling the ice an isotropic elastoplastic material was chosen. Its failure was based on shear and rupture criteria. Two models of ice with different size of the yield point were used.The test results and their comparison with the numerical ones have shown the following: 1. Calculations of brick impact against a thin edge of the plate-imitator with accepted ice characteristics yield a correct qualitative picture of the plate damage, but lead to some undersizes of its leading edge bending.2. The ice design model with a larger yield point well reflects a character of the ice brick impact destruction as a formation of numerous cracks in it and splitting the piece into small particles, which was observed in the experiments. The model with smaller yield point shows the ice brick cutting into two parts without cracking.3. The plate damage considerably increases with increasing ice brick attack angle. Under a direct impact against the plate edge, the ice brick is cut into two halves, with no plastic deformations of the plate observed.4. Available results give the grounds to use
Sasaki, Takahiro; Seki, Junji; Itano, Tomoaki; Sugihara-Seki, Masako
2017-11-01
In the microcirculation, red blood cells (RBCs) are known to accumulate in the region near the central axis of microvessels, which is called the ``axial accumulation''. Although this behavior of RBCs is considered to originate from high deformability of RBCs, there have been few experimental studies on the mechanism. In order to elucidate the effect of RBC deformability on the axial accumulation, we measured the cross-sectional distributions of RBCs flowing through capillary tubes with a high spatial resolution by a newly devised observation system for intact and softened RBCs as well as hardened RBCs to various degrees. It was found that the intact and softened RBCs are concentrated in the small area centered on the tube axis, whereas the hardened RBCs are dispersed widely over the tube cross section dependent on the degree of hardness. These results demonstrate clearly the essential role of the deformability of RBCs in the ``axial accumulation'' of RBCs. JSPS KAKENHI Grant Number 17H03176, Kansai University ORDIST group funds.
Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field
Energy Technology Data Exchange (ETDEWEB)
Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)
2016-11-15
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.
High-resolution AUV mapping of the 2015 flows at Axial Seamount, Juan de Fuca Ridge
Paduan, J. B.; Chadwick, W. W., Jr.; Clague, D. A.; Le Saout, M.; Caress, D. W.; Thomas, H. J.; Yoerger, D.
2016-12-01
Lava flows erupted in April 2015 at Axial Seamount were mapped at 1-m resolution with the AUV Sentry in August 2015 and the MBARI Mapping AUVs in July 2016 and observed and sampled with ROVs on those same expeditions. Thirty percent of terrain covered by new flows had been mapped by the MBARI AUVs prior to the eruption. Differencing of before and after maps (using ship-collected bathymetry where the AUV had not mapped before) allows calculation of extents and volumes of flows and shows new fissures. The maps reveal unexpected fissure patterns and shifts in the style of flow emplacement through a single eruption. There were 11 separate flows totaling 1.48 x 108 m3 of lava erupted from numerous en echelon fissures over 19 km on the NE caldera floor, on the NE flank, and down the N rift zone. Flows in and around the caldera have maximum thicknesses of 5-19 m. Most erupted as sheet flows and spread along intricate channels that terminated in thin margins. Some utilized pre-existing fissures. Some flows erupted from short fissures, while at least two longer new fissures produced little or no lava. A flow on the upper N rift has a spectacular lava channel flanked by narrow lava pillars supporting a thin roof left after the flow drained. A shatter ring still emanating warm fluid is visible in the map as a 15-m wide low cone. Hundreds of exploded pillows were observed but are not discernable in the bathymetry. The northern-most three flows deep on the N rift are similar in area to the others but comprise the bulk of the eruption volume. Differencing of ship-based bathymetry shows only these flows. Near the eruptive fissures they are sheet flows, but as they flowed downslope they built complexes of coalesced pillow mounds up to 67-128 m thick. Changes in flow morphology occurred through the course of the eruption. Large pillow mounds had molten cores that deformed as the eruption progressed. One flow began as a thin, effusive sheet flow but as the eruption rate decreased, a
Axial turbomachine modelling with a 1D axisymmetric approach
International Nuclear Information System (INIS)
Tauveron, Nicolas; Saez, Manuel; Ferrand, Pascal; Leboeuf, Francis
2007-01-01
This work concerns the design and safety analysis of direct cycle gas cooled reactor. The estimation of compressor and turbine performances in transient operations is of high importance for the designer. The first goal of this study is to provide a description of compressor behaviour in unstable conditions with a better understanding than the models based on performance maps ('traditional' 0D approach). A supplementary objective is to provide a coherent description of the turbine behaviour. The turbomachine modelling approach consists in the solution of 1D axisymmetric Navier-Stokes equations on an axial grid inside the turbomachine: mass, axial momentum, circumferential momentum and total-enthalpy balances are written. Blade forces are taken into account by using compressor or turbine blade cascade steady correlations. A particular effort has been developed to generate or test correlations in low mass flow and negative mass flow regimes, based on experimental data. The model is tested on open literature cases of the gas turbine aircraft community. For compressor and turbine, steady situations are fairly described, especially for medium and high mass flow rate. The dynamic behaviour of compressor is also quite well described, even in unstable operation (surge): qualitative tendencies (role of plenum volume and role of throttle) and some quantitative characteristics (frequency) are in a good agreement with experimental data. The application to transient simulations of gas cooled nuclear reactors is concentrated on the hypothetical 10 in. break accident. The results point out the importance of the location of the pipe rupture in a hypothetical break event. In some detailed cases, compressor surge and back flow through the circuit can occur. In order to be used in a design phase, a simplified model of surge has also been developed. This simplified model is applied to the gas fast reactor (GFR) and compared quite favourably with 1D axisymmetric simulation results
Axial-flow-induced vibration for a rod supported by translational springs at both ends
International Nuclear Information System (INIS)
Kang, H.S.; Song, K.N.; Kim, H.K.; Yoon, K.H.
2003-01-01
An axial-flow-induced vibration model was proposed for a rod supported by two translational springs at both ends in order to evaluate the sensitivity to spring stiffness on the FIV for a PWR fuel rod. For developing the model, a one-mode approximation was made based on the assumption that the first mode was dominant in vibration behavior of the single span rod. The first natural frequency and mode shape functions for the flow-induced vibration, called the FIV, model were derived by using Lagrange's method. The vibration displacements were calculated by both of the spring-supported rod and the simple-supported (SS) one. As a result, the vibration displacement for the spring-supported (50 kN m -1 ) rod was 15-20% larger than that of the SS rod when the rods are in axial flow of 5-8 m s -1 velocity. The discrepancy between both displacements became much larger as flow velocity increased, and that of the rod having the short span length was larger than that of the rod having the long span length although the displacement value itself of the long span rod was larger than that of the short one. The vibration displacement for the spring-supported rod appeared to decrease with the increase of the spring constant. Since single span beam supported by the two translational springs are focused on in this paper, further study will be needed to reflect more realistic supporting conditions of the PWR fuel rod such as two springs and four dimples and cross or swirling flow caused by the mixing vane of the spacer grid
Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans
Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas
2018-03-01
Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.
Flow control in axial fan inlet guide vanes by synthetic jets
Directory of Open Access Journals (Sweden)
Wurst P.
2013-04-01
Full Text Available Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV, rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz – 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 – 12 mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.
Flow control in axial fan inlet guide vanes by synthetic jets
Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.
2013-04-01
Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.
Flow performance of highly loaded axial fan with bowed rotor blades
International Nuclear Information System (INIS)
Chen, L; Liu, X J; Yang, A L; Dai, R
2013-01-01
In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved
Flow performance of highly loaded axial fan with bowed rotor blades
Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.
2013-12-01
In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.
Effects of energetic coherent motions on the power and wake of an axial-flow turbine
Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.
2015-05-01
A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.
Hemolysis research of implantable axial flow pump for two -step heart transplantation in children
Directory of Open Access Journals (Sweden)
O. Yu. Dmitrieva
2017-01-01
Full Text Available Introduction. One of the main indicators characterizing mechanical circulatory support devices (artificial valve, implantable pumps, etc. is trauma of blood cells. Therefore, while developing new pumps, one of the key studies in vitro is to evaluate blood hemolysis. For an objective hemolysis analysis of pump it is required to create a standardized methodology of hemolysis studies. The object of the study in this paper is implantable axial pump DON for two-step heart transplantation in children.The aim of study is to develop a standardized methodology of hemolysis studies of blood pumps and to conduct research of pediatric axial pump DON.Materials and methods. To conduct hemolysis research we created a mock circulatory system consisting of a reservoir placed in water bath maintaining a constant working fluid (blood temperature, hydrodynamic resistance, connecting tubes, ports for blood sampling and pressure and flow measurement systems, and research pump. Test method is to estimate levels of free hemoglobin pHb obtained by blood samples during pump working in operating mode (for pediatric pump: blood flow 2.5 l/min, pressure difference 80 mmHg. Using the data obtained the standardized indices of hemolysis NIH and MIH are calculated based on pHb values, hematocrit, total hemoglobin, blood flow and working pump time.Results. We developed and realized a standardized methodology of hemolysis research by which we evaluated hemolysis of pediatric axial pump. The results of hemolysis tests allowed us to optimize the design of DON. Obtained values of hemolysis of the latest version of pediatric pump DON-3 have shown that they do conform to the requirements of minimum blood injury and it allows us to proceed to the next step of pediatric pump research – animal experiments.Conclusion. Developed methods and evaluation tools of hemolysis allow us to provide objective information on one of the most important indicators of developing
Directory of Open Access Journals (Sweden)
A. S. Laskin
2015-01-01
Full Text Available The article presents the results of numerical investigation of kinetic energy (KE loss and blading efficiency of the single-stage axial turbine under different operating conditions, characterized by the ratio u/C0. The calculations are performed by stationary (Stage method and nonstationary (Transient method methods using ANSYS CFX. The novelty of this work lies in the fact that the numerical simulation of steady and unsteady flows in a turbine stage is conducted, and the results are obtained to determine the loss of KE, both separately by the elements of the flow range and their total values, in the stage efficiency as well. The results obtained are compared with the calculated efficiency according to one-dimensional theory.To solve these problems was selected model of axial turbine stage with D/l = 13, blade profiles of rotor and stator of constant cross-section, similar to tested ones in inverted turbine when = 0.3. The degree of reactivity ρ = 0.27, the rotor speed was varied within the range 1000 ÷ 1800 rev/min.Results obtained allow us to draw the following conclusions:1. The level of averaged coefficients of total KE losses in the range of from 0.48 to 0.75 is from 18% to 21% when calculating by the Stage method and from 21% to 25% by the Transient one.2. The level of averaged coefficients of KE losses with the output speed of in the specified range is from 9% to 13%, and almost the same when in calculating by Stage and Transient methods.3. Levels of averaged coefficients of KE loss in blade tips (relative to the differential enthalpies per stage are changed in the range: from 4% to 3% (Stage and are stored to be equal to 5% (Transient; from 5% to 6% (Stage and from 6% to 8% (Transient.4. Coefficients of KE losses in blade tips GV and RB are higher in calculations of the model stage using the Transient method than the Stage one, respectively, by = 1.5 ÷ 2.5% and = 4 ÷ 5% of the absolute values. These are values to characterize the KE
Energy Technology Data Exchange (ETDEWEB)
Hoenen, H.; Niehuis, R.
2003-07-01
A monitoring system for the prediction of the stability limit of a multi-stage axial compressor has been developed. Based on the pressure fluctuations in the casing above a first compressor rotor the approach to the search limit can be detected. By means of a computer system equipped with a digital signal processor board the dynamic pressure signals are picked up and analyzed. Based on FFT-Spectra suitable parameters for the estimation of the stability limit can be calculated. Measurement data from various test runs at different gas turbine compressors demonstrated the reliability of the system. Mean issue of the system is the a ability of real time detection which allows an application in industrial environment. In order to guarantee the long term stability and security the soft ware has been programmed so that a permanent self control as well as a control by a connected host computer is possible. By means of these control mechanism the proper function of the measurement transducers the data acquisition and the communication with the host computer is assured. This guarantees a high operational reliability which also allows a safe integration in a gas turbine control system. The soft ware is based on the programming environment DASYLAB in order to provide a maximum of user friendliness The up to date test with the system on the gas turbine tests field of Siemens have been performed successfully. A long term test in a power plant has not jet been carried out. (orig.) [German] Es wurde ein Ueberwachungssystem entwickelt, das die Voraussage der Stabilitaetsgrenze eines mehrstufigen Axialverdichters ermoeglicht. Basierend auf den Druckfluktuationen ueber dem ersten Verdichterlaufrad koennen Aussagen ueber die Annaeherung an die Pumpgrenze getroffen werden. Mit Hilfe eines Rechnersystems mit integrierter Signalprozessorkarte werden die dynamischen Drucksignale aufgenommen und verarbeitet. Basierend auf einer FFT-Analyse werden geeignete Parameter bestimmt, die die
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright
Development of a 3-dimensional flow analysis procedure for axial pump impellers
International Nuclear Information System (INIS)
Kim, Min Hwan; Kim, Jong In; Park, Jin Seok; Huh, Houng Huh; Chang, Moon Hee
1999-06-01
A fluid dynamic analysis procedure was developed using the three-dimensional solid model of an axial pump impeller which was theoretically designed using I-DEAS CAD/CAM/CAE software. The CFD software FLUENT was used in the flow field analysis. The steady-state flow regime in the MCP impeller and diffuser was simulated using the developed procedure. The results of calculation were analyzed to confirm whether the design requirements were properly implemented in the impeller model. The validity of the developed procedure was demonstrated by comparing the calculation results with the experimental data available. The pump performance at the design point could be effectively predicted using the developed procedure. The computed velocity distributions have shown a good agreement with the experimental data except for the regions near the wall. The computed head, however, was over-predicted than the experiment. The design period and cost required for the development of an axial pump impeller can be significantly reduced by applying the proposed methodology. (author). 7 refs., 2 tabs
Local heat transfer performance and exit flow characteristics of a miniature axial fan
International Nuclear Information System (INIS)
Stafford, Jason; Walsh, Ed; Egan, Vanessa
2010-01-01
Dimensional restrictions in electronic equipment have resulted in miniaturization of many existing cooling technologies. In addition to this, cooling solutions are required to dissipate increased thermal loads to maintain component reliability. Axial fans are widely used in electronics cooling to meet such thermal demands. However, if the extent of non-uniform heat transfer rates, produced by highly three-dimensional air patterns is unknown in the design stages, premature component failure may result. The current study highlights these non-uniformities in heat transfer coefficient, using infrared thermography of a miniature axial fan impinging air on a flat plate. Fan rotational speed and distance from the flat plate are varied to encompass heat transfer phenomena resultant from complex exit air flow distribution. Local peaks in heat transfer coefficient have been shown to be directly related to the air flow and fan motor support interaction. Optimum locations for discrete heat source positioning have been identified which are a function of fan to plate spacing and independent of fan rotational speed when the Reynolds number effect is not apparent.
Steady Stokes flow past dumbbell shaped axially symmetric body of revolution: An analytic approach
Directory of Open Access Journals (Sweden)
Srivastava Kumar Deepak
2012-01-01
Full Text Available In this paper, the problem of steady Stokes flow past dumbbell-shaped axially symmetric isolated body of revolution about its axis of symmetry is considered by utilizing a method (Datta and Srivastava, 1999 based on body geometry under the restrictions of continuously turning tangent on the boundary. The relationship between drag and moment is established in transverse flow situation. The closed form expression of Stokes drag is then calculated for dumbbell-shaped body in terms of geometric parameters b, c, d and a with the aid of this linear relation and the formula of torque obtained by (Chwang and Wu, part 1, 1974 with the use of singularity distribution along axis of symmetry. Drag coefficient and moment coefficient are defined in various forms in terms of dumbbell parameters. Their numerical values are calculated and depicted in respective graphs and compared with some known values.
Modeling and design of a combined transverse and axial flow threshing unit for rice harvesters
Directory of Open Access Journals (Sweden)
Zhong Tang
2014-11-01
Full Text Available The thorough investigation of both grain threshing and grain separating processes is a crucial consideration for effective structural design and variable optimization of the tangential flow threshing cylinder and longitudinal axial flow threshing cylinder composite units (TLFC unit of small and medium-sized (SME combine harvesters. The objective of this paper was to obtain the structural variables of a TLFC unit by theoretical modeling and experimentation on a tangential flow threshing cylinder unit (TFC unit and longitudinal axial flow threshing cylinder unit (LFC unit. Threshing and separation equations for five types of threshing teeth (knife bar, trapezoidal tooth, spike tooth, rasp bar, and rectangular bar, were obtained using probability theory. Results demonstrate that the threshing and separation capacity of the knife bar TFC unit was stronger than the other threshing teeth. The length of the LFC unit was divided into four sections, with helical blades on the first section (0-0.17 m, the spike tooth on the second section (0.17-1.48 m, the trapezoidal tooth on the third section (1.48-2.91 m, and the discharge plate on the fourth section (2.91-3.35 m. Test results showed an un-threshed grain rate of 0.243%, un-separated grain rate of 0.346%, and broken grain rate of 0.184%. Evidenced by these results, threshing and separation performance is significantly improved by analyzing and optimizing the structure and variables of a TLFC unit. The results of this research can be used to successfully design the TLFC unit of small and medium-sized (SME combine harvesters.
Long-term animal experiments with an intraventricular axial flow blood pump.
Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H
1997-01-01
A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.
Interaction of impeller and guide vane in a series-designed axial-flow pump
International Nuclear Information System (INIS)
Kim, S; Choi, Y S; Lee, K Y; Kim, J H
2012-01-01
In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.
Development of gas-solid direct contact heat exchanger by use of axial flow cyclone
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Akihiko; Yokomine, Takehiko [Kyushu University (Japan). Interdisciplinary Graduate School of Engineering Sciences; Nagafuchi, Tatsuro [Miura Co. Ltd., Matsuyamashi (Japan)
2004-10-01
A heat exchanger between particulate or granular materials and gas is developed. It makes use of a swirling gas flow similar to the usual cyclone separators but the difference from them is that the swirl making gas is issued into the cyclone chamber with downward axial velocity component. After it turns the flow direction near the bottom of the chamber, the low temperature gas receives heat from high temperature particles supplied from above at the chamber's center. Through this configuration, a direct contact and quasi counter-flow heat exchange pattern is realized so that the effective recovery of heat carried by particles is achieved. A model heat exchanger was manufactured via several numerical experiments and its performances of heat exchange as well as particle recovery were examined. Attaching a small particle diffuser below the particle-feeding nozzle brought about a drastic improvement of the heat exchange performance without deteriorating the particle recovery efficiency. The outlet gas temperature much higher than the particle outlet temperature was finally obtained, which is never realized in the parallel flow heat exchanger. (author)
Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows
Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.
2013-12-01
In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was
Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.
1995-01-01
A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.
Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan
Directory of Open Access Journals (Sweden)
John D. Gill
2004-01-01
Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.
Local heat transfer where heated rods touch in axially flowing water
International Nuclear Information System (INIS)
Kast, S.J.
1983-05-01
An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube
Experimental investigation of flow field in a laboratory-scale compressor
Directory of Open Access Journals (Sweden)
Hongwei Ma
2017-02-01
Full Text Available The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establish a state-of-the-art design system of turbomachinery. Currently the development of more accurate turbulence models and CFD tools is in urgent need for a high-quality database for validation, especially the advanced CFD tools, such as large eddy simulation (LES. Under this circumstance, this paper presents a detailed experimental investigation on the 3D unsteady flow field inside a laboratory-scale isolated-rotor with multiple advanced measurement techniques, including traditional aerodynamic probes, hotwire probes, unsteady endwall static pressure measurement, and stereo particle image velocimetry (SPIV. The inlet boundary layer profile is measured with both hotwire probe and aerodynamic probe. The steady and unsteady flow fields at the outlet of the rotor are measured with a mini five-hole probe and a single-slanted hotwire probe. The instantaneous flow field in the rotor tip region inside the passage is captured with SPIV, and then a statistical analysis of the spatial distribution of the instantaneous tip leakage vortex/flow is performed to understand its dynamic characteristics. Besides these, the uncertainty analysis of each measurement technique is described. This database is quite sufficient to validate the advanced numerical simulation with LES. The identification process of the tip leakage vortex core in the instantaneous frames obtained from SPIV is performed deliberately. It is concluded that the ensemble-averaged flow field could not represent the tip leakage vortex strength and the trajectory trace. The development of the tip leakage vortex could be clearly cataloged into three phases according to their statistical spatial distribution. The streamwise velocity loss induced by the tip leakage flow increases until the
National Research Council Canada - National Science Library
Wade, Patrick
2003-01-01
Upstream propagating waves impinging on a cascade of compressor blades were examined in an effort to better understand the influence of downstream components on high cycle fatigue in turbine engines...
Directory of Open Access Journals (Sweden)
Zoran D Protić
2010-01-01
Full Text Available Geometry analysis of the axial fan impeller, experimentally obtained operating characteristics and experimental investigations of the turbulent swirl flow generated behind the impeller are presented in this paper. Formerly designed and manufactured, axial fan impeller blade geometry (originally designed by Prof. Dr-Ing. Z. Protić† has been digitized using a three-dimensional (3D scanner. In parallel, the same impeller has been modeled by beta version software for modeling axial turbomachines, based on modified classical calculation. These results were compared. Then, the axial fan operating characteristics were measured on the standardized test rig in the Laboratory for Hydraulic Machinery and Energy Systems, Faculty of Mechanical Engineering, University of Belgrade. Optimum blade impeller position was determined on the basis of these results. Afterwards, the impeller with optimum angle, without outlet vanes, was positioned in a circular pipe. Rotational speed has been varied in the range from 500 till 2500rpm. Reynolds numbers generated in this way, calculated for axial velocity component, were in the range from 0,8·105 till 6·105. LDA (Laser Doppler Anemometry measurements and stereo PIV (Particle Image Velocimetry measurements of the 3D velocity field in the swirl turbulent fluid flow behind the axial fan have been performed for each regime. Obtained results point out extraordinary complexity of the structure of generated 3D turbulent velocity fields.
International Nuclear Information System (INIS)
Boulanger, P.; Jacques, Y.; Fardeau, P.; Barbier, D.; Rigaudeau, J.
1997-01-01
The Hydraulic Core Laboratory (LHC) performs experimental studies of PWR fuel assembly mechanical behaviour submitted to representative flows in PWR core. Cross-flows prove particularly troublesome by generating on rods, in special cases, vibratory levels high enough to induce early grid to rod fretting. The fluid-structure interaction under mixed axial and cross-flow is also a major topic for analysis. The authors present a test loop devoted to the mixed axial-cross-flow fluid-structure interaction on representative half-scale mockup which is able to simulate, under ambient conditions, any complex flow (direction and flow rates) representative of PWR core flows. Despite its reduced size, the mockup retains the overall structure of a PWR fuel assembly. Rods displacement/velocity and velocity flow field are measured by laser techniques
Sirenko, Kostyantyn
2011-01-01
Proper design of efficient requires precise understanding of the physics pertinent to energy accumulation and exhaust processes in resonant waveguide cavities. In this paper, practically for the first time these highly non-monotonic transient processes are studied in detail using a rigorous time-domain approach. Additionally, influence of the geometrical design and excitation parameters on the compressor\\'s performance is quantified in detail.
Fluid Damping Variation of a Slender Rod in Axial Flow Field
Energy Technology Data Exchange (ETDEWEB)
Park, Nam-Gyu; Yoo, Jong-Sung; Jung, Yil-Sup [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)
2016-10-15
This study proposed an analytic damping model considering the axial flow condition. In addition, the specific damping values with respect to the flow speeds are calculated. The flow induced damping is beneficial to fuel integrity in that impact energy due to severe accidents such as earthquake dissipates rapidly. A nuclear fuel bundle is composed of many slender fuel rods which contain fission material. The slender rod is typical structure in the fuel, therefore fluid damping estimation on the rod should be an important clue leading to fuel bundle damping identification. Severe accidents could cause fuel assembly vibration in the core, but large motion could be damped out rapidly when a strong damping mechanism is involved. This paper suggested a mathematical model of the slender structure. The physical meaning of the model is described, and the simulation results with the model are also provided. Actual damping due to the fluid is nonlinear, therefore further works are required to explain the detail behavior with the nonlinearity. The model validation test is on-going in KEPCO Nuclear Fuel, but it is believed that performance of the model is well correlated to the published work.
Algebraic stress model for axial flow in a bare rod-bundle
International Nuclear Information System (INIS)
de Lemos, M.J.S.
1987-01-01
The problem of predicting transport properties for momentum and heat across the boundaries of interconnected channels has been the subject of many investigations. In the particular case of axial flow through rod-bundles, transport coefficients for channel faces aligned with rod centers are known to be considerably higher than those calculated by simple isotropic theories. And yet, it was been found that secondary flows play only a minor role in this overall transport, being turbulence highly enhanced across that hypothetical surface. In order to numerically predict the correct amount of the quantity being transported, the approach taken by many investigators was then to artificially increase the diffusion coefficient obtained via a simple isopropic theory (usually the standard k-ε model) and numerically match the correct experimentally observed mixing rates. The present paper reports an attempt to describe the turbulent stresses by means of an Algebraic Stress Model for turbulence. Relative turbulent kinetic energy distribution in all three directions are presented and compared with experiments in a square lattice. The strong directional dependence of transport terms are then obtained via a model for the Reynolds stresses. The results identify a need for a better representation of the mean-flow field part of the pressure-strain correlation term
Design Optimization of An Axial Flow Fan Blade Considering Airfoil Shape and Stacking Line
Energy Technology Data Exchange (ETDEWEB)
Lee, Ki Sang; Kim, Kwang Yong; Samad, Abdus [Inha Univ., Incheon (Korea, Republic of)
2007-07-01
This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with Shear Stress Turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The airfoil shape as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile.
Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele
2016-02-01
An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.
DEFF Research Database (Denmark)
Jouffroy, Jerome; Lottin, Jacques
2002-01-01
For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out with a L......For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out...
Numerical simulation of radial compressor stage
Syka, T.; Luňáček, O.
2013-04-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Luňáček O.; Syka T.
2013-01-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Directory of Open Access Journals (Sweden)
Luňáček O.
2013-04-01
Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
A helium regenerative compressor
International Nuclear Information System (INIS)
Swift, W.L.; Nutt, W.E.; Sixsmith, H.
1994-01-01
This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors
1993-03-31
1 .9953 .9923 .9911 14 .5695 .6196 .7508 .8382 .9461 .9988 1 15 .6481 .5913 .6358 .7319 .8843 .985 .9929 16 .6236 .5651 .6206 .7313 . 8583 .9553 .9746...ýT7rII A 1277 4-, 7I3 . 111 3 L -UB ~ o ISO I.n AI V 128 LIST OF REFERENCES 1. Horlock, J. H., Axial Flow Compressors, Krieger Publishing Company, 1958
Experimental investigation of a forced response condition in a multistage compressor
Murray, William Louis, III
The objective of this research is twofold. Firstly, the design, development, and construction of a test facility for a Honeywell APU-style centrifugal compressor was implemented, as well as the design and construction of an inlet flow experiment. Secondly, the aeromechanical response of an embedded stage in the Purdue 3-Stage axial research compressor was analyzed through a suite of different measurement techniques in the fulfillment of the end of the GUIde IV Consortium contract. The purpose of the first phase of Honeywell work was to comprehensively measure the flow field of an APU-style centrifugal compressor inlet through the use of Laser Doppler Velocimetry (LDV). A portion of a Honeywell supplied inlet was modified to provide optical access to the elbow, and a gas ejector system was designed and constructed to provide the same suction to the inlet that it would see during operation with the compressor. A performance and health monitoring electronics system was designed and purchased to support the testing of the Honeywell inlet ejector system and eventually it will be used for testing with a centrifugal compressor. Additionally, a secondary air and oil system has been designed and is currently being constructed in the test cell in preparation for the arrival of the Honeywell compressor this summer. An embedded rotor stage in the Purdue 3-stage compressor, with a Campbell diagram crossing of the 1T vibratory mode was analyzed with a suite of measurement systems. In addition to steady state compressor performance measurements, other types of measurements were used to characterize the aerodynamic forcing function for this forced response condition including: NSMS, high-frequency pressure transducers mounted in the casing and in a downstream stator, and cross-film thermal anemometry. Rotor geometry was measured by Aerodyne using an in-situ laser scanning technique. Vibrometry testing was performed at WPAFB to characterize safe operating speeds for stator
Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.
Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha
Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.
Comprehensive model of a hermetic reciprocating compressor
Yang, B.; Ziviani, D.; Groll, E. A.
2017-08-01
A comprehensive simulation model is presented to predict the performance of a hermetic reciprocating compressor and to reveal the underlying mechanisms when the compressor is running. The presented model is composed of sub-models simulating the in-cylinder compression process, piston ring/journal bearing frictional power loss, single phase induction motor and the overall compressor energy balance among different compressor components. The valve model, leakage through piston ring model and in-cylinder heat transfer model are also incorporated into the in-cylinder compression process model. A numerical algorithm solving the model is introduced. The predicted results of the compressor mass flow rate and input power consumption are compared to the published compressor map values. Future work will focus on detailed experimental validation of the model and parametric studies investigating the effects of structural parameters, including the stroke-to-bore ratio, on the compressor performance.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Directory of Open Access Journals (Sweden)
Andrew N. Guarendi
2013-01-01
Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Parametric modeling and stagger angle optimization of an axial flow fan
International Nuclear Information System (INIS)
Li, M X; Zhang, C H; Liu, Y; Zheng, S Y
2013-01-01
Axial flow fans are widely used in every field of social production. Improving their efficiency is a sustained and urgent demand of domestic industry. The optimization of stagger angle is an important method to improve fan performance. Parametric modeling and calculation process automation are realized in this paper to improve optimization efficiency. Geometric modeling and mesh division are parameterized based on GAMBIT. Parameter setting and flow field calculation are completed in the batch mode of FLUENT. A control program is developed in Visual C++ to dominate the data exchange of mentioned software. It also extracts calculation results for optimization algorithm module (provided by Matlab) to generate directive optimization control parameters, which as feedback are transferred upwards to modeling module. The center line of the blade airfoil, based on CLARK y profile, is constructed by non-constant circulation and triangle discharge method. Stagger angles of six airfoil sections are optimized, to reduce the influence of inlet shock loss as well as gas leak in blade tip clearance and hub resistance at blade root. Finally an optimal solution is obtained, which meets the total pressure requirement under given conditions and improves total pressure efficiency by about 6%
Particle flow of ceramic breeder pebble beds in bi-axial compression experiments
International Nuclear Information System (INIS)
Hermsmeyer, S.; Reimann, J.
2002-01-01
Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models
Influence of Upstream and Downstream Compressor Stators on Rotor Exit Flow Field
Directory of Open Access Journals (Sweden)
Nicole L. Key
2014-01-01
Full Text Available Measurements acquired at the rotor exit plane illuminate the interaction of the rotor with the upstream vane row and the downstream vane row. The relative phase of the upstream and downstream vane rows is adjusted using vane clocking so that the effect of the upstream propagating potential field from the downstream stator can be distinguished from the effects associated with the wakes shed from the upstream stator. Unsteady absolute flow angle information shows that the downstream potential field causes the absolute flow angle to increase in the vicinity of the downstream stator leading edge. The presence of Stator 1 wake is also detected at this measurement plane using unsteady total pressure data. The rotor wakes are measured at different circumferential locations across the vane passage, and the influence of Stator 1 wake on the suction side of the rotor wake is evident. Also, the influence of the downstream stator is detected on the pressure side of the rotor wake for a particular clocking configuration. Understanding the role of the surrounding vane rows on rotor wake development will lead to improved comparison between experimental data and results from computational models.
Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow
Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria
1979-01-01
Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid
International Nuclear Information System (INIS)
Silva Junior, H.C. da.
1978-12-01
Reactor fuel elements generally consist of rod bundles with the coolant flowing axially through the region between the rods. The confiability of the thermohydraulic design of such elements is related to a detailed description of the velocity field. A two-equation statistical model (K-epsilon) of turbulence is applied to compute main and secondary flow fields, wall shear stress distributions and friction factors of steady, fully developed turbulent flows, with incompressible, temperature independent fluid flowing axially through triangular or square arrays of rod bundles. The numerical procedure uses the vorticity and the stream function to describe the velocity field. Comparison with experimental and analytical data of several investigators is presented. Results are in good agreement. (Author) [pt
International Nuclear Information System (INIS)
Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.
2010-01-01
The effect of sheared axial flow on the Z-pinch sausage instability has been examined with two-dimensional magnetohydrodynamic simulations. Diffuse Bennett equilibria in the presence of axial flows with parabolic and linear radial profiles have been considered, and a detailed study of the linear and nonlinear development of small perturbations from these equilibria has been performed. The consequences of both single-wavelength and random-seed perturbations were calculated. It was found that sheared flows changed the internal m=0 mode development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes and only long wavelengths continued to grow. Full stability was obtained for supersonic plasma flows.
Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods
Directory of Open Access Journals (Sweden)
V. O. Lomakin
2014-01-01
Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.
Centrifugal Compressor Aeroelastic Analysis Code
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Double-yoke balanced compressor
International Nuclear Information System (INIS)
Durenec, P.
1981-01-01
A double-yoke balanced compressor for a cryogenic cooler that has only linear motion imparted to balanced piston and cylinder masses. A piston yoke is driven in the linear stroke direction by a piston axially offset crankshaft cam and a cylinder yoke is driven linearly by a cylinder axially offset crankshaft cam that is exactly offset 180 0 from the other cam. A large circular bushing in the compressor housing covers the entire outer cylinder head during linear operation to prevent blow by and to guide the cylinder linearly. The lower portion of the piston and cylinder connecting rods fit into linear guides that are further comprised of low molecular weight gas filled cavities to provide additional air bearing smoothness to the linear motion of the piston and cylinder
Compressor airfoil tip clearance optimization system
Little, David A.; Pu, Zhengxiang
2015-08-18
A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.
Counter-rotating type axial flow pump unit in turbine mode for micro grid system
International Nuclear Information System (INIS)
Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T
2012-01-01
Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.
Sealing properties of mechanical seals for an axial flow blood pump.
Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H
1999-08-01
A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.
Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan
2011-01-01
Proper design of efficient requires precise understanding of the physics pertinent to energy accumulation and exhaust processes in resonant waveguide cavities. In this paper, practically for the first time these highly non-monotonic transient processes are studied in detail using a rigorous time-domain approach. Additionally, influence of the geometrical design and excitation parameters on the compressor's performance is quantified in detail.
The effect of sheared axial flow on nonlinear Z-pinch dynamics
International Nuclear Information System (INIS)
Kassapakis, N.
2000-01-01
A two dimensional Eulerian fluid code has been used to study three problems related to Z-pinch and laser produced plasmas. a) The nonlinear evolution of a localised m=0 MHD mode neck is studied in order to extract some scaling laws for the size and form of the artificial neck. We examine whether the ubiquitous m=0 instability could be beneficially used to assist in the formation of a transient localised dense plasma. The results obtained were in satisfactory agreement with experiments and other theoretical work where available. b) The development of the m=0 instability on a Z-pinch although beneficial in the previous case, is detrimental from a stability point of view and thus to the utilisation of the device as a fusion reactor by itself. This is because the timescales of the instability development are faster than the confinement time needed for fusion to occur. Sheared axial flow is a proposed mechanism for the non-linear saturation of this particular instability. Indeed the linear growth rate also can be substantially reduced. It is hoped that it can inhibit the growth of the instabilities or at least delay their development sufficiently for fusion to take place. The numerical study of the effect of sheared axial flow on the nonlinear dynamics of the Z-pinch carried out, demonstrates that sheared flow with velocity u z z >4 Alfven speed other modes, of the Kelvin-Helmholtz type, are excited which take over from the fastest growing mode in the static case. c) The expansion of the ablated plasma in laser-solid interactions is an important phenomenon for a plethora of reasons one of which is ICF. The simulations were in direct agreement with previous experimental work regarding the bulk properties of the ablation surface. They also provided justification for some assumptions made during the analysis of the observations and helped to confirm the calibration of the diagnostics timewise. The most striking feature of the experiments, namely the density dip on the
A theory of post-stall transients in axial compression systems. I - Development of equations
Moore, F. K.; Greitzer, E. M.
1985-01-01
An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.
International Nuclear Information System (INIS)
Lu, Xiaodong; Wu, Yingwei; Zhou, Linglan; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Zhang, Hong
2014-01-01
Highlights: • We developed a model based on homogeneous flow model to analyze two-phase flow instability in parallel channels. • The influence of axial non-uniform heating on the system stability has been investigated. • Influences of various factors on system instability under cosine heat flux have been studied. • The system under top-peaked heat flux is the most stable system. - Abstract: Two-phase flow instability in parallel channels heated by axial non-uniform heat flux has been theoretically studied in this paper. The system control equations of parallel channels were established based on the homogeneous flow model in two-phase region. Semi-implicit finite-difference scheme and staggered mesh method were used to discretize the equations, and the difference equations were solved by chasing method. Cosine, bottom-peaked and top-peaked heat fluxes were used to study the influence of non-uniform heating on two-phase flow instability of the parallel channels system. The marginal stability boundaries (MSB) of parallel channels and three-dimensional instability spaces (or instability reefs) under different heat flux conditions have been obtained. Compared with axial uniform heating, axial non-uniform heating will affect the system stability. Cosine and bottom-peaked heat fluxes can destabilize the system stability in high inlet subcooling region, while the opposite effect can be found in low inlet subcooling region. However, top-peaked heat flux can enhance the system stability in the whole region. In addition, for cosine heat flux, increasing the system pressure or inlet resistance coefficient can strengthen the system stability, and increasing the heating power will destabilize the system stability. The influence of inlet subcooling number on the system stability is multi-valued under cosine heat flux
Directory of Open Access Journals (Sweden)
Bin Zhang
2017-01-01
Full Text Available To improve its working performance, the flow ripple characteristics of an axial piston pump were investigated with software which uses computational fluid dynamics (CFD technology. The simulation accuracy was significantly optimized through the use of the improved compressible fluid model. Flow conditions of the pump were tested using a pump flow ripple test rig, and the simulation results of the CFD model showed good agreement with the experimental data. Additionally, the composition of the flow ripple was analyzed using the improved CFD model, and the results showed that the compression ripple makes up 88% of the flow ripple. The flow dynamics of the piston pump is mainly caused by the pressure difference between the intake and discharge ports of the valve plates and the fluid oil compressibility.
Centrifugal compressor case study
Energy Technology Data Exchange (ETDEWEB)
Eckert, B.
2010-10-15
Three centrifugal compressors at a pipeline station were retrofitted with higher head impellers in 2008. The owners of the station experienced vibration problems over the following 2 years that caused transmitter and position failures that were assumed to be flow-induced pulsations. A vibration and pulsation analysis indicated that the shell mode piping vibration excited by the blade pass pulsation was responsible for the failures. This study outlined factors that contributed to the vibration problem. Interferences between the compressor and shell mode piping natural frequencies were predicted, and potential excitation sources were examined. The study demonstrated how centrifugal vibration analyses can be used during the design phase to avoid costly adjustments. Recommendations included the addition of stiffeners to alter the shell modes, and the addition of constrained layer damping material to reduce resonant responses. 2 refs., 1 tab., 12 figs.
Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays
Gorny, Lee James
Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery. Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry. The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were
Algorithm for Controlling a Centrifugal Compressor
Benedict, Scott M.
2004-01-01
An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.
A Guide to Axial-Flow Turbine Off-Design Computer Program AXOD2
Chen, Shu-Cheng S.
2014-01-01
A Users Guide for the axial flow turbine off-design computer program AXOD2 is composed in this paper. This Users Guide is supplementary to the original Users Manual of AXOD. Three notable contributions of AXOD2 to its predecessor AXOD, both in the context of the Guide or in the functionality of the code, are described and discussed in length. These are: 1) a rational representation of the mathematical principles applied, with concise descriptions of the formulas implemented in the actual coding. Their physical implications are addressed; 2) the creation and documentation of an Addendum Listing of input namelist-parameters unique to AXOD2, that differ from or are in addition to the original input-namelists given in the Manual of AXOD. Their usages are discussed; and 3) the institution of proper stoppages of the code execution, encoding termination messaging and error messages of the execution to AXOD2. These measures are to safe-guard the integrity of the code execution, such that a failure mode encountered during a case-study would not plunge the code execution into indefinite loop, or cause a blow-out of the program execution. Details on these are discussed and illustrated in this paper. Moreover, this computer program has since been reconstructed substantially. Standard FORTRAN Langue was instituted, and the code was formatted in Double Precision (REAL*8). As the result, the code is now suited for use in a local Desktop Computer Environment, is perfectly portable to any Operating System, and can be executed by any FORTRAN compiler equivalent to a FORTRAN 9095 compiler. AXOD2 will be available through NASA Glenn Research Center (GRC) Software Repository.
Gas dynamic design of the pipe line compressor with 90% efficiency. Model test approval
Galerkin, Y.; Rekstin, A.; Soldatova, K.
2015-08-01
Gas dynamic design of the pipe line compressor 32 MW was made for PAO SMPO (Sumy, Ukraine). The technical specification requires compressor efficiency of 90%. The customer offered favorable scheme - single-stage design with console impeller and axial inlet. The authors used the standard optimization methodology of 2D impellers. The original methodology of internal scroll profiling was used to minimize efficiency losses. Radically improved 5th version of the Universal modeling method computer programs was used for precise calculation of expected performances. The customer fulfilled model tests in a 1:2 scale. Tests confirmed the calculated parameters at the design point (maximum efficiency of 90%) and in the whole range of flow rates. As far as the authors know none of compressors have achieved such efficiency. The principles and methods of gas-dynamic design are presented below. The data of the 32 MW compressor presented by the customer in their report at the 16th International Compressor conference (September 2014, Saint- Petersburg) and later transferred to the authors.
International Nuclear Information System (INIS)
Clement, Simon
2014-01-01
The present study is in the scope of pressurized water reactors (PWR) core response to earthquakes. The goal of this thesis is to measure the coupling between fuel assemblies caused an axial water flow. The design, production and installation a new test facility named ICARE EXPERIMENTAL are presented. ICARE EXPERIMENTAL was built in order to measure simultaneously the vibrations of four fuel assemblies (2 x 2) under an axial flow. Vibrations are produced by imposing the dynamic of one of the fuel assemblies and the displacements of the three others, induced by the fluid, are measured in the horizontal plane at grids level. A new data analysis method combining time-frequency analysis and orthogonal mode decomposition (POD) is described. This method, named Sliding Window POD (SWPOD), allows analysing multicomponent data, of which spatial repartition of energy and frequency content are time dependent. In the case of mechanical systems (linear and nonlinear), the link between the proper orthogonal modes obtained through SWPOD and the normal modes (linear and nonlinear) is studied. The SWPOD is applied to experimental tests of a steam generators U-tube, showing the appearance of internal resonances. The method is also applied to dynamic experimental tests of a fuel assembly under axial flow, the evolution of its normal modes is obtained as a function of the fluid velocity. The measures acquired with the ICARE EXPERIMENTAL installation are analysed using the SWPOD. The first results show characteristic behavior of the free fuel assemblies at their resonances. The coupling between fuel assemblies, induced by the fluid, is reproduced by simulations performed using the COEUR3D code. This code is based on a porous media model in order to simulate a fuel assemblies network under axial flow. (author) [fr
Directory of Open Access Journals (Sweden)
Guan Changbin
2014-02-01
Full Text Available Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The single- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD. The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and optimized design recommendations for the aviation axial-piston pump have been given out.
Investigation of the turbulent swirl flow in pipe generated by axial fans using PIV and LDA methods
Directory of Open Access Journals (Sweden)
Čantrak Đorđe S.
2015-01-01
Full Text Available In this paper is presented experimental investigation of the turbulent swirl flow in pipe generated by axial fans. Two various models of industrial axial fans are used. One of these is axial fan W30, model AP 400, Minel, Serbia and has seven blades and outer diameter 0.397m. Second axial fan SP30 is model TGT/2-400-6, S&P, Spain, has six blades and outer diameter 0.386m. This results with greater clearance in the second case. Blades were adjusted for both fans at the angle of 30° at the outer diameter. Test rig length is 27.74-D, where D is average inner diameter app. 0.4 m. Measurements are performed in two measuring sections downstream the axial fans (z/D = 3.35 and z/D = 26.31 with one-component laser Doppler anemometry (LDA system and stereo particle image velocimetry (SPIV. Obtained Reynolds numbers, calculated on the basis of the average axial velocity (Um in the first measuring section are for fan SP30 Re = 226757, while for fan W30 Re = 254010. Integral flow parameters are determined such as average circulation and swirl number. Significant downstream axial velocity transformation occurs for both fans, while circumferential velocity is decreased, but non-dimensional velocity profile remains the same. Circumferential velocity distribution for both fans in the central zone corresponds to the solid body, while in r/R > 0.4, where D = 2R, distribution is more uniform. Radial velocity in the case of fan SP30 has almost zero values in the measuring section z/D = 3.35, while its values are significantly increased in the downstream section with the maximum in the vortex core region. On the contrary radial velocity decreases downstream for fan W30 and has also maximum value in the vortex core region for both measuring sections. Level of turbulence, skewness and flatness factors are calculated on the basis of the experimental data. The highest levels of turbulence for circumferential velocity are reached in the vortex core region for both fans
Energy Technology Data Exchange (ETDEWEB)
Ogawa, K; Yokouchi, Y; Hirai, S [Tokyo Institute of Technology, Tokyo (Japan)
2000-02-25
Structure and velocity measurements using magnetic resonance imaging (MRI) have been performed experimentally to obtain a correlation between pore structure and interstitial flow through the packed bed of 5 mm diameter in the tube of 36 mm ID. To measure axial velocity maps of water flow through the packed bed, the phase method of using the phase difference of water spin magnetization between flowing and stagnant fluids by applying magnetic fields with bipolar gradients was employed. The spatial resolution of the obtained map in 0.2 mm x 0.2 mm x 0.5 mm. It was made clear from the obtained axial velocity maps that channel flows with higher axial velocity were induced not only near the wall but also in the internal region of the packed bed. Furthermore, pore structure of the packed bed was characterized from multi-slice images by partitioning of void space and combining of each pore section along the axial direction to analyze the structure-flow correlation. It was found from image analysis that axial channels with long and straight void space existed in the pore structure, and that most of the channel flows with higher axial velocity were induced in the axial channels. The flow rate through an axial channel depends on the square of the averaged cross section of the axial channel. (author)
Directory of Open Access Journals (Sweden)
Yannick Bousquet
2014-01-01
Full Text Available This study concerns a 2.5 pressure ratio centrifugal compressor stage consisting of a splittered unshrouded impeller and a vaned diffuser. The aim of this paper is to investigate the modifications of the flow structure when the operating point moves from peak efficiency to near stall. The investigations are based on the results of unsteady three-dimensional simulations, in a calculation domain comprising all the blade. A detailed analysis is given in the impeller inducer and in the vaned diffuser entry region through time-averaged and unsteady flow field. In the impeller inducer, this study demonstrates that the mass flow reduction from peak efficiency to near stall leads to intensification of the secondary flow effects. The low momentum fluid accumulated near the shroud interacts with the main flow through a shear layer zone. At near stall condition, the interface between the two flow structures becomes unstable leading to vortices development. In the diffuser entry region, by reducing the mass flow, the high incidence angle from the impeller exit induces a separation on the diffuser vane suction side. At near stall operating point, vorticity from the separation is shed into vortex cores which are periodically formed and convected downstream along the suction side.
Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright
Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors
Matveev, V.; Goriachkin, E.; Volkov, A.
2018-01-01
The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.
Energy Technology Data Exchange (ETDEWEB)
Almasi, Amin
2012-12-15
Working in the surge area will result in an unstable compressor operation, exposing the dynamic compressor (centrifugal compressor or axial compressor) to destructive stress, high vibration and other damaging effects. The destructive power of the surge is enormous, ranging from changes in clearances, which result in a penalty in the compressor efficiency, to destruction of parts leading to bearing, rotor or seal replacements. The effects of compressor characteristics, driver type, compressor accessories, vent valve, check valve, trip delay and operation details on surge events and anti-surge system designs are studied. A case study is also discussed. (orig.)
Subramaniam, Shankar; Sun, Bo
2015-11-01
The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.
Directory of Open Access Journals (Sweden)
Sharf Abdusalam M.
2014-03-01
Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.
1976-10-01
stresses became progressively less important and a fourth factor, manufacturing cost , became more important. Lower cost favored lower aspect ratio in...Ito a aso g k mlla jw w C I.. * .NL vs w4 O* M W 4Y IN %4 N Oý Ip~ IVF h OUP*e4 *.m. p.fa.* .4440. r 0; APO.9 S 4* A* ******* * *, S@ 0 4O I’# O i J3
1976-10-01
0 * O , *. o * * . . * * a .~ ~ 41 m, a~ 1 oo. ~ . . o~~j Saa ~ N 1 w ~ i iS6i I J N P 42a~ Sae ~t*6~ea, too -.J clcac okc~o c wo 4p0...doc 40 .4 C2 00 .4 .4 .4 . S tD4N’.400r 2.4.C0.MW 2OMP..fttNx’ Ct 0 . 4140 $.46 M~flh�,@ 460. ACiNCNN, 440Q .tNOi’,flfft**J...4 .C 0, 1".466 ilt eq
Stewart, Warner L; Schum, Harold J; Wong, Robert Y
1952-01-01
The experimental performance of a modified turbine for driving a supersonic compressor is presented and compared with the performance of the original configuration to illustrate the effect of small changes in the ratio of nozzle-throat area to rotor-throat area. Performance is based on the performance of turbines designed to operate with both blade rows close to choking. On the basis of the results of this investigation, the ratio of areas is concluded to become especially critical in the design of turbines such as those designed to drive high-speed, high-specific weight-flow compressors where the turbine nozzles and rotor are both very close to choking.
Compressor Part I: Measurement and Design Modeling
Directory of Open Access Journals (Sweden)
Thomas W. Bein
1999-01-01
method used to design the 125-ton compressor is first reviewed and some related performance curves are predicted based on a quasi-3D method. In addition to an overall performance measurement, a series of instruments were installed on the compressor to identify where the measured performance differs from the predicted performance. The measurement techniques for providing the diagnostic flow parameters are also described briefly. Part II of this paper provides predictions of flow details in the areas of the compressor where there were differences between the measured and predicted performance.
Energy Technology Data Exchange (ETDEWEB)
Ercolino, J.
2001-01-15
In this study, a fast analysis code for the meridian flow inside turbo-machineries has been developed. This code is based on the resolution of the averaged dynamical equations controlling the internal stationary and non-viscous flow in the relative reference frame. A linear combination of momentum equations has been used in the axial and radial directions to avoid the source term of the equations to become singular. The model developed is particularly adapted to the general case of compression machines, i.e.the mixed machines. Starting with the hypothesis of a finite number of blading and assuming an axisymmetric flow, the equations allowing to calculate the blading forces and the simplified kinematics of blade-to-blade flow have been developed. This kinematics takes into consideration the geometrical data supplied by manufacturers or by global design softwares. This last approach ensures a very efficient link in the framework of turbomachine design projects where the blades geometry is introduced in a very simple way for a first optimization approach. The results obtained seem to be very consistent in nominal flow but also in partial flow conditions as shown by the qualitative comparisons with test results. (J.S.)
Morgut, Mitja; Jošt, Dragica; Nobile, Enrico; Škerlavaj, Aljaž
2015-11-01
The accurate prediction of the performances of axial water turbines and naval propellers is a challenging task, of great practical relevance. In this paper a numerical prediction strategy, based on the combination of a trusted CFD solver and a calibrated mass transfer model, is applied to the turbulent flow in axial turbines and around a model scale naval propeller, under non-cavitating and cavitating conditions. Some selected results for axial water turbines and a marine propeller, and in particular the advantages, in terms of accuracy and fidelity, of ScaleResolving Simulations (SRS), like SAS (Scale Adaptive Simulation) and Zonal-LES (ZLES) compared to standard RANS approaches, are presented. Efficiency prediction for a Kaplan and a bulb turbine was significantly improved by use of the SAS SST model in combination with the ZLES in the draft tube. Size of cavitation cavity and sigma break curve for Kaplan turbine were successfully predicted with SAS model in combination with robust high resolution scheme, while for mass transfer the Zwart model with calibrated constants were used. The results obtained for a marine propeller in non-uniform inflow, under cavitating conditions, compare well with available experimental measurements, and proved that a mass transfer model, previously calibrated for RANS (Reynolds Averaged Navier Stokes), can be successfully applied also within the SRS approaches.
Thermal convection in a toroidal duct of a liquid metal blanket. Part II. Effect of axial mean flow
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xuan, E-mail: xuanz@umich.edu; Zikanov, Oleg
2017-03-15
Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • The flow is strongly modified by the buoyancy force associated with growing T{sub m}. • Thermal convection is suppressed at high Gr. • High temperature difference between top and bottom walls is expected at high Gr. - Abstract: The work continues the exploration of the effect of thermal convection on flows in toroidal ducts of a liquid metal blanket. This time we consider the effect of the mean flow along the duct and of the associated heat transfer diverting the heat deposited by captured neutrons. Numerical simulations are conducted for a model system with two-dimensional (streamwise-uniform) fully developed flow, purely toroidal magnetic field, and perfectly electrically and thermally insulating walls. Realistically high Grashof (up to 10{sup 11}) and Reynolds (up to 10{sup 6}) numbers are used. It is found that the flow develops thermal convection in the transverse plane at moderate Grashof numbers. At large Grashof numbers, the flow is dominated by the top-bottom asymmetry of the streamwise velocity and stable stratification of temperature, which are caused by the buoyancy force due to the mean temperature growing along the duct. This leads to suppression of thermal convection, weak mixing, and substantial gradients of wall temperature. Further analysis based on more realistic models is suggested.
International Nuclear Information System (INIS)
Hooper, J.D.
1977-01-01
A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)
Compressor blade setting angle accuracy study, volume 1
Holman, F. F.; Kidwell, J. R.
1976-01-01
The aerodynamic test of a small, single stage, highly loaded, axial flow transonic compressor is covered. The stage was modified by fabricating a 24 blade rotor with mis-set blades in a repeating pattern - two degrees closed from nominal, two degrees open from nominal and nominal. The unit was instrumented to determine overall performance and average blade element data. High-response, dynamic pressure probes were installed to record pressure patterns at selected points in the flowpath. Testing was conducted at speeds from 70 to 94% of design equivalent speed with a conventional casing and also with circumferential grooves over the rotor tip. Testing indicated severe performance penalties were incurred as a result of the mis-set blading. Lower flow, pressure ratio, and efficiency were observed for the stage with or without casing treatment. Periodic pressure variations were detected at every location where high response pressure sensors were located and were directly related to blading geometry.
Energy Technology Data Exchange (ETDEWEB)
Broerman, Eugene L.; Gatewood, Jason T.; O' Grady, James T. [Southwest Research Institute, San Antonio, TX (United States); Troy, Russell F. [Spectra Energy, Houston, TX (United States); Rand, Charles L.; Stroud, Gary T. [R-S-H Engineering, Monroe, LA (United States)
2010-07-01
The South East Supply Header joining Delhi, Louisiana, to Coden, Alabama, was put into service in 2008. During start-up of the mainline compressor station, located near Lucedale, MS, high amplitude vibration was detected on the second elbow downstream of the anti-surge valve/fast stop valve piping tee in the recycle loop piping. The aim of this paper is to present the issue and the solution adopted. An investigation of the high vibration was carried out and was followed by Strouhal and acoustic analyses. A solution to the problem was then proposed and mechanically analyzed. It was found that upfront analyses of these types can give an accurate prediction of the vibration and could have avoided the problem encountered and saved a lot of time and money since the modification costs were about 10 times higher than those for a typical analysis made at the installation design phase would have been.
Compressor with pump recycling for isotopic separation through gaseous scattering
International Nuclear Information System (INIS)
Plotkowiak, J.; Quillevere, H.A.
1984-01-01
A compressor which compresses a principal flow at low pressure and recompresses a secondary flow at medium pressure to deliver a common flow at high pressure is disclosed. The compressor includes, in addition to compression devices for the principal flow, static devices forming an induction nozzle housed in the scatterer and devices to introduce therein the secondary flow, the principal flow constituting the drive flow
Turbofan compressor dynamics during afterburner transients
Kurkov, A. P.
1976-01-01
The effects of afterburner light-off and shut-down transients on the compressor stability are investigated. The reported experimental results are based on detailed high response pressure and temperature measurements on the TF30-P-3 turbofan engine. The tests were performed in an altitude test chamber simulating high altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.
Axial annular flow of power-law fluids - applicability of the limiting cases
Czech Academy of Sciences Publication Activity Database
Filip, Petr; David, Jiří
2007-01-01
Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics
Energy Technology Data Exchange (ETDEWEB)
Holste, F; Haukap, C; Kameier, F
2000-07-10
The physical phenomena of rotary instabilities in industrial compressors and high-pressure aircraft compressors were investigated, which may be a cause of compressor blade fracture. The investigations were carried out by Duesseldorf Technical University on behalf of Rolls-Royce Deutschland GmbH at the new four-stage low-pressure compressor test stand of TU Dresden University. Extensive measurements were made both in the rotary and stationary system in the third compressor stage. Rotary instabilities could be detected by increasing the clearance between the blade tip and compressor wall. Modal analyses yielded a rate of about 30 for 63 blades, i.e. a characteristic wavelength of about twice the length of a blade. So far, an accurate description of the physical mechanism was impossible. Investigations using a Snubber model showed no significant influence on the rotary instabilities. [German] Im Turbotech II Forschungsvorhaben 1.244 wurden die physikalischen Vorgaenge der rotierenden Instabilitaet untersucht, die sowohl in industriellen Verdichtern als auch in Hochdruckverdichtern von Flugtriebwerken auftreten koennen. Diese Instabilitaeten stellen eine zusaetzliche Belastung fuer die Verdichterblaetter dar und koennen damit die Ursache fuer Blattbrueche sein. Im Auftrag von Rolls-Royce Deutschland wurden die Untersuchungen von der Faachhochschule Duesseldorf durchgefuehrt. Testobjekt war der neu aufgebaute vier stufige Niedergeschwindigkeitsverdichter der TU Dresden. In enger Kooperation mit den Vorhaben 1.243 und 1.246 wurden umfangreiche Messungen sowohl im rotierenden als auch im festen System an der dritten Stufe des Verdichters durchgefuehrt. Durch Vergroesserung des Spaltes zwischen Schaufelspitze und Verdichterwandung konnten rotierenden Instabilitaeten nachgewiesen werden. Modenanalysen ergaben Umfangsordnungen von ungefaehr 30 bei einer Blattzahl von 63, wodurch die charakteristische Wellenlaenge etwa zwei Schaufelwellenlaengen entspricht. Eine exakte
Simulation of a 3D unsteady flow in an axial turbine stage
Directory of Open Access Journals (Sweden)
Straka Petr
2012-04-01
Full Text Available The contribution deals with a numerical simulation of an unsteady ﬂow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a ﬁnite volume discretization of governing equations (Favre averaged Navier-Stokes equations and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent ﬂow of a perfect gas in the axial turbine stage. The ﬂow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the inﬂuence of a secondary ﬂow structures, such as generated vortices and ﬂow in shroud-seal gap.
Miniature Centrifugal Compressor
Sixsmith, Herbert
1989-01-01
Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.
Directory of Open Access Journals (Sweden)
N. Sitaram
2011-01-01
Full Text Available The flow field at the rotor exit of a low aspect ratio axial flow fan for different tip geometries and for different flow coefficients is measured in the present study. The following configurations are tested: (1 rotor without partial shroud, designated as rotor (wos, (2 rotor with partial shroud, designated as rotor (ws, and (3 rotor with perforated (perforations in the shape of discrete circular holes partial shroud, designated as rotor (wps. From steady state measurements, the performance of rotor (wps is found to be the best. Both the rotors with partial shrouds have stalled at a higher flow coefficient compared to that of rotor (wos. From periodic flow measurements, it is concluded that the low velocity region near the tip section is considerably reduced with the use of partial shrouds with perforations. The extent of this low velocity region for both rotor (wos and rotor (wps increases with decreasing flow coefficient due to increased stage loading. This core of low momentum fluid has moved inwards of the annulus and towards the pressure side as the flow coefficient decreases. The extent of the low momentum fluid is smaller for rotor (wps than that of rotor (wos at all flow coefficients.
Chen, Shu-Cheng S.
2017-01-01
A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.
Compressor ported shroud for foil bearing cooling
Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA
2011-08-02
A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.
Energy Technology Data Exchange (ETDEWEB)
Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ
2015-09-01
The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.
Predicting the onset of dynamic instability of a cylindrical plate under axial flow conditions
Energy Technology Data Exchange (ETDEWEB)
Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)
2012-09-15
Highlights: Black-Right-Pointing-Pointer A semi-numerical flow induced vibration model is developed of a cylindrical plate. Black-Right-Pointing-Pointer Test case results are presented and agree well with previous studies data. Black-Right-Pointing-Pointer The model identifies a relationship between forces and the plate natural frequency. - Abstract: The dynamic mechanical stability of a single cylindrical plate under flow conditions is considered herein. Numerous plate-type research reactors such as the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL) comprise fuel elements which contain arrays of concentrically aligned cylindrical plates. Several of these reactors are licensed to operate at extreme heat fluxes; as a corollary their hydraulic designs require large flow rates sufficient to remove this heat. These flow rates may reach superficial velocities upwards of 15 m/s through individual flow channels. Given that fuel plates typically found in such research reactors are relatively long ({approx}1.2573 m), wide ({approx}0.1397 m), and extremely thin ({approx}0.00127 m) concern is drawn toward the susceptibility of flow induced vibration (FIV). In an attempt to gain a more comprehensive understanding toward the dynamic mechanical limit of stability of cylindrical plates, a FIV model was developed using semi-numerical methods. The FIV model was developed in two separate modules; a plate stability module, and a flow module. These modules were then coupled together to produce a FIV model. In this study, a set of test cases are presented on the plate stability module under free vibration conditions, comparing well against known available information from previous studies. Results are similarly presented on the flow module and compared against a RELAP5-3D model. Lastly, results of these coupled modules are presented and discussion is given toward the relationship between plate natural frequency, geometry, and plate membrane pressures.
Hydrodynamic instabilities in the developing region of an axially rotating pipe flow
Energy Technology Data Exchange (ETDEWEB)
Miranda-Barea, A; Fabrellas-García, C; Parras, L; Pino, C del, E-mail: cpino@uma.es [Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Ampliación Campus de Teatinos, 29071, Málaga, España (Spain)
2015-06-15
We conduct experiments in a rotating Hagen–Poiseuille flow (RHPF) through flow visualizations when the flow becomes convectively and absolutely unstable at low-to-moderate Reynolds numbers, Re. We characterize periodic patterns at a very high swirl parameter, L, when the flow overcomes the absolutely unstable region. These non-steady helical filaments wrapped around the axis appear in the developing region of the pipe. Experimentally, we compute the onset of these oscillations in the (L, Re)-plane finding that the rotation rate decreases as the Reynolds number increases in the process of achieving the time-dependent state. Additionally, we report information regarding frequencies and wavelengths that appear downstream of the rotating pipe for convectively and absolutely unstable flows, even for very high swirl parameters at which the flow becomes time-dependent in the developing region. We do not observe variations in the trends of these parameters, so these hydrodynamic instabilities in the developing region do not affect the unstable travelling waves downstream of the pipe. (paper)
Energy Technology Data Exchange (ETDEWEB)
Sohn, Hyun Chull; Lee, Heang Nam; Park, Gil Moon [Chosun Univ., Gwangju (Korea, Republic of)
2005-10-01
In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180 .deg. curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code (STARCD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D{sub h}=50.
Zhang, Guang; Wu, Taihu; Song, Zhenxing; Wang, Haitao; Lu, Hengzhi; Wang, Yalin; Wang, Dan; Chen, Feng
2015-06-01
Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in
Subchannel flow analysis in Candu and ACR pressure tubes with radial and axial diameter variation
Energy Technology Data Exchange (ETDEWEB)
Catana, A.; Prodea, L. [RAAN, Institute for Nuclear Research, Arges (Romania); Danila, N.; Prisecaru, I.; Dupleac, D. [Bucharest Univ. Politehnica(Romania)
2007-07-01
The Candu (Canada Deuterium Uranium) and ACR (Advanced Candu Reactor) are pressure tubes (PT) heavy water moderated reactors. Candu are heavy water and ACR are light water cooled reactors. The pressure tube is filled with 12 bundles, each consisting of 37 respectively 43 fuel rods. One Candu reactor is in operation at Cernavoda, Romania since 1996. ACR is a proposed advanced Candu. PT diameter variation has a significant impact on the thermal-hydraulic parameters. Almost all thermal-hydraulic parameters change, but some of them have a greater significance. In this work we have considered a set of radial and axial PT diameter variations both for Candu-600 and ACR-700 reactors using various types of fuel bundles. We can conclude the following: 1) some thermal-hydraulic parameters are significantly influenced: critical heat flux (CHF), pressure drop, or void fraction; 2) the most significant parameter CHF is worsening which reduces the safety margin; 3) some fuel types present a better thermal-hydraulic behavior; and 4) fuel bundles with fresh fuel or low burnup have a worse thermal-hydraulic behaviour than those at average burn-up.
Subchannel flow analysis in Candu and ACR pressure tubes with radial and axial diameter variation
International Nuclear Information System (INIS)
Catana, A.; Prodea, L.; Danila, N.; Prisecaru, I.; Dupleac, D.
2007-01-01
The Candu (Canada Deuterium Uranium) and ACR (Advanced Candu Reactor) are pressure tubes (PT) heavy water moderated reactors. Candu are heavy water and ACR are light water cooled reactors. The pressure tube is filled with 12 bundles, each consisting of 37 respectively 43 fuel rods. One Candu reactor is in operation at Cernavoda, Romania since 1996. ACR is a proposed advanced Candu. PT diameter variation has a significant impact on the thermal-hydraulic parameters. Almost all thermal-hydraulic parameters change, but some of them have a greater significance. In this work we have considered a set of radial and axial PT diameter variations both for Candu-600 and ACR-700 reactors using various types of fuel bundles. We can conclude the following: 1) some thermal-hydraulic parameters are significantly influenced: critical heat flux (CHF), pressure drop, or void fraction; 2) the most significant parameter CHF is worsening which reduces the safety margin; 3) some fuel types present a better thermal-hydraulic behavior; and 4) fuel bundles with fresh fuel or low burnup have a worse thermal-hydraulic behaviour than those at average burn-up
Magnetic power piston fluid compressor
Gasser, Max G. (Inventor)
1994-01-01
A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Desheng; Shi, Lei; Zhao, Ruijie; Shi, Weidong; Pan, Qiang [Jiangsu University, Zhenjiang (China); Esch, B. P. [Eindhoven University of Technology, Eindhoven (Netherlands)
2017-02-15
The aim of the present investigation is to simulate and analyze the tip leakage flow structure and instantaneous evolution of tip vortex cavitation in a scaled axial-flow pump model. The improved filter-based turbulence model based on the density correction and a homogeneous cavitation model were used for implementing this work. The results show that when entering into the tip clearance, the backward flow separates from the blade tip near the pressure side, resulting in the generation of a corner vortex with high magnitude of turbulence kinetic energy. Then, at the exit of the tip clearance, the leakage jets would re-attach on the blade tip wall. Moreover, the maximum swirling strength method was employed in identifying the TLV core and a counter-rotating induced vortex near the end-wall successfully. The three dimensional cavitation patterns and in-plain cavitation structures obtained by the improved numerical method agree well with the experimental results. At the sheet cavitation trailing edge in the tip region, the perpendicular cavitation cloud induced by TLV sheds and migrates toward the pressure side of the neighboring blade. During its migration, it breaks down abruptly and generates a large number of smallscale cavities, leading to severe degradation of the pump performance, which is similar with the phenomenon observed by Tan et al.
Chen, Shu-cheng, S.
2009-01-01
For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.
Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L
2010-01-01
To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.
Pal, Sagnik; Saha, Sujoy Kumar
2015-08-01
The experimental friction factor and Nusselt number data for laminar flow of viscous oil through a circular duct having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are that the twisted tapes with oblique teeth in combination with integral axial corrugation roughness perform significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of fin parameter.
Displacement of one Newtonian fluid by another: density effects in axial annular flow
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1997-01-01
The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers......, the efficiency of the displacement is analysed for various flow situations....
System design and optimization study of axial flow turbine applied in ...
Indian Academy of Sciences (India)
between parameters of the turbine and flows, three different types of turbines with ... and the water are run through a multi-stage hydro-turbine for producing electricity. ... to optimize the runner blade shape of a tubular turbine. ..... Ranade V V, Perrard M, Le Sauze N, Xuereb C and Bertrand J 2001 Trailing vortices of Rushton ...
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
Skoch, Gary J.
2003-01-01
Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.
Experimental Pressure-Volume diagrams of scroll compressors
Picavet, Alain; Ginies, Pierre
2014-01-01
This paper presents the results of tests led with scroll compressors to establish pressure-volume diagrams. Two compressors were thinly instrumented with pressure and displacement sensors so as to follow the whole compression process, from suction to exhaust. A gear coder was set to mark off the closing and opening of gas pockets, and to study the speed variations occurring during a single rotation. These tests help to understand the various phenomena met in a compressor, such as back-flow, o...
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
International Nuclear Information System (INIS)
Jošt, D; Škerlavaj, A; Lipej, A
2012-01-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models
Jošt, D.; Škerlavaj, A.; Lipej, A.
2012-11-01
Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.
Reynolds number and friction coefficient for axial-parallel flow through complex cross-sections
International Nuclear Information System (INIS)
Markfort, D.
1975-01-01
Thermal and hydraulic lay-out of reactor fuel elements and other heat transfer equipment makes use of established functional relationship between dimensionless characters, the former being transferred from circular tube to more complex geometries. The stringent requirement (from theory) for 'geometrical similarity' is bypassed by defining 'equivalent diameters'. But dimensionless numbers may be derived from 'flow-integral-conditions' while the geometrical components contained therein reduce if not completely abolish the requirement for geometrical similarity. The derivation is demonstrated by using the Reynolds number. A friction coefficient valid for any kind of flow regime can be defined using integral-conditions. Correlations of friction coefficient and Reynolds number using universal-velocity profiles confirm the analysis when compared to well known experimental data. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Delhaye, D.; Paniagua, G. [von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Fernandez Oro, J.M. [Universidad de Oviedo, Area de Mecanica de Fluidos, Gijon (Spain); Denos, R. [European Commission, Directorate General for Research, Brussels (Belgium)
2011-01-15
The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 10{sup 6}, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks. (orig.)
High Efficiency Centrifugal Compressor for Rotorcraft Applications
Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.
2017-01-01
A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.
Compressors selection and sizing
Brown, Royce N
2005-01-01
This practical reference provides in-depth information required to understand and properly estimate compressor capabilities and to select the proper designs. Engineers and students will gain a thorough understanding of compression principles, equipment, applications, selection, sizing, installation, and maintenance. The many examples clearly illustrate key aspects to help readers understand the ""real world"" of compressor technology.Compressors: Selection and Sizing, third edition is completely updated with new API standards. Additions requested by readers include a new section on di
International Nuclear Information System (INIS)
Lu Li; Yang Yiren
2009-01-01
The responses and limit cycle flutter of a plate-type structure with cubic stiffness in viscous flow were studied. The continuous system was dispersed by utilizing Galerkin Method. The equivalent linearization concept was performed to predict the ranges of limit cycle flutter velocities. The coupled map of flutter amplitude-equivalent linear stiffness-critical velocity was used to analyze the stability of limit cycle flutter. The theoretical results agree well with the results of numerical integration, which indicates that the equivalent linearization concept is available to the analysis of limit cycle flutter of plate-type structure. (authors)
Directory of Open Access Journals (Sweden)
I. P. G. SOPAN RAHTIKA
2017-10-01
Full Text Available This paper reports the results of the numerical and experimental investigation on the flutter of cantilevered thin flat plates with free leading edge in axial flow. Three methods of in-vacuo modal analyses of the plates are presented and compared in this paper, namely the finite element modal analysis using ANSYS STUDENT Modal, the analytical beam model, and the experimental modal analysis. In this study, the numerical Fluid Structure Interaction was performed using the ANSYS STUDENT Structural Transient Analysis and ANSYS STUDENT CFX to obtain the system response in the time domain. Furthermore, the experimental investigation was conducted in the smooth flow of a wind tunnel to observe the flutter speeds of the plates and their vibration characteristics. The plates’ vibration behaviors were mapped on the normalized air speed. The normalized air speed can be divided into four speed zones based on the experimental plates’ vibration characteristics. A new finding observed during the experiments is the presence of intermittent vibration behavior that is unique to the free leading edge configuration and has not been reported by other researchers in the earlier references of the clamped leading edge configuration. The potential application of this Fluid Structure Interaction configuration to wind harvesting is inquired.
The Influence of Waves on the Near-Wake of an Axial-Flow Marine Hydrokinetic Turbine
Lust, Ethan; Luznik, Luksa; Flack, Karen
2017-11-01
Flow field results are presented for the near-wake of an axial-flow hydrokinetic turbine in the presence of surface gravity waves. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine based on the U.S. Department of Energy's Reference Model 1 tidal current turbine. Measurements were obtained in the large towing tank facility at the U.S. Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio selected to provide maximum power. The turbine has been shown to be nearly scale independent for these conditions. Velocity measurements were obtained using an in-house designed and manufactured, submersible, planar particle image velocimetry (PIV) system at streamwise distances of up to two diameters downstream of the rotor plane. Phase averaged results for steady and unsteady conditions are presented for comparison showing further expansion of the wake in the presence of waves as compared to the quiescent case. The impact of waves on turbine tip vortex characteristics is also examined showing variation in core radius, swirl velocity, and circulation with wave phase. Some aspects of the highly coherent wake observed in the steady case are recognized in the unsteady wake, however, the unsteady velocities imposed by the waves, particularly the vertical velocity component, appears to convect tip vortices into the wake, potentially enhancing energy transport and accelerating the re-energization process.
Leng, Xueyuan; Kolesnikov, Yurii B.; Krasnov, Dmitry; Li, Benwen
2018-01-01
The effect of an axial homogeneous magnetic field on the turbulence in the Taylor-Couette flow confined between two infinitely long conducting cylinders is studied by the direct numerical simulation using a periodic boundary condition in the axial direction. The inner cylinder is rotating, and the outer one is fixed. We consider the case when the magnetic Reynolds number Rem ≪ 1, i.e., the influence of the induced magnetic field on the flow is negligible that is typical for industry and laboratory study of liquid metals. Relevance of the present study is based on the similarity of flow characteristics at moderate and high magnetic field for the cases with periodic and end-wall conditions at the large flow aspect ratio, as proven in the earlier studies. Two sets of Reynolds numbers 4000 and 8000 with several Hartmann numbers varying from 0 to 120 are employed. The results show that the mean radial induced electrical current, resulting from the interaction of axial magnetic field with the mean flow, leads to the transformation of the mean flow and the modification of the turbulent structure. The effect of turbulence suppression is dominating at a strong magnetic field, but before reaching the complete laminarization, we capture the appearance of the hairpin-like structures in the flow.
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Energy Technology Data Exchange (ETDEWEB)
Mohseni, Mehdi Moayed; Rashidi, Fariborz; Movagar, Mohammad Reza Khorsand [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-02-15
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
Design and evaluation of an aeroacoustic wind tunnel for measurement of axial flow fans.
Bilka, M; Anthoine, J; Schram, C
2011-12-01
An anechoic wind tunnel dedicated to fan self-noise studies has been designed and constructed at the von Karman Institute The multi-chamber, mass flow driven design allows for all fan performance characteristics, aerodynamic quantities (e.g., wake turbulence measurements), and acoustic properties to be assessed in the same facility with the same conditions. The acoustic chamber performance is assessed using the optimum reference method and found to be within the ISO 3745 standards down to 150 Hz for pure tone and broadband source mechanisms. The additional influence of installation effects of an aerodynamic inlet was found to create a scattered sound field only near the source location, while still providing good anechoic results at more distant sound pressure measurement positions. It was found to have inflow properties, span-wise uniformity, and low turbulence intensity, consistent with those desired for fan self-noise studies. © 2011 Acoustical Society of America
Tartakovsky, Guzel D.; Neuman, Shlomo P.
2007-01-01
A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our
Modelling and measurement of a moving magnet linear compressor performance
International Nuclear Information System (INIS)
Liang, Kun; Stone, Richard; Davies, Gareth; Dadd, Mike; Bailey, Paul
2014-01-01
A novel moving magnet linear compressor with clearance seals and flexure bearings has been designed and constructed. It is suitable for a refrigeration system with a compact heat exchanger, such as would be needed for CPU cooling. The performance of the compressor has been experimentally evaluated with nitrogen and a mathematical model has been developed to evaluate the performance of the linear compressor. The results from the compressor model and the measurements have been compared in terms of cylinder pressure, the ‘P–V’ loop, stroke, mass flow rate and shaft power. The cylinder pressure was not measured directly but was derived from the compressor dynamics and the motor magnetic force characteristics. The comparisons indicate that the compressor model is well validated and can be used to study the performance of this type of compressor, to help with design optimization and the identification of key parameters affecting the system transients. The electrical and thermodynamic losses were also investigated, particularly for the design point (stroke of 13 mm and pressure ratio of 3.0), since a full understanding of these can lead to an increase in compressor efficiency. - Highlights: • Model predictions of the performance of a novel moving magnet linear compressor. • Prototype linear compressor performance measurements using nitrogen. • Reconstruction of P–V loops using a model of the dynamics and electromagnetics. • Close agreement between the model and measurements for the P–V loops. • The design point motor efficiency was 74%, with potential improvements identified
An Investigation of Backflow Phenomenon in Centrifugal Compressors
Benser, William A; Moses, Jason J
1945-01-01
Report presents the results of an investigation conducted to determine the nature and the extent of the reversal of flow, which occurs at the inlet of centrifugal compressors over a considerable portion of the operating range. Qualitative studies of this flow reversal were made by lampblack patterns taken on a mixed-flow-type impeller and by tuft studies made on a conventional centrifugal compressor. Quantitative studies were made on a compressor specially designed to enable survey of angularity of flow, static and total pressures, and temperatures to be taken very close to the impeller front housing.
Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas
2018-02-01
This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.
Tests of cold helium compressors at Fermilab
International Nuclear Information System (INIS)
Peterson, T.J.; Fuerst, J.D.
1988-01-01
Fermilab has tested two compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Both Creare Inc. and Cryogenic Consultants Inc. have supplied units for evaluation. The Creare machine, a high speed centrifugal pump/compressor, yielded 60% adiabatic efficiency but had difficulty withstanding two-phase flow. Cryogenic Consultants provided a reciprocating unit which achieved 59% efficiency and, although lacking the operating characteristics of the turbomachine, endured throughout testing and was insensitive to two-phase flow. Test results are discussed
Energy Technology Data Exchange (ETDEWEB)
Svigler, J.; Vimmr, J. [Westboehmische Univ. Pilsen (Czechoslovakia). Lehrstuhl fuer Mechanik
2000-07-01
A fast development of the screw machines leads to the investigation of the physical processes, which take place in the work space of the screw machine and in the gaps on its boundary. These processes have a great influence on the performance of the screw machine especially with regard to its efficiency, therefore its knowledge is very important. It is necessary to turn our attention to the fluid dynamics of the screw machines. This paper deals with the preliminary analysis of the fluid flow in the screw machines. In this paper numerical computation of the compressible inviscid fluid flow in the work space of the screw machines and through the sealing gaps which are situated between the stator and the head of the female rotor tooth, is presented. The mathematical model of two- and three-dimensional inviscid compressible flow is described by the conservative system of the Euler equations. This problem was solved by the cell-centred finite volume method on a structured quadrilateral mesh. (orig.) [German] Die schnelle Entwicklung der Schraubenmaschinen fuehrt zur Notwendigkeit einer Untersuchung der physikalischen Vorgaenge, die im Arbeitsraum und in den arbeitsraumbegrenzenden Spalten der Schraubenmaschine ablaufen. Diese Vorgaenge beeinflussen nachhaltig das Betriebsverhalten sowie die Energiewandlungsguete, womit deren Kenntnis und der Information ueber die Details eine ausserordentliche Bedeutung zukommt. Einen Ausgangspunkt fuer die Analyse stellen die Kenntnisse im Bereich der kompressiblen Fluide dar. Der Zustand kann vor allem durch das Geschwindigkeits-, Druck-, und Temperaturfeld beurteilt werden. Der Beitrag beschaeftigt sich mit der Problematik der Stroemungsuntersuchungen des Gases im Arbeitsraum der Schaubenmaschine und im Gehaeusespalt. Die Aufgabe wird dreidimensional behandelt und auf eine Art und Weise formuliert, dass sie die Voraussetzung fuer die Erstellung eines raeumlichen Modells und der damit gekoppelten mathematischen Loesung schafft. Die
International Nuclear Information System (INIS)
Wollermann-Windgasse, R.; Ackermann, F.
1987-04-01
The project describes the development of a new generation of CO 2 -lasers using high frequency discharge (13.56 MHz) for laser excitation by capacitive dielectrical input. HF-excitation has a lot of advantages compared with direct current technology, these are higher electrical input power into the plasma, better homogeneity and stability of discharges. In addition to this, HF-excitation shows excellent possibilities for pulsing and modulation. As a result of this, there are compact powerful laser systems with the possibility of scaling up to the multi-kW-range. The examination included fast transversal flowed as well as fast axial flowed systems. In the end of this project development prototypes with laser output power of 1000 W, 1500 W and 3000 W were available. Detailed attempts of application show that these lasers on grounds of excellent laser output quality and controlability of laser power specifically to each process make possible new ways for material treatment by laser. (orig./HP) [de
International Nuclear Information System (INIS)
Hung, Shih-Yu; Shen, Ming-Ho; Chang, Ying-Pin
2009-01-01
The sequential neural-network approximation and orthogonal array (SNAOA) were used to shorten the cooling time for the rapid cooling process such that the normalized maximum resolved stress in silicon wafer was always below one in this study. An orthogonal array was first conducted to obtain the initial solution set. The initial solution set was treated as the initial training sample. Next, a back-propagation sequential neural network was trained to simulate the feasible domain to obtain the optimal parameter setting. The size of the training sample was greatly reduced due to the use of the orthogonal array. In addition, a restart strategy was also incorporated into the SNAOA so that the searching process may have a better opportunity to reach a near global optimum. In this work, we considered three different cooling control schemes during the rapid thermal process: (1) downward axial gas flow cooling scheme; (2) upward axial gas flow cooling scheme; (3) dual axial gas flow cooling scheme. Based on the maximum shear stress failure criterion, the other control factors such as flow rate, inlet diameter, outlet width, chamber height and chamber diameter were also examined with respect to cooling time. The results showed that the cooling time could be significantly reduced using the SNAOA approach
Energy Technology Data Exchange (ETDEWEB)
Hergt, Alexander
2011-10-15
This thesis presents the results of an experimental study of passive flow control in a highly loaded compressor cascade. Vortex generators and boundary layer fences are used as flow control devices in order to enhance the aerodynamic performance. In a first step, the complex secondary flow effects in the compressor cascade are described in detailed. This gives the basis for a specific approach of influencing the cascade flow by means of vortex generators and boundary layer fence arrangement on the endwall. Depending on the vortex generator type and position, there is an impact on the endwall cross flow, the development of the horse shoe vortex at the leading edge of the vane and the extent of the corner separation achieved by improved mixing within the boundary layer. The designed boundary layer fence arrangement on the endwall constrains the interaction of the endwall cross flow with the suction side boundary layer, thus the onset of the corner separation is delayed and a significant loss reduction achieved. In order to proof the cascade results, an exemplary vortex generator configuration is applied on the stator of a single stage axial compressor and a significant efficiency enhancement is achieved.
Directory of Open Access Journals (Sweden)
Luiz Fernando KUBRUSLY
2000-06-01
Full Text Available É apresentado estudo in vitro de um dispositivo de assistência circulatória totalmente implantável no ventrículo esquerdo, de fluxo axial e de tamanho pequeno (30 cc - 7 cm comprimento. Apesar dessas características foi capaz de gerar fluxos entre 5 - 8 l/min com motor, operando em 8 W, sem causar hemólise em período de até 12 horas. O custo de produção, excetuando-se o sistema de baterias, foi projetado entre 5 - 8 mil dólares, o que o torna viável para utilização clínica rotineira em nosso país.We are currently studying an intraventricular axial flow blood pump in vitro. It is designed for long term left ventricular support. The small (30 cc, 7 cm length was capable of producing flows of 5 - 8 l/min on a 8 W motor, with no device related hemolysis throughout the 12 h of the study. The cost of production, except for the batteries, has been estimated at between 5 - 8 thousand dollars, a reasonable amount for routine clinical use in Brazil.
Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei
2018-05-01
Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.
Transient analysis of a variable speed rotary compressor
International Nuclear Information System (INIS)
Park, Youn Cheol
2010-01-01
A transient simulation model of a rolling piston type rotary compressor is developed to predict the dynamic characteristics of a variable speed compressor. The model is based on the principles of conservation, real gas equations, kinematics of the crankshaft and roller, mass flow loss due to leakage, and heat transfer. For the computer simulation of the compressor, the experimental data were obtained from motor performance tests at various operating frequencies. Using the developed model, re-expansion loss, friction loss, mass flow loss and heat transfer loss is estimated as a function of the crankshaft speed in a variable speed compressor. In addition, the compressor efficiency and energy losses are predicted at various compressor-operating frequencies. Since the transient state of the compressor strongly depends on the system, the developed model is combined with a transient system simulation program to get transient variations of the compression process in the system. Motor efficiency, mechanical efficiency, motor torque and volumetric efficiency are calculated with respect to variation of the driving frequency in a rotary compressor.
Hermetically Sealed Compressor
Holtzapple, Mark T.
1994-01-01
Proposed hermetically sealed pump compresses fluid to pressure up to 4,000 atm (400 MPa). Pump employs linear electric motor instead of rotary motor to avoid need for leakage-prone rotary seals. In addition, linear-motor-powered pump would not require packings to seal its piston. Concept thus eliminates major cause of friction and wear. Pump is double-ended diaphragm-type compressor. All moving parts sealed within compressor housing.
Energy Technology Data Exchange (ETDEWEB)
Nishioka, K.; Kuroda, H.; Obata, S.; Chimura, O. [National Defense Academy, Kanagawa (Japan)
1999-06-25
The experimental studies are conducted to reveal the mechanism of stall margin improvement of an axial flow fan by injection or suction from the end wall. In case of injection, the largest improvement is obtained by the injection at about 0. 14 {approx} 0 .21 times axial chord length downstream from leading edge. The reason for large improvement is that stall vortex, shed intermittent separation vortex and tip leakage vortex are dissipated by this injection, and also that this blowing suppresses the separation of boundary layer. In case of suction, the largest improvement is found for the suction from the end wall near leading edge. The amplitude of periodic static pressure after stall inception becomes smaller in comparison with injection cases. These effects are increased with the increase of suction flow rate, because the discharge of the vortex occurs more easily. On the other hand, the suction from the upstream of leading edge reduces the axial velocity near rotor tip, and then it induces stall. Also we tried to visualize the tip region flow, The suppression mechanism is discussed based on the visualization. The suppression of stall is successfully photographed. (author)
International Nuclear Information System (INIS)
Bogomolova, L.K.; Vasilenko, A.T.
1974-01-01
The publication describes the construction and operating principle of the sealed uniflow compressor. This compressor insures against substantial contamination of the medium handled. Use of the slot-type sealing of the piston and rejection of the sliding bearings result in insuring high purity of the medium handled. The compressor performance is as follows: maximum air throughput - 262.6 1/h at 24 deg C and absolute outlet pressure being 1.14 kgf/cm 2 , minimum air throughput - 82.6 1/h at 24 deg C and absolute outlet pressure being 1.4 kgf/cm 2 ; inlet pressure equals 1 kgf/cm 2 . The compressor is provided with a solenoid-operated drive. The prototype has been in service for 6 months, with accumulated service time amounting to 500 h. The compressor has given a good account of itself within this period. The compressor is to be used in the gas purification circuit when this gas is used as a working medium in the spark or streamer chambers
Low-temperature centrifugal helium compressor
International Nuclear Information System (INIS)
Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.
1974-01-01
A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)
DEFF Research Database (Denmark)
Witting, Nanna; Andersen, Linda K; Vissing, John
2016-01-01
Classically, myopathies are categorized according to limb or cranial nerve muscle affection, but with the growing use of magnetic resonance imaging it has become evident that many well-known myopathies have significant involvement of the axial musculature. New disease entities with selective axial...
Kinetics of a gas adsorption compressor
International Nuclear Information System (INIS)
Chan, C.K.; Elleman, D.D.; Tward, E.
1984-01-01
This chapter uses a two-phase model to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The theories and techniques that have been developed for a two-phase system are used to predict the pressure, the temperature and the mass flow transients in a gas sorption compressor. The analytical solutions are then compared with the performance of a laboratory gas adsorption compressor. A computer code was written to solve the governing equations, using a standard forward marching predictor-corrector method. It is found that while the analytical model overpredicts the pressure and the temperature transient, it predicts the general trend of the transient profile and the existence of the turning point
Ola, Max; Thomas, Christiane; Hesse, Ullrich
2017-08-01
Compressor performance test procedures are defined by the standard DIN EN 13771, wherein a variety of possible calorimeter and flow rate measurement methods are suggested. One option is the selection of two independent measurement methods. The accuracies of both selected measurement methods are essential. The second option requires only one method. However the measurement accuracy of the used device has to be verified and recalibrated on a regular basis. The compressor performance test facility at the Technische Universitaet Dresden uses a calibrated flow measurement sensor, a hot gas bypass and a mixed flow heat exchanger. The test bench can easily be modified for tests of various compressor types at different operating ranges and with various refrigerants. In addition, the modified test setup enables the investigation of long term liquid slug and its effects on the compressor. The modification comprises observational components, adjustments of the control system, safety measures and a customized oil recirculation system for compressors which do not contain an integrated oil sump or oil level regulation system. This paper describes the setup of the test bench, its functional principle, the key modifications, first test results and an evaluation of the energy balance.
Safe and efficient operation of multistage cold compressor systems
International Nuclear Information System (INIS)
Kauschke, M.; Haberstroh, C.; Quack, H.
1996-01-01
Large refrigeration rates in the temperature range of super fluid helium can only be obtained with the help of centrifugal cold compressors. For the large 2 K systems, four compression stages are necessary to reach atmospheric pressure. Centrifugal cold compressors are quite sensitive to mass flow and suction temperature variations; but these have to be expected in a real system. The first step in the systems design is to find safe and efficient quasi-stationary modes of operation. The system which is being proposed for the TESLA refrigerators relies on two features. The first is to allow the room temperature screw compressor, downstream of the cold compressors to work occasionally with a subatmospheric suction pressure. The second is to stabilize the suction temperature of the third stage of compression at about 10 K. With these features it is possible, that in all modes of operation all four compressor stages operate exactly at their design point
International Nuclear Information System (INIS)
Xu, Bing; Ye, Shaogan; Zhang, Junhui; Zhang, Chunfeng
2016-01-01
This paper investigates the potential of flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves. A dynamic model is developed to analyze the pumping dynamics of the pump and validated by experimental results. The effects of cross-angle on the flow ripples in the outlet and inlet ports, and the piston chamber pressure are investigated. The effects of pressure relief grooves on the optimal solutions obtained by a multi-objective optimization method are identified. A sensitivity analysis is performed to investigate the sensitivity of cross-angle to different working conditions. The results reveal that the flow ripples from the optimal solutions are smaller using the cross-angle and pressure relief grooves than those using the cross-angle and ordinary precompression and decompression angles and the cross-angle can be smaller. In addition, when the optimal design is used, the outlet flow ripples sensitivity can be reduced significantly.
International Nuclear Information System (INIS)
Ansari, M.R.; Azadi, R.
2016-01-01
Highlights: • A vertical two-phase flow system is manufactured to study flow behavior adiabatically. • Two test sections are studied with inner diameters of 40 mm and 70 mm at two locations. • Flow pattern maps are presented for both tubes. • Effects of tube diameter and heights on pattern transition boundaries are investigated. • Three sub-patterns bubbly flow and two types of slug pattern are recognized. - Abstract: In the present research, a two-phase flow system is designed, manufactured, assembled and adjusted to study two-phase flow behavior isothermally. Test sections are tubes standing in vertical position and are made of transparent acrylic with inner diameters of 40 mm and 70 mm. Two axial locations of 1.73 m and 3.22 m are chosen for data acquisition. Flow pattern maps are presented for both tubes. Effects of tube diameter and axial location on pattern transition boundaries are investigated. Air and water are chosen as working fluids. The range of air and water superficial velocities are 0.054–9.654 m/s and 0.015–0.877 m/s for the 40 mm diameter tube, but these values are 0.038–20.44 m/s and 0.036–1.530 m/s for 70 mm diameter tube. The results show that for both tubes, increasing axial location does not affect flow transition boundaries significantly. However, slug pattern region shrinks considerably by changing tube diameter from 40 mm to 70 mm. Using image processing techniques, recorded high speed movies were investigated accurately. As a result, bubbly flow in the 40 mm tube can be divided into three sub-patterns as dispersed, agitated and agglomerated bubbly. Also, two types of slug pattern are also recognized in the same tube diameter which are called small and large slugs. Semi-annular flow is observed as an independent pattern in the 70 mm tube that does not behave as known churn or annular patterns.
International Nuclear Information System (INIS)
Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio
1998-01-01
Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)
Fitzjerrell, D. G.; Belver, T. L.; Moore, H. E.
1986-01-01
Compressor pistons moved by eccentric shaft need no lubricants. Compressor has shaft, middle section is eccentric in relation to end sections. Driven by brushless dc motor, shaft turns inner races of set of four cam bearings. Outer cam-bearing races in turn actuate four pistons spaced equally apart, around and along shaft. Each outer bearing race held in position by pressure exerted on it by piston. Because no frictional motion between piston and outer bearing race, lubricant between them unnecessary. Cam bearings themselves contain potted internal lubricant. Originally proposed for use in space, new compressor for refrigerators or freezers does not depend on pool of oil for lubricating its pistons. Operated in any orientation.
Electrochemical Hydrogen Compressor
Energy Technology Data Exchange (ETDEWEB)
Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)
2016-01-21
Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).
Numerical simulation investigation on centrifugal compressor performance of turbocharger
International Nuclear Information System (INIS)
Li, Jie; Yin, Yuting; Li, Shuqi; Zhang, Jizhong
2013-01-01
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Numerical simulation investigation on centrifugal compressor performance of turbocharger
Energy Technology Data Exchange (ETDEWEB)
Li, Jie [China Iron and Steel Research Institute Group, Beijing (China); Yin, Yuting [China North Engine Research Institute, Datong (China); Li, Shuqi; Zhang, Jizhong [Science and Technology Diesel Engine Turbocharging Laboratory, Datong (China)
2013-06-15
In this paper, the mathematical model of the flow filed in centrifugal compressor of turbocharger was studied. Based on the theory of computational fluid dynamics (CFD), performance curves and parameter distributions of the compressor were obtained from the 3-D numerical simulation by using CFX. Meanwhile, the influences of grid number and distribution on compressor performance were investigated, and numerical calculation method was analyzed and validated, through combining with test data. The results obtained show the increase of the grid number has little influence on compressor performance while the grid number of single-passage is above 300,000. The results also show that the numerical calculation mass flow rate of compressor choke situation has a good consistent with test results, and the maximum difference of the diffuser exit pressure between simulation and experiment decrease to 3.5% with the assumption of 6 kPa additional total pressure loss at compressor inlet. The numerical simulation method in this paper can be used to predict compressor performance, and the difference of total pressure ratio between calculation and test is less than 7%, and the total-to-total efficiency also have a good consistent with test.
Pressure field study of the Tevatron cold compressors
International Nuclear Information System (INIS)
Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; Fermilab
2003-01-01
The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper
Pressure Field Study of the Tevatron Cold Compressors
International Nuclear Information System (INIS)
Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.
2004-01-01
The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40,000 and 95,000 rpm, with a speed of 80,000 rpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper
Study of compressor systems for a gas-generator engine
Sather, Bernard I; Tauschek, Max J
1950-01-01
Various methods of providing compressor-capacity and pressure-ratio control in the gas-generator type of compound engine over a range of altitudes from sea level to 50,000 feet are presented. The analytical results indicate that the best method of control is that in which the first stage of compression is carried out in a variable-speed supercharger driven by a hydraulic slip coupling. The constant-speed second stage could be either a mixed-flow rotary compressor or a piston-type compressor. A variable-area turbine nozzle is shown to be unnecessary for cruising operation of the engine.
Zhao, Hewei; Yang, Shengchang; Guo, Xudong; Peng, Congjiao; Gu, Xiaoxuan; Deng, Chuanyuan; Chen, Luzhen
2018-02-01
Mangrove species have developed uniquely efficient water-use strategies in order to survive in highly saline and anaerobic environments. Herein, we estimated the stand water use of two diffuse-porous mangrove species of the same age, Sonneratia apetala Buch. Ham and Sonneratia caseolaris (L.) Engl., growing in a similar intertidal environment. Specifically, to investigate the radial patterns of axial sap flow density (Js) and understand the anatomical traits associated with them, we measured axial sap flow density in situ together with micromorphological observations. A significant decrease of Js was observed for both species. This result was accompanied by the corresponding observations of wood structure and blockages in xylem sapwood, which appeared to influence and, hence, explained the acute radial reductions of axial sap flow in the stems of both species. However, higher radial resistance in sapwood of S. caseolaris caused a steeper decline of Js radially when compared with S. apetala, thus explaining the latter's more efficient use of water. Without first considering acute reductions in Js into the sapwood from the outer bark, a total of ~55% and 51% of water use would have been overestimated, corresponding to average discrepancies in stand water use of 5.6 mm day-1 for S. apetala trees and 2.5 mm day-1 for S. caseolaris trees. This suggests that measuring radial pattern of Js is a critical factor in determining whole-tree or stand water use. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor
Papalia, John J.
Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA
Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.
2018-06-01
Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.
Novel Long Stroke Reciprocating Compressor for Energy Efficient Jaggery Making
Rane, M. V.; Uphade, D. B.
2017-08-01
Novel Long Stroke Reciprocating Compressor is analysed for jaggery making while avoiding burning of bagasse for concentrating juice. Heat of evaporated water vapour along with small compressor work is recycled to enable boiling of juice. Condensate formed during heating of juice is pure water, as oil-less compressor is used. Superheat of compressor is suppressed by flow of superheated vapours through condensate. It limits heating surface temperature and avoids caramelization of sugar. Thereby improves quality of jaggery and eliminates need to use chemicals for colour improvement. Stroke to bore ratio is 0.6 to 1.2 in conventional reciprocating drives. Long stroke in reciprocating compressors enhances heat dissipation to surrounding by providing large surface area and increases isentropic efficiency by reducing compressor outlet temperature. Longer stroke increases inlet and exit valve operation timings, which reduces inertial effects substantially. Thereby allowing use of sturdier valves. This enables handling liquid along with vapour in compressors. Thereby supressing the superheat and reducing compressor power input. Longer stroke increases stroke to clearance ratios which increases volumetric efficiency and ability of compressor to compress through higher pressure ratios efficiently. Stress-strain simulation is performed in SolidWorks for gear drive. Long Stroke Reciprocating Compressor is developed at Heat Pump Laboratory, stroke/bore 292 mm/32 mm. It is operated and tested successfully at different speeds for operational stability of components. Theoretical volumetric efficiency is 93.9% at pressure ratio 2.0. Specific energy consumption is 108.3 kWhe/m3 separated water, considering free run power.
Low-Cost Rotating Experimentation in Compressor Aerodynamics Using Rapid Prototyping
Directory of Open Access Journals (Sweden)
Mathias Michaud
2016-01-01
Full Text Available With the rapid evolution of additive manufacturing, 3D printed parts are no longer limited to display purposes but can also be used in structural applications. The objective of this paper is to show that 3D prototyping can be used to produce low-cost rotating turbomachinery rigs capable of carrying out detailed flow measurements that can be used, among other things, for computational fluid dynamics (CFD code validation. A fully instrumented polymer two-stage axial-mixed flow compressor test rig was designed and fabricated with stereolithography (SLA technology by a team of undergraduate students as part of a senior-year design course. Experiments were subsequently performed on this rig to obtain both the overall pressure rise characteristics of the compressor and the stagnation pressure distributions downstream of the blade rows for comparison with CFD simulations. In doing so, this work provides a first-of-a-kind assessment of the use of polymer additive technology for low-cost rotating turbomachinery experimentation with detailed measurements.
Study of axial magnetic effect
Energy Technology Data Exchange (ETDEWEB)
Braguta, Victor [IHEP, Protvino, Moscow region, 142284 Russia ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Chernodub, M. N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université François-Rabelais Tours, Fédération Denis Poisson, Parc de Grandmont, 37200 Tours, France Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Goy, V. A. [School of Natural Sciences, Far Eastern Federal University, Sukhanova street 8, Vladivostok, 690950 (Russian Federation); Landsteiner, K. [Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Molochkov, A. V. [School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922 (Russian Federation); Ulybyshev, M. [ITEP, B. Cheremushkinskaya street 25, Moscow, 117218 Russia Institute for Theoretical Problems of Microphysics, Moscow State University, Moscow, 119899 (Russian Federation)
2016-01-22
The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower compared to a theoretical prediction.
International Nuclear Information System (INIS)
Farkas, Z.D.
1980-02-01
The RF Energy Compressor, REC described here, transforms cw rf into periodic pulses using an energy storage cavity, ESC, whose charging is controlled by 180 0 bi-phase modulation, PSK, and external Q switching, βs. Compression efficiency, C/sub e/, of 100% can be approached at any compression factor C/sub f/
Internal combustion engine for natural gas compressor operation
Energy Technology Data Exchange (ETDEWEB)
Hagen, Christopher; Babbitt, Guy
2016-12-27
This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.
Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor
McKain, Ted F.; Holbrook, Greg J.
1997-01-01
The objective of this program was to define the aerodynamic design and manufacturing coordinates for an advanced 4:1 pressure ratio, single stage centrifugal compressor at a 10 lbm/sec flow size. The approach taken was to perform an exact scale of an existing DDA compressor originally designed at a flow size of 3.655 lbm/sec.
International Nuclear Information System (INIS)
Beaud, F.
1997-01-01
A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author)
Multi-Temperature Heat Pump with Cascade Compressor Connection
Directory of Open Access Journals (Sweden)
Sit M.L.
2017-08-01
Full Text Available The object of the study is a multifunctional heat pump with several evaporators and condensers designed for simultaneous provision of technological processes with heat and cold. The aim of the work is the development and study of the scheme for this type of heat pumps, which ensures minimum irreversibility in the "compressor-gas coolers" chain, without the use of adjustable ejectors installed after evaporators and used as flow mixers. The obtained technical solution ensures the stabilization of the heat pump coefficient of performance (COP and prescribed thermal regimes of heat exchangers at a variable flow rate of the refrigerant. The novelty of the elaboration is inclusion a compressor of the first stage with a serially connected intermediate heat exchanger and a control valve that are located before the compressor inlet of the second stage of the heat pump, which allows to establish a rational pressure after the first stage of the compressors. A scheme is proposed for regulating the temperature at the inlet of the first stage compressors by regulating the flow through the primary circuits of the recuperative heat exchangers. The first stage compressor control system allows providing the required modes of operation of the heat pump. It is established, because of the exergetic analysis of the sections of the hydraulic circuit of heat pump located between the evaporators and gas coolers that the reduction of irreversible losses in the heat pump is ensured due to the optimal choice of the superheat value of the gas after the evaporators.
Core compressor exit stage study. 1: Aerodynamic and mechanical design
Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.
1979-01-01
The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.
A CFD study of Screw Compressor Motor Cooling Analysis
Branch, S.
2017-08-01
Screw compressors use electric motors to drive the male screw rotor. They are cooled by the suction refrigerant vapor that flows around the motor. The thermal conditions of the motor can dramatically influence the performance and reliability of the compressor. The more optimized this flow path is, the better the motor performance. For that reason it is important to understand the flow characteristics around the motor and the motor temperatures. Computational fluid dynamics (CFD) can be used to provide a detailed analysis of the refrigerant’s flow behavior and motor temperatures to identify the undesirable hot spots in the motor. CFD analysis can be used further to optimize the flow path and determine the reduction of hot spots and cooling effect. This study compares the CFD solutions of a motor cooling model to a motor installed with thermocouples measured in the lab. The compressor considered for this study is an R134a screw compressor. The CFD simulation of the motor consists of a detailed breakdown of the stator and rotor components. Orthotropic thermal conductivity material properties are used to represent the simplified motor geometry. In addition, the analysis includes the motor casings of the compressor to draw heat away from the motor by conduction. The study will look at different operating conditions and motor speeds. Finally, the CFD study will investigate the predicted motor temperature change by varying the vapor mass flow rates and motor speed. Recommendations for CFD modeling of such intricate heat transfer phenomenon have thus been proposed.
Energy Technology Data Exchange (ETDEWEB)
Iranshahi, D.; Pourazadi, E.; Paymooni, K.; Bahmanpour, A.M.; Rahimpour, M.R.; Shariati, A. [Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)
2010-12-15
Improving the octane number of the aromatics' compounds has always been an important matter in refineries and lots of investigations have been made concerning this issue. In this study, an axial-flow spherical packed-bed reactor (AF-SPBR) is considered for naphtha reforming process in the presence of catalyst deactivation. Model equations are solved by the orthogonal collocation method. The AF-SPBR results are compared with the plant data of a conventional tubular packed-bed reactor (TR). The effects of some important parameters such as pressure and temperature on aromatic and hydrogen production rates and catalyst activity have been investigated. Higher production rates of aromatics can successfully be achieved in this novel reactor. Moreover, results show the capability of flow augmentation in the proposed configuration in comparison with the TR. This study shows the superiority of AF-SPBR configuration to the conventional types. (author)
International Nuclear Information System (INIS)
Pettigrew, M.J.; Paidoussis, M.P.
1976-03-01
The nuclear fuel for CANDU-BLW reactors consists of fuel bundles assembled in the form of strings. The strings are inserted in fuel channels. From a fluidelastic viewpoint the strings are essentially flexible cylinders in confined annuli. Fluidelastic instability is one of the flow-induced vibration excitation mechanisms that could cause fretting damage. The fluidelastic behaviour of flexible cylinders in confined annuli was investigated experimentally. The cylinders were subjected to fuel channel flow conditions, that is flow velocities up to 10 m/s in liquid flow and mass fluxes up to 500 g/cm 2 s in two-phase flow simulated by air-water. The effect of several parameters such as flexural rigidity, end conditions, downstream end shape, and annular confinement were explored. Generally, cylinders except those with square downstream free ends experienced fluidelastic instabilities in liquid flow in the form of buckling or oscillations. Higher frequencies and higher modes were observed at higher flow velocities. Conversely cylinders with square downstream free ends were very stable in liquid flow. The behaviour in two-phase flow is completely different. The cylinder vibration response was severe and broadband random in nature. A mathematical model was formulated for the fluidelastic behaviour. The experimental results are compared to the analytical predictions. The formulated model is qualitatively valid for liquid flow but not for two-phase flow. (author)
DESIGN PARAMETERS OF CENTRIFUGAL COMPRESSOR INDUCER
Directory of Open Access Journals (Sweden)
Saim KOÇAK
1998-03-01
Full Text Available Design characteristics of centrifugal compressor impellers working with compressible fluids are analyzed, and the design parameters of inducer are defined. The effects of incidence, deviation and deflection angles, relative eddy, rotating stall and Mach number are investigated. The relation between minimum relative Mach number of inducer and flow angle is investigated and it is observed that the minimum Mach number occurs for flow angle values between -680 and -520 . In the design, the effect of a 100 difference in flow angle is found to be less than 1 % on minimum relative Mach number.
Progress of High Efficiency Centrifugal Compressor Simulations Using TURBO
Kulkarni, Sameer; Beach, Timothy A.
2017-01-01
Three-dimensional, time-accurate, and phase-lagged computational fluid dynamics (CFD) simulations of the High Efficiency Centrifugal Compressor (HECC) stage were generated using the TURBO solver. Changes to the TURBO Parallel Version 4 source code were made in order to properly model the no-slip boundary condition along the spinning hub region for centrifugal impellers. A startup procedure was developed to generate a converged flow field in TURBO. This procedure initialized computations on a coarsened mesh generated by the Turbomachinery Gridding System (TGS) and relied on a method of systematically increasing wheel speed and backpressure. Baseline design-speed TURBO results generally overpredicted total pressure ratio, adiabatic efficiency, and the choking flow rate of the HECC stage as compared with the design-intent CFD results of Code Leo. Including diffuser fillet geometry in the TURBO computation resulted in a 0.6 percent reduction in the choking flow rate and led to a better match with design-intent CFD. Diffuser fillets reduced annulus cross-sectional area but also reduced corner separation, and thus blockage, in the diffuser passage. It was found that the TURBO computations are somewhat insensitive to inlet total pressure changing from the TURBO default inlet pressure of 14.7 pounds per square inch (101.35 kilopascals) down to 11.0 pounds per square inch (75.83 kilopascals), the inlet pressure of the component test. Off-design tip clearance was modeled in TURBO in two computations: one in which the blade tip geometry was trimmed by 12 mils (0.3048 millimeters), and another in which the hub flow path was moved to reflect a 12-mil axial shift in the impeller hub, creating a step at the hub. The one-dimensional results of these two computations indicate non-negligible differences between the two modeling approaches.
International Nuclear Information System (INIS)
Khvostov, G.; Wiesenack, W.; Zimmermann, M.A.; Ledergerber, G.
2011-01-01
Highlights: → A model for the dynamics of axial gas redistribution in fuel rods during the LOCA is developed and coupled to the FALCON fuel behaviour code. → The first verification of the model is carried out using the data of the selected Halden LOCA tests. → According to calculation, the short rods used in the Halden tests show a small effect of the delayed gas redistribution during the clad ballooning. → The predicted effect is significant in the full length rods, eventually resulting in a considerable delay of the predicted moment of cladding rupture. → The predicted delay of cladding burst may be large enough to eventually affect the efficiency of the emergency core cooling system. - Abstract: A model for axial gas flow in a fuel rod during the LOCA is integrated into the FRELAX model that deals with the thermal behaviour and fuel relocation in the fuel rods of the Halden LOCA test series. The first verification was carried out using the experimental data for the inner pressure during the gas outflow after cladding rupture in tests 3, 4 and 5. Furthermore, the modified FRELAX model is implicitly coupled to the FALCON fuel behaviour code. The analysis with the new methodology shows that the dynamics of axial gas-flow along the rod and through the cladding rupture can have a strong influence on the fuel rod behaviour. Specifically, a delayed axial gas redistribution during the heat-up phase of the LOCA can result in a drop of local pressure in the ballooned area, which is eventually able to affect the cladding burst. The results of the new model seem to be useful when analysing some of the Halden LOCA tests (showing considerable fuel relocation) and selected cases of LOCA in full-length fuel rods. While the short rods used in the Halden tests only show a very small effect of the delayed gas redistribution during the clad ballooning, such an effect is predicted to be significant in the full-scale rods - with a power peak located sufficiently away from
Xu, Bing; Hu, Min; Zhang, Junhui
2015-09-01
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test
Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian
2016-03-15
A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.
Techno-Economic Analysis of Gas Turbine Compressor Washing to Combat Fouling
Abass, Kabir Oliade
2015-01-01
Among the major deterioration problems a gas turbine encountered while in operation is compressor blade fouling. This is the accumulation and adhesion of dirt and sediment on the compressor blade which contributes between 70 to 85% of gas turbine performance loss. Fouling reduces turbine air mass flow capacity, compressor pressure ratio and overall gas turbine efficiency. In most cases, its effect does not manifest immediately in gas turbine power output and efficiency since they are not meas...
Aero-Mechanical Coupling in a High-Speed Compressor
2010-02-01
freedom mass-spring- damper system as χ = ς 2 √ κµ . (51) ς represents the viscous damping, κ is the system stiffness and µ the system mass. χ expresses...between the fluid and structures which are common in modern, high-speed axial compressors. There were two major areas of focus. The first was the...development of measurement technique specifically for the study of these phenomena, termed Blade Image Velocimetry (BIV). The technique can measure fluid and
Study Improving Performance of Centrifugal Compressor In Paiton Coal Fired Power Plant Unit 1 And 2
Kusuma, Yuriadi; Permana, Dadang S.
2018-03-01
The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. This study aims to measure the performance of Centrifugal Compressors operating in Paiton’s coal fired power plant units 1 and 2. Performance Compressor is expressed by Specific Power Consumption (SPC) in kW/100 cfm. For this purpose, we measure the compressed air flow rate generated by each compressor and the power consumed by each compressor. The result is as follows Air Compressor SAC 2B : 15.1 kW/100 cfm, Air Compressor SAC 1B : 15.31 kW/100 cfm,Air Compressor SAC 1A : 16.3 kW/100 cfm and air Compressor SAC 2C : 18.19 kW/100 cfm. From the measurement result, air compressor SAC 2B has the best performance that is 15.1 kW / 100 cfm. In this study we analyze efforts to improve the performance of other compressors to at least match the performance of the SAC 2B air compressor. By increasing the Specific Power Consumption from others Compressor, it will get energy saving up to 284,165 kWh per year.
Impact of inlet coherent motions on compressor performance
Forlese, Jacopo; Spoleti, Giovanni
2017-08-01
Automotive engine induction systems may be characterized by significant flow angularity and total pressure distortion at the compressor inlet. The impact of the swirl on compressor performance should be quantified to guide the design of the induction systems. In diesel engines, the presence of a valve for flow reduction and control of low pressure EGR recirculation could generate coherent motion and influence the performance of the compressor. Starting from experimental map, the compressor speed-lines have been simulated using a 3D CFD commercial code imposing different concept motion at the inlet. The swirl intensity, the direction and the number of vortices have been imposed in order to taking into account some combinations. Finally, a merit function has been defined to evaluate the performance of the compressor with the defined swirl concepts. The aim of the current work is to obtain an indication on the effect of a swirling motion at the compressor inlet on the engine performance and provide a guideline to the induction system design.
International Nuclear Information System (INIS)
Schmidt, H.; Miller, H.
Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables
Leonardo, M.; Tsuchiya, T.; Murthy, S. N. B.
1982-01-01
A model for predicting the performance of a multi-spool axial-flow compressor with a fan during operation with water ingestion was developed incorporating several two-phase fluid flow effects as follows: (1) ingestion of water, (2) droplet interaction with blades and resulting changes in blade characteristics, (3) redistribution of water and water vapor due to centrifugal action, (4) heat and mass transfer processes, and (5) droplet size adjustment due to mass transfer and mechanical stability considerations. A computer program, called the PURDU-WINCOF code, was generated based on the model utilizing a one-dimensional formulation. An illustrative case serves to show the manner in which the code can be utilized and the nature of the results obtained.
International Nuclear Information System (INIS)
Li, Yanrong; Someya, Satoshi; Okamoto, Koji
2010-01-01
Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)
Reliability Approach of a Compressor System using Reliability Block ...
African Journals Online (AJOL)
pc
2018-03-05
Mar 5, 2018 ... This paper presents a reliability analysis of such a system using reliability ... Keywords-compressor system, reliability, reliability block diagram, RBD .... the same structure has been kept with the three subsystems: air flow, oil flow and .... and Safety in Engineering Design", Springer, 2009. [3] P. O'Connor ...
Energy Technology Data Exchange (ETDEWEB)
Brasz, J.J.; Hartmann, K. [Carrier Corp., Syracuse, NY (United States)]|[Carrier Corp., Muenchen (Germany)
2006-07-01
The relative part-load performance of screw compressors and radial compressors is compared. Compressor part load is represented by a 2D characteristic field with the pressure on the vertical axis as a function of mass flow on the horizontal axis, with efficiencies given for any possible combination of pressure and mass flow. While this manner of representation is common for radial compressors, it is new for screw compressors. In the comparison of compression efficiencies, the focus is on vapour compression. For a valid comparative assessment of total compression, also the mechanical and/or electric loss through bearings, transmission, drive and (in case of variable-speed drives) frequency converters must be taken into account. (orig.)
The analysis on centrifugal compressor rotating stall
International Nuclear Information System (INIS)
Kim, Ji Hwan; Kim, Kwang Ho; Shin, You Hwan
2003-01-01
In the present study, the performance characteristics and the number of stall cell during rotating stall of a centrifugal air compressor were experimentally investigated. Rotating stall in the vaneless diffuser were investigated by measuring unsteady pressure fluctuations at several different diffuser radius using a high frequency pressure transducer. The number of stall cell and their rotational speeds are distinctive features of the rotating stall phenomenon. The present study is mainly forced on the analysis for the stall cell number and its propagation speed unstable operating region of the compressor. The interpretation method of visualization is based on the pressure distribution in the circumference pressure fields while plotting the pressure and its harmonics variations in time in polar coordinates. To obtain the visualize the existence rotating stall, auto-correlation function and the frequency spectra of the pressure fluctuations were measured at r/r2=1.52. When the flow coefficient is lower than 0.150, the static pressure at impeller inlet is higher than that at inlet duct of the compressor. And the flow coefficient is lower than 0.086, several stall cell groups of discrete frequencies are observed
The design and development of an oil-free compressor for Spacelab Refrigerator/Freezer
Hye, A.
1984-01-01
Design features and test results of an oil-free compressor developed for Spacelab Mission-4 Refrigerator/Freezer are detailed. The compressor has four identical pistons activated by a common eccentric shaft, operated by a brushless dc motor at 1300 rpm. The stroke of each piston is 0.28 cm, with the piston ends connected to the shaft by means of sealed needle bearings, eliminating the ned for oil. The mass flow rates produced by the compressor are by over 100 percent higher compared to the original Amfridge unit. Test results show that the compressor can meet the Spacelab refrigerator/freezer requirements.
Levashov, V. A.; Lyubchenko, K. Yu
2017-08-01
This article describes the physical processes that occur in the stage flow part of the compressor while it is operating and can create conditions for the occurrence of forced vibrations, which in turn can lead to the destruction of the impellers. Critical conditions of compressor operation are determined. To understand that critical condition of operation is cause of the destruction of the impellers, transient CFD analysis was carried for test stage of compressor. The obtained pressure fluctuation amplitudes allow to evaluate the critical conditions of compressor operation.
Zhang, Xinye; Groll, Eckhard A.; Bethel, Dylan
2017-08-01
Relatively little information is available in the literature with respect to the performance of compressors used during the dynamic charging process of a tank. Therefore, work presented in this paper shows the measurement results of performance testing of a natural gas compressor and analyses the compressor characterization based on the experimental data. Initial tests were conducted using air and carbon dioxide given the thermodynamic similarities between these fluids and natural gas. Finally, a new test stand was specifically designed and built for compressor dynamic testing using pipeline natural gas (NG) and the compressor reliability has been evaluated inside an explosion-proof engine test cell. Reliability tests at standard operating conditions monitored the performance consistency of the compressors over the testing period and the testing consisted of a series of tank charges aimed at evaluating the maximum operating temperature as well as the mass flow rate in the system.
Thermodynamic and aerodynamic meanline analysis of wet compression in a centrifugal compressor
International Nuclear Information System (INIS)
Kang, Jeong Seek; Cha, Bong Jun; Yang, Soo Seok
2006-01-01
Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases
National Research Council Canada - National Science Library
Prian, Vasily
1951-01-01
An analysis was made of the flow in the rotating passages of a 48-inch diameter radial-inlet centrifugal impeller at a tip speed of 700 feet per second in order to provide more knowledge on the flow...
Low-Vibration Oscillating Compressor
Studer, P. A.
1984-01-01
Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.
Axial Dispersion Model for Solid Flow in Liquid Suspension in System of Two Mixers in Total Recycle
Czech Academy of Sciences Publication Activity Database
Čermáková, Jiřina; Scargiali, F.; Siyakatshana, N.; Kudrna, V.; Brucato, A.; Machoň, V.
2006-01-01
Roč. 117, č. 2 (2006), s. 101-107 ISSN 1385-8947 R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : residence time distribution * dispersion model * flow mixer Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.594, year: 2006
Centrifugal-reciprocating compressor
Higa, W. H. (Inventor)
1984-01-01
A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.
Prediction of active control of subsonic centrifugal compressor rotating stall
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
Skoch, Gary J.
2004-01-01
Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.
International Nuclear Information System (INIS)
Thorpe, S.J.; Yoshino, S.; Ainsworth, R.W.; Harvey, N.W.
2004-01-01
The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 x 10 6 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m 2 ). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce
Tests of cold helium compressors at Fermilab
International Nuclear Information System (INIS)
Peterson, T.J.; Fuerst, J.D.
1987-10-01
Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow
Demonstration of PIV in a Transonic Compressor
Wernet, Mark P.
1998-01-01
Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Many of the same issues encountered in the application of LDV techniques to rotating machinery apply in the application of PIV. Preliminary results from the successful application of the standard 2-D PIV technique to a transonic axial compressor are presented. The lessons learned from the application of the 2-D PIV technique will serve as the basis for applying 3-component PIV techniques to turbomachinery.
The Study of Vibration Processes in Oil Flooded Screw Compressors
Directory of Open Access Journals (Sweden)
I. V. Filippov
2014-01-01
Full Text Available Vibration processes that accompany most of machines and mechanisms are of interest to the researcher, as a source of information about the technical condition and the nature of the business processes flow. Vibration-based diagnostics of oil flooded screw compressors allows us to estimate the deviation of their operation from the main mode in accordance with changing the settings of vibration processes.The oil flooded screw compressor transition from the main mode of operation to the abnormal one is accompanied by complex gas-dynamic phenomena i.e. the initial gaps and their decays. This leads to changes in the nature of vibration processes, prompting suggestions that there is a relationship to a change of vibration parameters and mode of compressor operation.Studies were conducted by combined method using an analytical calculation of the decay parameters of the initial discontinuity and an experimental one based on the measurement of acceleration on the body of the real oil flooded screw compressor. A virtually adequate reaction of the decay parameters of the initial gap and the peak values of vibration acceleration to the change of operation mode of oil flooded screw compressor has been received. The peak value of the vibration acceleration was selected by the method of Gating being time-coinciding with the beginning discharge phase of the oil flooded screw compressor, and therefore, with the decay time of the initial discontinuity.This indicates a large degree of hypothesis likelihood on an existing initial break in oil flooded screw compressor when operating in abnormal conditions. This work contains the study results of vibration processes and their relationship to the operating mode of the oil flooded screw compressor, which distinguish it from the other works studied vibration processes in reciprocating compressors. The vibration parameters control of operating oil flooded screw compressor allows us to create an automatic capacity control
Directory of Open Access Journals (Sweden)
Pezhman Mohammadi
2012-04-01
Full Text Available In this work, surge of prevention is a critical problem in oil and gas industries, particularly when return gas flow or gas flow reduces in transportation of gas pipelines. This paper is illustrated new results about surge control of centrifugal compressors .surge phenomenon is flow unsteady state in compressors which causes damages seriously in compressor construction. Furthermore, it also demonstrates in comparison with anti surge control ،active surge control expands stability range.Active surge control which based on fuzzy logic،is the main idea that used in this investigation. Using fuzzy controller causes an improvement in compressor's condition and increase performance range of the compressor, in addition to prevention of any instability in compressor. The simulation results is also satisfactory.
Energy Technology Data Exchange (ETDEWEB)
Gentner, C.
2000-07-01
The periodic instationary flow in guidevanes and runner of an axial hydraulic turbine is examined experimentally and numerically. The study is carried out at three different points of operation. The experimental study comprises the measurement of the velocity of the flow at midspan using a single channel Laser Doppler Velocimeter and the acquisition of the ozillating pressure at several locations in the casing. The unsteady numerical examination is carried out in a two dimensional plane at midspan of the runnerblades. The interaction between guidevanes and runner is taken into account by exchanging the flow properties at the adjoining edges of the two calculation grids. Further the influence of the tip clearance flow on the characteristics of the turbine is studied numerically by means of a three dimensional steady state calculation. The comparison of the results of measurement and calculation shows the abilities and the limitations of the applied numerical method. Moreover the results are helpful for the optimisation of the turbine with regard to higher efficiency and reduced cavitation. (orig.) [German] Die periodisch instationaere Stroemung in Leit- und Laufrad einer hydraulischen Axialturbine zur Druckentspannung in Rohrleitungssystemen wird fuer drei Betriebspunkte experimentell und rechnerisch untersucht. Die experimentelle Untersuchung umfasst die zeitaufgeloeste Messung der Stroemungsgeschwindigkeiten mit einem Laser-Doppler-Velozimeter im Mittelschnitt und die Erfassung des periodisch schwankenden Drucks an mehreren Punkten an der Gehaeusewand. Die instationaere numerische Untersuchung erfolgt in einem zweidimensionalen Zylinderschnitt im mittleren Durchmesser der Laufschaufeln. Die Wechselwirkung zwischen Leit- und Laufrad wird druch den Austausch der Stroemungsgroessen mittels eines Kopplungsalgorithmus an der Stossflaeche zwischen den zwei gegeneinander bewegten Berechnungsgittern erfasst. Darueber hinaus wird in einer dreidimensionalen stationaeren
García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier
2012-01-01
The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.
James, Susan H; Wald, Rachel; Wintersperger, Bernd J; Jimenez-Juan, Laura; Deva, Djeven; Crean, Andrew M; Nguyen, Elsie; Paul, Narinder S; Ley, Sebastian
2013-08-01
The left ventricle (LV) is routinely assessed with cardiac magnetic resonance imaging (MRI) by using short-axis orientation; it remains unclear whether the right ventricle (RV) can also be adequately assessed in this orientation or whether dedicated axial orientation is required. We used phase-contrast (PC) flow measurements in the main pulmonary artery (MPA) and the ascending aorta (Aorta) as nonvolumetric standard of reference and compared RV and LV volumes in short-axis and axial orientations. A retrospective analysis identified 30 patients with cardiac MRI data sets. Patients underwent MRI (1.5 T or 3 T), with retrospectively gated cine steady-state free-precession in axial and short-axis orientations. PC flow analyses of MPA and Aorta were used as the reference measure of RV and LV output. There was a high linear correlation between MPA-PC flow and RV-stroke volume (SV) short axis (r = 0.9) and RV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 1.4 mL for RV axial and -2.3 mL for RV-short-axis vs MPA-PC flow. There was a high linear correlation between Aorta-PC flow and LV-SV short-axis (r = 0.9) and LV-SV axial (r = 0.9). Bland-Altman analysis revealed a mean offset of 4.8 m for LV short axis and 7.0 mL for LV axial vs Aorta-PC flow. There was no significant difference (P = .6) between short-axis-LV SV and short-axis-RV SV. No significant impact of the slice acquisition orientation for determination of RV and LV stroke volumes was found. Therefore, cardiac magnetic resonance workflow does not need to be extended by an axial data set for patients without complex cardiac disease for assessment of biventricular function and volumes. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Chen, Shu-cheng, S.
2009-01-01
In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.
Fleming, William A; Wallner, Lewis E
1948-01-01
Thrust augmentation of an axial-flow type turbojet engine by burning fuel in the tail pipe has been investigated in the NACA Cleveland altitude wind tunnel. The performance was determined over a range of simulated flight conditions and tail-pipe fuel flows. The engine tail pipe was modified for the investigation to reduce the gas velocity at the inlet of the tail-pipe combustion chamber and to provide an adequate seat for the flame; four such modifications were investigated. The highest net-thrust increase obtained in the investigation was 86 percent with a net thrust specific fuel consumption of 2.91 and a total fuel-air ratio of 0.0523. The highest combustion efficiencies obtained with the four configurations ranged from 0.71 to 0.96. With three of the tail-pipe burners, for which no external cooling was provided, the exhaust nozzle and the rear part of the burner section were bright red during operation at high tail-pipe fuel-air ratios. With the tail-pipe burner for which fuel and water cooling were provided, the outer shell of the tail-pipe burner showed no evidence of elevated temperatures at any operating condition.
2D and 3D impellers of centrifugal compressors - advantages, shortcomings and fields of application
Galerkin, Y.; Reksrin, A.; Drozdov, A.
2017-08-01
The simplified equations are presented for calculation of inlet dimensions and velocity values for impellers with three-dimensional blades located in axial and radial part of an impeller (3D impeller) and with two-dimensional blades in radial part (2D). Considerations concerning loss coefficients of 3D and 2D impellers at different design flow rate coefficients are given. The tendency of reduction of potential advantages of 3D impellers at medium and small design flow rate coefficients is shown. The data on high-efficiency compressors and stages with 2D impellers coefficients designed by the authors are presented. The reached efficiency level of 88 - 90% makes further increase of efficiency by the application of 3D impellers doubtful. CFD-analysis of stage candidates with medium flow rate coefficient with 3D and 2D impellers revealed specific problems. In some cases the constructive advantage of a 2D impeller is smaller hub ratio. It makes possible the reaching of higher efficiency. From other side, there is a positive tendency of gas turbine drive RPM increase. 3D impellers have no alternative for stages with high flow rate coefficients matching high-speed drive.
Mathematical modeling of the working cycle of oil injected rotary twin screw compressor
Energy Technology Data Exchange (ETDEWEB)
Seshaiah, N. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India)]. E-mail: seshuet@yahoo.com; Ghosh, Subrata Kr. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India); Sahoo, R.K. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India); Sarangi, Sunil Kr. [Cryogenics and Gas dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology, Sector-2, NIT Campus, Rourkela 769008, Orissa (India)
2007-01-15
Oil injected twin-screw air and gas compressors are widely used for medium pressure applications in many industries. Low cost air compressors can be adopted for compression of helium and special gases, leading to significant cost saving. Mathematical analysis of oil injected twin-screw compressor is carried out on the basis of the laws of perfect gas and standard thermodynamic relations. Heat transfer coefficient required for computer simulation is experimentally obtained and used in performance prediction, when the working medium being air or helium. A mathematical model has been developed for calculating the compressor performance and for validating the results with experimental data. The flow coefficients required for numerical simulation to calculate leakage flow rates are obtained from efficiency verses clearance curves. Effect of some of the compressor operating and design parameters on power and volumetric efficiencies have been analyzed and presented.
Mathematical modeling of the working cycle of oil injected rotary twin screw compressor
International Nuclear Information System (INIS)
Seshaiah, N.; Ghosh, Subrata Kr.; Sahoo, R.K.; Sarangi, Sunil Kr.
2007-01-01
Oil injected twin-screw air and gas compressors are widely used for medium pressure applications in many industries. Low cost air compressors can be adopted for compression of helium and special gases, leading to significant cost saving. Mathematical analysis of oil injected twin-screw compressor is carried out on the basis of the laws of perfect gas and standard thermodynamic relations. Heat transfer coefficient required for computer simulation is experimentally obtained and used in performance prediction, when the working medium being air or helium. A mathematical model has been developed for calculating the compressor performance and for validating the results with experimental data. The flow coefficients required for numerical simulation to calculate leakage flow rates are obtained from efficiency verses clearance curves. Effect of some of the compressor operating and design parameters on power and volumetric efficiencies have been analyzed and presented
Centrifugal compressor shape modification using a proposed inverse design method
International Nuclear Information System (INIS)
Niliahmadabadi, Mahdi; Poursadegh, Farzad
2013-01-01
This paper is concerned with a quasi-3D design method for the radial and axial diffusers of a centrifugal compressor on the meridional plane. The method integrates a novel inverse design algorithm, called ball-spine algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain, of which unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, unknown walls are composed of a set of virtual balls that move freely along specified directions called spines. The difference between target and current pressure distributions causes the flexible boundary to deform at each modification step. In validating the quasi-3D analysis code, a full 3D Navier-Stokes code is used to analyze the existing and designed compressors numerically. Comparison of the quasi-3D analysis results with full 3D analysis results shows viable agreement. The 3D numerical analysis of the current compressor shows a huge total pressure loss on the 90 .deg. bend between the radial and axial diffusers. Geometric modification of the meridional plane causes the efficiency to improve by about 10%.
Centrifugal compressor shape modification using a proposed inverse design method
Energy Technology Data Exchange (ETDEWEB)
Niliahmadabadi, Mahdi [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Poursadegh, Farzad [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2013-03-15
This paper is concerned with a quasi-3D design method for the radial and axial diffusers of a centrifugal compressor on the meridional plane. The method integrates a novel inverse design algorithm, called ball-spine algorithm (BSA), and a quasi-3D analysis code. The Euler equation is solved on the meridional plane for a numerical domain, of which unknown boundaries (hub and shroud) are iteratively modified under the BSA until a prescribed pressure distribution is reached. In BSA, unknown walls are composed of a set of virtual balls that move freely along specified directions called spines. The difference between target and current pressure distributions causes the flexible boundary to deform at each modification step. In validating the quasi-3D analysis code, a full 3D Navier-Stokes code is used to analyze the existing and designed compressors numerically. Comparison of the quasi-3D analysis results with full 3D analysis results shows viable agreement. The 3D numerical analysis of the current compressor shows a huge total pressure loss on the 90 .deg. bend between the radial and axial diffusers. Geometric modification of the meridional plane causes the efficiency to improve by about 10%.
International Nuclear Information System (INIS)
Khabbouchi, Imed; Guellouz, Mohamed Sadok; Tavoularis, Stavros
2009-01-01
Synchronised hot-film and hot-wire measurements were made in the narrower region of a rectangular channel containing a cylindrical rod. The hot-film probe was mounted flush with the channel bottom wall to measure the wall shear stress, while the hot-wire probe was placed at a fixed position, selected in order to easily detect the passage of coherent structures. Mean and rms profiles of the wall shear stress show the influence of the gap to diameter ratio on their respective distributions. The latter presented peculiarities that could only be explained by the presence of coherent structures in the flow between the rod and the wall. Evidence of this presence is seen in the velocity power spectra. The strong influence of the coherent structures on the wall shear stress spatial and temporal distributions is established through velocity-wall shear stress cross-correlations functions and through conditionally sampled measurements
Energy Technology Data Exchange (ETDEWEB)
Pendyala, Rajashekhar; Jayanti, Sreenivas; Balakrishnan, A.R. [Indian Institute of Technology Madras, Department of Chemical Engineering, Chennai, Tamil Nadu (India)
2008-05-15
The effect of oscillations on the heat transfer in a vertical tube has been studied experimentally. A vertical tube was mounted on a plate and the whole plate was subjected to oscillations in the vertical plane using a mechanical oscillator to provide low frequency oscillations. A section of the tube in the middle is subjected to a constant heat flux. The effect of the oscillations on the heat transfer coefficient has been examined. It was found that the heat transfer coefficient increased with oscillations in the laminar regime. In turbulent flow regime (Re > 2,100) it is found that the effect of oscillations did not show any change. A correlation has been developed for enhancement of the local Nusselt number in terms of the effective acceleration and Reynolds number. Using this, an expression has been proposed to calculate the mean Nusselt number as a function of the tube length. (orig.)
A review of linear compressors for refrigeration
Liang, Kun
2017-01-01
Linear compressor has no crank mechanism compared with conventional reciprocating compressor. This allows higher efficiency, oil-free operation, lower cost and smaller size when linear compressors are used for vapour compression refrigeration (VCR) system. Typically, a linear compressor consists of a linear motor (connected to a piston) and suspension springs, operated at resonant frequency. This paper presents a review of linear compressors for refrigeration system. Different designs and mod...
International Nuclear Information System (INIS)
Saripalli, Prasad; Lindberg, Michael J.; Meyer, P. D.
2006-01-01
Understanding the effect of chemical reactions on the hydrologic properties of sub-surface media is critical to many natural and engineered sub-surface systems. Methods and information for such characterization of fractured media are severely lacking. Influence of glass corrosion (precipitation and dissolution) reactions on fractured glass blocks HAN28 and LAWBP1, two candidate waste glass forms for a proposed immobilized low-activity waste (ILAW) disposal facility at the Hanford, WA site, was investigated. Flow and tracer transport experiments were conducted in such randomly and multiply fractured ILAW glass blocks, before and after subjecting them to corrosion using Vapor Hydration Testing (VHT) at 200 C temperature and 200 psig (1379 KPa) pressure, causing the precipitation of alteration products. A tri-axial fractured media flow and transport experimental apparatus, which allows the simultaneous measurement of flow and transport properties and their anisotropy, has been designed and built for this purpose. Such apparatus for fractured media characterization are being reported in the literature only recently. Hydraulic properties of fractured blocks were measured in different orientations and along different cardinal directions, before and after glass corrosion reactions. Miscible displacement experiments using a non-reactive dye were also conducted, before and after glass corrosion reactions, to study the tracer transport behavior through such media. Initial efforts to analyze breakthrough curve (BTC) data using a 1D Advection Dispersion Equation (ADE) solution revealed that a different fractured media transport model may be necessary for such interpretation. It was found that glass reactions can have a significant influence on the hydrologic properties of fractured ILAW glass media. The methods and results are unique and useful to better understand the effect of chemical reactions on the hydrologic properties of fractured geomedia in general and glass media in
Free piston inertia compressor
Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.
A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.
Magentically actuated compressor
Evans, J.; Studer, P. A. (Inventor)
1985-01-01
A vibration free fluid compressor particularly adapted for Stirling cycle cryogenic refrigeration apparatus comprises a pair of identical opposing ferromagnetic pistons located in a housing and between a gas spring including a sealed volume of a working fluid such as gas under pressure. The gas compresses and expands in accordance with movement of the pistons to generate a compression wave which can be vented to other apparatus, for example, a displacer unit in a Stirling cycle engine. The pistons are urged outwardly due to the pressure of the gas; however, a fixed electromagnetic coil assembly located in the housing adjacent the pistons, is periodically energized to produce a magnetic field which interlinks the pistons in such a fashion that the pistons are mutually attracted to one another. The mass of the pistons, in conjunction with the compressed gas between them, form a naturally resonant system which, when the pistons are electromagnetically energized, produces an oscillating compression wave in the entrapped fluid medium.
Dual capacity reciprocating compressor
Wolfe, Robert W.
1984-01-01
A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.