WorldWideScience

Sample records for axi-symmetric gravitational equilibria

  1. Elastic-plastic analysis of an axi-symmetric problem by a finite element method

    International Nuclear Information System (INIS)

    Isozaki, Toshikuni

    1984-06-01

    Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)

  2. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Stuchlík, Zdeněk

    2014-01-01

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed

  3. Transition from gas to plasma kinetic equilibria in gravitating axisymmetric structures

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio; Stuchlík, Zdeněk [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám.13, CZ-74601 Opava (Czech Republic)

    2014-04-15

    The problem of the transition from gas to plasma in gravitating axisymmetric structures is addressed under the assumption of having initial and final states realized by kinetic Maxwellian-like equilibria. In astrophysics, the theory applies to accretion-disc scenarios around compact objects. A formulation based on non-relativistic kinetic theory for collisionless systems is adopted. Equilibrium solutions for the kinetic distribution functions describing the initial neutral matter and the resulting plasma state are constructed in terms of single-particle invariants and expressed by generalized Maxwellian distributions. The final plasma configuration is related to the initial gas distribution by the introduction of appropriate functional constraints. Qualitative aspects of the solution are investigated and physical properties of the system are pointed out. In particular, the admitted functional dependences of the fluid fields carried by the corresponding equilibrium distributions are determined. Then, the plasma is proved to violate the condition of quasi-neutrality, implying a net charge separation between ions and electrons. This result is shown to be independent of the precise realization of the plasma distribution function, while a physical mechanism able to support a non-neutral equilibrium state is proposed.

  4. FLEXURAL STRESS ANALYSIS OF RIGID PAVEMENTS USING AXI-SYMMETRIC AND PLANE STRAIN FEM

    Directory of Open Access Journals (Sweden)

    V.A. Sawant

    2017-11-01

    Full Text Available The design of pavement involves a study of soils and paving materials, their response under load for different climatic conditions. In the present study, an attempt has been made to compare stresses predicted using two finite element analyses. First analysis is based on the twodimensional plane strain assumption where as in second approach axi-symmetric condition is assumed to consider three-dimensional behavior of rigid pavement. The results are compared with flexural stresses obtained from conventional Portland Cement Association method. The computed flexural stresses obtained from axi-symmetric condition are found to be in close agreement with PCA method. Results of plane strain analysis show a fair agreement after application of an appropriate multiplication factor

  5. How axi-symmetric is the inner HI disc of the Milky Way?

    Directory of Open Access Journals (Sweden)

    Marasco A.

    2012-02-01

    Full Text Available We modelled the distribution and the kinematics of HI in the inner Milky Way (R < R☉ at latitude b = 0∘ assuming axi-symmetry. We fitted the line profiles of the LAB 21-cm survey using an iterative approach based on the tangent-point method. The resulting model reproduces the H I data remarkably well, with significant differences arising only for R ≲ 2 kpc. This suggests that, despite the presence of a barred potential, the neutral gas in the inner Milky Way is distributed in a fairly axi-symmetric disc.

  6. Flow of Polymer Melts in Plane- and Axi-symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1997-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... for the LDPE and the PS melts. Further more, the pressure losses are characterised with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic rime of the now is Hencky strain rate dependent....

  7. Flow of Polymer Melts in Plane- and Axi-Symmetric Converging Dies

    DEFF Research Database (Denmark)

    Lauridsen, Carsten Linding; Kjær, Erik Michael; Haudrum, Jan

    1998-01-01

    The extensional flow has considerable influence on the pressure loss in converging flows, which are present in both extrusion and injection moulding. Both plane- and axi-symmetric converging flows have been studied with LDPE, HDPE and PS. The transient extensional viscosities are determined in al...... are comparable for the LDPE and the PS melts. Furthermore, the pressure losses are characterized with the Deborah number in which the characteristic time of the material is shear rate dependent and the characteristic time of the flow is Hencky strain rate dependent....

  8. Interpolation of magnetic surface functions for an axi-symmetric plasma

    International Nuclear Information System (INIS)

    Yamaguchi, Taiki; Maeyama, Mitsuaki

    2000-01-01

    Informations of the magnetic surface functions of magnetically confined plasma are indispensable for equilibrium, stability and transport analyses. In this paper, in order to identify a realistic surface functions and compare those with ones which are introduced from Taylor's relaxation theory, we propose a code to interpolate these surface functions for an axi-symmetric plasma from experimentally measured data. To confirm our code, we used the date which were analyzed from known functions given as a measured data. As a result, we have developed a code which can derive surface functions I and P. Effects of measurement error on those functions are also examined. (author)

  9. Static equilibria of the interstellar gas in the presence of magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Mouschovias, T.C.

    1975-01-01

    No exact self-consistent equilibrium calculations exist for (any model of) the system of the interstellar gas and the frozen-in magnetic field. On a large scale (approximately 1 kpc) this system is affected by the vertical galactic gravitational field, while on a small scale (approximately 1 pc) the self-gravitation of the gas comes into play and is responsible for the collapse of some clouds to form stars. Accessible equilibrium states are determined for the gas--field system on both of these scales. (U.S.)

  10. Thermal characterization of indirectly heated axi-symmetric solid cathode electron beam gun for melting application

    International Nuclear Information System (INIS)

    Prakash, B.; Gupta, S.; Malik, P.; Mishra, K.K.; Jha, M.N.; Kandaswamy, E.; Martin, M.

    2015-01-01

    Electron beam melting gun with indirectly heated axi-symmetric solid cathode was designed, fabricated and characterized experimentally. The thermal simulation and optical analysis of the electron gun was carried out to estimate the power required to achieve the emission temperature of the solid cathode, to obtain the temperature distribution in the assembly and the beam transportation. On the basis of the thermal simulation and electron optics, the electron gun design was finalised. The electron gun assembly was fabricated and installed in the vacuum chamber for carrying out the experiment to find the actual temperature distribution. Thermocouple and two colour pyrometer were used to measure the temperature at various locations in the electron gun. The attenuation effect of the viewing port glass of the vacuum chamber was compensated in the final reading of the temperature measured by the pyrometer. The temperature of solid cathode obtained by the experiment was found to be 2800K which is the emission temperature of solid cathode. (author)

  11. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.

    Science.gov (United States)

    Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume

    2012-12-17

    A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.

  12. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  13. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  14. Engineering studies for the installation of an axi-symmetric metallic divertor in Tore Supra

    International Nuclear Information System (INIS)

    Doceul, L.; Portafaix, C.; Bucalossi, J.; Saille, A.; Bertrand, B.; Lipa, M.; Missirlian, M.; Jiolat, G.; Samaille, F.; Soler, B.

    2011-01-01

    Tore Supra (TS) has been designed to operate using technologies that allow long plasma operation (a few minutes), by means of superconducting magnets and actively-cooled high heat flux plasma facing components (PFCs). Actively cooled tungsten PFC will be used in the baffle area of the first ITER divertor. In order to validate such a technology fully (industrial manufacturing, operation with long plasma duration), the implementation of a tungsten axi-symmetric divertor in the tokamak Tore Supra has been studied . With this second major upgrade, Tore Supra should be able to address the problematic of long plasma discharges with a metallic divertor. The proposed divertor is made up of two stainless steel casings containing a copper coil winding located at the top and bottom area of the vacuum vessel. These casings are firmly maintained by connection beams and protected by PFC. This paper describes the mechanical design of this major component and its integration in TS, the associated electromagnetic and thermomechanical analysis, the manufacturing issues and finally the integration of ITER representative PFCs.

  15. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    Science.gov (United States)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  16. Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations

    Science.gov (United States)

    Hou, Thomas Y.; Liu, Pengfei; Wang, Fei

    2018-05-01

    We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.

  17. Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction

    International Nuclear Information System (INIS)

    Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh

    2016-01-01

    A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.

  18. Gravitation

    CERN Document Server

    Misner, Charles W; Wheeler, John Archibald

    2017-01-01

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level...

  19. Analytical characterization of radiation fields generated by certain witch-type distributed axi-symmetrical ion beams

    International Nuclear Information System (INIS)

    Timus, D.M.; Kalla, S.L.; Abbas, M.I.

    2005-01-01

    Increasing interest is being shown in obtaining accurate predictions concerning radiation fields produced by ion beams impinging on homogeneous plane targets, the effect of this process being exothermic nuclear reactions. Previous theoretical studies made by the authors have focused on radiation fields generated by homogeneous plane disk- or ring-shaped sources, based on a unified treatment of the radiation field distribution developed by Hubbell and co-workers. In the case of an equivalent homogeneous source anisotropically emitting in non dispersive media, the Legendre polynomial series expansion method for specific emissivity function can be successfully applied when conditions for the convergence of the approximating series are satisfied. We have developed an analytical expression for the radiation field distribution around a homogeneous disk-shaped target bombarded by Witch-type distributed (in transverse plane) ion beams whose elementary areas anisotropically emit following a cos-type law in non dispersive media. Results of this investigation can be extended to various experimental situations in which the assumption of an angular omni-directional as well as of a constant space distribution of nuclear reaction emissivity over the accelerator target surface or other kinds of axi-symmetric plane sources of radiation is no longer valid. Animated 3 D graphics visualization is suggested

  20. Gravitation

    International Nuclear Information System (INIS)

    Fennelly, A.J.

    1978-01-01

    Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models

  1. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  2. Attractive evolutionary equilibria

    OpenAIRE

    Roorda, Berend; Joosten, Reinoud

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.

  3. Some stable hydromagnetic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)

  4. Learning efficient correlated equilibria

    KAUST Repository

    Borowski, Holly P.; Marden, Jason R.; Shamma, Jeff S.

    2014-01-01

    The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  5. Learning efficient correlated equilibria

    KAUST Repository

    Borowski, Holly P.

    2014-12-15

    The majority of distributed learning literature focuses on convergence to Nash equilibria. Correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific correlated equilibria. In this paper, we provide one such algorithm which guarantees that the agents\\' collective joint strategy will constitute an efficient correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  6. Institutions, Equilibria and Efficiency

    DEFF Research Database (Denmark)

    Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such set...... in OLG, learning in OLG and in games, optimal pricing of derivative securities, the impact of heterogeneity...

  7. Toroidal Extrap Equilibria

    International Nuclear Information System (INIS)

    Scheffel, J.

    1982-04-01

    Ideal MHD-equilibria for the toroidal EXTRAP configuration have been computed with an equilibrium code. The free-boundary prob- lem is solved by using the condition that the current density is proportional to r on a flux surface. It is found that the toroidal Z-pinch, initially induced in the central zero-field region of a transverse octupole field, drifts radially outwards producing an inverse -D shaped cross-section. The plasma current of this high- beta equilibrium may be increased if the plasma is pushed back by altering the external confining magnetic field as demonstrated. (Author)

  8. Resurrecting Equilibria Through Cycles

    DEFF Research Database (Denmark)

    Barnett, Richard C.; Bhattacharya, Joydeep; Bunzel, Helle

    equilibria because they asymptotically violate some economic restriction of the model. The literature has always ruled out such paths. This paper studies a pure-exchange monetary overlapping generations economy in which real balances cycle forever between momentary equilibrium points. The novelty is to show...... that segments of the offer curve that have been previously ignored, can in fact be used to produce asymptotically valid cyclical paths. Indeed, a cycle can bestow dynamic validity on momentary equilibrium points that had erstwhile been classified as dynamically invalid....

  9. Institutions, Equilibria and Efficiency

    DEFF Research Database (Denmark)

    Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such set......Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways. Efficiency and price regulation are studied when markets are incomplete and existence of equilibria...... in such settings is proven under very general preference assumptions. The model is extended to include geographical location choice, a commodity space incorporating manufacturing imprecision and preferences for club-membership, schools and firms. Inefficiencies arising from household externalities or group...... membership are evaluated. Core equivalence is shown for bargaining economies. The theory of risk aversion is extended and the relation between risk taking and wealth is experimentally investigated. Other topics include: determinacy in OLG with cash-in-advance constraints, income distribution and democracy...

  10. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  11. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  12. Quantum equilibria for macroscopic systems

    International Nuclear Information System (INIS)

    Grib, A; Khrennikov, A; Parfionov, G; Starkov, K

    2006-01-01

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered

  13. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  14. Inverse plasma equilibria

    International Nuclear Information System (INIS)

    Hicks, H.R.; Dory, R.A.; Holmes, J.A.

    1983-01-01

    We illustrate in some detail a 2D inverse-equilibrium solver that was constructed to analyze tokamak configurations and stellarators (the latter in the context of the average method). To ensure that the method is suitable not only to determine equilibria, but also to provide appropriately represented data for existing stability codes, it is important to be able to control the Jacobian, tilde J is identical to delta(R,Z)/delta(rho, theta). The form chosen is tilde J = J 0 (rho)R/sup l/rho where rho is a flux surface label, and l is an integer. The initial implementation is for a fixed conducting-wall boundary, but the technique can be extended to a free-boundary model

  15. Jump conditions in transonic equilibria

    International Nuclear Information System (INIS)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-01-01

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.

  16. Pierce instability and bifurcating equilibria

    International Nuclear Information System (INIS)

    Godfrey, B.B.

    1981-01-01

    The report investigates the connection between equilibrium bifurcations and occurrence of the Pierce instability. Electrons flowing from one ground plane to a second through an ion background possess a countable infinity of static equilibria, of which only one is uniform and force-free. Degeneracy of the uniform and simplest non-uniform equilibria at a certain ground plan separation marks the onset of the Pierce instability, based on a newly derived dispersion relation appropriate to all the equilibria. For large ground plane separations the uniform equilibrium is unstable and the non-uniform equilibrium is stable, the reverse of their stability properties at small separations. Onset of the Pierce instability at the first bifurcation of equilibria persists in more complicated geometries, providing a general criterion for marginal stability. It seems probable that bifurcation analysis can be a useful tool in the overall study of stable beam generation in diodes and transport in finite cavities

  17. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  18. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  19. Learning to Play Efficient Coarse Correlated Equilibria

    KAUST Repository

    Borowski, Holly P.; Marden, Jason R.; Shamma, Jeff S.

    2018-01-01

    The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However

  20. Partial Cooperative Equilibria: Existence and Characterization

    Directory of Open Access Journals (Sweden)

    Amandine Ghintran

    2010-09-01

    Full Text Available We study the solution concepts of partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria. The partial cooperative Cournot-Nash equilibrium is axiomatically characterized by using notions of rationality, consistency and converse consistency with regard to reduced games. We also establish sufficient conditions for which partial cooperative Cournot-Nash equilibria and partial cooperative Stackelberg equilibria exist in supermodular games. Finally, we provide an application to strategic network formation where such solution concepts may be useful.

  1. Stackelberg equilibria and horizontal differentiation

    OpenAIRE

    Lambertini, Luca

    1993-01-01

    This paper proposes a taxonomy of the Stackelberg equilibria emerging from a standard game of horizontal differentiation à la Hotelling in which the strategy set of the sellers in the location stage is the real axis. Repeated leadership appears the most advantageous position. Furthermore, this endogenously yields vertical differentiation between products at equilibrium.

  2. Multiple equilibria of divertor plasmas

    International Nuclear Information System (INIS)

    Vu, H.X.; Prinja, A.K.

    1993-01-01

    A one-dimensional, two-fluid transport model with a temperature-dependent neutral recycling coefficient is shown to give rise to multiple equilibria of divertor plasmas (bifurcation). Numerical techniques for obtaining these multiple equilibria and for examining their stability are presented. Although these numerical techniques have been well known to the scientific community, this is the first time they have been applied to divertor plasma modeling to show the existence of multiple equilibria as well as the stability of these solutions. Numerical and approximate analytical solutions of the present one-dimensional transport model both indicate that there exists three steady-state solutions corresponding to (1) a high-temperature, low-density equilibrium, (2) a low-temperature, high-density equilibrium, and (3) an intermediate-temperature equilibrium. While both the low-temperature and the high-temperature equilibria are stable, with respect to small perturbations in the plasma conditions, the intermediate-temperature equilibrium is physically unstable, i.e., any small perturbation about this equilibrium will cause a transition toward either the high-temperature or low-temperature equilibrium

  3. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  4. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  5. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  6. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  7. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  8. Nash Equilibria in Fisher Market

    Science.gov (United States)

    Adsul, Bharat; Babu, Ch. Sobhan; Garg, Jugal; Mehta, Ruta; Sohoni, Milind

    Much work has been done on the computation of market equilibria. However due to strategic play by buyers, it is not clear whether these are actually observed in the market. Motivated by the observation that a buyer may derive a better payoff by feigning a different utility function and thereby manipulating the Fisher market equilibrium, we formulate the Fisher market game in which buyers strategize by posing different utility functions. We show that existence of a conflict-free allocation is a necessary condition for the Nash equilibria (NE) and also sufficient for the symmetric NE in this game. There are many NE with very different payoffs, and the Fisher equilibrium payoff is captured at a symmetric NE. We provide a complete polyhedral characterization of all the NE for the two-buyer market game. Surprisingly, all the NE of this game turn out to be symmetric and the corresponding payoffs constitute a piecewise linear concave curve. We also study the correlated equilibria of this game and show that third-party mediation does not help to achieve a better payoff than NE payoffs.

  9. Gravitational Physics

    OpenAIRE

    Schäfer, G.; Schutz, B.

    1996-01-01

    Gravity is truly universal. It is the force that pulls us to the Earth, that keeps the planets and moons in their orbits, and that causes the tides on the Earth to ebb and flow. It even keeps the Sun shining. Yet on a laboratory scale gravity is extremely weak. The Coulomb force between two protons is 1039 times stronger than the gravitational force between them. Moreover, Newton's gravitational constant is the least accurately known of the fundamental constants: it has been measured to 1 par...

  10. Phase equilibria basic principles, applications, experimental techniques

    CERN Document Server

    Reisman, Arnold

    2013-01-01

    Phase Equilibria: Basic Principles, Applications, Experimental Techniques presents an analytical treatment in the study of the theories and principles of phase equilibria. The book is organized to afford a deep and thorough understanding of such subjects as the method of species model systems; condensed phase-vapor phase equilibria and vapor transport reactions; zone refining techniques; and nonstoichiometry. Physicists, physical chemists, engineers, and materials scientists will find the book a good reference material.

  11. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  12. Gravitational Grating

    Science.gov (United States)

    Rahvar, Sohrab

    2018-05-01

    In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.

  13. Stability of relative equilibria of three vortices

    DEFF Research Database (Denmark)

    Aref, Hassan

    2009-01-01

    Three point vortices on the unbounded plane have relative equilibria wherein the vortices either form an equilateral triangle or are collinear. While the stability analysis of the equilateral triangle configurations is straightforward, that of the collinear relative equilibria is considerably mor...

  14. Strong Nash Equilibria and the Potential Maimizer

    NARCIS (Netherlands)

    van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H.

    1996-01-01

    A class of non cooperative games characterized by a `congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class

  15. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  16. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  17. Signaling equilibria in sensorimotor interactions.

    Science.gov (United States)

    Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A

    2015-08-01

    Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  19. GRAVITATIONAL RADIATION

    Directory of Open Access Journals (Sweden)

    Metin SALTIK

    1996-03-01

    Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.

  20. Gravitational lenses

    International Nuclear Information System (INIS)

    Turner, E.L.

    1989-01-01

    The author discusses how gravitational lens studies is becoming a major focus of extragalactic astronomy and cosmology. This review is organized into five parts: an overview of the observational situation, a look at the state of theoretical work on lenses, a detailed look at three recently discovered types of lensing phenomena (luminous arcs, radio rings, quasar-galaxy associations), a review of progress on two old problems in lens studies (deriving unique lens mass distribution models, measurements of differential time delays), and an attempt to look into the future of lens studies

  1. Learning to Play Efficient Coarse Correlated Equilibria

    KAUST Repository

    Borowski, Holly P.

    2018-03-10

    The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific coarse correlated equilibria. In this paper, we provide one such algorithm, which guarantees that the agents’ collective joint strategy will constitute an efficient coarse correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  2. Computing Nash equilibria through computational intelligence methods

    Science.gov (United States)

    Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

    2005-03-01

    Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

  3. Multiple Equilibria in Noisy Rational Expectations Economies

    DEFF Research Database (Denmark)

    Pálvölgyi, Dömötör; Venter, Gyuri

    with a continuous price function. However, we also construct a tractable class of equilibria with discontinuous prices that have very different economic implications, including (i) jumps and crashes, (ii) significant revisions in uninformed belief due to small changes in the market price, (iii) “upward......-sloping” demand curves, (iv) higher prices leading to future returns that are higher in expectation (price drift) and (v) more positively skewed. Discontinuous equilibria can be arbitrarily close to being fully-revealing. Finally, discontinuous equilibria with the same construction also exist in Hellwig (1980)....

  4. Inefficient equilibria in transition economy

    Directory of Open Access Journals (Sweden)

    Sergei Guriev

    1999-01-01

    Full Text Available The paper studies a general equilibrium in an economy where all market participants face a bid-ask spread. The spread may be caused by indirect business taxes, middlemen rent-seeking, delays in payments or liquidity constraints or price uncertainty. Wherever it comes from the spread causes inefficiency of the market equilibrium. We discuss some institutions that can decrease the inefficiency. One is second currency (barter exchange in the inter-firm transactions. It is shown that the general equilibrium in an economy with second currency is effective though is still different from Arrow–Debreu equilibrium. Another solution can be introduction of mutual trade credit. In the economy with trade credit there are multiple equilibria that are more efficient than original bid-ask spread but still not as efficient as Arrow–Debreu one, too. The implications for firms' integration and applicability to Russian economy are discussed.

  5. Neoclassical MHD equilibria with ohmic current

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.

    1989-01-01

    MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)

  6. Multiple equilibria in a simple elastocapillary system

    KAUST Repository

    Taroni, Michele; Vella, Dominic

    2012-01-01

    properties two stable equilibria may exist, and show via numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is ultimately reached. © 2012 Cambridge University Press.

  7. Gravitational microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Aleksandr F [Russian Federation State Scientific Center ' A.I. Alikhanov Institute for Theoretical and Experimental Physics' , Moscow (Russian Federation); Sazhin, Mikhail V [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1998-10-31

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  8. Gravitational microlensing

    International Nuclear Information System (INIS)

    Zakharov, Aleksandr F; Sazhin, Mikhail V

    1998-01-01

    The foundations of standard microlensing theory are discussed as applied to stars in the Galactic bulge, Magellanic Clouds or other nearby galaxies and gravitational microlenses assumed to lie in-between these stars and the terrestrial observer. In contrast to the review article by Gurevich et al. [48], microlensing by compact objects is mainly considered. Criteria for the identification of microlensing events are discussed as also are microlensing events not satisfying these criteria, such as non-symmetrical light curves and chromatic and polarization effects. The Large Magellanic Cloud (LMC) and Galactic bulge microlensing data of the MACHO group are discussed in detail and also the LMC data of EROS and the Galactic bulge data of OGLE are presented. A detailed comparison of theoretical predictions and observations is given. (reviews of topical problems)

  9. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows

    International Nuclear Information System (INIS)

    Tasso, H.; Throumoulopoulos, G.N.

    1997-12-01

    It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)

  10. Drop formation from axi-symmetric fluid jets

    NARCIS (Netherlands)

    Driessen, T.W.

    2013-01-01

    In DoD inkjet printing, an ink jet is ejected from a nozzle, which forms a liquid filament after breaking up from the nozzle. The stability of this filament must be controlled for optimal print quality. This stability is the focus of the research comprised in this thesis. We start the investigation

  11. Axi-symmetric analysis of vertically inhomogeneous elastic multilayered systems

    CSIR Research Space (South Africa)

    Maina, JW

    2009-06-01

    Full Text Available primary resilient responses are investigated by way of worked examples of hypothetical three-layer system, which was analyzed by considering homogenous and inhomogeneous material properties in each of the three layers. Effect of a inhomogeneity parameter...

  12. Surface Induction Hardening of Axi-Symmetric Bodies

    Czech Academy of Sciences Publication Activity Database

    Barglik, J.; Doležel, Ivo; Škopek, M.; Ulrych, B.

    2001-01-01

    Roč. 1, č. 1 (2001), s. 11-16 ISSN 1335-8243 R&D Projects: GA ČR GA102/01/0184 Grant - others:-(PL) 7T08603716 Keywords : induction heating * induction hardening * numerical solution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  13. On Equilibria of the Two-fluid Model in Magnetohydrodynamics

    International Nuclear Information System (INIS)

    Frantzeskakis, Dimitri J.; Stratis, Ioannis G.; Yannacopoulos, Athanasios N.

    2004-01-01

    We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria

  14. Free-boundary perturbed MHD equilibria

    International Nuclear Information System (INIS)

    Nührenberg, C

    2012-01-01

    The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].

  15. Two-fluid equilibria with flow

    International Nuclear Information System (INIS)

    Steinhauer, L.

    1999-01-01

    The formalism is developed for flowing two-fluid equilibria. The equilibrium system is governed by a pair of second order partial differential equations for the magnetic stream function and the ion stream function plus a Bernoulli-like equation for the density. There are six arbitrary surface function. There are separate characteristic surfaces for each species, which are the guiding-center surfaces. This system is a generalization of the familiar Grad-Shafranov system for a single-fluid equilibrium without flow, which has only one equation and two arbitrary surface functions. In the case of minimum energy equilibria, the six surface functions take on particular forms. (author)

  16. Existence of pareto equilibria for multiobjective games without compactness

    OpenAIRE

    Shiraishi, Yuya; Kuroiwa, Daishi

    2013-01-01

    In this paper, we investigate the existence of Pareto and weak Pareto equilibria for multiobjective games without compactness. By employing an existence theorem of Pareto equilibria due to Yu and Yuan([10]), several existence theorems of Pareto and weak Pareto equilibria for the multiobjective games are established in a similar way to Flores-B´azan.

  17. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  18. Underdevelopment’s gravitation

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-09-01

    Full Text Available The energy necessary to escape the gravitational pull of underdevelopment and to enter an evolutional trajectory dependent on the gravitational pull of development is unintelligible in economic terms.

  19. Phase equilibria of carbohydrates in polar solvents

    DEFF Research Database (Denmark)

    Jonsdottir, Svava Osk; Rasmussen, Peter

    1999-01-01

    A method for calculating interaction energies and interaction parameters with molecular mechanics methods is extended to predict solid-liquid equilibria (SLE) for saccharides in aqueous solution, giving results in excellent agreement with experimental values. Previously, the method has been shown...

  20. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  1. Nash equilibria via duality and homological selection

    Indian Academy of Sciences (India)

    1Quantitative Methods and Information Systems Area, Indian Institute ... The original proof of existence of Nash equilibria [13] uses fairly ...... The fiber over a regular point a of the disk Di consists of three inverse images (labeled. A1,A2,A3 in ...

  2. Equilibrator: Modeling Chemical Equilibria with Excel

    Science.gov (United States)

    Vander Griend, Douglas A.

    2011-01-01

    Equilibrator is a Microsoft Excel program for learning about chemical equilibria through modeling, similar in function to EQS4WIN, which is no longer supported and does not work well with newer Windows operating systems. Similar to EQS4WIN, Equilibrator allows the user to define a system with temperature, initial moles, and then either total…

  3. Computation of tokamak equilibria with steady flow

    International Nuclear Information System (INIS)

    Kerner, W.; Tokuda, Shinji

    1987-08-01

    The equations for ideal MHD equilibria with stationary flow are reexamined and addressed as numerically applied to tokamak configurations with a free plasma boundary. Both the isothermal (purely toroidal flow) and the poloidal flow cases are treated. Experiment-relevant states with steady flow (so far only in the toroidal direction) are computed by the modified SELENE40 code. (author)

  4. On the stability of dissipative MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-04-01

    The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)

  5. Intermediates and Generic Convergence to Equilibria

    DEFF Research Database (Denmark)

    Marcondes de Freitas, Michael; Wiuf, Carsten; Feliu, Elisenda

    2017-01-01

    Known graphical conditions for the generic and global convergence to equilibria of the dynamical system arising from a reaction network are shown to be invariant under the so-called successive removal of intermediates, a systematic procedure to simplify the network, making the graphical conditions...

  6. On the stochastic stability of MHD equilibria

    International Nuclear Information System (INIS)

    Teichmann, J.

    1979-07-01

    The stochastic stability in the large of stationary equilibria of ideal and dissipative magnetohydrodynamics under the influence of stationary random fluctuations is studied using the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian systems are given. The destabilizing effect of stochastic fluctuations is demonstrated. (orig.)

  7. Gravitation in Material Media

    Science.gov (United States)

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  8. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  9. Detection of gravitational radiation

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1994-01-01

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI)

  10. Relativity theory and gravitation

    International Nuclear Information System (INIS)

    Bondi, H.

    1986-01-01

    The paper on relativity theory and gravitation is presented as a preface to the first of the articles submitted to the Journal on general relativity. Newtonian gravitation and and observation, relativity, and the sources of the gravitational field, are all discussed. (UK)

  11. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  12. Gravitational waves from inflation

    International Nuclear Information System (INIS)

    Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  13. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000-2004)

    DEFF Research Database (Denmark)

    Dohrn, Ralf; Peper, Stephanie; Fonseca, José

    2010-01-01

    As a part of a series of reviews, a compilation of systems for which high-pressure phase-equilibrium data were published between 2000 and 2004 is given. Vapor-liquid equilibria, liquid-liquid equilibria, vapor-liquid-liquid equilibria,solid-liquid equilibria, solid-vapor equilibria, solid-vapor-l...

  14. Gyrokinetic magnetohydrodynamics and the associated equilibria

    Science.gov (United States)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-01

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.

  15. Multiple equilibria in a simple elastocapillary system

    KAUST Repository

    Taroni, Michele

    2012-09-28

    We consider the elastocapillary interaction of a liquid drop placed between two elastic beams, which are both clamped at one end to a rigid substrate. This is a simple model system relevant to the problem of surface-tension-induced collapse of flexible micro-channels that has been observed in the manufacture of microelectromechanical systems (MEMS). We determine the conditions under which the beams remain separated, touch at a point, or stick along a portion of their length. Surprisingly, we show that in many circumstances multiple equilibrium states are possible. We develop a lubrication-type model for the flow of liquid out of equilibrium and thereby investigate the stability of the multiple equilibria. We demonstrate that for given material properties two stable equilibria may exist, and show via numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is ultimately reached. © 2012 Cambridge University Press.

  16. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  17. Gravitation Waves seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.

  18. Gravitational Wave Astronomy

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.

  19. Uniqueness of Nash equilibria in a quantum Cournot duopoly game

    International Nuclear Information System (INIS)

    Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi

    2010-01-01

    A quantum Cournot game whose classical form game has multiple Nash equilibria is examined. Although the classical equilibria fail to be Pareto optimal, the quantum equilibrium exhibits the following two properties: (i) if the measurement of entanglement between strategic variables chosen by the competing firms is sufficiently large, the multiplicity of equilibria vanishes, and (ii) the more strongly the strategic variables are entangled, the more closely the unique equilibrium approaches to the optimal one.

  20. Gravitation in material media

    International Nuclear Information System (INIS)

    Ridgely, Charles T

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  1. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  2. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  3. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  4. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  5. Those Elusive Gravitational Waves

    Science.gov (United States)

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  6. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  7. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  8. Exogenous empirical-evidence equilibria in perfect-monitoring repeated games yield correlated equilibria

    KAUST Repository

    Dudebout, Nicolas; Shamma, Jeff S.

    2014-01-01

    This paper proves that exogenous empirical-evidence equilibria (xEEEs) in perfect-monitoring repeated games induce correlated equilibria of the associated one-shot game. An empirical-evidence equilibrium (EEE) is a solution concept for stochastic games. At equilibrium, agents' strategies are optimal with respect to models of their opponents. These models satisfy a consistency condition with respect to the actual behavior of the opponents. As such, EEEs replace the full-rationality requirement of Nash equilibria by a consistency-based bounded-rationality one. In this paper, the framework of empirical evidence is summarized, with an emphasis on perfect-monitoring repeated games. A less constraining notion of consistency is introduced. The fact that an xEEE in a perfect-monitoring repeated game induces a correlated equilibrium on the underlying one-shot game is proven. This result and the new notion of consistency are illustrated on the hawk-dove game. Finally, a method to build specific correlated equilibria from xEEEs is derived.

  9. Exogenous empirical-evidence equilibria in perfect-monitoring repeated games yield correlated equilibria

    KAUST Repository

    Dudebout, Nicolas

    2014-12-15

    This paper proves that exogenous empirical-evidence equilibria (xEEEs) in perfect-monitoring repeated games induce correlated equilibria of the associated one-shot game. An empirical-evidence equilibrium (EEE) is a solution concept for stochastic games. At equilibrium, agents\\' strategies are optimal with respect to models of their opponents. These models satisfy a consistency condition with respect to the actual behavior of the opponents. As such, EEEs replace the full-rationality requirement of Nash equilibria by a consistency-based bounded-rationality one. In this paper, the framework of empirical evidence is summarized, with an emphasis on perfect-monitoring repeated games. A less constraining notion of consistency is introduced. The fact that an xEEE in a perfect-monitoring repeated game induces a correlated equilibrium on the underlying one-shot game is proven. This result and the new notion of consistency are illustrated on the hawk-dove game. Finally, a method to build specific correlated equilibria from xEEEs is derived.

  10. Ballooning stable high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Tuda, Takashi; Azumi, Masafumi; Kurita, Gen-ichi; Takizuka, Tomonori; Takeda, Tatsuoki

    1981-04-01

    The second stable regime of ballooning modes is numerically studied by using the two-dimensional tokamak transport code with the ballooning stability code. Using the simple FCT heating scheme, we find that the plasma can locally enter this second stable regime. And we obtained equilibria with fairly high beta (β -- 23%) stable against ballooning modes in a whole plasma region, by taking into account of finite thermal diffusion due to unstable ballooning modes. These results show that a tokamak fusion reactor can operate in a high beta state, which is economically favourable. (author)

  11. Critical beta for analytical spheromak equilibria

    International Nuclear Information System (INIS)

    Freire, E.M.; Clemente, R.A.

    1985-01-01

    The Mercier criterion is applied to two analytical spheromak equilibria, one with a spherical separatrix and the other with a cylindrical one of variable elongation. The maximum beta, defined as the ratio between the plasma pressure and the magnetic pressure averaged over the plasma volume, for which the criterion is satisfied on every magnetic surface, has been obtained. In the spherical model the critical beta is 0.003, while in the cylindrical case it is a function of the elongation of the separatrix with a maximum of 0.083. (author)

  12. Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Johnson, J.L.; Dalhed, H.E.; Greene, J.M.

    1978-07-01

    Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function psi. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of psi. Examples of the application of the codes to tokamak design at PPPL are given

  13. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  14. Solid-phase equilibria on Pluto's surface

    Science.gov (United States)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  15. Guiding Center Equations in Toroidal Equilibria

    International Nuclear Information System (INIS)

    White, Roscoe; Zakharov, Leonid

    2002-01-01

    Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria

  16. A unifying approach to existence of Nash equilibria

    NARCIS (Netherlands)

    Balder, E.J.

    1997-01-01

    An approach initiated in [4] is shown to unify results about the existence of (i) Nash equilibria in games with at most countably many players, (ii) Cournot-Nash equilibrium distributions for large, anonymous games, and (iii) Nash equilibria (both mixed and pure) for continuum games. A new, central

  17. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  18. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  19. Gravitational radiation reaction

    International Nuclear Information System (INIS)

    Tanaka, Takahiro

    2006-01-01

    We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)

  20. Presenting Newtonian gravitation

    International Nuclear Information System (INIS)

    Counihan, Martin

    2007-01-01

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry

  1. Equilibria of perceptrons for simple contingency problems.

    Science.gov (United States)

    Dawson, Michael R W; Dupuis, Brian

    2012-08-01

    The contingency between cues and outcomes is fundamentally important to theories of causal reasoning and to theories of associative learning. Researchers have computed the equilibria of Rescorla-Wagner models for a variety of contingency problems, and have used these equilibria to identify situations in which the Rescorla-Wagner model is consistent, or inconsistent, with normative models of contingency. Mathematical analyses that directly compare artificial neural networks to contingency theory have not been performed, because of the assumed equivalence between the Rescorla-Wagner learning rule and the delta rule training of artificial neural networks. However, recent results indicate that this equivalence is not as straightforward as typically assumed, suggesting a strong need for mathematical accounts of how networks deal with contingency problems. One such analysis is presented here, where it is proven that the structure of the equilibrium for a simple network trained on a basic contingency problem is quite different from the structure of the equilibrium for a Rescorla-Wagner model faced with the same problem. However, these structural differences lead to functionally equivalent behavior. The implications of this result for the relationships between associative learning, contingency theory, and connectionism are discussed.

  2. Gravitation and source theory

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1975-01-01

    Schwinger's source theory is applied to the problem of gravitation and its quantization. It is shown that within the framework of a flat-space the source theory implementation leads to a violation of probability. To avoid the difficulty one must introduce a curved space-time hence the source concept may be said to necessitate the transition to a curved-space theory of gravitation. It is further shown that the curved-space theory of gravitation implied by the source theory is not equivalent to the conventional Einstein theory. The source concept leads to a different theory where the gravitational field has a stress-energy tensor t/sup nu//sub mu/ which contributes to geometric curvatures

  3. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  4. Gravitational Waves and Neutrinos

    OpenAIRE

    Sturani, Riccardo

    2018-01-01

    We give an overview about the recent detection of gravitational waves by the Advanced LIGO first and second observing runs and by Advanced Virgo, with emphasis on the prospects for multi-messenger astronomy involving neutrinos detections.

  5. Gravitational wave astronomy

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  6. Listening music of gravitation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Achievements of precision experiments in Japan (TAMA project) and USA (LIGO Laboratory) in the field of registration of gravitation waves using interferometric gravitational wave detectors are described. Works of the GEO groups in Hannover (Germany) and Vigro (Italy) are noted. Interferometer operation in synchronization during 160 hours demonstrating viability of the technique and its reliability is recorded. Advances in the field of the data analysis with the aim of recording of cosmic signal from noise of the interferometer are noted [ru

  7. Bunge on gravitational waves

    OpenAIRE

    Romero, Gustavo E.

    2017-01-01

    I discuss the recent claims made by Mario Bunge on the philosophical implications of the discovery of gravitational waves. I think that Bunge is right when he points out that the detection implies the materiality of spacetime, but I reject his identification of spacetime with the gravitational field. I show that Bunge's analysis of the spacetime inside a hollow sphere is defective, but this in no way affects his main claim.

  8. Gravitation and Electricity

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2008-04-01

    Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.

  9. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  10. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  11. Ternary equilibria in bismuth--indium--lead alloys

    International Nuclear Information System (INIS)

    Liao, K.C.; Johnson, D.L.; Nelson, R.C.

    1975-01-01

    The liquidus surface is characterized by three binary equilibria. One binary extends from the Pb--Bi peritectic to the Pb--In peritectic. The other two extend from In--Bi eutectics, merge at 50 at. percent Bi and 30 at. percent Pb, and end at the Bi--Pb eutectic. Based on analysis of ternary liquidus contours and vertical sections, it is suggested that solidification for high lead and very high indium alloys occurs from two-phase equilibria. Solidification from all other alloys occurs from three-phase equilibria. Four-phase solidification does not occur in this system

  12. On Pure and (approximate) Strong Equilibria of Facility Location Games

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Telelis, Orestis A.

    2008-01-01

    We study social cost losses in Facility Location games, where n selfish agents install facilities over a network and connect to them, so as to forward their local demand (expressed by a non-negative weight per agent). Agents using the same facility share fairly its installation cost, but every...... agent pays individually a (weighted) connection cost to the chosen location. We study the Price of Stability (PoS) of pure Nash equilibria and the Price of Anarchy of strong equilibria (SPoA), that generalize pure equilibria by being resilient to coalitional deviations. For unweighted agents on metric...

  13. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    International Nuclear Information System (INIS)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-01-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ 0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated. (research papers)

  14. Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques

    Science.gov (United States)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2014-07-01

    The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.

  15. Re-analysis of exponential rigid-rotor astron equilibria

    International Nuclear Information System (INIS)

    Lovelace, R.V.; Larrabee, D.A.; Fleischmann, H.H.

    1978-01-01

    Previous studies of exponential rigid-rotor astron equilibria include particles which are not trapped in the self-field of the configuration. The modification of these studies required to exclude untrapped particles is derived

  16. Gravitational entropies in LTB dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A; Larena, Julien

    2014-01-01

    We consider generic Lemaître–Tolman–Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann–Lemaître–Robertson–Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes. (paper)

  17. Gravitational waves and antennas

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Gravitational waves and their detection represent today a hot topic, which promises to play a central role in astrophysics, cosmology and theoretical physics. Technological developments have enabled the construction of such sensitive detectors that the detection of gravitational radiation and the start of a new astronomy could become a reality during the next few years. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of hiterto unseen phenomena such as coalescence of compact objects (neutron stars and black holes) fall of stars into supermassive black holes, stellar core collapses, big bang relics and the new and unexpected. In these lectures I give a brief overview of this challenging field of modern physics. Topics : Basic properties of gravitational radiation. Astrophysical sources. Principle of operation of detectors. Interferometers (both ground based and space-based), bars and spheres. Present status of the experiments, their recent results and their f...

  18. Gravitation and spacetime

    CERN Document Server

    Ohanian, Hans C

    2013-01-01

    The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...

  19. Surface current equilibria from a geometric point of view

    International Nuclear Information System (INIS)

    Kaiser, R.; Salat, A.

    1993-04-01

    This paper addresses the inverse problem of the existence of surface current MHD equilibria in toroidal geometry with vanishing magnetic field inside. Inverse means that the plasma-vacuum interface rather than the external wall or conductors are given and the latter remain to be determined. This makes a reformulation of the problem possible in geometric terms: What toroidal surfaces with analytic parameterization allow a simple analytic covering by geodesics? If such a covering by geodesics (field lines) exists, their orthogonal trajectories (current lines) also form a simple covering and are described by a function satisfying a nonlinear partial differential equation of the Hamilton-Jacobi type whose coefficients are combinations of the metric elements of the surface. All known equilibria - equilibria with zero and infinite rotational transform and the symmetric ones in the case of finite rotational transform - turn out to be solutions of separable cases of that equation and allow a unified description if the toroidal surface is parametrized in the moving trihedral associated with a closed curve. Analogously to volume current equilibria, the only continuous symmetries compatible with separability are plane, helical and axial symmetry. In the nonseparable case numerical evidence is presented for cases with chaotic behaviour of geodesics, thus restricting possible equilibria for these surfaces. For weak deviation from axisymmetry KAM-type behaviour is observed, i.e. destruction of geodesic coverings with a low rational rotational transform and preservation of those with irrational rotational transform. A previous attempt to establish three-dimensional surface current equilibria on the basis of the KAM theorem is rejected as incomplete, and a complete proof of the existence of equilibria in the weakly nonaxisymmetric case, based on the twist theorem for mappings, is given. Finally, for a certain class of strong deviations from axisymmetry an analytic criterion is

  20. Computation of Stackelberg Equilibria of Finite Sequential Games

    DEFF Research Database (Denmark)

    Bosanski, Branislav; Branzei, Simina; Hansen, Kristoffer Arnsfelt

    2015-01-01

    The Stackelberg equilibrium is a solution concept that describes optimal strategies to commit to: Player~1 (the leader) first commits to a strategy that is publicly announced, then Player~2 (the follower) plays a best response to the leader's choice. We study Stackelberg equilibria in finite...... sequential (i.e., extensive-form) games and provide new exact algorithms, approximate algorithms, and hardness results for finding equilibria for several classes of such two-player games....

  1. Field line diversion properties of finite β-helias equilibria

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Schwenn, Ulrich; Strumberger, Erika.

    1992-01-01

    The diversion properties of the magnetic field outside the last closed magnetic surface of a Helias stellarator configuration are investigated for finite pressure equilibria. The results indicate that a divertor concept which has been developed from the diversion properties of the corresponding vacuum field can be maintained for finite pressure equilibria. Cross-field particle transport is simulated by a simplified scrape-off layer (SOL) model. (author)

  2. On the uniqueness of fully informative rational expectations equilibria

    OpenAIRE

    Peter DeMarzo; Costis Skiadas

    1998-01-01

    This paper analyzes two equivalent equilibrium notions under asymmetric information: risk neutral rational expectations equilibria (rn-REE), and common knowledge equilibria. We show that the set of fully informative rn-REE is a singleton, and we provide necessary and sufficient conditions for the existence of partially informative rn-REE. In a companion paper (DeMarzo and Skiadas (1996)) we show that equilibrium prices for the larger class of quasi-complete economies can be characterized as r...

  3. Determination of 3D Equilibria from Flux Surface Knowledge Only

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.

    2001-01-01

    We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information

  4. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  5. Supersymmetry and gravitational duality

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-01-01

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  6. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  7. Einstein-Rosen gravitational waves

    International Nuclear Information System (INIS)

    Astefanoaei, Iordana; Maftei, Gh.

    2001-01-01

    In this paper we analyse the behaviour of the gravitational waves in the approximation of the far matter fields, considering the indirect interaction between the matter sources and the gravitational field, in a cosmological model based on the Einstein-Rosen solution, Because the properties of the gravitational waves obtained as the solutions of Einstein fields equations (the gravitational field equations) are most obvious in the weak gravitational fields we consider here, the gravitational field in the linear approximation. Using the Newman-Penrose formalism, we calculate in the null-tetradic base (e a ), the spin coefficients, the directional derivates and the tetradic components of Ricci and Weyl tensors. From the Einstein field equations we obtained the solution for b(z, t) what described the behaviour of gravitational wave in Einstein-Rosen Universe and in the particular case, when t → ∞, p(z, t) leads us to the primordial gravitational waves in the Einstein-Rosen Universe. (authors)

  8. Gravitational Waves: The Evidence Mounts

    Science.gov (United States)

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  9. Two-dimensional magnetohydrodynamic equilibria with flow and studies of equilibria fluctuations

    International Nuclear Information System (INIS)

    Agim, Y.Z.

    1989-08-01

    A set of reduced ideal MHD equations is derived to investigate equilibria of plasmas with mass flow in general two-dimensional geometry. These equations provide a means of investigating the effects of flow on self-consistent equilibria in a number of new two-dimensional configurations such as helically symmetric configurations with helical axis, which are relevant to stellarators, as well as axisymmetric configurations. It is found that as in the axisymmetric case, general two-dimensional flow equilibria are governed by a second-order quasi-linear partial differential equation for a magnetic flux function, which is coupled to a Bernoulli-type equation for the density. The equation for the magnetic flux function becomes hyperbolic at certain critical flow speeds which follow from its characteristic equation. When the equation is hyperbolic, shock phenomena may exist. As a particular example, unidirectional flow along the lines of symmetry is considered. In this case, the equation mentioned above is always elliptic. An exact solution for the case of helically symmetric unidirectional flow is found and studied to determine flow effects on the magnetic topology. In second part of this thesis, magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 -10

  10. Thermodynamic Equilibria and Extrema Analysis of Attainability Regions and Partial Equilibria

    CERN Document Server

    Gorban, Alexander N; Kaganovich, Boris M; Keiko, Alexandre V; Shamansky, Vitaly A; Shirkalin, Igor A

    2006-01-01

    This book discusses mathematical models that are based on the concepts of classical equilibrium thermodynamics. They are intended for the analysis of possible results of diverse natural and production processes. Unlike the traditional models, these allow one to view the achievable set of partial equilibria with regards to constraints on kinetics, energy and mass exchange and to determine states of the studied systems of interest for the researcher. Application of the suggested models in chemical technology, energy and ecology is illustrated in the examples.

  11. Gravitation radiation observations

    OpenAIRE

    Glass, E. N.

    2017-01-01

    The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.

  12. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  13. Glitches and gravitational waves

    Indian Academy of Sciences (India)

    A M Srivastava

    2017-10-09

    Oct 9, 2017 ... We also discuss gravitational wave production due to rapidly changing ... efficient source of energy loss during the cooling of the neutron star. ..... [3] U S Gupta, R K Mohapatra, A M Srivastava and V K. Tiwari, Phys. Rev. D 82 ...

  14. Extragalactic Gravitational Collapse

    Science.gov (United States)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  15. Gravitational-Wave Astronomy

    Indian Academy of Sciences (India)

    Keywords. General relativity; gravitational waves; astrophysics; interferometry. Author Affiliations. P Ajith1 K G Arun2. LIGO Laboratory and Theoretical Astrophysics California Institute of Technology MS 18-34, Pasadena CA 91125, USA. Chennai Mathematical Institute Plot H1, SIPCOT IT Park Siruseri, Padur Post Chennai ...

  16. Gauge theory and gravitation

    International Nuclear Information System (INIS)

    Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu

    1983-01-01

    These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)

  17. The CHEASE code for toroidal MHD equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.

  18. Unifying dynamical and structural stability of equilibria

    Science.gov (United States)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  19. The CHEASE code for toroidal MHD equilibria

    International Nuclear Information System (INIS)

    Luetjens, H.

    1996-03-01

    CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs

  20. Axisymmetric plasma equilibria in a Kerr metric

    Science.gov (United States)

    Elsässer, Klaus

    2001-10-01

    Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  1. Axisymmetric Plasma Equilibria in General Relativity

    Science.gov (United States)

    Elsässer, Klaus

    Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.

  2. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  3. Projective relativity, cosmology and gravitation

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation

  4. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  5. Gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Nieto, M.M.

    1985-01-01

    Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references

  6. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  7. Spacetime and gravitation.

    Science.gov (United States)

    Kopczyński, W.; Trautman, A.

    This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.

  8. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  9. Bimetric Machian gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Goldoni, R

    1980-11-22

    A bimetric theory of gravitation within a Machian framework is developed on the basis of considerations which are completely divorced from Newton's theory. The theory is assumed to hold in any conceivable cosmos and possesses the Machian properties of being singular in the absence of matter and of explicitly incorporating the idea that properties of space-time are determined not only by local matter, but also by the average distribution of cosmological matter.

  10. Gravitation, Symmetry and Undergraduates

    Science.gov (United States)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  11. Gravitational field mass

    International Nuclear Information System (INIS)

    Penrose, R.

    1986-01-01

    The author's definition for the mass-momentum/angular momentum surrounded by a spacelike 2-surface with S/sup 2/ topology is presented. This definition is motivated by some ideas from twistor theory in relation to linearized gravitational theory. The status of this definition is examined in relation to many examples which have been worked out. The reason for introducing a slight modification of the original definition is also presented

  12. General Relativity and Gravitation

    Science.gov (United States)

    Ehlers, J.; Murdin, P.

    2000-11-01

    The General Theory of Relativity (GR), created by Albert Einstein between 1907 and 1915, is a theory both of gravitation and of spacetime structure. It is based on the assumption that matter, via its energy-momentum, interacts with the metric of spacetime, which is considered (in contrast to Newtonian physics and SPECIAL RELATIVITY) as a dynamical field having degrees of freedom of its own (GRAVI...

  13. Fivebrane gravitational anomalies

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie

    2000-01-01

    Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten

  14. Nondissipative gravitational turbulence

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Zybin, K.P.

    1988-01-01

    The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence

  15. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  16. Ballooning mode second stability region for sequences of tokamak equilibria

    International Nuclear Information System (INIS)

    Sugiyama, L.; Mark, J.W.K.

    A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln γ and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary

  17. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.

    2017-01-01

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  18. Numerical computation of FCT equilibria by inverse equilibrium method

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Tsunematsu, Toshihide; Takeda, Tatsuoki

    1986-11-01

    FCT (Flux Conserving Tokamak) equilibria were obtained numerically by the inverse equilibrium method. The high-beta tokamak ordering was used to get the explicit boundary conditions for FCT equilibria. The partial differential equation was reduced to the simultaneous quasi-linear ordinary differential equations by using the moment method. The regularity conditions for solutions at the singular point of the equations can be expressed correctly by this reduction and the problem to be solved becomes a tractable boundary value problem on the quasi-linear ordinary differential equations. This boundary value problem was solved by the method of quasi-linearization, one of the shooting methods. Test calculations show that this method provides high-beta tokamak equilibria with sufficiently high accuracy for MHD stability analysis. (author)

  19. Hydrostatic Equilibria of Rotating Stars with Realistic Equation of State

    Science.gov (United States)

    Yasutake, Nobutoshi; Fujisawa, Kotaro; Okawa, Hirotada; Yamada, Shoichi

    Stars rotate generally, but it is a non-trivial issue to obtain hydrostatic equilibria for rapidly rotating stars theoretically, especially for baroclinic cases, in which the pressure depends not only on the density, but also on the temperature and compositions. It is clear that the stellar structures with realistic equation of state are the baroclinic cases, but there are not so many studies for such equilibria. In this study, we propose two methods to obtain hydrostatic equilibria considering rotation and baroclinicity, namely the weak-solution method and the strong-solution method. The former method is based on the variational principle, which is also applied to the calculation of the inhomogeneous phases, known as the pasta structures, in crust of neutron stars. We found this method might break the balance equation locally, then introduce the strong-solution method. Note that our method is formulated in the mass coordinate, and it is hence appropriated for the stellar evolution calculations.

  20. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  1. Numerical calculation of axisymmetric non-neutral plasma equilibria

    International Nuclear Information System (INIS)

    Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.

    1993-01-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy

  2. On gravitational wave energy in Einstein gravitational theory

    International Nuclear Information System (INIS)

    Folomeshkin, V.N.; Vlasov, A.A.

    1978-01-01

    By the example of precise wave solutions for the Einstein equations it is shown that a standard commonly adopted formulation of energy-momentum problem with pseudotensors provides us either with a zero or sign-variable values for the energy of gravitational waves. It is shown that if in the Einstein gravitational theory a strict transition to the limits of weak fields is realised then the theory gives us an unambiguous zero result for weak gravitational waves. The well-known non-zero result arises due to incorrect transition to weak field approximation in the Einstein gravitation theory

  3. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  4. Ideal MHD beta-limits of poloidally asymmetric equilibria

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%

  5. Nash Equilibria in Symmetric Graph Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2017-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria for qualitative objectives in this game model....

  6. Nash Equilibria in Symmetric Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2014-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria (for qualitative objectives) in this game model....

  7. Recent progress in the relative equilibria of point vortices — In memoriam Hassan Aref

    DEFF Research Database (Denmark)

    Beelen, Peter; Brøns, Morten; Krishnamurthy, Vikas S.

    2013-01-01

    Hassan Aref, who sadly passed away in 2011, was one of the world's leading researchers in the dynamics and equilibria of point vortices. We review two problems on the subject of point vortex relative equilibria in which he was engaged at the time of his death: bilinear relative equilibria...

  8. Evaluation of a Mathematical Model for Single Component Adsorption Equilibria with Reference to the Prediction of Multicomponent Adsorption Equilibria

    DEFF Research Database (Denmark)

    Krøll, Annette Elisabeth; Marcussen, Lis

    1997-01-01

    An equilibrium equation for pure component adsorption is compared to experiments and to the vacancy solution theory. The investigated equilibrium equation is a special case of a model for prediction of multicomponent adsorption equilibria.The vacancy solution theory for multicomponent systems...... requires binary experimental data for determining the interaction parameters of the Wilson equation; thus a large number of experiments are needed. The multicomponent equilibria model which is investigated for single component systems in this work is based on pure component data only. This means...... that the requirement for experimental data is reduced significantly.The two adsorption models are compared, using experimental pure gas adsorption data found in literature. The results obtained by the models are in close agreement for pure component equilibria and they give a good description of the experimental data...

  9. Quantum Emulation of Gravitational Waves.

    Science.gov (United States)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  10. Probing Positron Gravitation at HERA

    International Nuclear Information System (INIS)

    Gharibyan, Vahagn

    2015-07-01

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  11. Probing Positron Gravitation at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Vahagn

    2015-07-15

    An equality of particle and antiparticle gravitational interactions holds in general relativity and is supported by indirect observations. Here I develop a method based on high energy Compton scattering to measure the gravitational interaction of accelerated charged particles. Within that formalism the Compton spectra measured at HERA rule out the positron's anti-gravity and hint for a positron's 1.3(0.2)% weaker coupling to the gravitational field relative to an electron.

  12. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  13. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  14. Gravitational Physics Research

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  15. Gravitational radiation from dust

    International Nuclear Information System (INIS)

    Isaacson, R.A.; Welling, J.S.; Winicour, J.

    1985-01-01

    A dust cloud is examined within the framework of the general relativistic characteristic initial value problem. Unique gravitational initial data are obtained by requiring that the space-time be quasi-Newtonian. Explicit calculations of metric and matter fields are presented, which include all post-Newtonian corrections necessary to discuss the major physical properties of null infinity. These results establish a curved space version of the Einstein quadrupole formula, in the form ''news function equals third time derivative of transverse quadrupole moment,'' for this system. However, these results imply that some weakened notion of asymptotic flatness is necessary for the description of quasi-Newtonian systems

  16. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  17. Superstatistics and Gravitation

    Directory of Open Access Journals (Sweden)

    Octavio Obregón

    2010-09-01

    Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.

  18. Stochastic Equilibria under Imprecise Deviations in Terminal-Reward Concurrent Games

    Directory of Open Access Journals (Sweden)

    Patricia Bouyer

    2016-09-01

    Full Text Available We study the existence of mixed-strategy equilibria in concurrent games played on graphs. While existence is guaranteed with safety objectives for each player, Nash equilibria need not exist when players are given arbitrary terminal-reward objectives, and their existence is undecidable with qualitative reachability objectives (and only three players. However, these results rely on the fact that the players can enforce infinite plays while trying to improve their payoffs. In this paper, we introduce a relaxed notion of equilibria, where deviations are imprecise. We prove that contrary to Nash equilibria, such (stationary equilibria always exist, and we develop a PSPACE algorithm to compute one.

  19. Stability of equilibria for a two-phase osmosis model

    NARCIS (Netherlands)

    Lippoth, F.; Prokert, G.

    2012-01-01

    For a two-phase moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension, we prove that the manifold of equilibria is locally exponentially attractive. Our method relies on maximal regularity results for parabolic systems with relaxation type

  20. A Numerical Algorithm to find All Scalar Feedback Nash Equilibria

    NARCIS (Netherlands)

    Engwerda, J.C.

    2013-01-01

    Abstract: In this note we generalize a numerical algorithm presented in [9] to calculate all solutions of the scalar algebraic Riccati equations that play an important role in finding feedback Nash equilibria of the scalar N-player linear affine-quadratic differential game. The algorithm is based on

  1. Computing Proper Equilibria of Zero-Sum Games

    DEFF Research Database (Denmark)

    Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2007-01-01

    We show that a proper equilibrium of a matrix game can be found in polynomial time by solving a linear (in the number of pure strategies of the two players) number of linear programs of roughly the same dimensions as the standard linear programs describing the Nash equilibria of the game....

  2. Shallow-water vortex equilibria and their stability

    Energy Technology Data Exchange (ETDEWEB)

    Plotka, H; Dritschel, D G, E-mail: hanna@mcs.st-andrews.ac.uk, E-mail: dgd@mcs.st-andrews.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)

    2011-12-22

    We first describe the equilibrium form and stability of steadily-rotating simply-connected vortex patches in the single-layer quasi-geostrophic model of geophysical fluid dynamics. This model, valid for rotating shallow-water flow in the limit of small Rossby and Froude numbers, has an intrinsic length scale L{sub D} called the 'Rossby deformation length' relating the strength of stratification to that of the background rotation rate. Specifically, L{sub D} = c/f where c={radical}gH is a characteristic gravity-wave speed, g is gravity (or 'reduced' gravity in a two-layer context where one layer is infinitely deep), H is the mean active layer depth, and f is the Coriolis frequency (here constant). We next introduce ageostrophic effects by using the full shallow-water model to generate what we call 'quasi-equilibria'. These equilibria are not strictly steady, but radiate such weak gravity waves that they are steady for all practical purposes. Through an artificial ramping procedure, we ramp up the potential vorticity anomaly of the fluid particles in our quasi-geostrophic equilibria to obtain shallow-water quasi-equilibria at finite Rossby number. We show a few examples of these states in this paper.

  3. Asset pricing puzzles explained by incomplete Brownian equilibria

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Larsen, Kasper

    We examine a class of Brownian based models which produce tractable incomplete equilibria. The models are based on finitely many investors with heterogeneous exponential utilities over intermediate consumption who receive partially unspanned income. The investors can trade continuously on a finit...... markets. Consequently, our model can simultaneously help explaining the risk-free rate and equity premium puzzles....

  4. Predicting phase equilibria in one-component systems

    Science.gov (United States)

    Korchuganova, M. R.; Esina, Z. N.

    2015-07-01

    It is shown that Simon equation coefficients for n-alkanes and n-alcohols can be modeled using critical and triple point parameters. Predictions of the phase liquid-vapor, solid-vapor, and liquid-solid equilibria in one-component systems are based on the Clausius-Clapeyron relation, Van der Waals and Simon equations, and the principle of thermodynamic similarity.

  5. Field line diversion properties of finite β Helias equilibria

    International Nuclear Information System (INIS)

    Hayashi, T.; Schwenn, U.; Strumberger, E.

    1992-03-01

    The diversion properties of the magnetic field outside the last closed magnetic surface of a Helias stellarator configuration are investigated for finite β-equilibria. The results support a divertor concept which has been developed from the diversion properties of the corresponding vacuum field. Cross-field transport is simulated by a simplified scrape-off layer (SOL) model. (author)

  6. From Singularity Theory to Finiteness of Walrasian Equilibria

    DEFF Research Database (Denmark)

    Castro, Sofia B.S.D.; Dakhlia, Sami F.; Gothen, Peter

    The paper establishes that for an open and dense subset of smooth exchange economies, the number of Walrasian equilibria is finite. In particular, our results extend to non-regular economies; it even holds when restricted to the subset of critical ones. The proof rests on concepts from singularity...... theory....

  7. Close pairs of relative equilibria for identical point vortices

    DEFF Research Database (Denmark)

    Dirksen, Tobias; Aref, Hassan

    2011-01-01

    Numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane reveals configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. New numerical solutions of this kind are fou...

  8. Cryptographically Blinded Games: Leveraging Players' Limitations for Equilibria and Profit

    DEFF Research Database (Denmark)

    Hubacek, Pavel; Park, Sunoo

    2014-01-01

    In this work we apply methods from cryptography to enable mutually distrusting players to implement broad classes of mediated equilibria of strategic games without trusted mediation. Our implementation uses a pre-play 'cheap talk' phase, consisting of non- binding communication between players...

  9. The gravitational Schwinger effect and attenuation of gravitational waves

    Science.gov (United States)

    McDougall, Patrick Guarneri

    This paper will discuss the possible production of photons from gravitational waves. This process is shown to be possible by examining Feynman diagrams, the Schwinger Effect, and Hawking Radiation. The end goal of this project is to find the decay length of a gravitational wave and assert that this decay is due to photons being created at the expense of the gravitational wave. To do this, we first find the state function using the Klein Gordon equation, then find the current due to this state function. We then take the current to be directly proportional to the production rate per volume. This is then used to find the decay length that this kind of production would produce, gives a prediction of how this effect will change the distance an event creating a gravitational wave will be located, and shows that this effect is small but can be significant near the source of a gravitational wave.

  10. Titan's Gravitational Field

    Science.gov (United States)

    Schubert, G.; Anderson, J. D.

    2013-12-01

    Titan's gravitational field is inferred from an analysis of archived radio Doppler data for six Cassini flybys. The analysis considers each flyby separately in contrast to the approach of lumping all the data together in a massive inversion. In this way it is possible to gain an improved understanding of the character of each flyby and its usefulness in constraining the gravitational coefficient C22 . Though our analysis is not yet complete and our final determination of C22 could differ from the result we report here by 1 or 2 sigma, we find a best-fit value of C22 equal to (13.21 × 0.17) × 10-6, significantly larger than the value of 10.0 × 10-6 obtained from an inversion of the lumped Cassini data. We also find no determination of the tidal Love number k2. The larger value of C22 implies a moment of inertia factor equal to 0.3819 × 0.0020 and a less differentiated Titan than is suggested by the smaller value. The larger value of C22 is consistent with an undifferentiated model of the satellite. While it is not possible to rule out either value of C22 , we prefer the larger value because its derivation results from a more hands on analysis of the data that extracts the weak hydrostatic signal while revealing the effects of gravity anomalies and unmodeled spacecraft accelerations on each of the six flybys.

  11. UCN gravitational spectrometer

    International Nuclear Information System (INIS)

    Kawabata, Yuji

    1988-01-01

    Concept design is carried out of two types of ultra cold neutron scallering equipment using the fall-focusing principle. One of the systems comprises a vertical gravitational spectrometer and the other includes a horizontal gravitation analyzer. A study is made of their performance and the following results are obtained. Fall-focusing type ultra cold neutron scattering equipment can achieve a high accuracy for measurement of energy and momentum. Compared with conventional neutron scattering systems, this type of equipment can use neutron very efficiently because scattered neutrons within a larger solid angle can be used. The maximum solid angle is nearly 4π and 2π for the vertical and horizontal type, respectively. Another feature is that the size of equipment can be reduced. In the present concept design, the equipment is spherical with a diameter of about 1 m, as compared with NESSIE which is 6.7 m in length and 4.85 m in height with about the same accuracy. Two horizontal analyzers and a vertical spectroscope are proposed. They are suitable for angle-dependent non-elastic scattering in the neutron velocity range of 6∼15 m/s, pure elastic scattering in the range of 4∼7 m/s, or angle-integration non-elastic scattering in the range of 4∼15 m/s. (N.K.)

  12. General Relativity and Gravitation

    Science.gov (United States)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  13. On geometrized gravitation theories

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  14. Gravitating lepton bag model

    International Nuclear Information System (INIS)

    Burinskii, A.

    2015-01-01

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system

  15. Gravitational Waves - New Perspectives

    International Nuclear Information System (INIS)

    Biesiada, M.

    1999-01-01

    Laser interferometric experiments planned for 2002 will open up a new window onto the Universe. The first part of the paper gives a brief intuitive introduction to gravity waves, detection techniques and enumeration of main astrophysical sources and frequency bands to which they contribute. Then two more specific issues are discussed concerning cosmological perspectives of gravity waves detection. First one is the problem of gravitational lensing of the signal from inspiralling NS-NS binaries. The magnitude of the so called magnification bias is estimated and found non-negligible for some quite realistic lens models, but strongly model-dependent. The second problem is connected with estimates of galactic and extragalactic parts of the stochastic background. The main conclusion from these two examples is that in so far as the cosmological payoff of gravitational wave detection would be high, we should substantially deepen our understanding of basic astrophysical properties of galaxies and their clusters (in terms of mass distribution) in order to draw clear cosmological conclusions. (author)

  16. On Nash-Equilibria of Approximation-Stable Games

    Science.gov (United States)

    Awasthi, Pranjal; Balcan, Maria-Florina; Blum, Avrim; Sheffet, Or; Vempala, Santosh

    One reason for wanting to compute an (approximate) Nash equilibrium of a game is to predict how players will play. However, if the game has multiple equilibria that are far apart, or ɛ-equilibria that are far in variation distance from the true Nash equilibrium strategies, then this prediction may not be possible even in principle. Motivated by this consideration, in this paper we define the notion of games that are approximation stable, meaning that all ɛ-approximate equilibria are contained inside a small ball of radius Δ around a true equilibrium, and investigate a number of their properties. Many natural small games such as matching pennies and rock-paper-scissors are indeed approximation stable. We show furthermore there exist 2-player n-by-n approximation-stable games in which the Nash equilibrium and all approximate equilibria have support Ω(log n). On the other hand, we show all (ɛ,Δ) approximation-stable games must have an ɛ-equilibrium of support O(Δ^{2-o(1)}/ɛ2{log n}), yielding an immediate n^{O(Δ^{2-o(1)}/ɛ^2log n)}-time algorithm, improving over the bound of [11] for games satisfying this condition. We in addition give a polynomial-time algorithm for the case that Δ and ɛ are sufficiently close together. We also consider an inverse property, namely that all non-approximate equilibria are far from some true equilibrium, and give an efficient algorithm for games satisfying that condition.

  17. Magnetoacoustic heating and FCT-equilibria in the belt pinch

    International Nuclear Information System (INIS)

    Erckmann, V.

    1983-02-01

    In the HECTOR belt pinch of high β plasma is produced by magnetic compression in a Tokamak geometry. After compresseion the initial β value can be varied between 0.2 and 0.8. During 5 μs the plasma is further heated by a fast magnetoacoustic wave with a frequency near the first harmonic of the ion cyclotronfrequency. For the first time the β-value of a pinch plasma could be increased further from 0.34 after compression to 0.46 at the end of the rf-heating cycle. By proper selection of the final β-value the region for resonance absorption of the heating wave can be shifted. Strong heating (200 MW) has been observed in the cases, where the resonance region has been located in the center of the plasma. In deuterium discharges an increase in ion temperature is observed during the heating process, whereas the electrons are energetically decoupled, showing no temperature increase. Strong plasma losses are found in the 200 MW range after the rf-heating process. The dominant mechanisms are charge exchange collisions with neutral gas atoms. During rf-heating and the subsequent cooling phase the magnetic flux is frozen due to the high conductivity of the plasma. The observed equilibria could be identified as flux conserving Tokamak (FCT) equilibria. Based on a two-dimensional code the time-evolution of the equilibria has been calculated. The q-profiles are time-independent, with increasing β the magnetic axis of the plasma is shifted towards the outer boundary of the torus, and finally the linear relation between β and βsub(pol), which is characteristic for low-β-equilibria, is no longer valid. Thus for the first time the existence of FCT-equilibria at high β has been demonstrated experimentally together with a qualitative agreement with FCT-theory. (orig./AH) [de

  18. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  19. On the gravitational radiation formula

    International Nuclear Information System (INIS)

    Schaefer, G.; Dehnen, H.

    1980-01-01

    For electromagnetically as well as gravitationally bound quantum mechanical many-body systems the coefficients of absorption and induced emission of gravitational radiation are calculated in the first-order approximation. The results are extended subsequently to systems with arbitrary non-Coulomb-like two-particle interaction potentials;it is shown explicitly that in all cases the perturbation of the binding potentials of the bound systems by the incident gravitational wave field itself must be taken into account. With the help of the thermodynamic equilibrium of gravitational radiation and quantised matter, the coefficients for spontaneous emission of gravitational radiation are derived and the gravitational radiation formula for emission of gravitational quadrupole radiation by bound quantum mechanical many-body systems is given. According to the correspondence principle the present result is completely identical with the well known classical radiation formula, by which recent criticism against this formula is refuted. Finally the quantum mechanical absorption cross section for gravitational quadrupole radiation is deduced and compared with the corresponding classical expressions. As a special example the vibrating two-mass quadrupole is treated explicitly. (author)

  20. To theory of gravitational interaction

    OpenAIRE

    Minkevich, A. V.

    2008-01-01

    Some principal problems of general relativity theory and attempts of their solution are discussed. The Poincare gauge theory of gravity as natural generalization of Einsteinian gravitation theory is considered. The changes of gravitational interaction in the frame of this theory leading to the solution of principal problems of general relativity theory are analyzed.

  1. Gravitational Casimir–Polder effect

    Directory of Open Access Journals (Sweden)

    Jiawei Hu

    2017-04-01

    Full Text Available The interaction due to quantum gravitational vacuum fluctuations between a gravitationally polarizable object modelled as a two-level system and a gravitational boundary is investigated. This quantum gravitational interaction is found to be position-dependent, which induces a force in close analogy to the Casimir–Polder force in the electromagnetic case. For a Dirichlet boundary, the quantum gravitational potential for the polarizable object in its ground-state is shown to behave like z−5 in the near zone, and z−6 in the far zone, where z is the distance to the boundary. For a concrete example, where a Bose–Einstein condensate is taken as a gravitationally polarizable object, the relative correction to the radius of the BEC caused by fluctuating quantum gravitational waves in vacuum is found to be of order 10−21. Although the correction is far too small to observe in comparison with its electromagnetic counterpart, it is nevertheless of the order of the gravitational strain caused by a recently detected black hole merger on the arms of the LIGO.

  2. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  3. Laboratory generation of gravitational waves

    International Nuclear Information System (INIS)

    Pinto, I.M.; Rotoli, G.

    1988-01-01

    The authors have performed calculations on the basic type of gravitational wave electromagnetic laboratory generators. Their results show that laboratory generations of gravitational wave is at limit of state-of-the-art of present-day giant electromagnetic field generation

  4. The gravitational properties of antimatter

    International Nuclear Information System (INIS)

    Goldman, T.; Hughes, R.J.; Nieto, M.M.

    1986-09-01

    It is argued that a determination of the gravitational acceleration of antimatter towards the earth is capable of imposing powerful constraints on modern quantum gravity theories. Theoretical reasons to expect non-Newtonian non-Einsteinian effects of gravitational strength and experimental suggestions of such effects are reviewed. 41 refs

  5. Interaction of gravitational plane waves

    International Nuclear Information System (INIS)

    Ferrari, V.

    1988-01-01

    The mathematical theory of colliding, infinite-fronted, plane gravitational waves is presented. The process of focusing, the creation of singularities and horizons, due to the interaction, and the lens effect due to a beam-like gravitational wave are discussed

  6. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  7. Conservation laws and gravitational radiation

    International Nuclear Information System (INIS)

    Rastall, P.

    1977-01-01

    A total stress-momentum is defined for gravitational fields and their sources. The Lagrangian density is slightly different from that in the previous version of the theory, and the field equations are considerably simplified. The post-Newtonian approximation of the theory is unchanged. The existence and nature of weak gravitational waves are discussed. (author)

  8. Vignettes in Gravitation and Cosmology

    CERN Document Server

    Sriramkumar, L

    2012-01-01

    This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.

  9. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, Istvan

    1997-01-01

    If the gravitational waves are classical objects then the value of their correlation function is 1. If they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then their correlation function is again 1, or they are only partially coherent, then their correlation function is expected to deviate from 1. Unfortunately such a deviation is not a sufficient proof for the quantised character of the gravitational waves. If the gravitational waves are quantised and generated by the change of the background metrical then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. The observation of such a correlation would be a genuine proof of the quantised character of the gravitational wave

  10. Gravitational wave experiments

    CERN Document Server

    Hamilton, W O

    1993-01-01

    There were three oral sessions and one poster session for Workshop C1 on Gravitational Wave Experiments. There was also an informal experimental roundtable held one after- noon. The first two oral sessions were devoted mainly to progress reports from various interferometric and bar detector groups. A total of 15 papers were presented in these two sessions. The third session of Workshop C1 was devoted primarily to theoretical and experimental investigations associated with the proposed interferometric detectors. Ten papers were presented in this session. In addition, there were a total of 13 papers presented in the poster session. There was some overlap between the presentations in the third oral session and the posters since only two of the serious posters were devoted to technology not pertinent to interferometers. In general, the papers showed the increasing maturity of the experimental aspects of the field since most presented the results of completed investigations rather than making promises of wonderf...

  11. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  12. Atomic and gravitational clocks

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)

  13. Solar gravitational redshift

    International Nuclear Information System (INIS)

    Lopresto, J.C.; Chapman, R.D.

    1980-01-01

    Wavelengths of solar spectrum lines should be shifted toward the red by the Sun's gravitational field as predicted by metric theories of gravity according to the principle of equivalence. Photographic wavelengths of 738 solar Fe 1 lines and their corresponding laboratory wavelengths have been studied. The measured solar wavelength minus the laboratory wavelength (Δlambdasub(observed)) averaged for the strong lines agrees well with the theoretically predicted shift (Δlambdasub(theoretical)). Studies show that the departures depend on line strength. No dependence of the departures on wavelength was found within the existing data. By studying strong lines over a wide spectral range, velocity shifts caused by the complex motions in the solar atmosphere seem to affect the results in a minimal fashion. (orig.)

  14. Observations of gravitational lenses

    International Nuclear Information System (INIS)

    Fort, B.

    1990-01-01

    During the last tow years a burst of results has come from radio and optical surveys of ''galaxy lenses'' (where the main deflector is a galaxy). These are reviewed. On the other hand, in September 1985 we pointed out a very strange blue ring-like structure on a Charge-Coupled Device image of the cluster of galaxies Abell 370. This turned out to be Einstein arcs discovery. Following this discovery, new observational results have shown that many rich clusters of galaxies can produce numerous arclets: tangentially distorted images of an extremely faint galaxy population probably located at redshift larger than 1. This new class of gravitational lenses proves to be an important observational topic and this will be discussed in the second part of the paper. (author)

  15. Feynman Lectures on Gravitation

    International Nuclear Information System (INIS)

    Borcherds, P

    2003-01-01

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics. However, the book was written 40

  16. Weight, gravitation, inertia, and tides

    Science.gov (United States)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  17. Weight, gravitation, inertia, and tides

    International Nuclear Information System (INIS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-01-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)

  18. Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials

    Science.gov (United States)

    Barnes, Eric I.; Ragan, Robert J.

    2014-01-01

    The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.

  19. Gravitation. [Book on general relativity

    Science.gov (United States)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  20. Gravitational effects of global textures

    International Nuclear Information System (INIS)

    Noetzold, D.

    1990-03-01

    A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures

  1. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  2. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  3. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  4. Sloshing-ion equilibria in the TARA endplugs

    International Nuclear Information System (INIS)

    Hokin, S.; Kesner, J.

    1983-11-01

    We have employed a modified version of the LLNL Bounce-average Fokker-Planck code to model neutral beam-produced sloshing-ion equilibria in the TARA endplugs. The questions we have addressed concern the effect of deuterium beam operation as opposed to hydrogen operation, and the advantage of using full-energy beams rather than the usual three-component beams. We find that, for the expected base case TARA operating parameters, a 40% savings in required beam power is attained by using deuterium beams rather than hydrogen beams, and that the use of full-energy beams results in an additional 26% power savings for these parameters. For higher plasma temperatures the use of full-energy beams becomes significantly advantagous. We have also investigated the equilibria of two possible alternate mirror configurations for the TARA endplugs, believed to be more stable to trapped particle modes, and report those results here

  5. Phase diagrams and heterogeneous equilibria a practical introduction

    CERN Document Server

    Predel, Bruno; Pool, Monte

    2004-01-01

    This graduate-level textbook provides an introduction to the practical application of phase diagrams. It is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. Heterogeneous equilibria are described by a minimum of theory illustrated by practical examples and realistic case discussions from the different fields of application. The treatment of the physical and energetic background of phase equilibria leads to the discussion of the thermodynamics of mixtures and the correlation between energetics and composition. Thus, tools for the prediction of energetic, structural, and physical quantities are provided. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Furthermore, the text also concisely presents the thermodynamics and composition of polymer systems.

  6. Extended Group Contribution Model for Polyfunctional Phase Equilibria

    DEFF Research Database (Denmark)

    Abildskov, Jens

    of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor......Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design......-liquid equilibria from data on binary mixtures, composed of structurally simple molecules with a single functional group. More complex is the situation with mixtures composed of structurally more complicated molecules or molecules with more than one functional group. The UNIFAC method is extended to handle...

  7. Magnetic coordinates for equilibria with a continuous symmetry

    International Nuclear Information System (INIS)

    Dewar, R.L.; Monticello, D.A.; Sy, W.N.C.

    1983-08-01

    Magnetic coordinates for hydromagnetic equilibria are defined which treat toroidal and straight helical plasmas equivalently yet exploit the existence of a continuous symmetry to derive relations between various geometrical and physical quantities. This allows the number of equilibrium quantities which must be known to be reduced to a minimal, or primitive set. Practical formulae for various quantities required in hydromagnetic stability calculations (interchange, ballooning, and global) are given in terms of this primitive set

  8. Phase equilibria and phase structures of polymer blends

    International Nuclear Information System (INIS)

    Chalykh, Anatolii E; Gerasimov, Vladimir K

    2004-01-01

    Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.

  9. Existence of equilibria in quantum Bertrand-Edgeworth duopoly game

    Science.gov (United States)

    Sekiguchi, Yohei; Sakahara, Kiri; Sato, Takashi

    2012-12-01

    Both classical and quantum version of two models of price competition in duopoly market, the one is realistic and the other is idealized, are investigated. The pure strategy Nash equilibria of the realistic model exists under stricter condition than that of the idealized one in the classical form game. This is the problem known as Edgeworth paradox in economics. In the quantum form game, however, the former converges to the latter as the measure of entanglement goes to infinity.

  10. Variational-moment method for computing magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Lao, L.L.

    1983-08-01

    A fast yet accurate method to compute magnetohydrodynamic equilibria is provided by the variational-moment method, which is similar to the classical Rayleigh-Ritz-Galerkin approximation. The equilibrium solution sought is decomposed into a spectral representation. The partial differential equations describing the equilibrium are then recast into their equivalent variational form and systematically reduced to an optimum finite set of coupled ordinary differential equations. An appropriate spectral decomposition can make the series representing the solution coverge rapidly and hence substantially reduces the amount of computational time involved. The moment method was developed first to compute fixed-boundary inverse equilibria in axisymmetric toroidal geometry, and was demonstrated to be both efficient and accurate. The method since has been generalized to calculate free-boundary axisymmetric equilibria, to include toroidal plasma rotation and pressure anisotropy, and to treat three-dimensional toroidal geometry. In all these formulations, the flux surfaces are assumed to be smooth and nested so that the solutions can be decomposed in Fourier series in inverse coordinates. These recent developments and the advantages and limitations of the moment method are reviewed. The use of alternate coordinates for decomposition is discussed

  11. (Liquid + liquid) equilibria of perfluorocarbons with fluorinated ionic liquids

    International Nuclear Information System (INIS)

    Martinho, S.; Araújo, J.M.M.; Rebelo, L.P.N.; Pereiro, A.B.; Marrucho, I.M.

    2013-01-01

    Highlights: • (Liquid + liquid) equilibria perfluorocarbons and fluorinated ionic liquids. • Non-Random Two Liquid model was successfully applied. • Thermodynamic functions that describe the solvation process were calculated. -- Abstract: In order to evaluate the feasibility of partially replace perfluorocarbons (PFCs) with fluorinated ionic liquids (FILs) in PFCs-in-water emulsions, usually used for biomedical purposes, herein the (liquid + liquid) phase equilibria of FILs containing fluorinated chains longer than four carbons with PFCs were carried out in a wide range of temperatures. With this goal in mind, two PFCs (perfluorooctane and perfluorodecalin) were selected and the (liquid + liquid) equilibria of the binary mixtures of these PFCs and FILs were studied at atmospheric pressure in a temperature range from T (293.15 to 343.15) K. For these studies, FILs containing ammonium, pyridinium and imidazolium cations and different anions with fluorocarbon alkyl chains between 4 and 8 were included. Additionally, Non-Random Two Liquid (NRTL) thermodynamic model was successfully applied to correlate the behaviour of the PFCs + FILs binary mixtures. Moreover, thermodynamic functions that describe the solvation process were calculated from the experimental data

  12. Long-term Nash equilibria in electricity markets

    International Nuclear Information System (INIS)

    Pozo, David; Contreras, Javier; Caballero, Angel; de Andres, Antonio

    2011-01-01

    In competitive electricity markets, companies simultaneously offer their productions to obtain the maximum profits on a daily basis. In the long run, the strategies utilized by the electric companies lead to various long-term equilibria that can be analyzed with the appropriate tools. We present a methodology to find plausible long-term Nash equilibria in pool-based electricity markets. The methodology is based on an iterative market Nash equilibrium model in which the companies can decide upon their offer strategies. An exponential smoothing of the bids submitted by the companies is applied to facilitate the convergence of the iterative procedure. In each iteration of the model the companies face residual demand curves that are accurately modeled by Hermite interpolating polynomials. We introduce the concept of meta-game equilibrium strategies to allow companies to have a range of offer strategies where several pure and mixed meta-game Nash equilibria are possible. With our model it is also possible to model uncertainty or to generate price scenarios for financial models that assess the value of a generating unit by real options analysis. The application of the proposed methodology is illustrated with several realistic case studies. (author)

  13. Stochastic backgrounds of gravitational waves

    International Nuclear Information System (INIS)

    Maggiore, M.

    2001-01-01

    We review the motivations for the search for stochastic backgrounds of gravitational waves and we compare the experimental sensitivities that can be reached in the near future with the existing bounds and with the theoretical predictions. (author)

  14. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  15. Highlights in gravitation and cosmology

    International Nuclear Information System (INIS)

    Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.

    1988-01-01

    This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)

  16. A new theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.

    1989-01-01

    The author believes that the General Relativity Theory (GRT) suffers from a substantial deficiency since it ignors the fundamental laws of conservation of energy. Einstein neglected the classical concept of the field due to his belief in the truth of the principle of equivalence between forces of inertid gravitation. This equivalence leads, as the author says, to nonequivalence of these forces, making GRT logically contradictory from the physical point of view. The author considers GRT as a certain stage in the course of the study of space-time and gravitation, and suggests a new theory called the Relativistic Theory of Gravitation (RTG) which obeys the fundamental laws of conservation, and which is justified in some of its aspects by astronomical observations. RTG does not suffer from some deficiencies met in Einsteins theory. One is nonunique predictions of gravitation effects within the boundaries of the solar system. Also, RTG refuses some hypothesis as that of black holes. 7 refs

  17. Are the gravitational waves quantised?

    International Nuclear Information System (INIS)

    Lovas, I.

    1998-01-01

    The question whether gravitational waves are quantised or not can be investigated by the help of correlation measurements. If the gravitational waves are classical objects then the value of their correlation function is 1. However, if they are quantised, then there exist two possibilities: the gravitational waves are either completely coherent, then the correlation function is again 1, or they are partially coherent, then the correlation function is expected to deviate from 1. If the gravitational waves are generated by the change of the background metrics then they can be in a squeezed state. In a squeezed state there is a chance for the correlation between the phase of the wave and the quantum fluctuations. (author)

  18. Heuristic introduction to gravitational waves

    International Nuclear Information System (INIS)

    Sandberg, V.D.

    1982-01-01

    The purpose of this article is to provide a rough and somewhat heuristic theoretical background and introduction to gravitational radiation, its generation, and its detection based on Einstein's general theory of relativity

  19. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  20. The Pierce diode with an external circuit. I. Oscillations about nonuniform equilibria

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1989-01-01

    The nonuniform (nonlinear) equilibria of the classical (short circuit) Pierce diode and the extended (series RLC external circuit) Pierce diode are described, and the spectrum of oscillations (stable and unstable) about these equilibria are worked out. It is found that only the external capacitance alters the equilibria, though all elements alter the spectrum. In particular, the introduction of an external capacitor destabilizes some equilibria that are marginally stable without the capacitor. Computer simulations are performed to test the theoretical predictions for the case of an external capacitor only. It is found that most equilibria are correctly predicted by theory, but that the continuous set of equilibria of the classical Pierce diode at Pierce parameters (α=ω/sub pL//v 0 ) that are multiples of 2π are not observed. This appears to be a failure of the simulation method under the rather singular conditions rather than a failure of the theory

  1. Shearfree cylindrical gravitational collapse

    International Nuclear Information System (INIS)

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-01-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  2. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  3. General relativity and gravitation, 1989

    International Nuclear Information System (INIS)

    Ashby, N.; Bartlett, D.F.; Wyss, W.

    1990-01-01

    This volume records the lectures and symposia of the 12th International Conference on General Relativity and Gravitation. Plenary lecturers reviewed the major advances since the previous conference in 1986. The reviews cover classical and quantum theory of gravity, colliding gravitational waves, gravitational lensing, relativistic effects on pulsars, tests of the inverse square law, numerical relativity, cosmic microwave background radiation, experimental tests of gravity theory, gravitational wave detectors, and cosmology. The plenary lectures are complemented by summaries of symposia, provided by the chairmen. Almost 700 contributed papers were presented at these and they cover an even wider range of topics than the plenary talks. The book provides a comprehensive guide to research activity in both experimental and theoretical gravitation and its applications in astrophysics and cosmology. It will be essential reading for research workers in these fields, as well as theoretical and experimental physicists, astronomers, and mathematicians who wish to be acquainted with modern developments in gravitational theory and general relativity. All the papers and summaries of the workshop sessions are indexed separately. (16 united talks, 20 workshop sessions). (author)

  4. Nuclear Quantum Gravitation - The Correct Theory

    Science.gov (United States)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  5. Stability and attractive basins of multiple equilibria in delayed two-neuron networks

    International Nuclear Information System (INIS)

    Huang Yu-Jiao; Zhang Hua-Guang; Wang Zhan-Shan

    2012-01-01

    Multiple stability for two-dimensional delayed recurrent neural networks with piecewise linear activation functions of 2r (r ≥ 1) corner points is studied. Sufficient conditions are established for checking the existence of (2r + 1) 2 equilibria in delayed recurrent neural networks. Under these conditions, (r + 1) 2 equilibria are locally exponentially stable, and (2r + 1) 2 — (r + 1) 2 — r 2 equilibria are unstable. Attractive basins of stable equilibria are estimated, which are larger than invariant sets derived by decomposing state space. One example is provided to illustrate the effectiveness of our results. (general)

  6. The Pierce diode with an external circuit: II, Non-uniform equilibria

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1987-01-01

    The non-uniform (non-linear) equilibria of the classical (short circuit) Pierce diode and the extended (series RLC external circuit) Pierce diode are described theoretically, and explored via computer simulation. It is found that most equilibria are correctly predicted by theory, but that the continuous set of equilibria of the classical Pierce diode at α = 2π are not observed. The stability characteristics of the non-uniform equilibria are also worked out, and are consistent with the simulations. 8 refs., 22 figs., 3 tabs

  7. Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica

    2004-01-01

    One of the main obstacles for further development of Self-Compacting Concrete (SCC)is to relate the fresh concrete properties, form geometry, reinforcement configuration, and casting technique to the form filling ability. Simulation of the filling ability might provide a tool in obtaining this goal...

  8. How axi-symmetric is the inner HI disc of the Milky Way?

    NARCIS (Netherlands)

    Marasco, A.; Fraternali, F.; Reylé, C.; Robin, A.; Schultheis, M.

    We modelled the distribution and the kinematics of HI in the inner Milky Way (R

  9. Variable property, steady, axi-symmetric, laminar, continuum plasma flow over spheroidal particles

    International Nuclear Information System (INIS)

    Wen Yuemin; Jog, Milind A.

    2005-01-01

    Steady, continuum, laminar plasma flow over spheroidal particles has been numerically investigated in this paper using a finite volume method. To body-fit the non-spherical particle surface, an adaptive orthogonal grid is generated. The flow field and the temperature distribution are calculated for oblate and prolate particle shapes. A number of particle surface temperatures and far field temperatures are considered and thermo-physical property variation is fully accounted for in our model. The particle shapes are represented in terms of axis ratio which is defined as the ratio of axis perpendicular to the flow direction to the axis along the flow direction. For oblate shape, axis ratios from 1.6 (disk-like) to 1 (sphere) are used whereas for prolate shape, axis ratios of 1(sphere) to 0.4 (cylinder-like) are used. Effects of flow Reynolds number, particle shape, surface and far field temperatures, and variable properties, on the flow field, temperature variations, drag coefficient, and Nusselt number are outlined. Results show that particle shape has significant effect on flow and heat transfer to particle surface. Compared to a constant property flow, accounting for thermo-physical property variation leads to prediction of higher temperature and velocity gradients in the vicinity of the particle surface. Based on the numerical results, a correlation for the Nusslet number is proposed that accounts for the effect of particle shape in continuum flow with large thermo-physical property variation

  10. Aspects of Finite Element Simulation of Axi-Symmetric Hydromechanical Deep Drawing

    DEFF Research Database (Denmark)

    Jensen, Morten Rikard; Olovsson, Lars; Danckert, Joachim

    1999-01-01

    A new approach for the Finite Element modelling of the hydromechanical deep drawing process is evaluated. In the model a Finite Difference approximation of Reynold’s equation is solved for the fluid flow between the blank and the draw die in the flange region. The approach is implemented...... as a contact algorithm in an explicit Finite Element code, Exhale2D. The developed model is verified against experiments and good agreement is obtained. It is concluded that the developed model is a promising approach for simulating the hydromechanical deep drawing process using the Finite Element Method....

  11. A new geometrical gravitational theory

    International Nuclear Information System (INIS)

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  12. Modified entropic gravitation in superconductors

    International Nuclear Information System (INIS)

    Matos, Clovis Jacinto de

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  13. Gravitational waves from supernova matter

    International Nuclear Information System (INIS)

    Scheidegger, S; Whitehouse, S C; Kaeppeli, R; Liebendoerfer, M

    2010-01-01

    We have performed a set of 11 three-dimensional magnetohydrodynamical (MHD) core-collapse supernova simulations in order to investigate the dependences of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15M o-dot progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ∼2% at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative gravitational wave (GW) prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.

  14. Relic gravitational waves and cosmology

    International Nuclear Information System (INIS)

    Grishchuk, Leonid P

    2005-01-01

    The paper begins with a brief recollection of interactions of the author with Ya B Zeldovich in the context of the study of relic gravitational waves. The principles and early results on the quantum-mechanical generation of cosmological perturbations are then summarized. The expected amplitudes of relic gravitational waves differ in various frequency windows, and therefore the techniques and prospects of their detection are distinct. One section of the paper describes the present state of efforts in direct detection of relic gravitational waves. Another section is devoted to indirect detection via the anisotropy and polarization measurements of the cosmic microwave background (CMB) radiation. It is emphasized throughout the paper that the inference about the existence and expected amount of relic gravitational waves is based on a solid theoretical foundation and the best available cosmological observations. It is also explained in great detail what went wrong with the so-called 'inflationary gravitational waves', whose amount is predicted by inflationary theorists to be negligibly small, thus depriving them of any observational significance. (reviews of topical problems)

  15. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  16. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1978-01-01

    We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr

  17. Sparse representation of Gravitational Sound

    Science.gov (United States)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  18. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  19. Computation of multi-region relaxed magnetohydrodynamic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, S. R.; Lazerson, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2012-11-15

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  20. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  1. Ideal MHD stability of high poloidal beta equilibria in TFTR

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Budny, R.V.; Chance, M.S.; Fredrickson, E.D.; Jardin, S.C.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Wieland, R.M.; Zarnstorff, M.C.; Phillips, M.W.; Hughes, M.H.; Kesner, J.

    1991-01-01

    Recent experiments in TFTR have expanded the operating space of the device to include plasmas with values of var-epsilon β p dia ≡ 2μ 0 var-epsilon perpendicular >/ p >> 2 as large as 1.6, and Troyon normalized diamagnetic beta β N dia ≡ β t perpendicular aB t /10 -8 I p as large as 4.7. At values of var-epsilon β p dia ≥ 1.3, a separatrix was observed to enter the vacuum vessel, producing a naturally diverted discharge. Plasmas with large values of var-epsilon β p dia were created with both the plasma current, I p , held constant and with I p decreased, or ramped down, before the start of neutral beam injection. A convenient characterization of the change in I p using experimental parameters can be defined by the ratio of I p before the ramp down, to I p during the neutral beam heating phase, F I p . The ideal MHD stability of these equilibria is investigated to determine their location in stability space, and to study the role of plasma current and pressure profile modification in the creation of these high var-epsilon β p and β N plasmas. The evolution of these plasmas is modelled from experimental data using the TRANSP code. Two-dimensional equilibria are computed from the TRANSP results and used as input to both high and low-n stability codes including PEST. The high var-epsilon β p equilibria, which generally have an oblate cross-sectional shape, are in the first stability region to high-n ballooning modes. At constant I p , these equilibria generally have maximum pressure gradients near the magnetic axis and are stable to n=1 modes without a stabilizing conducting wall. The effect of the current profile shape on the stability of low-n kink/ballooning modes and the requirements for these plasmas to access the second stability region are examined. 6 refs

  2. Phase Equilibria Relationships of High-Tc Superconductors

    International Nuclear Information System (INIS)

    Wong-Ng, Winnie

    2011-01-01

    As an integral part of a R and D program partially supported by the Electricity Delivery and Energy Reliability Office of DOE, we have determined phase equilibria data and phase diagrams for the three generations of superconductor materials: 1st generation, (Bi,Pb)-Sr-Ca- Cu-O systems; 2nd generation, Ba-R-Cu-O systems (R=lanthanides and yttrium); and 3rd generation, MgB2 systems. Our studies involved bulk materials, single crystals and thin films. This report gives a summary of our accomplishments, a list of publications, and 15 selected journal publications.

  3. The free energy of Maxwell-Vlasov equilibria

    International Nuclear Information System (INIS)

    Morrison, P.J.; Pfirsch, D.

    1989-10-01

    A previously derived expression for the energy of arbitrary perturbations about arbitrary Vlasov-Maxwell equilibria is transformed into a very compact form. The new form is also obtained by a canonical transformation method for solving Vlasov's equation, which is based on Lie group theory. This method is simpler than the one used before and provides better physical insight. Finally a procedure is presented for determining the existence of negative-energy modes. In this context the question of why there is an accessibility constraint for the particles, but not for the fields, is discussed. 16 refs

  4. Looking for multiple equilibria when geography matters : German city growth and the WWII shock

    NARCIS (Netherlands)

    Bosker, Maarten; Brakman, Steven; Garretsen, Harry; Schramm, Marc

    Based on the methodology of Davis and Weinstein, we look for multiple equilibria in German city growth. Bytaking the bombing of Germany during WWII as an example of a large, temporary shock, we analyze whether German city growth is characterized by multiple equilibria. In doing so, we allow for

  5. Computational study of the influence of mirror parameters on FRC (field-reversed configuration) equilibria:

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Sakanaka, P.H.

    1990-01-01

    Field-reversed configuration equilibria are studied by solving the Grad-Shafranov equation. A multiple coil system (main coil and end mirrors) is considered to simulate the coil geometry of CNEA device. First results are presented for computed two-dimensional FRC equilibria produced varying the mirror coil current with two different mirror lenghts. (Author)

  6. How hard is it to find extreme Nash equilibria in network congestion games?

    NARCIS (Netherlands)

    Gassner, E.; Hatzl, J.; Krumke, S.O.; Sperber, H.; Woeginger, G.J.; Papadimitriou, C.; Zhang, S.

    2008-01-01

    We study the complexity of finding extreme pure Nash equilibria in symmetric (unweighted) network congestion games. In our context best and worst equilibria are those with minimum respectively maximum makespan. On series-parallel graphs a worst Nash equilibrium can be found by a Greedy approach

  7. Gravitational-wave mediated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Cormack, Sam, E-mail: samuel.c.cormack.gr@dartmouth.edu [Center for Cosmic Origins and Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 200433 Shanghai (China); Yunes, Nicolás [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-04-09

    We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  8. Testing the gravitational instability hypothesis?

    Science.gov (United States)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests

  9. Linear interaction of gravitational waves

    International Nuclear Information System (INIS)

    Ciubotariu, C.D.

    1992-01-01

    Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)

  10. Astrophysical sources of gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G. E-mail: losurdo@galileo.pi.infn.it

    2000-05-01

    The interferometric detectors of gravitational waves (GW) (such as VIRGO and LIGO) will search for events in a frequency band within a few Hz and a few kHz, where several sources are expected to emit. In this talk we outline briefly the current theoretical knowledge on the emission of GW in events such as the coalescence of compact binaries, the gravitational collapse, the spinning of a neutron stars. Expected amplitudes are compared with the target sensitivity of the VIRGO/LIGO interferometric detectors.

  11. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  12. General relativity and gravitational waves

    CERN Document Server

    Weber, Johanna

    1961-01-01

    An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta

  13. Isotropic–Nematic Phase Transitions in Gravitational Systems

    Energy Technology Data Exchange (ETDEWEB)

    Roupas, Zacharias; Kocsis, Bence [Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest, 1117 (Hungary); Tremaine, Scott [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2017-06-20

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  14. The 'gravitating' tensor in the dualistic theory

    International Nuclear Information System (INIS)

    Mahanta, M.N.

    1989-01-01

    The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented

  15. The Theory of Vortical Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2007-04-01

    Full Text Available This paper treats of vortical gravitational fields, a tensor of which is the rotor of the general covariant gravitational inertial force. The field equations for a vortical gravitational field (the Lorentz condition, the Maxwell-like equations, and the continuity equation are deduced in an analogous fashion to electrodynamics. From the equations it is concluded that the main kind of vortical gravitational fields is “electric”, determined by the non-stationarity of the acting gravitational inertial force. Such a field is a medium for traveling waves of the force (they are different to the weak deformation waves of the space metric considered in the theory of gravitational waves. Standing waves of the gravitational inertial force and their medium, a vortical gravitational field of the “magnetic” kind, are exotic, since a non-stationary rotation of a space body (the source of such a field is a very rare phenomenon in the Universe.

  16. Merging Black Holes and Gravitational Waves

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  17. Discovery of two new gravitation lens systems

    International Nuclear Information System (INIS)

    Guertler, J.

    1988-01-01

    The discovery of new quasar and radio galaxy double images produced by the gravitation lens effect is reported. The light deflecting galaxies acting as gravitational lenses could be made visible by means of image processing procedures

  18. Parametric mechanisms for detecting gravitational waves

    International Nuclear Information System (INIS)

    Pustovoit, V.I.; Chernozatonskii, L.A.

    1981-01-01

    An intense electromagnetic wave and a gravitational wave can interact to effectively generate electromagnetic waves at sum and difference frequencies. The self-effect of a monochromatic electromagnetic wave through a gravitational field leads to third-harmonic generation

  19. Resonant-bar gravitational radiation antennas

    International Nuclear Information System (INIS)

    Blair, D.G.

    1987-01-01

    This paper reviews the concept of gravitational radiation, and describes the worldwide research programme for the development of high-sensitivity resonant-bar antennas which are aimed at detecting gravitational radiation from astrophysical sources. (author)

  20. High temperature interdiffusion and phase equilibria in U-Mo

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1988-01-01

    Experimental data for interdiffusion and phase equilibria in the U-Mo system have been obtained over the temperature range 1400 to 1525 K as a fallout from compatibility experiments in which UO 2 was decomposed by lithium in closed molybdenum capsules. Composition-position, x-ray diffraction and microstructural data from the interdiffusion zones indicate that the intermediate phase U 2 Mo is found in this temperature range, contrary to the currently accepted equilibrium U-Mo phase diagram. The U-Mo interdiffusion data are in good agreement with published values. Inclusion of the U 2 Mo phase in a theoretical correlation of interdiffusion and phase equilibria data using Darken's equation indicate that high temperature interdiffusion of uranium and molybdenum follows the usual thermodynamic rules. Significant changes in the value of the thermodynamic based Darken factor near the U 2 Mo phase boundary on the high uranium side are indicated from both the new and published interdiffusion data. 9 refs., 10 figs., 3 tabs

  1. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  2. Electronic structure and phase equilibria in ternary substitutional alloys

    International Nuclear Information System (INIS)

    Traiber, A.J.S.; Allen, S.M.; Waterstrat, R.M.

    1996-01-01

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate abinitio calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr 0.5 (Ru, Pd) 0.5

  3. Kinetic description of linear theta-pinch equilibria

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Davidson, R.C.

    1975-01-01

    Equilibrium properties of linear theta-pinch plasmas are studied within the framework of the steady-state (o/x=0) Vlasov-Maxwell equations. The analysis is carried out for an infinitely long plasma column aligned parallel to an externally applied axial magnetic field Bsub(z)sup(ext)esub(z). Equilibrium properties are calculated for the class of rigid-rotor Vlasov equilibria, in which the th component distribution function (Hsub(perpendicular), Psub(theta), upsilonsub(z) depends on perpendicular energy H and canonical angular momentum Psub(theta), exclusively through the linear combination Hsub(perpendicular)-ωsub(j)Psub(theta), where ω;=const.=angular velocity of mean rotation. General equilibrium relations that pertain to the entire class of rigid-rotor Vlasov equilibria are discussed; and specific examples of sharp- and diffuse-boundary equilibrium configurations are considered. Rigid-rotor density and magnetic field profiles are compared with experimentally observed profiles. A general prescription is given for determining the functional dependence of the equilibrium distribution function on Hsub(perpendicular)-ωsub(j)Psub(theta) in circumstances, where the density profile or magnetic field profile is specified. (author)

  4. Phase equilibria in the niobium-vanadium-hydrogen system

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J. (Grumman Aerospace Corp., Bethpage, NY (USA)); Welch, D.O. (Brookhaven National Lab., Upton, NY (USA)); Pick, M.A. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking)

    1990-01-01

    The effect of vanadium additions to niobium on the metal-hydrogen phase equilibria has been studied. Measurements of the equilibrium H{sub 2}(D{sub 2}) pressure-composition-temperature isotherms for Nb{sub 1-x}V{sub x} alloys with 0{le}x<0.2 were used to determine the depression of the {alpha} - {alpha}' critical temperature with increasing vanadium concentration. A simple lattice-fluid model guided reduction of the data. Changes in the triple point temperature as well as the shift of the {zeta} {yields} {epsilon} phase transition were determined by differential scanning calorimetry measurements. A rapid overall depression was found, of the order of 7 K (at.% substituted V){sup -1}, for the metal-hydrogen (deuterium) phase boundary structure when compared with the Nb-H system in the hydrogen concentration range of interest. The results explain the enhanced terminal solubility of hydrogen in this system found previously by other authors. The changes in the phase equilibria are discussed in terms of the effect of hydrogen trapping and compared with the results of a cluster-variation calculation for random-field systems of previous authors, taking into account a distribution of H-site energies due to alloying. (author).

  5. Gravitational states of antihydrogen near material surface

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, Alexei Yu., E-mail: dr.a.voronin@gmail.com [P.N. Lebedev Physical Institute (Russian Federation); Froelich, Piotr [Uppsala University, Department of Quantum Chemistry (Sweden); Nesvizhevsky, Valery V. [Institut Laue-Langevin (ILL) (France)

    2012-12-15

    We present a theoretical study of the motion of antihydrogen atoms in the Earth's gravitational field near a material surface. We predict the existence of long-living quasistationary states of antihydrogen in a superposition of the gravitational and Casimir-van der Waals potentials of the surface. We suggest an interferometric method of measuring the energy difference between such gravitational states, hence the gravitational mass of antihydrogen.

  6. Gravitational wave reception by a sphere

    International Nuclear Information System (INIS)

    Ashby, N.; Dreitlein, J.

    1975-01-01

    The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important

  7. Vector-tensor interaction of gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuan-zhong; Guo han-ying

    1982-11-01

    In the paper, by using the equation of motion a particle, we show that the antigravity exist in the vector-tensor model of gravitation. Thus the motion of a particle deviates from the geodesic equation. In Newtonian approximation and weak gravitational field, acceleration of a particle in a spherically symmetric and astatic gravitation field is zero. The result is obviously not in agreement with gravitational phenomena.

  8. The Japanese space gravitational wave antenna; DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Ikkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  9. The Japanese space gravitational wave antenna - DECIGO

    OpenAIRE

    Kawamura, Seiji; Ando, Masaki; Nakamura, Takashi; Tsubono, Kimio; Tanaka, Takahiro; Funaki, Iklkoh; Seto, Naoki; Numata, Kenji; Sato, Shuichi; Ioka, Kunihito; Kanda, Nobuyuki; Takashima, Takeshi; Agatsuma, Kazuhiro; Akutsu, Tomotada; Akutsu, Tomomi

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry—Perot Michelson interferometer. We plan to lau...

  10. Effect of the Earth's gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1988-01-01

    We consider the laboratory detection of high-frequency gravitational waves in theories of gravitation based on a pseudo-Euclidean space-time. We analyze the effects due to the Earth's gravitational field on the propagation velocities of gravitational and electromagnetic waves in these theories. Experiments to test the predictions of this class of theories are discussed

  11. Plausibility Arguments and Universal Gravitation

    Science.gov (United States)

    Cunha, Ricardo F. F.; Tort, A. C.

    2017-01-01

    Newton's law of universal gravitation underpins our understanding of the dynamics of the Solar System and of a good portion of the observable universe. Generally, in the classroom or in textbooks, the law is presented initially in a qualitative way and at some point during the exposition its mathematical formulation is written on the blackboard…

  12. Scientific visualization of gravitational lenses

    International Nuclear Information System (INIS)

    Magallon, M.

    1999-01-01

    Concepts related to gravitational lenses are discussed and applied to develop an interactive visualization tool that allow us to investigate them. Optimization strategies were performed to elaborate the tool. Some results obtained from the application of the tool are shown [es

  13. Wilson loops in Kerr gravitation

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1981-01-01

    The ordered integrals for several paths in Kerr gravitation is computed in a compact form. When the path is closed its relation with the angular parallel displacement is discussed and the corresponding Wilson loop is calculated. The validity of Mandelstam relations for gauge fields is also explicitly verified. (Author) [pt

  14. Gravitational lensing in plasmic medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  15. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  16. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  17. Social Interactions under Incomplete Information: Games, Equilibria, and Expectations

    Science.gov (United States)

    Yang, Chao

    My dissertation research investigates interactions of agents' behaviors through social networks when some information is not shared publicly, focusing on solutions to a series of challenging problems in empirical research, including heterogeneous expectations and multiple equilibria. The first chapter, "Social Interactions under Incomplete Information with Heterogeneous Expectations", extends the current literature in social interactions by devising econometric models and estimation tools with private information in not only the idiosyncratic shocks but also some exogenous covariates. For example, when analyzing peer effects in class performances, it was previously assumed that all control variables, including individual IQ and SAT scores, are known to the whole class, which is unrealistic. This chapter allows such exogenous variables to be private information and models agents' behaviors as outcomes of a Bayesian Nash Equilibrium in an incomplete information game. The distribution of equilibrium outcomes can be described by the equilibrium conditional expectations, which is unique when the parameters are within a reasonable range according to the contraction mapping theorem in function spaces. The equilibrium conditional expectations are heterogeneous in both exogenous characteristics and the private information, which makes estimation in this model more demanding than in previous ones. This problem is solved in a computationally efficient way by combining the quadrature method and the nested fixed point maximum likelihood estimation. In Monte Carlo experiments, if some exogenous characteristics are private information and the model is estimated under the mis-specified hypothesis that they are known to the public, estimates will be biased. Applying this model to municipal public spending in North Carolina, significant negative correlations between contiguous municipalities are found, showing free-riding effects. The Second chapter "A Tobit Model with Social

  18. Spinor approach to gravitational motion and precession

    International Nuclear Information System (INIS)

    Hestenes, D.

    1986-01-01

    The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)

  19. On black holes and gravitational waves

    CERN Document Server

    Loinger, Angelo

    2002-01-01

    Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.

  20. Detecting gravitational waves from accreting neutron stars

    NARCIS (Netherlands)

    Watts, A.L.; Krishnan, B.

    2009-01-01

    The gravitational waves emitted by neutron stars carry unique information about their structure and composition. Direct detection of these gravitational waves, however, is a formidable technical challenge. In a recent study we quantified the hurdles facing searches for gravitational waves from the

  1. Gravitational wave signals and cosmological consequences of gravitational reheating

    Science.gov (United States)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.

  2. Measurement of gravitational acceleration of antimatter

    International Nuclear Information System (INIS)

    Rouhani, S.

    1989-12-01

    The minute yet effective impact of gravitational potential in the central region of a long tube magnetic container of non-neutral plasmas can be utilized for the measurement of the gravitational acceleration of antimatter particles. The slight change in distribution of plasma particles along the gravitational field affects the internal electric field of the plasma, which in turn affects the frequency of the magnetron motion of its particles. Thus, a rather straightforward relation is established between the gravitational acceleration of the particles and their magnetron frequencies, which is measurable directly, determining the value of the gravitational acceleration. (author). 7 refs, 3 figs

  3. The Japanese space gravitational wave antenna - DECIGO

    International Nuclear Information System (INIS)

    Kawamura, S; Seto, N; Sato, S; Arai, K; Ando, M; Tsubono, K; Agatsuma, K; Akutsu, T; Akutsu, T; Arase, Y; Nakamura, T; Tanaka, T; Funaki, I; Takashima, T; Numata, K; Ioka, K; Kanda, N; Aoyanagi, Koh-Suke; Araya, A; Asada, H

    2008-01-01

    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. The goal of DECIGO is to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and thus to open a new window of observation for gravitational wave astronomy. DECIGO will consist of three drag-free spacecraft, 1000 km apart from each other, whose relative displacements are measured by a Fabry-Perot Michelson interferometer. We plan to launch DECIGO pathfinder first to demonstrate the technologies required to realize DECIGO and, if possible, to detect gravitational waves from our galaxy or nearby galaxies

  4. The Spectral Web of stationary plasma equilibria. II. Internal modes

    Science.gov (United States)

    Goedbloed, J. P.

    2018-03-01

    The new method of the Spectral Web to calculate the spectrum of waves and instabilities of plasma equilibria with sizeable flows, developed in the preceding Paper I [Goedbloed, Phys. Plasmas 25, 032109 (2018)], is applied to a collection of classical magnetohydrodynamic instabilities operating in cylindrical plasmas with shear flow or rotation. After a review of the basic concepts of the complementary energy giving the solution path and the conjugate path, which together constitute the Spectral Web, the cylindrical model is presented and the spectral equations are derived. The first example concerns the internal kink instabilities of a cylindrical force-free magnetic field of constant α subjected to a parabolic shear flow profile. The old stability diagram and the associated growth rate calculations for static equilibria are replaced by a new intricate stability diagram and associated complex growth rates for the stationary model. The power of the Spectral Web method is demonstrated by showing that the two associated paths in the complex ω-plane nearly automatically guide to the new class of global Alfvén instabilities of the force-free configuration that would have been very hard to predict by other methods. The second example concerns the Rayleigh-Taylor instability of a rotating theta-pinch. The old literature is revisited and shown to suffer from inconsistencies that are remedied. The most global n = 1 instability and a cluster sequence of more local but much more unstable n =2 ,3 ,…∞ modes are located on separate solution paths in the hydrodynamic (HD) version of the instability, whereas they merge in the MHD version. The Spectral Web offers visual demonstration of the central position the HD flow continuum and of the MHD Alfvén and slow magneto-sonic continua in the respective spectra by connecting the discrete modes in the complex plane by physically meaningful curves towards the continua. The third example concerns the magneto-rotational instability

  5. Hermite Polynomials and the Inverse Problem for Collisionless Equilibria

    Science.gov (United States)

    Allanson, O.; Neukirch, T.; Troscheit, S.; Wilson, F.

    2017-12-01

    It is long established that Hermite polynomial expansions in either velocity or momentum space can elegantly encode the non-Maxwellian velocity-space structure of a collisionless plasma distribution function (DF). In particular, Hermite polynomials in the canonical momenta naturally arise in the consideration of the 'inverse problem in collisionless equilibria' (IPCE): "for a given macroscopic/fluid equilibrium, what are the self-consistent Vlasov-Maxwell equilibrium DFs?". This question is of particular interest for the equilibrium and stability properties of a given macroscopic configuration, e.g. a current sheet. It can be relatively straightforward to construct a formal solution to IPCE by a Hermite expansion method, but several important questions remain regarding the use of this method. We present recent work that considers the necessary conditions of non-negativity, convergence, and the existence of all moments of an equilibrium DF solution found for IPCE. We also establish meaningful analogies between the equations that link the microscopic and macrosopic descriptions of the Vlasov-Maxwell equilibrium, and those that solve the initial value problem for the heat equation. In the language of the heat equation, IPCE poses the pressure tensor as the 'present' heat distribution over an infinite domain, and the non-Maxwellian features of the DF as the 'past' distribution. We find sufficient conditions for the convergence of the Hermite series representation of the DF, and prove that the non-negativity of the DF can be dependent on the magnetisation of the plasma. For DFs that decay at least as quickly as exp(-v^2/4), we show non-negativity is guaranteed for at least a finite range of magnetisation values, as parameterised by the ratio of the Larmor radius to the gradient length scale. 1. O. Allanson, T. Neukirch, S. Troscheit & F. Wilson: From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials, Journal of Plasma Physics, 82

  6. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    International Nuclear Information System (INIS)

    Von Nessi, G T; Hole, M J

    2014-01-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript. (paper)

  7. Oscillations and Multiple Equilibria in Microvascular Blood Flow.

    Science.gov (United States)

    Karst, Nathaniel J; Storey, Brian D; Geddes, John B

    2015-07-01

    We investigate the existence of oscillatory dynamics and multiple steady-state flow rates in a network with a simple topology and in vivo microvascular blood flow constitutive laws. Unlike many previous analytic studies, we employ the most biologically relevant models of the physical properties of whole blood. Through a combination of analytic and numeric techniques, we predict in a series of two-parameter bifurcation diagrams a range of dynamical behaviors, including multiple equilibria flow configurations, simple oscillations in volumetric flow rate, and multiple coexistent limit cycles at physically realizable parameters. We show that complexity in network topology is not necessary for complex behaviors to arise and that nonlinear rheology, in particular the plasma skimming effect, is sufficient to support oscillatory dynamics similar to those observed in vivo.

  8. Dynamic data evaluation for solid-liquid equilibria

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Kang, Jeong Won

    The accuracy and reliability of the measured data sets to be used in regression of model parameters is an important issue related to modeling of phase equilibria. It is clear that good parameters for any model cannot be obtained from low quality data. A thermodynamic consistency test for solid...... and parameter regression. The paper will highlight the data collection, the data analysis for SLE data and the thermodynamic model performance (such as NRTL, UNIQUAC and original UNIFAC)....... studies considering the methodology proposed for SLE thermodynamic consistency tests and data from open literature and databases such as NIST-TDE®, DIPPR® and DECHEMA® are presented. The SLE consistency test and data evaluation is performed in a software containing option for data analysis, model analysis...

  9. Modified Poisson eigenfunctions for electrostatic Bernstein--Greene--Kruskal equilibria

    International Nuclear Information System (INIS)

    Ling, K.; Abraham-Shrauner, B.

    1981-01-01

    The stability of an electrostatic Bernstein--Greene--Kruskal equilibrium by Lewis and Symon's general linear stability analysis for spatially inhomogeneous Vlasov equilibria, which employs eigenfunctions and eigenvalues of the equilibrium Liouville operator and the modified Poisson operator, is considered. Analytic expressions for the Liouville eigenfuctions and eigenvalues have already been given; approximate analytic expressions for the dominant eigenfunction and eigenvalue of the modified Poisson operator are given. In the kinetic limit three methods are given: (i) the perturbation method, (ii) the Rayleigh--Ritz method, and (iii) a method based on a Hill's equation. In the fluid limit the Rayleigh--Ritz method is used. The dominant eigenfunction and eigenvalue are then substituted in the dispersion relation and the growth rate calculated. The growth rate agrees very well with previous results found by numerical simulation and by modified Poisson eigenfunctions calculated numerically

  10. Bifurcated equilibria in two-dimensional MHD with diamagnetic effects

    International Nuclear Information System (INIS)

    Ottaviani, M.; Tebaldi, C.

    1998-12-01

    In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)

  11. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    International Nuclear Information System (INIS)

    Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip

    2012-01-01

    Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  12. High-pressure fluid phase equilibria phenomenology and computation

    CERN Document Server

    Deiters, Ulrich K

    2012-01-01

    The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can they be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram class...

  13. A new transiently chaotic flow with ellipsoid equilibria

    Science.gov (United States)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  14. A fast, user-friendly code for calculating magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Haney, S.W.; Freidberg, J.P.; Solomon, C.J.

    1995-01-01

    Using variational techniques, we have developed a fast, user-friendly code for computing approximate, but highly accurate fixed boundary magnetohydrodynamic equilibria for tokamak plasmas. The variational procedure simplifies the problem---a two-dimensional nonlinear partial differential equation---to a set of nonlinear algebraic equations. The reduced problem can be readily solved on workstations or personal computers. This allows us to exploit sophisticated graphical user interfaces that make supplying calculation data and viewing results easy. This ease-of-use, along with the semianalytic nature of our calculation, allows researchers to routinely incorporate equilibrium information into their work. It also provides a tool for educators teaching fusion theory. We describe the variational formulation, the speed and accuracy of the computer implementation, and the design and operation of a user-friendly graphical interface

  15. Generalized equations of gravitational field

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Borisova, L.B.

    1985-01-01

    Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)

  16. Gravitational lensing and extra dimensions

    International Nuclear Information System (INIS)

    He, X-G.; University of Melbourne, Parkville, VIC; Joshi, G.C.; McKellar, B.H.J.

    1999-08-01

    We study gravitational tensing and the bending of light in low energy scale (M s ) gravity theories with extra space-time dimensions 'n'. We find that due to the presence of spin-2 Kaluza-Klein states from compactification, a correction to the deflection angle with a strong quadratic dependence on the photon energy is introduced. No deviation from the Einstein General Relativity prediction for the deflection angle for photons grazing the Sun in the visible band with 15% accuracy (90% c.l.) implies that the scale M s has to be larger than 1.4(2/(n-2)) 1/4 TeV and approximately 4 TeV for n=2. This lower bound is comparable with that from collider physics constraints. Gravitational tensing experiments with higher energy photons can provide stronger constraints. (authors)

  17. New case of gravitational lensing

    Energy Technology Data Exchange (ETDEWEB)

    Surdej, J.; Swings, J.-P.; Magain, P.; Borgeest, U.; Kayser, R.; Refsdal, S.; Courvoisier, T.J.-L.; Kellermann, K.I.; Kuehr, H.

    1987-10-22

    The authors report a brief description of a gravitational lens system UM673 = Q0142 - 100 = PHL3703. It consists of two images, A and B, separated by 2.2 arc s at a redshift zsub(q) = 2.719. The lensing galaxy has also been found. It lies very near the line connecting the two QSO (quasi-stellar objects) images, approx. 0.8 arc s from the fainter one. Application of gravitational optometry to this system leads to a value Msub(o) or approx. = 2.4 x 10/sup 11/ M solar masses for the mass of the lensing galaxy and to ..delta..t approx. 7 weeks for the most likely travel-time difference between the two light paths to the QSO.

  18. Gravitating multidefects from higher dimensions

    CERN Document Server

    Giovannini, Massimo

    2007-01-01

    Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.

  19. Magnetic tension and gravitational collapse

    International Nuclear Information System (INIS)

    Tsagas, Christos G

    2006-01-01

    The gravitational collapse of a magnetized medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension, we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic worldlines can be prevented from focusing without violating the standard energy conditions

  20. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  1. Topological quantization of gravitational fields

    International Nuclear Information System (INIS)

    Patino, Leonardo; Quevedo, Hernando

    2005-01-01

    We introduce the method of topological quantization for gravitational fields in a systematic manner. First we show that any vacuum solution of Einstein's equations can be represented in a principal fiber bundle with a connection that takes values in the Lie algebra of the Lorentz group. This result is generalized to include the case of gauge matter fields in multiple principal fiber bundles. We present several examples of gravitational configurations that include a gravitomagnetic monopole in linearized gravity, the C-energy of cylindrically symmetric fields, the Reissner-Nordstroem and the Kerr-Newman black holes. As a result of the application of the topological quantization procedure, in all the analyzed examples we obtain conditions implying that the parameters entering the metric in each case satisfy certain discretization relationships

  2. Post-Newtonian gravitational bremsstrahlung

    International Nuclear Information System (INIS)

    Turner, M.; Will, C.M.

    1977-07-01

    Formulae and numerical results are presented for the gravitational radiation emitted during a low-deflection encounter between two massive bodies. Results are valid through post-Newtonian order within general relativity. The gravitational waveform, the total luminosity and total emitted energy, the angular distribution of emitted energy, and the frequency spectrum are discussed in detail. A method boosting the accuracy of these quantities to post Newtonian order is also presented. A numerical comparison of results with those of Peters, and of Kovacs and Thorne shows that the post Newtonian method is reliable to better than 0.1 percent at v = 0.1 c, to a few percent at v = 0.35 c, and to 10 to 20 percent at v = 0.5 c

  3. Gravitational waves and dragging effects

    Science.gov (United States)

    Bičák, Jiří; Katz, Joseph; Lynden-Bell, Donald

    2008-08-01

    Linear and rotational dragging effects of gravitational waves on local inertial frames are studied in purely vacuum spacetimes. First, the linear dragging caused by a simple cylindrical pulse is investigated. Surprisingly strong transverse effects of the pulse are exhibited. The angular momentum in cylindrically symmetric spacetimes is then defined and confronted with some results in the literature. In the main part, a general procedure is developed for studying weak gravitational waves with translational but not axial symmetry which can carry angular momentum. After a suitable averaging the rotation of local inertial frames due to such rotating waves can be calculated explicitly and illustrated graphically. This is done in detail in the accompanying paper. Finally, the rotational dragging is given for strong cylindrical waves interacting with a rotating cosmic string with a small angular momentum.

  4. Equilibrium statistical mechanics for self-gravitating systems: local ergodicity and extended Boltzmann-Gibbs/White-Narayan statistics

    Science.gov (United States)

    He, Ping

    2012-01-01

    The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.

  5. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    Science.gov (United States)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic types at the extremes of thermal metamorphism. The results suggest phase equilibria modelling has potential as a powerful quantitative tool in investigating, for example, progressive oxidation during metamorphism, the degree of melting and melt loss or accumulation required to produce the spectrum of differentiated meteorites, and whether the onion shell or rubble pile

  6. Self-consistent equilibria in cylindrical reversed-field pinch

    International Nuclear Information System (INIS)

    Lo Surdo, C.; Paccagnella, R.; Guo, S.

    1995-03-01

    The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)

  7. Phase equilibria and molecular interaction studies on (naphthols + vanillin) systems

    International Nuclear Information System (INIS)

    Gupta, Preeti; Agrawal, Tanvi; Das, Shiva Saran; Singh, Nakshatra Bahadur

    2012-01-01

    Highlights: ► Phase equilibria of (naphthol + vanillin) systems have been studied for the first time. ► Eutectic type phase diagrams are obtained. ► Eutectic mixtures show nonideal behaviour. ► There is a weak molecular interaction between the components in the eutectic mixtures. ► α-Naphthol–vanillin eutectic is more stable as compared to β-naphthol–vanillin. - Abstract: Phase equilibria between (α-naphthol + vanillin) and (β-naphthol + vanillin) systems have been studied by thaw-melt method and the results show the formation of simple eutectic mixtures. Crystallization velocities of components and eutectic mixtures were determined at different stages under cooling. With the help of differential scanning calorimeter (DSC), the enthalpy of fusion of components and eutectic mixtures was determined and from the values excess thermodynamic functions viz., excess Gibbs free energy (G E ), excess entropy (S E ), excess enthalpy (H E ) of hypo-, hyper- and eutectic mixtures were calculated. Flexural strength measurements were made in order to understand the non-ideal nature of eutectics. FT-IR spectral studies indicate the formation of hydrogen bond in the eutectic mixture. Anisotropic and isotropic microstructural studies of components, hypo-, hyper- and eutectic mixtures were made. Jackson’s roughness parameter was calculated and found to be greater than 2 suggesting the faceted morphology with irregular structures. The overall results have shown that there is a weak molecular interaction between the components in the eutectic mixtures and the (α-naphthol + vanillin) eutectic is more stable as compared to the (β-naphthol + vanillin) eutectic system.

  8. On the gravitational constant change

    International Nuclear Information System (INIS)

    Milyukov, V.K.

    1986-01-01

    The nowadays viewpoint on the problem of G gravitational constant invariability is presented in brief. The methods and results of checking of the G dependence on the nature of substance (checking of the equivalence principle), G dependepce on distance (checking of Newton gravity law) and time (cosmological experiments) are presented. It is pointed out that all performed experiments don't give any reasons to have doubts in G constancy in space and time and G independence on the nature of the substance

  9. Galactic Structures from Gravitational Radii

    Directory of Open Access Journals (Sweden)

    Salvatore Capozziello

    2018-02-01

    Full Text Available We demonstrate that the existence of a Noether symmetry in f ( R theories of gravity gives rise to an additional gravitational radius, besides the standard Schwarzschild one, determining the dynamics at galactic scales. By this feature, it is possible to explain the baryonic Tully-Fisher relation and the rotation curve of gas-rich galaxies without the dark matter hypothesis. Furthermore, under the same standard, the Fundamental Plane of elliptical galaxies can be addressed.

  10. On neutron stars and gravitation

    International Nuclear Information System (INIS)

    Castagnino, M.A.

    1987-01-01

    From the variational principle for the total internal energy of a neutron star and some restrictions of the form of the metric coefficients, equations of structure which are valid for every metric theory of gravitation have been found. Some simple solutions of the structure equations to find the maximum mass of a neutron star are also presented. Finally it is studied this problem using a post post-Newtonian parametrization

  11. Cylindrical collapse and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)

    2005-06-21

    We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.

  12. Field theory approach to gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1978-01-01

    A number of authors considered the possibility of formulating a field-theory approach to gravitation with the claim that such an approach would uniquely lead to Einstein's theory of general relativity. In this article it is shown that the field theory approach is more generally applicable and uniqueness cannot be claimed. Theoretical and experimental reasons are given showing that the Einsteinian limit appears to be unviable

  13. Generalized field theory of gravitation

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1976-01-01

    It is shown that if, on empirical grounds, one rules out the existence of cosmic fields of Dicke-Brans (scalar) and Will Nordvedt (vector, tensor) type, then the most general experimentally viable and theoretically reasonable theory of gravitation seems to be a LAMBDA-dependent generalization of Einstein and Yilmez theories, which reduces to the former for LAMBDA=0 and to the latter for LAMBDA=1

  14. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  15. On the linear conformal gravitation

    International Nuclear Information System (INIS)

    Pal'chik, M.Ya.; Fradkin, E.S.

    1984-01-01

    Conformal gravitation is analyzed under the assumption that its solution possesses the property of conformal symmetry. This assumption has sense in the case of small distances and only for definite types of matter fields, namely: at special choice of matter fields and their interactions, providing a lack of conformal anomalies; or at definite magnitudes of binding constants, coinciding with the zeroes of the Gell-Mann-Low function. The field equations, of the group-theoretical natura are obtained

  16. Gravitation and bilocal field theory

    International Nuclear Information System (INIS)

    Vollendorf, F.

    1975-01-01

    The starting point is the conjecture that a field theory of elementary particles can be constructed only in a bilocal version. Thus the 4-dimensional space time has to be replaced by the 8-dimensional manifold R 8 of all ordered pairs of space time events. With special reference to the Schwarzschild metric it is shown that the embedding of the time space into the manifold R 8 yields a description of the gravitational field. (orig.) [de

  17. Gravitation, Thermodynamics, and Quantum Theory

    OpenAIRE

    Wald, Robert M.

    1999-01-01

    During the past 30 years, research in general relativity has brought to light strong hints of a very deep and fundamental relationship between gravitation, thermodynamics, and quantum theory. The most striking indication of such a relationship comes from black hole thermodynamics, where it appears that certain laws of black hole mechanics are, in fact, simply the ordinary laws of thermodynamics applied to a system containing a black hole. This article will review the present status of black h...

  18. Accelerating Photons with Gravitational Radiation

    CERN Document Server

    Shore, Graham M

    2001-01-01

    The nature of superluminal photon propagation in the gravitational field describing radiation from a time-dependent, isolated source (the Bondi-Sachs metric) is considered in an effective theory which includes interactions which violate the strong equivalence principle. Such interactions are, for example, generated by vacuum polarisation in conventional QED in curved spacetime. The relation of the resulting light-cone modifications to the Peeling Theorem for the Bondi-Sachs spacetime is explained.

  19. Radiatively-induced gravitational leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.I., E-mail: pymcdonald@swansea.ac.uk; Shore, G.M., E-mail: g.m.shore@swansea.ac.uk

    2015-12-17

    We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM) theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.

  20. Looking towards gravitational wave detection

    Science.gov (United States)

    Barsotti, Lisa

    2009-05-01

    It is an exciting time in gravitational wave research. The first generation ground detectors, which aim to detect gravitational waves in the audio-frequency region, have been successfully operated at their design sensitivity. One integrated year of coincident data from the three LIGO interferometers in United States has been collected between 2005 and 2007, in partial coincidence with the two European detectors, VIRGO and GEO. All the detectors are currently being upgraded, and they will come back on-line in the next few months with a factor 2 better sensitivity. A major upgrade of LIGO and VIRGO, scheduled to happen immediately after their upcoming science runs, will bring on-line second generation detectors 4 years from now. Their sensitivity is designed to be 10 times better than the first generation detectors, resulting in an expected event rate of at least a few per year. Looking farther into the future, space-based detectors such as LISA propose to cover a lower range of frequencies which are inaccessible on Earth, enhancing the opportunity of understanding our Universe trough gravitational waves.

  1. Thermal duality and gravitational collapse

    International Nuclear Information System (INIS)

    Hewitt, Michael

    2015-01-01

    Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)

  2. Probing a gravitational cat state

    International Nuclear Information System (INIS)

    Anastopoulos, C; Hu, B L

    2015-01-01

    We investigate the nature of a gravitational two-state system (G2S) in the simplest setup in Newtonian gravity. In a quantum description of matter a single motionless massive particle can in principle be in a superposition state of two spatially separated locations. This superposition state in gravity, or gravitational cat state, would lead to fluctuations in the Newtonian force exerted on a nearby test particle. The central quantity of importance for this inquiry is the energy density correlation. This corresponds to the noise kernel in stochastic gravity theory, evaluated in the weak field nonrelativistic limit. In this limit quantum fluctuations of the stress–energy tensor manifest as the fluctuations of the Newtonian force. We describe the properties of such a G2S system and present two ways of measuring the cat state for the Newtonian force, one by way of a classical probe, the other a quantum harmonic oscillator. Our findings include: (i) mass density fluctuations persist even in single particle systems, and they are of the same order of magnitude as the mean; (ii) a classical probe generically records a non-Markovian fluctuating force; (iii) a quantum probe interacting with the G2S system may undergo Rabi oscillations in a strong coupling regime. This simple prototypical gravitational quantum system could provide a robust testing ground to compare predictions from alternative quantum theories, since the results reported here are based on standard quantum mechanics and classical gravity. (paper)

  3. Gravitational radiation from electromagnetic systems

    International Nuclear Information System (INIS)

    Nikishov, A.I.; Ritus, V.I.

    1989-01-01

    It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor

  4. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    Science.gov (United States)

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  5. Thermodynamics and phase equilibria of ternary systems relevant to contact materials for compound semiconductors

    International Nuclear Information System (INIS)

    Ipser, H.; Richter, K.; Micke, K.

    1997-01-01

    In order to investigate the stability of ohmic contacts to compound semiconductors, it is necessary to know the phase equilibria in the corresponding multi-component systems. We are currently studying the phase equilibria and thermophysical properties of several ternary systems which are of interest in view of the use of nickel, palladium and platinum as contact materials for GaSb and InSb compound semiconductors: Ga-Ni-Sb, In-Ni-Sb, Ga-Pd-Sb and Ga-Pt-Sb. Phase equilibria are investigated by thermal analyses, X-ray powder diffraction methods as well as electron microprobe analysis. Thermodynamic properties are derived from vapour pressure measurements using an isopiestic method. It is planned to combine all information on phase equilibria and thermochemistry for the ternary and the limiting binary systems to perform an optimization of the ternary systems by computer calculations using standard software. (author)

  6. Kinetic stability constraints on magnetized plasma equilibria: Quasi-particle approach

    International Nuclear Information System (INIS)

    Sosenko, P.; Weiland, J.

    1996-01-01

    Macroscopic adiabatic invariants for the magnetized plasma are studied within the context of the quasi-particle description, as well as constraints which they impose on energy transfer and stable plasma equilibria. 6 refs

  7. Gravitational lensing of gravitational waves: a statistical perspective

    Science.gov (United States)

    Li, Shun-Sheng; Mao, Shude; Zhao, Yuetong; Lu, Youjun

    2018-05-01

    In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a statistical perspective, with particular focus on the high frequency GWs from stellar binary black hole coalescences. These are most promising targets for ground-based detectors such as Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW propagation. We perform a thorough calculation of the lensing rate, by taking account of effects caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW events once per year (˜1 yr-1) in the aLIGO survey at its design sensitivity; for the proposed ET survey, the rate could be as high as ˜80 yr-1. These results depend on the estimate of GW source abundance, and hence can be correspondingly modified with an improvement in our understanding of the merger rate of stellar binary black holes. We also compute the fraction of four-image lens systems in each survey, predicting it to be ˜30 per cent for the aLIGO survey and ˜6 per cent for the ET survey. Finally, we evaluate the possibility of missing some images due to the finite survey duration, by presenting the probability distribution of lensing time delays. We predict that this selection bias will be insignificant in future GW surveys, as most of the lens systems ({˜ } 90{per cent}) will have time delays less than ˜1 month, which will be far shorter than survey durations.

  8. Vapor-liquid equilibria for the acetone-ethanol-n-propanol-tert-butanol-water system

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Uchida, K.; Kojima, K.

    1981-12-01

    This study deals with the measurement of vapor-liquid equilibria for the five-component system acetone-ethanol-n-propanol-tert-butanol-water at 760 mmHg and prediction of vapor-liquid equilibria by the ASOG group contribution method. The five-component system in this work is composed of a part of the components obtained during ethanol production by vapor-phase hydration of ethylene. 6 refs.

  9. On the application of the NRTL method to ternary (liquid + liquid) equilibria

    International Nuclear Information System (INIS)

    Alvarez Julia, Jorge; Barrero, Carmen R.; Corso, Maria E.; Grande, Maria del Carmen; Marschoff, Carlos M.

    2005-01-01

    The use of the NRTL method for correlating experimental data in ternary (liquid + liquid) equilibria is considered. It is concluded that parameters obtained by direct correlation techniques have not a direct physical meaning. Also, it is shown that the resulting values for these parameters depend on the number of experimental points considered and on the particular calculation method employed. Thus, it is very risky to employ such parameters in predicting equilibria of other ternary mixtures

  10. Calculation of Binary Adsorption Equilibria: Hydrocarbons and Carbon Dioxide on Activated Carbon

    DEFF Research Database (Denmark)

    Marcussen, Lis; Krøll, A.

    1999-01-01

    Binary adsorption equilibria are calculated by means of a mathematical model for multicomponent mixtures combined with the SPD (Spreading Pressure Dependent) model for calculation of activity coefficients in the adsorbed phase. The model has been applied successfully for the adsorption of binary ...... mixtures of hydrocarbons and carbon dioxide on activated carbons. The model parameters have been determined, and the model has proven to be suited for prediction of adsorption equilibria in the investigated systems....

  11. (Vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone)

    International Nuclear Information System (INIS)

    Jiang Hui; Li Haoran; Wang Congmin; Tan Taijun; Han Shijun

    2003-01-01

    The isothermal and isobaric (vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependent binary parameters with satisfactory results. Isobaric (vapour + liquid) equilibria data for these systems at p=99.99 kPa are compared with the literature data. Experimental vapour pressure of 2,2-dimethoxypropane are also included

  12. Hydrodynamics, fields and constants in gravitational theory

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Mel'nikov, V.N.

    1983-01-01

    Results of original inveatigations into problems of standard gravitation theory and its generalizations are presented. The main attention is paid to the application of methods of continuous media techniques in the gravitation theory; to the specification of the gravitation role in phenomena of macro- and microworld, accurate solutions in the case, when the medium is the matter, assigned by hydrodynamic energy-momentum tensor; and to accurate solutions for the case when the medium is the field. GRT generalizations are analyzed, such as the new cosmologic hypothesis which is based on the gravitation vacuum theory. Investigations are performed into the quantization of cosmological models, effects of spontaneous symmetry violation and particle production in cosmology. Graeity theory with fundamental Higgs field is suggested in the framework of which in the atomic unit number one can explain possible variations of the effective gravitational bonds, and in the gravitation bond, variations of masses of all particles

  13. Gravitational waves from instabilities in relativistic stars

    International Nuclear Information System (INIS)

    Andersson, Nils

    2003-01-01

    This paper provides an overview of stellar instabilities as sources of gravitational waves. The aim is to put recent work on secular and dynamical instabilities in compact stars in context, and to summarize the current thinking about the detectability of gravitational waves from various scenarios. As a new generation of kilometre length interferometric detectors is now coming online this is a highly topical theme. The review is motivated by two key questions for future gravitational-wave astronomy: are the gravitational waves from various instabilities detectable? If so, what can these gravitational-wave signals teach us about neutron star physics? Even though we may not have clear answers to these questions, recent studies of the dynamical bar-mode instability and the secular r-mode instability have provided new insights into many of the difficult issues involved in modelling unstable stars as gravitational-wave sources. (topical review)

  14. On tokamak equilibria with a zero current or negative current central region

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2002-01-01

    Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). The straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids 14, 671 (1971)] on a tokamak equilibrium to these plasmas leads to the apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e., no negative currents can be driven in the central region

  15. Production of Purely Gravitational Dark Matter

    OpenAIRE

    Ema, Yohei; Nakayama, Kazunori; Tang, Yong

    2018-01-01

    In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...

  16. Compensation for gravitational sag of bent mirror

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Shu, De-ming [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Li, Aiguo, E-mail: aiguo.li@sinap.ac.cn [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China)

    2017-05-01

    The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.

  17. Compensation for gravitational sag of bent mirror

    International Nuclear Information System (INIS)

    Mao, Chengwen; Jiang, Hui; He, Yan; Liang, Dongxu; Lan, Xuying; Yan, Shuai; Shu, De-ming; Li, Aiguo

    2017-01-01

    The gravitational sag of aspheric bent mirrors with face-up or face-down geometry produces a nonnegligible optical error. As an effective compensation, width optimization is used to match the combined effects of the gravitational and bending moments. This method is described by analytical expressions and two calculation algorithms. The results of theoretical simulations and finite element analysis have proved that this method can reduce the slope error resulting from gravitational sag to the level of nano radians.

  18. A radiometer for stochastic gravitational waves

    International Nuclear Information System (INIS)

    Ballmer, Stefan W

    2006-01-01

    The LIGO Scientific Collaboration recently reported a new upper limit on an isotropic stochastic background of gravitational waves obtained based on the data from the third LIGO science run (S3). Here I present a new method for obtaining directional upper limits on stochastic gravitational waves that essentially implements a gravitational wave radiometer. The LIGO Scientific Collaboration intends to use this method for future LIGO science runs

  19. Progress in gravitational wave detection: Interferometers

    International Nuclear Information System (INIS)

    Kuroda, Kazuaki

    2002-01-01

    A gravitational wave (GW) is a physical entity of space-time derived from Einstein's theory of general relativity. Challenging projects to observe gravitational waves are being conducted throughout the world. A Japanese project involving a 300 m baseline laser interferometer, TAMA, achieved 1000 hr of continuous observation with the best sensitivity in the world during the summer of 2001. After achieving promising results, the realization of LCGT (Large-scale Cryogenic Gravitational wave Telescope) will become possible in the near future

  20. Feasibility analysis of gravitational experiments in space

    Science.gov (United States)

    Everitt, C. W. F.

    1977-01-01

    Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.

  1. Possible role of torsion in gravitational theories

    International Nuclear Information System (INIS)

    Nieh, H.T.

    1983-01-01

    Torsion is of interest in an indirect way, in that it has the potential of being an important ingredient in a future successful quantum theory of gravitation. Einstein's theory of gravitation, despite its simplicity and elegance, and its successes in large-scale gravitational phenomena, can only be regarded as a macroscopic classical theory. It is a non-renormalizable quantum field theory, and, therefore, lacks the status of a good microscopic theory. It is the search for a successful quantum field theory of gravitation that poses as one of the great challenges to theoretical physics today. (Auth.)

  2. Physics, Astrophysics and Cosmology with Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Sathyaprakash B. S.

    2009-03-01

    Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  3. Observing a Gravitational Wave Background With Lisa

    National Research Council Canada - National Science Library

    Tinto, M; Armstrong, J; Estabrook, F

    2000-01-01

    ... formation of several observables. All are independent of lasers and frequency standard phase fluctuations, but have different couplings to gravitational waves and to the various LISA instrumental noises...

  4. Physics, Astrophysics and Cosmology with Gravitational Waves.

    Science.gov (United States)

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  5. Gravitational Wave Astrophysics: Opening the New Frontier

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  6. Actuality of the Einstein theory of gravitation

    International Nuclear Information System (INIS)

    Ivanenko, D.D.

    1982-01-01

    Problems of actuality of the Einstein theory of gravitation are lightened. The great Einstein theory of gravitation is shown to remain a reliable base of understanding of modern physical world pattern and its inevitable further inexhaustible precising. The main GRT difficulties are enumirated: determination of reference systems, presence of singularities in the theory, absence of consistent determination of the gravity energy, impossibility of accounting the relations between atomic, gravitational and cosmological characteristics. The attention is paid to gauge, twistor problems and to unified interaction theory. The great contribution of the soviet science in the theory of gravitation is stressed

  7. Astrophysical Gravitational Wave Sources Literature Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...

  8. Effect of Earth gravitational field on the detection of gravitational waves

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Results of laboratory detection of high-frequency gravitational waves from the view point of gravitation theories formulated on the basis of pseudoeuclidean space-time are calculated. Peculiarities due to different effects of the Earth gravitational field on the rates of gravitational and electromagnetic wave propagation in these theories are analysed. Experiments on check of predictions of the given class of theories are suggested

  9. The Scales of Gravitational Lensing

    Directory of Open Access Journals (Sweden)

    Francesco De Paolis

    2016-03-01

    Full Text Available After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge of supermassive black holes in the center of ours and nearby galaxies.

  10. Testing Fundamental Gravitation in Space

    Energy Technology Data Exchange (ETDEWEB)

    Turyshev, Slava G.

    2013-10-15

    General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future.

  11. Moduli destabilization via gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics

    2013-06-15

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  12. General definition of gravitational tension

    International Nuclear Information System (INIS)

    Harmark, T.; Obers, N.A.

    2004-01-01

    In this note we give a general definition of the gravitational tension in a given asymptotically translationally-invariant spatial direction of a space-time. The tension is defined via the extrinsic curvature in analogy with the Hawking-Horowitz definition of energy. We show the consistency with the ADM tension formulas for asymptotically-flat space-times, in particular for Kaluza-Klein black hole solutions. Moreover, we apply the general tension formula to near-extremal branes, constituting a check for non-asymptotically flat space-times. (author)

  13. Primordial gravitational waves and cosmology.

    Science.gov (United States)

    Krauss, Lawrence M; Dodelson, Scott; Meyer, Stephan

    2010-05-21

    The observation of primordial gravitational waves could provide a new and unique window on the earliest moments in the history of the universe and on possible new physics at energies many orders of magnitude beyond those accessible at particle accelerators. Such waves might be detectable soon, in current or planned satellite experiments that will probe for characteristic imprints in the polarization of the cosmic microwave background, or later with direct space-based interferometers. A positive detection could provide definitive evidence for inflation in the early universe and would constrain new physics from the grand unification scale to the Planck scale.

  14. Gravitational field of relativistic gyratons

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P [Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1 (Canada)

    2007-05-15

    A gyraton is an object moving with the speed of light and having finite energy and internal angular momentum (spin). First we derive the gravitational field of a gyraton in the linear approximation. After this we study solutions of the vacuum Einstein equations for gyratons. We demonstrate that these solutions in 4 and higher dimensions reduce to two linear problems in a Euclidean space. A similar reduction is also valid for gyraton solutions of the Einstein-Maxwell gravity and in supergravity. Namely, we demonstrate that in the both cases the solutions in 4 and higher dimensions reduce to linear problems in a Euclidean space.

  15. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  16. Radiatively-induced gravitational leptogenesis

    Directory of Open Access Journals (Sweden)

    J.I. McDonald

    2015-12-01

    Full Text Available We demonstrate how loop effects in gravitational backgrounds lead to a difference in the propagation of matter and antimatter, and show this is forbidden in flat space due to CPT and translation invariance. This mechanism, which is naturally present in beyond the standard model (BSM theories exhibiting C and CP violation, generates a curvature-dependent chemical potential for leptons in the low-energy effective Lagrangian, allowing a matter–antimatter asymmetry to be generated in thermodynamic equilibrium, below the BSM scale.

  17. Review on possible gravitational anomalies

    International Nuclear Information System (INIS)

    Amador, Xavier E

    2005-01-01

    This is an updated introductory review of 2 possible gravitational anomalies that has attracted part of the Scientific community: the Allais effect that occur during solar eclipses, and the Pioneer 10 spacecraft anomaly, experimented also by Pioneer 11 and Ulysses spacecrafts. It seems that, to date, no satisfactory conventional explanation exist to these phenomena, and this suggests that possible new physics will be needed to account for them. The main purpose of this review is to announce 3 other new measurements that will be carried on during the 2005 solar eclipses in Panama and Colombia (Apr. 8) and in Portugal (Oct.15)

  18. Acid-base equilibria inside amine-functionalized mesoporous silica.

    Science.gov (United States)

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  19. Gravitation

    CERN Document Server

    Prasanna, A R

    2017-01-01

    This book suitable for post graduates in Physics and Astrophysics aims at introducing the theory of general relativity as an important background for doing astrophysics. Starting from a detailed discussion of the various mathematical concepts for doing general relativity, the book introduces the geometric description of gravity. It gives a brief historical perspective to classical mechanics and electrodynamics making an attempt to establish the necessity of special relativity as propounded by Einstein extending to General Relativity. This book is a good starting point for post graduates wanting to pursue the modern topics of Cosmology, High energy astrophysics and related areas.

  20. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Gravitational waves from axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T. [Institute for Theoretical Physics, University of Heidelberg,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  2. On the Induced Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    M. Becerra Laura

    2018-01-01

    Full Text Available The induced gravitational collapse (IGC paradigm has been applied to explain the long gamma ray burst (GRB associated with type Ic supernova, and recently the Xray flashes (XRFs. The progenitor is a binary systems of a carbon-oxygen core (CO and a neutron star (NS. The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1. For the binary driven hypernova (BdHNe, the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We’re going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  3. Relativity in Combinatorial Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Mao Linfan

    2010-04-01

    Full Text Available A combinatorial spacetime $(mathscr{C}_G| uboverline{t}$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.

  4. Relativité et gravitation

    CERN Document Server

    Tourrenc, Philippe

    1992-01-01

    La relativité générale a cessé d'être une pure théorie justifiée par les "trois tests classiques" disponibles il y a trente ans. Des pulsars, vrais laboratoires de gravitation relativiste, ont été découverts et étudiés. A l'automne 1991 les Etats-Unis ont pris la décision de construire deux détecteurs interférométriques d'ondes gravitationnelles. Au début de l'été 1992, le ministre français de la Recherche et de l'Espace a pris un engagement de même nature concernant le projet VIRGO, projet franco-italien de construction d'une antenne interférométrique. La gravitation relativiste est devenue un riche domaine d'observation et d'expérimentation. Cet ouvrage est un manuel de physique dont les intentions et le contenu se veulent adaptés au contexte scientifique actuel. Il doit beaucoup aux divers enseignements donnés par l'auteur, principalement l'enseignement de relativité générale en maîtrise de physique à l'université Pierre et Marie Curie (Paris VI). Dans la première partie, l...

  5. Curvature bound from gravitational catalysis

    Science.gov (United States)

    Gies, Holger; Martini, Riccardo

    2018-04-01

    We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.

  6. Ion-exchange equilibria and diffusion in engineered backfill

    International Nuclear Information System (INIS)

    Soudek, A.; Jahnke, F.M.; Radke, C.J.

    1984-01-01

    Engineered backfill can add confidence to confinement times of high-level nuclear waste stored in geologic media. This paper discusses the design and operation of a unique radial-flow diffusion cell to determine ion migration rates in backfill material under realistic repository conditions. New experimental results were reported for diffusion of CsCl in a background of NaCl into compacted bentonite and bentonite/quartz mixtures. Representation of the measured diffusion rates by the traditional, homogeneous porous-medium model significantly underestimates cesium penetration distances into the backfill. Surface diffusion is suggested as an additional mechanism by which cations transport in swollen montmorillonite; the surface diffusion coefficients for cesium is determined to be approximately 10 -7 cm 2 /s. An electrostatic site-binding model is developed for ion-exchange equilibria on montmorillonite clay. The effect of pH, ionic strength, and specific adsorption are evaluated and compared favorably to new, experimental exchange isotherms measured on disaggregated clay. The electrostatic site-binding model permits a prediction of the influence of backfill compaction on K/sub d/ values. We find that for strongly adsorbing cations, compactions has little effect. However, anions exhibit significant Donnan exclusion with clay compaction. 40 references, 12 figures

  7. Reduction of Islands in Full-pressure Stellarator Equilibria

    International Nuclear Information System (INIS)

    Hudson, S.R.; Monticello, D.A.; Reiman, A.H.

    2001-01-01

    The control of magnetic islands is a crucial issue in designing Stellarators. Islands are associated with resonant radial magnetic fields at rational rotational-transform surfaces and can lead to chaos and poor plasma confinement. In this article, we show that variations in the resonant fields of a full-pressure stellarator equilibrium can be related to variations in the boundary via a coupling matrix, and inversion of this matrix determines a boundary modification for which the island content is significantly reduced. The numerical procedure is described and the results of island optimization are presented. Equilibria with islands are computed using the Princeton Iterative Equilibrium Solver, and resonant radial fields are calculated via construction of quadratic-flux-minimizing surfaces. A design candidate for the National Compact Stellarator Experiment [Phys. Plasmas 8, 2001], which has a large island, is used to illustrate the technique. Small variations in the boundary shape are used to reduce island size and to reverse the phase of a major island chain

  8. Phase Equilibria of Sn-Co-Cu Ternary System

    Science.gov (United States)

    Chen, Yu-Kai; Hsu, Chia-Ming; Chen, Sinn-Wen; Chen, Chih-Ming; Huang, Yu-Chih

    2012-10-01

    Sn-Co-Cu ternary alloys are promising lead-free solders, and isothermal sections of Sn-Co-Cu phase equilibria are fundamentally important for the alloys' development and applications. Sn-Co-Cu ternary alloys were prepared and equilibrated at 523 K, 1073 K, and 1273 K (250 °C, 800 °C, and 1000 °C), and the equilibrium phases were experimentally determined. In addition to the terminal solid solutions and binary intermetallic compounds, a new ternary compound, Sn3Co2Cu8, was found. The solubilities of Cu in the α-CoSn3 and CoSn2 phases at 523 K (250 °C) are 4.2 and 1.6 at. pct, respectively, while the Cu solubility in the α-Co3Sn2 phase is as high as 20.0 at. pct. The Cu solubility increases with temperature and is around 30.0 at. pct in the β-Co3Sn2 at 1073 K (800 °C). The Co solubility in the η-Cu6Sn5 phase is also significant and is 15.5 at. pct at 523 K (250 °C).

  9. Convergence in gradient systems with branching of equilibria

    International Nuclear Information System (INIS)

    Galaktionov, V A; Pohozaev, Stanislav I; Shishkov, A E

    2007-01-01

    The basic model is a semilinear elliptic equation with coercive C 1 non-linearity: Δψ+f(ψ)=0 in Ω, ψ=0 on ∂Ω, where Ω subset of R N is a bounded smooth domain. The main hypothesis (H R ) about resonance branching is as follows: if a branching of equilibria occurs at a point ψ with k-dimensional kernel of the linearized operator Δ+f'(ψ)I, then the branching subset S k at ψ is a locally smooth k-dimensional manifold. For N=1 the first result on the stabilization to a single equilibrium is due to Zelenyak (1968). It is shown that Zelenyak's approach, which is based on the analysis of Lyapunov functions, can be extended to general gradient systems in Hilbert spaces with smooth resonance branching. The case of asymptotically small non-autonomous perturbations of such systems is also considered. The approach developed here represents an alternative to Hale's stabilization method (1992) and other similar techniques in the theory of gradient systems. Bibliography: 32 titles.

  10. Magnetohydrodynamic equilibria and local stability of axisymmetric tokamak plasmas

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Dory, R.A.; Nelson, D.B.; Sayer, R.O.

    1976-07-01

    Axisymmetric magnetohydrodynamic equilibria are evaluated in terms of the Mercier Stability Criterion. The parameters of interest include poloidal beta (β/sub p/), current and pressure profile widths, D-shaped and doublet plasmas with elongation (sigma) and triangularity (delta), and the aspect ratio (A). For marginal local stability, the critical values of β, plasma current, and the safety factor q with fixed toroidal field at the geometric center of the plasma are obtained. It is shown that for a wide range of profiles in a D-shaped plasma with A = 3, the highest critical β occurs at β/sub p/ = 2.4, sigma = 1.65, and delta = 0.5. If the toroidal field at the coil surface is fixed, the highest critical pressure occurs near A approximately 3 to 4, given reasonable distance between the coils and the plasma edge. Calculations for a Doublet II-A plasma with sigma = 3 show that with similar pressure profile the highest critical β occurs at β/sub p/ = 1 and is 84 percent of the highest critical β for the D-shaped plasmas. Critical values of ohmic heating power density are also found to be comparable for the two plasma shapes. A D-shaped plasma with the above parameters is suggested for use in future high-β tokamak devices

  11. Spectrum Allocation for Decentralized Transmission Strategies: Properties of Nash Equilibria

    Directory of Open Access Journals (Sweden)

    Peter von Wrycza

    2009-01-01

    Full Text Available The interaction of two transmit-receive pairs coexisting in the same area and communicating using the same portion of the spectrum is analyzed from a game theoretic perspective. Each pair utilizes a decentralized iterative water-filling scheme to greedily maximize the individual rate. We study the dynamics of such a game and find properties of the resulting Nash equilibria. The region of achievable operating points is characterized for both low- and high-interference systems, and the dependence on the various system parameters is explicitly shown. We derive the region of possible signal space partitioning for the iterative water-filling scheme and show how the individual utility functions can be modified to alter its range. Utilizing global system knowledge, we design a modified game encouraging better operating points in terms of sum rate compared to those obtained using the iterative water-filling algorithm and show how such a game can be imitated in a decentralized noncooperative setting. Although we restrict the analysis to a two player game, analogous concepts can be used to design decentralized algorithms for scenarios with more players. The performance of the modified decentralized game is evaluated and compared to the iterative water-filling algorithm by numerical simulations.

  12. A distinguishing gravitational property for gravitational equation in higher dimensions

    International Nuclear Information System (INIS)

    Dadhich, Naresh

    2016-01-01

    It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d = 2N + 1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions. (orig.)

  13. A distinguishing gravitational property for gravitational equation in higher dimensions

    Science.gov (United States)

    Dadhich, Naresh

    2016-03-01

    It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d=2N+1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions.

  14. Stability of merons in gravitational models

    International Nuclear Information System (INIS)

    Akdeniz, K.G.; Hacinliyan, A.; Kalayci, J.

    1982-11-01

    The stability properties of merons are investigated in gravitational models by taking the DeAFF model as a theoretical laboratory. We find that in gravitational models containing Yang-Mills fields merons are unstable. Stability might be possible in N=4 supergravity models with Asub(μ)=0. (author)

  15. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  16. Inertial reference frames and gravitational forces

    International Nuclear Information System (INIS)

    Santavy, I.

    1981-01-01

    The connection between different definitions of inertial, i.e. fundamental, reference frames and the corresponding characterisation of gravitational fields by gravitational forces are considered from the point of view of their possible interpretation in university introductory courses. The introduction of a special class of reference frames, denoted 'mixed reference frames' is proposed and discussed. (author)

  17. How Spherical Is a Cube (Gravitationally)?

    Science.gov (United States)

    Sanny, Jeff; Smith, David

    2015-01-01

    An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…

  18. Neutrino bursts and gravitational waves experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, C; Galeotti, P; Saavedra, O [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1978-05-01

    Several experiments have been performed in many countries to observe gravitational waves or neutrino bursts. Since their simultaneous emission may occur in stellar collapse, the authors evaluate the effect of neutrino bursts on gravitational wave antennas and suggest the usefulness of a time correlation among the different detectors.

  19. Amplification caused by gravitational bending of light

    International Nuclear Information System (INIS)

    Schneider, P.

    1985-01-01

    Gravitational bending of light may not only lead to multiple imaging (gravitational lens effect), but also affects the apparent luminosity of a source. It is shown here that a mass distribution near the line-of-sight to any source always increases the observable flux relative to the case in which the deflector is absent

  20. On the field theoretic description of gravitation

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.

    2008-01-01

    Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the

  1. Gravitational consequences of modern field theories

    Science.gov (United States)

    Horowitz, Gary T.

    1989-01-01

    Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.

  2. Self-gravitation in Saturn's rings

    International Nuclear Information System (INIS)

    Salo, H.; Lukkari, J.

    1982-01-01

    In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)

  3. Geodesics analysis of colliding gravitational shock waves

    International Nuclear Information System (INIS)

    Pozdeeva, E.

    2011-01-01

    Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential

  4. Gravitational Waves from Oscillons with Cuspy Potentials.

    Science.gov (United States)

    Liu, Jing; Guo, Zong-Kuan; Cai, Rong-Gen; Shiu, Gary

    2018-01-19

    We study the production of gravitational waves during oscillations of the inflaton around the minimum of a cuspy potential after inflation. We find that a cusp in the potential can trigger copious oscillon formation, which sources a characteristic energy spectrum of gravitational waves with double peaks. The discovery of such a double-peak spectrum could test the underlying inflationary physics.

  5. Gravitational waves from binary black holes

    Indian Academy of Sciences (India)

    It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar's contribution to the subject is first presented. The current status of the experimental search for gravitational waves and the ...

  6. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline interferometers (one of 2 km and two of 4 km) in order to unambiguously measure the infinitesimal displacements of isolated test masses which convey the signature of gravitational waves from astrophysical sources. An interferometric gravitational wave ...

  7. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been ...

  8. Holographic entanglement entropy and gravitational anomalies

    NARCIS (Netherlands)

    Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.

    2014-01-01

    We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal

  9. Observing a Gravitational Wave Background With Lisa

    National Research Council Canada - National Science Library

    Tinto, M; Armstrong, J; Estabrook, F

    2000-01-01

    .... Comparison of the conventional Michelson interferometer observable with the fully-symmetric Sagnac data-type allows unambiguous discrimination between a gravitational wave background and instrumental noise. The method presented here can be used to detect a confusion-limited gravitational wave background.

  10. A generalized variational principle of gravitation

    International Nuclear Information System (INIS)

    El-Tahir, A.

    1987-09-01

    Generalized fourth order differential equations of gravitation are derived. Though similar to those earlier obtained by Lanczos, the present derivation is based on more general assumptions. The geometry-gravity dualism is discussed and the nonlinearity of gravitation is shown to be constrained by the curvature of space. (author). 5 refs

  11. Gravitational radiation and 3D numerical relativity

    International Nuclear Information System (INIS)

    Nakamura, T.

    1986-01-01

    Study of Numerical Relativity in Kyoto is reviewed. Main topics discussed are 2D rotating collapse, phase cancellation effects and perturbation calculation of the gravitational radiation from a particle falling into a black hole. New numerical results on 3D time evolution of pure gravitational waves are also presented

  12. Gravitational bending of light rays in plasma

    International Nuclear Information System (INIS)

    Tsupko, O. Yu.; Bisnovatyi-Kogan, G. S.

    2010-01-01

    We investigate the gravitational lensing effect in presence of plasma. We observe that in a homogeneous plasma the gravitational deflection angle differs from that in vacuum, and it depends on the frequency of the photon. We discuss observational consequences of this dependence for the point-mass lensing and estimate possibility of the observation of this effect by the planned project Radioastron.

  13. Gravitational Mass, Its Mechanics - What It Is; How It Operates

    OpenAIRE

    Ellman, Roger

    1999-01-01

    The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hypotheses involve th...

  14. Gravitational wave emission from oscillating millisecond pulsars

    Science.gov (United States)

    Alford, Mark G.; Schwenzer, Kai

    2015-02-01

    Neutron stars undergoing r-mode oscillation emit gravitational radiation that might be detected on the Earth. For known millisecond pulsars the observed spin-down rate imposes an upper limit on the possible gravitational wave signal of these sources. Taking into account the physics of r-mode evolution, we show that only sources spinning at frequencies above a few hundred Hertz can be unstable to r-modes, and we derive a more stringent universal r-mode spin-down limit on their gravitational wave signal. We find that this refined bound limits the gravitational wave strain from millisecond pulsars to values below the detection sensitivity of next generation detectors. Young sources are therefore a more promising option for the detection of gravitational waves emitted by r-modes and to probe the interior composition of compact stars in the near future.

  15. Sensitivity of a combined gravitational antenna

    International Nuclear Information System (INIS)

    Kulagin, V.V.; Rudenko, V.N.

    1986-01-01

    A modification of a combined optico-acoustic gravitational antenna: a long-base laser interferometer, where free masses are changed by Weber resonators, is suggested. The combined gravitational antenna can possess sensitivity h min ∼ 10 -18 without deep cooling of Weber resonators and h min ∼ 10 -19 at helium temperaure of the resonators. This antenna has the following new quantities: presence of three independent responses, that permits to a considerable extent to exclude non-gravitational effects; presence of responses of two separated Weber resonators, that permits to register the wave character of gravitational perturbation by measuring phase shift between relaxation ''tails''. It means that one may with certainty register the wave structure of gravitational radiation for perturbation of metrics h, exceeding the threshold sensitivity of the known detectors by an order

  16. Gravity's kiss the detection of gravitational waves

    CERN Document Server

    Collins, Harry

    2017-01-01

    Scientists have been trying to confirm the existence of gravitational waves for fifty years. Then, in September 2015, came a "very interesting event" (as the cautious subject line in a physicist's email read) that proved to be the first detection of gravitational waves. In Gravity's Kiss, Harry Collins -- who has been watching the science of gravitational wave detection for forty-three of those fifty years and has written three previous books about it -- offers a final, fascinating account, written in real time, of the unfolding of one of the most remarkable scientific discoveries ever made. Predicted by Einstein in his theory of general relativity, gravitational waves carry energy from the collision or explosion of stars. Dying binary stars, for example, rotate faster and faster around each other until they merge, emitting a burst of gravitational waves. It is only with the development of extraordinarily sensitive, highly sophisticated detectors that physicists can now confirm Einstein's prediction. This is...

  17. Theory and experiment in gravitational physics

    Science.gov (United States)

    Will, C. M.

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  18. The confrontation between gravitation theory and experiment

    International Nuclear Information System (INIS)

    Will, C.M.

    1979-01-01

    After an introductory section, an analysis is given of the foundations of gravitation theory - principles of equivalence, the fundamental criteria for the viability of a gravitational theory, and the experiments that support those criteria. One of the principal conclusions is that the correct, viable theory of gravity must in all probability be a 'metric' theory. Attention is focussed on solar-system tests, using a 'theory of theories' known as the parametrized post-Newtonian formalism that encompasses most metric theories of gravity and that is ideally suited to the solar-system arena. Gravitational radiation is discussed as a possible tool for testing gravitational theory. The binary pulsar, a new , 'stellar-system' testing ground is studied. Tests of gravitation theory in a cosmic arena are described. (U.K.)

  19. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  20. Fundamentals of interferometric gravitational wave detectors

    CERN Document Server

    Saulson, Peter R

    2017-01-01

    LIGO's recent discovery of gravitational waves was headline news around the world. Many people will want to understand more about what a gravitational wave is, how LIGO works, and how LIGO functions as a detector of gravitational waves.This book aims to communicate the basic logic of interferometric gravitational wave detectors to students who are new to the field. It assumes that the reader has a basic knowledge of physics, but no special familiarity with gravitational waves, with general relativity, or with the special techniques of experimental physics. All of the necessary ideas are developed in the book.The first edition was published in 1994. Since the book is aimed at explaining the physical ideas behind the design of LIGO, it stands the test of time. For the second edition, an Epilogue has been added; it brings the treatment of technical details up to date, and provides references that would allow a student to become proficient with today's designs.

  1. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  2. Gravitational effects of global strings

    International Nuclear Information System (INIS)

    Aryal, M.; Everett, A.E.

    1986-01-01

    We have obtained the gravitational field, in the weak-field approximation, of cosmic strings formed in a phase transition in which a global symmetry is broken (global strings). The effect of this field on light rays passing a global string is found, and the resulting formation of double images and production of discontinuities in the microwave background temperature compared with the corresponding results for gauge strings. There are some differences in the case of global strings, reflecting the fact that the space surrounding such strings is not purely conical. However, the differences between gauge and global strings with masses suitable to explain galaxy formation are small, and the task of distinguishing them observationally appears difficult at best

  3. An axisymmetric gravitational collapse code

    Energy Technology Data Exchange (ETDEWEB)

    Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2003-05-07

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.

  4. An axisymmetric gravitational collapse code

    International Nuclear Information System (INIS)

    Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans

    2003-01-01

    We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations

  5. Detections of the Gravitational Waves

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2016-12-01

    Full Text Available On February 11, 2016, during a conference held at the National Science Foundation (NSF, in Washington, D.C., the American physicist David Reitze, Executive Director of the Laser Interferometer Gravitacional-Wave Observatory (LIGO announced that it had been observed on September 14, 2015 Gravitational Waves (GW. This event was named GW150914. A second observation was also done by the LIGO on December 26, 2015 named GW151226. The signals of these two events are similar and are due to the coalescence of a binary black holes (BH. The GW sources are distant, respectively, of ~ 410 Mpc and ~ 440 Mpc from the Earth. To understand the significance of this extraordinary events we will make a historical summary of the GW and the BH.

  6. The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements

    International Nuclear Information System (INIS)

    Li Pilong; Martins, Ilídio R. S.; Rosen, Michael K.

    2011-01-01

    Coupled equilibria play important roles in controlling information flow in biochemical systems, including allosteric molecules and multidomain proteins. In the simplest case, two equilibria are coupled to produce four interconverting states. In this study, we assessed the feasibility of determining the degree of coupling between two equilibria in a four-state system via relaxation dispersion measurements. A major bottleneck in this effort is the lack of efficient approaches to data analysis. To this end, we designed a strategy to efficiently evaluate the smoothness of the target function surface (TFS). Using this approach, we found that the TFS is very rough when fitting benchmark CPMG data to all adjustable variables of the four-state equilibria. After constraining a portion of the adjustable variables, which can often be achieved through independent biochemical manipulation of the system, the smoothness of TFS improves dramatically, although it is still insufficient to pinpoint the solution. The four-state equilibria can be finally solved with further incorporation of independent chemical shift information that is readily available. We also used Monte Carlo simulations to evaluate how well each adjustable parameter can be determined in a large kinetic and thermodynamic parameter space and how much improvement can be achieved in defining the parameters through additional measurements. The results show that in favorable conditions the combination of relaxation dispersion and biochemical manipulation allow the four-state equilibrium to be parameterized, and thus coupling strength between two processes to be determined.

  7. Theory of equilibria of elastic 2-braids with interstrand interaction

    Science.gov (United States)

    Starostin, E. L.; van der Heijden, G. H. M.

    2014-03-01

    Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.

  8. Isotopic equilibria between sulphur solute species at high temperature

    International Nuclear Information System (INIS)

    Robinson, B.W.

    1978-01-01

    Sulphur solute species in ore solutions and geothermal discharges include HSO 4 - , SO 4 2- , H 2 S, and HS - , as well as the ion-paired species, NaHS 0 , NaHSO 4 - and Na 2 SO 4 0 . Observed sulphate-sulphide fractionation factors and the rates of attainment of isotopic equilibrium are likely to depend on the nature of the sulphur species actually taking part in these isotopic equilibria. Preliminary experiments in alkaline solution (pH 10.1 at 20 0 C) were carried out in a gold cell. No significant isotope fractionation was observed between the SO 4 2- and HS - in 29 days at 200 0 C, 63days at 300 0 C, or 90 days at 250 0 C. However, similar experiments at 350 0 C in sealed gold capsules at room temperature pH 8.5 showed slow exchange(t( 1 / 2 ) was calculated to be 510 days for the SO 4 2- -HS - exchange reaction using the theoretical fractionation of 20.2 0 / 00 ). The addition of NaCl appeared to have no affect on the exchange. However, pH strongly controls the reaction rate, and exchange probably involves H 2 S and the HSO 4 - ion. Additional preliminary experiments were conducted with a fivefold increase in the sulphur concentration; a decrease in t( 1 / 2 ) to 142 days resulted. Some inter-relationship between sulphur concentration and exchange rate thus exists. The important controlling parameters of isotope exchange (temperature, pH, and ΣS) can be seen to have influenced exchange in natural systems.(auth.)

  9. Longitudinal traveling waves bifurcating from Vlasov plasma equilibria

    International Nuclear Information System (INIS)

    Holloway, J.P.

    1989-01-01

    The kinetic equations governing longitudinal motion along a straight magnetic field in a multi-species collisionless plasma are investigated. A necessary condition for the existence of small amplitude spatially periodic equilibria and traveling waves near a given spatially uniform background equilibrium is derived, and the wavelengths which such solutions must approach as their amplitude decreases to zero are discussed. A sufficient condition for the existence of these small amplitude waves is also established. This is accomplished by studying the nonlinear ODE for the potential which arises when the distribution functions are represented in a BGK form; the arbitrary functions of energy that describe the BGK representation are tested as an infinite dimensional set of parameters in a bifurcation theory for the ODE. The positivity and zero current condition in the wave frame of the BGK distribution functions are maintained. The undamped small amplitude nonlinear waves so constructed can be made to satisfy the Vlasov dispersion relation exactly, but in general they need only satisfy it approximately. Numerical calculations reveal that even a thermal equilibrium electron-proton plasma with equal ion and electron temperatures will support undamped traveling waves with phase speeds greater than 1.3 times the electron velocity; the dispersion relation for this case exhibits both Langmuir and ion-acoustic branches as long wavelength limits, and shows how these branches are in fact connected by short wavelength waves of intermediate frequency. In apparent contradiction to the linear theory of Landau, these exact solutions of the kinetic equations do not damp; this contradiction is explained by observing that the linear theory is, in general, fundamentally incapable of describing undamped traveling waves

  10. Transient multimessenger astronomy with gravitational waves

    International Nuclear Information System (INIS)

    Marka, S

    2011-01-01

    Comprehensive multimessenger astronomy with gravitational waves is a pioneering field bringing us interesting results and presenting us with exciting challenges for the future. During the era of the operation of advanced interferometric gravitational wave detectors, we will have the opportunity to investigate sources of gravitational waves that are also expected to be observable through other messengers, such as gamma rays, x-rays, optical, radio, and/or neutrino emission. Multimessenger searches for gravitational waves with the LIGO-GEO600-Virgo interferometer network have already produced insights on cosmic events and it is expected that the simultaneous observation of electromagnetic or neutrino emission could be a crucial aspect for the first direct detection of gravitational waves in the future. Trigger time, direction and expected frequency range enhances our ability to search for gravitational wave signatures with amplitudes closer to the noise floor of the detector. Furthermore, multimessenger observations will enable the extraction of otherwise unaccessible scientific insight. We summarize the status of transient multimessenger detection efforts as well as mention some of the open questions that might be resolved by advanced or third generation gravitational wave detector networks.

  11. Particle production in a gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Singleton, Douglas

    2017-03-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level Feynman diagrams such as two gravitons turning into two photons, i.e., g +g →γ +γ . Here we calculate the rate at which a gravitational wave creates a massless scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a nonzero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a nonzero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless field is being produced at the expense of the gravitational field. This is related to the time-dependent Schwinger effect, but with the electric field replaced by the gravitational wave background and the electron/positron field quanta replaced by massless scalar "photons." Since the produced scalar quanta are massless there is no exponential suppression, as occurs in the Schwinger effect due to the electron mass.

  12. Theory of magnetostatic equilibria and applications in astrophysics

    International Nuclear Information System (INIS)

    Amari, T.

    1988-04-01

    Magnetohydrostatic equations are used to study the properties of magnetic configurations of astrophysical interest, particularly in solar physics. Results on force-free solutions with singularities (with current sheets) and on solutions which take into account current sheets and gravitational fields are obtained. A general method to construct an infinite class of non-y-symmetric models of protuberances when the magnetic field of the support is assumed to be potential is outlined. The general integral properties of current sheets of arbitrary geometry plunged into a nonlinear force-free magnetic field are established. It is shown that for a given mass, the equilibrium height of the protuberance increases with the shear of the force-free field. The case where the current sheet is reduced to a filament is examined. It is also shown that there exists a critical pressure beyond which no equilibrium is possible [fr

  13. Non-existence of Normal Tokamak Equilibria with Negative Central Current

    International Nuclear Information System (INIS)

    Hammett, G.W.; Jardin, S.C.; Stratton, B.C.

    2003-01-01

    Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient current-drive power for the central current density to have gone significantly negative. Recent papers have used a large aspect-ratio expansion to show that normal MHD equilibria (with axisymmetric nested flux surfaces, non-singular fields, and monotonic peaked pressure profiles) can not exist with negative central current. We extend that proof here to arbitrary aspect ratio, using a variant of the virial theorem to derive a relatively simple integral constraint on the equilibrium. However, this constraint does not, by itself, exclude equilibria with non-nested flux surfaces, or equilibria with singular fields and/or hollow pressure profiles that may be spontaneously generated

  14. A Continuous Family of Equilibria in Ferromagnetic Media are Ground States

    Science.gov (United States)

    Su, Xifeng; de la Llave, Rafael

    2017-09-01

    We show that a foliation of equilibria (a continuous family of equilibria whose graph covers all the configuration space) in ferromagnetic transitive models are ground states. The result we prove is very general, and it applies to models with long range and many-body interactions. As an application, we consider several models of networks of interacting particles including models of Frenkel-Kontorova type on Z^d and one-dimensional quasi-periodic media. The result above is an analogue of several results in the calculus of variations (fields of extremals) and in PDE's. Since the models we consider are discrete and long range, new proofs need to be given. We also note that the main hypothesis of our result (the existence of foliations of equilibria) is the conclusion (using KAM theory) of several recent papers. Hence, we obtain that the KAM solutions recently established are minimizers when the interaction is ferromagnetic and transitive (these concepts are defined later).

  15. Ternary (liquid + liquid) equilibria of {trifluorotris(perfluoroethyl)phosphate based ionic liquids + thiophene + heptane}

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Królikowski, Marek

    2012-01-01

    Highlights: ► Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. ► The influence of ionic liquid structure on phase diagrams is discussed. ► High selectivity for separation of heptane/thiophene is observed. - Abstract: Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.

  16. Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)

    2010-05-14

    In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.

  17. Some axisymmetric equilibria for certain ideal and resistive magnetohydrodynamics with incompressible flows

    Directory of Open Access Journals (Sweden)

    S.M. Moawad

    Full Text Available In this paper, the equilibrium properties of some ideal and resistive magnetohydrodynamics (MHD are investigated. The governing equations are taken in the steady state for parallel and non-parallel flow to magnetic filed. The governing equations are reduced to Bernoulli-Grad-Shafranov system. The problem of finding exact equilibria to the governing equations in the presence of incompressible mass flows is studied. Several nonlinear equilibria of the governing equations are obtained with aid of constructed constraints. The obtained results cover several previously configurations and include new considerations about the nonlinearity of magnetic flux stream variables. The possibility of applying the obtained results to magnetic confinement devices are discussed. Keywords: Magnetohydrodynamics, Axisymmetric plasma, Resistivity, Incompressible flows, Exact equilibria, Magnetic confinement devices

  18. A note on relative equilibria in a rotating shallow water layer

    KAUST Repository

    Ait Abderrahmane, Hamid

    2013-05-08

    Relative equilibria of two and three satellite vortices in a rotating shallow water layer have been recorded via particle image velocimetry (PIV) and their autorotation speed was estimated. This study shows that these equilibria retain the fundamental characteristics of Kelvin\\'s equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann et al. (J. Fluid Mech., vol. 679, 2011, pp. 415-431; J. Fluid Mech., vol. 691, 2012, pp. 605-606) if the assigned field\\'s contribution to pattern rotation is included. © 2013 Cambridge University Press.

  19. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  20. Structure of gauge and gravitational anomalies*

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    It is shown how the form of the gauge and gravitational anomalies in quantum field theories may be derived from classical index theorems. The gravitational anomaly in both Einstein and Lorentz form is considered and their equivalence is exhibited. The formalism of gauge and gravitational theories is reviewed using the language of differential geometry, and notions from the theory of characteristic classes necessary for understanding the classical index theorems are introduced. The treatment of known topological results includes a pedagogical derivation of the Wess-Zumino effective Lagrangian in abitrary even dimension. The relation between various forms of the anomaly present in the literature is also clarified

  1. Gravitational waves in hybrid quintessential inflationary models

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-09-22

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.

  2. Gravitational waves in hybrid quintessential inflationary models

    International Nuclear Information System (INIS)

    Sa, Paulo M; Henriques, Alfredo B

    2011-01-01

    The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.

  3. The theory of space, time and gravitation

    CERN Document Server

    Fock, V

    2015-01-01

    The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner

  4. New Metrics from a Fractional Gravitational Field

    International Nuclear Information System (INIS)

    El-Nabulsi, Rami Ahmad

    2017-01-01

    Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner–Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske–Kilbas–Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics. (paper)

  5. Detecting the Stochastic Gravitational-Wave Background

    Science.gov (United States)

    Colacino, Carlo Nicola

    2017-12-01

    The stochastic gravitational-wave background (SGWB) is by far the most difficult source of gravitational radiation detect. At the same time, it is the most interesting and intriguing one. This book describes the initial detection of the SGWB and describes the underlying mathematics behind one of the most amazing discoveries of the 21st century. On the experimental side it would mean that interferometric gravitational wave detectors work even better than expected. On the observational side, such a detection could give us information about the very early Universe, information that could not be obtained otherwise. Even negative results and improved upper bounds could put constraints on many cosmological and particle physics models.

  6. Gravitational perturbations of the hydrogen atom

    International Nuclear Information System (INIS)

    Parker, L.

    1983-01-01

    The strength of a gravitational field is characterized by the Riemann curvature tensor. It is of interest to know how the curvature of space-time at the position of an atom affects its spectrum. The author gives a brief summary of work on the effects of curvature on the hydrogen atom. The results refer to an arbitrary metric and can be evaluated for particular space-times of interest. The possibility of using the effect of gravitational waves on the electromagnetic spectrum of hydrogen as a means of detecting gravitational waves is also investigated. (Auth.)

  7. Gravitational instability in isotropic MHD plasma waves

    Science.gov (United States)

    Cherkos, Alemayehu Mengesha

    2018-04-01

    The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.

  8. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  9. Non-Euclidean Geometry and Gravitation

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2006-04-01

    Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.

  10. Development and testing of a new apparatus for the measurement of high-pressure low-temperature phase equilibria

    DEFF Research Database (Denmark)

    Fonseca, José M.S.; von Solms, Nicolas

    2012-01-01

    A new apparatus for the study of high-pressure phase equilibria at low temperatures using an analytical method was designed, assembled and tested. The apparatus was specially developed for the study of multi-phase equilibria in systems containing hydrocarbons, water and hydrate inhibitors, at tem...

  11. Stability of the n = 1 internal kink mode in equilibria with flows

    International Nuclear Information System (INIS)

    Aydemir, A.Y.; Waelbroeck, F.L.

    1996-01-01

    Stabilizing influence of mass flows, either directly or through their shearing action, on various modes is now generally recognized. Here we examine linear and nonlinear stability of the n = 1 internal kink mode in equilibria with toroidal rotation, using our nonlinear, initial-value MHD code CTD, which can be used to generate self-consistent equilibria with flows in arbitrary geometries. It is well known that equilibrium mass flows introduce complications in determination of MHD equilibria and their stability properties, such as the loss of self-adjointness and an increase in the number of conditions required to uniquely determine the equilibria. Thus, even with purely toroidal flows, an implicit statement about the equation of state is needed, in addition to a knowledge of the magnetic field and velocity profiles; rotation in an adiabatic plasma leads to a different equilibrium than, for example, in an isothermal one, with possibly quite different stability properties. We find that the expected stabilizing influence of toroidal rotation on n = 1 is generally absent in adiabatically generated equilibria in which, of all the relevant thermodynamic variables, only the specific entropy is a flux function, s = s (ψ). Fortunately, physically more relevant isothermal case where the temperature is constant on flux surfaces, T = T(ψ), has more favorable stability characteristics. On the other hand, an inconsistent but common practice of ignoring density perturbations, a benign omission for static equilibria, leads to overly optimistic results when equilibrium flows axe present, predicting stability when there may not be any. The crucial role played by the equation of state in determining equilibrium raises questions regarding the role of parallel transport in stability calculations; this and other nonideal effects, along with the role of plasma β vs. the rotational β, and nonlinear stability when the mode is pushed beyond marginality, will be discussed

  12. Gravitational waves — A review on the theoretical foundations of gravitational radiation

    Science.gov (United States)

    Dirkes, Alain

    2018-05-01

    In this paper, we review the theoretical foundations of gravitational waves in the framework of Albert Einstein’s theory of general relativity. Following Einstein’s early efforts, we first derive the linearized Einstein field equations and work out the corresponding gravitational wave equation. Moreover, we present the gravitational potentials in the far away wave zone field point approximation obtained from the relaxed Einstein field equations. We close this review by taking a closer look on the radiative losses of gravitating n-body systems and present some aspects of the current interferometric gravitational waves detectors. Each section has a separate appendix contribution where further computational details are displayed. To conclude, we summarize the main results and present a brief outlook in terms of current ongoing efforts to build a spaced-based gravitational wave observatory.

  13. Topics in Gravitation and Cosmology

    Science.gov (United States)

    Bahrami Taghanaki, Sina

    This thesis is focused on two topics in which relativistic gravitational fields play an important role, namely early Universe cosmology and black hole physics. The theory of cosmic inflation has emerged as the most successful theory of the very early Universe with concrete and verifiable predictions for the properties of anisotropies of the cosmic microwave background radiation and large scale structure. Coalescences of black hole binaries have recently been detected by the Laser Interferometer Gravitational Wave Observatory (LIGO), opening a new arena for observationally testing the dynamics of gravity. In part I of this thesis we explore some modifications to the standard theory of inflation. The main predictions of single field slow-roll inflation have been largely consistent with cosmological observations. However, there remain some aspects of the theory that are not presently well understood. Among these are the somewhat interrelated issues of the choice of initial state for perturbations and the potential imprints of pre-inflationary dynamics. It is well known that a key prediction of the standard theory of inflation, namely the Gaussianity of perturbations, is a consequence of choosing a natural vacuum initial state. In chapter 3, we study the generation and detectability of non-Gaussianities in inflationary scalar perturbations that originate from more general choices of initial state. After that, in chapter 4, we study a simple but predictive model of pre-inflationary dynamics in an attempt to test the robustness of inflationary predictions. We find that significant deviations from the standard predictions are unlikely to result from models in which the inflaton field decouples from the pre-inflationary degrees of freedom prior to freeze-out of the observable modes. In part II we turn to a study of an aspect of the thermodynamics of black holes, a subject which has led to important advances in our understanding of quantum gravity. For objects which

  14. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Bhattacharjee, A.; Lazerson, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.

  15. Nash equilibria in quantum games with generalized two-parameter strategies

    International Nuclear Information System (INIS)

    Flitney, Adrian P.; Hollenberg, Lloyd C.L.

    2007-01-01

    In the Eisert protocol for 2x2 quantum games [J. Eisert, et al., Phys. Rev. Lett. 83 (1999) 3077], a number of authors have investigated the features arising from making the strategic space a two-parameter subset of single qubit unitary operators. We argue that the new Nash equilibria and the classical-quantum transitions that occur are simply an artifact of the particular strategy space chosen. By choosing a different, but equally plausible, two-parameter strategic space we show that different Nash equilibria with different classical-quantum transitions can arise. We generalize the two-parameter strategies and also consider these strategies in a multiplayer setting

  16. Tokamak equilibria with non-parallel flow in a triangularity-deformed axisymmetric toroidal coordinate system

    Directory of Open Access Journals (Sweden)

    Ap Kuiroukidis

    2018-01-01

    Full Text Available We consider a generalized Grad–Shafranov equation (GGSE in a triangularity-deformed axisymmetric toroidal coordinate system and solve it numerically for the generic case of ITER-like and JET-like equilibria with non-parallel flow. It turns out that increase of the triangularity improves confinement by leading to larger values of the toroidal beta and the safety factor. This result is supported by the application of a criterion for linear stability valid for equilibria with flow parallel to the magnetic field. Also, the parallel flow has a weaker stabilizing effect.

  17. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    KAUST Repository

    Canale, Eduardo A.

    2015-02-01

    © 2015 AIP Publishing LLC. This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1-15 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degree-order ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.

  18. A background-dependent approach to the theory of gravitation

    International Nuclear Information System (INIS)

    Goldoni, R.

    1976-01-01

    Using the covariant formulation of Newton's gravitational equation as derived previously by the present author (Goldoni, Gen. Relativ. Gravitation; 7:731 (1976)) as a starting point, relativistic gravitational equations are found which are supposed to hold in any conceivable universe, describe a purely geometrical theory of gravitation and explicitly incorporate Mach's principle. (U.K.)

  19. Physics of interferometric gravitational wave detectors

    Indian Academy of Sciences (India)

    The Caltech-MIT joint LIGO project is operating three long-baseline inter- ... gravitational waves for LIGO are: (i) binary coalescing neutron star systems, (ii) ..... The fundamental mode of this basis is a purely Gaussian function which means.

  20. Gravitational waves from neutron stars and asteroseismology

    Science.gov (United States)

    Ho, Wynn C. G.

    2018-05-01

    Neutron stars are born in the supernova explosion of massive stars. Neutron stars rotate as stably as atomic clocks and possess densities exceeding that of atomic nuclei and magnetic fields millions to billions of times stronger than those created in laboratories on the Earth. The physical properties of neutron stars are determined by many areas of fundamental physics, and detection of gravitational waves can provide invaluable insights into our understanding of these areas. Here, we describe some of the physics and astrophysics of neutron stars and how traditional electromagnetic wave observations provide clues to the sorts of gravitational waves we expect from these stars. We pay particular attention to neutron star fluid oscillations, examining their impact on electromagnetic and gravitational wave observations when these stars are in a wide binary or isolated system, then during binary inspiral right before merger, and finally at times soon after merger. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  1. Vacuum polarization and non-Newtonian gravitation

    International Nuclear Information System (INIS)

    Long, D.R.

    1980-01-01

    Gell-Mann and Low have emphasized that, as first pointed out by Uehling and Serber, vacuum polarization effects produce a logarithmic modification to the Coulomb potential at small distances. Here, it is pointed out that, if these same considerations are applied to gravitation, the logarithmic term will have a sign opposite to that in the Coulomb case and in agreement with recent laboratory results on the gravitational ''constant''. Of considerable importance is the fact that such vacuum polarization effects cannot be observed in null experiments to test the gravitational inverse square law because the polarizing field is absent. It is a striking circumstance that the coefficient of the logarithm in QED is nearly the same as that found in gravitational experiments. (author)

  2. The gravitational-wave memory effect

    International Nuclear Information System (INIS)

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the memory with LISA.

  3. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  4. Gravitational instantons in H-spaces

    International Nuclear Information System (INIS)

    Hacyan, S.

    1979-01-01

    A spin coefficient method valid for spaces with positive definite metric is presented, together with a Petrov-Penrosetype classification. The theory of H-spaces is applied to self-dual gravitational instantons. (orig.)

  5. Gravitational instability of thermally anisotropic plasma

    International Nuclear Information System (INIS)

    Singh, B.; Kalra, G.L.

    1986-01-01

    The equations of Chew, Goldberger, and Low (1956) modified to include the heat flux vector and self-gravitation are used to study the gravitational instability of unbounded plasma placed in a uniform static magnetic field. The linear stability analysis shows that some of the additional terms which arise as a result of higher moments are of the same order of magnitude as the terms in the original Chew, Goldberger, and Low theory. The influence of these terms on the gravitational instability has been specially examined. It is found that the gravitational instability sets in at a comparatively shorter wavelength and the growth rate is enhanced owing to the inclusion of these terms in the case where the propagation vector is along the magnetic field. The condition for instability is, however, unaltered when the direction of propagation is transverse to the direction of magnetic field. 19 references

  6. Hunting for Dark Particles with Gravitational Waves

    CERN Document Server

    Giudice, Gian F.; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  7. Hunting for Dark Particles with Gravitational Waves

    Science.gov (United States)

    Giudice, Gian F.

    2017-12-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  8. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  9. Introduction to the theory of gravitational radiation

    International Nuclear Information System (INIS)

    Damour, T.

    1987-01-01

    In these lectures our attention is restricted to the analytical investigations of the theory of gravitational radiation. There exist already several reviews concerning this topic and, in particular, a recent detailed review, by Thorne, where gravitational radiation theory is put in a form suitable for astrophysical studies. This is why the scope of these lectures is limited to supplement the existing reviews in two ways. First, both the basic concepts of gravitational radiation theory, and the precise conditions, as well as the limitations, of validity of some of the well-known results in this theory are presented. Indeed, as these results have been, or will be, applied in astrophysics, it is important to have clearly in mind both what they mean, and when they can be legitimately applied. Second, a progress report on some of the ongoing analytical research in gravitational radiation theory is presented. 144 references

  10. Hunting for dark particles with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  11. Gravitationally self-induced phase transition

    International Nuclear Information System (INIS)

    Novello, M.; Duque, S.L.S.

    1990-01-01

    We propose a new mechanism by means of which a phase transition can be stimulated by self-gravitating matter. We suggest that this model could be used to explain the observed isotropy of the Universe. (orig.)

  12. The discovery of a gravitational lens

    International Nuclear Information System (INIS)

    Chaffee, F.H. Jr.

    1981-01-01

    A recently discovered pair of quasars turns out to be not a pair at all but two images of a single quasar formed by a gravitational lens: an elliptical galaxy halfway between the quasar and our own galaxy. (orig.) [de

  13. Primordial gravitational waves, BICEP2 and beyond

    Indian Academy of Sciences (India)

    2016-01-07

    Jan 7, 2016 ... Observations of the imprints of primordial gravitational waves on the ... the cosmic microwave background can provide us with unambiguous clues to the ... by the stress–energy tensor) can be classified, for instance, based on ...

  14. Nonlinear coupled Alfven and gravitational waves

    International Nuclear Information System (INIS)

    Kaellberg, Andreas; Brodin, Gert; Bradley, Michael

    2004-01-01

    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected

  15. Quantum fluctuations of some gravitational waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Kaya, R.; Ozdemir, N.; Ulker, K.; Yapiskan, B.

    1998-01-01

    We review our previous work on the the calculation of the stress-energy tensor for a scalar particle in the background metric of different types of spherical impulsive, spherical shock and plane impulsive gravitational waves.

  16. Quantum Fluctuations for Gravitational Impulsive Waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Ozdemir, N.

    1998-01-01

    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.

  17. Gravitational Waves: A New Observational Window

    Science.gov (United States)

    Camp, Jordan B.

    2010-01-01

    The era of gravitational wave astronomy is rapidly approaching, with a likely start date around the middle of this decade ' Gravitational waves, emitted by accelerated motions of very massive objects, provide detailed information about strong-field gravity and its sources, including black holes and neutron stars, that electromagnetic probes cannot access. In this talk I will discuss the anticipated sources and the status of the extremely sensitive detectors (both ground and space based) that will make gravitational wave detections possible. As ground based detectors are now taking data, I will show some initial science results related to measured upper limits on gravitational wave signals. Finally Z will describe new directions including advanced detectors and joint efforts with other fields of astronomy.

  18. Gravitational waves from freely precessing neutron stars

    International Nuclear Information System (INIS)

    Jones, D.I.

    2001-01-01

    The purpose of this study is to assess the likely detectability of gravitational waves from freely precessing neutron stars. We begin by presenting a neutron star model of sufficient complexity to take into account both the elasticity and fluidity of a realistic neutron star. We then examine the effect of internal dissipation (i.e. heat generation within the star) and gravitational radiation reaction on the wobble. This is followed by an examination of various astrophysical scenarios where some mechanism might pump the precessional motion. We estimate the gravitational wave amplitude in these situations. Finally, we conclude that gravitational radiation from freely precessing neutron stars is almost certainly limited to a level undetectable by a LIGO II detector by internal dissipation. (author)

  19. Hunting for dark particles with gravitational waves

    International Nuclear Information System (INIS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  20. Gravitational Waves from Oscillons after Inflation.

    Science.gov (United States)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-06

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.