Yeow, C H; Lee, P V S; Goh, J C H
2010-01-19
Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70 degrees flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8 degrees . There was a moderate linear relationship (Y=0.16X; R(2)=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior-posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.
LOAD CARRYING CAPABILITY OF LIQUID FILLED CYLINDRICAL SHELL STRUCTURES UNDER AXIAL COMPRESSION
Directory of Open Access Journals (Sweden)
QASIM H. SHAH
2011-08-01
Full Text Available Empty and water filled cylindrical Tin (Sn coated steel cans were loaded under axial compression at varying loading rates to study their resistance to withstand accidental loads. Compared to empty cans the water filled cans exhibit greater resistance to axially applied compression loads before a complete collapse. The time and load or stroke and load plots showed three significant load peaks related to three stages during loading until the cylinder collapse. First peak corresponds to the initial structural buckling of can. Second peak occurs when cylindrical can walls gradually come into full contact with water. The third peak shows the maximum load carrying capability of the structure where pressurized water deforms the can walls into curved shape until can walls fail under peak pressure. The collapse process of water filled cylindrical shell was further studied using Smooth Particle Hydrodynamics (SPH technique in LSDYNA. Load peaks observed in the experimental work were successfully simulated which substantiated the experimental work.
Subjected to Axial Compressive Load and Transverse Magnetic Field
Directory of Open Access Journals (Sweden)
Mei-Feng Liu
2010-01-01
Full Text Available The interactive behaviors between transverse magnetic fields and axial loads of a magnetoelastic (ME beam subjected to general boundary conditions are investigated. In particular, the instability criterion for the magneto-mechanical buckling problem is intricately discussed based on the structure characteristics and the initial conditions. The equation of motion for the proposed physical model is introduced according to the Hamilton's principle, and the stability criterion is obtained by using the method of multiple scales implemented on both spatial and time domains. Eventually a so-called Schrodinger equation with cubic nonlinearity (NLS can be generated by suitably changing the variables; as a result, the stable criterion for the magnetoelastic beam can be acquired after dissecting the nonlinear Schrodinger equation and requiring the imaginary part of the time domain solution to be vanished. Stability criterion curve for the dispersion equation of the ME beam is firstly depicted in order to reveal the magnificent influence of the structure characteristic itself, followed by the instability constraint due to the variation of initial conditions and the observation locations. The results indicate that the prior one actually denotes a parabola, whereas the latter one is sometimes a diamond-like or ellipse-like region spotting along the prior one.
Spahn, G; Wittig, R
2003-01-01
Explanations concerning the physical properties of hyaline cartilage are different. It was the intention of this study to determine the material parameters of hyaline cartilage under axial load (elasticity, plasticity, elasticity and module pressure stress to break). Specimens from the medial femoral condyle (chondro-cortical ships) from adult female domestic pigs (n=28) were used for the experiments. The specimens were completely embedded in plaster to minimize shearing. Axial load was carried out by an universal mechanical testing machine (Zwick Z2.5/TS1S, Ulm, Germany) to determine elastic and plastic deformation and pressure stress to break. Axial load up to 5 MPa produces an almost elastic deformation, an increasing axial load results in a plastic deformation. In the range of 3 to 5 MPa the principle of Hooke is valid. The elasticity module amounted to 39.2 +/- 11.9 N/mm(2), determined under 3.8 MPa axial load. An axial load of 25.8 +/- 5.2 MPa (sigma max ) causes a break of cartilage. A strong correlation between break resistance and thickness of the chondral slice (r=0.71; p .05) was observed. The low module of chondral elasticity characterizes this tissue as "soft". Moderate axial load causes an ideal elastic, higher axial load a plastic deformation. The medium pressure to break to amounted 25.8 MPa. The medium pressure to break of 25.8 MPa is comparable with the forces produced by an unrestrained limited downfall from a height of 4.3 m. It must be concluded that isolated chondral fractures are rare consequences of a trauma as long as accompanying ligamentous or osseous damages are not found.
Optimum design of laminated composite under axial compressive load
Indian Academy of Sciences (India)
N G R Iyengar; Nilesh Vyas
2011-02-01
In the present study optimal design of composite laminates, with and without rectangular cut-out, is carried out for maximizing the buckling load. Optimization study is carried out for obtaining the maximum buckling load with design variables as ply thickness, cut-out size and orientation of cut-out with respect to laminate. Buckling load is evaluated using a ‘simple higher order shear deformation theory’ based on four unknown displacements $u,v,w_b$ and $w_s$. A C1 continuous shear flexible finite element based on HSDT model is developed using Hermite cubic polynomial. It is observed that for thick anti-symmetric laminates, the non-dimensional buckling load decreases with increase in aspect ratio and increase in fibre orientation angle. There is a decrease in the non-dimensional buckling load of symmetric laminate in the presence of cut-out.
Effect of Axial Pre-Compression on Lateral Performance of Masonry Under Cyclic Loading
Directory of Open Access Journals (Sweden)
Syed HassanFarooq
2011-10-01
Full Text Available Strengthening of masonry against seismic events is very essential and getting maximum attention of researchers around the globe. An extensive experimental program was carried out to study the in-plane lateral performance of un-reinforced masonry, strengthened and retrofitted masonry wall panels under lateral cyclic loading. Twenty tests were carried out; four tests under monotonic lateral loading, twelve tests under static cyclic loading and four tests under pure compression. The test results were analyzed in five groups and this paper presents the analysis of group 4, which deals with effect of axial pre-compression on masonry seismic performance. Three single leaf panels with aspect ratio of 0.67 having size 1.65x1.1m were constructed using same material and workmanship. All the three un-reinforced walls were tested under 0, 0.5 and 1.0MPa vertical pre-compression and displacement controlled static cyclic loading. The wall tested under 0.5MPa pre-compression was reference specimen. The key parameters studied were hysterics behavior, peak lateral load, ultimate lateral displacement, energy dissipation, ductility, response factor and damping ratio. It was observed that level of axial pre-compression has significant effect on lateral capacity, failure mode and performance of masonry. In case of zero pre-compression the lateral capacity was very less and wall went into rocking failure at early stages of loading. Increase in pre-compression to 1.0MPa enhanced the lateral capacity by a factor of 1.92 times. After analysis of test results, it is found that pre-compression has significant effect on lateral capacity, failure mode and performance of masonry. In case of zero pre-compression the lateral capacity was very less and wall went into rocking failure at early stages of loading. Increase in pre-compression to 1.0MPa enhanced the lateral capacity by a factor of 1.92 times. After analysis of test results, it is found that pre-compression has very
Concrete-Filled-Large Deformable FRP Tubular Columns under Axial Compressive Loading
Omar I. Abdelkarim; Mohamed A. ElGawady
2015-01-01
The behavior of concrete-filled fiber tubes (CFFT) polymers under axial compressive loading was investigated. Unlike the traditional fiber reinforced polymers (FRP) such as carbon, glass, aramid, etc., the FRP tubes in this study were designed using large rupture strains FRP which are made of recycled materials such as plastic bottles; hence, large rupture strain (LRS) FRP composites are environmentally friendly and can be used in the context of green construction. This study performed finite...
Concrete-Filled-Large Deformable FRP Tubular Columns under Axial Compressive Loading
Directory of Open Access Journals (Sweden)
Omar I. Abdelkarim
2015-10-01
Full Text Available The behavior of concrete-filled fiber tubes (CFFT polymers under axial compressive loading was investigated. Unlike the traditional fiber reinforced polymers (FRP such as carbon, glass, aramid, etc., the FRP tubes in this study were designed using large rupture strains FRP which are made of recycled materials such as plastic bottles; hence, large rupture strain (LRS FRP composites are environmentally friendly and can be used in the context of green construction. This study performed finite element (FE analysis using LS-DYNA software to conduct an extensive parametric study on CFFT. The effects of the FRP confinement ratio, the unconfined concrete compressive strength ( , column size, and column aspect ratio on the behavior of the CFFT under axial compressive loading were investigated during this study. A comparison between the behavior of the CFFTs with LRS-FRP and those with traditional FRP (carbon and glass with a high range of confinement ratios was conducted as well. A new hybrid FRP system combined with traditional and LRS-FRP is proposed. Generally, the CFFTs with LRS-FRP showed remarkable behavior under axial loading in strength and ultimate strain. Equations to estimate the concrete dilation parameter and dilation angle of the CFFTs with LRS-FRP tubes and hybrid FRP tubes are suggested.
Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression
Timesli, Abdelaziz; Braikat, Bouazza; Jamal, Mohammad; Damil, Noureddine
2017-02-01
In this paper, we propose a new explicit analytical formula of the critical buckling load of double-walled carbon nanotubes (DWCNT) under axial compression. This formula takes into account van der Waals interactions between adjacent tubes and the effect of terms involving tube radii differences generally neglected in the derived expressions of the critical buckling load published in the literature. The elastic multiple Donnell shells continuum approach is employed for modelling the multi-walled carbon nanotubes. The validation of the proposed formula is made by comparison with a numerical solution. The influence of the neglected terms is also studied.
Mathieson, Haley Aaron
This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels
Weatherholt, Alyssa M; Fuchs, Robyn K; Warden, Stuart J
2013-01-01
The mouse tibial axial compression loading model has recently been described to allow simultaneous exploration of cortical and trabecular bone adaptation within the same loaded element. However, the model frequently induces cortical woven bone formation and has produced inconsistent results with regards to trabecular bone adaptation. The aim of this study was to investigate bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model, with the ultimate goal of revealing a load that simultaneously induced lamellar cortical and trabecular bone adaptation. Adult (16 weeks old) female C57BL/6 mice were randomly divided into three load magnitude groups (5, 7 and 9N), and had their right tibia axially loaded using a continuous 2-Hz haversine waveform for 360 cycles/day, 3 days/week for 4 consecutive weeks. In vivo peripheral quantitative computed tomography was used to longitudinally assess midshaft tibia cortical bone adaptation, while ex vivo micro-computed tomography and histomorphometry were used to assess both midshaft tibia cortical and proximal tibia trabecular bone adaptation. A dose response to loading magnitude was observed within cortical bone, with increasing load magnitude inducing increasing levels of lamellar cortical bone adaptation within the upper two thirds of the tibial diaphysis. Greatest cortical bone adaptation was observed at the midshaft where there was a 42% increase in estimated mechanical properties (polar moment of inertia) in the highest (9N) load group. A dose response to load magnitude was not clearly evident within trabecular bone, with only the highest load (9N) being able to induce measureable adaptation (31% increase in trabecular bone volume fraction at the proximal tibia). The ultimate finding was that a load of 9N (engendering a tensile strain of 1833 με on medial surface of the midshaft tibia) was able to simultaneously induce measurable lamellar cortical and trabecular bone adaptation
Lager, J. R.
1975-01-01
A cylindrical shell structure 3.66 m (144 in.) high by 4.57 m (180 in.) diameter was designed using a wide variety of materials and structural concepts to withstand design ultimate combined loading 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion. The overall cylinder geometry and design loading are representative of that expected on a high performance space tug vehicle. The relatively low design load level results in designs that use thin gage metals and fibrous-composite laminates. Fabrication and structural tests of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods. Three of the designs evaluated, honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiber-glass meteoroid protection layers, were selected for further evaluation.
Salehi-Khojin, Amin; Jalili, Nader
2007-04-01
Unlike widely-used carbon nanotubes, boron nitride nanotubes (BNNTs) have shown to possess stable semiconducting behavior and strong piezoelectricity. Such properties along with their outstanding mechanical properties and thermal conductivity, make BNNTs promising candidate reinforcement materials for a verity of applications especially nanoelectronic and nanophotonic devices. Motivated by these abilities, we aim to study the buckling behavior of BNNT-reinforced piezoelectric polymeric composites when subjected to combined electro-thermo-mechanical loadings. For this, the multi-walled structure of BNNT is considered as elastic media and a set of concentric cylindrical shell with van der Waals interaction between them. Using three-dimensional equilibrium equations, Donnell shell theory is utilized to show that the axially compressive resistance of BNNT varies with applying thermal and electrical loads. The effect of BNNT piezoelectric property on the buckling behavior of the composites is demonstrated. More specifically, it is shown that applying direct and reverse voltages to BNNT changes the buckling loads for any axial and circumferential wavenumbers. Such capability could be uniquely utilized when designing BNNT-reinforced composites.
Hyer, M. W.; Paraska, P. J.
1990-01-01
The study focuses on the axisymmetric deformation response of unsymmetrically laminate cylinders loaded in axial compression by known loads. A geometrically nonlinear analysis is used. Though buckling is not studied, the deformations can be considered to be the prebuckling response. Attention is directed at three 16 layer laminates: a (90 sub 8/0 sub 8) sub T; a (0 sub 8/90 sub 8) sub T and a (0/90) sub 4s. The symmetric laminate is used as a basis for comparison, while the two unsymmetric laminates were chosen because they have equal but opposite bending-stretching effects. Particular attention is given to the influence of the thermally-induced preloading deformations that accompany the cool-down of any unsymmetric laminate from the consolidation temperature. Simple support and clamped boundary conditions are considered. It is concluded that: (1) The radial deformations of an unsymmetric laminate are significantly larger than the radial deformations of a symmetric laminate, although for both symmetric and unsymmetric laminates the large deformations are confined to a boundary layer near the ends of the cylinder; (2) For this nonlinear problem the length of the boundary layer is a function of the applied load; (3) The sign of the radial deformations near the supported end of the cylinder depends strongly on the sense (sign) of the laminate asymmetry; (4) For unsymmetric laminates, ignoring the thermally-induced preloading deformations that accompany cool-down results in load-induced deformations that are under predicted; and (5) The support conditions strongly influence the response but the influence of the sense of asymmetry and the influence of the thermally-induced preloading deformations are independent of the support conditions.
Directory of Open Access Journals (Sweden)
Abdellatif Khamlichi
2010-01-01
Full Text Available Problem statement: Many modern structures are made from thin shells. Design of these elements depends to a large extent on their buckling behavior which is hugely affected by the initial geometric imperfections. Approach: For axially compressed isotropic circular cylindrical shells, axisymmetric localized geometric imperfections were found to reduce severely the buckling strength. Among various axisymmetric shapes of localized defects that were investigated, the entering triangular form was recognized to yield the most adverse case. Since multiple localized defects may be present in the same shell structure and interact, studying their mutual effect on the buckling load is of great importance for shell design. Results: In this study, the effect of two interacting entering triangular localized axisymmetric initial geometric imperfections on shell buckling strength under uniform axial compression was modeled by means of the finite element method. A special software package which was dedicated to buckling analysis of quasi axisymmetric shells was used in order to compute the buckling load either via the linear Euler buckling analysis or through the full non linear iterative procedure. A set of five factors including shell aspect ratios, defect characteristics and the distance separating the localized initial geometric imperfections had been found to govern the buckling problem. A statistical approach based on the Taguchi method was used then to study their relative influence on the buckling load reduction. It was shown by comparison with the single imperfection case that further diminution of the critical load was obtained. Conclusion/Recommendations: In the range of investigated parameters, the distance separating the localized geometric imperfections and imperfection wavelength were found to yield major influences on the critical load. Further studies must be performed in order to assess shell buckling strength in the presence of more than two
Energy Technology Data Exchange (ETDEWEB)
Sofiyev, A.H., E-mail: asofiyev@mmf.sdu.edu.t [Department of Civil Engineering, Suleyman Demirel University, 32260 Isparta (Turkey)
2010-12-15
In this study, the buckling analysis of the simply supported truncated conical shell made of functionally graded materials (FGMs) is presented. The FGM truncated conical shell subjected to an axial compressive load and resting on Winkler-Pasternak type elastic foundations. The material properties of functionally graded shells are assumed to vary continuously through the thickness. The modified Donnell type stability and compatibility equations are solved by Galerkin's method and the critical axial load of FGM truncated conical shells with and without elastic foundations have been found analytically. The appropriate formulas for homogenous and FGM cylindrical shells with and without elastic foundations are found as a special case. Several examples are presented to show the accuracy and efficiency of the formulation. Finally, parametric studies on the buckling of FGM truncated conical and cylindrical shells on elastic foundations are being investigated. These parameters include; power-law and exponential distributions of FGM, Winkler foundation modulus, Pasternak foundation modulus and aspect ratios of shells.
Directory of Open Access Journals (Sweden)
Walt Wells
2008-01-01
Full Text Available Our objective in this paper is to solve a second order differential equation for a long, simply supported column member subjected to a lateral axial load using Heun's numerical method. We will use the solution to find the critical load at which the column member will fail due to buckling. We will calculate this load using Euler's derived analytical approach for an exact solution, as well as Euler's Numerical Method. We will then compare the three calculated values to see how much they deviate from one another. During the critical load calculation, it will be necessary to calculate the moment of inertia for the column member.
Kimura, S.; Steinbach, G. C.; Watenpaugh, D. E.; Hargens, A. R.
2001-01-01
STUDY DESIGN: Axial load-dependent changes in the lumbar spine of supine healthy volunteers were examined using a compression device compatible with magnetic resonance imaging. OBJECTIVE: To test two hypotheses: Axial loading of 50% body weight from shoulder to feet in supine posture 1) simulates the upright lumbar spine alignment and 2) decreases disc height significantly. SUMMARY OF BACKGROUND DATA: Axial compression on the lumbar spine has significantly narrowed the lumbar dural sac in patients with sciatica, neurogenic claudication or both. METHODS: Using a device compatible with magnetic resonance imaging, the lumbar spine of eight young volunteers, ages 22 to 36 years, was axially compressed with a force equivalent to 50% of body weight, approximating the normal load on the lumbar spine in upright posture. Sagittal lumbar magnetic resonance imaging was performed to measure intervertebral angle and disc height before and during compression. RESULTS: Each intervertebral angle before and during compression was as follows: T12-L1 (-0.8 degrees +/- 2.5 degrees and -1.5 degrees +/- 2.6 degrees ), L1-L2 (0.7 degrees +/- 1.4 degrees and 3.3 degrees +/- 2.9 degrees ), L2-L3 (4.7 degrees +/- 3.5 degrees and 7.3 degrees +/- 6 degrees ), L3-L4 (7.9 degrees +/- 2.4 degrees and 11.1 degrees +/- 4.6 degrees ), L4-L5 (14.3 degrees +/- 3.3 degrees and 14.9 degrees +/- 1.7 degrees ), L5-S1 (25.8 degrees +/- 5.2 degrees and 20.8 degrees +/- 6 degrees ), and L1-S1 (53.4 degrees +/- 11.9 degrees and 57.3 degrees +/- 16.7 degrees ). Negative values reflect kyphosis, and positive values reflect lordosis. A significant difference between values before and during compression was obtained at L3-L4 and L5-S1. There was a significant decrease in disc height only at L4-L5 during compression. CONCLUSIONS: The axial force of 50% body weight in supine posture simulates the upright lumbar spine morphologically. No change in intervertebral angle occurred at L4-L5. However, disc height at L4-L
Directory of Open Access Journals (Sweden)
Mehrdad Nasirshoaibi
2015-01-01
Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.
Axial loaded MRI of the lumbar spine
Energy Technology Data Exchange (ETDEWEB)
Saifuddin, A. E-mail: asaifuddin@aol.com; Blease, S.; MacSweeney, E
2003-09-01
Magnetic resonance imaging is established as the technique of choice for assessment of degenerative disorders of the lumbar spine. However, it is routinely performed with the patient supine and the hips and knees flexed. The absence of axial loading and lumbar extension results in a maximization of spinal canal dimensions, which may in some cases, result in failure to demonstrate nerve root compression. Attempts have been made to image the lumbar spine in a more physiological state, either by imaging with flexion-extension, in the erect position or by using axial loading. This article reviews the literature relating to the above techniques.
Directory of Open Access Journals (Sweden)
Mohd Zairul A. Abdul Rahman
2010-01-01
Full Text Available Problem statement: Foamed concrete has become most commercial material in construction industry. People in industries were come out with the new mix design of foamed concrete to meet the specification and the requirements needed. Approach: This is because foamed concrete has the possibility as alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. Results: Currently Standard test to measure the compressive strength of foamed concrete is using standard unconfined compressive test. Several research has been conduct but the compressive strength using standard unconfined compressive test not capture true behavior of foamed concrete because it just achieved only low compressive strength and sample under compression failed due to brittle collapse of the sample. This paper was analyses the comparison between standard compressive test and confined compressive test. The confinement test introduced to prevent sample from brittle collapse. Foamed concrete cylindrical sample has been investigated under the standard compressive test for hard concrete (ASTM-C39. Based on the research, samples are produced under unconfined and confined condition. Analysis has been done and the result show that under standard compressive test, the sample failed due to early crack initiation and failed. Confinement condition was increase the compressive strength but this condition influence the result. Conclusion/Recommendations: Standard test is not suitable to capture the true behavior of foamed concrete, and to prevent the sample from brittle collapse during the test, new testing method was introduced to capture the true behavior of foamed concrete which is using Quasi Static Indentation Test. This test can be used to study about the behaviour of foamed concrete before it can be implemented to its final application.
Guo, Xin; Fan, Yubo; Li, Zong-Ming
2009-03-01
Transecting the transverse carpal ligament (TCL) is a routine procedure to surgically treat carpal tunnel syndrome; yet, its mechanical consequences on carpal bones are unclear. In this study, our intent was to perform a computational analysis of carpal biomechanics resulting from TCL release. A three-dimensional finite element model of the wrist was constructed, which included all the carpal bones, the distal ulna and radius, the proximal metacarpals and the interosseous ligaments. Cartilage layers of each bone were modeled manually according to anatomic visualization software. The TCL was also modeled in three dimensions and added to the bone model. A 100-Newton axial load was applied to the upper section of the second and third metacarpals. The effects of dividing the TCL on the displacements of the carpal bones and the contact stress distribution in the midcarpal joints were studied using a finite element analysis method. When the TCL was divided, the axial compressive load resulted in the carpal bones deviating more radially. More specifically, the carpal bones on the radial side of the capitate and lunate (i.e. the trapezium, trapezoid, and scaphoid) moved further toward the radius, and the carpal bones on the ulnar side of the capitate and lunate (i.e. hamate, triquetrum, and pisiform) moved further toward the metacarpals. The contact stresses and contact locations in the midcarpal joints changed as a result of dividing the TCL. The changes in displacements of carpal bones and the contact stress distributions in the midcarpal joints due to TCL release may be implicated for some of the postoperative complications associated with carpal tunnel release.
Buckling localization in a cylindrical panel under axial compression
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum...
Parametric Analysis of Composite Reinforced Wood Tubes Under Axial Compression
Cabrero, J.; Heiduschke, A.; Haller, P. (P.)
2010-01-01
Wood tubes combine economy, an efficient use of the material and optimal structural performance. They can be optionally reinforced with technical fibers and/or textiles laminated to the outer wood surface. The paper presents the outcomes of a parametric study on the performance of wood reinforced tubes submitted to axial compression. Simple analytical models were applied to estimate the load-carrying capacity of the tubes and their failure mechanisms. Analytical and numerical models were deve...
Lau, Ernest W
2013-01-01
The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Failure processes in embedded monolayer graphene under axial compression.
Androulidakis, Charalampos; Koukaras, Emmanuel N; Frank, Otakar; Tsoukleri, Georgia; Sfyris, Dimitris; Parthenios, John; Pugno, Nicola; Papagelis, Konstantinos; Novoselov, Kostya S; Galiotis, Costas
2014-06-12
Exfoliated monolayer graphene flakes were embedded in a polymer matrix and loaded under axial compression. By monitoring the shifts of the 2D Raman phonons of rectangular flakes of various sizes under load, the critical strain to failure was determined. Prior to loading care was taken for the examined area of the flake to be free of residual stresses. The critical strain values for first failure were found to be independent of flake size at a mean value of -0.60% corresponding to a yield stress up to -6 GPa. By combining Euler mechanics with a Winkler approach, we show that unlike buckling in air, the presence of the polymer constraint results in graphene buckling at a fixed value of strain with an estimated wrinkle wavelength of the order of 1-2 nm. These results were compared with DFT computations performed on analogue coronene/PMMA oligomers and a reasonable agreement was obtained.
The effects of initial rise and axial loads on MEMS arches
Tella, Sherif A.
2017-04-07
Arch microbeams have been utilized and proposed for many uses over the past few years due to their large tunability and bistability. However, recent experimental data have shown different mechanical behavior of arches when subjected to axial loads. This paper aims to investigate in depth the influence of the competing effects of initial rise and axial loads on the mechanical behavior of micromachined arches; mainly their static deflection and resonant frequencies. Based on analytical solutions, the static response and eigenvalue problems are analyzed for various values of initial rises and axial loads. Universal curves showing the variation of the first three resonance frequencies of the arch are generated for various values of initial rise under both tensile and compressive axial loads. This study shows that increasing the tensile or compressive axial loads for different values of initial rise may lead to either increase in the stiffness of the beam or initial decrease in the stiffness, which later increases as the axial load is increased depending on the dominant effect of the initial rise of the arch and the axial load. The obtained universal curves represent useful design tools to predict the tunability of arches under axial loads for various values of initial rises. The use of the universal curves is demonstrated with an experimental case study. Analytical formulation is developed to predict the point of minimum where the trend of the resonance frequency versus axial loads changes qualitatively due to the competing effects of axial loads and initial curvature.
Institute of Scientific and Technical Information of China (English)
吴炎海; 方映平; 冯文贤; 蔡杨
2015-01-01
Axial static loading test was carried out on 6 recycled aggregate concrete filled circular steel tubular long columns. The whole loading process and failure modes were observed,and the curves of specimens about load-deformation and load-strain were plotted. The influences of the test parameters namely slenderness ratio and confine-ment index on deformation and the bearing capacities of specimens were analyzed. By domestic and foreign relevant specifications,the ultimate bearing capacity of the specimens were calculated and compared with the measured val-ues. The results indicated that the failure process of recycled aggregate concrete filled steel tubular long columns un-der axial compression includes elastic stage,elastic-plastic stage and plastic stage,and all the failure modes are elas-tic-plastic instability;Both the slenderness ratio and confinement index affect the mechanical performance of recy-cled aggregate concrete filled steel tubular long columns under axial loading,and the confinement index is more ob-vious;Finally,the calculation and design method of recycled aggregate filled steel tubular long columns under axial loading were proposed.%进行6根圆钢管再生混凝土长柱轴压的静力加载试验，观察试件受力的全过程和破坏形态，绘制出各试件的荷载-变形和荷载-应变关系曲线，分析长径比和套箍系数2个变化参数对试件变形和承载力的影响规律，采用国内外相关规程计算各试件的极限承载力并与实测值进行对比。结果表明：钢管再生混凝土轴压长柱受力过程经历了弹性阶段、弹塑性阶段和塑性下降阶段，均为弹塑性失稳破坏；长径比和套箍系数对钢管再生混凝土轴压长柱的受力性能均有影响，其中套箍系数影响较大；最后对于钢管再生混凝土长柱轴压的承载力计算及构件的设计提出建议。
A survey of buckling of conical shells subjected to axial compression and external pressure
Directory of Open Access Journals (Sweden)
O. Ifayefunmi
2014-07-01
Full Text Available The paper reviews literature on buckling of conical shells subjected to three loading conditions: (i axial compression only, (ii external pressure only and (iii combined loading. The review is from the theoretical as well as experimental points of view. This review covers known experiments on cones from (1958 – 2012. The literature review is split thematically into the following categories: theoretical prediction of axially compressed cones, theoretical prediction of externally pressurized cones, theoretical prediction of cones under combined loading, buckling experiments on axially compressed cones, buckling experiments on externally pressurized cones, buckling experiments on cones subjected to combined loading, buckling experiments on composite conical shells, equivalent cylinder approach, effect of initial geometric imperfection on the buckling behaviour of cones and effect of imperfect boundary conditions on the buckling behaviour of cones.
In vivo axial loading of the mouse tibia.
Melville, Katherine M; Robling, Alexander G; van der Meulen, Marjolein C H
2015-01-01
Noninvasive methods to apply controlled, cyclic loads to the living skeleton are used as anabolic procedures to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days.
Directory of Open Access Journals (Sweden)
Achoura D.
2012-09-01
Full Text Available Dans cette étude, on présente les résultats expérimentaux obtenus sur des poteaux mixtes béton-acier mince réalisés par soudures. Un total de 24 profilés en acier, et en forme de I a été testé sous charge de compression uni-axiale à l’âge de 28 jours. les spécimens ont été réparties comme suit: 4 à vides, 4 partiellement remplies avec un béton ordinaire sans l’addition des connecteurs, 4 renforcés par des connecteurs de cisaillements de type cornière en U, 4 autres l’ont été avec des connecteurs de cisaillements type goujons et 8 restants ont été renforcés avec des liens transversaux d’espacement 100mm, 50mm, soudés aux bouts des ailes opposées. Les principaux paramètres étudiés sont: l’élancement du profilé, le type de connecteur de renforcement. A partir des résultats d’essais obtenus, il est confirmé que les parois minces sont plus sensibles de l’apparition au voilement et la longueur des profilés a un effet considérable sur la capacité portante et le mode de rupture. L’addition des connecteurs de renforcement a confirmé l’augmentation de la charge ultime par rapport aux profilés sans connecteurs. In the present work, results of tests conducted on thin welded steel-concrete stubs are presented. A total of 24 stubs an I steel section were tested under axial compression at 28 days after the date of casting, 4 were empty, 4 filled with normal concrete, 8 columns had shear connecters welded along the centreline of the web, and 8 columns had steel rods welded between the tips of opposing flanges on both sides of the spacing of the transverse link 100 mm and 50 mm. The main parameters studied were: the heel height, and type of connector strengthening. From the test results, it is confirmed that the thin walls are more sensitive to the appearance local buckling and the length of the profiles has a significant effect on the bearing capacity and failure mode. The bearing capacity was increased
Directory of Open Access Journals (Sweden)
Adriano Gonçalves
2001-06-01
Full Text Available Para estruturas utilizadas no setor aeroespacial, os requisitos de baixo peso, alta resistência e rigidez, além de estabilidade dimensional, têm propiciado o aumento da utilização de materiais compósitos nas suas manufaturas. Em particular, cascas cilíndricas ou estruturas construídas pela junção de cilindros de paredes finas, confeccionadas em fibra de carbono e resina epóxi, são amplamente utilizadas neste tipo de aplicação. Neste trabalho, um programa experimental foi desenvolvido para determinar as tensões de falha, os módulos de elasticidade e o modo de falha de 47 cilindros com diâmetro interno de 40 mm e espessura nominal de 0,6 mm (com exceção de 2 corpos de prova, fabricados em carbono/epóxi, quando submetidos a cargas compressivas uniaxiais. Os espécimes testados possuíam diferentes razões entre comprimento e diâmetro (variando de 2,50 a 11,25 e seqüências de laminação variadas (orientações de camadas. Os resultados dos ensaios foram comparados aos obtidos em análises realizadas com programas de elementos finitos e os fatores que influenciaram o comportamento mecânico destes cilindros foram analisados.The requirements of low weight and dimensional stability, combined with high strength and stiffness, for aerospace structures has prompted an increasing use of fiber reinforced materials in manufacturing such structures. In particular, carbon/epoxy cylinders have been widely used in aerospace applications. In this work, an experimental program was developed to determine failure loads, modulus of elasticity and failure modes of 47 carbon/epoxy cylinders shells under compressive loads. The specimens tested had several different length/diameter (from 2.50 to 11.25 ratios and laminate lay-up. These results were compared to the analytical results from finite element code and the most important factors influencing the mechanical behavior of this type of structure were analyzed.
Institute of Scientific and Technical Information of China (English)
钟大虎; 夏辉; 窦益华; 曹银萍
2014-01-01
为校核螺旋屈曲管柱的强度安全性，基于弹簧理论与第四强度理论，推导出螺旋屈曲状态下管柱内、外侧相当应力的计算公式，并以油田常用规格油套管为例，探讨了轴向压力对管柱内、外侧最大相当应力的影响。算例结果表明，螺旋屈曲管柱内侧最大相当应力恒大于外侧；管柱内、外侧最大相当应力随轴向压力的增大而增大。轴向压力由200KN 增大至800KN 时，管柱内、外侧最大相当应力分别增大170%和413.8%。研究弥补了传统管柱力学分析的不足，提供了螺旋屈曲管柱安全性研究新方法，同时也可为现场安全施工提供参考。%To make clear stress distribution and variation of helical buckling tubing string, the formulas of equivalent stresses inside and outside of the tubing string were deduced based on the spring theory and the fourth strength theory. Taking tubing string and casing commonly used in oilfield as object, stress calculation programs were compiled to explore the influence of axial compression load on equivalent VonMises stress. From the analysis, we can see that the equivalent VonMises stresses inside of the helical buckling tubing string were higher than that outside. The equivalent VonMises stress increased with the axial compression load, and the increase is 170 percent and 413.8 percent respectively for stress inside and outside of the tubing string with compression load increased from 200KN to 800KN. The proposed method used for the helical buckling tubing string covered the shortage of traditional tubular mechanics effectively and can also provide reference for the field application.
Stability of perfect and imperfect cylindrical shells under axial compression and torsion
Institute of Scientific and Technical Information of China (English)
袁喆; 霍世慧; 耿小亮
2014-01-01
Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.
Institute of Scientific and Technical Information of China (English)
南波; 武岳; 孙浩田
2015-01-01
The spacecraft skeletal structure is usually made of lightweight, high strength composite CFRP material, whose stability capacity is an important indicator of the structural safety performance. Firstly, pultruded CFRP short pipe compression test was done in this paper, focusing on the stiffness, ultimate strength and microscopic failure mode of carbon fiber reinforced resin matrix. Secondly, based on the Hashin failure criteria and using ANSYS finite element software to do numerical simulation showed that the numerical results from Hashin failure criterion can bet⁃ter predict the ultimate bearing capacity in the failure mode of CFRP composites. Next, the Hashin failure criteria are further compared with experiment by using the arc-length method to do numerical simulation for five types of CFRP slender pipes, rendering the load mid⁃span deflection curve of the whole process, summarizing the character⁃istics of its destruction, and deformation characteristics. The simulation results are in good agreement with experi⁃ment. Based on this, a large number of parameter analyses are evaluated and the experimental results are compared with the numerical analysis result. The relationship curve between stability factor Φ and slenderness ratio λ of the pultruded slender CFRP pipe was derived by the least squares fitting calculation. This research is convenient for the application in engineering practice.%航天器骨架结构通常由轻质高强CFRP（carbon fiber reinforced polymer）复合材料管制成，其稳定承载力成为结构安全性能的一项重要指标。对CFRP短管进行轴压试验，重点研究碳纤维增强复合材料的刚度、极限强度以及细观破坏模式。基于Hashin破坏准则进行二次开发，采用ANSYS有限元软件对试验过程进行了数值模拟，数值结果表明，Hashin破坏准则可以较好地预测CFRP复合材料破坏时的极限承载力。基于Hashin破坏准则，采用
Comparison of design methods for axially loaded buckets in sand
DEFF Research Database (Denmark)
Vaitkunaite, Evelina; Nielsen, Benjaminn Nordahl; Ibsen, Lars Bo
2015-01-01
A study of the present knowledge about the bucket resistance for axial loading was performed considering analytical and numerical design methods as well as physical models. A case study was performed with two bucket foundations of equal diameter, but different skirt lengths installed in dense sand....... Itwas found that bearing capacity from the surcharge increases approximately twice if the foundation skirt is two times longer. However, the predicted compressive soil capacity can differ by 3.6 times depending on the chosen bearing capacity parameters. Few methods are available for the estimation...
Ranjbartoreh, A R; Su, D; Wang, G
2012-06-01
Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.
Indian Academy of Sciences (India)
K Athiannan; R Palaninathan
2004-02-01
This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision for in-situ measurement of the initial geometric imperfections. The shell models are made by rolling and seam welding process and hence are expected to have imperfections more or less of a kind similar to that of real shell structures. The present work thus differs from most of the earlier investigations. The measured maximum imperfections $\\delta_{\\text{max}}$ are of the order of $\\pm 3t$ (t = thickness). The buckling loads obtained experimentally are compared with the numerical buckling values obtained through ﬁnite element method (FEM). In the case of axial buckling, the imperfect geometry is obtained in four ways and in the case of transverse shear buckling, the FE modelling of imperfect geometry is done in two ways. The initial geometric imperfections affect the load carrying capacity. The load reduction is considerable in the case of axial compression and is marginal in the case of transverse shear buckling. Comparisons between experimental buckling loads under axial compression, reveal that the extent of imperfection, rather than its maximum value, in a specimen inﬂuences the failure load. Buckling tests under transverse shear are conducted with and without axial constraints. While differences in experimental loads are seen to exist between the two conditions, the numerical values are almost equal. The buckling modes are different, and the experimentally observed and numerically predicted values are in complete disagreement.
High-Frequency Axial Fatigue Test Procedures for Spectrum Loading
2016-07-20
REPORT NO: NAWCADPAX/TIM-2016/49 HIGH - FREQUENCY AXIAL FATIGUE TEST PROCEEDURES FOR SPECTRUM LOADING by David T. Rusk, AIR...OF THE NAVY NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND NAWCADPAX/TIM-2016/49 20 July 2016 HIGH - FREQUENCY AXIAL...Technical Information Memorandum 3. DATES COVERED 4. TITLE AND SUBTITLE High - Frequency Axial Fatigue Test Procedures for Spectrum Loading
Testing of Axially Loaded Bucket Foundation with Applied Overburden Pressure
DEFF Research Database (Denmark)
Vaitkunaite, Evelina; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl
This report analyses laboratory testing data performed with a bucket foundation model subjected to axial loading. The examinations were conducted at the Geotechnical laboratory of Aalborg University. The report aims at showing and discussing the results of the static and cyclic axial loading tests...
Test Setup for Axially Loaded Piles in Sand
DEFF Research Database (Denmark)
Thomassen, Kristina
The test setup for testing axially static and cyclic loaded piles in sand is described in the following. The purpose for the tests is to examine the tensile capacity of axially loaded piles in dense fully saturated sand. The pile dimensions are chosen to resemble full scale dimension of piles used...... in offshore pile foundations today....
Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil
DEFF Research Database (Denmark)
Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference...... in the predictions of bearing capacities calculated by means of the three methods for piles loaded in both tension and compression. This implies that further analysis of the bearing capacity of axially loaded piles in sand should be conducted....
Directory of Open Access Journals (Sweden)
Belinda Pingguan-Murphy
2012-08-01
Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.
Analyses of axial, lateral and circumferential deformations of rock specimen in triaxial compression
Institute of Scientific and Technical Information of China (English)
WANG Xue-bin
2008-01-01
The axial, lateral and circumferential strains were analyzed for a rock specimen subjected to shear failure in the form of a shear band bisecting the specimen in triaxial compression. Plastic deformation of the specimen stemmed from shear strain localization initiated at the peak shear stress. Beyond the onset of strain localization, the axial, lateral and circumferential strains were decomposed into two parts, respectively. One is the elas-tic strain described by general Hooke's law. The other is attributable to the plastic shear slips along shear band with a certain thickness dependent on the internal length of rock.The post-peak circumferential strain-axial strain curve of longer specimen is steeper than that of shorter specimen, as is consistent with the previous experiments. In elastic stage,the circumferential strain-axial strain curve exhibits nonlinear characteristic, as is in agreement with the previous experiment since confining pressure is loaded progressively until a certain value is reached. When the confining pressure is loaded completely, the circumferential strain-axial strain curve is linear in elastic and strain-softening stages. The predicted circumferential strain-axial strain curve in elastic and strain- softening stages agrees with the previous experiment.
Axial Compressive Strength of Foamcrete with Different Profiles and Dimensions
Directory of Open Access Journals (Sweden)
Othuman Mydin M.A.
2014-01-01
Full Text Available Lightweight foamcrete is a versatile material; primarily consist of a cement based mortar mixed with at least 20% volume of air. High flow ability, lower self-weight, minimal requirement of aggregate, controlled low strength and good thermal insulation properties are a few characteristics of foamcrete. Its dry densities, typically, is below 1600kg/m3 with compressive strengths maximum of 15MPa. The ASTM standard provision specifies a correction factor for concrete strengths of between 14 and 42MPa to compensate for the reduced strength when the aspect height-to-diameter ratio of specimen is less than 2.0, while the CEB-FIP provision specifically mentions the ratio of 150 x 300mm cylinder strength to 150 mm cube strength. However, both provisions requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength of foamcrete. This proposed laboratory work is intended to study the effect of different dimensions and profiles on the axial compressive strength of concrete. Specimens of various dimensions and profiles are cast with square and circular cross-sections i.e., cubes, prisms and cylinders, and to investigate their behavior in compression strength at 7 and 28 days. Hypothetically, compressive strength will decrease with the increase of concrete specimen dimension and concrete specimen with cube profile would yield comparable compressive strength to cylinder (100 x 100 x 100mm cube to 100dia x 200mm cylinder.
Behavior of concrete cylinders confined by a ferro-geopolymer jacket in axial compression
Directory of Open Access Journals (Sweden)
Kothay Heng
2017-06-01
Full Text Available It is beneficial to utilize geopolymers for their potential properties to rehabilitate concrete structures. These properties include high adhesion to Ordinary Portland Cement (OPC concrete even at low degrees of interfacial roughness, high durability and good fire resistance. This paper introduces use of a ferro-geopolymer jacket to strengthen concrete columns. It is a kind of jacket constructed with a geopolymer mortar reinforced with a wire mesh. This study was conducted to investigate the behavior of concrete cylinders confined with a ferro-geopolymer jacket in axial compression. OPC concrete cylinders with 100 mm diameter and 200 mm height were fabricated. High calcium fly ash-based geopolymer mortar, activated with sodium hydroxide (NaOH and sodium silicate (Na2SiO3, cured at a temperature of 25 ºC was used. Ferro-geopolymer jackets with a25 mm thickness, were reinforced with 1, 2 and 3 layers of expanded metal mesh and cast around concrete cylinders. The study results revealed that the compressive load carrying capacity and axial stiffness of concrete cylinders were improved. A monolithic failure mode was obtained as a result of a strong adhesion between the geopolymer and the concrete core. Enhancement of compressive load carrying capacity of the jacketed concrete cylinders was caused by a combination of a confinement effect and the compressive load resistance of the jacket transferred from concrete core through bonding.
Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays
Directory of Open Access Journals (Sweden)
F. L. De Oliveira
Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.
Lignos, Dimitrios; Cravero, Julien; Elkady, Ahmed Mohamed Ahmed
2016-01-01
This paper discusses the findings from a large-scale experimental program that characterized the hysteretic behavior of typical steel wide-flange columns in steel moment-resisting frames (MRFs). The test specimens were tested in a cantilever configuration with a fixed point of inflection. The main testing parameters included various lateral and axial loading histories, the applied axial compressive load and the local slenderness of the cross-section. It is shown that (a) steel columns subject...
Bearing Capacities of Different-Diameter Concrete-Filled Steel Tubes under Axial Compression
Directory of Open Access Journals (Sweden)
Wenjing Wang
2016-01-01
Full Text Available The bearing capacities of concrete-filled steel tubes are normally derived through experiments with small-scale specimens, but it is uncertain whether such derivations are appropriate for the much larger components used in practical engineering. This study therefore investigates the effect of different diameters (219, 426, 630, and 820 mm on the axial compression of short concrete columns in steel (Q235 tubes. It is found that the peak nominal stress decreases with increasing specimen size and that the axial bearing capacity is determined by three separate components: the cylinder compressive strength of the concrete, the improvement in strength due to the confining effect of the steel tube, and the longitudinal strength of the steel tube. At peak load, increases in the specimen diameter reduce the hoop stresses in the steel tube, thereby reducing the strengthening effect of confinement. Vertical stress in the steel tube is increased with diameter; therefore, the axial bearing capacity of the steel tube is directly related to the specimen size. Size effect coefficients for these three aspects of bearing capacity are defined and used to develop a size-dependent model for predicting the axial bearing capacity of large, concrete-filled steel tubes. The model is then validated against experimental data.
DEFF Research Database (Denmark)
Zhou, H.W.; Li, H.Y.; Gui, L.L.;
2013-01-01
Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different a...
Deformation and failure mechanisms of 18650 battery cells under axial compression
Zhu, Juner; Zhang, Xiaowei; Sahraei, Elham; Wierzbicki, Tomasz
2016-12-01
An important deformation mode during ground impacts of battery packs made of cylindrical battery cells is axial compression. This type of loading subjects the cell to a complex deformation pattern and failure mechanism. The design of endcaps plays an important role in such deformations. To explore the sequence of deformation and the underlying failure mechanisms, a combined experimental/numerical study was carried out. Tests were conducted on 18650 cells, and the deformation of each component was carefully investigated and documented. There are four different stages in the force-displacement curve, corresponding with deformation of various components in the endcap assembly. A short circuit happens at a displacement of 4 mm. To clarify these observations, a detailed Finite Element model was set up, covering the geometry and the mechanical property of almost all the components of the cell. Using the simulation results, the sequence of the axial compression was revealed, which was subsequently validated by Micro CT scans as well as analytical solutions. Based on the precise analysis of the mechanical behavior, the cause of the short circuit during axial loading was clarified. Two failure mechanisms in the separator at the top section of the cell explain the possible causes of short circuit.
Directory of Open Access Journals (Sweden)
Sanjib C. Chowdhury
2017-02-01
Full Text Available Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used in protective armor systems. The influence of multiaxial loading on fiber failure is not well understood. Experiments show reduction in the tensile strength of these fibers after axial and transverse compression. In this paper, we use molecular dynamics (MD simulations to explain and develop a fundamental understanding of this experimental observation since the property reduction mechanism evolves from the atomistic level. An all-atom MD method is used where bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force field. Monotonic tension simulations in three principal directions of the models are conducted to determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial loads—axial compression, followed by axial tension and transverse compression, followed by axial tension. MD simulation results indicate that pre-compression distorts the crystal structure, inducing preloading of the covalent bonds and resulting in lower tensile properties.
Directory of Open Access Journals (Sweden)
Jabulani R. Barber
2014-01-01
Full Text Available The mechanical response of thirteen different helical multi-walled carbon nanocoils to axial compression is reported. Each nanocoil was attached to the apex of a cantilever probe tip; its dimensions and orientation relative to the tip apex were determined with scanning electron microscopy. The atomic force microscope was employed to apply a cyclic axial load on the nanocoil. Its mechanical response was determined by simultaneous collection of the thermal resonance frequency, displacement, and oscillation amplitude of the cantilever-nanotube system in real time. Depending upon compression parameters, each coil underwent buckling, bending, and slip-stick motion. Characteristic features in the thermal resonance spectrum and in the force and oscillation amplitude curves for each of these responses to induced stress are presented. Following compression studies, the structure and morphology of each nanocoil were determined by transmission electron microscopy. The compression stiffness of each nanocoil was estimated from the resonant frequency of the cantilever at the point of contact with the substrate surface. From this value, the elastic modulus of the nanocoil was computed and correlated with the coiled carbon nanotube’s morphology.
Buckling of un—stiffened cylindrical shell under non—uniform axial compressive stress
Institute of Scientific and Technical Information of China (English)
宋昌永
2002-01-01
This paper provides a review of recent research advances and trends in the area of stability of unstiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses.Only the more important and interesting aspects of the research,judged from a personal viewpoint,are discussed.They can be crudely classified into four categories:(1) shells subjected to non-uniform loads;(2) shells on discrete supports;(3) shells with intended cutouts/holes;and (4) shells with non-uniform settlements.
The influence of impact direction and axial loading on the bone fracture pattern.
Cohen, Haim; Kugel, Chen; May, Hila; Medlej, Bahaa; Stein, Dan; Slon, Viviane; Brosh, Tamar; Hershkovitz, Israel
2017-08-01
The effect of the direction of the impact and the presence of axial loading on fracture patterns have not yet been established in experimental 3-point bending studies. To reveal the association between the direction of the force and the fracture pattern, with and without axial loading. A Dynatup Model POE 2000 (Instron Co.) low energy pendulum impact machine was utilized to apply impact loading on fresh pig femoral bones (n=50). The bone clamp shaft was adjusted to position the bone for three-point bending with and without additional bone compression. Four different directions of the force were applied: anterior, posterior, lateral, and medial. The impacted aspect can be distinguished from the non-impacted aspects based on the fracture pattern alone (the most fractured one); the impact point can be identified on bare bones (the area from which all oblique lines radiate and/or the presence of a chip fragment). None of our experiments (with and without compression) yielded a "true" butterfly fracture, but instead, oblique radiating lines emerged from the point of impact (also known as "false" butterfly). Impacts on the lateral and anterior aspects of the bones produce more and longer fracture lines than impacts on the contralateral side; bones subjected to an impact with axial loading are significantly more comminuted and fragmented. Under axial loading, the number of fracture lines is independent of the impact direction. Our study presents an experimental model for fracture analysis and shows that the impact direction and the presence of axial loading during impact significantly affect the fracture pattern obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Hui-Shen
2010-06-01
Buckling and postbuckling analysis is presented for axially compressed microtubules (MTs) embedded in an elastic matrix of cytoplasm. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The surrounding elastic medium is modeled as a Pasternak foundation. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. The small scale parameter e (0) a is estimated by matching the buckling load from their vibrational behavior of MTs with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling load and postbuckling behavior of MTs are very sensitive to the small scale parameter e (0) a. The results reveal that the MTs under axial compressive loading condition have an unstable postbuckling path, and the lateral constraint has a significant effect on the postbuckling response of a microtubule when the foundation stiffness is sufficiently large.
Experimental - theoretical study of axially compressed cold formed steel profiles
Directory of Open Access Journals (Sweden)
Bešević Miroslav
2011-01-01
Full Text Available Analysis of axially compressed steel members made of cold formed profiles presented in this paper was conducted through both experimental and numerical methods. Numerical analysis was conducted by means of "PAK" finite element software designed for nonlinear static and dynamic analysis of structures. Results of numerical analysis included ultimate bearing capacity with corresponding middle section force-deflection graphs and buckling curves. Extensive experimental investigation were also concentrated on determination of bearing capacity and buckling curves. Experiments were conducted on five series with six specimens each for slenderness values of 50, 70, 90, 110 and 120. Compressed simply supported members were analyzed on Amsler Spherical pin support with unique electronical equipment and software. Besides determination of forcedeflection curves, strains were measured in 18 or 12 cross sections along the height of the members. Analysis included comparisons with results obtained by different authors in this field recently published in international journals. Special attention was dedicated to experiments conducted on high strength and stainless steel members.
Fatigue Properties of Plain Concrete Under Triaxial Compressive Cyclic Loading
Institute of Scientific and Technical Information of China (English)
曹伟; 宋玉普; 刘海成
2004-01-01
Experiments were made on plain concrete subjected to triaxial static loading and constant-amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was O, 0. 1fc, 0.25fc andO. 4fc, respectively, for the static test, and 0. 1fc and 0.25fc for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis-Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S-N curve for multi-axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.
Institute of Scientific and Technical Information of China (English)
Bai Jiangbo; Xiong Junjiang
2014-01-01
This paper seeks to outline the temperature effect on the buckling properties of ultra-thin-walled lenticular collapsible composite tube (LCCT) subjected to axial compression. The buckling tests of the LCCT specimens subjected to axial compression were carried out on INSTRON-500N servo-hydraulic machine in dry state and at the temperatures of 25 ?C, 100 ?C and ?80 ?C. The load-displacement curves and buckling initiation loads were measured and the buckling initiation mechanism was discussed from experimental observations. Experiments show that the buckling initiation load, on average, is only about 2.2% greater at the low temperature of ?80 ?C than at the room temperature of 25 ?C due to the material hardening, demonstrating an insignificant increase in the buckling initiation load, whereas it is about 19.5%lower at the high temperature of 100 ?C than at the room temperature owing to the material softening, implying a significant decrease in the buckling initiation load. The failure mode of the LCCT in axial compres-sion tests at three different temperatures can be reckoned to be characteristic of the buckling initi-ation and propagation around the central region until rupture. The finite element (FE) model is presented to simulate the buckling initiation mechanism based on the eigenvalue-based methodol-ogy. Good correlation between experimental and numerical results is achieved.
Preclinical mouse models for assessing axial compression of long bones during exercise.
Stadelmann, Vincent A; Brun, Julia; Bonnet, Nicolas
2015-01-01
The aim of this laboratory method is to describe two approaches for the investigation of bone responses to mechanical loading in mice in vivo. The first is running exercise, because it is easily translatable clinically, and the second is axial compression of the tibia, because it is precisely controllable. The effects of running exercise, and in general physical activity, on bone tissue have been shown to be both direct through mechanical loading (ground impact and muscle tension) and indirect through metabolic changes. Therefore, running exercise has been considered the most convenient preclinical model for demonstrating the general idea that exercise is good for bone health, either early in age for increasing peak bone mass or later in age by slowing down bone loss. However, numerous combinations of protocols have been reported, which makes it difficult to formulate a simple take-home message. This laboratory method also provides a detailed description of in vivo direct mechanical axial compression of the mouse tibia. The effects of mechanical loading depend on the force (strain), frequency, waveform and duration of application, and they range from bone anabolism with low bone remodeling, inducing lamellar bone accumulation, to bone catabolism with high bone remodeling, leading to microdamage, woven bone formation and bone loss. Direct in vivo loading models are extensively used to study mechanotransduction pathways, and contribute by this way to the development of new bone anabolism treatments. Although it is particularly difficult to assemble an internationally adopted protocol description, which would give reproducible bone responses, here we have attempted to provide a comprehensive guide for best practice in performing running exercise and direct in vivo mechanical loading in the laboratory.
Static Tension Tests on Axially Loaded Pile Segments in Sand
DEFF Research Database (Denmark)
Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
This paper provides laboratory test results of static axially loaded piles in sand. With a newly developed test setup, the pile-soil interface friction was investigated by using an open-ended steel pile segment with a diameter of 0.5 m. Use of a pile length of 1 m enabled the pile-soil interface...
Dynamic Response of Axially Loaded Euler-Bernoulli Beams
DEFF Research Database (Denmark)
Bayat, M.; Barari, Amin; Shahidi, M.
2011-01-01
The current research deals with application of a new analytical technique called Energy Balance Method (EBM) for a nonlinear problem. Energy Balance Method is used to obtain the analytical solution for nonlinear vibration behavior of Euler-Bernoulli beams subjected to axial loads. Analytical...
BUCKLING BEHAVIOUR OF SINGLE-WALLED CARBON NANOTUBES UNDER AXIAL LOADING
Directory of Open Access Journals (Sweden)
Grzegorz Litak
2017-03-01
Full Text Available We investigate a single walled Carbon Nanotube under an axially directed compressive line loading applied at both of its edges. The expected buckling behavior we study by application of a molecular computation approach. We formulate a global potential and search for its minimum to obtain the equilibrium configuration. Using besides the main parameter, which is the value of the loading, as second parameter the diameter of the tube, we are able to define the critical value of the diameter, for which we obtain the coincident case of local shell buckling.
Laboratory Test Setup for Cyclic Axially Loaded Piles in Sand
DEFF Research Database (Denmark)
Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard
2017-01-01
conditions for all tests. For verifications purposes six static tension tests conducted at three different vertical effective stress levels of 0, 35 and 70 kPa. The load-displacement curves showed that the test setup provides repeatable test results. A preliminary comparison between the unit shaft friction......This paper presents a comprehensive description and the considerations regarding the design of a new laboratory test setup for testing cyclic axially loaded piles in sand. The test setup aims at analysing the effect of axial one-way cyclic loading on pile capacity and accumulated displacements....... Another aim was to test a large diameter pile segment with dimensions resembling full-scale piles to model the interface properties between pile and sand correctly. The pile segment was an open-ended steel pipe pile with a diameter of 0.5 m and a length of 1 m. The sand conditions resembled the dense sand...
Test Procedure for Axially Loaded Piles in Sand
DEFF Research Database (Denmark)
Thomassen, Kristina
The test procedure described in the following is used when examining the effects of static or cyclic loading on the skin friction of an axially loaded pile in dense sand. The pile specimen is only loaded in tension to avoid any contribution from the base resistance. The pile dimensions are chosen...... to resemble full scale dimension of piles used in offshore pile foundations today. In this report is given a detailed description of the soil preparation and pile installation procedures as well data acquisition methods....
Tensile stresses generated in pharmaceutical tablets by opposing compressive line loads.
Drake, K R; Newton, J M; Mokhtary-Saghafi, S; Davies, P N
2007-03-01
The distribution of tensile stress, across the splitting plane, has been investigated for the case when circular and square tablets are subjected to opposing compressive line loads acting in the through thickness direction. This type of loading is referred to in the paper as axial compression. Analytical solutions for the two-dimensional problem of a rectangular strip have been used to investigate the variation of stress in the through thickness direction and to consider the effects of load spreading. Three-dimensional finite element analysis has been used to investigate the variation in stress across the diameter, or breadth, of the tablets. It is shown that the magnitude of the tensile stress varies significantly throughout and that load spreading has an important influence on the stress distribution in the through thickness direction. Experiments have been carried out with microcrystalline cellulose (Avicel PH102) material for circular and square tablets to determine their breaking loads when subjected to axial compression and diametral compression. The experimental results show higher breaking loads for the case of axial compression. It is concluded that the platen contact width must be known in order to evaluate the exact value of the tensile strength of the tablet material when applying this test procedure.
Axial compression physical testing of traditional and bird beak SHS T-joints
Institute of Scientific and Technical Information of China (English)
陈誉; 王江
2015-01-01
The static tests of nine traditional and bird beak square hollow structure (SHS) T-joints with differentβ values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load−vertical displacement curves, jack load−deformation of chord and strain intensity distribution curves of joints were presented. The effects ofβ and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values ofβ. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. Asβ increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase asβincreases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase asβ increases, but the ductility of the traditional SHS T-joints decreases asβ increases.
Dynamic Behaviours of a Single Soft Rock-Socketed Shaft Subjected to Axial Cyclic Loading
Directory of Open Access Journals (Sweden)
Ben-jiao Zhang
2016-01-01
Full Text Available The soft rock was simulated by cement, plaster, sand, water, and concrete hardening accelerator in this paper. Meanwhile, uniaxial compressive strength tests and triaxial compression tests were conducted to study the mechanical properties of simulated soft rock samples. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted by using a device which combined test apparatus with a GCTS dynamic triaxial system. Test results show that the optimal mix ratio is cement : plaster : medium sand : water : concrete hardening accelerator = 4.5% : 5.0% : 84.71% : 4.75% : 1.04%. The static load ratio (SLR, cyclic load ratio (CLR, and the number of cycles affect the accumulated deformation and cyclic secant modulus of the pile head. The accumulated deformation increases with increasing numbers of cycles. However, the cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles and finally remains stable after 50 cycles. According to the test results, the development of accumulated settlement was analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio, and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to traffic loading.
Institute of Scientific and Technical Information of China (English)
王海燕; 童贤鑫
2012-01-01
Currently, engineering method is usually used to compute the load carrying capacity of the panels in a design process. In this paper, three major engineering methods are briefly described and investigated. These methods are evaluated through the comparison of calculated results and test data, for the stiffed panels of the central wing and fuselage of an aircraft. It is shown that the results from ultimate load method are safer and more consistent with the experimental data. The reasonable allowable stress for central wing of the aircraft is specified according to the previous comparisons and analysis. Finally, eleven types of stiffened panels under axi- al compression of the aircraft fuselage are calculated by using ultimate load method. The results agree well with the experimental data. It is approved that this method can meet the requirement more accurately and utility in engineering design.%目前飞机设计中主要采用工程方法计算加筋壁板的承载能力。本文介绍并评述了分段处理法、John-son法和极限载荷法三种常用的工程方法，为了探讨哪种方法能更加满足工程需要，采用这三种方法对某型飞机中央翼加筋壁板及其试验件分别进行计算，表明其中极限载荷法的计算结果偏于安全，与试验结果吻合较好，并采用此法确定了中央翼加筋壁板的承载能力。最后采用极限载荷法进一步计算该型飞机机身11种构型加筋壁板轴压试验件，破坏载荷计算值与试验结果相当吻合，从而证实了极限载荷法是一种计算轴压加筋壁板承载能力更准确、实用的工程方法。
Van Toen, C; Melnyk, A D; Street, J; Oxland, T R; Cripton, P A
2014-03-21
Current neck injury criteria do not include limits for lateral bending combined with axial compression and this has been observed as a clinically relevant mechanism, particularly for rollover motor vehicle crashes. The primary objectives of this study were to evaluate the effects of lateral eccentricity (the perpendicular distance from the axial force to the centre of the spine) on peak loads, kinematics, and spinal canal occlusions of subaxial cervical spine specimens tested in dynamic axial compression (0.5 m/s). Twelve 3-vertebra human cadaver cervical spine specimens were tested in two groups: low and high eccentricity with initial eccentricities of 1 and 150% of the lateral diameter of the vertebral body. Six-axis loads inferior to the specimen, kinematics of the superior-most vertebra, and spinal canal occlusions were measured. High speed video was collected and acoustic emission (AE) sensors were used to define the time of injury. The effects of eccentricity on peak loads, kinematics, and canal occlusions were evaluated using unpaired Student t-tests. The high eccentricity group had lower peak axial forces (1544 ± 629 vs. 4296 ± 1693 N), inferior displacements (0.2 ± 1.0 vs. 6.6 ± 2.0 mm), and canal occlusions (27 ± 5 vs. 53 ± 15%) and higher peak ipsilateral bending moments (53 ± 17 vs. 3 ± 18 Nm), ipsilateral bending rotations (22 ± 3 vs. 1 ± 2°), and ipsilateral displacements (4.5 ± 1.4 vs. -1.0 ± 1.3 mm, pcervical spine injuries with lateral eccentricities. © 2013 Published by Elsevier Ltd.
A Nonlocal Model for Carbon Nanotubes under Axial Loads
Directory of Open Access Journals (Sweden)
Raffaele Barretta
2013-01-01
Full Text Available Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses.
Reassessing the Plastic Hinge Model for Energy Dissipation of Axially Loaded Columns
Directory of Open Access Journals (Sweden)
R. M. Korol
2014-01-01
Full Text Available This paper investigates the energy dissipation potential of axially loaded columns and evaluates the use of a plastic hinge model for analysis of hi-rise building column collapse under extreme loading conditions. The experimental program considered seven axially loaded H-shaped extruded aluminum structural section columns having slenderness ratios that would be typical of floor-to-ceiling heights in buildings. All seven test specimens initially experienced minor-axis overall buckling followed by formation of a plastic hinge at the mid-height region, leading to local buckling of the flanges on the compression side of the plastic hinge, and eventual folding of the compression flanges. The experimental energy absorption, based on load-displacement relations, was compared to the energy estimates based on section plastic moment resistance based on measured yield stress and based on measured hinge rotations. It was found that the theoretical plastic hinge model underestimates a column’s actual ability to absorb energy by a factor in the range of 3 to 4 below that obtained from tests. It was also noted that the realizable hinge rotation is less than 180°. The above observations are based, of course, on actual columns being able to sustain high tensile strains at hinge locations without fracturing.
Energy Dissipation in Sandwich Structures During Axial Compression
DEFF Research Database (Denmark)
Urban, Jesper
2002-01-01
The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full-scale structu......The purpose of this paper is to investigate the energy dissipation in sandwich structures during axial crushing. Axial crushing tests on six sandwich elements are described. The sandwich elements consist of a polyurethane core and E-glass/Polyester skin. The elements compare to full...
Directory of Open Access Journals (Sweden)
Rajeev Kumar
2014-07-01
Full Text Available A finite element model of fractured tibia with Joshi’s External Stabilizing System (JESS mounted on it was developed using 3D beam elements in the ANSYS software. The model was loaded in axial compression and the average axial stiffness of the model was calculated. The analytical value of axial stiffness was compared with reported experimental value to validate the finite element model. The validated model was used to carry out parametric studies on the model to determine the axial properties of JESS. It was observed that axial stiffness of JESS increased by 58% when k-wire diameter was varied from 2 mm to 4 mm while keeping other geometric configurations of the device constant; however, the axial stiffness of the device does not show any significant improvement when the diameter of medio-lateral pins in diaphyseal hold were increased. The findings should help in understanding the axial properties of JESS so that it can be used judiciously in clinical applications.
Jiang, X. T.; Wang, Y. D.; Dai, C. H.; Ding, M.
2017-08-01
The finite element model of concrete-filled steel tubular member was established by the numerical analysis software considering material nonlinearity to analyze concrete creep effect on the dynamic responses of the member under axial compression and lateral impact. In the model, the constitutive model of core concrete is the plastic damage model, that of steel is the Von Mises yield criterion and kinematic hardening model, and the creep effect at different ages is equivalent to the change of concrete elastic modulus. Then the dynamic responses of concrete-filled steel tubular member considering creep effects was simulated, and the effects of creep on contact time, impact load, deflection, stress and strain were discussed. The fruits provide a scientific basis for the design of the impact resistance of concrete filled steel tubular members.
Three dimensional inviscid compressible calculations around axial flow turbine blades
Fourmaux, Antoine; Petot, Bertrand
1991-12-01
The application of a three dimensional (3D) method to the prediction of steady inviscid compressible flows in highly loaded stator bladings is presented. The complete set of Euler equations is solved by a finite difference method using a time marching two step Lax-Wendorff algorithm. The treatment of the boundary conditions is based on the use of the characteristic relations. This technique offers a great versatility and allows to prescribe conditions close to the physics of flows encountered in turbomachines. The code was adapted in order to build a 3D design tool able to run in different types of turbine blade geometries. Two types of multidomain structured meshes were tested (H+0+H and H+C). The H+C type of grid was finally choosen for industrial applications. Two applications to turbine nozzles are presented. The first is a low pressure turbine vane with evolutive flow path outer diameter. The results demonstrate the ability to predict flow features that cannot be computed via the classical two dimensional approach. The second is a high pressure inlet guide vane at transonic conditions. The strong radial evolution of pressure distribution and the trailing edge flow pattern are correctly predicted.
Köller, W; Funke, F; Hartmann, F
1981-04-01
49 specimens were studied in 67 axial compression tests; the duration test varied between 2 and 6 hours. All discs showed marked creep; after a big decrease in the first minutes the rate of creep decreases still slightly. Additional the results reveal a decreasing axial deformability with time. In the beginning of a test quickly the viscoelastic behavior alters to such a steady state that the disc behaves more like an elastic body. Loss of mass normally observed after compression tests is due to loss of liquid, but liquid absorption during mechanical load is possible too. The long term biochmechanical behavior is reproducible very well; a second experiment done with the same disc yields nearly the same results.
Kallemeyn, Nicole A; Grosland, Nicole M; Pedersen, Doug R; Martin, James A; Brown, Thomas D
2006-01-01
Background: We developed a poroelastic finite element (FE) model of cartilage in dynamic triaxial compression to parametrically analyze the effects of loading and boundary conditions on a baseline model. Conventional mechanical tests on articular cartilage such as confined and unconfined compression, indentation, etc., do not fully allow for modulation of compression and shear at physiological levels whereas triaxial compression does. A Triaxial Compression Bioreactor, or TRIAX, has been developed to study chondrocyte responses to multi-axial stress conditions under cyclic loading. In the triaxial setting, however, a cartilage explant's physical testing environment departs from the ideal homogeneous stress state that would occur from strict linear superposition of the applied axial and transverse pressure. Method of Approach: An axisymmetric poroelastic FE model of a cartilage explant (4 mm diameter, 1.5 mm thick) in cyclic triaxial compression was created. Axial and transverse loads (2 MPa at 1 Hz.) were applied via a platen and containment sheath. Parameters of interest included the rise time and magnitude of the applied load, in addition to the containment sheath modulus and the friction coefficient at the cartilage/platen interfaces. Metrics of interest in addition to whole explant axial strain included axial (surface normal) stress, shear stress, pore pressure, and the fluid load carriage fraction within the explant. Results: Strain results were compared to experimental data from explants tested in the TRIAX under conditions similar to the baseline model. Explant biomechanics varied considerably over numbers of load cycles and parameter values. Cyclic loading caused an increase in accumulated strain for the various loading and boundary conditions. Conclusions: Unlike what would be expected from linear superposition of the homogeneous stresses from the applied axial and transverse pressure, we have shown that the stress state within the TRIAX is considerably
Dynamic Response of Axially Loaded Euler-Bernoulli Beams
DEFF Research Database (Denmark)
Bayat, M.; Barari, Amin; Shahidi, M.
2011-01-01
expressions for geometrically nonlinear vibration of beams are provided. The effect of vibration amplitude on the nonlinear frequency is discussed. Comparison between Energy Balance Method results and those available in literature demonstrates the accuracy of this method. In Energy Balance Method contrary...... to the conventional methods, only one iteration leads to high accuracy of the solutions which are valid for a wide range of vibration amplitudes.......The current research deals with application of a new analytical technique called Energy Balance Method (EBM) for a nonlinear problem. Energy Balance Method is used to obtain the analytical solution for nonlinear vibration behavior of Euler-Bernoulli beams subjected to axial loads. Analytical...
Guehring, Thorsten; Unglaub, Frank; Lorenz, Helga; Omlor, Georg; Wilke, Hans-Joachim; Kroeber, Markus W
2006-05-01
Intervertebral disc (IVD) pressure measurement is an appropriate method for characterizing spinal loading conditions. However, there is no human or animal model that provides sufficient IVD pressure data. The aim of our study was to establish physiological pressure values in the rabbit lumbar spine and to determine whether temporary external disc compression and distraction were associated with pressure changes. Measurements were done using a microstructure-based fibreoptic sensor. Data were collected in five control rabbits (N, measurement lying prone at segment L3/4 at day 28), five rabbits with 28 days of axial compression (C, measurement at day 28) and three rabbits with 28 days of axial compression and following 28 days of axial distraction (D, measurement at day 56). Disc compression and distraction was verified by disc height in lateral radiographs. The controls (N) showed a level-related range between 0.25 MPa-0.45 MPa. The IVD pressure was highest at level L3/4 (0.42 MPa; range 0.38-0.45) with a decrease in both cranial and caudal adjacent segments. The result for C was a significant decrease in IVD pressure (0.31 MPa) when compared with controls (P=0.009). D showed slightly higher median IVD pressure (0.32 MPa) compared to C, but significantly lower levels when compared with N (P=0.037). Our results indicate a high range of physiological IVD pressure at different levels of the lumbar rabbit spine. Temporary disc compression reduces pressure when compared with controls. These data support the hypothesis that temporary external compression leads to moderate disc degeneration as a result of degradation of water-binding disc matrix or affected active pumping mechanisms of nutrients into the disc. A stabilization of IVD pressure in discs treated with temporary distraction was observed.
Numerical Simulation of Active Suppression of Rotating Stall in Axial Compression Systems
Institute of Scientific and Technical Information of China (English)
JunHu; LeonhardFottner
1996-01-01
In the present paper,a theoretical model is proposed to analyze the transient behavior of suppression of rotating stall in axial compression systems through the use of an additional distubance,The governing equations of the model are a set of simultaneous nonlinear first order partial differential equations,and for numerical calculations,a simple explicit time marching method can be used.The influence of system parameters on the suppression effectiveness and the interaction between rotating stall and surge have been discussed initially.The anslysis of the influence of system parameters presents that both the B parameter and axisymmetric comprssor characteristic have significant effect on the stabilization effectiveness of a control strategy.The effectiveness decreases as the value of B and the number of stages or stage loading of the compressor increase,It has been found that the onset flow rate of rotating stall and surge in a compression system may be different,and there is a strong interaction between these two kinds of instabilities.The onset flow rate of pure one dimensional surge depends on the value of B and axisymmetric compressor characteristic,besides the slope of the compressor characteristic.In some cases,when rotating stall which is the natural mode of instability in a compression system is suppressed one dimensional surge can occur,It often limits the effectiveness of a control strategy to suppress rotating stall.But when surge is intiated by ratating stall,it is also possible to inhibit the occurrence of surge by suppressing rotating stall in a compression system.
Unglaub, F; Lorenz, H; Nerlich, A; Richter, W; Kroeber, M W
2003-01-01
Degeneration of the intervertebral disc is a common disease in the adults, especially at advanced age. A causal therapy is not known, but the progress in new therapeutic strategies, for example in tissue engineering, shows new possibilities. The goal of our study was to develop a new animal model that stimulates a load induced degeneration of the disc. We used the New Zealand rabbit, because morphology is similar to the human intervertebral disc. The degeneration was induced by axial compression of the disc L4 - L5 with an external fixateur. After different loading intervals, the animals were sacrified and the discs examined by radiology, histology, apoptosis and biomechanical testing. Radiography showed a significant decrease of the disc thickness in all loaded groups. Morphologically the intervertebral discs of loaded rabbits showed degenerative changes which were comparable to those in humans. A significantly increased number of dead cells in the annulus occurred after 14 and 28 days loading compared to the controls. The bending stress measured as the load to failure was not significantly different between the unloaded discs and the 28 days loaded discs. The results show that our animal modell can create degeneration. Four weeks compression leads to significant degeneration. Degeneration of the discs persisted in animals that were allowed a recovery time of 28 days after 28 days of loading.
Directory of Open Access Journals (Sweden)
Rabee Shamass
2015-01-01
Full Text Available A large number of authors in the past have concluded that the flow theory of plasticity tends to overestimate significantly the buckling load for many problems of plates and shells in the plastic range, while the deformation theory generally provides much more accurate predictions and is consequently used in practical applications. Following previous numerical studies by the same authors focused on axially compressed cylinders, the present work presents an analytical investigation which comprises the broader and different case of nonproportional loading. The analytical results are discussed and compared with experimental and numerical findings and the reason for the apparent discrepancy on the basis of the so-called “buckling paradox” appears once again to lay in the overconstrained kinematics on the basis of the analytical and numerical approaches present in the literature.
Nonlinear Constitutive Equation for Green Sand Considering the Tri-axial Compression Behavior
Institute of Scientific and Technical Information of China (English)
曾攀; 孔劲
2004-01-01
The compression characteristics of green sand were investigated experimentally, including the squeezing and yielding during deformation. An expression was developed for the transient compression modulus of sand during compression. Based on the hypothesis put forward of the compression state, the differential equation for the nonlinear constitutive equation was deduced by introducing a move-yield potential function. The state constitutive equation under the tri-axial experiment is further studied according to the sand attributes, considering the differential form of Hooke's law and the Mohr-Coulomb condition. The related experiment data are applied to verify the proposed constitutive model of sand.
Haptic Evaluation of the Prickle of Fabrics:Axial Compression Bending Tests On Ramie Fibers
Institute of Scientific and Technical Information of China (English)
刘宇清; 韩露; 于伟东
2004-01-01
Although smoothness, softness, and stiffness determine the physical and mechanical behavior of a fabric and the subjective assessment of quality when it is handled, the perceived comfort of clothing is more important to consumers. The sensations perceived from the contact of clothing with the skin can greatly influence our over-all state of comfort and one aspect of this is the unpleasant skin sensation of prickle. Surface prickle of fabrics can be a factor limiting the use of the coarser types of ramie in apparel. And the mechanical stimulus of fabric-evoked prickle underlies our discomfort to fabrics independent in the majority of cases of any chemical or the atopic status of the individual. It is known that the prickle of fabric can be reduced by fabric-finishing treatments, but the assessment of fabric prickle is often done subjectively. This is time consuming, and it is difficult to obtain reliable and reproducible results, since variability between subjects in their sensitivity to prickle, such as skin mechanical properties, effective density of nociceptors and the mood state of the individual. In order to find an objective method of measuring the physical properties of the stiff fiber ends protruding from the fabrics to predict prickle, axial compression bending tests were examined by using single ramie fiber. By comparing analysis, it is found that the critical compressing load (Pcr), the bending modulus (E) are the important parameters. The relationship of the critical load (Pcr) with the length of fiber (L) and the fineness of fiber (Nt) has been investigated.
Li, Yuyin; Zhang, Yahui; Kennedy, David
2017-10-01
A random vibration analysis of an axially compressed cylindrical shell under a turbulent boundary layer (TBL) is presented in the symplectic duality system. By expressing the cross power spectral density (PSD) of the TBL as a Fourier series in the axial and circumferential directions, the problem of structures excited by a random distributed pressure due to the TBL is reduced to solving the harmonic response function, which is the response of structures to a spatial and temporal harmonic pressure of unit magnitude. The governing differential equations of the axially compressed cylindrical shell are derived in the symplectic duality system, and then a symplectic eigenproblem is formed by using the method of separation of variables. Expanding the excitation vector and unknown state vector in symplectic space, decoupled governing equations are derived, and then the analytical solution can be obtained. In contrast to the modal decomposition method (MDM), the present method is formulated in the symplectic duality system and does not need modal truncation, and hence the computations are of high precision and efficiency. In numerical examples, harmonic response functions for the axially compressed cylindrical shell are studied, and a comparison is made with the MDM to verify the present method. Then, the random responses of the shell to the TBL are obtained by the present method, and the convergence problems induced by Fourier series expansion are discussed. Finally, influences of the axial compression on random responses are investigated.
Dynamic impedance of piles in visco-elastic material considering axial loads
Institute of Scientific and Technical Information of China (English)
JIANG Jian-guo; ZHOU Xu-hong; ZHANG Jia-sheng
2005-01-01
The dynamic impedance function of pile in visco-elastie material considering axial loads under lateral dynamic force was analyzed, and the beam dynamic differential equation was used to induce the dynamic impedance function. After analyzing the edge conditions, the dynamic impedance functions were deduced. Contrasted with the result that does not consider axial loads, the axial loads have obvious influence on the dynamic impedance function.And the results show that the dimensionless prarmeter of the dynamic impedance will change from 6 % to 9 % when considering axial loads, and dimensionless prarmeter of the dynamic impedance of the coupling horizontal-sway will increase by 31 %.
Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads
Alcheikh, Nouha
2017-01-04
We present a simulation and experimental investigation of bi-directional tunable in-plane clamped-guided arch microbeam resonators. Tensile and compressive axial forces are generated from a bi-directional electrostatic actuator, which modulates the microbeam stiffness, and hence changes its natural frequency to lower or higher values from its as-fabricated value. Several devices of various anchor designs and geometries are fabricated. We found that for the fabricated shallow arches, the effect of the curvature of the arch is less important compared to the induced axial stress from the axial load. We have shown that the first mode resonance frequency can be increased up to twice its initial value. Additionally, the third mode resonance frequency can be increased up to 30% of its initial value. These results can be promising as a proof-of-concept for the realization of wide-range tunable microresonators. The experimental results have been compared to finite-element simulations, showing good agreement among them.
Importance of anisotropy on design of compression-loaded composite corrugated panels
Gurdal, Zafer; Young, Richard D.
1990-01-01
An investigation is conducted of the importance of anisotropic terms in the design of composite corrugated panels, for a range of axial compressive load intensities. The two panel configurations treated were panels with tailored laminates and panels with a continuous laminate; both are of interest to aircraft designers and prone to anisotropic effects which are of as-yet undetermined extent. The importance of the anisotropic terms is measured by the difference between the design load and the buckling load obtained from the ultimate structural analysis.
Iatridis, James C; Furukawa, Masaru; Stokes, Ian A F; Gardner-Morse, Mack G; Laible, Jeffrey P
2009-03-01
Intervertebral disk degeneration results in alterations in the mechanical, chemical, and electrical properties of the disk tissue. The purpose of this study is to record spatially resolved streaming potential measurements across intervertebral disks exposed to cyclic compressive loading. We hypothesize that the streaming potential profile across the disk will vary with radial position and frequency and is proportional to applied load amplitude, according to the presumed fluid-solid relative velocity and measured glycosaminoglycan content. Needle electrodes were fabricated using a linear array of AgAgCl micro-electrodes and inserted into human motion segments in the midline from anterior to posterior. They were connected to an amplifier to measure electrode potentials relative to the saline bath ground. Motion segments were loaded in axial compression under a preload of 500 N, sinusoidal amplitudes of +/-200 N and +/-400 N, and frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Streaming potential data were normalized by applied force amplitude, and also compared with paired experimental measurements of glycosaminoglycans in each disk. Normalized streaming potentials varied significantly with sagittal position and there was a significant location difference at the different frequencies. Normalized streaming potential was largest in the central nucleus region at frequencies of 0.1 Hz and 1.0 Hz with values of approximately 3.5 microVN. Under 0.01 Hz loading, normalized streaming potential was largest in the outer annulus regions with a maximum value of 3.0 microVN. Correlations between streaming potential and glycosaminoglycan content were significant, with R(2) ranging from 0.5 to 0.8. Phasic relationships between applied force and electrical potential did not differ significantly by disk region or frequency, although the largest phase angles were observed at the outermost electrodes. Normalized streaming potentials were associated with glycosaminoglycan content, fluid, and
Modeling particulate self-healing materials and application to uni-axial compression
Herbst, Olaf; Luding, Stefan
2008-01-01
Using an advanced history dependent contact model for DEM simulations, including elasto-plasticity, viscosity, adhesion, and friction, pressure-sintered tablets are formed from primary particles. These tablets are subjected to unconfined uni-axial compression until and beyond failure. For fast and s
Derivation of the Bi-axial Bending, Compression and Shear Strengths of Timber Beams
Van der Put, T.A.C.M.
2012-01-01
The derivation is given of the combined bi-axial bending, compression and shear strength of timber beams. As for other materials the elastic–full plastic limit design approach applies, which is known to precisely explain and predict uniaxial bending strength behaviour. The derivation is based on cho
Zhang, Neng-Hui; Chen, Jian-Zhong
2009-07-22
In label-free biodetections based on microcantilever technology, double-stranded DNA (dsDNA) structures form through the linkage between probe single-stranded DNA (ssDNA) molecules immobilized on solid substrates and target ssDNA molecules in solutions. Mechanical/electrical properties of these biolayers are important factors for nanomechanical deflections of microcantilevers. In this paper, the biolayer immobilized on microcantilever is treated as a bar with a macroscopic elastic modulus on the basis of continuum mechanics viewpoints. In consideration of hydration force, screened electrostatic repulsion and conformational fluctuation in biolayers, load-deformation curves of dsDNA biolayers under axial compression are depicted with the help of the energy conservation law and a mesoscopic free energy presented by Strey et al. (1997, 1999) [Strey, H.H., Parsegian, V.A., Podgornik, R., 1997. Equation of state for DNA liquid crystals: fluctuation enhanced electrostatic double layer repulsion. Physical Review Letters 78, 895-898; Strey, H.H., Parsegian, V.A., Podgornik, R., 1999. Equation of state for polymer liquid crystals: theory and experiment. Physical Review E 59, 999-1008] from a liquid crystal theory. And the analytical relation between macroscopic Young's modulus of biolayers and nanoscopic geometrical properties of dsDNA, packing density, buffer salt solution concentration, etc. is also formulated.
Eltoukhy, Moataz; Travascio, Francesco; Asfour, Shihab; Elmasry, Shady; Heredia-Vargas, Hector; Signorile, Joseph
2016-09-01
Loading during concurrent bending and compression associated with deadlift, hang clean and hang snatch lifts carries the potential for injury to the intervertebral discs, muscles and ligaments. This study examined the capacity of a newly developed spinal model to compute shear and compressive forces, and bending moments in lumbar spine for each lift. Five male subjects participated in the study. The spine was modeled as a chain of rigid bodies (vertebrae) connected via the intervertebral discs. Each vertebral reference frame was centered in the center of mass of the vertebral body, and its principal directions were axial, anterior-posterior, and medial-lateral. The results demonstrated the capacity of this spinal model to assess forces and bending moments at and about the lumbar vertebrae by showing the variations among these variables with different lifting techniques. These results show the model's potential as a diagnostic tool.
Axisymmetric compressible flow in a rotating cylinder with axial convection
Ungarish, M.; Israeli, M.
1985-05-01
The steady compressible flow of an ideal gas in a rotating annulus with thermally conducting walls is considered for small Rossby number epsilon and Ekman number E and moderate rotational Mach numbers M. Attention is focused on nonlinear effects which show up when sigma and epsilon M-squared are not small (sigma = epsilon/H square root of E, H is the dimensionless height of the container). These effects are not properly predicted by the classical linear perturbation analysis, and are treated here by quasi-linear extensions. The extra work required by these extensions is only the numerical solution of one ordinary differential equation for the pressure. Numerical solutions of the full Navier-Stokes equations in the nonlinear range are presented, and the validity of the present approach is confirmed.
Directory of Open Access Journals (Sweden)
Fouad Khairallah
2013-12-01
Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.
Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Nie, Taoyi
2016-10-01
Characteristics of energy accumulation, evolution, and dissipation in uniaxial cyclic loading and unloading compression of 30 sandstone rock specimens under six different loading rates were explored. Stress-strain relations and acoustic emission characteristics of the deformation and failure of rock specimens were analyzed. The densities and rates of stored energy, elastic energy, and dissipated energy under different loading rates were confirmed, and an effective approach for the equivalent energy surface was presented. The energy evolution of rock deformation and failure were revealed. It turns out that the rock deformation behavior under uniaxial cyclic loading and unloading compression remained almost unchanged compared with that of uniaxial compression. The degree of match between reloading stress-strain curves and previous unloading curves was high, thereby demonstrating the memory function of rock masses. The intensity of acoustic emission fluctuated continually during the entire cyclic process. Emissions significantly increased as the stress exceeded the unloading level. The peak of acoustic emission increased with increasing loading stress level. Relationships between energy density and axial load indicate that the rock mass possesses a certain energy storage limitation. The energy evolution of rock masses is closely related to the axial loading stress, rather than to the axial loading rate. With increasing axial loading stress, stored energy varied most rapidly, followed by that of the elastic energy, then dissipated energy. Energy accumulation dominates prior to the axial load reaching peak strength; thereafter, energy dissipation becomes dominant. The input energy causes the irreversible initiation and extension of microcracks in the rock body. Elastic energy release leads to sudden instability of rock bodies and drives rock damage.
Ding, Lan; Zhu, Hong-Ping; Wu, Li
2016-07-01
The propagation and attenuation properties of waves in ordered and disordered periodic composite Timoshenko beams, which consider the effects of axial static load and structural damping, resting on elastic foundations are studied when the system is subjected to moving loads of constant amplitude with a constant velocity. The transfer matrix methodology is adopted to formulate the model in a reference coordinate system moving with the load. The localization factor is calculated to determine the wave velocity pass bands and stop bands. The interactions between the static axial load and moving load, structural damping and disorder on the bands are analyzed.
Moiseev, Yu B
2014-01-01
The study was concerned with the human spinal column reaction to axial static and dynamic loading. Fresh segments of the column from dorsal vertebra XI to lumber vertebra II were exposed to axial static (20 mm/min) and dynamic (200 and 500 mm/min) loading. Measured variables included load value, whole segment deformation, anterior surfaces of intervertebral disk Th(XI)-Th(XII) and dorsal vertebra XII, and acoustic emission signals indicative of spongy bone microdestruction. It was found that vertebral body deformation augmented less in comparison with the intervertebral disk and that central parts of the spinal end plates compress greater than peripheral. This difference was more considerable due to static loading rather than dynamic. To produce deformation of a spinal segment by dynamic loading same as by the static one, it is necessary to overcome a stronger resistance of a larger number of trabecular bones. Herefrom it follows that, first, to cause an equal segment compression the dynamic load must be heavier than static and, which is of paramount practical significance, dynamic strength of the column is markedly higher than static. Secondly, spinal stiffness during impact is higher as compared with the static condition. Thirdly, same degree of deformation due to dynamic loading should result in a larger volume of microdestructions comparing with static loading, which is testified by a reliable difference in the number of AE signals accumulated prior to fracture. The number of AE signals amounts to 444.2 ± 308.2 and 85.0 ± 36.6 in case of the dynamic and static loading, respectively (p < 0.05 according to Student's t-criterion).
Behaviour of M30 Grade concrete with confinement under axial compression
Directory of Open Access Journals (Sweden)
C.Vinil Babu
2014-09-01
Full Text Available The strength and durability of concrete have undergone continuous improvement. Over the years and these improved materials are now commonly used. In the present experimental investigation the behaviour of M30 grade concrete with and without confinement for different percentages of replacement of silica fume is studied under axial compression as per IS mix design. The 150mm x 300mm cylindrical specimens were cast with and without confinement and investigating the mechanical properties like axial compressive strength and stress – strain behaviour. It was observed that the confinement of concrete has increased the 28days strength for different percentages of confinement and that the peak stress and corresponding strain at peak stress increased with increase in percentages of confinement
Institute of Scientific and Technical Information of China (English)
TIAN Zhimin; WU Ping'an; JIA Jianwei
2008-01-01
Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted, and dynamic response of the columns under axial impact loading was studied by means of numerical simulation method.Increase coefficient of load carrying capacity and ratio of load carrying capacity between steel tube and RPC core of columns were obtained.
Effect of compressive loading on the risk of spalling
Directory of Open Access Journals (Sweden)
Carré H.
2013-09-01
Full Text Available Mechanical loading is an important parameter of spalling phenomenon likely to occur in concrete during heating. Several tests in laboratory have shown an increase of the risk of spalling in the compressed areas. In this study, a specific metallic frame has been developed to apply uniaxial and biaxial stresses on slabs during fire tests. Tests carried out on an ordinary concrete (fc28 = 37 MPa exposed to ISO 834-1 temperature curve with several levels of uniaxial loading are presented. No spalling was observed when samples were loaded at 0, 5 and 10 MPa. In the opposite, spalling was observed when the compressive stress was increased to 15 MPa.
Sejdić, Ervin; Movahedi, Faezeh; Zhang, Zhenwei; Kurosu, Atsuko; Coyle, James L.
2016-05-01
Acquiring swallowing accelerometry signals using a comprehensive sensing scheme may be a desirable approach for monitoring swallowing safety for longer periods of time. However, it needs to be insured that signal characteristics can be recovered accurately from compressed samples. In this paper, we considered this issue by examining the effects of the number of acquired compressed samples on the calculated swallowing accelerometry signal features. We used tri-axial swallowing accelerometry signals acquired from seventeen stroke patients (106 swallows in total). From acquired signals, we extracted typically considered signal features from time, frequency and time-frequency domains. Next, we compared these features from the original signals (sampled using traditional sampling schemes) and compressively sampled signals. Our results have shown we can obtain accurate estimates of signal features even by using only a third of original samples.
Sejdić, Ervin; Movahedi, Faezeh; Zhang, Zhenwei; Kurosu, Atsuko; Coyle, James L
2016-04-17
Acquiring swallowing accelerometry signals using a comprehensive sensing scheme may be a desirable approach for monitoring swallowing safety for longer periods of time. However, it needs to be insured that signal characteristics can be recovered accurately from compressed samples. In this paper, we considered this issue by examining the effects of the number of acquired compressed samples on the calculated swallowing accelerometry signal features. We used tri-axial swallowing accelerometry signals acquired from seventeen stroke patients (106 swallows in total). From acquired signals, we extracted typically considered signal features from time, frequency and time-frequency domains. Next, we compared these features from the original signals (sampled using traditional sampling schemes) and compressively sampled signals. Our results have shown we can obtain accurate estimates of signal features even by using only a third of original samples.
Study of an anisotropic polymeric cellular material under compression loading
Directory of Open Access Journals (Sweden)
Mauricio Francisco Caliri Júnior
2012-06-01
Full Text Available This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC technique (named Correli was applied, as well as SEM (Scanning Electron Microscopy images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride (PVC foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.
Kheiralla, Lamia Sayed; Younis, Jihan Farouk
2014-02-01
This study compared the biomechanical responses of 3 single crowns supported by 3 different implants under axial and off-axial loading. A standard implant (3.75 mm diameter, 13 mm length), a mini implant (3 mm diameter, 13 mm length), and a short-wide implant (5.7 mm diameter, 8 mm length) were embedded in epoxy resin by the aid of a surveyor to ensure their parallelism. Each implant supported a full metal crown made of Ni-Cr alloy with standardized dimensions. Strain gauges and finite element analysis (FEA) were used to measure the strain induced under axial and off-axial functional loads of 300 N. Results showed that mini implants recorded the highest microstrains, under both axial and off-axial loading. All implants showed a considerable increase in strain values under off-axial loading. Standard and short-wide implants proved to be preferable in supporting crowns, as the standard implant showed the lowest strains under axial and off-axial loading using FEA simulation, while the short-wide implant showed the lowest strains under nonaxial loading using strain gauge analysis.
Directory of Open Access Journals (Sweden)
Oscar A. Cevallos
2015-11-01
Full Text Available In the construction industry, the use of natural fabrics as a reinforcement for cement-based composites has shown great potential. The use of these sustainable composites to provide strengthening or repair old masonry structures that exhibit structural problems mainly due to a poor tensile strength of the mortar/brick joints is revealed to be a promising area of research. One of the most significant load conditions affecting the mechanical response of masonry structures occurs when axial bending loads are applied on the resistant cross-section. In this study, three different types of masonry elements were built using clay bricks and a lime-based mortar. After 28 days, the samples were subjected to concentric and eccentric compressive loads. In order to produce significant bending effects, the compressive loads were applied with large eccentricity, and a sudden failure characterized the behavior of the unreinforced masonry (URM elements. The tested masonry specimens were repaired using fabric-reinforced cementitious matrix (FRCM composites produced using bi-directional flax and polyparaphenylene benzobisoxazole (PBO fabrics. The mechanical behavior of the URM and repaired samples was compared in terms of load-displacement and moment-curvature responses. Furthermore, the results achieved using flax-FRCM composites were compared with those of using PBO-FRCM composites.
Institute of Scientific and Technical Information of China (English)
姚行友; 郭彦利
2016-01-01
对26根屈服强度为235 MPa的腹板开孔和未开孔冷弯薄壁型钢截面轴压构件进行畸变屈曲承载力试验研究,分析构件的屈曲模式和极限承载力.将我国及北美相关规范计算的构件承载力以及非线性有限元数值模拟结果与试验结果进行分析比较,并对腹板开孔冷弯薄壁型钢截面轴压构件的承载力合理计算模式进行研究.结果表明:对于中等长度腹板开孔冷弯薄壁型钢截面轴压构件主要出现局部、畸变和整体屈曲的相关作用;腹板开孔对构件畸变屈曲稳定承载力有一定的降低作用;采用折减构件有效截面面积的修正方法可计算开孔构件的畸变屈曲稳定承载力;非线性有限元方法可用于腹板开孔冷弯薄壁型钢构件的屈曲模式和极限承载力的分析.%In order to research the distortional buckling mode and load-carrying capacity of cold-formed thin-walled steel members with holes, compression tests were conducted on 26 intermediate length columns with and without web holes.For each specimen, a shell finite element eigenbuckling analysis and nonlinear analysis were also conducted such that the influence of the hole on local, distortional, and global elastic buckling responses could also be got.The comparison of ultimate strength between test results and calculated results using relevant codes was made.The calculated method for cold-formed thin-walled steel columns with web holes was proposed.The results showed that the interaction of local buckling, distortional buckling, and overall buckling usually would occur in the intermediate length member under axial compression, and the web holes had a little influence on the elastic buckling strength and the distortional buckling ultimate strength of columns, the ultimate strength of the members with holes in web could be predicted using a reduced effective area, and the nonlinear finite element method could be used to analyse the buckling mode and
Liu, Qing; Wang, Tai-Yong; Yang, Xiu-Ping; Li, Kun; Gao, Li-Lan; Zhang, Chun-Qiu; Guo, Yue-Hong
2014-05-01
The unconfined compression and tension experiments of the intervertebral disc were conducted by applying an optimized digital image correlation technique, and the internal strain distribution was analysed for the disc. It was found that the axial strain values of different positions increased obviously with the increase in loads, while inner annulus fibrosus and posterior annulus fibrosus experienced higher axial strains than the outer annulus fibrosus and anterior annulus fibrosus. Deep annulus fibrosus exhibited higher compressive and tensile axial strains than superficial annulus fibrosus for the anterior region, while there was an opposite result for the posterior region. It was noted that all samples demonstrated a nonlinear stress-strain profile in the process of deforming, and an elastic region was shown once the sample was deformed beyond its toe region.
2016-01-01
Background Neurovascular compression (NVC) of the trigeminal nerve is associated with trigeminal neuralgia (TN). Some arteries that compress the trigeminal nerve are large, while others are small. This study evaluated the influence of diameter of compression arteries (DCA) on NVC with and without TN using axial diffusivity (AD) and radial diffusivity (RD) of magnetic resonance (MR) imaging. Methods Fifty TN patients with unilateral NVC, 50 asymptomatic patients with unilateral NVC, and 50 hea...
Physical Modelling of Bucket Foundations Subjected to Axial Loading
DEFF Research Database (Denmark)
Vaitkunaite, Evelina
displacement rates and tensile cyclic loading. A new laboratory testing facility is constructed allowing large scale foundation model testing under long-term cyclic loadings. Another test set-up - a pressure tank – is employed for the displacement rate analysis. The extensive testing campaign provides valuable...
Institute of Scientific and Technical Information of China (English)
钟轶峰; 张亮亮
2011-01-01
The governing partial differential equations （PDEs） were deduced from the asymptotically correct geometrically nonlinear theory to research the buckling and mode jumping behavior of clamped supported composite laminates with antisymmetric angle- ply under bi - axial compressive load. The two coupled fourth - order partial differential equations （PDEs）, namely, the compatibility equation and the dynamic governing equation were transformed into a system of nonlinear ordinary differential equations （ODEs）. Then a relatively simpler solution method was developed. The generalized Galerkin method was used to solve boundary value problems corresponding to antisymmetric angle-ply composite plates. The post-buckling patterns with different complexity before and after mode jumping were analyzed. An numerical example of 4- layers clamped composite laminates shows that the numerical results in the primary post-buckling region from the present method agree well with the finite element analysis （FEA）. The FEA may lose its convergence when solution comes close the secondary point, while the analytic method can explore deeply into the post-buckling realm and accuratty capture the mode jumping phenomenon. Only the pure symmetric modes may be used to qualitatively predict the primary post- buckling branch, the secondary bifurcation load and the remote jumped branch of the composite laminates with antisymmetric angle-ply.%为有效分析双轴受压反对称角铺设复合材料层压板在固支边界下的后屈曲性能，由渐近修正几何非线性理论推导其双耦合四阶偏微分方程（即应变协调方程和稳定性控制方程），通过双Fourier级数将耦合非线性控制偏微分方程转换为系列非线性常微分方程，从而获得相对简单的求解方法。使用广义Galerkin方法求解与角交铺设复合层合板相关的边界值问题，研究了模态跃迁前后不同复杂程度的后屈曲模式。对四层固支边界
Chloride permeability of concrete under static and repeated compressive loading
Energy Technology Data Exchange (ETDEWEB)
Saito, Mitsuru; Ishimori, Hiroshi [Kanazawa Inst. of Technology, Ishikawa (Japan)
1995-05-01
The chloride permeability of normal weight concrete subjected to static and repeated compressive loading was evaluated by using the AASHTO T277 test method. The results of concrete under static loading showed that the application of loads up to 90% of the ultimate strength had little effect on the chloride permeability. It was found from the results of concrete under repeated loading that load repetitions at the maximum stress levels of 60% or more caused the chloride permeability to increase significantly. The test results also indicated that the chloride permeability of concrete subjected to static and repeated loading increased at an increasing rate with its residual strain. The relation between the chloride permeability obtained and the cracking behavior of concrete previously reported was discussed.
Loading rate sensitivity of open hole composites in compression
Lubowinski, Steve J.; Guynn, E. G.; Elber, Wolf; Whitcomb, J. D.
1988-01-01
The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.
An exact dynamic stiffness matrix for axially loaded double-beam systems
Indian Academy of Sciences (India)
Li Xiaobin; Xu Shuangxi; Wu Weiguo; Li Jun
2014-06-01
An exact dynamic stiffness method is presented in this paper to determine the natural frequencies and mode shapes of the axially loaded double-beam systems,which consist of two homogeneous and prismatic beams with a distributed spring in parallel between them.The effects of the axial force, shear deformation and rotary inertia are considered, as shown in the theoretical formulation. The dynamic stiffness influence coefficients are formulated from the governing differential equations of the axially loaded double-beam system in free vibration by using the Laplace transform method. An example is given to demonstrate the effectiveness of this method, in which ten boundary conditions are investigated and the effect of the axial force on the natural frequencies and mode shapes of the double-beam system are further discussed.
Dávila, A.; Márquez, S.; Landgrave, E.; Vázquez, Z.; Vera, K.; Caudillo, C.
2015-06-01
A computerized system for real-time displacement visualization using carrier fringes in an electronic speckle in-plane sensitive interferometer allows force calibration for micro-displacement analysis of rat bones and verification of axial loading conditions. Once the force has been calibrated and the load is applied along the bone axis, the difference-of-phase method is used to obtain the phase map, which after phase unwrapping, allows the evaluation of the displacements produced by the bone deformation. The proposed method avoids common loading mistakes using first carrier fringes to assure that the loads are within the measuring capabilities of the in-plane interferometer and the Carré phase-stepping method to compensate for linear phase step miscalibration. The experimental results obtained with the calibration of loading forces and axial loading verification show the advantages of the system proposed here over a system which uses a cantilever configuration to make a similar bone deformation analysis.
Strength and stability analysis of a single-walled black phosphorus tube under axial compression
Cai, Kun; Wan, Jing; Wei, Ning; Qin, Qing H.
2016-07-01
Few-layered black phosphorus materials currently attract much attention due to their special electronic properties. As a consequence, a single-layer black phosphorus (SLBP) nanotube has been theoretically built. The corresponding electronic properties of such a black phosphorus nanotube (BPNT) were also evaluated numerically. However, unlike graphene formed with 2sp2 covalent carbon atoms, SLBP is formed with 3sp3 bonded atoms. It means that the structure from SLBP will possess lower Young’s modulus and mechanical strength than those of carbon nanotubes. In this study, molecular dynamics simulation is performed to investigate the strength and stability of BPNTs affected by the factors of diameter, length, loading speed and temperature. Results are fundamental for investigating the other physical properties of a BPNT acting as a component in a nanodevice. For example, buckling of the BPNT happens earlier than fracture, before which the nanostructure has very small axial strain. For the same BPNT, a higher load speed results in lower critical axial strain and a nanotube with lower axial strain can still be stable at a higher temperature.
Directory of Open Access Journals (Sweden)
Subramani Sockalingam
2017-02-01
Full Text Available High-velocity transverse impact of ballistic fabrics and yarns by projectiles subject individual fibers to multi-axial dynamic loading. Single-fiber transverse impact experiments with the current state-of-the-art experimental capabilities are challenging due to the associated micron length-scale. Kevlar® KM2 fibers exhibit a nonlinear inelastic behavior in transverse compression with an elastic limit less than 1.5% strain. The effect of this transverse behavior on a single KM2 fiber subjected to a cylindrical and a fragment-simulating projectile (FSP transverse impact is studied with a 3D finite element model. The inelastic behavior results in a significant reduction of fiber bounce velocity and projectile-fiber contact forces up to 38% compared to an elastic impact response. The multiaxial stress states during impact including transverse compression, axial tension, axial compression and interlaminar shear are presented at the location of failure. In addition, the models show a strain concentration over a small length in the fiber under the projectile-fiber contact. A failure criterion, based on maximum axial tensile strain accounting for the gage length, strain rate and multiaxial loading degradation effects are applied to predict the single-fiber breaking speed. Results are compared to the elastic response to assess the importance of inelastic material behavior on failure during a transverse impact.
MacTaggart, Jason N; Phillips, Nicholas Y; Lomneth, Carol S; Pipinos, Iraklis I; Bowen, Robert; Baxter, B Timothy; Johanning, Jason; Longo, G Matthew; Desyatova, Anastasia S; Moulton, Michael J; Dzenis, Yuris A; Kamenskiy, Alexey V
2014-07-18
High failure rates of femoropopliteal artery reconstruction are commonly attributed to complex 3D arterial deformations that occur with limb movement. The purpose of this study was to develop a method for accurate assessment of these deformations. Custom-made stainless-steel markers were deployed into 5 in situ cadaveric femoropopliteal arteries using fluoroscopy. Thin-section CT images were acquired with each limb in the straight and acutely bent states. Image segmentation and 3D reconstruction allowed comparison of the relative locations of each intra-arterial marker position for determination of the artery's bending, torsion and axial compression. After imaging, each artery was excised for histological analysis using Verhoeff-Van Gieson staining. Femoropopliteal arteries deformed non-uniformly with highly localized deformations in the proximal superficial femoral artery, and between the adductor hiatus and distal popliteal artery. The largest bending (11±3-6±1 mm radius of curvature), twisting (28±9-77±27°/cm) and axial compression (19±10-30±8%) were registered at the adductor hiatus and the below knee popliteal artery. These deformations were 3.7, 19 and 2.5 fold more severe than values currently reported in the literature. Histology demonstrated a distinct sub-adventitial layer of longitudinally oriented elastin fibers with intimal thickening in the segments with the largest deformations. This endovascular intra-arterial marker technique can quantify the non-uniform 3D deformations of the femoropopliteal artery during knee flexion without disturbing surrounding structures. We demonstrate that 3D arterial bending, torsion and compression in the flexed lower limb are highly localized and are substantially more severe than previously reported.
Nijhuis, A; Rolando, G
2011-01-01
The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3 % with practically no degradation from bending. For reduction of the coupling loss, specific choices of the ca...
Directory of Open Access Journals (Sweden)
Samantha C W Chan
Full Text Available The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities [1. control: no loading (NL, 2. cyclic compression (CC, 3. cyclic torsion (CT, and 4. combined cyclic compression and torsion (CCT] on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10% nucleus pulposus (NP cells survived the 14 days of loading, while cell viabilities were maintained above 70% in the NP of all the other three groups and in the annulus fibrosus (AF of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration.
A New Simplified Model of Post Stall Transients in Axial Compression Systems
Institute of Scientific and Technical Information of China (English)
JunHu; LeonhardFottner
1999-01-01
Based on the theory developed by Moore and Greitzer,a new simplifying approximation,which takes into account the influence of higher harmonics of rotating waves,is proposed in this paper of get a simplified model of post stall transients in axial compression systems.This approximation leads to a set of three simultaneous nonlinear first order partial differential equations.The further investigation of post stall behavior for different response modes of instabilities(rotating stall and /or surge) recoverability,prestall period during stall inception,and the effect of compression system parameters on them can be carried out by this model and has been discussed in detail in the present paper,It has been found that stall inception exhibits a large prestall period in the region with small slope of compressor characteristic,and in this region,final throttle stting,compressor characteristic and time-lag parameters have a strong influence on the period.The inertia parameters of blade rows have a strong influence on the recoverability of compression systems and the blockage of stall cell at recovery point Some qualitative comparisons with available experimental results and experience are made ,and it shows that the proposed model is very simple and reliable.
Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; Fechner, K. P.; Holton, Emily M. (Technical Monitor)
1998-01-01
Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.
Directory of Open Access Journals (Sweden)
Ye-Wei Zhang
2013-01-01
Full Text Available Nonlinear targeted energy transfer (TET is applied to suppress the excessive vibration of an axially moving string with transverse wind loads. The coupling dynamic equations used are modeled by a nonlinear energy sink (NES attached to the string to absorb vibrational energy. By a two-term Galerkin procedure, the equations are discretized, and the effects of vibration suppression by numerical methods are demonstrated. Results show that the NES can effectively suppress the vibration of the axially moving string with transverse wind loadings, thereby protecting the string from excessive movement.
Influence of morphological variables in photoelastic models with implants submitted to axial loading
Gennari-Filho, Humberto [UNESP; Silva, Cristina Ramos [UNESP; Goiato, Marcelo Coelho [UNESP; Mazaro, José Vitor Quinelli [UNESP
2014-01-01
Purpose: This study used 12 photoelastics models with different height and thickness to evaluate if the axial loading of 100N on implants changes the morphology of the photoelastic reflection. Methods: For the photoelastic analysis, the models were placed in a reflection polariscope for observation of the isochromatic fringes patterns. The formation of these fringes resulted from an axial load of 100N applied to the midpoint of the healing abutment attached to the implant with 10.0mm x 3.75mm...
Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft
Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia
2015-01-01
This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.
Sod, Gary A; Riggs, Laura M; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S
2010-01-01
To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=15 pairs). For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The effect of the deformation condition on the axial compressive precision forming process of tube with curling die was investigated by using a rigid-plastic FEM. The results show that the forming accuracy depends mainly on geometric condition rρ/d0, little on tube material properties and friction condition; the relative gap Δ/2rρ of double-walled tubes obtained decreases with increasing rρ/d0, and there is a parameter k for a given t0/d0 or rρ/t0, when rρ,/d0＞k, Δ/2rρ＜1,otherwise Δ/2rρ＞1.
Chien Liang, Ru; Che Liu, Cheng; Tsai Liang, Ming; Chen, Jiann Lin
2017-02-01
Dynamic axial compression (DAC) columns are key elements in Simulated Moving Bed, which is a chromatography process in drug industry and chemical engineering. In this study, we apply the computational fluid dynamics (CFD) technique to analyze the flow fields in the DAC column and propose rules for distributor design based on mass conservation in fluid dynamics. Computer aided design (CAD) is used in constructing the numerical 3D modelling for the mesh system. The laminar flow fields with Darcy’s law to model the porous zone are governed by the Navier-Stokes equations and employed to describe the porous flow fields. Experimental works have been conducted as the benchmark for us to choose feasible porous parameters for CFD. Besides, numerical treatments are elaborated to avoid calculation divergence resulting from large source terms. Results show that CFD combined with CAD is a good approach to investigate detailed flow fields in DAC columns and the design for distributors is straightforward.
Polymeric complex micelle loaded with axially substituted silicon(Ⅳ) phthalocyanine
Institute of Scientific and Technical Information of China (English)
Bao Quan Huang
2009-01-01
A novel axially substituted silicon(IV) phthalocyanine,namely di-pyridyloxy axially substituted silicon(Ⅳ) phthalocyanine 2 was synthesized and characterized by UV/vis,IR,elemental analysis,MS as well as 1H NMR spectroscopy.Hydrophobic 2 was encapsulated by amphiphilic triblock copolymer poly[Nε-(benzyloxycarbonyl-lysine]-poly(ethylene glycol)-poly [Nε-(benzyl oxycarbonyl) (PLL(Z)-b-PEG-b-PLL(Z)) to form hydrophobic 2-loaded polymeric complex miceile (PIC) (2-loaded PIC).Atom force microscopy (AFM) image showed that 2-loaded PIC formed a spherical nanocarrier with approximately 35-50 nm in diameter.The fluorescence intensity and lifetime of 2-loaded PIC was significantly enhanced by the incorporation 2 into PIC nanocarrier.
Da Silva, Andre; Limam, Ali; Lorioux, Fabien; Radulovic, Serge; Taponier, Vincent; Leudiere, Vincent
2012-07-01
The results of an experimental study on the buckling of thin cylindrical shells (R/t = 450, 675, 1350) subjected to combined loads are presented here. The aim of the present study is to improve the design of shells in the aerospace industry, which mainly uses the NASA SP8007 rule, established in the late 1960s. Two load cases are examined: combined internal pressure and bending; and combined internal pressure and compression. The tests point out the two main flaws of the NASA SP8007. First, it is obviously over- conservative for low values of internal pressure, which has been widely acknowledged. Then, the experiments show the effect of plasticity for higher internal pressures, which is not well accounted for in the SP8007 design rule, and leads to a drop in the load-bearing capacity of the structure.
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Guided wave propagation as a measure of axial loads in rails
CSIR Research Space (South Africa)
Loveday, PW
2010-03-01
Full Text Available was formulated analytically and computed. In practice, by using separation of signals in time it would only be possible to separate the mode with the greatest group velocity over a reasonable distance. It was found that the influence of axial load...
Comparison of Design Methods for Axially Loaded Driven Piles in Cohesionless Soil
DEFF Research Database (Denmark)
Thomassen, Kristina; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo
2012-01-01
For offshore wind turbines on deeper waters, a jacket sub-structure supported by axially loaded piles is thought to be the most suitable solution. The design method recommended by API and two CPT-based design methods are compared for two uniform sand profiles. The analysis show great difference...
Damage and failure rule of rock undergoing uniaxial compressive load and dynamic load
Institute of Scientific and Technical Information of China (English)
ZUO Yu-jun; LI Xi-bing; ZHOU Zi-long; MA Chun-de; ZHANG Yi-ping; WANG Wei-hua
2005-01-01
For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chaobi; Chen, Jian Yun; Xu, Qiang; Li, Jing [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian (China)
2015-08-15
In order to analyze the mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading, a finite element model based on the nuclear power plant containments is demonstrated. This model takes into account the influences of different principal stress directions, the uniaxial or biaxial loading, and biaxial loading ratio. The displacement-controlled load is applied to obtain the stress-strain response. The simulated results indicate that the differences of principal stress axes have great effects on the stress-strain response under uniaxial loading. When the specimens are subjected to biaxial loading, the change trend of stress with the increase of loading ratio is obviously different along different layout directions. In addition, correlation experiments and finite element analyses were conducted to verify the validity and reliability of the analysis in this study.
SHS and RHS stainless steel slender members loaded by compression and bending interaction
Židlický, Břetislav; Jandera, Michal
2017-09-01
Behaviour of stainless steel slender members loaded by interaction of axial compressive force and bending moment is investigated in this research. Square hollow sections (SHS) made of austenitic stainless steel grade are considered. An initial numerical parametric study in FE software Abaqus is given and its results are compared to the existing design procedures and design standard rules. The investigated parameters are mainly the column slenderness, section slenderness, ratio between the applied bending moment and axial compressive force and the moment distribution along the member. The necessity of having additional design rules for stainless steels is firstly demonstrated on the values of interaction factors ky which are significantly higher for stainless steel members due to the material nonlinearity with decreased stiffness even at lower stress levels. As an alternative, the General Method is used for comparison to the Abaqus GMNIA model results. The limitation of the method when used for members of non-linear material behaviour is shown and a safe modification of design procedure is suggested.
Pellicano, F.; Amabili, M.
2006-05-01
In the present paper the dynamic stability of circular cylindrical shells subjected to static and dynamic axial loads is investigated. Both Donnell's nonlinear shallow shell and Sanders-Koiter shell theories have been applied to model finite-amplitude static and dynamic deformations. Results are compared in order to evaluate the accuracy of these theories in predicting instability onset and post-critical nonlinear response. The effect of a contained fluid on the stability and the post-critical behaviour is analyzed in detail. Geometric imperfections are considered and their influence on the dynamic instability and post-critical behaviour is investigated. Chaotic dynamics of pre-compressed shells is investigated by means of nonlinear time-series techniques, extracting correlation dimension and Lyapunov exponents.
Influence of axial load on the lateral pile groups response in cohesionless and cohesive soil
Institute of Scientific and Technical Information of China (English)
Jasim M. ABBASA[1; Zamri CHIK[2; Mohd Raihan TAHA[2
2015-01-01
The lateral response of single and group of piles under simultaneous vertical and lateral loads has been analyzed using a 3D finite element approach. The response in this assessment considered lateral pile displacement and lateral soil resistance and corresponding p-y curve. As a result, modified p-y curves for lateral single pile response were improved with respect to the influence of increasing axial load intensities. The improved plots can be used for lateral loaded pile design and to produce the group action design p-multiplier curves and equations. The effect of load combination on the lateral pile group response was performed on three pile group configurations （i.e., 2 × 1, 2 × 2 and 3 × 2） with four pile spacings （i.e., s = 2D, 4D, 6D and 8D）. As a result, design curves were developed and applied on the actual case studies and similar expected cases for assessment of pile group behavior using improved p-multiplier. A design equation was derived from predicted design curves to be used in the evaluation of the lateral pile group action taking into account the effect of axial load intensities. It was found that the group interaction effect led to reduced lateral resistance for the pile in the group relative to that for the single pile in case of pure lateral load. While, in case of simultaneous combined loads, large axial load intensities （i.e., more than 6H, where H is lateral load values） will have an increase inp-multiplier by approximately 100% and will consequently contribute to greater group piles capacities.
The multi-axial material fatigue under the combined loading with mean stress in three dimensions
Directory of Open Access Journals (Sweden)
Fojtík F.
2009-12-01
Full Text Available This contribution describes the application of Fuxa's conjugated strength criterion on the experimental results under combined loading of specimens made from common construction steel 11523.0, melt T31052. The specimens were stepwise loaded by the torque amplitude, combination of torque amplitude and tension pre-stress, further by the amplitude of the torque in combination with inner overpressure and axial tension force. The last set of specimens was loaded by the torque amplitude in combination with inner and external overpressure and with axial tension force. To obtain the data required as the input values for the conjugated criterion the stress/strain analysis of the specimens by the finite element method in software ANSYS was performed. The experiments were performed on modified testing machine equipped by overpressure chamber.
Directory of Open Access Journals (Sweden)
Christopher Chukwutoo Ihueze
2017-01-01
Full Text Available This article employed the Hertz contact stress theory and the finite element method to evaluate the maximum contact pressure and the limit stresses of orange fruit under transportation and storage. The elastic properties of orange fruits subjected to axial and axial contact were measured such that elastic limit force, elastic modulus, Poisson’s ratio and bioyield stress were obtained as 18 N, 0.691 MPa, 0.367, 0.009 MPa for axial compression and for radial loading were 15.69 N, 0.645 MPa, 0.123, 0.010 MPa. The Hertz maximum contact pressure was estimated for axial and radial contacts as 0.036 MPa. The estimated limiting yield stress estimated as von Mises stresses for the induced surface stresses of the orange topologies varied from 0.005 MPa–0.03 MPa. Based on the distortion energy theory (DET the yield strength of orange fruit is recommended as 0.03 MPa while based on the maximum shear stress theory (MSST is 0.01 MPa for the design of orange transportation and storage system.
Review of design codes of concrete encased steel short columns under axial compression
Directory of Open Access Journals (Sweden)
K.Z. Soliman
2013-08-01
Full Text Available In recent years, the use of encased steel concrete columns has been increased significantly in medium-rise or high-rise buildings. The aim of the present investigation is to assess experimentally the current methods and codes for evaluating the ultimate load behavior of concrete encased steel short columns. The current state of design provisions for composite columns from the Egyptian codes ECP203-2007 and ECP-SC-LRFD-2012, as well as, American Institute of Steel Construction, AISC-LRFD-2010, American Concrete Institute, ACI-318-2008, and British Standard BS-5400-5 was reviewed. The axial capacity portion of both the encased steel section and the concrete section was also studied according to the previously mentioned codes. Ten encased steel concrete columns have been investigated experimentally to study the effect of concrete confinement and different types of encased steel sections. The measured axial capacity of the tested ten composite columns was compared with the values calculated by the above mentioned codes. It is concluded that non-negligible discrepancies exist between codes and the experimental results as the confinement effect was not considered in predicting both the strength and ductility of concrete. The confining effect was obviously influenced by the shape of the encased steel section. The tube-shaped steel section leads to better confinement than the SIB section. Among the used codes, the ECP-SC-LRFD-2012 led to the most conservative results.
Cervical Spine Functional Anatomy and the Biomechanics of Injury Due to Compressive Loading
Swartz, Erik E; Floyd, R. T; Cendoma, Mike
2005-01-01
Objective: To provide a foundation of knowledge concerning the functional anatomy, kinematic response, and mechanisms involved in axial-compression cervical spine injury as they relate to sport injury.
Willén, Jan; Wessberg, Per J; Danielsson, Barbro
2008-02-15
An outcome study of patients with neurogenic claudication and/or sciatica with hidden stenosis, detected only by axial loading of the lumbar spine (ACE) but not at the traditional unloaded examination (psoas relaxed position) during computed tomography (CT) myelography or magnetic resonance imaging (MRI), followed up after surgery. To estimate the clinical effect of decompression with or without fusion in patients with hidden stenosis in the lumbar spine. A number of patients with neurogenic claudicatio with or without sciatica do not have corresponding imaging abnormalities. Axial loaded CT and MRI have disclosed hidden stenosis in certain cases. The surgical effect in patients with hidden stenosis has never been described. Axial loading of the lumbar spine during CT and MRI was performed in 250 patients with neurogenic claudication and sciatica. All fulfilled the inclusion criteria for ACE, i.e., suspected but not verified spinal stenosis in 1 to 3 levels. In 125 patients (50%), a significant narrowing of the spinal canal occurred. Out of these 125 patients, 101 had a clear stenosis besides the stenosis only detected at ACE. In 24 patients, a hidden stenosis was detected in 1 to 3 levels only at the ACE. These patients were observed for 1 to 6 years after decompression with or without fusion regarding subjective improvement of leg and back pains, walking capacity, satisfaction, and health related quality of life. At follow-up, 76% of the patients had leg pain less than 25/100 on a VAS scale and 62% had back pain less than 25/100. Ninety-six percent were improved or much improved regarding leg and back pains The ability to walk increased significantly after surgery. Walking capacity to more than 500 m increased from 4% to 87%. Twenty-two patients were subjectively satisfied with the surgical results. The ODI score, the SF-36 and the EQ-5D score corresponded well to the above mentioned improvements at follow-up. According to this study, the results of surgery in
Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads
Natsuki, Toshiaki; Matsuyama, Nobuhiro; Shi, Jin-Xing; Ni, Qing-Qing
2014-09-01
Carbon nanotubes (CNTs) are nanomaterials with many potential applications due to their excellent mechanical and physical properties. In this paper, we proposed that CNTs with clamped boundary condition under axial tensile loads were considered as CNT-based resonators. Moreover, the resonant frequencies and frequency shifts of the CNTs with attached mass were investigated based on two theoretical methods, which are Euler-Bernoulli beam theory and Rayleigh's energy method. Using the present methods, we analyzed and discussed the effects of the aspect ratio, the concentrated mass and the axial force on the resonant frequency of the CNTs. The results indicate that the length of CNTs could be easily changed and could provide higher sensitivity as nanomechanical mass sensor. Moreover, the resonant frequency shifts of the CNT resonator increase significantly with increasing tensile load acting on the CNTs.
Directory of Open Access Journals (Sweden)
Masaki Kawachi
2014-01-01
Full Text Available The effects of wavenumber and chirality on the axial compressive behavior and properties of wavy carbon nanotubes (CNTs with multiple Stone-Wales defects are investigated using molecular mechanics simulations with the adaptive intermolecular reactive empirical bond-order potential. The wavy CNTs are assumed to be point-symmetric with respect to their axial centers. It is found that the wavy CNT models, respectively, exhibit a buckling point and long wavelength buckling mode regardless of the wavenumbers and chiralities examined. It is also found that the wavy CNTs have nearly the same buckling stresses as their pristine straight counterparts.
Fathi, Reza; Lotfan, Saeed
2016-05-01
Nowadays investigating the vibration behavior of carbon nanotubes (CNTs) has drawn considerable attention due to the superior mechanical properties of the CNTs. One of the powerful theoretical methods to study the vibration behavior of CNTs is implementing the nonlocal theory. Most of studies on the vibration behavior of CNTs have assumed a fixed value for small scale parameter for all vibration modes, however, this value is mode-dependent. Therefore, in this paper, the small scale parameter is calibrated for a single-walled carbon nanotube (SWCNT) with respect to each vibration mode. For this propose, the governing equation of motion based on the nonlocal beam theory is extracted by applying the Hamilton's principle. Then, by using the power series method, an eigenvalue problem is defined to derive the calibrated value of small scale constant and nonlocal mode shapes of the CNT. By using the expansion theory, the equation of motion is discretized, and the effect of nonlocality on the modal parameters and stability of the CNT under compressive force is investigated. Finally, the possibility of estimating nonlocal parameter based on simulated frequency domain response of the system by using modal analysis methods is studied. The results show that the calibration of small scale constant is important and the critical axial force is highly sensitive to this value.
Torres, Fernando G; Troncoso, Omar P; Diaz, John; Arce, Diego
2014-11-01
Porcupine quills are natural structures formed by a thin walled conical shell and an inner foam core. Axial compression tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were all used to compare the characteristics and mechanical properties of porcupine quills with and without core. The failure mechanisms that occur during buckling were analyzed by scanning electron microscopy (SEM), and it was found that delamination buckling is mostly responsible for the decrease in the measured buckling stress of the quills with regard to predicted theoretical values. Our analysis also confirmed that the foam core works as an energy dissipater improving the mechanical response of an empty cylindrical shell, retarding the onset of buckling as well as producing a step wise decrease in force after buckling, instead of an instantaneous decrease in force typical for specimens without core. Cell collapse and cell densification in the inner foam core were identified as the key mechanisms that allow for energy absorption during buckling.
2016-05-01
facility. The static pressure pipe was modelled as a slender propped cantilever beam (fixed at one end and roller-supported at the other) that is...Technology Group Transonic Wind Tunnel test facility. The static pressure pipe analysed herein was modelled as a slender propped cantilever beam...25 APPENDIX B: VBA FUNCTIONS FOR STATIC SOLUTION OF PROPPED CANTILEVER BEAM SUBJECTED TO COMBINED TRANSVERSE AND AXIAL LOADING
Directory of Open Access Journals (Sweden)
Yijie Huang
2015-01-01
Full Text Available A new mechanical model for analysing the behaviour of axially loaded recycled aggregate concrete filled steel tubes (RACFSTs stub columns is presented in this study. The model is derived from the typical elastoplasticity, the nonlinear elastic mechanics, and the properties of materials. Based on the mechanical model, a novel numerical program is developed. The mechanical model and the numerical program are adopted to study the effect of recycled coarse aggregate (RCA replacement percentage on RACFST mechanical behaviour. The complete load-deformation relationship of specimens, the steel tube axial and circumferential stresses, and the performance of the confined core concrete and the variation of interaction are also investigated. The analytical results indicate that this model is able to capture the mechanical behaviour of RACFST. It is also found that the axial and circumferential stresses of steel tube change nonlinearly during the loading stages. It is concluded that the behaviour of the confined core concrete is significantly influenced by the confining pressure. The steel tube confinement could improve the mechanical behaviour of RAC effectively and the RCA replacement percentage slightly changes the response of core concrete. Finally, the relations between confined core concrete and confining pressure are analysed.
Active stabilization of thin-wall structures under compressive loading
Welham, Jared; Calius, Emilio P.; Chase, J. Geoffrey
2003-08-01
The active suppression of elastic buckling instability has the potential to significantly increase the effective strength of thin-wall structures. Despite all the interest in smart structures, the active suppression of buckling has received comparatively little attention. This paper addresses the effects of embedded actuation on the compression buckling strength of laminated composite plates through analysis and simulation. Numerical models are formulated that include the influence of essential features such as sensor uncertainty and noise, actuator saturation and control architecture on the buckling process. Silicon-based strain sensors and diffuse laser distance sensors are both considered for use in the detection of incipient buckling behavior due to their increased sensitivity. Actuation is provided by paired distributions of piezo-electric material incorporated into both sides of the laminate. Optimal controllers are designed to command the structure to deform in ways that interfere with the development of buckling mode shapes. Commercial software packages are used to solve the resulting non-linear equations, and some of the tradeoffs are enumerated. Overall, the results show that active buckling control can considerably enhance resistance to instability under compressive loads. These buckling load predictions demonstrate the viability of optimal control and piezo-electric actuation for implementing active buckling control. Due to the importance of early detection, the relative effectiveness of active buckling control is shown to be strongly dependent on the performance of the sensing scheme, as well as on the characteristics of the structure.
FEM modelling of soil behaviour under compressive loads
Ungureanu, N.; Vlăduţ, V.; Biriş, S. Şt
2017-01-01
Artificial compaction is one of the most dangerous forms of degradation of agricultural soil. Recognized as a phenomenon with multiple negative effects in terms of environment and agricultural production, soil compaction is strongly influenced by the size of external load, soil moisture, size and shape of footprint area, soil type and number of passes. Knowledge of soil behavior under compressive loads is important in order to prevent or minimize soil compaction. In this paper were developed, by means of the Finite Element Method, various models of soil behavior during the artificial compaction produced by the wheel of an agricultural trailer. Simulations were performed on two types of soil (cohesive and non-cohesive) with known characteristics. By applying two loads (4.5 kN and 21 kN) in footprints of different sizes, were obtained the models of the distributions of stresses occuring in the two types of soil. Simulation results showed that soil stresses increase with increasing wheel load and vary with soil type.
Behavior of R/C Cylindrical Panel Subjected to Combined Axial and Shear Loadings
Hara, Takashi
2009-01-01
p. 1722-1730 Reinforced concrete (R/C) cylindrical panels have been applied to the roof or the underground structures. Also, in constructing a high rise building, an R/C wall is often used to improve the lateral rigidity of the building comparing with beam column systems under wind or seismic loading. In this paper, the behavior of R/C cylindrical shell under combined axial and lateral shear loadings is analyzed numerically. R/C cylindrical shells are often adopted for the core wa...
DYNAMIC BUCKLING OF DOUBLE-WALLED CARBON NANOTUBES UNDER STEP AXIAL LOAD
Institute of Scientific and Technical Information of China (English)
Chengqi Sun; Kaixln Liu
2009-01-01
An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes into account the van der Waals interaction between the outer and inner nanotubes. A buckling condition is derived, from which the critical buckling load and associated buckling mode can be determined. As examples, numerical results are worked out for DWNTs under fixed boundary conditions. It is shown that, due to the effect of van der Waals forces, the critical buckling load of a DWNT is enhanced when inserting an inner tube into a single-walled one. The paper indicates that the critical buckling load of DWNTs for dynamic buckling is higher than that for static buckling. The effect of the radii is also examined. In addition, some of the results are compared with the previous ones.
Zhang, Kai
Steel-plate reinforced concrete (SC) composite walls typically consist of thick concrete walls with two exterior steel faceplates. The concrete core is sandwiched between the two steel faceplates, and the faceplates are attached to the concrete core using shear connectors, for example, ASTM A108 steel headed shear studs. The shear connectors and the concrete infill enhance the stability of the steel faceplates, and the faceplates serve as permanent formwork for concrete placement. SC composite walls were first introduced in the 1980's in Japan for nuclear power plant (NPP) structures. They are used in the new generation of nuclear power plants (GIII+) and being considered for small modular reactors (SMR) due to their structural efficiency, economy, safety, and construction speed. Steel faceplates can potentially undergo local buckling at certain locations of NPP structures where compressive forces are significant. The steel faceplates are usually thin (0.25 to 1.50 inches in Customary units, or 6.5 to 38 mm in SI units) to maintain economical and constructional efficiency, the geometric imperfections and locked-in stresses induced during construction make them more vulnerable to local buckling. Accidental thermal loading may also reduce the compressive strength and exacerbate the local buckling potential of SC composite walls. This dissertation presents the results from experimental and numerical investigations of the compressive behavior of SC composite walls at ambient and elevated temperatures. The results are used to establish a slenderness limit to prevent local buckling before yielding of the steel faceplates and to develop a design approach for calculating the compressive strength of SC composite walls with non-slender and slender steel faceplates at ambient and elevated temperatures. Composite action in SC walls is achieved by the embedment of shear connectors into the concrete core. The strength and stiffness of shear connectors govern the level of
UHPC SANDWICH STRUCTURES WITH COMPOSITE COATING UNDER COMPRESSIVE LOAD
Directory of Open Access Journals (Sweden)
Jan Markowski
2016-12-01
Full Text Available Ultra-high-performance concrete (UHPC sandwich structures with composite coating serve as multipurpose load-bearing elements. The UHPC’s extraordinary compressive strength is used in a multi-material construction element, while issues regarding the concrete’s brittle failure behaviour are properly addressed. A hollow section concrete core is covered by two steel tubes. The outer steel tube is wrapped in a composite material. By this design, UHPC is used in a material- and shape-optimised way with a low dead weight ratio[1] concerning the load-bearing capacity and stability[2]. The cross-section’s hollow shape optimises the construction’s buckling stability while saving self-weight. The composite coating on the column’s outside functions both as a layer increasing the construction’s durability and as a structural component increasing the the maximum and the residual load capacity. Investigations on the construction’s structural behaviour were performed.
Parametric Equation of Stress Concentration Factor for Circular X-Joints Under Axial Loads
Institute of Scientific and Technical Information of China (English)
QU Shu-ying; ZHANG Guo-dong; ZHANG Bao-feng; WANG Xin-jian
2007-01-01
In engineering practice,tubular X-joints have been widely used in offshore structures.The fatigue failure of tubular X-joints in offshore engineering is mainly caused by axial tensile stress.In this study,the stress concentration factor distribution along the weld toe in the hot spot stress region for tubular X-joints subject to axial loads have been analyzed by use of finite element method.Through numerical analysis,it has been found that the peak stress concentration factor is located at the saddle position.Thereafter,80 models have been analyzed,and the effect of the geometric parameters of a tubular X-joint on the stress concentration factor has been investigated.Based on the experimental values of the numerical stress concentration factor,a parametric equation to calculate the stress concentration factor of tubular X-joints has been proposed.The accuracy of this equation has been verified against the requirement of the Fatigue Guidance Review Panel,and the proposed equation is found capable of producing reasonably accurate stress concentration factor values for tubular X-joints subject to axial loads.
Development of an axial suspended AMB experimental bench for load and disturbance tests
Directory of Open Access Journals (Sweden)
R. Gouws
2015-06-01
Full Text Available This paper provides the development of an axial suspended active magnetic bearing (AMB experimental bench for load and disturbance tests. This test bench must be capable of levitating a 2 kg steel disc at a stable working distance of 3 mm and a maximum attraction distance of 6 mm. The suspension is accomplished by two electromagnets producing upward and downward attraction forces to support the steel disc. An inductive sensor measures the position of the steel disc and relays this to a PC based controller board (dSPACE® controller. The control system uses this information to regulate the electromagnetic force on the steel disc. The intent is to construct this system using relatively low-cost, low-precision components, and still be able to stably levitate the 2 kg steel disc with high precision. The dSPACE® software (ControlDesk® was used for data acquisition. In this paper, an overview of the system design is presented, followed by the axial AMB model design, inductive sensor design, actuating unit design and controller development and implementation. The paper concludes with results obtained from the dSPACE® controller and evaluation of the axial suspended AMB experimental bench with load and disturbance tests.
Directory of Open Access Journals (Sweden)
Márcio Takey Bezuti
2013-02-01
Full Text Available OBJETIVO: Medir a velocidade de propagação do ultrassom (VU através de uma osteotomia transversal em tíbias de ovelha, antes e após a fixação com uma placa DCP. MÉTODOS: Foram utilizadas dez montagens de uma placa DCP com o segmento diafisário das tíbias, no qual era feita uma osteotomia transversal. Foi realizada a medida subaquática transversal, nos planos coronal e sagital, e axial da VU, no osso íntegro, nas montagens sem osteotomia e, depois, com osteotomia sem e com a compressão axial pela placa DCP; comparações estatísticas foram feitas ao nível de significância de 1% (pOBJECTIVE: To measure the ultrasound propagation velocity (UV through a tibial transverse osteotomy in sheep, before and after the fixation with a DCP plate. MATERIAL AND METHODS: Ten assemblies of a DCP plate with the diaphyseal segment of tibiae, in which a transverse osteotomy was made, were used. Both coronal and sagittal transverse and the axial UV were measured, first with the intact bone assembled with the plate and then with the uncompressed and compressed osteotomy; statistical comparisons were made at the 1% (p<0.01 level of significance. RESULTS: Compared with the intact bone assembly, axial UV significantly decreased with the addition of the osteotomy and significantly increased with compression, presenting the same behavior for the other modalities, although not significantly. DISCUSSION AND CONCLUSION: In accordance with the literature data on the ultrasonometric evaluation of fracture healing, underwater UV measurement was able to demonstrate the efficiency of DCP plate fixation. The authors conclude that the method has a potential for clinical application in the postoperative follow-up of DCP plate osteosinthesis, with a capability to demonstrate when it becomes ineffective. Laboratory investigation.
Institute of Scientific and Technical Information of China (English)
王春刚; 宋代军; 张壮南
2012-01-01
In order to investigate the stability behavior of channels with complex edge stiffeners under axial load between fixed-ends, a total of 292 members with different parameters such as width-to-thickness ratio of flanges, section shapes, length of column, stiffener length were selected to be studied by nonlinear finite element analysis. The influence of the above parameters on stability behavior of channels with complex edge stiffeners were studied. It is shown that fixed-ended columns are more prone to distortional buckling. When width-to-thickness ratio of flanges is big, the overall instability mode tends to perform the flexural-torsional buckling. The ultimate load-carrying capacity of members decreases with the increase in the flange width-to-thickness ratio and slenderness ratio. With differences of width-to-thickness ratio of flanges, two different rules were shown about the influence of edge stiffeners on the loadcarrying efficiency of members.%为研究复杂卷边槽钢轴压固支构件的稳定性能，选取不同的翼缘宽厚比、截面形式、构件长度、卷边长度等几何参数，对共计292个构件进行非线性有限元分析，研究上述参数对复杂卷边槽钢固支构件稳定性能的影响。结果表明：固支构件较易发生畸变屈曲，翼缘宽厚比较大时，构件的整体失稳模式多为弯扭屈曲。构件的极限承载力随着翼缘宽厚比、构件长细比的增大而减小，卷边对构件承载效率的影响随翼缘宽厚比的不同而呈现两种不同的规律。
Characterization of focal muscle compression under impact loading
Butler, B. J.; Sory, D. R.; Nguyen, T.-T. N.; Proud, W. G.; Williams, A.; Brown, K. A.
2017-01-01
In modern wars over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome of the extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions.
Strength and Deformation of Axially Loaded Fiber-Reinforced Polymer Sheet Confined Concrete Columns
Institute of Scientific and Technical Information of China (English)
李静; 钱稼茹; 蒋剑彪
2004-01-01
Experimental results of 29 axially loaded fiber-reinforced polymer sheet (FS) confined concrete columns and two reference plain concrete columns are introduced. Twenty four column specimens were confined with carbon fiber sheet (CFS) and five column specimens were hybrid confined with both CFS and glass fiber sheet (GFS). The influence of aspect ratio, FS material, initial axial force ratio, and FS confinement degree on the strength and deformation of columns were studied. Based on the experimental results, the equations of complete stress-strain curve of CFS confined concrete are proposed. These equations are suitable for the nonlinear analysis of square and rectangular section columns. Suggestions of applying FS to confine concrete columns are presented.
Stadelmann, Vincent A; Hocke, Jean; Verhelle, Jensen; Forster, Vincent; Merlini, Francesco; Terrier, Alexandre; Pioletti, Dominique P
2009-02-01
A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed that quantification of bone remodelling should be performed at the tibial crest and at the distal diaphysis. The numerical model could also be used to furnish a more subtle analysis as a precise correlation between local strain and local biological response can be obtained with the experimentally validated numerical model.
Test Procedure for Axially Loaded Bucket Foundations in Sand (Large Yellow Box)
DEFF Research Database (Denmark)
Vaitkunaite, Evelina
This is a practical guide for preparing the soil, running a CPT test, installing a scaled bucket foundation model and running a test in the large yellow sand box cos(Kristina) in the geotechnical laboratory at Aalborg University. The test procedure is used for the examination of statically...... and cyclically axially loaded bucket foundation model In dense sand. The foundation model in scale of approximately 1:10 compared to the prototype size. The guide describes the step-by-step procedure for tests with and without surface pressure. A detailed description of test setup using the large yellow sand box...
Directory of Open Access Journals (Sweden)
Song Bing
2016-01-01
Full Text Available Taking the mixing amount of diatomite calcined and vitrified micro bubbles(VMB as the main changing parameters, experiment studies the properties of the vitrified micro bubbles recycled concrete blocks; then this paper adopts the finite element software ANSYS to analyze the square double skin steel stub short columns filled with recycled concrete under axial compression. According to the vertical stress distribution, strain and bearing capacity of the steel tube and core concrete, we make a contrastive axial compression properties analysis on the different hollow ratio χ(0,0.35and the VMB content(0%,100%,130% of square double skin steel stub short columns filled with recycled concrete. The result shows that: Compressive strength of VMB recycled concrete increases with the increase of diatomite calcined content, when mixing amount of diatomite calcined is 3%,the compressive strength of 130% VMB content test specimen can reach 32.45 MPa;Because of the inner circular steel tube is setted which strengthening component buckling capacity and improving the ductility of the component, stress distribution of hollow components is more balance than solid components, and their axial displacements decrease by 5.6% compared with the solid components when they reach ultimate bearing capacity; When the hollow ratio is same, ultimate bearing capacity of 130% VMB content test specimen compared with the content is 0% only reduces by about 3.5%; When the VMB content is same, ultimate bearing capacity of hollow components compared with solid components increases by about 2.5%, which reducing weight as well as improving the anti-seismic performance.
Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard
2017-06-01
Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.
Directory of Open Access Journals (Sweden)
Guodong Li
2016-01-01
Full Text Available The load bearing capacity and deformation response of granular spoils under uniaxial compression are numerically and experimentally investigated, aiming to shed light on the performance of back filled waste spoils while controlling ground subsidence after coal extraction. In numerical study, the particles are assembled in PFC commercial code in light of the digitized real shape of spoils with image technique, which is proved to be consistent with the physical test. The results from numerical and laboratory experiments showed that the complete compressive process of spoils tended to have spatial and temporal characteristics. The load-strain curves of investigated specimens could be divided into three stages (stage I, rearranging stage; stage II, breaking stage; stage III, consolidating stage and three zones (I, rearranging zone; II, interlocking zone; III, consolidated zone from outside to inside. During stage I, the load increasing rate of smaller spoils is relatively low, but it increases faster than larger ones in stages II and III. In addition, spoils with Talbot’s gradation are greater than single gradations. The magnitude of the density in consolidated zone is maximum, indicating that it is the main part holding the overlying strata weight.
The flow field investigations of no load conditions in axial flow fixed-blade turbine
Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.
2014-03-01
During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.
Directory of Open Access Journals (Sweden)
C Sharada Prabhakar
2017-03-01
Full Text Available Longitudinal tensile load exerted due to internal hydraulic pressure, on bolted radial joints between large size PAN carbon epoxy filament wound composite cylindrical section and small size 15CDV6 steel cylindrical sections, were simulated and tested on flat laminate level, mainly to check the strength of PAN carbon epoxy helical wound laminate made by wet winding method. Small segmental portion of circumference of cylindrical sections was considered as width of composite laminate and of metallic plates, necessary to accommodate 5 rows of fasteners in transverse direction with specified pitch distance. Bolted radial joints between carbon epoxy helical wound flat laminate and 15CDV6 steel plates were realized with 8 numbers of steel fasteners distributed in 3 longitudinal and 5 transverse rows at each joint. Helical angle of winding, length and thickness of carbon epoxy laminate was ±22.5°, 458mm and 11mm respectively. Length and structural thickness of radial joints, total length and width of assembly test specimen were 98mm, 18mm, 870mm and 169.43mm respectively. Joints were tested under uni-axial tensile load up to failure. Joints failed at 18 tonnes (1.7 times of design load. Failure mode was observed as initiation of bearing failure at all 8, countersink fastener holes in laminate and shear out failure at edge hole. Strains in fibre direction, at 45°and at transverse to fibre direction were found very less. Maximum compressive strain and residual strain, near fastener holes were found as -1423 and -136 micro strain respectively. Test was successful
On the performance of circular concrete-filled high strength steel columns under axial loading
Directory of Open Access Journals (Sweden)
Mohamed Mahmoud El-Heweity
2012-06-01
Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.
Operating characteristics of heavy loaded cylindrical journal bearing with variable axial profile
Directory of Open Access Journals (Sweden)
Stanislaw Strzelecki
2005-12-01
Full Text Available During the operation of turbounit its bearings displace as a result of heat elongation of bearings supports. It changes the static deflection line of rotor determined during assembly of the turbounit, causing an increase in the stresses on the bearing edges and a decrease in the dynamic state of the machine. One of possibilities to avoid the edge stresses is to apply the bearings with variable axial profile, e.g. hyperboloidal, convex profile in the axial cross-section of bearing. Application of journal bearings with hyperboloidal profile allows to extend the bearing operation range without the stress concentration on the edges of bush. These bearings successfully carry the extreme load in conditions of misaligned axis of journal and the bush eliminating the necessity of using self-aligning bearings. Operating characteristics of bearing include the resulting force, attitude angle, oil film pressure and temperature distributions, minimum oil film thickness, maximum oil film temperature. In literature there is a lack of data on the operating characteristics of heavy loaded hyperboloidal journal bearings operating at the conditions of adiabatic oil film and static equilibrium position of the journal. For the hyperboloidal bearing the operating characteristics have been obtained. Different values of length to diameter ratio, assumed shape and inclination ratio coefficients have been assumed. Iterative solution of the Reynolds', energy and viscosity equations was applied. Adiabatic oil film, laminar flow in the bearing gap as well as aligned and misaligned orientation of journal in the bush were considered.
Energy Technology Data Exchange (ETDEWEB)
Miranda Junior, E.J.P.; Paiva, A.E.M., E-mail: edson.jansen@hotmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil). Programa de Pos-Graduacao em Engenharia de Materiais
2012-07-01
In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)
Multi-axial load application and DIC measurement of advanced composite beam deformation behavior
Directory of Open Access Journals (Sweden)
Berggreen C.
2010-06-01
Full Text Available For the validation of a new beam element formulation, a wide set of experimental data consisting of deformation patterns obtained for a number of specially designed composite beam elements, have been obtained. The composite materials applied in the beams consist of glass-fiber reinforced plastic with specially designed layup configurations promoting advanced coupling behavior. Furthermore, the beams are designed with different cross-section shapes. The data obtained from the experiments are also used in order to improve the general understanding related to practical implementation of mechanisms of elastic couplings due to anisotropic properties of composite materials. The knowledge gained from these experiments is therefore essential in order to facilitate an implementation of passive control in future large wind turbine blades. A test setup based on a four-column MTS servo-hydraulic testing machine with a maximum capacity of 100 kN was developed, see Figure 1. The setup allows installing and testing beams of different cross-sections applying load cases such as axial extension, shear force bending, pure bending in two principal directions as well as pure torsion, see Figure 2. In order to apply multi-axial loading, a load application system consisting of three hydraulic actuators were mounted in two planes using multi-axial servo-hydraulic control. The actuator setup consists of the main actuator on the servo-hydraulic test machine working in the vertical axis (depicted on Figure 1 placed at the testing machine crosshead and used for application of vertical forces to the specimens. Two extra actuators are placed in a horizontal plane on the T-slot table of the test machine in different positions in order to apply loading at the tip of the specimen in various configurations. In order to precisely characterize the global as well as surface deformations of the beam specimens tested, a combination of different measurement systems were used during
Institute of Scientific and Technical Information of China (English)
沈惠申
2004-01-01
A compressive postbuckling analysis is presented for a laminated cylinderical panel with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be a uniform distribution over the panel surface and through the panel thickness and the electric field is assumed to be the transverse component Ez only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classicalshell theory with von Ka rman-Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinearprebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of hybrid laminated cylindrical panels of finite length. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the compressive postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin panels with fully covered or embedded piezoelectric actuators under different sets of thermal and electrical loading conditions. The effects played by temperature rise, applied voltage,stacking sequence, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.
Institute of Scientific and Technical Information of China (English)
Youtang Li; Shuai Tan; Hongyan Duan
2008-01-01
The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated.Several problems,such as the relations of the cycle times to the depth and tip radius of the notch,loading frequency,loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments.Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption,fracture surface with high quality,low cycle times,and high efficiency.The appropriate parameters were as follows:loading frequency 3-5 Hz,notch tip radius r=(0.2-0.3)mm,opening angle α=60°,and notch depth t=(0.14-0.17)D.
Energy Technology Data Exchange (ETDEWEB)
Yao, Shengjie; Sun, Lei; Ma, Xudong [Harbin Institute of Technology, Weihai (China)
2016-05-15
This paper presents the deformation behavior and crash worthiness of electric resistance welded mild steel tubes with axial gradient microstructures in quasi-static compression. Three sets of tubes were prepared, and regions of each tube were Induction heated and directly quenched (IH-DQ). The effect of the length to diameter (L/D) ratio, and length of the IH-DQ region on crushing characteristics was investigated, and compared with untreated tubes. The compression tests revealed that improved energy absorption can be obtained in IHDQ tubes if the collapse is controlled by the formation of a concertina buckling mode. However, there was a tendency to produce mixed or Euler buckling modes as the ratio of L/D increased. Meanwhile, the results of the crush experiments and the FEM models showed that the heat-treatment process should be precisely controlled to produce the correct type of microstructure, and circumferential uniformity of microstructure distribution.
Ferhoune, Noureddine; Zeghiche, Jahid
2012-03-01
In the present work, results of tests conducted on thin welded rectangular steel-concrete stubs are presented. The studied section was made of two cold steel plates with U shape and welded (with electric arc) to form a steel box. The cross section dimensions were: 100×70×2 mm. The main studied parameters were: the height (50, 100, 150, 200, 300, 400, 500 mm), the effect of the in filled concrete and its age, the discontinuous weld. The tests were carried out at 28 days and 3 years after the date of casting. All tests were achieved under axial compression in a 50 tf machine up to failure. A total of 21 stubs were tested, 8 were empty, 8 filled with concrete whose gravel was made of crushed crystallized slag tested at 28 days of casting and 8 composites as the previous but tested after 3 years. The aim of the study is to bring some light on the behaviour of such composite section. Also, to provide some evidence that the use of crushed slag could be integrated in the manufacturing of non-conventional concrete. All failure loads were predicted numerically and by using the Eurocodes EC3 and EC4 from test results it was confirmed that the length of empty stubs had a drastic effect on the load carrying capacity and the failure mode was rather a local buckling mode with steel sides deformed outwards and inwards. Both numerical EC3 predictions were higher and on the unsafe side when compared to experimental corresponding loads for empty steel samples. For composite stubs, the load carrying capacity increased significantly; the EC4 numerical load predictions were higher in the higher range 300-500 mm and lower in the higher range 50-200 mm. The failure mode of composite stubs was a local buckling mode with all steel sides deformed outwards. The experimental loads obtained after 3 years of casting were higher than the corresponding tested at 28 days. The load ratio (3 years/28 days) was found to be increasing linearly with the increase of the stubs height. More test results
The effect of variable stator on performance of a highly loaded tandem axial flow compressor stage
Eshraghi, Hamzeh; Boroomand, Masoud; Tousi, Abolghasem M.; Fallah, Mohammad Toude; Mohammadi, Ali
2016-06-01
Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in comparison to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.
The Effect of Variable Stator on Performance of a Highly Loaded Tandem Axial Flow Compressor Stage
Institute of Scientific and Technical Information of China (English)
Hamzeh Eshraghi; Masoud Boroomand; Abolghasem M.Tousi; Mohammad Toude Fallah; Ali Mohammadi
2016-01-01
Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds.Considering the high aerodynamic load effects and structural concerns in the design process,it is possible to obtain higher pressure ratios compared to conventional compressors.However,it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance.To avoid the loss increase,the boundary layer quality must be studied carefully over the blade suction surface.Employment of advanced shaped airfoils (like CDAs),slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades.Tandem cascade is a passive boundary layer control method,which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads.In fact,the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side.Also,in comparison to the single blade stators,tandem variable stators have more degrees of freedom,and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance.In the current study,a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage.Following,this design is numerically investigated using a CFD code and the stage characteristic map is reported.Also,the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed.To validate the CFD method,another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.
Directory of Open Access Journals (Sweden)
Nikolai Briffa
2016-10-01
Full Text Available Abstract The aim of this study was to compare the biomechanical properties of medial and lateral plating of a medially comminuted supracondylar femoral fracture. A supracondylar femoral fracture model comparing two fixation methods was tested cyclically in axial loading. One-centimetre supracondylar gap osteotomies were created in six synthetic femurs approximately 6 cm proximal to the knee joint. There were two constructs investigated: group 1 and group 2 were stabilized with an 8-hole LC-DCP, medially and laterally, respectively. Both construct groups were axially loaded. Global displacement (total length, wedge displacement, bending moment and strain were measured. Medial plating showed a significantly decreased displacement, bending moment and strain at the fracture site in axial loading. Medial plating of a comminuted supracondylar femur fracture is more stable than lateral plating.
Alexander, C. S.; Ding, J. L.; Asay, J. R.
2016-03-01
Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPS experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. In addition, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for
Simulating of marble subjected to uni-axial loading using index-parabola damage model
Institute of Scientific and Technical Information of China (English)
温世游; 李夕兵; 骆达成
2001-01-01
The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead to the development and confirmation of a new index-parabola damage model. The new model is divided into two parts, fictitious damage and real damage and bordered by the critical damage point. In fictitious damage, the damage variable follows the index distribution, while in the real damage a parabolic distribution is used. Thus, the so-called index-parabola damage model is derived. The proposed damage model is applied to simulate the damage procedure of marble under uni-axial loading. The results of the tests show that the proposed model is in excellent agreement with experimental data, in particular the nonlinear characteristic of rock deformation is adequately represented.
Multisized Inert Particle Loading for Solid Rocket Axial Combustion Instability Suppression
Directory of Open Access Journals (Sweden)
David R. Greatrix
2012-01-01
Full Text Available In the present investigation, various factors and trends, related to the usage of two or more sets of inert particles comprised of the same material (nominally aluminum but at different diameters for the suppression of axial shock wave development, are numerically predicted for a composite-propellant cylindrical-grain solid rocket motor. The limit pressure wave magnitudes at a later reference time in a given pulsed firing simulation run are collected for a series of runs at different particle sizes and loading distributions and mapped onto corresponding attenuation trend charts. The inert particles’ presence in the central core flow is demonstrated to be an effective means of instability symptom suppression, in correlating with past experimental successes in the usage of particles. However, the predicted results of this study suggest that one needs to be careful when selecting more than one size of particle for a given motor application.
Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali
2016-11-01
The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.
Analysis and Calculation of Axial Stiffness of Tubular X-joints under Compression on Braces
Institute of Scientific and Technical Information of China (English)
QIU Guo-zhi; ZHAO Jin-cheng
2009-01-01
This paper introduces the influence factors of axial stiffness of tubular X-joints. The analysis model of tubular joints using plate and shell finite element method is also made. Systematic single-parameter analysis of tubular X-joints is performed using Ansys program. The influences of those factors, including ratio of brace diameter to chord diameter (β), ratio of chord diameter to twice chord thickness (γ), ratio of brace wall thickness to that of chord (τ), brace-to-chord intersection angle (θ), and chord stress ratio, ratio of another brace diameter to chord diameter, in-plane and out-of-plane moment of braces, etc., on stiffness of tubular X-joints are analyzed.Two non-dimensional parameters-joint axial stiffness factor ηN and axial force capacity factor ωN are proposed,and the relationship curve of the two factors is determined. Computational formulas of tubular X-joint axial stiffness are obtained by multi-element regression technology. The formulas can be used in design and analysis of steel tubular structures.
Work of Fracture of Composites in Axial Compression - Measurement and Origins
1990-04-01
fibre reinforced plastic (CFRP) indicates that theories based on the Rosen model do not adequately explain variations in compressive strength with... reinforced plastic (GRP) composites, and looks at failure initiation and propagation modes and the amounts of energy involved. Figures of between 5 and...tension, Chaplin attempts to investigate the variation in compressive strength with notch depth for high strength carbon fibre (CFRP) and E-glass fibre
Study on one-dimensional consolidation of soil under cyclic loading and with varied compressibility
Institute of Scientific and Technical Information of China (English)
ZHUANG Ying-chun; XIE Kang-he
2005-01-01
This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory.
Loading Rate Effects on the One-Dimensional Compressibility of Four Partially Saturated Soils
1986-12-01
OF FUNDING NUMBERS See reverse PROGRAM IPROJECT ITASK IWORK UNIT ELEMENT NO. 1NO. NO ACCESSION NO 1i rITLE (include SeCUrit ClaMfireme~n) Loading Rate...AOaa (2K - 4G ) Er (3-2) where: Aaa= change in axial stress K = bulk modulus of the soil G = shear modulus of the soil Since the change in axial...ratio of decrease in axial stress to radial stress, which he called the fractional error and expressed as: G-2 = (2K - 4G ) = (M - 2G) (3-3) Or 2Gst
Directory of Open Access Journals (Sweden)
M. Grujicic
2013-01-01
Full Text Available The mechanical response of p-phenylene terephthalamide (PPTA single fibers when subjected to uniaxial compression is investigated computationally using coarse-grained molecular statics/dynamics methods. In order to construct the coarse-grained PPTA model (specifically, in order to define the nature of the coarse-grained particles/beads and to parameterize various components of the bead/bead force-field functions, the results of an all-atom molecular-level computational investigation are used. In addition, the microstructure/topology of the fiber core, consisting of a number of coaxial crystalline fibrils, is taken into account. Also, following our prior work, various PPTA crystallographic/topological defects are introduced into the model (at concentrations consistent with the prototypical PPTA synthesis/processing conditions. The analysis carried out clearly revealed (a formation of the kink bands during axial compression; (b the role of defects in promoting the formation of kink bands; (c the stimulating effects of some defects on the fiber-fibrillation process; and (d the detrimental effect of the prior compression, associated with fiber fibrillation, on the residual longitudinal-tensile strength of the PPTA fibers.
Sejdić, Ervin; Dudik, Joshua M; Kurosu, Atsuko; Jestrović, Iva; Coyle, James L
2014-05-23
Swallowing accelerometry is a promising tool for non-invasive assessment of swallowing difficulties. A recent contribution showed that swallowing accelerometry signals for healthy swallows and swallows indicating laryngeal penetration or tracheal aspiration have different time-frequency structures, which may be problematic for compressive sensing schemes based on time-frequency dictionaries. In this paper, we examined the effects of different swallows on the accuracy of a compressive sensing scheme based on modulated discrete prolate spheroidal sequences. We utilized tri-axial swallowing accelerometry signals recorded from four patients during routinely schedule videofluoroscopy exams. In particular, we considered 77 swallows approximately equally distributed between healthy swallows and swallows presenting with some penetration/aspiration. Our results indicated that the swallow type does not affect the accuracy of a considered compressive sensing scheme. Also, the results confirmed previous findings that each individual axis contributes different information. Our findings are important for further developments of a device which is to be used for long-term monitoring of swallowing difficulties.
Directory of Open Access Journals (Sweden)
Branimir Pavić
2012-10-01
Full Text Available The design of intermediate shaft with axially movablesplined joint must be adapted to the variable position of theshaft axis, i.e. to the change of the joint angle during operation.This design is also used for the reduction of axial forces whichare caused by inaccuracy in the production and assembling ofC(ll·dan mechanisms. The axial force which is generated by frictionof contact swfaces in the splined joint is the function of themagnitude of the transfeJTed torsion moments, splined dimensions,lubrication conditions, and materials used for contactswfaces. It will cause additional bearing loads at cross journalsand in the shaft supports, as well as unallowed vibrations andnoise during operation, thus affecting the safety and lifetime ofthe Cardan mechanism. The theoretical and empirical analysisof Cm·dan mechanisms, which have been studied with andwithout axial forces in the splinedjoint and its effect on durabilityof mechanism elements have been presented.
A Developed Methodology in Design of Highly Loaded Tandem Axial Flow Compressor Stage
Directory of Open Access Journals (Sweden)
Masoud Boroomand
2016-01-01
Full Text Available This study, primarily reports the development of a 3D design procedure for axial flow tandem compressor stages and then the method is used to design a highly loaded tandem stage. In order to investigate the effects of such arrangement, another stage with conventional loading with single blade for both rotor and stator rows is designed with similar specification. In order to ease the comparison of results, chord lengths and hub/shroud geometries are selected with the same dimensions. At the next stage a three dimensional numerical model is developed to predict the characteristic performance of both tandem and conventional stages. The model is validated with the experimental results of NASA-67 stage and the level of the accuracy of the model is presented. Employing the model to simulate the performance of both stages at design and offdesign operating points show that, tandem stage can provide higher pressure ratio with acceptable efficiency. In another word, tandem stage is capable having the same pressure ratio at lower rotational speed. The safe operation domain and loss mechanism in tandem stage are also discussed in this report.
Property of Corroded Concrete under Compressive Uniaxial Loads
Institute of Scientific and Technical Information of China (English)
FAN Yingfang; HU Zhiqiang; ZHOU Jing; LI Xin
2008-01-01
In order to study the compressive property of corroded concrete, accelerated corrosion test were performed on concrete C30.6 corrosive solutions, including hydraulic acid solution (pH=2), hydraulic acid solution (pH=3) were applied as the corrosive medium. 6 series of corrosion tests, including 111 specimens,were carried out. Mechanical properties of all the corroded specimens were tested respectively. Compressive properties of the corroded specimens (e.g. compressive strength, stress-strain relation, elastic modulus etc.) were achieved. Taking the strength degradation ratio and strain energy loss as damage index, effects of the corrosion solution on the compressive property of corroded concrete were discussed in detail. Relationship between the damage index and corrosion state of specimens were achieved.
Effect Of Compression Ratio On The Performance Of Diesel Engine At Different Loads.
Directory of Open Access Journals (Sweden)
Abhishek Reddy G
2015-10-01
Full Text Available Variable compression ratio (VCR technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. The main feature of the VCR engine is to operate at different compression ratio, by changing the combustion chamber volume, depending on the vehicle performance needs .The need to improve the performance characteristics of the IC Engine has necessitated the present research. Increasing the compression ratio to improve on the performance is an option. The compression ratio is a factor that influences the performance characteristics of internal combustion engines. This work is an experimental investigation of the influence of the compression ratio on the brake power, brake thermal efficiency, brake mean effective pressure and specific fuel consumption of the Kirloskar variable compression ratio duel fuel engine. Compression Ratios of 14, 15, 16 and 18 and engine loads of 3kg to 12 kg, in increments of 3kg, were utilized for Diesel.
Gessmann, Jan; Baecker, Hinnerk; Jettkant, Birger; Muhr, Gert; Seybold, Dominik
2011-04-01
The amount of weight bearing and the force transmission to the frame have an important influence on the results of treatment with an Ilizarov external fixator. The frame provides beneficial interfragmentary movements and compressive loads at the fracture site through elastic wires. Mobilisation can be achieved by applying a weight-bearing platform at the distal end of the fixator. The effect on the interfragmentary movements and the compressive loads in indirect and direct loading were analysed in this study using a composite tibia bone model. Displacement transducers were attached to measure the interfragmentary movements and to detect relative movements of the bone fragments and movements between the rings. The compressive loads in the osteotomy were measured with loading cells in the defect zone. The weight-bearing platform had a substantial effect on the biomechanical behaviour of the frame. It led to an indirect force transmission through the fixator with respect to the osteotomy, resulting in lower compressive loads, lower interfragmentary movements and higher mechanical stress on the frame.
DEFF Research Database (Denmark)
Madsen, Rasmus; Jensen, Tue Secher; Pope, Malcolm
2007-01-01
STUDY DESIGN: A method comparison study. OBJECTIVE: To investigate the effect of body position and axial load of the lumbar spine on disc height, lumbar lordosis, and dural sac cross-sectional area (DCSA). SUMMARY OF BACKGROUND DATA.: The effects of flexion and extension on spinal canal diameters...
Seismic vulnerability evaluation of axially loaded steel built-up laced members II: evaluations
Lee, Kangmin; Bruneau, Michel
2008-06-01
The test results described in Part 1 of this paper (Lee and Bruneau, 2008) on twelve steel built-up laced members (BLMs) subjected to quasi-static loading are analyzed to provide better knowledge on their seismic behavior. Strength capacity of the BLM specimens is correlated with the strength predicted by the AISC LRFD Specifications. Assessments of hysteretic properties such as ductility capacity, energy dissipation capacity, and strength degradation after buckling of the specimen are performed. The compressive strength of BLMs is found to be relatively well predicted by the AISC LRFD Specifications. BLMs with smaller kl/r were ductile but failed to reach the target ductility of 3.0 before starting to fracture, while those with larger kl/r could meet the ductility demand in most cases. The normalized energy dissipation ratio, E C/ E T and the normalized compressive strength degradation, C r″/ C r of BLMs typically decrease as normalized displacements δ/ δ b,exp increase, and the ratios for specimens with larger kl/r dropped more rapidly than for specimens with smaller kl/r; similar trends were observed for the monolithic braces. The BLMs with a smaller slenderness ratio, kl/r, and width-to-thickness ratio, b/t, experienced a larger number of inelastic cycles than those with larger ratios.
Seismic vulnerability evaluation of axially loaded steel built-up laced members Ⅱ: evaluations
Institute of Scientific and Technical Information of China (English)
Kangmin Lee; Michel Bruneau
2008-01-01
The test results described in Part 1 of this paper (Lee and Bruneau, 2008) on twelve steel built-up laced members(BLMs) subjected to quasi-static loading are analyzed to provide better knowledge on their seismic behavior. Strengthcapacity of the BLM specimens is correlated with the strength predicted by the AISC LRFD Specifications. Assessmentsof hysteretic properties such as ductility capacity, energy dissipation capacity, and strength degradation after buckling of thespecimen are performed. The compressive strength of BLMs is found to be relatively well predicted by the AISC LRFDSpecifications. BLMs with smaller kl/r were ductile but failed to reach the target ductility of 3.0 before starting to fracture,while those with larger kl/r could meet the ductility demand in most cases. The normalized energy dissipation ratio, ECETand the normalized compressive strength degradation, Cr"/Cr of BLMs typically decrease as normalized displacements δ/δbexpincrease, and the ratios for specimens with larger kl/r dropped more rapidly than for specimens with smaller kl/r; similartrends were observed for the monolithic braces. The BLMs with a smaller slenderness ratio, kl/r, and width-to-thickness ratio,b/t, experienced a larger number of inelastic cycles than those with larger ratios.
Directory of Open Access Journals (Sweden)
Márcio Hiroaki Kume
2010-02-01
Full Text Available OBJETIVO: Analisar a resistência (rigidez do sistema de fixação externa tubular uniplanar, com hastes de conexão única e dupla, com traços de fraturas estáveis e instáveis. MÉTODOS: Foram utilizados 48 modelos semelhantes à tíbia. Em todos foi deixado um intervalo de 0,5 cm entre os fragmentos e realizados cortes com angulações de 15º e 45º para simular fraturas estáveis e instáveis, respectivamente. Os modelos foram divididos em quatro grupos de acordo com o traço fraturário (15º e 45º e o número de barras metálicas na montagem (1 e 2 barras. Os modelos de prova foram adaptados à uma máquina de testes Instron®, pelas suas extremidades, e submetidos à compressão axial até que os fragmentos tiveram contato total. Avaliou-se a força necessária para efetuar o completo contato dos fragmentos do modelo. RESULTADOS: As forças instabilizadoras na montagem do fixador com barra dupla foram bastante superiores às com barra única. Observou-se ainda que o grupo com barra única instável apresentou variabilidade muito menor que os demais grupos, ou seja, apresenta resultados mais homogêneos, além de ter apresentado a menor média. CONCLUSÃO: A montagem do fixador externo com uma haste longitudinal dupla nos modelos estudados é mais estável que as demais quando submetidas à uma força de compressão axial.OBJECTIVE: This is an experimental study with the objective of analyses the increase of rigidity in synthetic tibia bones with external fixators, with single and double connecting rods and with stable and unstable fracture patterns. METHODS: The external fixators were used in the monoplanar, half pin configuration submitted to an axial compression load using the connecting bar in different patterns. Forty-eight similar models to the human tibia had been used. In all the models were left an interval of 0,5 cm between the fragments and were made cuts of 15º and 45º to simulate stable and unstable fracture patterns
Vandermey, Nancy E.; Morris, Don H.; Masters, John E.
1991-01-01
Damage initiation and growth under compression-compression fatigue loading were investigated for a stitched uniweave material system with an underlying AS4/3501-6 quasi-isotropic layup. Performance of unnotched specimens having stitch rows at either 0 degree or 90 degrees to the loading direction was compared. Special attention was given to the effects of stitching related manufacturing defects. Damage evaluation techniques included edge replication, stiffness monitoring, x-ray radiography, residual compressive strength, and laminate sectioning. It was found that the manufacturing defect of inclined stitches had the greatest adverse effect on material performance. Zero degree and 90 degree specimen performances were generally the same. While the stitches were the source of damage initiation, they also slowed damage propagation both along the length and across the width and affected through-the-thickness damage growth. A pinched layer zone formed by the stitches particularly affected damage initiation and growth. The compressive failure mode was transverse shear for all specimens, both in static compression and fatigue cycling effects.
Institute of Scientific and Technical Information of China (English)
冯然; 马义红; 张长锐
2016-01-01
采用试验研究和有限元数值分析方法，对6061-T6系列的铝合金方管开孔柱的轴心受压性能进行研究，建立了同时考虑材料非线性和几何非线性的有限元数值模型，对短柱和中长柱的屈曲模式进行模拟，并通过数值模拟结果提出了开孔柱极限承载力的计算方法。利用该有限元模型针对孔洞的存在、大小、数目、位置对铝合金开孔柱的承载力和屈曲模式的影响进行了全面的分析，并通过对比铝合金未开孔轴心受压构件的计算方法与冷弯薄壁型钢开孔轴心受压构件的计算方法，结合数值模拟结果，提出了铝合金开孔轴心受压构件的计算公式。%The experimental study and FE numerical analysis were conducted on 6061-T6 aluminium alloy square hollow section ( SHS) columns with hole under axial compression. Both material and geometrical nonlinearities were considered in the finite element analysis. The accurate finite element models were developed for the buckling analysis of aluminium alloy stub and intermediate columns. Based on the numerical results, the design rules were proposed for the load carrying capacity of aluminium alloy SHS columns with holes. The effects of the existence, size, amount and location of the holes on the load carrying capacity and buckling modes of aluminium alloy SHS columns were evaluated. The design formulas were derived for the aluminium alloy axially compressed members with holes based on the design rules of aluminium alloy structural members and cold-formed steel thin-walled perforated members.
STATIC AND FATIGUE BEHAVIOR OF IMPACTED AS4/PEEK THERMOPLASTIC COMPOSITES UNDER COMPRESSION LOAD
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Static and fatigue tests under compression load were made on impacted AS4/PEEK and T300/913C graphite/epoxy with [45/90/-45/0]5S stacking sequence. The comparison of the damage tolerance assessment for thermosetting and thermoplastic composites shows that thermoplastics are more damage tolerant under compression. Impacted thermoplastic composites have excellent compression-compression fatigue behavior. The damage growth life is only a few percent of their total fatigue life and no regular damage growth can be found. Some design principles for thermosetting composite structures may still be used.
Compressive Loading and Modeling of Stitched Composite Stiffeners
Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.
2016-01-01
A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.
Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive
Directory of Open Access Journals (Sweden)
Wei Yangang
2016-01-01
Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.
Crystal Plasticity Analysis on Compressive Loading of Magnesium with Suppression of Twinning
Mayama, Tsuyoshi; Ohashi, Tetsuya; Higashida, Kenji; Kawamura, Yoshihito
The compressive loading behavior of single crystals and bicrystals of magnesium without consideration of deformation twinning has been investigated by crystal plasticity finite element analysis with the aim of fundamental understanding of kink band formation in magnesium alloys with long period stacking ordered structure (LPSO) phase. The basal plane of the single crystal model is set to be parallel to the compressive direction. The result of the compressive loading analysis of single crystals indicates the significant influence of suppression of twinning on the activation of nonbasal slip systems and stress-strain behavior. The compressive analysis of symmetric bicrystal is also performed to clarify the influence of the angle between basal plane and the loading axis. The influence of the introduction of grain boundary and the slight change of crystal orientation is discussed in terms of activated deformation modes.
Thin-walled composite tubes using fillers subjected to quasistatic axial compression
AL-Qrimli, Haidar F.; Mahdi, Fadhil A.; Ismail, Firas B.; Alzorqi, Ibrahim S.
2015-04-01
It has been demonstrated that composites are lightweight, fatigue resistant and easily melded, a seemingly attractive alternative to metals. However, there has been no widespread switch from metals to composites in the automotive sector. This is because there are a number of technical issues relating to the use of composite materials that still need to be resolved including accurate material characterization, manufacturing and joining process. The total of 36 specimens have been fabricated using the fibre-glass and resin (epoxy) with a two different geometries (circular and corrugated) each one will be filled with five types of filler (Rice Husk, Wood Chips, Aluminium Chips, Coconut Fibre, Palm Oil Fibre) all these type will be compared with empty Tubes for circular and corrugated in order to comprehend the crashworthiness parameters (initial failure load, average load, maximum crushing load, load ratio, energy absorption, specific energy absorption, volumetric energy absorption, crushing force efficiency and crush strain relation) which are considered very sufficient parameters in the design of automotive industry parts. All the tests have been done using the “INSTRON Universal machine” which is computerized in order to simply give a high precision to the collection of the results, along with the use of quasi-static load to test and observe the behaviour of the fabricated specimens.
Fan Yang; Hao-ru Zhao; Chao Liu
2016-01-01
In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG k-ε turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustabl...
Institute of Scientific and Technical Information of China (English)
Jiang Songqing; Li Yongchi; Hu Xiuzhang; Zheng Jijia
2000-01-01
The Initial Imperfection Amplified Criterion is applied to investigate the geometric nonlinear dynamic buckling of statically preloaded ring-stiffened cylindrical shells under axial fluid-solid impact. Tak ing account of the effects of large deformation and initial geometric imperfection, the governing equations are obtained by the Galerkin method and solved by the Runge-Kutta method. The effects of static preloading (uniform external radial pressure) on the buckling features and the load-carrying ability of ring-stiffened cy lindrical shells against axial impact are discussed.
Flow performance of highly loaded axial fan with bowed rotor blades
Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.
2013-12-01
In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.
Chai, Chen-Ket; Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H; Oomens, Cees W J; van Sambeek, Marc R H M; van der Lugt, Aad; Baaijens, Frank P T
2013-06-21
The fibrous cap of an atherosclerotic plaque may be prone to rupture if the occurring stresses exceed the strength of the cap. Rupture can cause acute thrombosis and subsequent ischaemic stroke or myocardial infarction. A reliable prediction of the rupture probability is essential for the appropriate treatment of atherosclerosis. Biomechanical models, which compute stresses and strain, are promising to provide a more reliable rupture risk prediction. However, these models require knowledge of the local biomechanical properties of atherosclerotic plaque tissue. For this purpose, we examined human carotid plaques using indentation experiments. The test set-up was mounted on an inverted confocal microscope to visualise the collagen fibre structure during the tests. By using an inverse finite element (FE) approach, and assuming isotropic neo-Hookean behaviour, the corresponding Young's moduli were found in the range from 6 to 891kPa (median 30kPa). The results correspond to the values obtained by other research groups who analysed the compressive Young's modulus of atherosclerotic plaques. Collagen rich locations showed to be stiffer than collagen poor locations. No significant differences were found between the Young's moduli of structured and unstructured collagen architectures as specified from confocal collagen data. Insignificant differences between the middle of the fibrous cap, the shoulder regions, and remaining plaque tissue locations indicate that axial, compressive mechanical properties of atherosclerotic plaques are independent of location within the plaque. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mathematical Model for Thin-walled Corrugated Tube under Axial Compression
Directory of Open Access Journals (Sweden)
Eyvazian Arameh
2016-01-01
Full Text Available In this research, theoretical investigation of corrugated aluminum tubes is performed to predicting the energy absorption characteristics. Aim to deform plastic tubes in predetermined intervals, corrugations are introduced on its surface. Theoretical relations are presented for predicting the energy absorption and mean crushing load of corrugated tubes. Other than that, corrugation helps to control the failure mode.
Compression Sensibility of Magnetic-concentrated Fly Ash Mortar under Uniaxial Loading
Institute of Scientific and Technical Information of China (English)
JIA Xingwen; ZHANG Yajie; QIAN Jueshi
2012-01-01
The electrical conductivity,compression sensibility,workability and cost are factors that affect the application of conductive smart materials in civil structures.Consequently,the resistance and compression sensibility of magnetic-concentrated fly ash (MCFA) mortar were investigated using two electrode method,and the difference of compression sensibility between MCFA mortar and carbon fiber reinforced cement (CFRC)under uniaxial loading was studied.Factors affecting the compression sensibility of MCFA mortar,such as MCFA content,loading rate and stress cycles,were analyzed.Results show that fly ash with high content of Fe3O4 can be used to prepare conductive mortar since Fe3O4 is a kind of nonstoichiometric oxide and usually acts as semiconductor.MCFA mortar exhibits the same electrical conductivity to that of CFRC when the content of MCFA is more than 40％ by weight of sample.The compression sensibility of mortar is improved with the increase of MCFA content and loading rate.The compression sensibility of MCFA mortar is reversible with the circling of loading.Results show that the application of MCFA in concrete not only provides excellent performances of electrical-functionality and workability,but also reduces the cost of conductive concrete.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Fatigue tests of the smooth composite laminates and the notched composite laminates under compressive cyclic loading have been carried out. The damage mechanism is discussed and analyzed. Damage evolution is monitored using stiffness decay. From these tests, it is found that the initial delamination occurs at the free boundary of smooth specimens, or the notch boundary of notched specimens, subjected to the compression-compression cyclic load. A point of view in relation to two-phases of compression fatigue delamination of composites is proposed, namely, compression-compression delamination consists of the delamination formation phase and the delamination propagation, and there is a "damage transition point" to separate this two-phases. Furthermore, an empirical modulus degradation formula and its parameters fitting method are presented. According to the test data handling results, it is shown that this formula is univocal and can fit the test data conveniently. In addition, two kinds of new anti-buckling devices are designed for these tests. At last, the E-N curves, the D-N curves and the S-N curve of the smooth carbon fiber reinforced composite laminates of T300/648C are determined to predict the fatigue life of the notched composite laminate. And the E-N curve of the notched specimens at the given load ratio R=10 and minimum load P min=-0.45 kN is also measured to verify the estimated result of fatigue life.
Han, Kap-Soo; Rohlmann, Antonius; Yang, Seok-Jo; Kim, Byeong Sam; Lim, Tae-Hong
2011-05-01
The ligamentous spinal column buckles under compressive loads of even less than 100N. Experimental results showed that under the follower load constraint, the ligamentous lumbar spine can sustain large compressive loads without buckling, while at the same time maintaining its flexibility reasonably well. The purpose of this study was to investigate the feasibility of follower loads produced by spinal muscles in the lumbar spine in a quiet standing posture. A three-dimensional static model of the lumbar spine incorporating 232 back muscles was developed and utilized to perform the optimization analysis in order to find the muscle forces, and compressive follower loads (CFLs) along optimum follower load paths (FLPs). The effect of increasing external loads on CFLs was also investigated. An optimum solution was found which is feasible for muscle forces producing minimum CFLs along the FLP located 11 mm posterior to the curve connecting the geometrical centers of the vertebral bodies. Activation of 30 muscles was found to create CFLs with zero joint moments in all intervertebral joints. CFLs increased with increasing external loads including FLP deviations from the optimum location. Our results demonstrate that spinal muscles can create CFLs in the lumbar spine in a neutral standing posture in vivo to sustain stability. Therefore, its application in experimental and numerical studies concerning loading conditions seems to be suitable for the attainment of realistic results. Published by Elsevier Ltd.
Performance Analysis of CFRP Composite Strips Confined RC Columns under Axial Compression
Directory of Open Access Journals (Sweden)
J. Raja Murugadoss
2015-01-01
Full Text Available In an attempt to mitigate the high cost of FRP composite strengthening, an experimental investigation was carried out that sought to achieve efficient and most favorable FRP strengthening using CFRP composite strips. 50 mm wide CFRP composite strips were used in two different spacings (20 mm and 40 mm to confine columns. The test results of the column confined with smaller spacing (20 mm showed significant restraint of axial deformation of the column and enhanced the strength capacity to a maximum of 99.20% compared to that of reference column. In contrast, the column confined by strips with larger spacing (40 mm failed by crushing of concrete alone, which occurred even before the CFRP strips reached their ultimate strain. In addition, the embodied energy that exists in the CFRP strips could not be utilized effectively. The stress and strength enhancement ratio of this present study was compared with the previous research that has been conducted on columns confined with full wrapping. From the obtained results, it is recommended that CFRP strips with a spacing of 20 mm be used to improve the strength capacity of the RC column; in addition, this wrapping technique provides economic benefits compared to a column confined with full wrapping.
Institute of Scientific and Technical Information of China (English)
金梦飞; 刘昕露; 吕呈; 孙德发
2014-01-01
Based on the contrast analysis of the Effective Width Method and the Direct Strength Method, analysis and discussion are mentioned about the ultimate load-carrying capacities of 1 mm thickness Q345 cold-formed thin-wall steel lipped channel columns. The calculation and test results showed that, it is relative safety in calculation the lipped channel columns according to GB 50018-2002 Technical Code of Cold-Formed Thin-wall Steel Structure.%在分析比较有效宽度法( EWM)和直接强度法( DSM)的基础上，以1 mm厚Q345冷弯薄壁卷边槽钢柱为例，对其极限承载力进行了较深入的探讨和对比分析，计算与试验结果表明：按GB 50018-2002冷弯薄壁型钢结构技术规范计算槽钢柱是可行的。
Damage assessment of compression loaded debond damaged sandwich panels
DEFF Research Database (Denmark)
Moslemian, Ramin; Berggreen, Christian; Quispitupa, Amilcar;
2010-01-01
Sandwich composites with face sheets of fiber-reinforced plastics (FRP) and cores of polymer foam offer a lightweight construction that is well suited to wind turbine blades, naval and other vessels for high-speed operation or where payload considerations require that the structural weight...... with an implanted circular face/core debond. Compression tests were conducted on intact sandwich panels and panels with an implanted circular face/core debond with three different types of foam core materials (PVC H130, PVC H250 and PMI 51-IG). The strains and out-of-plane displacements of the debonded region were...
Elastic Plastic Stress Distributions in Weld-bonded Lap Joint under Axial Loading
Directory of Open Access Journals (Sweden)
Essam A. Al-Bahkali
2014-06-01
Full Text Available Weld-bonding process is increasingly used in many industries such like automobile and aerospace. It offers significant improvements of sheet metal joints in static, dynamic, corrosion, noise resistance, stiffness and impact toughness properties. A full understanding of this process, including the elastic-plastic stress distribution in the joint, is a must for joints design and automation of manufacturing. Also, the modelling and analysis of this process, though it is complex, proves to be of prime importance. Thus, in this study a systematic experimental and theoretical study employing Finite Element Analysis (FEA is conducted on the weld-bonded joint, fabricated from Austenitic Stainless steel (AISI 304 sheets of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading. Complete 3-D finite element models are developed to evaluate the normal, shear and triaxial Von Mises stresses distributions across the entire joint, in both the elastic and plastic regions. The, needed quantities and properties, for the FE modelling and analysis, of the base metals and the adhesive, such like the elastic-plastic properties, modulus of elasticity, fracture limit, the nugget and Heat Affected Zones (HAZ properties, etc., are obtained from the experiments. The stress distribution curves obtained are found to be consistent with those obtained from the FE models and in excellent agreement with the experimental and theoretical published data, particularly in the elastic region. Furthermore, the stress distribution curves obtained for the weld-bonded joint display the best uniform smooth distribution curves compared to those obtained for the spot and bonded joint cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint.
Institute of Scientific and Technical Information of China (English)
卢亦焱; 李娜; 李杉; 梁鸿骏
2015-01-01
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.
Development of Experimental Device for Compression Load Deflection of Car Door Seals
Institute of Scientific and Technical Information of China (English)
赵建才; 朱训生; 万德安
2003-01-01
A new experimental device has been developed for analyzing compression load deflection of the door seal by using stereovision theory. Precision instruments of optical grating and force sensor are also integrated in this device. Force-displacement response characteristics of compression at varied speed can be controlled. Solid foundations for characteristic and structure as well as optimization design of the car door seal are elucidated.
The Effect of Cyclic Loading on the Compressive Strength of Core Build-Up Materials.
Zankuli, Muayed A; Silikas, Nick; Devlin, Hugh
2015-01-15
To evaluate the effect of cyclic loading on compressive strength of core build-up materials. Four dual-cured composites (Core.X Flow, Grandio Core, Bright Flow Core, Spee-Dee) and one light-cured reinforced resin-modified glass ionomer (Fuji II LC) were tested. One hundred cylindrical specimens (4 mm × 6 mm) were prepared. Each material had two groups (ten specimens to be tested under static loading and ten specimens to be tested after cyclic loading). The specimens were stored wet, and after 30 days, one group of each material was cyclically loaded (for 250,000 cycles with a frequency of 1.6 Hz under stress load of 68.6 N) in a chewing simulator CS-4.2. Then specimens were subjected to static compressive loading until failure in a universal testing machine. Mean compressive strength values before cycling ranged from 144 MPa (15.8) for Fuji II LC to 277 MPa (23.2) for Grandio Core. Independent t-test showed no statistically significant difference (p > 0.05) in the compressive strength of each material before and after cycling (p = 0.7 Grandio Core, p = 0.3 Core.X Flow, p = 0.6 Bright Flow Core, p = 0.2 Spee-Dee, p = 0.6 Fuji II LC); however, there was a statistically significant difference between the materials when comparing before and after cycling. All tested materials showed no reduction in the compressive strength after cycling. Therefore, the tested materials can survive 1 year in service without a reduction in compressive strength. © 2015 by the American College of Prosthodontists.
Directory of Open Access Journals (Sweden)
Nicolae APOSTOLESCU
2013-03-01
Full Text Available This work describes a computer application to calculate the values of the factors which are used to determine the tensile rupture load of a lug under axial, transverse or oblique loading. It can be used as a procedure for identifying potential failure modes. Lugs are connector-type elements widely used as structural supports for pin connections in aerospace industry. Failure modes in lugs are functions of lug geometry and material mechanical properties. For a lug under axial load three modes of lug failure are considered: tension, shear and bearing. Under transverse load the load to cause rupture or unacceptable permanent deformation of the lug is given. Tension mode failure usually occurs in materials of low ductility. In materials with high ductility, the failure mode of a lug can be either tensile or shear tear-out, depending on the lug geometry. The application has a graphical interface that allows the user to use them with much ease and view immediately the results and provides a flexible ad-hoc print reports and diagrams that allow to present analysis information. It includes Microsoft Excel Object Library as reference to the Excel material properties file.
Lorenz, Andrea; Rothstock, Stephan; Bobrowitsch, Evgenij; Beck, Alexander; Gruhler, Gerhard; Ipach, Ingmar; Leichtle, Ulf G; Wülker, Nikolaus; Walter, Christian
2013-05-31
Cartilage defects and osteoarthritis (OA) have an increasing incidence in the aging population. A wide range of treatment options are available. The introduction of each new treatment requires controlled, evidence based, histological and biomechanical studies to identify potential benefits. Especially for the biomechanical testing there is a lack of established methods which combine a physiologic testing environment of complete joints with the possibility of body-weight simulation. The current in-vitro study presents a new method for the measurement of friction properties of cartilage on cartilage in its individual joint environment including the synovial fluid. Seven sheep knee joints were cyclically flexed and extended under constant axial load with intact joint capsule using a 6° of freedom robotic system. During the cyclic motion, the flexion angle and the respective torque were recorded and the dissipated energy was calculated. Different mechanically induced cartilage defect sizes (16 mm², 50 mm², 200 mm²) were examined and compared to the intact situation at varying levels of the axial load. The introduced setup could significantly distinguish between most of the defect sizes for all load levels above 200 N. For these higher load levels, a high reproducibility was achieved (coefficient of variation between 4% and 17%). The proposed method simulates a natural environment for the analysis of cartilage on cartilage friction properties and is able to differentiate between different cartilage defect sizes. Therefore, it is considered as an innovative method for the testing of new treatment options for cartilage defects.
Directory of Open Access Journals (Sweden)
Achillopoulou Dimitra
2014-12-01
Full Text Available The study deals with the investigation of the effect of casting deficiencies- both experimentally and analytically on axial yield load or reinforced concrete columns. It includes 6 specimens of square section (150x150x500 mm of 24.37 MPa nominal concrete strength with 4 longitudinal steel bars of 8 mm (500 MPa nominal strength with confinement ratio ωc=0.15. Through casting procedure the necessary provisions defined by International Standards were not applied strictly in order to create construction deficiencies. These deficiencies are quantified geometrically without the use of expensive and expertise non-destructive methods and their effect on the axial load capacity of the concrete columns is calibrated trough a novel and simplified prediction model extracted by an experimental and analytical investigation that included 6 specimens. It is concluded that: a even with suitable repair, load reduction up to 22% is the outcome of the initial construction damage presence, b the lower dispersion is noted for the section damage index proposed, c extended damage alters the failure mode to brittle accompanied with longitudinal bars buckling, d the proposed model presents more than satisfying results to the load capacity prediction of repaired columns.
Gil, Christopher M.
1998-01-01
An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.
Chloride transport under compressive load in bacteria-based self-healing concrete
Binti Md Yunus, B.; Schlangen, E.; Jonkers, H.M.
2015-01-01
An experiment was carried out in this study to investigate the effect of compressive load on chloride penetration in self-healing concrete containing bacterial-based healing agent. Bacteria-based healing agent with the fraction of 2 mm – 4 mm of particles sizes were used in this contribution. ESEM w
Mechanical Properties of Steel-FRP Composite Bars under Tensile and Compressive Loading
Directory of Open Access Journals (Sweden)
Zeyang Sun
2017-01-01
Full Text Available The factory-produced steel-fiber reinforced polymer composite bar (SFCB is a new kind of reinforcement for concrete structures. The manufacturing technology of SFCB is presented based on a large number of handmade specimens. The calculated stress-strain curves of ordinary steel bar and SFCB under repeated tensile loading agree well with the corresponding experimental results. The energy-dissipation capacity and residual strain of both steel bar and SFCB were analyzed. Based on the good simulation results of ordinary steel bar and FRP bar under compressive loading, the compressive behavior of SFCB under monotonic loading was studied using the principle of equivalent flexural rigidity. There are three failure modes of SFCB under compressive loading: elastic buckling, postyield buckling, and no buckling (ultimate compressive strength is reached. The increase in the postyield stiffness of SFCB rsf can delay the postyield buckling of SFCB with a large length-to-diameter ratio, and an empirical equation for the relationship between the postbuckling stress and rsf is suggested, which can be used for the design of concrete structures reinforced by SFCB to consider the effect of reinforcement buckling.
Chloride transport under compressive load in bacteria-based self-healing concrete
Binti Md Yunus, B.; Schlangen, E.; Jonkers, H.M.
2015-01-01
An experiment was carried out in this study to investigate the effect of compressive load on chloride penetration in self-healing concrete containing bacterial-based healing agent. Bacteria-based healing agent with the fraction of 2 mm – 4 mm of particles sizes were used in this contribution. ESEM w
Loading rate sensitivity of open-hole composite specimens in compression
Lubowinski, S. J.; Guynn, E. G.; Elber, W.; Whitcomb, J. D.
1990-01-01
The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.
Lampropoulos, A. P.; Dritsos, S. E.
2008-07-01
In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete.
Kanno, Haruo; Aizawa, Toshimi; Ozawa, Hiroshi; Koizumi, Yutaka; Morozumi, Naoki; Itoi, Eiji
2017-09-01
Previous studies have shown that axial loading during MRI significantly reduces the size of the dural sac compared with conventional MRI in patients with degenerative lumbar disease. In our previous study, axial-loaded MRI showed a significantly larger degree of olisthesis than conventional MRI in patients with degenerative spondylolisthesis (DS). Furthermore, the degree of olisthesis on axial-loaded MRI correlated more strongly with that observed on X-ray in the upright position. However, no study has investigated whether or not the increase in the degree of olisthesis during axial loading correlates with the reduction in the dural sac size and affects the severity of clinical symptoms in patients with DS. To determine whether or not the increase in the degree of olisthesis correlates with the reduction of the dural sac cross-sectional area (DCSA) detected on axial-loaded MRI and worsens the severity of clinical symptoms in patients with DS. Imaging cohort study. A total of 41 consecutive patients with DS were prospectively evaluated in this study. The degree of olisthesis, the DCSA, Pearson's correlation coefficient, and the severity of clinical symptoms. The differences in the degree of olisthesis and the DCSA between conventional and axial-loaded MRI were determined. The Pearson's correlation coefficient of the increase in the degree of olisthesis with the reduction in the DCSA during axial loading was calculated. The reduction in the DCSA and the severity of clinical symptoms in patients exhibiting a ≥ 2-mm increase in the degree of olisthesis were compared with those in the patients exhibiting a increase. The increase in the degree of olisthesis was significantly correlated with the reduction in the DCSA during axial loading (Pearson's correlation coefficient = 0.63; pincrease in the degree of olisthesis (26 ± 3 mm(2)) was significantly greater than in those with a increase (13 ± 2 mm(2)) (pincrease in the degree of olisthesis (117 ± 19 m and 6.7 ± 0
Li, Wen; Wang, Tong; Na, Yu
2017-08-01
FRP tube-concrete-steel tube composite column (DSTC) was a new type of composite structures. The column consists of FRP outer tube and steel tube and concrete. Concrete was filled between FRP outer tube and steel tube. This column has the character of light and high strength and corrosion resistance. In this paper, properties of DSTC axial compression were studied in depth. The properties were studied by two groups DSTC short columns under axial compression performance experiment. The different size of DSTC short columns was importantly considered. According to results of the experiment, we can conclude that with the size of the column increases the ability of it to resist deformation drops. On the other hand, the size effect influences on properties of different concrete strength DSTC was different. The influence of size effect on high concrete strength was less than that of low concrete.
Analysis of fracture process zone in brittle rock subjected to shear-compressive loading
Institute of Scientific and Technical Information of China (English)
ZHOU De-quan; CHEN Feng; CAO Ping; MA Chun-de
2005-01-01
An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of KⅡ to KⅠ . The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock.
Energy Technology Data Exchange (ETDEWEB)
Ohshima, H.; Tsuji, H.; Hirano, N.; Ishihara, H.; Katoh, Y.; Yamada, H. (Toyama Medical and Pharmaceutical Univ. (Japan))
1989-11-01
The behavior of water in the intervertebral disc of pig tail and its physiologic and biomechanical properties were investigated in relation to compression load. The water content, chemical composition, and swelling pressure in the intervertebral disc were measured, and the mechanism of the generation of the swelling pressure in relation to compression load stress was studied. The swelling pressure, through regulation of the water content of the disc and the resistance of the external load, differs with the region of the intervertebral disc. In the nucleus pulposus and the inner layer of the anulus fibrosus, the swelling pressure rises in proportion to the load, but few changes occur in the outer layer of the anulus fibrosus, and the constant pressure environment is thus maintained. The tritiated water (3H2O) uptake of the disc under various loads was measured. The molar partition coefficient of tritiated water is almost equal to 1 even under a compression load, which suggests that water is freely exchangeable. The diffusion of 3H2O in the intervertebral disc was traced using two pathway models: the perianular route and the end-plate route. The diffusion of water in the unloaded disc for both uptake and washout was about 2 to 3 times larger in the perianular route than in the end-plate route. Under load, the water diffusion was inhibited in both pathways. The relation between the load and displacement revealed viscoelastic properties indicating creep and stress relaxation. Young's modulus and the stiffness increased with a rise in load speed.
Optimization of composite sandwich cover panels subjected to compressive loadings
Cruz, Juan R.
1991-01-01
An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).
A Numerical and Experimental Study of Compression-Loaded Composite Panels With Cutouts
Thornburgh, Robert P.; Hilburger, Mark W.
2006-01-01
Results from a numerical and experimental study on the effects of laminate orthotropy and circular cutout size on the response of compression-loaded composite curved panels are presented. Several 60-in-radius composite panels with four different laminate configurations were tested with cutout diameters that range from 10% to 60% of the panel width. Finite-element analyses were performed for each panel in order to identify the effects boundary conditions, measured initial geometric imperfections and thickness variations had on the nonlinear and buckling behavior of the panels. The compression-loaded panels considered herein exhibited two separate types of behavior depending on the laminate stacking sequence and cutout size. More specifically, some of the panels exhibited the classical snap-through type buckling response; however, some of the panels exhibited a monotonically increasing stable response and achieved compressive loads in excess of twice the predicted linear bifurcation buckling load. In general, the finite-element analyses were able to predict accurately the nonlinear response and buckling loads of the panels and the prebuckling and postbuckling out-of-plane deformations and strains.
Institute of Scientific and Technical Information of China (English)
陈誉; 李凤霞; 王江
2013-01-01
This paper presents an experimental study on axial compressive behavior of concrete-filled thermoforming stainless steel tubular ( CFTSST) stub columns. Seventeen specimens of CFTSST stub columns with different parameters were tested under axial compression. The parameters in the study included the compressive strength of concrete ( C30 and C40) ,wall thickness of thermoforming stainless steel t (0. 9 mm,l. 0 mm,l. 2 mm) and height-diameter ratio of specimens A (3.0, 3.5 and 4.0). This paper presents test procedure, specimens failure phenomena, load-axial displacement curves, load-circular strain curves and load-axial strain curves. Based on the failure phenomena, all specimens were divided into 5 failure modes. The effects of t and A on compressive ultimate capacity, ductility and stiffness were investigated. The results of tests show that the stress of specimens increases greatly at the end of the yield stage; as value of t increases, compressive ultimate capacity, ductility and stiffness of specimens increase; as value of A increases, ductility increases, stiffness decreases; the value of compressive ultimate capacity gets maximum when the value of λ is 3. 5, it is lower when A is 4. 0,gets minimum when A is 3. 0; according to the comparisons between CFTSS tubular stub columns and concrete-filled steel tubular stub columns, the results show that the restraint amplification coefficient of CFTSS tubular stub columns is higher.%对热成型不锈钢圆管混凝土短柱在轴向压力作用下的承载性能进行试验研究,试验主要参数为混凝土强度(C30和C40)、不锈钢管壁厚t(0.9 mm、1.0 mm和1.2mm)和试件的高径比λ(3.0、3.5、4.0),试验观测了不锈钢圆管混凝土短柱在轴向压力作用下的破坏现象、试件荷载-轴向变形曲线、荷载-环向应变曲线、荷载-轴向应变曲线等.根据试验的破坏现象,将试件分为5种破坏模式,并分析了不锈钢管壁厚t和试件的高径比λ对试件的承载
Responses of intramembranous bone and sutures upon in vivo cyclic tensile and compressive loading.
Peptan, Alexandra I; Lopez, Aurora; Kopher, Ross A; Mao, Jeremy J
2008-02-01
Cranial vault and facial sutures interpose between mineralized bones of the skull, and may function analogously to appendicular and cranial base growth plates. However, unlike growth plates that are composed of chondrocyte lineage, cranial and facial sutures possess heterogeneous cell lineages such as mesenchymal cells, fibroblasts, and osteoblasts, in addition to vascular-derived cells. Despite recently intensified effort, the biological responses of intramembranous bone and sutures to mechanical loading are not well understood. This study was designed to investigate whether brief doses of tensile or compressive forces induce modeling and growth responses of intramembranous bone and sutures. In different groups of growing rabbits in vivo, cyclic tensile or compressive forces at 1 N and 8 Hz were applied to the maxilla for 20 min/day over 12 consecutive days. Computerized histomorphometric analyses revealed that the average sutural widths of both the premaxillomaxillary suture (PMS) and nasofrontal suture (NFS) loaded in either tension or compression were significantly higher than age- and sex-matched sham controls (P<0.01). The average cell densities of tension- or compression-loaded PMS and NFS were significantly higher than sham controls (P<0.01). The average osteoblast occupied sutural bone surface loaded under tension was significantly higher than that of sham control (P<0.05). Interestingly, tensile loading significantly reduced the average osteoclast surface, in comparison to sham control (P<0.05). For the NFS, tensile loading significantly increased the average osteoblast occupied sutural bone surface, in comparison with that of sham control (P<0.05). Also for the NFS suture, compression significantly reduced the average sutural osteoclast surface in comparison with sham control (P<0.05). Taken together, the present data suggest that high-frequency cyclic forces in either tension or compression induce modeling and growth changes in cranial sutures. Due to
Impact of Periodic Unsteadiness on Performance and Heat Load in Axial Flow Turbomachines
Sharma, Om P.; Stetson, Gary M.; Daniels, William A,; Greitzer, Edward M.; Blair, Michael F.; Dring, Robert P.
1997-01-01
Results of an analytical and experimental investigation, directed at the understanding of the impact of periodic unsteadiness on the time-averaged flows in axial flow turbomachines, are presented. Analysis of available experimental data, from a large-scale rotating rig (LSRR) (low speed rig), shows that in the time-averaged axisymmetric equations the magnitude of the terms representing the effect of periodic unsteadiness (deterministic stresses) are as large or larger than those due to random unsteadiness (turbulence). Numerical experiments, conducted to highlight physical mechanisms associated with the migration of combustor generated hot-streaks in turbine rotors, indicated that the effect can be simulated by accounting for deterministic stress like terms in the time-averaged mass and energy conservation equations. The experimental portion of this program shows that the aerodynamic loss for the second stator in a 1-1/2 stage turbine are influenced by the axial spacing between the second stator leading edge and the rotor trailing edge. However, the axial spacing has little impact on the heat transfer coefficient. These performance changes are believed to be associated with the change in deterministic stress at the inlet to the second stator. Data were also acquired to quantify the impact of indexing the first stator relative to the second stator. For the range of parameters examined, this effect was found to be of the same order as the effect of axial spacing.
Directory of Open Access Journals (Sweden)
Dilipkumar Bhanudasji Alone
2014-01-01
Full Text Available This paper presents experimental results of a single stage transonic axial flow compressor coupled with low porosity bend skewed casing treatment. The casing treatment has a plenum chamber above the bend slots. The depth of the plenum chamber is varied to understand its impact on the performance of compressor stage. The performance of the compressor stage is evaluated for casing treatment and plenum chamber configurations at two axial locations of 20% and 40%. Experimental results reveal that the stall margin of the compressor stage increases with increase in the plenum chamber volume. Hot-wire measurements show significant reduction in the turbulence intensity with increase in the plenum chamber volume compared to that with the solid casing at the stall condition. At higher operating speeds of 80% and at 20% axial coverage, the stall margin of the compressor increases by 20% with half and full plenum depth. The improvement in the peak stage efficiency observed is 4.6% with half plenum configuration and 3.34% with the full plenum configuration. The maximum improvement in the stall margin of 29.16% is obtained at 50% operating speed with full plenum configurations at 40% axial coverage.
Modeling the Impact Behavior of AD85 Ceramic Under Multi-Axial Loading
1993-05-01
effects of’ microcracks cvotui-, can be introduced into the constitutive equations through appropriate physicall 1,ascd lawsiequat ions. Microcrack...Condensed Matter - 1989 and Shock Compression of Condensed Matter - 1991, Elsevier Science Publishers, B.V., 1990, 1992. 2. RAJENDRAN, A. M., and COOK, W...Ceramics. Shock Compression of Condensed Matter. Elsevier Science Publishers, B.V., 1992, p. 447-450. 6. GRADY, D. Spall Strength of Condensed Matter
Kiani, Keivan
2015-11-01
This study is devoted to examine load-bearing capacity of a nanosystem composed of two adjacent perpendicular single-walled carbon nanotubes (SWCNTs) which are embedded in an elastic matrix. Accounting for the nonlocality and the intertube van der Waals forces, the governing equations are established based on the nonlocal Euler-Bernoulli, Timoshenko, and higher-order beam theories. These are sets of coupled integro-ordinary differential equations whose analytical solutions are unavailable. Hence, an efficient meshless methodology is proposed and the discrete governing equations are obtained via Galerkin approach. By solving the resulting set of eigenvalue equations, the axial buckling load of the elastically embedded nanosystem is evaluated. The roles of the radius and slenderness ratio of the constitutive SWCNTs, free distance between two tubes, small-scale parameter, aspect ratio, transverse and rotational stiffness of the surrounding matrix on the axial buckling load of the nanosystem are comprehensively addressed. The obtained results can be regarded as a pivotal step for better understanding the mechanism of elastic buckling of more complex systems such as elastically embedded-orthogonal membranes or even forests of SWCNTs.
Dynamic stability of slender columns with semi-rigid connections under periodic axial load: theory
Directory of Open Access Journals (Sweden)
Oliver Giraldo-Londoño
2014-01-01
Full Text Available La estabilidad dinámica de una columna elástica prismática esbelta con conexiones semirrígidas en ambos extremos de rigidez idéntica y con desplazamiento lateral entre los dos extremos totalmente inhibido sujetos a cargas axiales paramétricos incluyendo los efectos combinados de inercia rotacional y amortiguación externas se investiga de una manera clásica. Expresiones cerradas que se pueden utilizar para predecir las regiones de inestabilidad dinámica de columnas esbeltas son desarrolladas haciendo uso de la teoría de Floquet. La solución propuesta es capaz de capturar el fenómeno de estabilidad en columnas sometidas a cargas axiales periódicas utilizando un solo elemento de columna. El método propuesto y las ecuaciones correspondientes se pueden utilizar para investigar los efectos del amortiguamiento, la inercia rotacional de la columna, y las conexiones semirrígidas en el análisis de estabilidad de columnas esbeltas sometidas a cargas axiales periódicas. Los efectos producidos por las deformaciones por cizallamiento a lo largo de la columna, así como los producidos por la inercia axial, el acoplamiento entre las deflexiones longitudinales y transversales y la curvatura no se tienen en cuenta. Estudios de sensibilidad que muestran los efectos de la inercia rotacional, el amortiguamiento y las conexiones semi-rígidas en la estabilidad dinámica de columnas sometidas a cargas axiales paramétricas son presentados en una publicación adjunta.
Quenneville, Cheryl E; Dunning, Cynthia E
2012-01-01
Lower leg injury risk is commonly assessed using an anthropomorphic test device (ATD). The current standard leg (the HIII) has been shown to have low biofidelity due to its geometry and material properties. A new surrogate (the MIL-Lx) was developed to address these issues, specifically for anti-vehicular mine blast scenarios but with potential applications to high-force crashes in the automotive industry. Before it is adopted for use, the MIL-Lx must be evaluated under impact loading to ensure that it represents the natural lower leg response. Axial impact loads were applied to both the HIII and the MIL-Lx at impact velocities of 2 to 7 m/s using a pneumatic impacting device. Testing was also conducted with the foot removed from both surrogates to enable comparison with previous tests of isolated cadaveric tibias at noninjurious and injurious (i.e., fracture) levels. To evaluate the effect of a boot on load attenuation, the HIII was impacted with and without a hiking boot. Forces in the MIL-Lx were between 25 and 100 percent of those in the HIII (depending on impact conditions). The use of a boot reduced the peak force by approximately 65 percent at the highest impact velocities. The MIL-Lx fit the data from noninjurious cadaveric tibia tests with R(2) = 0.83. The MIL-Lx is a new surrogate that represents the response of the natural tibia under axial impact loading better than the HIII. The inclusion of a boot has a significant effect on loads in the leg and may influence injury assessment results. The MIL-Lx will be a useful tool for predicting lower leg injury risk over a wide range of impact velocities.
The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
Gooyers, Chad E; McMillan, Robert D; Howarth, Samuel J; Callaghan, Jack P
2012-08-01
An in vitro biomechanics investigation exposing porcine functional spinal units (FSUs) to submaximal cyclic or static compressive forces while in a flexed, neutral, or extended posture. To investigate the combined effect of cyclically applied compressive force (e.g., vibration) and postural deviation on intervertebral joint mechanics. Independently, prolonged vibration exposure and non-neutral postures are known risk factors for development of low back pain and injury. However, there is limited basic scientific evidence to explain how the risk of low back injury from vibration exposure is modified by other mechanical factors. This work examined the influence of static postural deviation on vertebral joint height loss and compressive stiffness under cyclically applied compressive force. Forty-eight FSUs, consisting of 2 adjacent vertebrae, ligaments, and the intervening intervertebral disc were included in the study. Each specimen was randomized to 1 of 3 experimental posture conditions (neutral, flexed, or extended) and assigned to 1 of 2 loading protocols, consisting of (1) cyclic (1500 ± 1200 N applied at 5 Hz using a sinusoidal waveform, resulting in 0.2 g rms acceleration) or (2) 1500 N of static compressive force. RESULTS.: As expected, FSU height loss followed a typical first-order response in both the static and cyclic loading protocols, with the majority (~50%) of the loss occurring in the first 20 minutes of testing. A significant interaction between posture and loading protocol (P posture (P Posture is an important mechanical factor to consider when assessing the risk of injury from cyclic loading to the lumbar spine.
Probabilistic model for multi-axial load combinations for wind turbines
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov
2016-01-01
for determining contemporaneous loads. Using examples with simulated loads on a 10 MW wind turbine,the behavior of the bending moments acting on a blade section is illustrated under different conditions.The loading direction most critical for material failure is determined using a finite-element model......The article presents a model describing the joint probability distribution of multiple load components acting on a wind turbine blade cross section. The problem of modelling the probability distribution of load time histories with large periodic components is addressed by dividing the signal...... of the blade cross section on which load combinations with different directions but with equal probability are applied. By defining a joint probability distribution and return-period contours for multiple load components,the suggested procedure is applicable to different aspects of the design of wind turbine...
Directory of Open Access Journals (Sweden)
Angel Alvarez-Arenal
2016-01-01
Full Text Available The purpose of this study was to evaluate and compare the retention strength of five cement types commonly used in implant-retained fixed partial dentures, before and after compressive cyclic loading. In five solid abutments screwed to 5 implant analogs, 50 metal Cr-Ni alloy copings were cemented with five luting agents: resin-modified glass ionomer (RmGI, resin composite (RC, glass ionomer (GI, resin urethane-based (RUB, and compomer cement (CC. Two tensile tests were conducted with a universal testing machine, one after the first luting of the copings and the other after 100,000 cycles of 100 N loading at 0.72 Hz. The one way ANOVA test was applied for the statistical analysis using the post hoc Tukey test when required. Before and after applying the compressive load, RmGI and RC cement types showed the greatest retention strength. After compressive loading, RUB cement showed the highest percentage loss of retention (64.45%. GI cement recorded the lowest retention strength (50.35 N and the resin composite cement recorded the highest (352.02 N. The type of cement influences the retention loss. The clinician should give preference to lower retention strength cement (RUB, CC, and GI if he envisages any complications and a high retention strength one (RmGI, RC for a specific clinical situation.
a Study of the Shock Sensitivity of PBX 9501 Damaged by Compressive Loading
Thompson, D. G.; Gustavsen, R. L.; Hooks, D. E.; Peterson, P. D.; DeLuca, R.; Stahl, D. B.; Hagelberg, S. I.; Alcon, R. R.
2007-12-01
We have studied the effects of damage caused by compressive loading on the shock sensitivity of the plastic bonded explosive PBX 9501. PBX 9501 consists of 95 wt. % HMX and 5 wt. % nitroplasticized Estane binder. The binder is a mixture of 49 wt. % Estane® 5703 (BF Goodrich), 49 wt. % Nitroplasticizer (a eutectic mixture of bis(2,2-dinitropropyl)formal and bis(2,2 dinitropropyl)acetal), and 2 wt. % Irganox® 1010 stabilizer. PBX 9501 cubes, 25.4 mm on a side, were compressed to various uniaxial loads in an Instron machine. After loading, 10×10 mm cross-sections, 3.5 mm thick, were taken from the center of each cube. These slices were then subjected to nearly identical 35 kbar shocks. Transmitted shock wave profiles were measured using interface velocimetry (VISAR). Comparison of shock wave growth is a measure of shock sensitivity. Results on four samples indicate little change in sensitivity caused by compressive loading.
Directory of Open Access Journals (Sweden)
Fan Yang
2016-01-01
Full Text Available In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG k-ε turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.
A cylindrical shell with an axial crack under skew-symmetric loading.
Yuceoglu, U.; Erdogan, F.
1973-01-01
The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is assumed that the material has a special orthotropy - namely, that the shear modulus may be evaluated from the measured Young's moduli and Poisson ratios and is not an independent material constant. The problem is solved within the confines of an eighth-order linearized shallow shell theory. As numerical examples, the torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter increases, unlike the results found in the pressurized shell, the bending stresses around crack ends do not change sign.
Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund
2012-01-01
Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.
Wang, Yuewu; Wu, Dafang
2016-10-01
Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.
McGowan, David M.; Ambur, Damodar R.
1998-01-01
The results of an experimental study of the impact damage characteristics and residual strength of composite sandwich panels impacted with and without a compression loading are presented. Results of impact damage screening tests conducted to identify the impact-energy levels at which damage initiates and at which barely visible impact damage occurs in the impacted facesheet are discussed. Parametric effects studied in these tests include the impactor diameter, dropped-weight versus airgun-launched impactors, and the effect of the location of the impact site with respect to the panel boundaries. Residual strength results of panels tested in compression after impact are presented and compared with results of panels that are subjected to a compressive preload prior to being impacted.
Serina, E R; Mote, C D; Rempel, D
1997-10-01
Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorders at the wrist during activities associated with prolonged fingertip loading such as typing. To fully understand the pathomechanics of these soft tissue disorders, the role of the fingertip pulp in attenuating the applied dynamic forces must be known. An experiment was conducted to characterize the response of the in vivo fingertip pulp under repeated, dynamic, compressive loadings, to identify factors that influence pulp dynamics, and to better understand the force modulation by the pulp. Twenty subjects tapped repeatedly on a flat plate with their left index finger, while the contact force and pulp displacement were measured simultaneously. Tapping trials were conducted at three fingertip contact angles from the horizontal plane (0 degree, 45 degrees, and 90 degrees) and five tapping rates (0.25, 0.5, 1, 2, and 3 Hz). The fingertip pulp responds as a viscoelastic material, exhibiting rate-dependence, hysteresis, and a nonlinear force-displacement relationship. The pulp was relatively compliant at forces less than 1 N, but stiffened rapidly with displacement at higher forces for all loading conditions. This suggests that high-frequency forces of a small magnitude (< 1 N) are attenuated by the nonlinearly stiffening pulp while these forces of larger magnitude are transmitted to the bone. Pulp response was significantly influenced by the angle of loading. Fingertip dimensions, gender, and subject age had little to no influence on pulp parameters.
Post-buckling capacity of bi-axially loaded rectangular steel plates
DEFF Research Database (Denmark)
Jönsson, Jeppe; Bondum, T. H.
2012-01-01
Results from a detailed numerical investigation of the post-buckling behaviour of rectangular simply supported steel plates subjected to biaxial in-plane loading are presented. The Steel plates are loaded through forced edge displacements. The effects of initial imperfections, aspect ratio, plate...
MA-core loaded untuned RF compression cavity for HIRFL-CSR
Mei, Li-rong; Xu, Zhe; Yuan, You-jin; Jin, Peng; Bian, Zhi-bin; Zhao, Hong-wei; Xia, Jia-wen
2012-01-01
To meet the requirements of high energy density physics and plasma physics research at HIRFL-CSR the goal of achieving a higher accelerating gap voltage was proposed. Therefore, a magnetic alloy (MA)-core loaded radio frequency (RF) cavity that can provide a higher accelerating gap voltage compared to standard ferrite loaded cavities has been studied at IMP. In order to select the proper magnetic alloy material to load the RF compression cavity, measurements of four different kinds of sample MA-cores have been carried out. By testing the small cores, the core composition was selected to obtain the desired performance. According to the theoretical calculation and simulation, which show reasonable consistency for the MA-core loaded cavity, the desired performance can be achieved. Finally about 1000 kW power will be needed to meet the requirements of 50 kV accelerating gap voltage by calculation.
Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading
Berezvai, Szabolcs; Kossa, Attila
2017-05-01
This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.
Evaluation of Composite Honeycomb Sandwich Panels Under Compressive Loads at Elevated Temperatures
Walker, Sandra P.
1998-01-01
Fourteen composite honeycomb sandwich panels were tested to failure under compressive loading. The test specimens included panels with both 8 and 24-ply graphite-bismaleimide composite facesheets and both titanium and graphite-polyimide core materials. The panels were designed to have the load introduced through fasteners attached to pairs of steel angles on the ends of the panels to simulate double shear splice joints. The unloaded edges were unconstrained. Test temperatures included room temperature, 250F, and 300F. For the room and 250F temperature tests, the 24-ply specimen failure strains were close to the unnotched allowable strain values and failure loads were well above the design loads. However, failure strains much lower than the unnotched allowable strain values, and failure loads below the design loads were observed with several of the 8-ply specimens. For each individual test temperature, large variations in the failure strains and loads were observed for the 8-ply specimens. Dramatic decreases in the failure strains and loads were observed for the 24-ply specimens as the test temperature was increased from 250F to 300F. All 8-ply specimens appeared to have failed in a facesheet strength failure mode for all test temperatures. The 24-ply specimens displayed appreciably greater amounts of bending prior to failure than the 8-ply specimens, and panel buckling occurred prior to facesheet strength failure for the 24-ply room and 250F temperature tests.
Analysis of the axial electric field in a plasma-loaded-helix travelling wave tube
Institute of Scientific and Technical Information of China (English)
Xie Hong-Quan; Liu Pu-Kun
2006-01-01
A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.
Modeling of FRP-jacketed RC columns subject to combined axial and lateral loads
Lee, Chung-Sheng
2006-01-01
To successfully use the fiber-reinforced-polymer (FRP) overlay technique for the seismic retrofit and the blast- hardening of RC columns, the mechanical behavior of the FRP-confined concrete needs to be understood and its response needs to be accurately predicted. Although a number of studies have been conducted to-date, it is still not clear how the main parameters affect the axial stress- strain response of a FRP-confined concrete cylinder. In particular, while it is understood that FRP jac...
Institute of Scientific and Technical Information of China (English)
Mosayeb Dalvand; Ghanbar Ebrahimi; Mehdi Tajvidi; Mohammad Layeghi
2014-01-01
We investigated bending moment resistance under diagonal compression load of corner doweled joints with plywood members. Joint members were made of 11-ply hardwood plywood of 19 mm thickness. Dowels were fabricated of Beech and Hornbeam species. Their diameters (6, 8 and 10 mm) and depths of penetration (9, 13 and 17 mm) in joint members were chosen variables in our experiment. By increasing the connector’s diameter from 6 to 8 mm, the bending moment resistance under diagonal compressive load was increased, while it decreased when the diameter was increased from 8 to 10 mm. The bending moment re-sistance under diagonal compressive load was increased by increasing the dowel’s depth of penetration. Joints made with dowels of Beech had higher resistance than dowels of Hornbeam. Highest resisting moment (45.18 N·m) was recorded for joints assembled with 8 mm Beech dowels penetrating 17 mm into joint members Lowest resisting moment (13.35 N·m) was recorded for joints assembled with 6 mm Hornbeam dowels and penetrating 9 mm into joint members.
Dry plant extracts loaded on fumed silica for direct compression: preparation and preformulation.
Palma, S D; Manzo, R H; Allemandi, D A
1999-01-01
This paper describes the development of a method to load fumed silica with vegetal material (solid residue) from a liquid extract to obtain a solid loaded silica product (LSP) with satisfactory flow properties and compressibility to be processed by direct-compression technology. Extracts of Melissa officinalis L. (M.o.), Cardus marianus L. (C.m.), and Peumus boldus L. (P.b.) were used to load silica support. The release of boldine from LSP (P.b.) reached 100% in HCl 0.1 N solution and only approximately 70% in water. Some physical-mechanical properties of LSP (M.o. and C.m.) alone and LSP-excipient mixtures were determined. The densities (bulk and tap) of LSP were higher than those of fumed silica alone. Consequently, good flow properties of LSP products were observed. On the other hand, flowability, densities, and compactibility of directly compressible excipients (lactose, dicalcium phosphate dihydrate, and microcrystalline cellulose) were not adversely affected when mixed with LSP.
2013-07-16
strength and appre- ciable changes in the associated probability density function. Keywords effect of compression and torsion, Kevlar , PPTA, tensile...properties 1. Introduction The work described in the present manuscript concerns p- phenylene terephthalamide (PPTA) polymeric fibers such as Kevlar ...Engineering Innovation Building, Clemson, SC 29634-0921; and C.-F. Yen and B.A. Cheeseman, Army Research Laboratory—Weapons & Materials Research Directorate
Dynamic stability of simply supported composite cylindrical shells under partial axial loading
Dey, Tanish; Ramachandra, L. S.
2015-09-01
The parametric vibration of a simply supported composite circular cylindrical shell under periodic partial edge loadings is discussed in this article. Donnell's nonlinear shallow shell theory considering first order shear deformation theory is used to model the shell. The applied partial edge loading is represented in terms of a Fourier series and stress distributions within the cylindrical shell are determined by prebuckling analysis. The governing equations of the dynamic instability of shells are derived in terms of displacements (u-v-w) and rotations (φx, φθ). Employing the Galerkin and Bolotin methods the dynamic instability regions are computed. Using the expression for the stress function derived in this paper, the pre-buckling stresses in the cylindrical shell due to partial loading can be calculated explicitly. Numerical results are presented to show the influence of radius-to-thickness ratio, different partial edge loading distributions and shear deformation on the dynamic instability regions. The linear and nonlinear responses in the stable and unstable regions are presented to bring out the characteristic features of the dynamic instability regions, such as the existence of beats, its dependence on forcing frequency and effect of nonlinearity on the response. The effect of dynamic load amplitude on the nonlinear response is also studied. It is found that for higher values of dynamic loading, the shell exhibits chaotic behavior.
Yusuf Yesilce
2012-01-01
In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET) but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs...
Performance of a highly loaded two stage axial-flow fan
Ruggeri, R. S.; Benser, W. A.
1974-01-01
A two-stage axial-flow fan with a tip speed of 1450 ft/sec (442 m/sec) and an overall pressure ratio of 2.8 was designed, built, and tested. At design speed and pressure ratio, the measured flow matched the design value of 184.2 lbm/sec (83.55kg/sec). The adiabatic efficiency at the design operating point was 85.7 percent. The stall margin at design speed was 10 percent. A first-bending-mode flutter of the second-stage rotor blades was encountered near stall at speeds between 77 and 93 percent of design, and also at high pressure ratios at speeds above 105 percent of design. A 5 deg closed reset of the first-stage stator eliminated second-stage flutter for all but a narrow speed range near 90 percent of design.
Jackman, Timothy M; DelMonaco, Alex M; Morgan, Elise F
2016-01-25
Finite element (FE) models built from quantitative computed tomography (QCT) scans can provide patient-specific estimates of bone strength and fracture risk in the spine. While prior studies demonstrate accurate QCT-based FE predictions of vertebral stiffness and strength, the accuracy of the predicted failure patterns, i.e., the locations where failure occurs within the vertebra and the way in which the vertebra deforms as failure progresses, is less clear. This study used digital volume correlation (DVC) analyses of time-lapse micro-computed tomography (μCT) images acquired during mechanical testing (compression and anterior flexion) of thoracic spine segments (T7-T9, n=28) to measure displacements occurring throughout the T8 vertebral body at the ultimate point. These displacements were compared to those simulated by QCT-based FE analyses of T8. We hypothesized that the FE predictions would be more accurate when the boundary conditions are based on measurements of pressure distributions within intervertebral discs of similar level of disc degeneration vs. boundary conditions representing rigid platens. The FE simulations captured some of the general, qualitative features of the failure patterns; however, displacement errors ranged 12-279%. Contrary to our hypothesis, no differences in displacement errors were found when using boundary conditions representing measurements of disc pressure vs. rigid platens. The smallest displacement errors were obtained using boundary conditions that were measured directly by DVC at the T8 endplates. These findings indicate that further work is needed to develop methods of identifying physiological loading conditions for the vertebral body, for the purpose of achieving robust, patient-specific FE analyses of failure mechanisms.
Institute of Scientific and Technical Information of China (English)
MENG Xian-hong; SONG Yu-pu
2008-01-01
To investigate the residual strength of concrete under fatigue loading, experiments were conducted to determine the functional relation between residual strength and the number of cycles. 80 100mm×100mm×100ram specimens of plain concrete were tested under uniaxial compressive fatigue loading. Based on probabili-ty distribution of the residual strength of concrete under fatigue loading, the empirical expressions of the residual strength corresponding to the number of cycles were obtained. There is a good correlation between residual strength and residual secant elastic modulus. Thus the relationship between residual secant elastic modulus and the number of cycles is established. A damage variable based on the longitudinal maximum strain is defined, and a good linearity relationship between residual strength and damage is found out.
Hilburger, Mark W.; Starnes, James H., Jr.
2004-01-01
The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.
Energy Technology Data Exchange (ETDEWEB)
Singh, Punit; Nestmann, Franz [Institute for Water and River Basin Management (IWG), University of Karlsruhe, Kaiser Str. 12, D 76128 Karlsruhe (Germany)
2010-09-15
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)
Experiments on channel columns with inclined simple edge stiffeners under compression loading
Institute of Scientific and Technical Information of China (English)
WANG Chungang; ZHANG Yaochun; ZHANG Zhuangnan
2007-01-01
In order to investigate the compression behavior of pin-ended cold-formed channel columns with inclined simple edge stiffeners,a total of 30 pin-ended cold-formed channel columns with three sections (sloping lip stiffener turned at 45°,90°,and 135°to the flange,respectively) and three different lengths (500 mm,1 250 mm,and 2 000 mm)were tested.It was found that the inclination angles and loading positions have an obvious effect on compression ultimate load-carrying capacities and failure modes.All three sections have certain post-buckling strength,and the failure modes of most of the specimens contained distortional buckling.The capacity of the specimens with 45° inclined angle for bearing compression is appreciably higher than the other two types of specimens with 90° or 135° inclined angles at the same negative eccentricity,but obviously lower than the other two at the same positive eccentricity.Furthermore,tests were simulated by finite element analysis.Results from the analysis are in great agreement with the experimental data.
Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels
Directory of Open Access Journals (Sweden)
Zaid N.Z.M.
2016-01-01
Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.
Present knowledge about Laboratory Testing of Axial Loading on Suction Caissons
DEFF Research Database (Denmark)
Manzotti, E.; Vaitkunaite, Evelina; Ibsen, Lars Bo
on the structure is resisted by push-pull loads on the vertical axis of each suction caisson. Relevant works where this situation is examined by means of laboratory testing are summarized in this article, then different conclusions are followed by discussion and comparison. In the initial theoretical section...
The effect of compressive loading magnitude on in situ chondrocyte calcium signaling.
Madden, Ryan M J; Han, Sang-Kuy; Herzog, Walter
2015-01-01
Chondrocyte metabolism is stimulated by deformation and is associated with structural changes in the cartilage extracellular matrix (ECM), suggesting that these cells are involved in maintaining tissue health and integrity. Calcium signaling is an initial step in chondrocyte mechanotransduction that has been linked to many cellular processes. Previous studies using isolated chondrocytes proposed loading magnitude as an important factor regulating this response. However, calcium signaling in the intact cartilage differs compared to isolated cells. The purpose of this study was to investigate the effect of loading magnitude on chondrocyte calcium signaling in intact cartilage. We hypothesized that the percentage of cells exhibiting at least one calcium signal increases with increasing load. Fully intact rabbit femoral condyle and patellar bone/cartilage samples were incubated in calcium-sensitive dyes and imaged continuously under compressive loads of 10-40 % strain. Calcium signaling was primarily associated with the dynamic loading phase and greatly increased beyond a threshold deformation of about 10 % nominal tissue strain. There was a trend toward more cells exhibiting calcium signaling as loading magnitude increased (p = 0.133). These results provide novel information toward identifying mechanisms underlying calcium-dependent signaling pathways related to cartilage homeostasis and possibly the onset and progression of osteoarthritis.
A rotational and axial motion system load frame insert for in situ high energy x-ray studies
Energy Technology Data Exchange (ETDEWEB)
Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-09-15
High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.
Comparison of the Mechanical Behaviour of Selected Oilseeds under Compression Loading
Directory of Open Access Journals (Sweden)
David HERAK
2012-11-01
Full Text Available The present study provides information about the comparison of mechanical behaviour of selected oil bearing crops namely rapeseeds (Brassica napus L., sunflower seeds (Helianthus annus L. and jatropha seeds (Jatropha curcas L. under compression loading. In this research, the compression device ZDM 50 with a chart recorder and a pressing vessel with diameter 100 mm were used to determine the relationship between the magnitude of the pressing force and deformation characteristics of the oilseed crops pressed at initial height 80 mm. From the compression test, the amounts of true deformation, maximal deformation energy and compressive force of the pressed samples were calculated and also mathematical equations describing the limit deformation, maximal deformation ratio, energy ratio and oil point deformation ratio were determined. The oil point position on the deformation curve, that is, the first leakage of oil from the pressing vessel of the various oilseeds was determined and compared. Based on the measured amounts rapeseeds achieved the highest values followed by jatropha seed and then sunflower seed. The amount of deformation energy required for the seed deformation gives the indication the amount of energy needed for obtaining the oil from the seed. It was found that the measured amounts as well as the oil point position on the force-deformation curve of the pressed samples showed varying results due to the seeds physical and inherent characteristics.
Institute of Scientific and Technical Information of China (English)
赵卫锋; 张武东; 周靖; 曹勇龙; 龙志林
2014-01-01
mechanical properties. Multi-layered high-strength bamboo plywood forms the primary body in the SBCC that is subjected to compressive forces, and the square thin-walled steel tube only serves as a liner. Large numbers of bamboo are used, which reduce the manufacturing cost of the composite columns and result in a relatively high load-bearing capacity. A steel tube section is used in the column core to increase the cross-sectional size of the column, thereby reducing the slenderness ratio and effectively regulating the instability and failure of the columns under pressure. The composite has a simple cross-section, can be manufactured and processed simply, and is suitable for industrial production. This study aimed to study the axial compression performance of SBCCs, and explore its failure mechanism under axial loads in order to provide valuable information for its engineering applications. The influence of factors including bamboo-plywood net sectional dimension area, hollow ratio, and slenderness ratio on the mechanical performance and axial compression properties was investigated using 15 composite column specimens. The failure modes and deformation behavior of specimens were also analyzed in an axial compression test. Results showed that the compressive failure for SBCCs was principally characterized by interior damage of the bamboo plywood material, damage from glue failure at the matrix interface, and global buckling failure due to the large deformation in the middle of the column. The failure mode was mainly determined by the overall adhesive strength between the matrixes. The compressive bearing-capacity of SBCC increased with increasing net sectional dimension area and the hollow ratio of the bamboo, and decreased with increasing slenderness ratio. A calculating model for the axial compressive bearing-capacity of SBCCs, which can serve as a guideline for engineering applications, was obtained by nonlinear regression analysis of the test data, and the maximum error
Study on Dynamic Mechanical Properties of Limestone under Uniaxial Impact Compressive Loads
Directory of Open Access Journals (Sweden)
Fei Zou
2016-01-01
Full Text Available The dynamic mechanical properties of limestone are studied with 5 types of impact pressure acting on limestone samples in axial direction in this paper. The rubber shaper with a diameter of 5 mm and thickness of 2 mm is adopted. Besides the conical punch of split pressure bar of Hopkinson with a diameter of 50 mm is also used. The half-sinusoid pulse is obtained by using the pulse shaper method and special punch method; the constant strain rate deformation of the sample is realized. Dynamic compressive properties and failure modes of limestone under different impact pressure are investigated. In addition, energy dissipation is studied in the process of experiment. The results show that the dynamic compressive strength of limestone has an exponent relation to strain rate. The failure strain, degree of fragmentation, incident energy, and absorption energy increase, while the energy absorbency decreases with the increasing of strain rate. However, the initial elastic modulus is not sensitive to the strain rate. The research method and conclusions have reference value for the dynamic mechanical properties of other brittle materials.
The ultimate strength of doubler plate reinforced Y-joints under compression loading
Institute of Scientific and Technical Information of China (English)
FENQ Qi; TAN Jia-hua
2005-01-01
It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.
ACCELERATORS Study of a magnetic alloy-loaded RF cavity for bunch compression at the CSR
Yin, Da-Yu; Liu, Yong; Xia, Jia-Wen; Li, Peng; Zhao, Yong-Tao; Yang, Lei; Qi, Xin
2010-12-01
The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of 238U72+ with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.
Comparison of Energy Absorption of Aluminium-composite Tubes Subjected to Axial Loading
Abbas, Tahir; Ya, H. H.; Zaki Abdullah, Mohamad
2017-06-01
In this paper, energy absorption capability and failure modes of partially wrapped aluminium tubes have been studied. These tubes are used in the front side of automobiles and aircraft applications. Filament winding technique was used for partial wrapping of these tubes. Partially wrapping on the external surface of aluminium tubes was done with glass fibers, and epoxy resin, which is a composite material. Various composite layers and fiber angles were used in partial wrapping, which includes 4, 6 and 8 composite layers of ± 55° fiber angle. These tubes were subjected to axial crushing using the universal testing machine, and testing speed was 5mm/min. Failure modes and energy absorption analysis were carried out after testing. The experimental results revealed that partially wrapped aluminium tubes are 3.81%, 8.13% and 17.06% more efficient in energy absorption as compared to the tubes without wrapping. Furthermore, the effect of composite layers and failure modes has also been described.
Deformation Behavior and TExture Evolution of Steel Alloys under Axial-Torsional Loading
Energy Technology Data Exchange (ETDEWEB)
Siriruk, A.; Kant, M.; Penumadu, D.; Garlea, E.; Vogel, S.
2011-06-01
Using hollow cylinder samples with suitable geometry obtained from round bar stock, the deformation behavior of bcc Fe based 12L14 steel alloy is evaluated under multi-axial conditions. A stacked strain gage rosette and extensometer mounted on the cylindrical surface at the mid height of the specimen provided strain tensor as a function of applied stress for pure tensile and torsion tests prior to yielding. This study examines elastic and yield behavior and effects of these with respect to texture evolution. Hollow cylinder specimen geometry (tubes) with small wall thickness and relatively (to its thickness) large inner diameter is used. The variation of observed yield surface in deviatoric plane and the effect on mode of deformation (tension versus torsion versus its combination) on stress-strain behavior is discussed. Bulk texture was studied using neutron time-of-flight diffractometer at High-Pressure-Preferred Orientation (HIPPO) - Los Alamos Neutron Science Center (LANSCE) instrument and the evolution of texture and related anisotropy for pure tension versus torsion are also included.
Eigenvalues of an axially loaded cantilever beam with an eccentric end rigid body
Lajimi, S Amir Mousavi
2014-01-01
An analytical form of the characteristic equation for a vertically mounted cantilever beam with an end rigid body is obtained and solved for the eigenvalues of the structure. The effect of the weight of the structure is taken into consideration by estimating the load as a function of the length of the beam. The mass, rotary inertia and eccentricity of the end rigid body are demonstrated to considerably affect the eigenvalues of the structure.
Static and dynamic moduli of posterior dental resin composites under compressive loading.
Tanimoto, Yasuhiro; Hirayama, Satoshi; Yamaguchi, Masaru; Nishiwaki, Tsuyoshi
2011-10-01
Dental resin composites are commonly used as restorative materials for dental treatment. To comprehend the static and dynamic moduli of dental resin composites, we investigated the mechanical behaviors of resin composites under static and dynamic loading conditions. Four commercially available resin composites for posterior restorations were evaluated. The percentages, by weight, of inorganic fillers of resin composites were examined by the ashing technique. The static compressive tests were undertaken with a constant loading speed of 1.0 mm/min using a computer-controlled INSTRON testing machine. The dynamic properties of composites were determined using the split Hopkinson pressure bar (SHPB) technique. When inorganic filler content was increased, a remarkable increase in the static modulus and dynamic modulus were observed. Furthermore, there was a strong relationship between the static modulus and dynamic modulus (r(2) = 0.947). The SHPB technique clearly demonstrated the dynamic properties of composites, and was a useful technique for determining the mechanical behavior of composites under dynamic compressive loading. Copyright © 2011 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jiří Witzany
2016-04-01
Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.
Institute of Scientific and Technical Information of China (English)
宋玉普; 曹伟; 孟宪宏
2005-01-01
Fatigue tests were conducted on tapered plain concrete prism specimens under triaxial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2fc and the upper stress ranged from 0.20ft to 0.65ft. Three constant lateral pressures were 0.1fc, 0.2fc and 0.3fc respectively. Based on the results, the three-stage evolution nile of the fatigue stiffness, maximttm(minimum) longitudinal strain and damage were analyzed, and a unified S-N curve to calculate fatigue strength factors was worked out. The results show that the fatigue strength and fatigue life under triaxial constant-amplitude tension-compression cyclic loading are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing their relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures.
Directory of Open Access Journals (Sweden)
Dr. Rakesh Kumar, Dr.P.K Mehta,Devbrat Singh, Anup Kumar Pandey, Sarvesh Kumar
2014-06-01
Full Text Available Infrastructure development activities in India have increased many folds in recent times. This has resulted in increase in the demand of construction materials like cement, coarse aggregate, fine aggregate etc. Huge quantities of concrete wastes are produced due to demolition of old structures. If recycled aggregate from this waste is used for construction purpose, it will not only make the structures economical and eco-friendly butwill also solve the problem of waste disposal.Recycling old waste concrete by crushing and grading into coarse aggregates for use in new structural concrete is drawing the attention of engineers, environmentalists and researchers since last three decades. In this paper, an attempt has been made to study the compression dispersion behaviour of struts of natural coarse aggregate (NCA and recycle coarse aggregate (RCA at different load concentration ratio and aspect ratio. For the study, struts of 450 mm height and 75mm thickness with varying widths starting from 75mm to 450mm, using NCA and RCA concrete, were cast. The testing of struts was carriedout on loading frame of capacity 500 kN. The struts were tested to failure under in-plane compressive load applied through symmetrically placed steel plate (75×75×10 mm at top andbottom of the struts.
The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading
Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila
2017-08-01
Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.
Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading
Berezvai, Szabolcs; Kossa, Attila
2016-09-01
This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software uc(Abaqus). The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in uc(Abaqus) using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.
Institute of Scientific and Technical Information of China (English)
阎西康; 陈育苏; 常璐平; 陈培
2016-01-01
Ductility is one of a most important parameters to evaluate the seismic performance of the structure, in order to study the impact of axial compression ratio on the ductility of frame with construction joints, skeleton curve, displacement ductility factor and the hysteresis curves of the frames with construction joint were got by a low-cycle loading experiment,whose results were compared to the results of the experiments of the four frame columns under the same conditions. The results showed that with the increase of axial compression ratio,frame ductility decreased,and so did the impact of construction joints on the frame ductility.%延性是评价结构抗震性能的最主要的参数之一，为了研究轴压比对带有施工缝框架结构的延性的影响，通过对带有施工缝框架进行低周反复荷载试验，得到骨架曲线，位移延性系数和滞回曲线，并与相同条件下4根框架柱的试验得到的结果进行对比分析，得到随着轴压比的提高，框架延性有所降低，且施工缝的存在对框架延性降低的影响减小。
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto-plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance.
Ze-Jin, Yang; Rong-Feng, Linghu; Qing-He, Gao; Heng-Na, Xiong; Zhi-Jun, Xu; Ling, Tang; Guo-Zhu, Jia; Yun-Dong, Guo
2016-09-26
The electronic structure and thermodynamical properties of Cr2TiAlC2 are studied by first principles under pressure. The obtained results observed that the ferromagnetic order is the most stable ground state and the magnetic moment will collapse at about 50 GPa. As a result, the lattice a axis becomes stiffer above about 420 GPa, ultimately presenting the same axial compressibility trends with those of nonmagnetic compounds Mo2TiAlC2 and hypothetical Cr2TiAlC2. The elastic constants and phonon dispersion curves demonstrate the structural stability during the disappearance of magnetic moment and occurrence of axial alternative compressibility. The density of states and energy band calculations confirmed the existence of magnetic moment of Cr2TiAlC2 at 0 GPa and disappearance at high pressures above 50 GPa. Evolutions of magnetic moment collapse with pressure are confirmed by a variety of properties. The obtained grüneisen parameter and thermal expansion coefficients show the maximum value among the known MAX phases, to date and to the author's knowledge.
Ze-Jin, Yang; Rong-Feng, Linghu; Qing-He, Gao; Heng-Na, Xiong; Zhi-Jun, Xu; Ling, Tang; Guo-Zhu, Jia; Yun-Dong, Guo
2016-01-01
The electronic structure and thermodynamical properties of Cr2TiAlC2 are studied by first principles under pressure. The obtained results observed that the ferromagnetic order is the most stable ground state and the magnetic moment will collapse at about 50 GPa. As a result, the lattice a axis becomes stiffer above about 420 GPa, ultimately presenting the same axial compressibility trends with those of nonmagnetic compounds Mo2TiAlC2 and hypothetical Cr2TiAlC2. The elastic constants and phonon dispersion curves demonstrate the structural stability during the disappearance of magnetic moment and occurrence of axial alternative compressibility. The density of states and energy band calculations confirmed the existence of magnetic moment of Cr2TiAlC2 at 0 GPa and disappearance at high pressures above 50 GPa. Evolutions of magnetic moment collapse with pressure are confirmed by a variety of properties. The obtained grüneisen parameter and thermal expansion coefficients show the maximum value among the known MAX phases, to date and to the author’s knowledge. PMID:27666292
Bao, Yuequan; Li, Hui; Zhang, Fujian; Ou, Jinping
2013-04-01
A moving loads distribution identification method for cable-stayed bridges based on compressive sampling (CS) technique is proposed. CS is a technique for obtaining sparse signal representations to underdetermined linear measurement equations. In this paper, CS is employed to localize moving loads of cable-stayed bridges by limit cable force measurements. First, a vehicle-bridge model for cable-stayed bridges is presented. Then the relationship between the cable force and moving loads is constructed based on the influence lines. With the hypothesis of sparsity distribution of vehicles on bridge deck (which is practical for long-span bridges), the moving loads are identified by minimizing the `l2-norm of the difference between the observed and simulated cable forces caused by moving vehicles penalized by the `l1-norm' of the moving load vector. The resultant minimization problem is convex and can be solved efficiently. A numerical example of a real cable-stayed bridge is carried out to verify the proposed method. The robustness and accuracy of the identification approach with limit cable force measurement for multi-vehicle spatial localization are validated.
Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes
2015-09-01
In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.
Isolation of kinetic and spatial properties of uni-axial dynamic tensile loading of OFHC copper
Directory of Open Access Journals (Sweden)
Mourad H.
2012-08-01
Full Text Available Materials performance is recognized as being central to many emergent technologies. Future technologies will place increasing demands on materials performance with respect to extremes in stress, strain, temperature, and pressure. In this study, the dynamic ductile damage evolution of OFHC Cu is explored as a test bed to understand the role of spatial effects due to loading profile and defect density as well as the role of the kinetics of tensile pulse evolution. Well-characterized OFHC Cu samples of 30 μm, 60 μm, 100 μm, and 200 μm grain sizes were subjected to plate impact uniaxial strain loading in spall geometry to produce early stage (incipient damage. Using 2D metallographic techniques, soft recovered samples were studied to statistically link mesoscale processes to continuum level observations of free surface particle velocity measured with VISAR. Based on these findings, mechanisms for the void nucleation/growth and coalescence are proposed.
Directory of Open Access Journals (Sweden)
Yangwei Liu
2014-11-01
Full Text Available Control of corner separation has attracted much interest due to its improvement of performance and energy utilization in turbomachinery. Numerical studies have been performed under both design and off-design flow conditions to investigate the effects of boundary layer suction (BLS on corner separation in a highly loaded compressor cascade. Two new BLS slot configurations are proposed and a total of five suction slot configurations were studied and compared. Averaged static pressure rise, exit loss coefficient, passage blockage and flow turning angle have been given and compared systematically over a range of operation incidence angles. Distributions of significant loss removal, blade loading, exit deviation and total pressure loss at 3 degree and 7 degree incidence have also been studied. Under the same suction mass flows of 0.7% of the inlet mass flows, the pitchwise suction slot on the endwall shows a better optimal performance over the whole operation incidence among single suction slots. By using of the new proposed compound slot configuration with one spanwise slot on the blade suction side and one pitchwise slot on the endwall, the maximum reduction of total pressure loss at 7 degree incidence can be 39.4%.
Carolus, Thomas
The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.
Directory of Open Access Journals (Sweden)
Muhammad Abid
2010-11-01
Full Text Available In this paper result of an extensive comparative experimental study of a gasketed and non-gasketed flange joint with different assemblies with different combined load combinations is carried out to investigate joint performance i.e. joint strength and sealing capability. Actual joint load capacities are determined under both the design and proof test pressure with maximum additional external loading (axial and bending that can be applied for safe joint performance. In addition, application of combined load is also discussed in the light of equivalent pressure approach.
Optimization of functionally graded foam-filled conical tubes under axial impact loading
Energy Technology Data Exchange (ETDEWEB)
Mohammadiha, O.; Beheshti, H. [University of Isfahan, Isfahan (Iran, Islamic Republic of)
2014-05-15
Metallic foams as a filler in thin-walled structures can improve their crash worthiness characteristics. In this article, nonlinear parametric finite element simulations of FGF foam-filled conical tube are developed and the effect of various design parameters such as density grading, number of grading layers and the total mass of FGF tube on resulting mode shapes, specific energy absorption and initial peak load is investigated. Multi design optimization (MDO) technique and the geometrical average method, both are based on FE model are applied to maximize the specific energy absorption and minimize the impact peak force by estimating the best wall thickness and gradient exponential parameter 'm' that controls the variation of foam density. The results obtained from the optimizations indicated that functionally graded foam material, with graded density, is a suitable candidate for enhancing the crash worthiness characteristics of the structure compared to uniform density foam.
Use of loading-unloading compression curves in medical device design
Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.
2017-08-01
The paper presents a method and experimental results regarding mechanical testing of soft materials. In order to characterize the mechanical behaviour of technological materials used in prosthesis, a large number of material constants are required, as well as the comparison to the original. The present paper proposes as methodology the comparison between compression loading-unloading curves corresponding to a soft biological tissue and to a synthetic material. To this purpose, a device was designed based on the principle of the dynamic harness test. A moving load is considered and the force upon the indenter is controlled for loading-unloading phases. The load and specimen deformation are simultaneously recorded. A significant contribution of this paper is the interpolation of experimental data by power law functions, a difficult task because of the instability of the system of equations to be optimized. Finding the interpolation function was simplified, from solving a system of transcendental equations to solving a unique equation. The characteristic parameters of the experimentally curves must be compared to the ones corresponding to actual tissue. The tests were performed for two cases: first, using a spherical punch, and second, for a flat-ended cylindrical punch.
Ductile Fracture of AHSS Sheets under Multi-axial Loading: Experiments and Modeling
Dunand, M.; Mohr, D.
2011-08-01
Fracture experiments on TRIP-assisted steel sheets covering a wide range of stress states (from shear to equibiaxial tension) are performed to create a comprehensive experimental database to calibrate and evaluate the shear-modified Gurson model (Nielsen and Tvergaard, 2010) and the Modified Mohr-Coulomb (MMC) fracture model (Bai and Wierzbicki, 2010). The experimental program includes notched tensile tests as well as fracture experiments on butterfly-shaped specimens under combined tension and shear loading. Both phenomenological fracture models are physics-inspired and take the effect of the first and third stress tensor invariants into account in predicting the onset of ductile fracture. The MMC model is based on the assumption that the initiation of fracture is determined by a critical stress state, while the shear-modified Gurson model assumes void growth as the governing mechanism. The model accuracy is quantified based on the predictions of the displacements to fracture for experiments which have not been used for calibration. It is found that the MMC model predictions agree well with all experiments (less than 4% error), while less accurate predictions are observed for the shear-modified Gurson model. A comparison of plots of the strain to fracture as a function of the stress triaxiality and the normalized third invariant reveals significant differences between the two models except within the vicinity of stress states that have been used for calibration.
A FINITE ELEMENT MODEL OF IN VIVO MOUSE TIBIAL COMPRESSION LOADING: INFLUENCE OF BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
Hajar Razi
2014-12-01
Full Text Available Though bone is known to adapt to its mechanical challenges, the relationship between the local mechanical stimuli and the adaptive tissue response seems so far unclear. A major challenge appears to be a proper characterization of the local mechanical stimuli of the bones (e.g. strains. The finite element modeling is a powerful tool to characterize these mechanical stimuli not only on the bone surface but across the tissue. However, generating a predictive finite element model of biological tissue strains (e.g., physiological-like loading encounters aspects that are inevitably unclear or vague and thus might significantly influence the predicted findings. We aimed at investigating the influence of variations in bone alignment, joint contact surfaces and displacement constraints on the predicted strains in an in vivo mouse tibial compression experiment. We found that the general strain state within the mouse tibia under compressive loading was not affected by these uncertain factors. However, strain magnitudes at various tibial regions were highly influenced by specific modeling assumptions. The displacement constraints to control the joint contact sites appeared to be the most influential factor on the predicted strains in the mouse tibia. Strains could vary up to 150% by modifying the displacement constraints. To a lesser degree, bone misalignment (from 0 to 20° also resulted in a change of strain (+300 µε = 40%. The definition of joint contact surfaces could lead to up to 6% variation. Our findings demonstrate the relevance of the specific boundary conditions in the in vivo mouse tibia loading experiment for the prediction of local mechanical strain values using finite element modeling.
Darter, Benjamin J; Sinitski, Kirill; Wilken, Jason M
2016-10-01
Elevated vacuum suspension systems use a pump to draw air from the socket with the intent of reducing bone-socket motion as compared to passive suction systems. However, it remains unknown if elevated vacuum suspension systems decrease limb displacement uniformly during transitions from unloaded to full-body-weight support. To compare limb-socket motion between elevated vacuum and passive suction suspension sockets using a controlled loading paradigm. Comparative analysis. Persons with transtibial amputation were assessed while wearing either an elevated vacuum or passive suction suspension socket. Digital video fluoroscopy was used to measure axial bone-socket motion while the limb was loaded in 20% body-weight increments. An analysis of variance model was used to compare between suspension types. Total axial displacement (0%-100% body weight) was significantly lower using the elevated vacuum (vacuum: 1.3 cm, passive suction: 1.8 cm; p vacuum suspension reduced axial limb-socket motion by maintaining position of the limb within the socket during unloaded conditions. Elevated vacuum provided no meaningful improvement in limb-socket motion past initial loading. Excessive bone-socket motion contributes to poor residual limb health. Our results suggest elevated vacuum suspensions can reduce this axial displacement. Visual assessment of the images suggests that this occurs through the reduction or elimination of the air pocket between the liner and socket wall while the limb is unloaded. © The International Society for Prosthetics and Orthotics 2015.
Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells
Institute of Scientific and Technical Information of China (English)
Chu-lin YU; Zhi-ping CHEN; Ji WANG; Shun-juan YAN; Li-cai YANG
2012-01-01
The effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells is investigated through experimental and numerical buckling analysis using six welded steel cylindrical shell specimens.The relationship between the amplitude of weld reinforcement and the axial plastic buckling critical load is explored.The effect of the material yield strength and the number of circumferential welds on the axial plastic buckling is studied.Results show that circumferential weld reinforcement represents a severe imperfect form of axially compressed welded steel cylindrical shells and the axial plastic buckling critical load decreases with the increment of the mean amplitude of circumferential weld reinforcement.The material yield strength and the number of circumferential welds are found to have no significant effect on buckling waveforms; however,the axial plastic buckling critical load can be decreased to some extent with the increase of the number of circumferential welds.
Directory of Open Access Journals (Sweden)
Wenbin SUN
2014-12-01
Full Text Available Comparing with the circular concrete columns confined with fiber reinforced polymer (FRP wrap or tube, the rectilinear confined columns were reported much less. Due to the non-uniform distribution of confining pressure in the rectilinear confined columns, the FRP confinement effectiveness was significant reduced. This paper presents findings of an experimental program where nine prefabricated rectangular cross-section CFRP tubes with CFRP integrated crossties filled concrete to form concrete-filled FRP tube (CFFT short columns and three plain concrete control specimens were tested. All specimens were axially loaded until failure. The rest results showed that the stress-strain curves of CFFTs consisted of two distinct branches, an ascending branch before the concrete peak stress was reaches and a second branch that terminated when the tube ruptured, and that the CFFTs with integrated crossties experienced most uniform confinement pressure distribution. Test research also found that the stress-strain curves of CFFTs indicated an increase in ductility. These demonstrate that this confinement system can produce higher lateral confinement stiffness. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6035
Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C
Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.
1998-01-01
An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.
Directory of Open Access Journals (Sweden)
Frederico Martins Alves da Silva
2015-01-01
Full Text Available This work investigates the influence of Young’s modulus, shells thickness, and geometrical imperfection uncertainties on the parametric instability loads of simply supported axially excited cylindrical shells. The Donnell nonlinear shallow shell theory is used for the displacement field of the cylindrical shell and the parameters under investigation are considered as uncertain parameters with a known probability density function in the equilibrium equation. The uncertainties are discretized as Hermite-Chaos polynomials together with the Galerkin stochastic procedure that discretizes the stochastic equation in a set of deterministic equations of motion. Then, a general expression for the transversal displacement is obtained by a perturbation procedure which identifies all nonlinear modes that couple with the linear modes. So, a particular solution is selected which ensures the convergence of the response up to very large deflections. Applying the standard Galerkin method, a discrete system in time domain that considers the uncertainties is obtained and solved by fourth-order Runge-Kutta method. Several numerical strategies are used to study the nonlinear behavior of the shell considering the uncertainties in the parameters. Special attention is given to the influence of the uncertainties on the parametric instability and time response, showing that the Hermite-Chaos polynomial is a good numerical tool.
Directory of Open Access Journals (Sweden)
Suchart Limkatanyu
2013-01-01
Full Text Available Nonlocal and surface effects are incorporated into a bar-elastic substrate element to account for small-scale and size-dependent effects on axial responses of nanowires embedded in elastic substrate media. The virtual displacement principle, employed to consistently derive the governing differential equation as well as the boundary conditions, forms the core of the displacement-based finite element formulation of the nanowire-elastic substrate element. The element displacement shape functions, analytically derived based on homogeneous solution to the governing differential equilibrium equation of the problem, result in the exact element stiffness matrix and equivalent load vector. Two numerical simulations employing the proposed model are performed to study characteristics and behavior of the nanowire-substrate system. The first simulation involves investigation of responses of the wire embedded in elastic substrate. The second examines influences of several system parameters on the contact stiffness and reveals the size-dependent effect on the effective Young's modulus of the system.
Directory of Open Access Journals (Sweden)
Wei Li
2016-10-01
Full Text Available The interior defect-induced fracture of surface-hardened metallic materials in the long life region has become a key issue on engineering design. In the present study, the axial loading test with fully reversed condition was performed to examine the fatigue property of a surface-carburized low alloy gear steel in the long life region. Results show that this steel represents the duplex S-N (stress-number of cycles characteristics without conventional fatigue limit related to 107 cycles. Fatigue cracks are all originated from the interior inclusions in the matrix region due to the inhabitation effect of carburized layer. The inclusion induced fracture with fisheye occurs in the short life region below 5 × 105 cycles, whereas the inclusion induced fracture with fine granular area (FGA and fisheye occurs in the long life region beyond 106 cycles. The stress intensity factor range at the front of FGA can be regarded as the threshold value controlling stable growth of interior long crack. The evaluated maximum inclusion size in the effective damage volume of specimen is about 27.29 μm. Considering the size relationships between fisheye and FGA, and inclusion, the developed life prediction method involving crack growth can be acceptable on the basis of the good agreement between the predicted and experimental results.
Li, Wei; Deng, Hailong; Liu, Pengfei
2016-10-18
The interior defect-induced fracture of surface-hardened metallic materials in the long life region has become a key issue on engineering design. In the present study, the axial loading test with fully reversed condition was performed to examine the fatigue property of a surface-carburized low alloy gear steel in the long life region. Results show that this steel represents the duplex S-N (stress-number of cycles) characteristics without conventional fatigue limit related to 10⁷ cycles. Fatigue cracks are all originated from the interior inclusions in the matrix region due to the inhabitation effect of carburized layer. The inclusion induced fracture with fisheye occurs in the short life region below 5 × 10⁵ cycles, whereas the inclusion induced fracture with fine granular area (FGA) and fisheye occurs in the long life region beyond 10⁶ cycles. The stress intensity factor range at the front of FGA can be regarded as the threshold value controlling stable growth of interior long crack. The evaluated maximum inclusion size in the effective damage volume of specimen is about 27.29 μm. Considering the size relationships between fisheye and FGA, and inclusion, the developed life prediction method involving crack growth can be acceptable on the basis of the good agreement between the predicted and experimental results.
Energy Technology Data Exchange (ETDEWEB)
Ehlers, R.
1986-01-01
For a linear-elastic cylinder with an axial through crack subject to internal pressure loading, stress intensity factors and crack opening areas were calculated by the finite element method. Wall thickness and crack length were varied for constant mean radius of the cylinder, thus varying the shell parameter lambda with 2.5
Compressive Loads on the Lumbar Spine During Lifting: 4D WATBAK versus Inverse Dynamics Calculations
Directory of Open Access Journals (Sweden)
M. H. Cole
2005-01-01
Full Text Available Numerous two- and three-dimensional biomechanical models exist for the purpose of assessing the stresses placed on the lumbar spine during the performance of a manual material handling task. More recently, researchers have utilised their knowledge to develop specific computer-based models that can be applied in an occupational setting; an example of which is 4D WATBAK. The model used by 4D WATBAK bases its predications on static calculations and it is assumed that these static loads reasonably depict the actual dynamic loads acting on the lumbar spine. Consequently, it was the purpose of this research to assess the agreement between the static predictions made by 4D WATBAK and those from a comparable dynamic model. Six individuals were asked to perform a series of five lifting tasks, which ranged from lifting 2.5 kg to 22.5 kg and were designed to replicate the lifting component of the Work Capacity Assessment Test used within Australia. A single perpendicularly placed video camera was used to film each performance in the sagittal plane. The resultant two-dimensional kinematic data were input into the 4D WATBAK software and a dynamic biomechanical model to quantify the compression forces acting at the L4/L5 intervertebral joint. Results of this study indicated that as the mass of the load increased from 2.5 kg to 22.5 kg, the static compression forces calculated by 4D WATBAK became increasingly less than those calculated using the dynamic model (mean difference ranged from 22.0% for 2.5 kg to 42.9% for 22.5 kg. This study suggested that, for research purposes, a validated three-dimensional dynamic model should be employed when a task becomes complex and when a more accurate indication of spinal compression or shear force is required. Additionally, although it is clear that 4D WATBAK is particularly suited to industrial applications, it is suggested that the limitations of such modelling tools be carefully considered when task-risk and employee
Transverse Compression of Tendons.
Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B
2016-04-01
A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.
Safaei, B; Naseradinmousavi, P; Rahmani, A
2016-04-01
In the present paper, an analytical solution based on a molecular mechanics model is developed to evaluate the elastic critical axial buckling strain of chiral multi-walled carbon nanotubes (MWCNTs). To this end, the total potential energy of the system is calculated with the consideration of the both bond stretching and bond angular variations. Density functional theory (DFT) in the form of generalized gradient approximation (GGA) is implemented to evaluate force constants used in the molecular mechanics model. After that, based on the principle of molecular mechanics, explicit expressions are proposed to obtain elastic surface Young's modulus and Poisson's ratio of the single-walled carbon nanotubes corresponding to different types of chirality. Selected numerical results are presented to indicate the influence of the type of chirality, tube diameter, and number of tube walls in detailed. An excellent agreement is found between the present numerical results and those found in the literature which confirms the validity as well as the accuracy of the present closed-form solution. It is found that the value of critical axial buckling strain exhibit significant dependency on the type of chirality and number of tube walls. Copyright © 2016. Published by Elsevier Inc.
American Society for Testing and Materials. Philadelphia
2005-01-01
1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.
American Society for Testing and Materials. Philadelphia
2014-01-01
1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.
Directory of Open Access Journals (Sweden)
A.S.M. Ayman Ashab
2016-03-01
Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.
Failure of Alzheimer's Aβ(1-40) amyloid nanofibrils under compressive loading
Paparcone, Raffaella; Buehler, Markus J.
2010-04-01
Amyloids are associated with severe degenerative diseases and show exceptional mechanical properties, in particular great stiffhess. Amyloid fibrils, forming protein nanotube structures, are elongated fibers with a diameter of ≈8 nm with a characteristic dense hydrogen-bond (H-bond)patterning in the form of beta-sheets (β-sheets). Here we report a series of molecular dynamics simulations to study mechanical failure properties of a twofold symmetric Aβ(l-40) amyloid fibril, a pathogen associated with Alzheimer’s disease. We carry out computational experiments to study the response of the amyloid fibril to compressive loading. Our investigations reveal atomistic details of the failure process, and confirm that the breakdown of H-bonds plays a critical role during the failure process of amyloid fibrils. We obtain a Young’s modulus of ≈12.43 GPa, in dose agreement with earlier experimental results. Our simulations show that failure by buck-ling and subsequent shearing in one of the layers initiates at ≈1% compressive strain, suggesting that amyloid fibrils can be rather brittle mechanical elements.
An experimentally validated micromechanical model of a rat vertebra under compressive loading.
Tsafnat, Naomi; Wroe, Stephen
2011-01-01
In recent years, finite element analysis (FEA) has been increasingly applied to examine and predict the mechanical behaviour of craniofacial and other bony structures. Traditional methods used to determine material properties and validate finite element models (FEMs) have met with variable success, and can be time-consuming. An implicit assumption underlying many FE studies is that relatively high localized stress/strain magnitudes identified in FEMs are likely to predict material failure. Here we present a new approach that may offer some advantages over previous approaches. Recently developed technology now allows us to both image and conduct mechanical tests on samples in situ using a materials testing stage (MTS) fitted inside the microCT scanner. Thus, micro-finite element models can be created and validated using both quantitative and qualitative means. In this study, a rat vertebra was tested under compressive loading until failure using an MTS. MicroCT imaging of the vertebra before mechanical testing was used to create a high resolution finite element model of the vertebra. Load-displacement data recorded during the test were used to calculate the effective Young's modulus of the bone (found to be 128 MPa). The microCT image of the compressed vertebra was used to assess the predictive qualities of the FE model. The model showed the highest stress concentrations in the areas that failed during the test. Clearly, our analyses do not directly address biomechanics of the craniofacial region; however, the methodology adopted here could easily be applied to examine the properties and behaviour of specific craniofacial structures, or whole craniofacial regions of small vertebrates. Experimentally validated micro-FE analyses are a powerful method in the study of materials with complex microstructures such as bone. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.
Institute of Scientific and Technical Information of China (English)
王震宇; 王代玉; 吕大刚
2011-01-01
To investigate the seismic behavior of FRP-confined circular RC columns with high axial compression ratio, six columns confined with Carbon Fiber-Reinforced Polymer （CFRP） at plastic hinge region and two control columns were tested under constant axial load and cyclic lateral force. Test results demonstrated marked improvement in the ductility and energy dissipation of the columns due to CFRP wrapping in the plastic hinge region and the contribution of hoops to the confining effect should not be ignored under the condition of high axial compression ratio. A nonlinear analytical procedure was developed using fiber model method based on OpenSees （Open System for Earthquake Engineering Simulation）. The simulation results agree well with the experimental results for axial compression ratios less than O. 45. Inclusion of the confining effects of both the hoop~ and CFRP results in better simulation of the test results if the .axial compression ratio exceeds 0.45. Finally, influences of axial compression ratio and length of CFRP in the plastic hinge region on the seismic performance of FRP-confined columns were analyzed. The results indicate that the lateral loading capacity of columns begins to decrease when axial compression in the plastic hinge region exceeds 1.2 times the column diameter, the wrapped columns. ratio exceeds 0.6. If the length of wrapped CFRP performance could be equivalent to that with fully%为研究高轴压比下FRP约束钢筋混凝土圆柱的抗震性能，对6根碳纤维约束钢筋混凝土圆柱及2根对比柱进行伪静力试验。结果表明：塑性铰区包裹碳纤维可显著改善高轴压比柱的抗震性能，轴压比较高时不应忽略箍筋对核心混凝土的约束贡献。基于OpenSees中的纤维模型，对柱水平力．位移滞回曲线进行有限元模拟。轴压比小于0．45时，数值模拟与试验结果吻合较好；轴压比大于0．45时，考虑核心混凝土受箍筋及FRP双重约束的计
Compressive strength of fiber reinforced composite materials. [composed of boron and epoxy
Davis, J. G., Jr.
1974-01-01
Results of an experimental and analytical investigation of the compressive strength of unidirectional boron-epoxy composite material are presented. Observation of fiber coordinates in a boron-epoxy composite indicates that the fibers contain initial curvature. Combined axial compression and torsion tests were conducted on boron-epoxy tubes, and it was shown that the shear modulus is a function of axial compressive stress. An analytical model which includes initial curvature in the fibers and permits an estimate of the effect of curvature on compressive strength is proposed. Two modes of failure which may result from the application of axial compressive stress are analyzed, delamination and shear instability. Based on tests and analysis, failure of boron-epoxy under axial compressive load is due to shear instability.
Energy Technology Data Exchange (ETDEWEB)
Newman, J.B.
1968-01-01
Thermal radient bowing of rod type fuel elements can be analyzed in terms of the deflections of a precurved beam. The fundamental aspects of an analysis of axially compressed multispan beams are given. Elasticity of supports in both axial and transverse directions is considered; the technique is applicable to problems in which the axial thrust depends on the transverse deflection as well as problems with prescribed axial thrust. The formulas presented constitute the theory for a computer program of broad applicability, not only in the analysis of fuel rod bowing, but also to almost any multispan beam, particularly when the effects of axial loads cannot be neglected. 17 references. (NSA 22: 22866)
Delamination growth behavior in cross-ply composites under compressive cyclic (fatigue) loading
Pelegri, Assimina A.
A mode dependent fatigue delamination growth law for anisotropic composite plates is presented in this thesis. The novelty of the presented law lies in the mode dependency of the material and laminate constants m(Psi) and C(Psi). The model describing the mode dependent delamination growth law consists of an initial postbuckling solution accounting for general delaminated composites, i.e. with no restrictive assumptions on the delamination dimensions, and a fracture mechanics solution. A numerical code was developed for the implementation of the closed form solution which gives the loading and geometrical quantities as well as the energy release rates and the mode mixities. The computer code was especially designed for parametric studies. Parameters assigned in this particular investigation were: end conditions, delamination position (h/T), and applied strain. The effect of the end conditions, i.e. clamped-clamped versus simply-supported ends on the initial postbuckling and growth behavior of delaminated plates was also investigated. In conjunction with the previous analysis, a detailed experimental study was designed and carried out in order to validate the proposed model. The tests were designed so that the effect of certain parameters on the delamination growth behavior could be evaluated. The parameters included in the investigation were: initial delamination length, applied strain and delamination position (h/T). Compressive static, compressive fatigue (constant displacement amplitude), and double cantilever beam (DCB) tests were conducted. Data acquisition and analysis for these tests were performed. By comparing analytical and experimental results it is shown that a very good correlation exists, and the presented mode dependent fatigue delamination growth law can accurately predict fatigue lives of delaminated composite structures.
Electromechanical behavior of carbon nanotube fibers under transverse compression
Li, Yuanyuan; Lu, Weibang; Sockalingam, Subramani; Gu, Bohong; Sun, Baozhong; Gillespie, John W.; Chou, Tsu-Wei
2017-03-01
Although in most cases carbon nanotube (CNT) fibers experience axial stretch or compression, they can also be subjected to transverse compression, for example, under impact loading. In this paper, the electromechanical properties of both aerogel-spun and dry-spun CNT fibers under quasi-static transverse compressive loading are investigated for the first time. Transverse compression shows a nonlinear and inelastic behavior. The compressive modulus/strength of the aerogel-spun and dry-spun CNT fibers are about 0.21 GPa/0.796 GPa and 1.73 GPa/1.036 GPa, respectively. The electrical resistance goes through three stages during transverse compressive loading/unloading: initially it decreases, then it increases during the loading, and finally it decreases upon unloading. This study extends our knowledge of the overall properties of CNT fibers, and will be helpful in promoting their engineering applications.
Koyanagi, Jun; Yoshimura, Akinori; Kawada, Hiroyuki; Aoki, Yuichiro
2010-02-01
We performed a numerical simulation of a time-dependent interfacial failure accompanied by a fiber failure, and examined their evolution under shear and compressive loads in single-fiber composites. The compressive load on the interface consists of Poisson’s contraction for matrix resin subjected to longitudinal tensile load. As time progresses, compressive stress at the interface in the fiber radial direction relaxes under the constant longitudinal tensile strain condition for the specimen, directly causing the relaxation of the interface frictional stress. This relaxation facilitates the failure of the interface. In this analysis, a specific criterion for interface failure is applied; apparent interfacial shear strength is enhanced by compressive stress, which is referred as quasi-parabolic criterion in the present study. The results of the stress recovery profile around the fiber failure and the interfacial debonding length as a function of time simulated by the finite element analysis employing the criterion are very similar to experimental results obtained using micro-Raman spectroscopy.
Two-way Shape Memory Effect of NiTi under Compressive Loading Cycles
Yoo, Young Ik; Lee, Jung Ju
In this study, the two-way shape memory effect (TWSME) of a Ni-54.5 at.% Ti alloy was investigated experimentally to develop a NiTi linear actuator. The two-way shape memory effect was induced through a compressive shape memory cycle composed of four steps: (1) loading to maximum deformation; (2) unloading; (3) heating; (4) and cooling. Six types of specimens (one solid cylindrical and five tubular) were used to obtain the twoway shape memory strain and two-way recovery stress and to evaluate the actuating capacity. The two-way actuating strain showed a convergent tendency after several training cycles for the same maximum deformation. A maximum value of the two-way strain was obtained for 7% of maximum deformation, independently of the geometry of the tubular specimens. The two-way strains obtained by the shape memory cycles and two-way recovery stress linearly increase as a function of the maximum deformation and the two-way strain, respectively, and the geometry of specimen affects the two-way recovery stress. Although the results show that sufficient recovery stress can be generated by either the two-way shape memory process or by the one-way shape memory process, the two-way shape memory process can be applied more conveniently to actuating applications.
Liu, Yang; Shu, Dong-Wei
2014-08-01
Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler-Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.
Directory of Open Access Journals (Sweden)
Toshiki Kanazawa
Full Text Available Pressure ulcers are characterized by chronicity, which results in delayed wound healing due to pressure. Early intervention for preventing delayed healing due to pressure requires a prediction method. However, no study has reported the prediction of delayed healing due to pressure. Therefore, this study focused on biological response-based molecular markers for the establishment of an assessment technology to predict delayed healing due to pressure. We tested the hypothesis that sustained compressive loading applied to three dimensional cultured fibroblasts leads to upregulation of heat shock proteins (HSPs, CD44, hyaluronan synthase 2 (HAS2, and cyclooxygenase 2 (COX2 along with apoptosis via disruption of adhesion. First, sustained compressive loading was applied to fibroblast-seeded collagen sponges. Following this, collagen sponge samples and culture supernatants were collected for apoptosis and proliferation assays, gene expression analysis, immunocytochemistry, and quantification of secreted substances induced by upregulation of mRNA and protein level. Compared to the control, the compressed samples demonstrated that apoptosis was induced in a time- and load- dependent manner; vinculin and stress fiber were scarce; HSP90α, CD44, HAS2, and COX2 expression was upregulated; and the concentrations of HSP90α, hyaluronan (HA, and prostaglandin E2 (PGE2 were increased. In addition, the gene expression of antiapoptotic Bcl2 was significantly increased in the compressed samples compared to the control. These results suggest that compressive loading induces not only apoptosis but also survival activity. These observations support that HSP90α, HA, and, PGE2 could be potential molecular markers for prediction of delayed wound healing due to pressure.
Compressive behavior of fine sand.
Energy Technology Data Exchange (ETDEWEB)
Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)
2010-04-01
The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.
Institute of Scientific and Technical Information of China (English)
顾威; 李宏男; 孙国帅
2013-01-01
Four damaged concrete filled steel tube columns strengthened with carbon fiber reinforced plastics (CFRP) and four contrast columns were tested. All specimens were notched in the central zone to simulate the loss of section due to corrosion. All specimens were axially loaded while strain and displacement were measured to demonstrate the effectiveness of this repair concept. Influences of the CFRP confinement and the aspect ratio on the load bearing capacity of the columns are analyzed. The test results show that within the scope of the test, CFRP would enhance the load bearing capacity of the damaged concentrically compressed concrete filled steel tube columns effectively; the increase rate of load bearing capacity due to CFRP decreases with the increase of aspect ratio. A calculating method is also presented, capable of predicting the axial load strength of concrete filled CFRP steel tube members. Experimental results are in good agreement with the predicted values.%采用4个受损轴压钢管混凝土柱试件和4个用碳纤维复合材料(carbon fiber reinforced plastics,CFRP)加固的受损轴压钢管混凝土试件进行对比试验研究,分析两者的受力机理,评价CFRP加固受损轴压钢管混凝土承载力提高效果.结果表明:由于CFRP的环向约束,受损钢管混凝土的钢管和核心混凝土的径向变形受到了限制,受损钢管混凝土轴压承载力有不同程度提高,且其提高效果随着长细比的增加而变小；提出了加固前后受损钢管混凝土承载力计算方法,其计算结果与试验结果吻合良好.
Directory of Open Access Journals (Sweden)
Wan-Ying Lin
2014-01-01
Full Text Available Compressive stimulation can modulate articular chondrocyte functions. Nevertheless, the relevant studies are not comprehensive. This is primarily due to the lack of cell culture apparatuses capable of conducting the experiments in a high throughput, precise, and cost-effective manner. To address the issue, we demonstrated the use of a perfusion microcell culture system to investigate the stimulating frequency (0.5, 1.0, and 2.0 Hz effect of compressive loading (20% and 40% strain on the functions of articular chondrocytes. The system mainly integrates the functions of continuous culture medium perfusion and the generation of pneumatically-driven compressive stimulation in a high-throughput micro cell culture system. Results showed that the compressive stimulations explored did not have a significant impact on chondrocyte viability and proliferation. However, the metabolic activity of chondrocytes was significantly affected by the stimulating frequency at the higher compressive strain of 40% (2 Hz, 40% strain. Under the two compressive strains studied, the glycosaminoglycans (GAGs synthesis was upregulated when the stimulating frequency was set at 1 Hz and 2 Hz. However, the stimulating frequencies explored had no influence on the collagen production. The results of this study provide useful fundamental insights that will be helpful for cartilage tissue engineering and cartilage rehabilitation.
Institute of Scientific and Technical Information of China (English)
丁发兴; 应小勇; 余志武; 欧进萍
2011-01-01
分析现有钢管轻骨料混凝土轴压短柱力学性能实验结果,提出轻骨料混凝土轴对称三轴受压轴向应力-应变关系,应用连续介质力学,确立圆钢管轻骨料混凝土同心圆柱体共同受压时的计算模型,建立了圆钢管轻骨料混凝土组合弹性模量理论计算公式和组合应力-应变关系的理论表达式,编制相应计算程序.结果表明,核心混凝土由于受钢管约束,其纵向应力有较大提高,延性得到显著改善,钢管在为轻骨料混凝土提供径向约束的同时,其纵向应力大幅降低;钢管对轻骨料混凝土的约束效果要低于对普通混凝土的约束效果.通过大量参数分析,得到钢管轻骨料混凝土轴压短柱极限承载力计算公式和组合应力-应变关系全曲线,计算与实验结果吻合良好.%Based on the experimental results of mechanical properties of lightweight aggregate concrete filled circular steel tubular (LCFST) stub columns under axial compression, the axial stress-axial strain relations of concrete under axisymmetric triaxial compression were proposed. Based on continuum mechanics, the calculation model for LCFST stub columns of concentric cylinders of circular steel tube with concrete core under concentrically loaded conditions was determined. The theoretical calculation formulas for composite elastic modulus and composite stress-strain relations of the stub columns were presented. A FORTRAN program for the elasto-plastic analysis of LCFST stub columns under concentric loading was developed. The reliability of the present method and program was validated by the test results from references. The behavior of LCFST stub columns was analyzed. The analysis results indicated that for confinement by steel tube, the axial stress of lightweight aggregate concrete core increased greatly and the ductility was improved, while the axial stress of steel tube decreased rapidly for confinement effect. Compared with normal concrete filled
Multi-axial mechanical stimulation of tissue engineered cartilage: Review
Directory of Open Access Journals (Sweden)
S D Waldman
2007-04-01
Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.
Institute of Scientific and Technical Information of China (English)
于强
2011-01-01
The research on the rule of short fatigue crack growth rate by multi-axial loading remains a new frontier in recent years.The equivalence of proportioned multi-axial loading and uni-axial loading are analyzed.The hypothesis of inability for proportioned multi-axial loading to alter the mechanical properties of the materials is put forward.Therefore,the formula of short fatigue crack growth rate by multi-axial loading can be derived by adopting the principle of energy density on the critical plane and making an analogy to the research of uni-axial loading.%多轴加载下疲劳短裂纹的研究,是近几年来才触及的一个新领域。文章分析了多轴比例载荷与单轴载荷的等效性。提出了多轴比例加载不会改变材料力学性能的假设,在临界面上用能量密度法,类比单轴加载的研究过程,导出了多轴比例加载下疲劳短裂纹扩展速度的计算公式。
Saeed, M.-U.; Chen, Z. F.; Chen, Z. H.; Li, B. B.
2017-01-01
Open-hole tension (OHT) and open-hole compression (OHC) tests were carried out on hot-pressed carbon-fiberreinforced composite samples with a singular open hole. The fracture surfaces of the OHT- and OHC-tested specimens were examined by using scanning electron microscopy (SEM). SEM micrographs showed significant features on the surface of carbon fiber, matrix, and especially in the fiber/matrix interface. Interpretation of these micrographs revealed the possible failure mechanism of composite samples with an open hole under tensile and compressive loadings. Furthermore, a comparative study of these micrographs also pointed to certain specific differences between the fracture characteristics of open-hole composite samples failed under tension and compression. This information is useful in the post-failure analysis of a composite structure.
Uncertainty in Loading and Control of an Active Column Critical to Buckling
Directory of Open Access Journals (Sweden)
G.C. Enss
2012-01-01
Full Text Available Buckling of load-carrying column structures is an important design constraint in light-weight structures as it may result in the collapse of an entire structure. When a column is loaded by an axial compressive load equal to its individual critical buckling load, a critically stable equilibrium occurs. When loaded above its critical buckling load, the passive column may buckle. If the actual loading during usage is not fully known, stability becomes highly uncertain.
Effect of compressibility on the nonlinear prediction of the aerodynamic loads on lifting surfaces
Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.
1975-01-01
The vortex-lattice technique for incompressible flow which accounts for separation at sharp edges is modified to account for compressibility. This is accomplished by extending the Prandtl-Glauert transformation to moderate angles of attack. Thus, the aerodynamic characteristics for the compressible case are obtained from the solution of an equivalent incompressible problem. Numerical results are presented for parallelogram and delta wings to assess the effects of compressibility. The results are in good agreement with available experimental data.
Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.
1999-01-01
The present document is a final technical report carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, accomplished in 1996, 1997, and 1998, respectively). The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.
Indian Academy of Sciences (India)
Sarva Jit Singh; Raman Kumar; Sunita Rani
2009-10-01
The fully coupled Biot quasi-static theory of linear poroelasticity is used to study the consolidation of a poroelastic half-space caused by axisymmetric surface loads.The ﬂuid and solid constituents of the poroelastic medium are compressible and its permeability in the vertical direction is different from its permeability in the horizontal direction.An analytical solution of the governing equations is obtained by taking the displacements and the pore pressure as the basic state variables and using a combination of the Laplace and Hankel transforms.The problem of an axisymmetric normal load is discussed in detail.An explicit analytical solution is obtained for normal disc loading.Detailed numerical computations reveal that the anisotropy in permeability as well as the com-pressibilities of the ﬂuid and solid constituents of the poroelastic medium have signiﬁcant effects on the consolidation of the half-space.The anisotropy in permeability may accelerate the consolidation process and may lead to a dilution in the theoretical prediction of the Mandel –Cryer effect. The compressibility of the solid constituents may also accelerate the consolidation process.
Institute of Scientific and Technical Information of China (English)
王军良; 赵宝成
2012-01-01
针对Y型支撑加固多高层混凝土框架工程中框架轴压比的不同，对不同轴压比的Y型偏心支撑砼框架的滞回性能进行了非线性有限元分析。结果表明，随着轴压比的增大，结构的承载力呈先上升后下降的趋势；轴压比的增大能提高结构初始刚度，同时使结构后期刚度下降加快。最后，对Y型支撑加固混凝土框架工程中关于轴压比提出设计建议。%As to the different axis pressures of column in high-level RC frames retrofitted with Y-steel bracings, this paper presents the nonlinear finite element analysis on the hysteresis behavior of the Y-eccentrically braced RC frames under the different axial compression ratio. The analysis indicates that the bearing capacity of the structure tends to fall after rising along with the increase of the axial compressive ratio; the increase of the axial compressive ratio can improve the initial stiffness of structures but also make the later stiffness drop speed up. Finally, this paper suggests the axial compression ratio in the design of the Y-eccentrically braced RC frames.
Institute of Scientific and Technical Information of China (English)
2011-01-01
One of the research emphases of application and investigation of high strength steel are laid on stability of axial compressed member. After analyzing stability of high strength steel and limitations of design method for stability of high strength steel analyzed, combined with the function of stability analysis of large finite element analysis software ANSYS and model test, stability for axial compressed members of high strength steel are researched, and formulae which parameter includes yield strength of material and slenderness ratio of member is put forward for calculation stability coefficient of axial compressed member of high strength steel. Some important conclusions are arrived at. The research is significant for application and investigation of high strength steel in future.%欧特克有限公司宣布，欧特克建筑信息模型（BIM）基础设施产品组合新增面向概念设计的Autodesk Infrastructure Modeler 2012软件。基于BIM的基础设施产品组合主要用于规划、设计、建设和管理更具可持续性的基础设施。新产品将与2012版欧特克基础设施设计套件配套，可帮助业内专业人士提高效率，并消除工作过程中产生的浪费。
Institute of Scientific and Technical Information of China (English)
宋生志; 邵永波
2011-01-01
For typical tubular T-joint under axial loading, the failure generally occurs near the weld toe on the chord surface due to the fact that the stiffness of the chord in radial direction is much smaller than that of the brace in axial direction as well as the existence of high stress concentration along the weld toe. The static strength of tubular T-joints can be improved by filling concrete into the chord. Finite element analysis is con ducted to analyze 6 T-joint models under axial compression and tension by using sofware ABAQUS to prove that filling concrete in the chord is effective to improve the static strength. Different failure modes under axial compression and tension between tubular T-joint with circular hollow section and Concrete-Filled Circular Tu bular ( CFCT)T-joint are clarified. Thereafter, parametric investigation for CFCT T-joint, which involves the parameters of chord thickness T, the brace/chord diameter ratio β, the chord diameter/thickness ratio 2γ , the yield strength of the steel tube fy , and the compressive strength of concrete fc , is carried out. From the para metric study , the effect of parameters on the static strength of CFCT T-joints is concluded.%T型圆管节点在支管轴向力作用下,破坏位置一般出现在主管表面的焊趾处.主要是因为主管的径向刚度远小于支管的轴向刚度,并且节点部位存在较大的应力集中.为提高T型管节点的静力强度,可通过在主管中填充混凝土以提高其径向刚度来实现.为了研究主管填充混凝土对T型管节点静力强度的影响,用有限元分析软件(ABAQUS)首先对6个模型分别在支管轴向压力和拉力作用下进行分析,结果发现主管中填充混凝土对节点静力强度的提高是非常有效的.同时得出主管填充混凝土与未填充混凝土节点不同的破坏模态.然后,对圆钢管混凝土T型节点进行参数分析,参数主要包括主管厚度T、支主管管径比β、主管的径厚比2
Institute of Scientific and Technical Information of China (English)
肖建庄; 杨洁; 黄一杰; 王正平
2011-01-01
以再生粗骨料取代率为试验主要研究参数,完成了15个钢管约束再生混凝土圆柱试件的轴压试验,分析了试件的受压破坏特性、轴向荷载-轴向应变关系以及约束再生混凝土的横向变形系数变化规律.试验和分析结果表明:钢管约束再生混凝土主要破坏形态为试件中部鼓曲,核心再生混凝土发生斜剪破坏;钢管约束再生混凝土与约束普通混凝土的受力过程基本相同,分为弹性和塑性发展阶段;钢管约束使核心再生混凝土强度得到明显提高,变形性能得到改善;再生粗骨料取代率变化对钢管约束再生混凝土的横向变形系数影响不大;钢管再生混凝土轴压极限荷载随着再生粗骨料取代率的增加而降低.最后根据试验数据拟合了钢管约束再生混凝土应力-应变关系表达式.%Based on the tests of 15 recycled concrete specimens confined by steel tube with different recycled coarse aggregate replacement percentages under axial compression, this paper investigates the failure feature, axial force-longitudinal deformation relationship and variation rule of lateral deformation ratio of the test specimens.It is found that the bulge in the middle of the specimen is the main failure phenomenon.The core concrete shows diagonal shearing failure.Similar to the normal concrete filled steel tube, the bearing process of recycled concrete confined by steel tube shows two stages: elastic stage and plastic stage.The strength and deformation capacity of core concrete is much higher than those under unconfined condition.The variation of recycled aggregate replacement percentage of the test specimen does not affect the lateral deformation ratio.The compressive strength of the test specimens decreases with the increase of recycled aggregate replacement percentage.Finally, the stress-strain relationship of the recycled concrete confined by steel tube is proposed based on the test data.
轴心受压钢套管构件加固理论及应用%THE REINFORCEMENT THEORY AND APPLICATION OF AXIAL COMPRESSION STEEL SLEEVED MEMBER
Institute of Scientific and Technical Information of China (English)
王奇胜; 钱栋; 黄嵩; 胡波
2013-01-01
套管构件由内管及外管组成,外管能为内管提供侧向支撑,控制内管失稳,从而提高内管的受压承载力.套管构件是一种新型的钢压杆稳定加固形式,可应用于对受压钢构件失稳比较敏感的一类空间结构.本文首先利用典型的套管构件构造模型,阐述了轴心受压套管加固法的基本原理;然后以一网架工程为例,分析套管加固法对提高结构承载能力的效果.结果表明:套管构件能够有效改善网架结构的局部应力状况,解决了受压钢管的失稳问题,提高了网架结构的极限承载力.%Sleeved members consist of inner and sleeved tubes.The sleeved tube provides lateral support for the inner tube,and controls its instability,thereby enhancing its load-carrying capacity.As a new form for stability improving of compressive steel members,sleeved members can been applied to spatial structures,whose steel members are sensitive to buckling.This paper used a typical detail model of sleeved members to explain the basic principle of the reinforcement method of sleeved members; then taking a bridge of grid structure for example,analyzed this method for increasing the load-carrying capacity of the structure.The result shows that sleeved members can effectively improve the local stress conditions of grid structure,solve the problem of compression steel tubes prone to buckling,and enhance the ultimate load-carrying capacity of grid structure.
Energy Technology Data Exchange (ETDEWEB)
Asgari, H., E-mail: hamed.asgari@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Odeshi, A.G.; Szpunar, J.A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Zeng, L.J.; Olsson, E. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden)
2015-08-15
The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found to decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal
Directory of Open Access Journals (Sweden)
Oliver Giraldo-Londoño
2014-01-01
Full Text Available La estabilidad dinámica de una columna elástica prismática esbelta con conexiones semirrígidas en ambos extremos de rigidez idéntica y con desplazamiento lateral entre los dos extremos totalmente inhibido sujetos a cargas axiales paramétricas incluyendo los efectos combinados de inercia rotacional y amortiguación externas fue presentada en una publicación adjunta. Expresiones cerradas que se pueden utilizar para predecir las regiones inestabilidad dinámica de columnas esbeltas se desarrollan haciendo uso de la teoría de Floquet. Las ecuaciones propuestas son sencillas y fáciles de aplicar. La solución propuesta es capaz de capturar el fenómeno de estabilidad en columnas sometidas a cargas axiales periódicas utilizando un solo elemento de columna. El método propuesto y las ecuaciones correspondientes se pueden utilizar para investigar los efectos del amortiguamiento, la inercia rotacional de la columna, y las conexiones semirrígidas en el análisis de estabilidad de columnas esbeltas sometidas a cargas axiales periódicas. Estudios de sensibilidad presentados en esta publicación muestran los efectos de la inercia rotacional, el amortiguamiento y las conexiones semi-rígidas en la estabilidad dinámica de columnas sometidas a cargas axiales paramétricas. Los estudios analíticos indican que el comportamiento dinámico de columnas bajo carga periódica está fuertemente afectado por la rigidez a la flexión de las conexiones de los dos apoyos y por el amortiguamiento externo, pero no tanto por la inercia rotacional. Tres ejemplos se presentan en detalle y los resultados calculados se comparan con los reportados por otros investigadores.
Lomov, S.V.; Barburski, M.; Stoilova, Tz.; Verpoest, I.; Akkerman, R.; Loendersloot, R.; Thije, ten R.H.W.
2005-01-01
Deformability of bi- and quadri-axial multi-axial multiply stitched preforms is studied in biaxial tension, shear (picture frame test) and compression. The results complement KES-F measurements in the low load range, reported in the Part 2 of the series (Compos A, 34, 2003, 359–70). The biaxial tens
A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads
Wang, Xianfeng; Shi, Zhifei; Wang, Jianjun; Xiang, Hongjun
2016-05-01
In this paper, a flex-compressive piezoelectric energy harvesting cell (F-C PEHC) is proposed. This cell has a large load capacity and adjustable force transmission coefficient assembled from replaceable individual components. A statically indeterminate mechanical model for the cell is established and the theoretical force transmission coefficient is derived based on structural mechanics. An inverse correlation between the force transmission coefficient and the relative stiffness of Element 1’s limbs is found. An experimental study is also conducted to verify the theoretical results. Both weakened and enhanced modes are achieved for this experiment. The maximum power output approaches 4.5 mW at 120 kΩ resistive load under a 4 Hz harmonic excitation with 600 N amplitude for the weakened mode, whereas the maximum power output approaches 17.8 mW at 120 kΩ under corresponding load for the enhanced mode. The experimental measurements of output voltages are compared with the theoretical ones in both weakened and enhanced modes. The experimental measurements of open-circuit voltages are slightly smaller for harmonic excitations with amplitudes that vary from 400 N to 800 N and the errors are within 14%. During the experiment, the maximum load approaches 2.8 kN which is quite large but not the ultimate bearing capacity of the present device. The mechanical model and theoretical transmission coefficient can be used in other flex-compressive mode energy transducers.
Electromechanical behaviour of REBCO tape lap splices under transverse compressive loading
Grether, A; Ballarino, A.; Bottura, L.
2016-01-01
We have studied the influence of transverse compressive stress on the resistance and critical current (Ic) of soldered REBCO tape lap splices. Internal contact resistances dominate the overall REBCO lap splice resistances. Application of transverse compressive stress up to 250 MPa during the resistance measurements does not alter the resistance and Ic of the soldered REBCO splices that were studied. The resistance of unsoldered REBCO tape lap splices depends strongly on the contact pressure. At a transverse compressive stress of 100 MPa to which Roebel cables are typically exposed in high field magnets, the crossover splice contact resistance is comparable to the internal tape resistances.
Institute of Scientific and Technical Information of China (English)
陈娟; 许成祥; 邓曦
2015-01-01
In order to make full use of recycled aggregate, 20 specimens with circular and square cross sections were designed to be tested, and the dosage of silica powder and content of steel fiber were regarded as the major variable parameters. Through the experiment, the entire compress process and failure modes of all specimens were observed, and load-strain curves of the specimens were obtained. The test results indicate that the ultimate axial load and corresponding strain of the concrete-filled steel tube columns would decrease after the replacement of natural coarse aggregate with 100% recycled coarse aggregate. The filling effect and pozzolanic action of silica powder and the confinement effect of steel fiber could be used to improve the performance of concrete-filled steel tube columns with 100% recycled coarse aggregate, and the performance of modified columns was i- dentical to that of common columns. The column with 10% cement replaced by silica powder and 1. 5%volume fraction of steel fiber has a higher ultimate axial load than that of common columns. In addition, the applicability of present theory and formula from different codes to calculate the bearing capacity of the specimens was obtained based on the comparison of calculated results. The results obtained by EC4 are more close to the experimental results.%为了最大化利用再生骨料，以硅粉和钢纤维掺量为主要变化参数设计了20个圆形和方形截面钢管全再生粗骨料混凝土短柱构件进行轴压试验，观察了短柱的受力全过程和破坏形态，获取了构件的荷载―变形全过程曲线，分析了硅粉和钢纤维掺量对其承载性能的影响，试验结果表明：混凝土中的粗骨料全部采用再生骨料会降低钢管再生混凝土柱的峰值承载力及峰值应变，可以采用硅粉的填充效应及活性和钢纤维对裂缝的内部约束来改善钢管全再生骨料混凝土柱的性能，经改性后的钢管全再生骨料混
Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.
2004-01-01
A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.
Pham, M. S.; Creuziger, A.; Iadicola, M.; Rollett, A. D.
2017-02-01
This study investigates the joint impact of preferred texture and latent hardening on the plastic anisotropy of face centered cubic (FCC) materials. The main result is that both aspects have significant impact on the anisotropy, but the two can either counteract each other or synergistically reinforce each other to maximize anisotropy. Preferred texture results in significant anisotropy in plastic yielding. However, the latent hardening significantly alters the texture-induced anisotropy. In addition, one latent hardening type can cancel out the anisotropy of another type. Consequently, if all dislocation-based latent hardening types are included at the same level as the self-hardening, the result might not reveal the complexity of plastic anisotropy. The present study of the synergistic influence of detailed latent hardening and texture presented helps provide new insights into the complex anisotropic behavior of FCC materials during multi-axial forming. the stress at which the material initially yields is not a function of material orientation with respect to the frame of the test (i.e., isotropic yielding); there exists a multi-axial yield locus that is described by a single value of stress that corresponds to yield in uniaxial tension (i.e., stress equivalency); on hardening, the multi-axial yield locus expands by the same amount in every direction in the π-plane, which is the plane that has its normal parallel to [111] in the deviatoric stress space (i.e., isotropic hardening); there is an associated flow rule, i.e., the strain increment is normal to the yield locus.
Directory of Open Access Journals (Sweden)
Isabel Hervas
2015-12-01
Full Text Available Tensile and compression tests were carried out on a ductile cast iron for temperatures up to 1073 K. The damage caused inside and around graphite nodules was evaluated as a function of the local equivalent plastic strain by using microstructural quantifications. The mechanical properties are strongly dependent on a temperature above 773 K. Concerning tensile behavior, an evolutional law issued from the Gurson model representing the void growth as a function of the deformation and temperature was successfully employed. It is demonstrated that the strain state and the temperature have a strong influence on the void growth function. In the case of compression tests, the temperature has a weak influence on the nodule deformation for temperatures lower than 773 K, and the mechanical behavior is driven by the viscoplastic properties of the ferrite. For higher temperatures, the mechanical properties in compression are progressively modified, since graphite nodules tend to remain spherical, and ferrite grains are severely deformed. A synthesis of the damage mechanisms is proposed in the studied range of temperature and plastic strain. It appears that the graphite nodule aspect ratio can be used as an indicator of the deformation under compression loading for temperatures ranging from room temperature to 673 K.
Directory of Open Access Journals (Sweden)
Yusuf Yesilce
2012-01-01
Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of
Directory of Open Access Journals (Sweden)
Xiao-Qian Su
2013-08-01
Full Text Available Lysozyme (LSZ-loaded poly-L-lactide (PLLA porous microparticles (PMs were successfully prepared by a compressed CO2 antisolvent process in combination with a water-in-oil emulsion process using LSZ as a drug model and ammonium bicarbonate as a porogen. The effects of different drug loads (5.0%, 7.5% and 10.0% on the surface morphology, particle size, porosity, tapped density and drug release profile of the harvested PMs were investigated. The results show that an increase in the amount of LSZ added led to an increase in drug load (DL but a decrease in encapsulation efficiency. The resulting LSZ-loaded PLLA PMs (LSZ-PLLA PMs exhibited a porous and uneven morphology, with a density less than 0.1 g·cm−3, a geometric mean diameter of 16.9–18.8 μm, an aerodynamic diameter less than 2.8 μm, a fine particle fraction (FPF of 59.2%–66.8%, and a porosity of 78.2%–86.3%. According to the results of differential scanning calorimetry, the addition of LSZ improved the thermal stability of PLLA. The Fourier transform infrared spectroscopy analysis and circular dichroism spectroscopy measurement reveal that no significant changes occurred in the molecular structures of LSZ during the fabrication process, which was further confirmed by the evaluation of enzyme activity of LSZ. It is demonstrated that the emulsion-combined precipitation with compressed antisolvent (PCA process could be a promising technology to develop biomacromolecular drug-loaded inhalable carrier for pulmonary drug delivery.
Deformation Curve Characteristics of Rapeseeds and Sunflower Seeds Under Compression Loading
Directory of Open Access Journals (Sweden)
Divišová M.
2014-09-01
Full Text Available The deformation curve characteristics of rapeseeds and sunflower seeds compressed using the equipment ZDM 50-2313/56/18 and varying vessel diameters (40, 60, 80, and 100 mm were investigated. Maximum compressive force of 100 kN was applied on bulk oilseeds of rape and sunflower of measured height 20-80 mm and deformed at a speed of 60 mm∙min-1. The compression test using the vessel diameters of 40 and 60 mm showed a serration effect while the vessel diameters of 80 and 100 mm indicated an increasing function effect on the force-deformation characteristic curves. Clearly, the increasing function effect described the region with oil flow and that of serration effect described the region without any oil flow. However, it was observed that the serration effect could be due to the higher compressive stress inside the smaller vessel diameters (40 and 60 mm compared to those with bigger vessel diameters (80 and 100 mm. Parameters such as deformation, deformation energy, and energy density were determined from the force-deformation curves dependency showing both increasing function and serration effect. The findings of the study provide useful information for the determination of specific compressive force and energy requirements for extracting maximum oil from oilseed crops such as rape and sunflower.
Directory of Open Access Journals (Sweden)
Chen Hsiang-Ho
2006-12-01
Full Text Available Abstract Background Metastatic diseases and infections frequently involve the spine. This is the result of seeding of the vertebral body by tumor cells or bacteria delivered by venous blood from Batson's plexus, which is hypothesized to enter the vertebral body via the epidural veins. Isolated spinal segments deform significantly at the bony end plate when under compression. This deformation could cause a volume change of the vertebral body and may be accompanied by retrograde flow of venous blood. To date, this process has not been investigated quantitatively. The purpose of this study was to determine the volume changes of the vertebral body and basivertebral vein for a vertebral body under compression. Methods A three-dimensional finite element mesh model of the L4 segment with both adjacent discs was modified from a 3-D computed tomography scan image. An octagon representing the basivertebral vein was introduced into the center of the vertebral body in the model. Four compressive orientations (1500 N were applied on the top disc. The volume change of the vertebral body model and the basivertebral vein were then computed. Results The volume change of the vertebral body was about 0.1 cm3 (16.3% of the basivertebral vein for the four loading conditions. The maximum cross-sectional area reductions of the basivertebral vein and volume reduction were 1.54% and 1.02%, for uniform compression. Conclusion Our study quantified the small but significant volume change of a modeled vertebral body and cross-sectional areas and that of the basivertebral vein, due to the inward bulging of the end plate under compression. This volume change could initiate the reverse flow of blood from the epidural venous system and cause seeding of tumors or bacterial cells.
Moussawi, Ali
2014-10-01
In this study, we present an original approach to assess structural changes during bread crumb compression using a mechanical testing bench coupled to 3D X-ray microtomography. X-ray images taken at different levels of compression of the bread crumb are processed using image analysis. A subset-based digital volume correlation method is used to achieve the 3D displacement field. Within the limit of the approach, deterministic search strategy is implemented for solving subset displacement in each deformed image with regards to the undeformed one. The predicted displacement field in the transverse directions shows differences that depend on local cell arrangement as confirmed by finite element analysis. The displacement component in the loading direction is affected by the magnitude of imposed displacement and shows more regular change. Large displacement levels in the compression direction are in good agreement with the imposed experimental displacement. The results presented here are promising in a sense of possible identification of local foam properties. New insights are expected to achieve better understanding of structural heterogeneities in the overall perception of the product. Industrial relevance: Texture evaluation of cereal product is an important aspect for testing consumer acceptability of new designed products. Mechanical evaluation of backed products is a systemic route for determining texture of cereal based product. From the industrial viewpoint, mechanical evaluation allows saving both time and cost compared to panel evaluation. We demonstrate that better understanding of structural changes during texture evaluation can be achieved in addition to texture evaluation. Sensing structural changes during bread crumb compression is achievable by combining novel imaging technique and processing based on image analysis. We present thus an efficient way to predict displacements during compression of freshly baked product. This method can be used in different
Boyd, Steven Earl
Polymer matrix composites are seeing increasing use in structural systems (e.g. ships, bridges) and require a quantitative basis for describing their performance under combined mechanical load and fire. Although much work has been performed to characterize the flammability, fire resistance and toxicity of these composite systems, an understanding of the structural response of sandwich type structures and laminate panels under combined mechanical and thermal loads (simulating fire conditions) is still largely unavailable. Therefore a research effort to develop a model to describe the structural response of these glass/vinyl esters systems under fire loading conditions is relevant to the continuing and future application of polymer matrix composites aboard naval ships. The main goal of the effort presented here is to develop analytical models and finite element analysis methods and tools to predict limit states such as local compression failures due to micro-buckling, residual strength and times to failure for composite laminates at temperatures in the vicinity of the glass transition where failure is controlled by viscoelastic effects. Given the importance of compression loading to a structure subject to fire exposure, the goals of this work are succinctly stated as the: (a) Characterization of the non-linear viscoelastic and viscoplastic response of the E-glass/vinyl ester composite above Tg. (b) Description of the laminate compression mechanics as a function of stress and temperature including viscoelasticity. (c) Viscoelastic stress analysis of a laminated panel ([0/+45/90/-45/0] S) using classical lamination theory (CLT). Three manuscripts constitute this dissertation which is representative of the three steps listed above. First, a detailed characterization of the nonlinear thermoviscoelastic response of Vetrotex 324/Derakane 510A--40 through Tg was conducted using the Time--Temperature--Stress--Superposition Principle (TTSSP) and Zapas--Crissman model. Second
Shock Compression and Recovery of Microorganism-Loaded Broths and AN Emulsion
Hazell, P. J.; Beveridge, C.; Groves, K.; Stennett, C.
2009-12-01
The microorganisms Escherichia coli, Enterococcus faecalis and Zygosaccharomyces bailii and an oil-based emulsion, have been subjected to shock compression using the flyer-plate technique to initial pressures of 0.8 GPa (in the suspension). In each experiment, a stainless steel capsule was used to contain the broths and allow for recovery without contamination. Where cavitation was mostly suppressed by virtue of simultaneous shock and dynamic compression, no kill was observed. By introducing an air gap behind the suspension, limited kill was measured in the yeast. Results also suggest that stable emulsification occurs in coarse oil-based emulsions that are subjected to shock.
Institute of Scientific and Technical Information of China (English)
Xu-qing CHANG; Li-ying ZHANG; Yong-biao YANG; Jing-li REN
2016-01-01
Two constitutive models,the modified Johnson-Cook model and the logarithm linear relation model based on empirical approach and data analysis,were presented to illustrate compressive deformation of magnesium alloys AZ80 under multiple loading directions and strain rates.The results of stress-strain curve analysis and sensitivity in-dex analysis suggested that the stress held large fluctuations in loading direction of 90°.Model testing signified that the logarithm linear relation model was more proper than the modified Johnson-Cook model in view of relative mean square error and correlation coefficients.Moreover,numerical simulation building on established models also indica-ted that the logarithm linear model is more precise than the modified Johnson-Cook model.
On the Effect of Curvature in Debonded Sandwich Panels Subjected to Compressive Loading
DEFF Research Database (Denmark)
Moslemian, Ramin; Berggreen, Christian; Branner, Kim
2008-01-01
with a circular debond. The Crack Surface Displacement Extrapolation (CSDE) method is used to calculate fracture parameters in the interface. Compression tests were carried out on two types of debonded curved panels with different curvature using Digital Image Correlation (DIC) measurements to determine the full-field...
Directory of Open Access Journals (Sweden)
S.Mohammad Reza Mortazavi
2016-06-01
Full Text Available There have been some experimental tests on hollow curved-steel struts with thin-walled square sections, in order to investigate their general behavior, particularly their capacity for bearing differing loads. One set of square tubes are cold-formed into segments of circular arcs with curvature radii, equal to 4000 mm. Different lengths of curved struts are fabricated so as to cover a practical range of slenderness ratios. The struts tests were pin-ended and had slenderness ratios, based on the straight length between ends ranging from 31-126. The cold-forming operation induces initial inelastic behavior and associated residual stresses. There is, therefore, an interaction among material effects, such as the strain hardening capacity, the Bauschinger effect, strain aging, and residual stresses, together with the significant geometrical effect of the initial curvature, caused by the cold-forming operation. Eventually the results from three series of tests, which are taken on fully-aged and stress-relief-annealed square curved struts, are compared. The variations in load carrying response are discussed.
Directory of Open Access Journals (Sweden)
Ivo Stachiv
2015-11-01
Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.
Energy Technology Data Exchange (ETDEWEB)
Stachiv, Ivo, E-mail: stachiv@fzu.cz [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China); Institute of Physics, Czech Academy of Sciences, Prague (Czech Republic); Fang, Te-Hua; Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)
2015-11-15
Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.
High Power Disk Loaded Guide Load
Energy Technology Data Exchange (ETDEWEB)
Farkas, Z.D.; /SLAC
2006-02-22
A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.
Benghuzzi, Hamed; Tucci, Michelle A; Ibrahim, Jamil
2015-01-01
Density variations, due to particle size and time and temperature of sintering, affect the delivery profile of substances from ceramic delivery devices. This investigation was conducted to study the effect of polylactic acid (PLA) impregnation on the porosity of hydroxyapatite (HA) capsules by studying the delivery rate of bovine serum albumin (BSA) and testosterone (TE). HA capsules were fabricated by cold compressing calcined particles at 1000, 3000, and 5000 lbs. Each group was subdivided into PLA-impregnated and non-PLA impregnated capsules. Each capsule was loaded with either 40 mg of TE (impregnated or nonimpregnated with PLA polymer) or BSA. Data obtained in this study suggest that: (1) PLA impregnation of HA ceramic capsules decreases the rate of release of drugs from the ceramic reservoir, (2) Physiochemical characteristics of the drugs to be delivered is an instrumental key in the sustained release profiles, (3) Compression load of HA reservoirs is a key factor in predicting the duration and level of sustained delivery, and (4) Polymer coating of HA ceramic capsules reduces the pore size, as well as, blocking some of the pores on the surface.
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Bitsche, Robert; Blasques, José Pedro Albergaria Amaral
2017-01-01
properties, progressive material failure, and system reliability effects. An example analysis of reliability against material failure is demonstrated for a blade cross section. Based on the study we discuss the implications of using a system reliability approach, the effect of spatial correlation length......This paper presents a methodology for structural reliability analysis of wind turbine blades. The study introduces several novel elements by taking into account loading direction using a multiaxial probabilistic load model, considering random material strength, spatial correlation between material......, type of material degradation algorithm, and reliability methods on the system failure probability, as well as the main factors that have an influence on the reliability. (C) 2017 Elsevier Ltd. All rights reserved....
Bergström, I; Kerns, J G; Törnqvist, A E; Perdikouri, C; Mathavan, N; Koskela, A; Henriksson, H B; Tuukkanen, J; Andersson, G; Isaksson, H; Goodship, A E; Windahl, S H
2017-03-01
Loading increases bone mass and strength in a site-specific manner; however, possible effects of loading on bone matrix composition have not been evaluated. Site-specific structural and material properties of mouse bone were analyzed on the macro- and micro/molecular scale in the presence and absence of axial loading. The response of bone to load is heterogeneous, adapting at molecular, micro-, and macro-levels. Osteoporosis is a degenerative disease resulting in reduced bone mineral density, structure, and strength. The overall aim was to explore the hypothesis that changes in loading environment result in site-specific adaptations at molecular/micro- and macro-scale in mouse bone. Right tibiae of adult mice were subjected to well-defined cyclic axial loading for 2 weeks; left tibiae were used as physiologically loaded controls. The bones were analyzed with μCT (structure), reference point indentation (material properties), Raman spectroscopy (chemical), and small-angle X-ray scattering (mineral crystallization and structure). The cranial and caudal sites of tibiae are structurally and biochemically different within control bones. In response to loading, cranial and caudal sites increase in cortical thickness with reduced mineralization (-14 and -3%, p micro-scale to maintain optimal function. Manipulation of this heterogeneity may affect bone strength, relative to specific applied loads.
Failure Behavior of Unidirectional Composites under Compression Loading: Effect of Fiber Waviness
Directory of Open Access Journals (Sweden)
Swaroop Narayanan Nair
2017-08-01
Full Text Available The key objective of this work is to highlight the effect of manufacturing-induced fiber waviness defects on the compressive failure of glass fiber-reinforced unidirectional specimens. For this purpose, in-plane, through-thickness waviness defects (with different waviness severities are induced during the manufacturing of the laminate. Numerical and experimental results show that the compressive strength of the composites decreases as the severity of the waviness defects increases. A reduction of up to 75% is noted with a wave severity of 0.075. Optical and scanning electron microscopy observations of the failed specimens reveal that kink-bands are created in the wavy regions and lead to failure.
Strength of Tubular Joints Made by Electromagnetic Compression at Quasistatic and Cyclic Loading
Barreiro, P.; Beerwald, C.; Homberg, W.; Kleiner, M.; Löhe, D.; Marré, M.; Schulze, V.
2006-01-01
Electromagnetic compression of tubular profiles with high electrical conductivity is an innovative joining process for lightweight structures. The components are joined using pulsed magnetic fields which apply radial pressures of up to 200 MPa to tubular workpieces, causing a symmetric reduction of the diameter with typical strain rates of up to 10^4 sec^(-1). This process avoids any surface damage of the workpiece because there is no contact between component and forming tool. The strength o...
The shock compression of microorganism-loaded broths and emulsions: Experiments and simulations
Hazell, P. J.; Beveridge, C.; Groves, K.; Appleby-Thomas, G.
2010-01-01
Abstract By carefully selecting flyer plate thickness and the geometry of a target capsule for bacterial broths and emulsions, we have successfully subjected the contents of the capsule to simultaneous shock and dynamic compression when subjected to a flyer-plate impact experiment. The capsules were designed to be recovered intact so that post experimental analysis could be done on the contents. ANSYS? AUTODYN hydrocode simulations were carried out to interrogate the deformation of...
Energy Technology Data Exchange (ETDEWEB)
Krueger, L.; Decker, S.; Ehinger, D. [Institute of Materials Engineering, TU Bergakademie Freiberg (Germany); Ohser-Wiedemann, R.; Martin, S.; Martin, U.; Seifert, H.J. [Institute of Materials Science, TU Bergakademie Freiberg (Germany)
2011-09-15
Several composites, consisting of a metastable austenitic steel matrix and varying amounts of MgO partially stabilized zirconia particles (Mg-PSZ), were produced through spark plasma sintering (SPS). Compression tests were carried out at room temperature in a wide range of strain rate (4 . 10{sup -4} s{sup -1}, 2 . 10{sup -3} s{sup -1}, 10{sup -1} s{sup -1}, 1 s{sup -1}, 10{sup 2} s{sup -1}). In conjunction with subsequent microstructural investigations, the mechanical material behaviour was clarified. All composites showed a good ductility and a high strength. The strength increased with an increase of the ceramic content and with higher strain rates. Both, the martensitic transformation of the steel matrix and of the ceramic particles, could be proved at all strain rates. In this study no significant influence of the strain rate on the amount of transformed ceramic could be detected while the steel matrix showed less {alpha}'-martensite after compression at rising strain rates. Local material failure occurred around 0.3 true compressive strain depending on the applied strain rate and the amount of the Mg-PSZ powder. The main reason for the damage is the relatively weak ceramic-ceramic interface within the ceramic clusters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Institute of Scientific and Technical Information of China (English)
王玉银; 耿悦; 张素梅
2011-01-01
针对钢管混凝土拱桥中普遍采用的钢管微膨胀高性能混凝土,考虑轴压比、加载龄期等因素的影响,进行了圆钢管微膨胀混凝土轴心受压短柱的长期变形试验研究。采用逐步积分法,将5种不同混凝土收缩、徐变模型进行适当修正,应用于钢管微膨胀混凝土轴心受压短柱的长期变形分析,并将分析结果与试验结果进行对比。分析了含钢率、加载龄期、持荷时间、混凝土强度等因素对钢管微膨胀混凝土构件长期静力性能的影响。研究结果表明：修正后的EC2,MC90及AFREM模型在分析加载龄期不超过28d的钢管微膨胀混凝土构件在轴向荷载作用下的长期变形性能时具有较高的精度;核心混凝土时效作用对钢管微膨胀混凝土构件长期静力响应的影响显著。%Aimed at high performance concrete-filled steel tubular（CFST） with expansive additive which has been widely adopted in CFST arch bridges,considering the influence of axial compression ratio and loading age,test study of long-term deformation of circular CFST stubs with expansive additive under axial loading was carried out.Using step-by-step integration method,5 different concrete models of shrinkage and creep were modified,then modified models were applied to long-term deformation analysis of CFST stubs with expansive additive.Analysis result and test result were compared.The influences of ratio of steel area over concrete area,loading age,duration of loading,strength of the core concrete,etc.on the long-term static performance of these CFST specimens were analyzed.Results show that the modified models EC2,MC90 and AFREM can well predict the long-term deformation performance of CFST stubs with expansive additive loaded before 28 days.Time-effects of core concrete have considerable influence on the long-term static response of CFST specimens with expansive additive.
Constitutive modelling and multiaxial testing of concrete under non proportional compressive loading
Energy Technology Data Exchange (ETDEWEB)
Bouzaiene, A.; Massicotte, B. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique
1995-12-31
An experimental program was conducted to calibrate and validate an analytical model, and to determine some characteristics of the behaviour of concrete under increasing lateral confinement. A three-dimensional constitutive relation based on hypoelastic theory was developed for plain concrete under both monotonic and non-proportional loading, taking into account the effect of increasing confinement on the transition of failure mechanisms from brittle to ductile degradation under cyclic loading. The stress-strain responses predicted by the model were found to be in good agreement with the experimental results, and the constitutive relationship was found to apply well for various loading conditions. Based on these results the model was considered to offer a good compromise between simplicity and accuracy for unified constitutive models for plain concrete. 13 refs., 1 tab., 8 figs.
Institute of Scientific and Technical Information of China (English)
周天华; 杨东华; 聂少锋; 吴函恒
2012-01-01
对不同长细比的8根四肢拼合冷弯薄壁型钢截面立柱的轴压性能进行试验研究，在试验研究的基础上建立考虑材料、几何和接触非线性的有限元模型，并通过对试验试件的数值模拟，验证有限元方法的正确性。采用数值方法分析长细比、连接螺钉间距、截面翼缘宽厚比对四肢拼合冷弯薄壁型钢截面立柱轴压性能的影响。结果表明：试件最终破坏均呈现局部屈曲和畸变屈曲的破坏模式；四肢拼合冷弯薄壁型钢截面立柱的轴压性能具有“1×4≥4”的拼合效应；随着长细比的增大，四肢拼合立柱的最大承载力和刚度逐渐降低；当螺钉间距在150—450mm之间变化时，四肢拼合立柱的最大承载力和刚度变化不大；减小四肢拼合立柱截面的翼缘宽厚比，可以显著提高其最大承载力。%Eight specimens of quadruple-C built-up section cold-formed steel columns with different slenderness ratios were tested under axial compression load. The load bearing capacity of the specimens was analyzed. The finite element models involving geometric nonlinearity, materials nonlinearity and contact mechanics were presented. The results of finite element method （FEM） are close to those from the tests, proving that the FEM is reasonable. Factors that influence the behavior of members under axial compression, including slenderness ratio, spacing of screws and the width- thickness ratio, were studied. The results show that the failure modes of all specimens are local buckling and distortional buckling, and the axial bearing capacity of quadruple-C built-up section members is four times more than that of single C-section ones. The axial bearing capacity and stiffness of the quadrnple-C built-up section members decrease as the slenderness ratio increases. The effect of the spacing of screws from 150mm to 450mm on the axial bearing capacity and stiffness of quadrnple-C built-up section members
Numerical Simulation of Hydrodynamic Wave Loading by a Compressible Two-Phase Model
Wemmenhove, R.; Loots, G.E.; Veldman, A.E.P.
2006-01-01
The numerical simulation of hydrodynamic wave loading on different types of offshore structures is important to predict forces on and water motion around these structures. This paper presents a numerical study of the effects of two-phase flow on an offshore structure subject to breaking waves. The
Numerical simulation of hydrodynamic wave loading by a compressible two-phase flow method
Wemmenhove, Rik; Luppes, Roelf; Veldman, Arthur; Bunnik, Tim
2015-01-01
Hydrodynamic wave loading on and in offshore structures is studied by carrying out numerical simulations. Particular attention is paid to complex hydrodynamic phenomena such as wave breaking and air entrapment. The applied CFD method, ComFLOW, solves the Navier–Stokes equations with an improved Volu
Institute of Scientific and Technical Information of China (English)
Zhen-zhen PENG; Xin-min CHEN; Jun WANG; Ai-jie LI; Zu-jie XU
2013-01-01
Objective:This study investigated the effect of proximal contact strength on the three-dimensional displacements of cantilever fixed partial denture (CFPD) under vertically concentrated loading with digital laser speckle (DLS) technique.Methods:Fresh mandible of beagle dog was used to establish the implant-supported CFPD for specimen.DLS technique was employed for measuring the three-dimensional displacement of the prosthesis under vertically concentrated loading ranging from 200 to 3000 g.The effect of the contact tightness on the displacement of CFPD was investigated by means of changing the contact tightness.Results:When an axial concentrated loading was exerted on the pontic of the implant-supported CFPD,the displacement of the CFPD was the greatest.The displacement of the prosthesis decreased with the increase of contact strength.When the contact strength was 0,0.95,and 3.25 N,the displacement of the buccolingual direction was smaller than that of the mesiodistal direction but greater than that of the occlusogingival direction.When the force on the contact area was 6.50 N,the mesiodistal displacement of the prosthesis was the biggest while the buccolingual displacement was the smallest.Conclusions:The implantsupported CFPD is an effective therapy for fully or partially edentulous patients.The restoration of the contact area and the selection of the appropriate contact strength can reduce the displacement of the CFPD,and get a better stress distribution.The most appropriate force value is 3.25 N in this study.
Compressive Strength of a Longitudinally Stiffened FRP Panel
DEFF Research Database (Denmark)
Riber, Hans Jørgen; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup
1997-01-01
A structural analysis of a cross stiffened orthotropic FRP panel subjected to uni-axial compressive load is crarried out. Analytical Calculations of the strength of the panel are presented and compared to finite element analysis performed by different authors. Both analytica and finite element ap...... approaches confirm an identical failrue scenario. In the present case, the load carrying capacity of the stiffened panel is limited by the plate stiffener debonding stress....
Institute of Scientific and Technical Information of China (English)
丁向东; 连建设; 江中浩; 孙军
2001-01-01
Using large strain two-dimension axisymmetric elasto-plastic finite element method and the modified law of mixture, the effects of thermal residual stresses on the yielding behavior of short fiber reinforced metal matrix composite and their dependencies on the material structure parameters (fiber volume fraction, fiber aspect ratio and fiber end distance) were studied. It is demonstrated that the stress-strain partition parameter can be used to describe the stress transfer from the matrix to the fiber. The variation of the second derivation of the stress-strain partition parameter can be used to determine the elastic modulus, the proportion limit, the initial and final yield strengths. In the presence of thermal residual stress, these yielding properties are asymmetric and are influenced differently by the material structure parameters under tensile and compressive loadings.
Indian Academy of Sciences (India)
Cengiz Erdonmez; C Erdem Imrak
2011-12-01
Due to the complex geometry of wires within a wire rope, it is difﬁcult to model and analyse independent wire rope core accurately (IWRC). In this paper, a more realistic three-dimensional modelling approach and ﬁnite element analysis of wire ropes are explained. Single helical geometry is enough to model simple straight strand while IWRC has a more complex geometry by inclusion of double helical wires in outer strands. Taking the advantage of the double helical wires, three-dimensional IWRCs modelling is applied for both right regular lay and lang lay IWRCs. Wire-by-wire based results are gathered by using the proposed modelling and analysis method under various loading conditions. Illustrative examples are given for those show the accuracy and the robustness of the present FE analysis scheme with considering frictional properties and contact interactions between wires. FE analysis results are compared with the analytical and available test results and show reasonable agreement with a simpler and more practical approach.
Abd Kadir, N.; Aminanda, Y.; Ibrahim, M. S.; Mokhtar, H.
2016-10-01
A statistical analysis was performed to evaluate the effect of factor and to obtain the optimum configuration of Kraft paper honeycomb. The factors considered in this study include density of paper, thickness of paper and cell size of honeycomb. Based on three level factorial design, two-factor interaction model (2FI) was developed to correlate the factors with specific energy absorption and specific compression strength. From the analysis of variance (ANOVA), the most influential factor on responses and the optimum configuration was identified. After that, Kraft paper honeycomb with optimum configuration is used to fabricate foam-filled paper honeycomb with five different densities of polyurethane foam as filler (31.8, 32.7, 44.5, 45.7, 52 kg/m3). The foam-filled paper honeycomb is subjected to quasi-static compression loading. Failure mechanism of the foam-filled honeycomb was identified, analyzed and compared with the unfilled paper honeycomb. The peak force and energy absorption capability of foam-filled paper honeycomb are increased up to 32% and 30%, respectively, compared to the summation of individual components.
Jayaratne, E R; Ristovski, Z D; Meyer, N; Morawska, L
2009-04-01
Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 km h(-1). Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 10(12) particles min(-)(1) at idle to 10(15) particles km(-)(1) at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.
Trementozzi, Andrea N; Leung, Cheuk-Yui; Osei-Yeboah, Frederick; Irdam, Erwin; Lin, Yiqing; MacPhee, J Michael; Boulas, Pierre; Karki, Shyam B; Zawaneh, Peter N
2017-05-15
Optimizing powder flow and compaction properties are critical for ensuring a robust tablet manufacturing process. The impact of flow and compaction properties of the active pharmaceutical ingredient (API) becomes progressively significant for higher drug load formulations, and for scaling up manufacturing processes. This study demonstrated that flow properties of a powder blend can be improved through API particle engineering, without critically impacting blend tabletability at elevated drug loadings. In studying a jet milled API (D50=24μm) and particle engineered wet milled API (D50=70μm and 90μm), flow functions of all API lots were similarly poor despite the vast difference in average particle size (ffc10) compared with the jet milled API blends. Investigation of the compaction properties of both wet and jet milled powder blends also revealed that both jet and wet milled material produced robust tablets at the drug loadings used. The ability to practically demonstrate this uncommon observation that similarly poor flowing APIs can lead to a marked difference upon blending is important for pharmaceutical development. It is especially important in early phase development during API selection, and is advantageous particularly when material-sparing techniques are utilized. Copyright © 2017 Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
赵斐; 何晓雁; 乔建新
2011-01-01
36 autoclaved fly ash brick masonries are built for axial compressive tests.An experiment is carried out with the strength of both masonry and mortar serving as the basic parameters and the dial indicator used for measuring the deformation of masonries.Based on the experiment, the development features of cracks and the deformation patterns of masonries under compressure are analyzed.In light of the results of axial compressive tests of all the 36 masonries, a calculative formula of the compressive strength of autoclaved fly ash brick is established, which will supply experimental data for compiling regional technical codes.And, thus, the application of autoclaved fly ash brick will be extended.%试验以块体和砂浆强度为基本参数,砌筑36个蒸压粉煤灰砖砌体试件进行轴心受压试验,并配合百分表量测砌体变形.通过蒸压粉煤灰砖砌体轴心受压试验,分析了砌体受压时裂缝的发展特点和变形规律,根据36个试件的抗压试验结果,建立了蒸压粉煤灰砖砌体抗压强度的计算公式,为相关规范的编制提供试验数据,以利于蒸压粉煤灰砖的推广应用.
Prediction of Axial Capacity of Concrete-Filled Square Steel Tubes Using Neural Networks
Institute of Scientific and Technical Information of China (English)
Zhu Meichun; Wang Qingxiang; Feng Xiufeng
2005-01-01
The application of artificial neural network to predict the ultimate beating capacity of CFST ( concrete-filled square steel tubes)short columns under axial loading is explored. Input parameters consiste of concrete compressive strength, yield strength of steel tube, confinement index, sectional dimension and width-to-thickness ratio. The ultimate bearing capacity is the only output parameter. A multilayer feedforward neural network is used to describe the nonlinear relationships between the input and output variables.Fifty-five experimental data of CFST short columns under axial loading are used to train and test the neural network. A comparison between the neural network model and three parameter models shows that the neural network model possesses good accuracy and could be a practical method for predicting the ultimate strength of axially loaded CFST short columns.
DEFF Research Database (Denmark)
Witting, Nanna; Andersen, Linda K; Vissing, John
2016-01-01
musculature involvement in the majority of myopathies in which paraspinal musculature was examined. Even in diseases named after a certain pattern of non-axial muscle affection, such as facioscapulohumeral and limb girdle muscular dystrophies, affection of the axial musculature was often severe and early...
Failure Loads for Model Adhesive Joints Subjected to Tension, Compression or Torsion.
1981-10-25
014’ 61SCRT LSSPCTO PTI PGQUu aem V4TV CLASWtPICATI@ OF ThIS PASS (3h urO & Weee Measurements have been made of the failure loads under finston, cowlpres...Tech. Center Silver Spring, MD 20910 Code D Indian Head, MD 20640 Dr. T.D. Austin 1 Naval Surface Weapons Center Mr. C.L. Adams Code R16 Naval Ordnance...Station White Oak Laboratory Code 5253 Silver Spring, MD 20910 Indian Head, MD 20640 Mr. G.L. Mackenzie 1 Dr. William Tolles Naval Surface Weapons Center
Study of the stress-strain state of compressed concrete elements with composite reinforcement
Directory of Open Access Journals (Sweden)
Bondarenko Yurii
2017-01-01
Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.
A non-linear homogeneous model for bone-like materials under compressive load.
Mengoni, M; Voide, R; de Bien, C; Freichels, H; Jérôme, C; Léonard, A; Toye, D; Müller, R; van Lenthe, G H; Ponthot, J P
2012-02-01
Finite element (FE) models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. In order to simulate non-linear behavior, which currently is only feasible at the expense of extremely high computational costs, coarser models can be used if the local morphology has been linked to the apparent mechanical behavior. The aim of this paper is to implement and validate such a constitutive law. This law is able to capture the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using an elastoplastic material model incorporating hardening. These features are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strain framework. This material model was implemented into metafor (LTAS-MNNL, University of Liège, Belgium), a non-linear FE software. The implementation was validated against experimental data of cylindrical samples subjected to compression. Three materials with bone-like microstructure were tested: aluminum foams of variable density (ERG, Oakland, CA, USA), polylactic acid foam (CERM, University of Liège, Liège, Belgium), and cancellous bone tissue of a deer antler (Faculty of Veterinary Medicine, University of Liège, Liège, Belgium).
INFLUENCE OF UTILIZED LOAD OF DRIVE OF COMPRESSING STATION UPON PARAMETERS OF GTP
Directory of Open Access Journals (Sweden)
A. A. Abrazovski
2014-01-01
Full Text Available Today it is required to use secondary energy resources (STR, which we have in gas-transport system of the country, more efficiently. In this system (STR smoke gases of gas transforming aggregates with turbogas drive installations are presented primarily.For using STR of turbogas drives it is necessary to forecast heat exchange equipment installation, this causes the growth of aerodynamic resistance of exhaust channel. This influences on all plant’s work. It was experimentally proved that the usage of utilized equipment influences upon increasing of power efficiency. For this reason the perturbation method was used, which allow to determine rate of influence. Convenience of this method is that the solution can be obtained in the form of evident analytical dependence and it does not depend on formulated problem, number of variable and definite relations between them.Using the perturbation method influence efficiency was obtained, which influences on exhaust channel resistance changes and as a result changes power efficiency and in the whole plant’s efficiency. Besides, in this article the dependence of influence efficiency from stating parameters of cycle was presented in graphs: temperature of burning products before turbine and air compression.
Influence of the Saturation Ratio on Concrete Behavior under Triaxial Compressive Loading
Directory of Open Access Journals (Sweden)
Xuan-Dung Vu
2015-01-01
Full Text Available When a concrete structure is subjected to an impact, the material is subjected to high triaxial compressive stresses. Furthermore, the water saturation ratio in massive concrete structures may reach nearly 100% at the core, whereas the material dries quickly on the skin. The impact response of a massive concrete wall may thus depend on the state of water saturation in the material. This paper presents some triaxial tests performed at a maximum confining pressure of 600 MPa on concrete representative of a nuclear power plant containment building. Experimental results show the concrete constitutive behavior and its dependence on the water saturation ratio. It is observed that as the degree of saturation increases, a decrease in the volumetric strains as well as in the shear strength is observed. The coupled PRM constitutive model does not accurately reproduce the response of concrete specimens observed during the test. The differences between experimental and numerical results can be explained by both the influence of the saturation state of concrete and the effect of deviatoric stresses, which are not accurately taken into account. The PRM model was modified in order to improve the numerical prediction of concrete behavior under high stresses at various saturation states.
Severson, Aaron F; Ling, Lorraine; van Zuylen, Vanessa; Meyer, Barbara J
2009-08-01
Faithful transmission of the genome through sexual reproduction requires reduction of genome copy number during meiosis to produce haploid sperm and eggs. Meiosis entails steps absent from mitosis to achieve this goal. When meiosis begins, sisters are held together by sister chromatid cohesion (SCC), mediated by the cohesin complex. Homologs then become linked through crossover recombination. SCC subsequently holds both sisters and homologs together. Separation of homologs and then sisters requires two successive rounds of chromosome segregation and the stepwise removal of Rec8, a meiosis-specific cohesin subunit. We show that HTP-3, a known component of the C. elegans axial element (AE), molecularly links these meiotic innovations. We identified HTP-3 in a genetic screen for factors necessary to maintain SCC until meiosis II. Our data show that interdependent loading of HTP-3 and cohesin is a principal step in assembling the meiotic chromosomal axis and in establishing SCC. HTP-3 recruits all known AE components to meiotic chromosomes and promotes cohesin loading, the first known involvement of an AE protein in this process. Furthermore, REC-8 and two paralogs, called COH-3 and COH-4, together mediate meiotic SCC, but they perform specialized functions. REC-8 alone is necessary and sufficient for the persistence of SCC after meiosis I. In htp-3 and rec-8 mutants, sister chromatids segregate away from one another in meiosis I (equational division), rather than segregating randomly, as expected if SCC were completely eliminated. AE assembly fails only when REC-8, COH-3, and COH-4 are simultaneously disrupted. Premature equational sister separation in rec8 mutants of other organisms suggests the involvement of multiple REC-8 paralogs, which may have masked a conserved requirement for cohesin in AE assembly.
Chen, Shu-Cheng S.
2017-01-01
A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.
Numerical analysis of two pile caps with sockets embedded, subject the eccentric compression load
Directory of Open Access Journals (Sweden)
R. G. Delalibera
Full Text Available The structural behavior of pile caps with sockets embedded is influenced by interface of column-socket, which can be smooth or rough. With intent to analyze the behavior of two pile caps with embedded socket, considering the friction between the column and the socket, with eccentric normal load, the numerical simulations were carried out, using a program based on the Finite Element Methods (FEM. In the numerical analysis the non-linear behavior of materials was considered, also the friction between the column and the socket. It was considered perfect bond between the reinforcement and the concrete around. It was observed that the embedded length is preponderant factor in the structural behavior of the analyzed element.
Directory of Open Access Journals (Sweden)
Suman Bargav. R
2015-07-01
Full Text Available :Quasi-static compression tests were performed on empty and foam filled Aluminium square tubes. Two different foam types: Extended Polystyrene (XPS and Extended Polyethylene (XPE were used to fill the empty tubes. In this paper experimental and numerical simulations were performed to investigate the effect of foam filling on crashworthiness parameters
Energy Technology Data Exchange (ETDEWEB)
Eisenacher, Germar
2014-01-28
Spruce wood is frequently used as an energy absorbing material in impact limiters of packages for the transportation of radioactive material. A 9m drop test onto an unyielding target is mandatory for the packages. The impact results in a dynamic compression load of the spruce wood inside the impact limiter. The lateral dilation of the wood is restrained thereby due to encasing steel sheets. This work's objective was to provide a material model for spruce wood based on experimental investigations to enable the calculation of such loading conditions. About 600 crush tests with cubical spruce wood specimens were performed to characterize the material. The compression was up to 70% and the material was assumed to be transversely isotropic. Particularly the lateral constraint showed to have an important effect: the material develops a high lateral dilation without lateral constraint. The force-displacement characteristics show a comparably low force level and no or only slight hardening. Distinctive softening occurs after the linear-elastic region when loaded parallel to the fiber. On the other hand, using a lateral constraint results in significantly higher general force levels, distinctive hardening and lateral forces. The softening effect when loaded parallel to the fiber is less distinctive. Strain rate and temperature raise or lower the strength level, which was quantified for the applicable ranges of impact limiters. The hypothesis of an uncoupled evolution of the yield surface was proposed based on the experimental findings. It postulates an independent strength evolution with deviatoric and volumetric deformation. The hypothesis could be established using the first modeling approach, the modified LS-DYNA material model MAT075. A transversely isotropic material model was developed based thereupon and implemented in LS-DYNA. The material characteristics of spruce wood were considered using a multi-surface yield criterion and a non-associated flow rule. The
Kapoor, Rajeev
In this study it was attempted to understand the deformation behavior of tantalum and tantalum alloyed with 2.5 weight % tungsten. Uniaxial compressive deformation was carried out on polycrystalline Ta, Ta-2.5%W, and single crystal Ta. Experiments were carried out for a range of strain rates (10sp{-4}/s to 3000/s), and for a range of temperatures (77K, 296K-1000K). During high strain rate adiabatic plastic deformation of Ta-2.5%W, the energy converted to heat was directly measured using an infra-red method, and indirectly, using the recovery Hopkinson bar technique. It was concluded that within experimental error close to 100% of the work is converted to heat. During high strain rate deformation, the internal dislocation structure of both Ta and Ta-2.5%W was found to be independent of testing temperature. Thus the flow stress could be separated into two types of components, one type which are strain rate - temperature dependent and the other type which are only strain dependent. However, at lower strain rates prominent dynamic strain aging is observed and the effect of strain is coupled with the strain rate - temperature effect. At these lower strain rates, the evolution of structure does depend on the applied strain rate and temperature. When deformed at liquid nitrogen temperature, tantalum twins even at strain rates as low as 0.001/s. In the high strain rate - room temperature regime no twinning is observed. With the addition of tungsten to tantalum, the temperature and strain rate sensitivity of flow stress reduces. In addition to this, twinning is inhibited and occurs only at high strain rates - liquid nitrogen temperatures. Experiments on single crystal tantalum carried out revealed that the temperature sensitivity of flow stress on the (211) (111) slip system is similar to that on the (101) (111) slip system. Further experiments carried out on single crystal tantalum to study latent hardening did show 10% latent hardening on the \\{211\\} intersecting slip
Clegg, Richard A.; Hayhurst, Colin J.
1999-06-01
Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless
Directory of Open Access Journals (Sweden)
Wei Zhang
2015-01-01
Full Text Available At the request of the Author, the following article Zhang, W, Hou, W, Hu, Ping and Ma, Z (2014 The Nonlinear Compressive Response and Deformation of an Auxetic Cellular Structure under In-Plane Loading Advances in Mechanical Engineering published 17 November 2014. doi: 10.1155/2014/214681has been retracted due to errors discovered by the authors. On Page 3, the definition of component force in Equation 4 is incorrect. (2 On Page 4, the definition of component force in Equation 11 is incorrect. Moreover this equation should not have parameterM(length of cell wall, because a mistake was made in the process of calculation. Because of the above reasons, the conclusion obtained from the mechanical model is incorrect and should instead state that the Elastic Buckling and Plastic Collapse are both yield modes of this structure (3 On Page 5, the FEA model used in this article is not appropriate, because the deformation of single cell is not homogeneous, which means that the geometrical non-linear effect on single cell model is greater. So in the actual whole structure we may not obtain the results that were described in Page 6 Paragraph 2. (4 The data in figures 8 (page 6 and 9 (page 7 is incorrect and the values of effective Young’s modulus and plateau stress are much larger than reasonable values. The definition of effective stress is wrong in the FEA model, which means the effective stress should be calculated by the total width of cell instead of length of horizontal cell wall. For example, in Figure 8, the plateau stress can reach 140Mpa, this is not reasonable because there are many holes in this cellular structure, and its mechanical properties should be much lower than material properties of cell wall. The reasonable plateau stress should be around 2Mpa. The authors takes responsibility for these errors and regret the publication of invalid results. The nonlinear compressive response and deformation of an auxetic cellular structure that has
加劲肋对轴心受压圆管柱脚应力的影响%The Influence of Stiffening Rib on Axial Compression Round String Stress
Institute of Scientific and Technical Information of China (English)
张向红
2014-01-01
Exposed column base is applied most frequently in al forms of column foot, and the calculation of column foot motherboard has become a critical problem. According to the different forms of stif ening rib, this paper compares the stress of axial compression string round feet, analyzes the effect of stif eners on the heel stress.%外露式柱脚是在所有柱脚形式中应用得最多的一种，柱脚底板的计算就成为一个至关重要的问题。本文针对不同的加劲肋形式，对轴心受压圆管柱脚的应力进行对比，分析加劲肋对柱脚应力的影响。
Institute of Scientific and Technical Information of China (English)
Cheng-Qi Sun; Kai-Xin Liu; You-Shi Hong
2012-01-01
The paper studies the axisymmetric compressive buckling behavior of multi-walled carbon nanotubes (MWNTs) under different boundary conditions based on continuum mechanics model.A buckling condition is derived for determining the critical buckling load and associated buckling mode of MWNTs,and numerical results are worked out for MWNTs with different aspect ratios under fixed and simply supported boundary conditions.It is shown that the critical buckling load of MWNTs is insensitive to boundary conditions,except for nanotubes with smaller radii and very small aspect ratio.The associated buckling modes for different layers of MWNTs are in-phase,and the buckling displacement ratios for different layers are independent of the boundary conditions and the length of MWNTs.Moreover,for simply supported boundary conditions,the critical buckling load is compared with the corresponding one for axial compressive buckling,which indicates that the critical buckling load for axial compressive buckling can be well approximated by the corresponding one for axisymmetric compressive buckling.In particular,for axial compressive buckling of double-walled carbon nanotubes,an analytical expression is given for approximating the critical buckling load.The present investigation may be of some help in further understanding the mechanical properties of MWNTs.
Elastic and inelastic stability capacity of single angle under axial compression%单角钢轴压杆件弹性和非弹性稳定承载力
Institute of Scientific and Technical Information of China (English)
陈绍蕃
2012-01-01
Hot rolled angles are classified into two categories： equal-leg and unequal-leg. Owing to the difference in cross sectional symmetry, these two kinds of angles, when subjected to axial compression, behave differently. Whether the flexural buckling about the minor axis or the flexural-torsional buckling about the major axis predominates in the inelastic range for equal-leg angle struts is a controversial issue. Analysis in this regard ascertains that, in the inelastic as well as in the elastic range, angles fail by flexural buckling. But for angles of high-strength steel, with large width-thickness ratios, it is necessary to take into account the effect of leg local buckling. Unequal-leg angles always fail by flexural-torsional buckling. The calculation of the critical load of these members is rather complicated. Through analytical calculations, an equivalent slenderness ratio is derived to transform the problem into a flexural buckling one. This approach applies to both elastic and inelastic ranges. Comparison with available test data shows that suggested approaches for the equal-leg and unequal-leg angles are both qualified for design use.%热轧角钢有等边和不等边两种类型。由于截面对称性方面的差异,两类角钢在承受轴压力时,性能有明显差别。针对等边角钢在非弹性范围的受压承载力由弱轴弯曲屈曲控制还是强轴弯扭屈曲控制这一问题进行了分析,结果表明：在非弹性范围和弹性范围一样,杆件失效时呈弯曲屈曲,对于宽厚比较大的高强度角钢,需要计及局部屈曲效应。不等边角钢压杆失效时总是呈弯扭屈曲,其临界力计算比较复杂。通过计算分析,得出了把问题转化为按弯曲屈曲分析的等效长细比的方法。此法既适用于弹性范围,也适用于非弹性范围。和现有试验资料对比表明,文中的等边和不等边角钢轴压杆件的计算方法,都可用于设计工作。
Institute of Scientific and Technical Information of China (English)
王卫华
2013-01-01
目的 研究混凝土配制中添加沙漠特细砂(硅砂)后的力学性能.方法 采用沙漠特细砂替代传统混凝土配比中的细骨料形成沙漠硅砂混凝土.配制C50和C80强度等级的硅砂混凝土,开展方形和圆形截面钢筋硅砂混凝土轴心受压短柱的试验研究,并采用ABAQUS有限元软件对试验结果进行数值模拟.结果 添加沙漠风积沙后,配制C80强度混凝土时,浆体的塌落度和流动性明显降低,硬化后混凝土强度可以满足工程应用的要求;采用普通混凝土的材料模型进行数值分析时,计算承载力与试验承载力相比略高,荷载-位移曲线总体吻合较好.结论 在沙漠地区采用沙漠硅砂替代混凝土中的细骨料,可有效解决中(粗)砂资源匮乏的问题,钢筋硅砂混凝土试件的力学性能可基本满足工程应用的要求.%In order to study the mechanical behavior of dune sand based concrete when super-fine dune sand was used in concrete mixture.The dune sand in desert area was used as the substitution of fine aggregate in the mixture of concrete,and the concrete strength of C50 and C80 were prepared.A series of tests of square and circular sectional specimens of reinforced dune sand based concrete stub columns subject to axial compression were carried out.Based on ABAQUS software,the FEA models of testing specimens were built up for simulation.The slump and workability of fresh concrete became lower after the dune sand was added to the concrete mixture,however,the strength of the dune sand based concrete could be used in general engineering.Comparison between the calculated results and the measured results shows that,the calculated bearing capacities were a little higher than the measured results,the calculated load vs.deformation curves agree well with the measured curves.The lack of resources of river sand could be well resolved with the substitution of dune sand in place of river sand,and the mechanical behavior of reinforced
Nonlinear vibrations and imperfection sensitivity of a cylindrical shell containing axial fluid flow
del Prado, Z.; Gonçalves, P. B.; Païdoussis, M. P.
2009-10-01
The high imperfection sensitivity of cylindrical shells under static compressive axial loads is a well-known phenomenon in structural stability. On the other hand, less is known of the influence of imperfections on the nonlinear vibrations of these shells under harmonic axial loads. The aim of this work is to study the simultaneous influence of geometric imperfections and an axial fluid flow on the nonlinear vibrations and instabilities of simply supported circular cylindrical shells under axial load. The fluid is assumed to be non-viscous and incompressible and the flow to be isentropic and irrotational. The behavior of the thin-walled shell is modeled by Donnell's nonlinear shallow-shell equations. It is subjected to a static uniform compressive axial pre-load plus a harmonic axial load. A low-dimensional modal expansion, which satisfies the relevant boundary and continuity conditions, and takes into account all relevant nonlinear modal interactions observed in the past in the nonlinear vibrations of cylindrical shells with and without flow is used together with the Galerkin method to derive a set of eight coupled nonlinear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. The shell is considered to be initially at rest, in a position corresponding to a pre-buckling configuration. Then, a harmonic excitation is applied and conditions for parametric instability and dynamic snap-through are sought. The results clarify the marked influence of geometric imperfections and fluid flow on the dynamic stability boundaries, bifurcations and basins of attraction.
Application of size effect to compressive strength of concrete members
Indian Academy of Sciences (India)
Jin-Keun Kim; Seong-Tae Yi
2002-08-01
It is important to consider the effect of size when estimating the ultimate strength of a concrete member under various loading conditions. Well known as the size effect, the strength of a member tends to decrease when its size increases. Therefore, in view of recent increased interest in the size effect of concrete this research focuses on the size effect of two main classes of compressive strength of concrete: pure axial compressive strength and ﬂexural compressive strength. First, fracture mechanics type size effect on the compressive strength of cylindrical concrete specimens was studied, with the diameter, and the height/diameter ratio considered as the main parameters. Theoretical and statistical analyses were conducted, and a size effect equation was proposed to predict the compressive strength specimens. The proposed equation showed good agreement with the existing test results for concrete cylinders. Second, the size, length, and depth variations of a ﬂexural compressive member have been studied experimentally. A series of -shaped specimens subjected to axial compressive load and bending moment were tested. The shape of specimens and the test procedures used were similar to those by Hognestad and others. The test results are curve-ﬁtted using Levenberg-Marquardt’s least squares method (LSM) to obtain parameters for the modiﬁed size effect law (MSEL) by Kim and co workers. The results of the analysis show that the effect of specimen size, length, and depth on ultimate strength is signiﬁcant. Finally, more general parameters for MSEL are suggested.
Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie
2017-08-01
The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.
Directory of Open Access Journals (Sweden)
Rinu Thomas
2016-09-01
Full Text Available Never ending demand for efficient and less polluting engines have always inspired newer technologies. Extensive study has been done on variable compression ratio, a promising in-cylinder technology, in the recent past. The present work is an experimental investigation to examine the variation of different parameters such as brake thermal efficiency, exhaust gas temperature and emissions with respect to change in compression ratio in a single-cylinder carbureted SI engine at different loads with two different fuels. Experiments were conducted at three different compression ratios (CR = 7:1, 8.5:1 and 10:1. The fuels used in this study are pure gasoline and 20% n-butanol blend (B20 in gasoline. The results showed that brake thermal efficiency increases with CR at all loads. Further, the experimental results showed the scope of improving the part-load efficiency of SI engine by adopting the concept of variable compression ratio (VCR technology, especially when fuels with better anti-knock characteristics are used. The uncertainty analysis of the experiments based on the specifications of the equipment used is also tabulated.
Strength analysis of concrete sandwich panel with wire mesh under axial loading%钢丝网架混凝土夹芯墙板轴心受压承载力分析
Institute of Scientific and Technical Information of China (English)
谢群; 王帅; 刘春
2015-01-01
Concrete sandwich panels with steel wire mesh are widely used in multi-storey residential buildings and office buildings with the advantages of low self-weight,high strength as well as convenient construction.To better understand the structural behavior and ensure application safety, three typical methods recommended by different codes for strength prediction of panels subjected to axial compressive loading have been presented with the assumption of full composite section character. The analysis results which have been compared with the existing experimental results show that the parameter of slenderness ratio has great effect on the compressive behavior of concrete sandwich panel and all the three methods are not expected to be applicable any more in the cases that slenderness ratio is more than 25 for the sake of poor structural safety.The ratio of predicted ultimate strength obtained from recommended formula of domestic codes to the peak load in experimental analysis ranges from 0.75 to 1.3 which means that the strength is much overestimated with big divergence and these methods couldn’t be applied to strength analysis for the sake of structural safety.While the strength arising from ACI318 -11 method could reach 70% ~90% the testing value which provides satisfactory result with more reliability and better agreement with testing data for concrete sandwich panel structural design.%钢丝网架混凝土夹芯墙板作为一种轻质、高强、施工便捷的构件已广泛应用于多层住宅和办公楼，研究该类墙板的受力性能可有效确保其结构使用安全。文章选用三种代表性的计算方法对该类墙板的轴压承载力进行了理论分析，并将计算结果与已有的试验数据进行了对比研究。结果表明：高厚比对墙板受压性能影响较大，当墙板高厚比超过25时，现有的理论不再适用于轴压承载力计算；三种计算方法的结果对比可知，采用国家规范 GB 50010—2010
Ozturk, H.; Altinpinar, M.
2017-07-01
The point load (PL) test is generally used for estimation of uniaxial compressive strength (UCS) of rocks because of its economic advantages and simplicity in testing. If the PL index of a specimen is known, the UCS can be estimated using conversion factors. Several conversion factors have been proposed by various researchers and they are dependent upon the rock type. In the literature, conversion factors on different sedimentary, igneous and metamorphic rocks can be found, but no study exists on trona. In this study, laboratory UCS and field PL tests were carried out on trona and interbeds of volcano-sedimentary rocks. Based on these tests, PL to UCS conversion factors of trona and interbeds are proposed. The tests were modeled numerically using a distinct element method (DEM) software, particle flow code (PFC), in an attempt to guide researchers having various types of modeling problems (excavation, cavern design, hydraulic fracturing, etc.) of the abovementioned rock types. Average PFC parallel bond contact model micro properties for the trona and interbeds were determined within this study so that future researchers can use them to avoid the rigorous PFC calibration procedure. It was observed that PFC overestimates the tensile strength of the rocks by a factor that ranges from 22 to 106.
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
Institute of Scientific and Technical Information of China (English)
张向冈; 陈宗平; 薛建阳; 苏益声; 范杰
2012-01-01
Axial static monotonic loading test was carried out on 5 recycled aggregate concrete filled cycled steel tubular long columns and 5 recycled aggregate concrete filled square steel tubular tong columns. The test parameters include section form, replacement rate of recycled coarse aggregate and slenderness ratio. The whole loading process and failure modes were observed. The important characteristic data were captured such as the yield strain, the peak deformation, the bearing capacity and so on. A series of important curves about load-deformation, load-strain and axial stiffness- deformation were plotted. The influences of the test parameters on the bearing capacity were analyzed. The bearing capacity and axial stiffness of two section types under the serviceability limit state were calculated by some related procedures. It is shown that the loading process of recycled aggregate concrete filled steel tubular long columns under axial compression is made up of elastic stage, yield stage and failure stage. The failure modes are mainly strength failure and failure of elasto-plastic instability. The influence of replacement rate on the bearing capacity is little. The influence of slenderness ratio on the bearing capacity of recycled aggregate concrete filled cycled steel circular tubular long columns is great. When the slenderness ratio increases, the bearing capacity will decrease. However, the influence of slenderness ratio on the bearing capacity of recycled aggregate concrete filled square steeltubular long columns is little. Based on the calculation resuh, the design suggestion is provided about the bearing capacity and axial stiffness of recycled aggregate concrete filled steel tubular long columns under axial compression. The research results can provide reference for further research and application of recycled aggregate concrete filled steel tubular structure.%设计5个圆钢管再生混凝土长柱和5个方钢管再生混凝土长柱,对其进行轴压静力
Surface strains induced by measured loads on teeth in vivo: a methodological study.
Nohl, F S; Setchell, D J
2000-03-01
Visual feedback enabled three subjects to apply predetermined near-axial loads to the incisal edge of an intact maxillary central incisor. In two subjects, principal strains and orientations developed on the labial surface of the intact incisor were resolved from strains recorded with a multiple element strain gauge. Load application was accurate and precise enough to allow resolution of strains induced by target loads of 10 to 50 N. Axially orientated compressive labial surface strains were induced by measured loads. The method could be used to validate bench-top stress analyses and investigate the effects of restoration on the structural integrity of teeth.
Mahadev, Sthanu
Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically
Institute of Scientific and Technical Information of China (English)
2013-01-01
斜群桩受水平荷载作用时，群桩中的基桩受到径向荷载、轴向荷载和弯矩的共同作用。为研究轴向荷载对斜桩水平承载特性的影响，完成了3根单桩以及1组1×2斜桩的大尺寸模型试验。试验结果表明：轴向拉力作用会降低斜桩的水平刚度和极限承载力；而轴向压力作用则会使其水平刚度和极限承载力提高。基于桩侧浅层土体楔形破坏假定，推导了考虑轴向荷载影响的斜桩水平极限土抗力计算公式，提出了桩侧土抗力的p-y曲线方法，并通过模型试验及现场试验验证其合理性。%When batter pile group are under lateral load, the foundation piles in pile group are subjected to radial load, axial load and bending moment. In order to study the influence of axial load on lateral bearing capacity of batter piles, large-scale model tests of three single piles and a 1×2 batter pile group have been conducted in a larger soil tank. It is found that the upward axial force on the pile top decreases the lateral stiffness and the lateral ultimate bearing capacity of batter pile; while the downward axial force enhances the horizontal stiffness and the lateral ultimate bearing capacity of batter pile. Based on the assumption of wedge failure of the shallow soil around piles, considering the influence of axial load on piles, a formula for calculating the lateral ultimate resistance force of soil is deduced. Then, a p-y curve method for resistance force of soil around piles is proposed. Finally, the formula and the proposed p-y curve method for batter pile are verified by model tests and field tests.
Institute of Scientific and Technical Information of China (English)
李华东; 朱锡; 梅志远; 张颖军
2012-01-01
基于Reissner假设,研究了四边简支的功能梯度夹层圆柱曲板在轴向载荷作用下的屈曲问题.首先,根据功能梯度材料的本构方程,得出了芯材和表层的应力、位移及内力表达式;然后,根据曲板的平衡方程和协调方程,引用应力函数,得到了功能梯度夹层圆柱曲板的方程式;最后,将挠度、横向剪力及应力函数用双三角级数展开,给出了功能梯度夹层圆柱曲板轴向屈曲载荷的计算式.在算例中,通过与经典解及有限元解进行比较,证明了本文方法的正确性,并且分析了芯材上下表层弹性模量比及体积分数指数对功能梯度夹层板轴向屈曲载荷的影响.%Based on the Reissner assumptions, the buckling of simply supported functionally graded sandwich cylindrical panels under axial loads was studied. First, according to the constitutive equa- tions of functionally graded materials, the expressions of stresses, displacements and internal forces of the core and surface sheets were presented. Then, according to the equilibrium and compatibility e quations of cylindrical panels, with the introduction of stress function, the equation expressions for functionally graded sandwich cylindrical panels were obtained. Finally, the calculation formula of axial buckling load of functionally graded sanwich cylindrical panels were derived by expanding the deflec- tionw, transverse shearing force and stress functionwith double trigonometric series that satisfy the simply supported boundary conditions. The proposed solution is validated by comparing the results with the classical and finite element solutions, And the effects of the core's top-bottom Youngrs mod- ulus ratio and volume fraction exponent on the axial buckling loads of the functionally graded sandwich panels are examined.
Feng, Bo; Xiong, Feng; Liu, Bingyu; Chen, Jiang; Zhang, Yiping
2016-01-01
In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compres...
Directory of Open Access Journals (Sweden)
Hartl Christoph
2015-01-01
Full Text Available Feasible product geometries manufactured with micro-hydroforming, as well as process stability are crucially influenced by the microstructure of the used tube material. The higher ratio of grain size to tube wall thickness dk/t0 in micro-hydroforming, compared to conventional tube hydroforming, leads to an increase of scattering of process parameters and instabilities. This paper presents experimental and theoretical results for the micro-hydroforming of tubes made from stainless steel and from platinum with a focus on the correlations between the microstructure of the workpiece material, the stress state during forming and the resulting stability of the forming process. Investigated tube dimensions were 800 µm outer diameter and 40 µm wall thickness of the steel tubes, respectively 1650 µm and 76 µm of the platinum tubes. The average ratio dk/t0 was about 0.3 for the steel material and about 0.9 for the platinum alloy. It has been shown that superimposed axial stresses are suitable to reduce the restricting influence of an increased ratio dk/t0 and to improve the forming result as well as the process stability.
Uni-axial compaction of a granular material
Morland, L. W.; Sawicki, A.; Milne, P. C.
1993-11-01
S HEARING OF GRANULAR materials causes rearrangement of the granular structure which induces irreversible volume decrease and shear strain, in addition to reversible strain. The model adopted describes the reversible compression and shear by hypoelastic laws, and the irreversible compaction and shear by evolutionary laws. The latter are differential relations defining the progress of irreversible strain as an appropriate time-independent monotonie loading parameter increases, which incorporate dependence on the current state, and which prescribe a direction for the irreversible shear strain increment. The model is described by four material functions and two material constants, and has been shown to determine valid initial response to applied shear stress. We apply the model to the compaction of a granular material in uni-axial strain, which is described by two simultaneous differential equations for the axial stress and compaction with the axial strain as independent variable, together with algebraic relations for the pressure and lateral stress. The equation forms for loading-increasing axial stress—and unloading—decreasing axial stress-are distinct. Reformulation as differential equations for the pressure and the principal stress difference shows that the pressure derivative depends only on two of the material functions and one constant. The axial strain and lateral stress measured during a complete load-unload cycle on a sand determine the pressure and stress difference derivatives which are correlated directly with the model differential relations. Two material functions and one constant are determined by an optimization procedure from the complete loadunload ressure data, then the remaining two functions and constant from the stress difference data. Solution of the resulting model differential equations reproduces accurately the axial strain and lateral stress variations during the experimental loading cycle. In addition, model predictions for load
Institute of Scientific and Technical Information of China (English)
周小平; 张永兴; 哈秋聆; 王建华
2004-01-01
A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.
Jegley, Dawn C.
1992-01-01
The structural efficiency of compression-loaded trapezoidal-corrugation sandwich and semisandwich composite panels is studied to determine their weight savings potential. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them and semisandwich panels with a corrugation attached to a single skin are considered. An optimization code is used to find the minimum weight designs for critical compressive load levels ranging from 3000 to 24,000 lb/in. Graphite-thermoplastic panels based on the optimal minimum weight designs were fabricated and tested. A finite element analysis of several test specimens was also conducted. The results of the optimization study, the finite element analysis, and the experiments are presented. The results of testing impact damage panels are also discussed.
Directory of Open Access Journals (Sweden)
Sandra M. Couto
2002-04-01
Full Text Available As condições necessárias para a realização de ensaios de compressão em frutos de café visando à obtenção de resultados confiáveis das forças envolvidas no colapso do produto, foram investigadas neste trabalho e determinados os requerimentos de forças, deformações e energias para o colapso do material sob compressão. As variáveis independentes investigadas foram: presença do pedúnculo no fruto, velocidade de compressão, grau de maturação dos frutos e posição do produto durante a compressão. Os frutos testados encontravam-se em três estádios de maturação: 'cereja', 'verdoengo' e 'verde'. As análises dos resultados mostraram que, para se ter um erro menor ou igual a 10% na estimativa das forças de colapso do produto, são necessárias amostras de, pelo menos, cinqüenta frutos. Os valores das forças, deformações específicas e energias, para o colapso de frutos 'cereja', não foram afetados pela presença do pedúnculo no produto. A velocidade de compressão parece não influenciar nos valores das grandezas investigadas; já a posição do produto, ao ser comprimido, e o estádio de maturação do fruto, mostraram ser variáveis significativas.Basic conditions required to obtain accuracy on the values of forces for collapse of coffee fruits under compression tests were investigated. The requirements of force, strain and energy up to the collapse point of the material were also determined. The independent variables investigated were: presence of peduncle; compression velocity; product maturation stage and fruit orientation during the compression. The fruits tested were at three maturation stages (classified by color: 'cherry', 'green' and one named 'verdoengo' (stage somewhere between cherry and green. Analysis of the results showed a sample size requirement of, at least, fifty fruits to estimate the collapse forces with an error less than 10%. The values of forces, strains and energies up to the collapse of 'cherry
TE_01 High Power Disk Loaded Guide Load
Energy Technology Data Exchange (ETDEWEB)
Farkas, Z.D.; /SLAC
2005-06-01
A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads, attenuators and filters. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.
Institute of Scientific and Technical Information of China (English)
周天华; 聂少锋; 刘向斌
2012-01-01
18 specimens of cold-formed steel three-limb built-up section members were tested under axial compression load. The section forms are divided into A and B categories. A category section is built-up with 3 C section cold- formed steel members. B category section is built-up with 2 C section and 1 U section cold-formed steel members. Load-displacement curves and failure characteristics of specimens were obtained. The test results were compared with the results by effective width method and direct strength method which were calculated according to the specification of China and USA. The results show that the dominant failure characteristics of A and B categories section LC （long column） series columns are flexural-torsional buckling and bending buckling respectively. MC （middle length column） series columns of A categories section are distortional buckling and B categories section are distortionalbuckling and bending buckling. All SC （short column） series columns are local buckling and distortional buckling. The results calculated by AISI effective width method are conservative for LC series column of A and B categories section, while non-conservative for the SC series columns. The calculated results are close to test results as for MC series columns. The results calculated by AISI direct strength method are conservative for LC and MC series columns of A category section, while non-conservative for the SC series columns. As for B category section columns, the errors between direct strength method results and test results are between -16.5% and 11.2%. The results calculated according to ＇ Technical code of cold-formed thin-wall steel structures＇ are conservative as for LC series columns. The calculated result are close to test results as for MC and SC series columns, with the error between -8.7% - 4.7% and -7.3% - 13.7% , respectively%对18根冷弯薄壁型钢开口三肢拼合立柱的轴压性能进行了试验研究,试件分为A
Energy Technology Data Exchange (ETDEWEB)
Suhir, E [Electrical Engineering, University of California, Santa Cruz, CA (United States); Mechanical Engineering, University of Maryland, College Park, MD (United States); ERS Co., 727 Alvina Ct., Los Altos, CA 94024 (United States)
2008-01-07
In some optical fibre (OF) structures (such as, e.g. dual-coated OF interconnects) or in carbon-nano-fibre (CNF) arrays embedded into elastic media (e.g. when these arrays are used in heat removal devices), the OFs or the CNFs can be idealized as cantilever beams (rods) that experience both axial compression and lateral loading. We show that axial compression can increase considerably the compliance of the OF or the CNF with respect to the lateral loading. We develop simple predictive models for the assessment of this effect. The analysis is limited to small (pre-buckling) deflections of the structural elements in question.
Institute of Scientific and Technical Information of China (English)
周绪红; 李喆; 刘永健; 石宇
2012-01-01
In order to investigate bearing capacity of cold-formed steel built-up columns under axial compression, authors used ANSYS finite element program to analyze the cold-formed steel built-up columns at home and abroad. Compared with experimental results, the validity of the finite element method (FEM) was verified. Furthermore, a detailed parametric study by FEM was carried out to mainly determine the influence of cross-section form, cross-section dimension and slenderness ratio of component for the built-up effect. The simplified calculation method to the bearing capacity of cold-formed steel built-up columns under axial compression was extracted. The analytical results show that with the increase of the slenderness ratio, the built-up effect improves. As for these columns connected with screws through web, when width-thickness ratio of flange is certain, with the increase of width-height ratio of cross-section, the integrity of the built-up web increases, which leads the built-up effect to strengthen. But the influences of different areas of cross-sections are not so obvious.%为了研究冷弯薄壁型钢拼合截面柱的轴压承载力,对各国有关冷弯薄壁型钢拼合截面柱的轴压试验进行了ANSYS有限元模拟分析,有限元计算结果与试验结果吻合良好,从而验证了有限元方法的正确性.采用有限元方法分析了构件截面形式、截面尺寸以及长细比对冷弯薄壁型钢拼合截面柱拼合效应的影响,提出了冷弯薄壁型钢拼合截面柱轴压承载力的简化计算方法.分析结果表明:随着长细比的增大,拼合截面柱的拼合效应随之增大.对于主要通过螺钉将腹板进行拼合的构件,当翼缘宽厚比一定时,随着截面宽高比的增大,腹板拼合的整体性增强,从而使拼合效应增大,而截面面积的改变对拼合效应的影响则不是很明显.
Akkerman, J. W.
1982-01-01
New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.
Institute of Scientific and Technical Information of China (English)
王军民
2016-01-01
Through the elaboration on the mechanism of axial flow fan stall and in combination with double stage adjustable-blade axial flow induced draft fan stall in actual production of a power plant, the paper ana-lyzes the deep-seated causes of the stall and thus puts forward the principle of stall handling of induced draft fan in high load and effective measures for install prevention.%通过阐述轴流通风机失速的机理，结合某发电厂实际生产中双级动叶可调式轴流引风机失速的现象，分析发生失速的深层次原因，提出机组高负荷下处理引风机失速异常的原则以及防止失速的有效措施。
Institute of Scientific and Technical Information of China (English)
陈百玲; 王连广; 秦国鹏
2011-01-01
According to the experimental research on 8 composite columns,the axial compression property of GFRP tube filled with steel reinforced concrete was studied. The test results show that GFRP tube, concrete and section steel carry loads alone at the beginning of loading. Then the fiber surface of GFRP tube grows stretch marks when the loads reach 60% ultimate loads and GFRP tube has an obvious hooped effect on concrete when the loads reach 70% ultimate loads. While the loads reach 80% ultimate loads, GFRP tube can generate frequent noise. The damage of test specimen begins with the fracture of GFRP tube, the yield of steel and the crushing of concrete. The nonlinear analysis program of composite columns was developed, and the calculated results agree well with the experimented resuhs. According to the computing and analyses, the bearing capacity of composite columns is enhanced with the increase of GFRP tube wall thickness, concrete strength grade and steel ratio.%对8根组合柱进行试验,研究玻璃纤维增强材料（GFRP）管劲性钢筋混凝土组合柱的轴心受压性能。研究结果表明：荷载作用初期,GFRP管、混凝土及型钢单独受力,当荷载达到极限荷载60%左右时,GFRP管的纤维表面出现白纹,当荷载达到极限荷载的70%左右时,GFRP管对混凝土的套箍作用明显增加,当荷载达到极限荷载80%左右时,GFRP管出现频繁的响声,试件的破坏开始于GFRP管破裂、钢材屈服、混凝土压碎。编制组合柱的非线性分析程序,模拟计算结果与试验结果吻合良好。组合柱的承载力随着GFRP管壁厚度的增加、混凝土强度等级的提高及含钢率的增加而提高。
Low-Friction, High-Stiffness Joint for Uniaxial Load Cell
Lewis, James L.; Le, Thang; Carroll, Monty B.
2007-01-01
A universal-joint assembly has been devised for transferring axial tension or compression to a load cell. To maximize measurement accuracy, the assembly is required to minimize any moments and non-axial forces on the load cell and to exhibit little or no hysteresis. The requirement to minimize hysteresis translates to a requirement to maximize axial stiffness (including minimizing backlash) and a simultaneous requirement to minimize friction. In practice, these are competing requirements, encountered repeatedly in efforts to design universal joints. Often, universal-joint designs represent compromises between these requirements. The improved universal-joint assembly contains two universal joints, each containing two adjustable pairs of angular-contact ball bearings. One might be tempted to ask why one could not use simple ball-and-socket joints rather than something as complex as universal joints containing adjustable pairs of angularcontact ball bearings. The answer is that ball-and-socket joints do not offer sufficient latitude to trade stiffness versus friction: the inevitable result of an attempt to make such a trade in a ball-and-socket joint is either too much backlash or too much friction. The universal joints are located at opposite ends of an axial subassembly that contains the load cell. The axial subassembly includes an axial shaft, an axial housing, and a fifth adjustable pair of angular-contact ball bearings that allows rotation of the axial housing relative to the shaft. The preload on each pair of angular-contact ball bearings can be adjusted to obtain the required stiffness with minimal friction, tailored for a specific application. The universal joint at each end affords two degrees of freedom, allowing only axial force to reach the load cell regardless of application of moments and non-axial forces. The rotational joint on the axial subassembly affords a fifth degree of freedom, preventing application of a torsion load to the load cell.
System Study for Axial Vane Engine Technology
Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.
2008-01-01
The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.
d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.
2013-09-01
SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic
Energy Technology Data Exchange (ETDEWEB)
D' Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A. [CEA, DAM, GRAMAT, F-46500 Gramat (France); Maysonnave, T. [International Technologies for High Pulsed Power, F-46500 Thégra (France); Chuvatin, A. S. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau (France)
2013-09-15
SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or
Energy Technology Data Exchange (ETDEWEB)
Sawaguchi, Takahiro [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)]. E-mail: sawaguchi.takahiro@nims.go.jp; Sahu, Puspendu [Materials Science and Technology Division, National Metallurgical Laboratory, Jamshedpur 831 007 (India); Kikuchi, Takehiko [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Ogawa, Kazuyuki [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Kajiwara, Setsuo [National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Kushibe, Atsumichi [Takenaka Corporation, 1-5-1, Otsuka, Inzai, Chiba 270-1395 (Japan); Higashino, Masahiko [Takenaka Corporation, 1-5-1, Otsuka, Inzai, Chiba 270-1395 (Japan); Ogawa, Takatoshi [Takenaka Corporation, 1-5-1, Otsuka, Inzai, Chiba 270-1395 (Japan)
2006-06-15
The present work concerns the damping behavior of an Fe-28Mn-6Si-5Cr-0.5NbC (mass%) shape memory alloy determined by low cycle fatigue tests, and the corresponding deformation mechanism under cyclic tension-compression loading. The specific damping capacity increases with increasing strain amplitude and reaches saturation at {approx}80%, above the strain amplitude of 0.4%. Quantitative X-ray diffraction analyses and microstructural observations using atomic force microscopy revealed that a significant amount of the tensile stress-induced {epsilon} martensite is reversely transformed into the austenite by subsequent compression; in other words, the stress-induced 'reverse' martensitic transformation takes place in the alloy.
Axial and Centrifugal Compressor Mean Line Flow Analysis Method
Veres, Joseph P.
2009-01-01
This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.
Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine.
Wilson, Derek C; Niosi, Christina A; Zhu, Qingan A; Oxland, Thomas R; Wilson, David R
2006-01-01
We assessed the repeatability and accuracy of a relatively new, resistance-based sensor (Tekscan 6900) for measuring lumbar spine facet loads, pressures, and contact areas in cadaver specimens. Repeatability of measurements in the natural facet joint was determined for five trials of four specimens loaded in pure moment (+/- 7.5 N m) flexibility tests in axial rotation and flexion-extension. Accuracy of load measurements in four joints was assessed by applying known compressive loads of 25, 50, and 100 N to the natural facet joint in a materials testing machine and comparing the known applied load to the measured load. Measurements of load were obtained using two different calibration approaches: linear and two-point calibrations. Repeatability for force, pressure, and area (average of standard deviation as a percentage of the mean for all trials over all specimens) was 4-6% for axial rotation and 7-10% for extension. Peak resultant force in axial rotation was 30% smaller when calculated using the linear calibration method. The Tekscan sensor overestimated the applied force by 18 +/- 9% (mean+/-standard deviation), 35 +/- 7% and 50 +/- 9% for compressive loads of 100, 50, and 25 N, respectively. The two-point method overestimated the loads by 35 +/- 16%, 45 +/- 7%, and 56 +/- 10% for the same three loads. Our results show that the Tekscan sensor is repeatable. However, the sensor measurement range is not optimal for the small loads transmitted by the facets and measurement accuracy is highly dependent on calibration protocol.
1980-01-01
un linitecl...-., .• • _. , k 17. DISTRIBUTION STATEMENT (of the abstract ertered in Block 20, it different fron Report.) i .- ’- IS. SUPPLEMENTARY...tr e:eriraertal datu!m. or, cornuter cad a setial frte . . ’ JCt.~, .. u ..... , edfor data. er-try .~ ~in -.ne origina.l proposal. T-is- une::.-ec...snecirnen, k ! Ln Iare t ,e "MIOdl_ parameters’ :oredic-.ed by t.he Burns-haleps "exact arnalyis sc ,neme"l (detanIled irn the Burns and Kaleps ൛KD
2013-05-01
McNeill , S. R. Determination of Displacements Using an Improved Digital Image Correlation Method. Computer Vision August 1983. 13 12. Bruck, H. A... McNeill , S. R.; Russell, S. S.; Sutton, M. A. Use of Digital Image Correlation for Determination of Displacements and Strains. Non-Destructive...Evaluation for Aerospace Requirements, 1989. 13. Sutton, M. A.; McNeill , S. R.; Helm, J. D.; Schreier, H. Full-field Non-Contacting Measurement of
McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.
2011-01-01
A compression after impact study has been conducted to determine the residual strength of three sandwich panel constructions with two types of thin glass fiber reinforced polymer face-sheets and two hexagonal honeycomb Nomex core densities. Impact testing is conducted to first determine the characteristics of damage resulting from various impact energy levels. Two modes of failure are found during compression after impact tests with the density of the core precipitating the failure mode present for a given specimen. A finite element analysis is presented for prediction of the residual compressive strength of the impacted specimens. The analysis includes progressive damage modeling in the face-sheets. Preliminary analysis results were similar to the experimental results; however, a higher fidelity core material model is expected to improve the correlation.
Institute of Scientific and Technical Information of China (English)
冯伟; 查晓雄
2011-01-01
The use of concrete filled steel tubular (CFST) structures in high-rise building can well solve the conflict between the long time of concrete hardening and the requirement of fast construction speed, and make full use of the strength and stiffness of the hollow steel tube. But it also brings such problems, during the construction process of the structure, the CFST members suffered gradually increased long-term load, which makes concrete creep sustainably developing, concrete unloading. internal forces re-distributing, resulting in lower load-carrying capacity of the CFST members. By adopting DirichLet series in the concrete creep model, this paper applied the nonlinear FEM software ABAQUS in simulating the creep process of CFST members and testing their load-carrying capacity; the FEM results are validated to be reliable and accurate. A parametric study is then conducted to investigate the creep behavior of CFST members. It is concluded that the initial stress can be introduced to roughly estimate the effect of creep on axially load-carrying capacity.%在高层和超高层建筑中采用钢管混凝土结构,可充分利用空钢管所具有的强度和刚度,并能较好地解决混凝土硬化时间较长与施工速度之间的矛盾.但由此也会带来这样的问题,即在结构施工过程中,构件所受长期荷载随施工过程逐渐增加,徐变持续发展,混凝土卸载,内力重新分布,导致构件稳定承载力降低.本文运用DirichLet级数建立管内混凝土徐变模型,并应用非线性有限元软件ABAQUS对钢管混凝土徐变以及承载力进行了有限元计算,较好地模拟了钢管混凝土的徐变过程.本文回归分析了钢管混凝土的徐变性质,并认为可以用初应力的方法粗略估计徐变构件对承载力的影响.
扩底桩受压有限元分析%Finite element analysis of pile with enlarged base subject to compressed loading
Institute of Scientific and Technical Information of China (English)
柯江
2015-01-01
Through applying ABAQUS finite element software,it establishes nonlinear pile-soil finite element model. The bearing properties of pile with enlarged base subject to compressed loading were analyzed. The results show that the bearing capacity of pile with enlarged base to the limit,the enlarged head could bear the most load of pile,and the slope of the enlarged head and soil produced a separate.%采用 ABAQUS 有限元软件，建立了桩土非线性有限元模型，分析了扩底桩受压承载特性，得出：扩底桩达到受压极限承载力时，扩大头承受了桩的大部分荷载，扩大头斜面与土体产生了分离。
Institute of Scientific and Technical Information of China (English)
谭政; 姚行友; 汪洋; 石梦婷; 刘忠勇; 朱丽芳; 曾罗兰
2015-01-01
This paper aims to research the distortional buckling mode and load-carrying capacity of cold-formed thin-walled steel members with holes. Compression tests were conducted on 26 intermediate length columns with and without web holes. The comparison of ultimate strength between test results and calcu-lated results using Chinese code Technical code of cold-formed thin-wall steel structures GB50018-2002 and nonlinear finite element method are made. The calculated method for cold-formed thin-walled steel columns with web holes is proposed. The results show that the distortional buckling mode would usually occur for the intermediate length axial compression. The web holes have a little influence on the distortion-al buckling ultimate strength of columns. The ultimate strength can be predicted using a reduced effective area.%对26根屈服强度235MPa腹板开圆孔冷弯薄壁型卷边槽钢截面轴压构件进行畸变屈曲承载力试验研究，分析了构件屈曲模式和极限承载力，采用国家规范GB50018—2002《冷弯薄壁型钢结构技术规范》计算构件承载力、非线性有限元数值模拟结果与试验结果进行分析比较。在此基础上，对腹板开孔冷弯薄壁型钢截面轴压构件的承载力合理计算模式进行研究。结果表明，对于中等长度腹板开孔冷弯薄壁型钢截面轴压构件主要出现畸变屈曲模式；腹板开孔在对构件畸变屈曲稳定承载力有一定的降低作用，采用折减构件有效截面面积的方法可计算开孔构件的畸变屈曲稳定承载力。
Institute of Scientific and Technical Information of China (English)
曹万林; 王智慧; 彭斌; 董宏英; 武海鹏; 殷超; 陈利民
2012-01-01
以某超高层巨型框架结构巨型柱为原型,进行了3个多腔钢管混凝土巨型柱模型试件的轴压性能试验研究,模型按1/12缩尺.3个试件的几何尺寸和腔体钢板均一致,各试件主要参数:试件1腔内加设钢筋笼,混凝土强度等级为C30;试件2腔内不加设钢筋笼,混凝土强度等级为C40;试件3腔内加设钢筋笼,混凝土强度等级为C40.试验分析了各试件的承载力、刚度及退化过程、残余变形、破坏特征等.研究表明:腔内设置钢筋笼的多腔钢管混凝土巨型柱具有良好的延性和抗压工作性能,可用于工程设计.%According to a mega-column from a super high-rise mega-frame structure, three 1/12 scaled multi-cell CFST mega-column models were tested under axial compression. All the geometric dimensions and the steel plates of the three specimens were same with eachother. Specimen 1 was made from concrete C30 with steel reinforcement cage inside; specimen 2 was made from concrete C40 without steel reinforcement cage; specimen 3 was made from concrete C40 with steel reinforcement cage inside. The load-bearing capacity, stiffness and its degeneration, residual deformation and failure characteristic of models have been compared and analyzed. The study shows that the multi-cell CFST mega-column with steel reinforcement cage inside has good ductility and good compression work performance. And it can be used in the design practical of engineering.
Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory
Energy Technology Data Exchange (ETDEWEB)
Kiani, Keivan [K.N. Toosi University of Technolog, Tehran (Iran, Islamic Republic of)
2015-10-15
Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integroordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.
Case Study of CPT-based Design Methods for Axial Capacity of Driven Piles in Sand
DEFF Research Database (Denmark)
Thomassen, Kristina; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard
2012-01-01
Today the design of onshore axially loaded driven piles in cohesionless soil is commonly made on basis of CPT-based methods because field investigations have shown strong correlation between the local shaft friction and the CPT cone resistance. However, the recommended design method for axially....... Thus, several CPT-based methods have been proposed for the design of offshore driven piles in cohesionless soil such as the UWA-05, ICP-05, and NGI-99 methods. This article treats a case study where the API-method as well as the UWA-05 and NGI-99 methods are compared using CPT-data from an offshore...... location with dense to very dense sand. The design of the piles in the jacket foundation shows that API-00 for both the tension and the compression loads predicted much longer piles than the CPT-based methods. Variation of the pile length and pile diameter shows that NGI-99 and UWA-05 predicts almost...
Kwak, Yunsang; Lee, Sinyeob; Park, Jeongwon; Hwang, Dukyoung; Jeon, Jin Yong; Park, Junhong
2017-07-01
Experiments were performed to identify the mechanism of heavyweight floor impact sound transmission through floors in a high-rise apartment building. Vibration and sound levels on each floor of the multistory building were measured. The vibration generated at a given floor was transferred to multiple adjacent floors with decreasing amplitudes proportional to the distance from the excited floor. This vibration transfer introduced significant sound transmissions. The structural static load varied depending on the floor location due to differences in the weight of the structure above the floor, especially for wall construction buildings. The static load at the wall of the bottom floor was the largest among the different floors. The influence of this static load on the impact sound generation was investigated through tests in the actual building and the scale model, respectively. The results were numerically analyzed using the spectral element method. With the increasing static load, the resonance frequencies of the floor increased due to the change in the vibration modes of the structure. The modulated sound generation from the floor vibrations transmitted to multiple layers with larger magnitudes due to this static load.
Lei, Xiao; Narsu, B.; Yun, Guohong; Li, Jiangang; Yao, Haiyan
2016-05-01
Surface effects play a deterministic role in the physical and mechanical properties of nanosized materials and structures. In this paper, we present a self-consistent theoretical scheme for describing the elasticity of nanowires. The natural frequency and the critical compression force of axial buckling are obtained analytically, taking into consideration the influences of lower symmetry, additional elastic parameters, surface reconstruction, surface elasticity, and residual surface stress. Applications of the present theory to elastic systems for the axially oriented Si and Cu nanowires and Ag axially oriented nanowires yield good agreement with experimental data and calculated results. The larger positive value of the new elastic parameter c12α taken into account for Si oriented nanowires drives the curves of natural frequency and critical compression force versus thickness towards the results obtained from density functional theory simulation. Negative surface stress decreases the critical load for axial buckling, thus making the nanowires very easy to bend into various structures. The present study is envisaged to provide useful insights for the design and application of nanowire-based devices.
Energy Technology Data Exchange (ETDEWEB)
Watt, Robert Gregory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-06
The Ranchero Magnetic Flux Compression Generator (FCG) has been used to create current pulses in the 10-100 MA range for driving both “static” low inductance (0.5 nH) loads1 for generator demonstration purposes and high inductance (10-20 nH) imploding liner loads2 for ultimate use in physics experiments at very high energy density. Simulations of the standard Ranchero generator have recently shown that it had a design issue that could lead to flux trapping in the generator, and a non- robust predictability in its use in high energy density experiments. A re-examination of the design concept for the standard Ranchero generator, prompted by the possible appearance of an aneurism at the output glide plane, has led to a new generation of Ranchero generators designated the RancheroS (for swooped). This generator has removed the problematic output glide plane and replaced it with a region of constantly increasing diameter in the output end of the FCG cavity in which the armature is driven outward under the influence of an additional HE load not present in the original Ranchero. The resultant RancheroS generator, to be tested in LA43S-L13, probably in early FY17, has a significantly increased initial inductance and may be able to drive a somewhat higher load inductance than the standard Ranchero. This report will use the Eulerian AMR code Roxane to study the ability of the new design to drive static loads, with a goal of providing a database corresponding to the load inductances for which the generator might be used and the anticipated peak currents such loads might produce in physics experiments. Such a database, combined with a simple analytic model of an ideal generator, where d(LI)/dt = 0, and supplemented by earlier estimates of losses in actual use of the standard Ranchero, scaled to estimate the increase in losses due to the longer current carrying perimeter in the RancheroS, can then be used to bound the expectations for the current drive one may
Energy Technology Data Exchange (ETDEWEB)
Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Smolin, Alexey Yu., E-mail: igkon@ispms.tsc.ru; Konovalenko, Ivan S., E-mail: igkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Promakhov, Vladimir V. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)
2014-11-14
Movable cellular automaton method was used for investigating the mechanical behavior of ceramic composites under uniaxial compression. A 2D numerical model of ceramic composites based on oxides of zirconium and aluminum with different structural parameters was developed using the SEM images of micro-sections of a real composite. The influence of such structural parameters as the geometrical dimensions of layers, inclusions, and their spatial distribution in the sample, the volume content of the composite components and their mechanical properties (as well as the amount of zirconium dioxide that underwent the phase transformation) on the fracture, strength, deformation and dissipative properties was investigated.
Institute of Scientific and Technical Information of China (English)
李国强; 王彦博，; 陈素文
2012-01-01
An experimental and theoretical study was presented on ultimate bearing capacity of axially compressed high strength steel columns. The experimental program included 7 welded box columns of 3 different cross sections which were welded with 11 mm-thick Q460 high strength steel plates made in China. The FEA models were built up according to measured sizes of members and tension coupon test results. And initial geometric imperfections and residual stress were taken into account in the FEA models. The experimental result shows that the stability coefficients of welded box columns of high strength steel are higher than the values of type c column curve in GB 50017--2003, and even higher than the values of type b curve for most of the specimens. However, due to the limited test result, the adoption of type b curve needs further verification. The FEA result agrees well with experimental result and could be a valid supplement of test data.%为了研究高强钢中厚板焊接箱形柱的极限承载力,以11 mm厚国产Q460高强钢中厚板制作了7个焊接箱形柱进行轴心受压试验。试件共包含宽厚比8、12、18三种截面,长细比分别为35、50、70。根据试件的实测尺寸、钢材的力学性能建立有限元模型,以初始缺陷的形式考虑了试件的初始挠度、初始偏心及焊接残余应力,分析预测了试件的极限承载力。试验结果表明,高强钢焊接箱形柱稳定系数采用GB 50017—2003《钢结构设计规范》中的c类截面柱子曲线偏保守,试验结果平均曲线更接近b类截面曲线,但仍需进一步验证。分析结果表明,考虑了初始缺陷的有限元模型可准确预测柱的极限承载力,可以作为试验数据的补充。
Institute of Scientific and Technical Information of China (English)
姚永红; 武振宇; 成博; 邓君宝
2011-01-01
为研究腹板开孔具中间加劲肋的冷弯薄壁卷边槽钢构件的受压性能,对两种截面形式的短柱和中长柱共计16根轴压构件的承载力和屈曲模式进行了试验分析.结果表明:所有试件均发生畸变屈曲失效,中长柱试件还伴随有绕弱轴的整体弯曲；腹板孔洞导致构件屈曲模式发生变化,孔洞周边板件有局部屈曲产生；孔洞的存在使试件承载力降低,短柱试件承载力的减小幅度比中长柱试件的大；同组试件中畸变初始缺陷大的,一般承载力较小,畸变变形偏大；极限承载力下开孔构件的畸变变形一般大于未开孔构件.文中还对所有试件进行了有限元模拟,发现有限元分析结果与试验值吻合较好.%In order to investigate the compression behavior of the cold-formed thin-walled steel columns with lipped channel, intermediate stiffener and openings in the web, 16 axial compressive members, including the short and the medium-length columns in two section forms, were experimentally analyzed in the aspects of bearing capacity and buckling mode. The results show that all of the specimens fail due to the distortional buckling and the medium-length columns have additional overall bending around the weak axis, that the openings in the web result in the changes of buckling modes of the members and the local bucklings of the plates occur around the openings, and that, due to the effects of the openings, the bearing capacities of the specimens decrease and the decrement of the bearing capacity of the short column is greater than that of the medium-length one. Moreover, it is found that, for the specimens in the same test group, the columns with larger initial distortional imperfections are of lower bearing capacities and greater deformations induced by the distortional bucklings, and that the openings generally enhance the deformations corresponding to the ultimate bearing capacity. In addition, all of the tested specimens
Institute of Scientific and Technical Information of China (English)
邓勇军; 姚勇; 刘欢; 陈代果; 徐刚
2014-01-01
保持砂卵石压实系数在大于87．7％的范围，对两组6根薄壁方钢管-砂卵石短柱的轴压静力性能进行了试验研究，分析了试件的破坏形态、极限承载力、轴向荷载-位移曲线以及轴向荷载-应变曲线等数据。试验结果表明：（1）薄壁方钢管-砂卵石短柱的破坏模式均为局部失稳破坏，且破坏后砂卵石随钢管变形而变形；（2）薄壁方钢管-砂卵石短柱轴向荷载-位移曲线根据钢管与砂卵石分担荷载情况大致可以分为钢管主要受力阶段、砂卵石压实阶段、砂卵石主要受力阶段、破坏阶段4个阶段；（3）增加壁厚能增强薄壁钢管与砂卵石的相互作用。%Under keeping the compaction factor of sandy pebble is greater than the suggestion of the range of 87 .7%, take static experimental study on the axis pressure mechanical property of two groups of six sandy -pebble-filled thin-walled square steel tubular short columns .The failure characteristics , the ultimate bearing capacity , the load-strain curves and the load -compression displacement curves of dif-ferent test specimens were comparatively analyzed .The experimental results indicate that ( 1 ) thin -walled square steel tube -sandy pebble short column failure mode are local buckling failure , the de-struction of the sand and gravel with deformed steel deformation ;(2) Thin-walled square steel tube -sandy pebble short column axial load -displacement curve according to the steel tube and sandy pebble all share the load situation can be divided into four stages: main stress on steel stage , compaction on sandy pebble stage , main stress on sandy pebble stage , failure stage;( 3 ) Increasing the wall thickness can significantly enhance the interaction of thin -walled steel pipe with sandy pebble .
Institute of Scientific and Technical Information of China (English)
高鹏; 殷强; 王健; 宗文; 洪丽
2016-01-01
为研究碳纤维布约束型钢混凝土矩形短柱的轴心受压破坏机理和受力性能，对15个试件进行了轴向静力加载试验，考虑了碳纤维布层数和预压荷载水平两个参数。试验结果表明：所有的约束型钢混凝土柱均以碳纤维布断裂为破坏标志，破坏前有明显的预兆。施加在约束柱上的峰值荷载随碳纤维布层数增加而提高，包裹2层布提高了58�36％，3层提高了64�51％；预压荷载的存在会减弱碳纤维布对短柱的约束效果，且随着预压荷载水平的提高，布的有效拉应变不断减小，柱承载能力不断降低。最后建立了碳纤维布有效拉应变与预压荷载水平的关系式，提出了构件轴压承载能力计算式，计算结果与试验结果吻合良好。%In order to study the axial compressive behavior of preloaded steel reinforced concrete ( SRC) rectangular short columns confined by carbon fiber reinforced polymer ( CFRP) laminates, a total of 15 specimens were designed to conduct the experiment that considered two variables including preload level and CFRP layers. The experimental results indicated that all of the confined columns failed directly in the fracture of CFRP laminates, in which there was an obvious sign before the ultimate state. Compared with the unconfined SRC column, the peak load of the confined column with 2 layers of CFRP increased by 58�36%, while by 64�51% with 3 layers. In addition, the preload decreased the effectiveness of confinement, both of the working strain of CFRP and the peak load of columns decreased with the increasing of the preload level. The relationship between the effective circumferential strain of CFRP and preload level was proposed. The theoretical formula of the axial bearing capacities of preloaded SRC rectangular columns confined by CFRP was proposed, and the calculation results agreed well with the test results.
砌体局部受压有限元分析%Finite-element analysis of masonry under local compressive load
Institute of Scientific and Technical Information of China (English)
杨卫忠; 王博
2011-01-01
采用有限元方法,分析了典型砌体局部受压时主应力和Mises应力分别沿截面宽度和深度的变化规律.结果表明,最大主拉应力位置与已有试验结果大致吻合；应力云图可清晰地反映砌体局压时的应力扩散作用,主要应力扩散范围约为一倍的局压范围的边长；最大Mises应力值可反映不同局压位置对局压强度的影响,研究成果有助于进一步了解砌体局压的受力机理,为下一步修订规范提供参考.%Finite-element analysis can reveal the complex mechanism of structural element. The principal stress and Mises stress of masonry under local compressive load are analyzed by FEA, and the main variability is the position of local compression. The result shows that the position of the maximum principle tensile stress has a good agree with the experimental result. The stress dispersion can be validated by comparing the stress cloud atlas of various sections,and the dispersion range is about specimen length around the local bearing area. The maximum Mises stress has a strong affect on the increased strength of masonry. It is very helpful for the further study the mechanism of masonry under local compression,and it can also provide a reference for revising the masonry code.
Directory of Open Access Journals (Sweden)
Saulius VAITKUS
2013-05-01
Full Text Available The results of investigation of strength (s10 %, scr and deformability (E characteristics of expanded polystyrene specimens are presented. The results are based on the short-term compression in the organization of long-term creep study. For the experiments identical specimens stored 5 years at ambient temperature (23 ±2 °C and relative humidity (50 ±5 % as well specimens after removal long-term loading were used. There were established, that difference between experimental values of stress and initial modulus of tested expanded polystyrene specimens with confidence probability P = 90 % (on-sided test is negligible (random.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4442
Directory of Open Access Journals (Sweden)
Jörg eMänner
2014-04-01
Full Text Available The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process towards the generation of only D-loops or L-loops, respectively. Our data are discussed with respect to observations made in biological ‘models’. We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces towards a biased
Karaarslan, Ahmet Adnan; Karakaşli, Ahmet; Karci, Tolga; Aycan, Hakan; Yildirim, Serhat; Sesli, Erhan
2015-06-01
The aim is to present our new method of compression, a compression tube instead of conventional compression screw and to investigate the difference of proximal locking screw bending resistance between compression screw application (6 mm wide contact) and compression tube (two contact points with 13 mm gap) application. We formed six groups each consisting of 10 proximal locking screws. On metal cylinder representing lesser trochanter level, we performed 3-point bending tests with compression screw and with compression tube. We determined the yield points of the screws in 3-point bending tests using an axial compression testing machine. We determined the yield point of 5 mm screws as 1963±53 N (mean±SD) with compression screw, and as 2929±140 N with compression tubes. We found 51% more locking screw bending resistance with compression tube than with compression screw (p=0,000). Therefore compression tubes instead of compression screw must be preferred at femur compression nails.
Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix
O'Keeffe, Stephen G.
2013-11-01
We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.
Institute of Scientific and Technical Information of China (English)
刘向斌; 周天华; 聂少锋; 吴函恒
2011-01-01
The finite element model involving materials nonlinearity, geometric nonlinearity and contact nonlinearity was established, the influences of slenderness ratios, screw connection spacings, maximum width-thickness ratios on cold-formed thin-walled steel three open limbs built-up columns under axial compression were analyzed by using ANSYS finite element program. Results show that the slenderness ratio has great influence on the bearing capacity of axial compression and the axial compression performance for class A, B section built-up columns, with the increase of the column slenderness ratio, the ultimate bearing capacity gradually decreases. For two class section built-up columns, when screw connection spacing has arranged 450,300,150 mm, the ultimate bearing capacity of axial compression and the rigidity are little affected. For the three different lengths to the two class section built-up columns, as different thicknesses of the basic component plates cause different width-thickness ratios of the section, the ultimate bearing capacity of axial compression and the rigidity are obviously affected. When length and thickness of class A, B section built-up columns are same, and the basic component web height is increasedfrom 89 mm to 140 mm, the ultimate bearing capacity of axial compression is not obviously improved.%建立了考虑材料、几何和接触非线性的有限元模型,利用ANSYS有限元程序分析了长细比、螺钉连接间距、截面板件最大宽厚比对冷弯薄壁型钢开口三肢拼合立柱轴压性能的影响.结果表明:立柱长细比对A、B两类截面拼合立柱轴压承载力和轴压性能有很大影响,随着立柱长细比的增大,立柱轴压极限承载力逐渐降低；当螺钉连接间距为450、300、150 mm时,A、B两类截面拼合立柱轴压极限承载力和刚度变化均不大；由于基本构件板材厚度不同引起截面板件最大宽厚比的不同,对A、B两类截面3种长度的拼合立柱的承
Kurtz, S M; Pruitt, L A; Jewett, C W; Foulds, J R; Edidin, A A
1999-08-01
The mechanical behavior and evolution of crystalline morphology during large deformation of eight types of virgin and crosslinked ultra high molecular weight polyethylene (UHMWPE) were studied using the small punch test and transmission electron microscopy (TEM). We investigated the hypothesis that both radiation and chemical crosslinking hinder molecular mobility at large deformations, and hence promote strain hardening and molecular alignment during the multiaxial loading of the small punch test. Chemical crosslinking of UHMWPE was performed using 0.25% dicumyl peroxide (GHR 8110, GUR 1020 and 1050), and radiation crosslinking was performed using 150 kGy of electron beam radiation (GUR 1150). Crosslinking increased the ultimate load at failure and decreased the ultimate displacement of the polyethylenes during the small punch test. Crosslinking also increased the near-ultimate hardening behavior of the polyethylenes. Transmission electron microscopy was used to characterize the crystalline morphology of the bulk material, undeformed regions of the small punch test specimens, and deformed regions of the specimens oriented perpendicular and parallel to the punch direction. In contrast with the virgin polyethylenes, which showed only subtle evidence of lamellar alignment, the crosslinked polyethylenes exhibited enhanced crystalline lamellae orientation after the small punch test, predominantly in the direction parallel to the punch direction or deformation axis. Thus, the results of this study support the hypothesis that crosslinking promotes strain hardening during multiaxial loading because of increased resistance to molecular mobility at large deformations effected by molecular alignment. The data also illustrate the sensitivity of large deformation mechanical behavior and crystalline morphology to the method of crosslinking and resin of polyethylene.
Buckling of un-stiffened cylindrical shell under non-uniform axial conpressive stress
Institute of Scientific and Technical Information of China (English)
宋昌永
2002-01-01
This paper provides a review of recent research advances and trends in the area of stability of un-stiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses. Only the more important and interesting aspects of the research, judged from a personal viewpoint, are discussed. They can be crudely classified into four categories: (1) shells subjected to non-uniform loads; (2) shells on discrete supports; (3) shells with intended cutouts/holes; and (4) shells with non-uniform settlements.
Energy Technology Data Exchange (ETDEWEB)
Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)
2012-07-01
Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)
O'Brien, T. Kevin; Krueger, Ronald
2005-01-01
The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH). Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.
Institute of Scientific and Technical Information of China (English)
屠永清; 刘林林; 叶英华
2012-01-01
为了实现对多室式钢管混凝土T形柱轴压稳定性能的研究，进行6个中长柱试件及4个短柱对照试件的轴压试验，重点考察前者的破坏形态、荷载-变形关系及截面尺寸对承载力的影响。试验结果表明，中长柱的力学行为与短柱有较大不同，其破坏属于整体弯曲破坏，增大腹板高度对承载能力会产生有利影响。同时，将改进Mander模型后所得的混凝土本构关系引入有限元软件ABAQUS中，对试验进行了有限元模拟，其结果与试验结果吻合较好。在试验及有限元分析的基础上确定了中长柱与短柱之间的界限长细比，并对这一新型结构柱稳定承载力的计算方法进行了探讨，给出可供实际应用参考的计算公式。%In order to acquire the stability properties of multi-cell T-shaped concrete-filled steel tubular （MT-CFST） columns, axial compressive experiments of 6 intermediate long specimens and 4 stub specimens were presented. The failure modes, relationships between axial load and deformation and the effects of cross section dimensions on the bearing capacities of the specimens were investigated. It is demonstrated that the mechanical behaviors of MT-CFST middle long columns are different from stub columns. Their ultimate failure modes belong to buckling failure and the enhancement of web height could enhance the bearing capacities. A constitutive relationship of the concrete core is suggested by modifying Mander＇ s concrete model. Finite element analysis of the specimens is carried using ABAQUS and the calculation results are in good agreement with the experimental results. Based on the experiment and finite element analysis, the slenderness ratio limit between intermediate long columns and stub columns is suggested and subsequently a simplified formula for stable bearing capacities of MT-CFST columns is proposed.
Chen, Kan; Liu, Xiang; Matsuki, Takayuki
2015-01-01
Inspired by the abundant experimental observation of axial vector states, we study whether the observed axial vector states can be categorized into the conventional axial vector meson family. In this paper we carry out analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial vector mesons, which are valuable to further experimental exploration of the observed and predicted axial vector mesons.
Institute of Scientific and Technical Information of China (English)
邓宗才; 徐永朝; 曹炜
2013-01-01
Based on the experiment on concrete columns confined with polyethylene fiber reinforced polymer ( PEFRP) sheets under axial compression, the authors emphasized on analyzing failure configuration, bearing capacity, stress-strain curve and ductility. It is shown that; 1 ) comparing with the specimen without being confined, bearing capacity of concrete quadrate columns confined by PEA-L-2, PEA-L-3, PEB-L-2 and PEB-L-3 improves 10%, 35%, 27% and 30% respectively, peak strain improves 195% , 80% , 207% and 182% respectively; 2) bearing capacity of concrete circular columns confined by PEA-C-2, PEA-C-3, PEB-C-2 and PEB-C-3 improves 11%, 21%, 37% and 53% respectively,peak strain improves 112% , 150% , 159% and 142% respectively. Toughness index could be adopted to evaluate the ductility of constraint column, and the result shows that PEA is better than PEB in improving column toughness index I1 ,but PEB which has high elongation rate improve column late ductility effect more apparent.%试验研究了聚乙烯纤维布增强聚合物(PEFRP)约束混凝土柱体的轴心抗压性能,重点分析了其破坏形态、应力-应变全曲线、峰值应力、峰值应变、变形性能等.试验结果表明:1)相对于未约束混凝土试件,PEA-L-2、PEA-L-3、PEB-L-2、PEB-L-3约束混凝土棱柱体的抗压强度分别提高了10％、35％、27％和30％,峰值应变分别提高了195％、80％、207％和182％；2)PEA-C-2、PEA-C-3、PEB-C-2和PEB-C-3约束混凝土圆柱体的抗压强度分别提高了11％、21％、37％和53％,峰值应变提高了112％、150％、159％和142％.压缩韧性指数方法能评价PEFRP约束柱的变形能力,计算结果表明:PEA对提高柱韧性指数I1效果比PEB显著,而延伸率高的PEB对改善柱后期延性效果更好.
Institute of Scientific and Technical Information of China (English)
徐蔚蔚; 邵增务; 裴洪; 周建国; 黄吉军; 俞旭东; 熊蠡茗
2009-01-01
Objective To investigate the protective effects of nicotinamide against axial loading-induced rabbit intervertebral disc (IVD) degeneration. Methods Twenty-four Japanese white rabbits were randomly divided into 6 groups. Rabbit lumbar disc degeneration model was established by the controllable axial pressure of 98 N. The rabbits were given nicotinamide orally following the grouping. In group l,two rabbits were equipped with the controllable axial pressure device but not subjected to pressure or nicotinamide; In group 2, two rabbits were administered nicotinamide of 50 mg/(kg·d) for one week by gastric ga-vage; In group 3,five rabbits were loaded with controllable axial pressure of 98 N for one week; In group 4,five rabbits were loaded with controllable axial pressure of 98 N for one week,then restored one week by the removal of the pressure; In group 5.five rabbits were loaded with controllable axial pressure of 98 N for one week,and given nicotinamide of 50 mg/ (kg ? D) for one week prior to the removal of the pressure; In group 6,five rabbits were loaded with controllable axial pressure of 98 N for one week and restored one week, and simultaneously given nicotinamide of 50 mg/(kg·d) for two weeks via gastric ga-vage. The rabbit lumbar MRI and Thompson grades were used to score IVD degeneration; HE staining,type Ⅱ collagen immu-nohistochemistry staining and Safranin O-Fast Green staining were done to assess the histological changes in the IVD matrix; P16INK4A immunohistochemistry staining was used to detect the state of cell senescence. Results ① Immunohistochemistry staining of type Ⅱ collagen demonstrated that the pathological changes of IVDs were alleviated, and contents of collagen were increased by 53. 2% in the nicotinamide-treated groups as compared with group 4(P<0. 01) ;②Safranin O-Fast Green staining intensity of both nucleus pulposus (NP) and annular fibrosus in group 2 was increased as compared with group 1. The staining intensity in NP of
Crack buckling in soft gels under compression
Institute of Scientific and Technical Information of China (English)
Rong Long; Chung-Yuen Hui
2012-01-01
Recent interest in designing soft gels with high fracture toughness has called for simple and robust methods to test fracture behavior.The conventional method of applying tension to a gel sample suffers from a difficulty of sample gripping.In this paper,we study a possible fracture mechanism of soft gels under uni-axial compression.We show that the surfaces of a pre-existing crack,oriented parallel to the loading axis,can buckle at a critical compressive stress.This buckling instability can open the crack surfaces and create highly concentrated stress fields near the crack tip,which can lead to crack growth.We show that the onset of crack buckling can be deduced by a dimensional argument combined with an analysis to determine the critical compression needed to induce surface instabilities of an elastic half space.The critical compression for buckling was verified for a neoHookean material model using finite element simulations.
Negative linear compressibility in common materials
Energy Technology Data Exchange (ETDEWEB)
Miller, W.; Evans, K. E.; Marmier, A., E-mail: A.S.H.Marmier@exeter.ac.uk [College of Engineering Mathematics and Physical Science, University of Exeter, Exeter EX4 4QF (United Kingdom)
2015-06-08
Negative linear compressibility (NLC) is still considered an exotic property, only observed in a few obscure crystals. The vast majority of materials compress axially in all directions when loaded in hydrostatic compression. However, a few materials have been observed which expand in one or two directions under hydrostatic compression. At present, the list of materials demonstrating this unusual behaviour is confined to a small number of relatively rare crystal phases, biological materials, and designed structures, and the lack of widespread availability hinders promising technological applications. Using improved representations of elastic properties, this study revisits existing databases of elastic constants and identifies several crystals missed by previous reviews. More importantly, several common materials-drawn polymers, certain types of paper and wood, and carbon fibre laminates-are found to display NLC. We show that NLC in these materials originates from the misalignment of polymers/fibres. Using a beam model, we propose that maximum NLC is obtained for misalignment of 26°. The existence of such widely available materials increases significantly the prospects for applications of NLC.
Lajnef, N.; Burgueño, R.; Borchani, W.; Sun, Y.
2014-05-01
A major obstacle limiting the development of deployable sensing and actuation solutions is the scarcity of power. Converted energy from ambient loading using piezoelectric scavengers is a possible solution. Most of the previously developed research focused on vibration-based piezoelectric harvesters which are typically characterized by a response with a narrow natural frequency range. Several techniques were used to improve their effectiveness. These methods focus only on the transducer’s properties and configurations, but do little to improve the stimuli from the source. In contrast, this work proposes to focus on the input deformations generated within the structure, and the induction of an amplified amplitude and up-converted frequency toward the harvesters’ natural spectrum. This paper introduces the concept of using mechanically-equivalent energy converters and frequency modulators that can transform low-amplitude and low-rate service deformations into an amplified vibration input to the piezoelectric transducer. The introduced concept allows energy conversion within the unexplored quasi-static frequency range (≪1 Hz). The post-buckling behavior of bilaterally constrained columns is used as the mechanism for frequency up-conversion. A bimorph cantilever polyvinylidene fluoride (PVDF) piezoelectric beam is used for energy conversion. Experimental prototypes were built and tested to validate the introduced concept and the levels of extractable power were evaluated for different cases under varying input frequencies. Finally, finite element simulations are reported to provide insight into the scalability and performance of the developed concept.
Energy Technology Data Exchange (ETDEWEB)
Nascimento, J.L.; Irmao, M.A.S.; Araujo, A.L.; Silva, A.A. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia Mecanica
2004-07-01
Structures and mechanical components, subjects to conditions of loading in operation, accumulate faults during your useful lives. The detection and condition monitoring of the faults is essential of the point of view of the efficiency and safety. Efforts have been accomplished, in the sense of constituting models and methodologies that indicate the most opportune moment for the shut down industrial plant, seeking your maintenance. In the present work, it intends an alternative method for the detection and the condition monitoring of faults in a cantilever bar by the analysis of your longitudinal displacement. The methodology is constituted basically in simulating the computational model of the bar for Finite Element Method (FEM), where the faults are characterized by one of the elements with reduced transverse section. The existence of two classes of angular coefficients is noticed, that will be the analysis parameters, where the first tells respect the intact element and the second the damaged element, both different ones for each position and depth of simulated faults. The same ones are thrown as input in a Artificial Neural Networks, that once trained is capable to identify the position and the depth efficiently in that meets the faults. (author)
Energy Technology Data Exchange (ETDEWEB)
Nascimento, J.L.; Irmao, M.A.S.; Araujo, A.L.; Silva, A.A. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia Mecanica
2004-07-01
Structures and mechanical components, subjects to conditions of loading in operation, accumulate faults during your useful lives. The detection and condition monitoring of the faults is essential of the point of view of the efficiency and safety. Efforts have been accomplished, in the sense of constituting models and methodologies that indicate the most opportune moment for the shut down industrial plant, seeking your maintenance. In the present work, it intends an alternative method for the detection and the condition monitoring of faults in a cantilever bar by the analysis of your longitudinal displacement. The methodology is constituted basically in simulating the computational model of the bar for Finite Element Method (FEM), where the faults are characterized by one of the elements with reduced transverse section. The existence of two classes of angular coefficients is noticed, that will be the analysis parameters, where the first tells respect the intact element and the second the damaged element, both different ones for each position and depth of simulated faults. The same ones are thrown as input in a Artificial Neural Networks, that once trained is capable to identify the position and the depth efficiently in that meets the faults. (author)
Institute of Scientific and Technical Information of China (English)
常园园; 许希武; 郭树祥
2011-01-01
建立了考虑脱粘的复合材料整体加筋板渐进损伤有限元分析模型。该模型采用界面单元模拟筋条与壁板之间的连接界面,连接界面和复合材料层板分别采用Quads准则和Hashin准则作为失效判据,基于ABAQUS软件,建立了含连续损伤状态变量的材料刚度退化方案。基于该模型,采用非线性有限元方法研究了压缩载荷下复合材料整体加筋壁板在考虑初始几何缺陷时的破坏过程,分析了结构相应失效模式的细观损伤机制;详细讨论了轴向刚度比对结构承载能力及破坏模式的影响。结果表明：考虑脱粘损伤的有限元模型能有效模拟加筋板的破坏过程;在加筋板铺%A strength analysis model was presented to study the progressive damage of integral stiffened composite panels subjected to compressive loading by using the nonlinear finite element method.In the model,the debonding failure of the adhesive between the skin and stiffener was considered by adding cohesive elements between the shell elements.Quads failure criteria and Hashin＇s failure criteria were adopted to identify the occurring of damage events of the cohesive elements and the composite panels,respectively.Based on ABAQUS,a material degradation rule containing continuum damage status variables was presented.The process of damage initiation,propagation and catastrophic failure of the integral stiffened composite panels was simulated in detail by the proposed model,and the initial geometric imperfection was taken into account.Axial stiffness ratio of stiffener and skin was defined and conducted to study the effects to the structure on the carrying capacity and failure modes.The results indicate that： the model can predict the damage process of integral stiffened panel effectively;under the condition the ply design is reasonable,increasing the stiffness ratio can to some extent improve the unit area bearing capacity of the cross section of stiffened composite
Rajasekaran, G.; Parashar, Avinash
2016-09-01
The mechanical properties of graphene sheet can be tailored with the help of topological defects. In this research article, the effects of Stone-Thrower-Wales (STW) defects on the mechanical properties of graphene sheet was investigated with the help of molecular dynamics based simulations. Authors has made an attempt to analyse the stress field developed in and around the vicinity of defect due to bond reorientation and further systematic evaluation has been carried out to study the effect of these stress fields against the applied axial compressive load. The results obtained with the pristine graphene were made to compare with the available open literature and the results were reported to be in good agreement with theoretical and experimental data. It was predicted that graphene with STW defect cannot able to bear compressive strength in zigzag direction, whereas on the other hand it was predicted that graphene sheet containing STW defect can bear higher compressive load in armchair direction, which shows an anisotropic response of STW defects in graphene. From the obtained results it can be observed that orientation of STW defects and the loading direction plays an important role to alter the strength of graphene under axial compression.
Wang, Jun; Peng, Zhenzhen; Li, Aijie; Xu, Zujie; Chen, Xinmin
2013-12-01
The purpose of this study was to investigate the effect of four kinds of different contact strength on the three-dimensional displacement of an implant-supported fixed bridge using digital laser speckle photography method. An in vitro model of beagle mandible with an implant-supported fixed bridge in its right premolar region was developed. The bridge was Au-Pt metal-ceramic. The contact was recovered to four different tightnesses, named 0, 1, 2, and 3. Different axial concentrated static load was applied to abutments and bridge respectively. The three-dimensional displacement of the implant-supported fixed bridge was measured using digital laser speckle photographic method. The results demonstrated that the influence of contact tightness was mainly on the mesio-distal and buccal lingual parts. When the contact tightness reached number 3, the regularity of displacement distribution was changed. The present study proved that digital laser speckle photography was an effective method of measuring the micro-displacement. One of the criterions of contact recovering decreased the implant displacement effectively without changing the regularity of displacement distribution.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail: rrodriguezm@ipn.mx, E-mail: urrio332@hotmail.com, E-mail: guiurri@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: romerobeatriz98@hotmail.com, E-mail: napor@hotmail.com [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)
2011-07-19
Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.
Directory of Open Access Journals (Sweden)
Anamaria Siriani de Oliveira
2006-02-01
extremidad libre con la carga rotacional externa (ELCR. Se seleccionaron 20 voluntarias (23,2 años ± 0,9 sedentarias. Ellos estimaron el grosor en mm. de los tríceps del brazo, los bíceps del brazo, pectoral mayor, trapecio y deltoides. El registro electromiográfico de superficie se hizo, durante la realización de los ejercicios con EFCA y de los con ELCR, usando 100% de la resistencia máxima establecidos previamente. Se compararon los valores de RMS normalizados por la reducción máxima voluntaria a través de modelo de efectos mixtos con un nivel de significancia de 5%. En estas condiciones experimentales, los resultados del estudio presente mostraron que ejercicios similares, clasificados por la condición de la extremidad y la dirección de la carga aplicada al miembro superior, promoven niveles similares de electromiografía con actividad en sólo parte de los músculos estudiados. Estos descubrimientos cuestionan la capacidad del sistema de la clasificación usada en este estudio para predecir el tipo de respuesta muscular esperada en el logro de tareas diferentes de misma clasificación.The knowledge of the electromyographic activity produced during shoulder exercises can help in determining its clinical applicability. The purpose of this study was to assess the influence of the load direction and the extremity condition on the electrical activity of the shoulder girdle and upper limb muscles during exercises with fixed distal extremity and external axial load (FEAL and mobile extremity with rotational external load (MERL. Twenty 23.2 ± 0.9 years old female sedentary volunteers were selected. The triceps brachii, biceps brachii, major pectoral, trapezium and deltoid muscles were assessed. The surface electromyography was recorded during two FEAL and two MERL exercises using 100% of the previously established maximal resistance. The RMS values normalized by the maximal voluntary contraction were compared by a mixed effect model with 5% significance level. In
Institute of Scientific and Technical Information of China (English)
聂少锋; 周天华; 袁涛涛; 高婷婷; 吴函恒
2012-01-01
17 specimens of cold-formed steel box built-up setion columns were tested under axial compression load. The section forms were divided into two categories: A and B. Load-displacement curves and failure characteristics of specimens were obtained. The test results are compared with the caculated results according to "effective ratio of width to thickness" in code of "Technical code of cold-formed thin-wall steel structures" (GB 50018 - 2002), "effective section method" and "direct strength method" in AISI specification. The results show that: the failure characteristics of LC and MC series columns are overall flexural buckling, while SC series columns are local buckling and ends confined damage. The ultimate bearing capacity of B categories section columns is three times as great as that of A categories section columns, so it has the effect of "1 + 1>2". The results calculated according to "GB50018" and AISI specification are much conservative for LC series columns of A categories section, while in agreement with test results for MC and SC series columns. For B categories section columns, the calculated results are non-conservative for LC and MC series columns, while conservative for SC series columns.%对17根冷弯薄壁型钢拼合箱形截面立柱的轴压性能进行试验研究,截面分为A、B两类,得到了各试件荷载-位移曲线和破坏特征,并将试验结果与《冷弯薄壁型钢结构技术规范》(GB 50018-2002)“有效宽厚比法”和美国相关规范中“直接强度法”、“有效截面法”计算结果进行对比分析.结果表明:LC和MC系列立柱的破坏模式为整体弯曲屈曲,SC系列立柱则为局部屈曲和端部承压破坏;B类试件的最大承载力大于A类截面试件的最大承载力的2倍,即有“1+1＞2”的拼合效应;对于A类截面LC系列立柱,GB 50018和AISI规范公式计算结果过于保守,而对于MC和SC系列试件,公式计算结果与试验结果比较吻合;对于B类截面LC和MC
Institute of Scientific and Technical Information of China (English)
刘林林; 屠永清; 叶英华
2011-01-01
对钢管混凝土T形柱进行合理的改进，提出多室式钢管混凝土T形柱（MT-CFST柱）。进行12个短柱试件的轴压试验并对其破坏过程作了详细描述，给出试件的轴压应力．纵向平均应变曲线，同时也考察试件的破坏形态及截面各尺寸、板件布置方式、钢板厚度、混凝土强度等因素对试件力学性能的影响。试验结果表明：多室式钢管混凝土T形柱能较好地增强T形截面内钢材对混凝土的约束作用，发挥两种材料的组合性能；试件的破坏以局部鼓曲和整体剪切两种形式为主，轴压性能受腹板高度、钢板厚度及混凝土强度的影响较大。同时，参考国内外4种钢管混凝土规范中的计算方法对试件的承载力进行计算，经过对比后发现，按ECA规范计算的结果与试验结果符合最好。%Multi-cell T-shaped concrete-filled steel tubular （MT-CFST） column is an improvement of T-shaped concretefilled steel tubular （T-CFST） column. Twelve MT-CFST stub columns under axial compression were tested and the failure processes were described in detail. The axial stress-longitudinal average strain curves were provided, and the effects of the factors including cross section dimension, steel plate layout, thickness of the steel plate and concrete strength on the mechanical behaviors of the specimens were discussed. It is shown that MT-CFST stub columns may enhance the interaction between the two component materials and take advantage of their performances. The primary failure modes of the specimens involved local bulge failure and shear failure. Properties of the MT-CFST co