WorldWideScience

Sample records for awa-muatan pijar glow

  1. Mechanistic investigations of shuttle glow

    Science.gov (United States)

    Caledonia, G. E.; Holtzclaw, K. W.; Krech, R. H.; Sonnenfroh, D. M.; Leone, A.; Blumberg, W. A. M.

    1993-01-01

    A series of laboratory measurements have been performed in order to provide a mechanistic interpretation for the visible shuttle glow. These studies involved interactions of an 8 km/s oxygen atom beam with both contaminant dosed surfaces and gaseous targets. We conclude that visible shuttle glow arises from surface mediated O + NO recombination via a Langmuir-Hinshelwood mechanism and that the gas-phase exchange reaction O + N2 - NO + N provides a viable source of precursor NO above surfaces oriented in the ram direction.

  2. Stable operation of high current glow discharges

    International Nuclear Information System (INIS)

    Glow discharges are very suited for cleaning and other surface treatment of plasma vessels. In this report, an extended version of a colloquium talk, given at Juelich, October 1977, the phenomenon of glow discharges and the operation of an apparatus for glow discharging nitriding are discussed

  3. Numerical analysis of thermoluminescence glow curves

    International Nuclear Information System (INIS)

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs

  4. Glow Sticks: Spectra and Color Mixing

    Science.gov (United States)

    Birriel, Jennifer; Birriel, Ignacio

    2014-01-01

    Glow sticks are a popular Halloween staple familiar to most of our students. The production of light via a chemical reaction is called "chemiluminescence," and glow sticks are often used as demonstrations and experiments in the chemistry classroom to study reaction rates as a function of temperature. A black light can be used to…

  5. Environmental TLD Glow Curve Analysis

    International Nuclear Information System (INIS)

    Environmental radioactive monitoring in Serbia is performed according the Law of Radiation Protection against Ionizing Radiation. Comparing to GM counter network, environmental TLDs are used for control more points. Some other measuring methods are also used (gamma, alpha-beta samples analyzing; continuously ambient dose equivalent screening etc.). Environmental TLD badge has four crystals: 2 CaSO4 and 2 LiF. As relative measurement method TLD requires careful calibration of reader and dosimeter itself. Different causes could damage TLD crystal placed at site. Each glow curve has to be checked for regularity and irregular one has to be eliminated. The main (the fifth) eak ofLiF crystals has to be at read-out temperature. Also, the shape of second glow curve depends on irradiation modality. Using HARSHAW CGCD Programme it is possible to estimate time of one-shot exposure as well as to differ continuously exposing crystal from one irradiated in few portions. The method applied in the LPD (Laboratory for personal dosimetry of IORH Dr Dragomir Karajovic, Belgrade), is represented in the paper.(author)

  6. The retrieval of abnormal TL glow curves using modified glow curve analysis method

    International Nuclear Information System (INIS)

    The shape of TL glow curve is a useful indicator for assurance of correct reading of the personal dosimeter. Since the reading procedure of TLD is irreversible, however, an analytic remedy should be considered to procure reliable dosimetric information for the readings with irregular glow curve shape. In this study, kinetic trapping parameter of CaSO4 : Dy Teflon personal dosimeter (Teledyne PB-6A) were analyzed by Halperin and Braner's model for general-order kinetics. From these kinetic trapping parameters, we also developed a simple procedure to retrieve the dosimetric information from abnormally distorted glow curves. The computerized glow curve deconvolution (CGCD) fitting of the reference glow curve with kinetic parameters from this study yields relative errors of about 5% from the expected integral. It was also found that the glow curve remedial procedure developed could retrieve the distorted TL glow curves within error ranges of 15%. With the glow curve retrieval techniques, doses incurred by gamma radiation can now be successfully re-constructed for the CaSO4 : Dy Teflon dosimeter resulting abnormal glow curves. (author)

  7. Glow discharge cleaning of vacuum switch tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Toya, H. (Mitsubishi Electric Corp., Amagasaki, Hyogo (Japan). Central Research Lab.)

    1991-10-01

    This paper reports that glow discharge cleaning has ben advancing as a means of degassing vacuum chambers constructed for a large accelerator or for nuclear fusion research. To clean the whole surface of parts inside a vacuum switch tube (VST), a new technique is tried which generates glow discharge between the inner electrodes and copper grid surrounding it. Photographic observation reveals that the glow discharge spreads out and cleans the whole surface inside the VST. A breakdown test between the inner electrodes shows the effect of the cleaning with this technique. Higher breakdown voltage between the inner electrodes is attained by performing this glow discharge cleaning in argon rather than hydrogen gas. The difference of the cleaning effect seems to be attributed to that of the energy transfer from ion species to the absorbed molecules and microprotrusions on the surfaces.

  8. Irregular glow curves in TL dosimetry

    International Nuclear Information System (INIS)

    The Personal Dosimetry Service Seibersdorf analyses monthly a large number of thermo luminescent dosemeters. In rare cases the luminescent glow curves of the routine analyse do not have the expected form. The typical spurious effects in glow curves are well known and it is possible to find many examples in the related literature. A curve can have an abnormal shape due to UV radiation, electric discharge, external contaminants on or absorbed in the crystal, the light sensitivity of the PTFE components, etc. In this work many of these effects were verified and another (like the effect of mechanic shock, static electricity, humidity,..) were examined. Particularly the influence on the shape of the glow curves was studied. It is necessary to know, if these experimental effects could also take place during the routine evaluation. An algorithm, which permits to identify irregular glow curves through comparison with a standard curve, was developed and applied in routine evaluations. This investigation has shown that in rare cases, in which the dosimeter was not used correctly (opened package, stored with high temperatures, washing machine, etc.), irregular glow curves can appear and a correct dose evaluation is not possible. Current analyse of the glow curves is therefore necessary in order to find such effects and to enforce the necessary corrections. (orig.)

  9. The thermoluminescence glow-curve analysis using GlowFit - the new powerful tool for deconvolution

    International Nuclear Information System (INIS)

    A new computer program, GlowFit, for deconvoluting first-order kinetics thermoluminescence (TL) glow-curves has been developed. A non-linear function describing a single glow-peak is fitted to experimental points using the least squares Levenberg-Marquardt method. The main advantage of GlowFit is in its ability to resolve complex TL glow-curves consisting of strongly overlapping peaks, such as those observed in heavily doped LiF:Mg,Ti (MTT) detectors. This resolution is achieved mainly by setting constraints or by fixing selected parameters. The initial values of the fitted parameters are placed in the so-called pattern files. GlowFit is a Microsoft Windows-operated user-friendly program. Its graphic interface enables easy intuitive manipulation of glow-peaks, at the initial stage (parameter initialization) and at the final stage (manual adjustment) of fitting peak parameters to the glow-curves. The program is freely downloadable from the web site www.ifj.edu.pl/NPP/deconvolution.htm (author)

  10. Glow-discharge nitriding of gears

    International Nuclear Information System (INIS)

    The method of glow-discharge nitriding of gear parts made of 30Kh2NMFA steel is introduced. The diffusion saturation is carried out in the atmosphere of dissociated ammonia at the temperature of 520-540 deg C and 200-800 Pa pressure for 16-40 h depending on the required thickness of the nitrided layer (0.2-0.5 mm). The structure of the nitrided metal is a layer of nitride compounds of the Fe4N type and diffusion zone enriched with nitrides. Glow-discharge nitrided parts with 600-650 HV strength retain certain wear resistance and fatigue strength as compared with gas nitriding

  11. Retrieval of dosimetric information from distorted glow curves using computerised glow curve deconvolution

    International Nuclear Information System (INIS)

    Computerised glow curve deconvolution (CGCD) can be used to retrieve dosimetric information from glow curves distorted by various irregularities. These may include reader malfunction, abnormal background arising from various sources and other system malfunctions. this paper illustrates how the dosimetric information can be retrieved from these irregular glow curves. The accuracy of the retrieved information depends, of course, on the extent of the damage to the glow curve. In LiF:Mg,Ti(TLD-100) for example, peaks 4 + 5 (the dosimetric peaks) are observed over the temperature range of 400 K - 500 K, i.e. 100 degrees Kelvin. Even for distortions over 20 K, i.e. 20% of the temperature range, the dosimetric information can be retrieved to an accuracy of approximately 1%. (author)

  12. Computerized deconvolution of thermoluminescence glow curve

    CERN Document Server

    Ning Jing; Guo Yong; Wang Jun

    2002-01-01

    Computerized glow curve deconvolution (CGCD) is one of the most important progress in application of thermoluminescence dosimetry (TLD). It has greatly improved the precision and efficiency of measurement and widened the scope of TLD application. The basic issues about CGCD such as kinetic model, algorithm and figure of merit are described

  13. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 1012 cm -3 and 4x1013 cm -3. The peak velocity of the ejected plasma was 0. 8 x 105 cm sec-1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x107 cm-3. It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  14. Evolution of Striation in Pulsed Glow Discharges

    Science.gov (United States)

    Liu, Yuanye; He, Feng; Zhao, Xiaofei; Ouyang, Jiting

    2016-01-01

    In this work, striations in pulsed glow discharges are studied by experiments and Particle-In-Cell/Monte Carlo Collision (PIC/MCC) simulation. The spatio-temporal evolution of the potential and the electron energy during the discharge are analyzed. The processes of striation formation in pulsed glow discharges and dielectric barrier discharges (DBD) are compared. The results show that the mechanisms of striation in pulsed DC discharge and DBD are similar to each other. The evolution of electron energy distribution function before and after the striation formation indicates that the striation results from the potential well of the space charge. During a pulsed breakdown, the striations are formed one by one towards the anode in a weak field channel. This indicates that the formation of striations in a pulsed discharge depends on the flow of modulated electrons. supported by National Natural Science Foundation of China (Nos. 10875010 and 11175017)

  15. Perceived three-dimensional shape toggles perceived glow.

    Science.gov (United States)

    Kim, Minjung; Wilcox, Laurie M; Murray, Richard F

    2016-05-01

    Most surfaces reflect light from external sources, but others emit light: they glow. Glowing surfaces are often a sign of an important feature of the environment, such as a heat source or a bioluminescent life form, but we know little about how the human visual system identifies them. Previous work has shown that luminance and luminance gradients are important in glow perception [1,2]. While a link between glow and shape has been suggested in the literature [3], there has been no systematic investigation of this relationship. Here we show that perceived three-dimensional shape plays a decisive role in glow perception; vivid percepts of glow can be toggled on and off, simply by changing cues to three-dimensional shape while holding other image features constant. PMID:27166688

  16. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  17. An air spark glow phase model

    International Nuclear Information System (INIS)

    A )-dimensional kinetic model is developed for the glow phase of a spark gap in air. The model includes heavy-heavy collisions leading to thermal ionization, and electron collision processes. Rates for the latter are calculated by a Boltzmann analysis and from empirical measurements. These include attachment and ionization, excitation/ionization and dissociation/ionization; detachment was found to be necessary to match experimental closing times. With only those processes, the model predicts closing times well over a wide range above and below the DC breakdown voltage

  18. Nitrogen Removal from Molten Steel under Argon DC Glow Plasma

    Institute of Scientific and Technical Information of China (English)

    SUN Ming-shan; DING Wei-zhong; LU Xiong-gang

    2005-01-01

    Under argon DC glow plasma, the nitrogen removal from molten steel was studied. The experimental result showed that nitrogen mass percent could be reduced to 0.000 8%. The change of polarity had no impact on nitrogen removal when the nitrogen mass percent was low. The mechanism of denitrogenation of molten steel under argon DC glow plasma was discussed.

  19. Acting green elicits a literal warm glow

    Science.gov (United States)

    Taufik, Danny; Bolderdijk, Jan Willem; Steg, Linda

    2015-01-01

    Environmental policies are often based on the assumption that people only act environmentally friendly if some extrinsic reward is implicated, usually money. We argue that people might also be motivated by intrinsic rewards: doing the right thing (such as acting environmentally friendly) elicits psychological rewards in the form of positive feelings, a phenomenon known as warm glow. Given the fact that people's psychological state may affect their thermal state, we expected that this warm glow could express itself quite literally: people who act environmentally friendly may perceive the temperature to be higher. In two studies, we found that people who learned they acted environmentally friendly perceived a higher temperature than people who learned they acted environmentally unfriendly. The underlying psychological mechanism pertains to the self-concept: learning you acted environmentally friendly signals to yourself that you are a good person. Together, our studies show that acting environmentally friendly can be psychologically rewarding, suggesting that appealing to intrinsic rewards can be an alternative way to encourage pro-environmental actions.

  20. Way of stability increase of the glow discharge

    Science.gov (United States)

    Asadullin, T. Ya; Galeyev, I. G.; Timerkayev, B. A.

    2016-01-01

    Instabilities of a glow discharge significantly limit the opportunities for use of nonequilibrium plasma of a glow discharge [1]. The ionization overheat instability is the main type of glow discharge instabilities. It causes the loss of a non-equilibrium and put the glow discharge to a contracted state. The way of stabilization of glow discharge in transverse gas flow by the use of adaptive control system is considered in the work. The system controls voltage (resistance) of cathodic sections of the discharge chamber. Such fast advancing influence prevents the cathode spot shrinking and subsequent transition to contracted state. The controlling algorithm can be realized both following type and dynamic non-equilibrium type.

  1. Reconstruction of thermally quenched glow curves in quartz

    International Nuclear Information System (INIS)

    The experimentally measured thermoluminescence (TL) glow curves of quartz samples are influenced by the presence of the thermal quenching effect, which involves a variation of the luminescence efficiency as a function of temperature. The real shape of the thermally unquenched TL glow curves is completely unknown. In the present work an attempt is made to reconstruct these unquenched glow curves from the quenched experimental data, and for two different types of quartz samples. The reconstruction is based on the values of the thermal quenching parameter W (activation energy) and C (a dimensionless constant), which are known from recent experimental work on these two samples. A computerized glow-curve deconvolution (CGCD) analysis was performed twice for both the reconstructed and the experimental TL glow curves. Special attention was paid to check for consistency between the results of these two independent CGCD analyses. The investigation showed that the reconstruction attempt was successful, and it is concluded that the analysis of reconstructed TL glow curves can provide improved values of the kinetic parameters E, s for the glow peaks of quartz. This also leads to a better evaluation of the half-lives of electron trapping levels used for dosimetry and luminescence dating.

  2. Glow discharge amorphous silicon tin alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A H; Sanchez, A; Williamson, D L; von Roedern, B; Madan, A

    1984-06-01

    We present basic density of states, photoresponse, and transport measurements made on low bandgap a-SiSn:H alloys produced by RF glow discharge deposition of SiH/sub 4/, H/sub 2/ and Sn(CH/sub 3/)/sub 4/. Although we demonstrate major changes in the local bonding structure and the density of states, the normalized photoresponse still remains poor. We provide evidence that two types of defect levels are produced with Sn alloying, and that the resultant density of states increase explains not only the n- to p-type conductivity transition reported earlier, but also the photoresponse behavior. We also report that a-SiSn:H can be doped with P. From our device analysis we suggest that in order to improve the alloy performance significantly, the density of states should be decreased to levels comparable to or lower than those presently obtained in a-Si:H.

  3. Paschen law for argon glow discharge

    International Nuclear Information System (INIS)

    Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those surfaces, as described by Paschen's law. The understanding of when the discharge will occur in an Ar discharge is essential basic knowledge. A glow discharge apparatus was used in this experiment of Ar discharge at a pressure range between 2.0 Torr and 12 Torr, a power of 20 W and 40 l/min flow rate of gases. The optical emission spectroscopy was carried out in the wavelength range of 200 to 1100 nm. Here, we present experimentally measured plasma Paschen curves for Ar gas and compare our results of breakdown voltages with the literature. The minimum voltage measured for a discharge in Ar atmosphere was 215 ± 2.2 at 0.7 Torr-cm, which agree with previous measurements.

  4. Multiplicity detector using a glow-discharge memory

    International Nuclear Information System (INIS)

    It has been proposed to eliminate the x-y cor relation ambiguities introduced by multiple tracks in a wire chamber by using the chamber itself as a memory. Hits in the chamber itself ignite glow discharges storing the x-y location of the hits in a correlated fashion. Glow ignition may be achieved by employing a multi-step avalanche chamber above a memory gap. Correlation is maintained during readout by successively pulsing each hit wire in one coordinate and sensing transmissions through glows in the other coordinate. Prototypes constructed by the authors are discussed along with the associated high voltage and readout systems

  5. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    International Nuclear Information System (INIS)

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  6. Vehicle/Atmosphere Interaction Glows: Far Ultraviolet, Visible, and Infrared

    Science.gov (United States)

    Swenson, G.

    1999-10-01

    Spacecraft glow information has been gathered from a number of spacecraft including Atmospheric and Dynamic satellites, and Space Shuttles (numerous flights) with dedicated pallet flow observations on STS-39 (DOD) and STS-62 (NASA). In addition, a larger number of laboratory experiments with low energy oxygen beam studies have made important contributions to glow understanding. The following report provides information on three engineering models developed for spacecraft glow including the far ultraviolet to ultraviolet (1400-4000 A), and infrared (0.9-40 microns) spectral regions. The models include effects resulting from atmospheric density/altitude, spacecraft temperature, spacecraft material, and ram angle. Glow brightness would be predicted as a function of distance from surfaces for all wavelengths.

  7. Multifunctional Glow Discharge Analyzer for Spacecraft Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Penn State University (PSU) propose to develop a highly sensitive spectrometer based on glow discharge emission for the...

  8. Thermoluminescence glow curve analysis of natural onyx from Turkey

    International Nuclear Information System (INIS)

    In this study, the thermoluminesce (TL) properties of natural onyx were determined after β-irradiation (90Sr/90Y) at room temperature. The effect of the additive dose and variable heating rate for TL glow peaks of the sample were investigated. Computerized glow curve deconvolution (CGCD) methods were used to determine the number of peaks and kinetic parameters related to the TL glow peaks in natural onyx from Turkey. It was also determined kinetic parameters of onyx by means of the variable heating rate (VHR) method. The sample was exposed to β-irradiation between 2.4 Gy and 2.457 kGy. The CGCD methods showed that the glow curve of sample is the superposition of at least six first order components which were ascribed as P1-P6. The dose responses of some peaks have similar patterns and they follow linearity. The effect of heating rates on the response of dosimetric glow peaks of sample was studied. The maximum TL peak intensities of glow curve are decreasing with increasing heating rate and maximum TL peak intensities at 1 °C/s drops to 20% of the initial value when the sample is read at 6 °C/s. - Highlights: • Thermoluminesce (TL) properties of natural onyx were determined after β-irradiation at room temperature. • Computerized glow curve deconvolution (CGCD) methods were used to determine the number of peaks and kinetic parameters. • The peak intensities and total area of glow peaks are decreasing with increasing heating rate

  9. An efficient algorithm for computerized deconvolution of thermoluminescent glow curves

    International Nuclear Information System (INIS)

    The models employed so far for deconvolving thermoluminescent glow curves are either derived by neglecting the interaction among traps and resorting to the quasi-equilibrium approximation, or are simply phenomenological. Several published articles have shown that the approximations are difficult to justify. Further it has never been shown that they are rigorously applicable to any known system. As to the phenomenological model it is no physically meaningful. An algorithm is reported which allows analyses of glow curves without the aforementioned approximations.

  10. Mixed Feelings: Theories and Evidence of Warm Glow and Altruism

    OpenAIRE

    Konow, James

    2006-01-01

    This paper presents theoretical and empirical analyses of experiments that test competing theories of altruism, including pure altruism (a preference for the well-being of others), warm glow (a good feeling from giving) and impure altruism (a combination of pure altruism and warm glow). These theories produce different predictions regarding crowding out, i.e., the reduction in private donations due to public spending. Variations on dictator experiments involving both students and charities ex...

  11. Advances in the Remote Glow Discharge Experiment

    Science.gov (United States)

    Dominguez, Arturo; Zwicker, A.; Rusaits, L.; McNulty, M.; Sosa, Carl

    2014-10-01

    The Remote Glow Discharge Experiment (RGDX) is a DC discharge plasma with variable pressure, end-plate voltage and externally applied axial magnetic field. While the experiment is located at PPPL, a webcam displays the live video online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The RGDX is designed as an outreach tool that uses the attractive nature of a plasma in order to reach a wide audience and extend the presence of plasma physics and fusion around the world. In March 2014, the RGDX was made publically available and, as of early July, it has had approximately 3500 unique visits from 107 countries and almost all 50 US states. We present recent upgrades, including the ability to remotely control the distance between the electrodes. These changes give users the capability of measuring Paschen's Law remotely and provides a comprehensive introduction to plasma physics to those that do not have access to the necessary equipment.

  12. Anode glow and double layer in DC magnetron anode plasma

    International Nuclear Information System (INIS)

    Sputtering magnetron is widely used device in research and industry alike. DC planar magnetron employs series of magnets to create magnetic field above the electrode surface which traps electrons in closed E-bar x B-bar drift. Similar device used in reversed polarity power was reported for use in various applications. In contrast to its normal counterpart there is no closed drift effect in there. This device has very limited understanding. We here investigate this device for its discharge properties. Our device is dominated by anode glow. The anode glow is expected to have the electron sheath which provides energy to electron to excite the neutrals. Where as many experimental studies have been reported for anode glow and anode double layer, many of them uses auxiliary anode in the discharge. Most of the cases anode double layer (fire ball/fire rod) is small structures very near to anode surface which in itself is required to be small. The DC planar magnetron biased in reverse polarity have glow only near anode. Measurements confirm it as anode glow and the presence of electrons sheath is proven. The double layer structure was observed and measured in two mutually perpendicular directions. The double layer shows sub MHz oscillation that is typical of the unstable anode double layer. The dimension of anode glow is relatively large and is primarily in magnetic field free region making it easy to probe. The potential structure still shows large cathode fall but surprisingly visible cathode glow is not present. The device operates very stable for pressure bellow 0.01 mbar. But it shows instabilities such as unstable anode double layer above said pressure. (author)

  13. Enhanced Glow Discharge Production of Oxygen

    Science.gov (United States)

    Ash, Robert; Zhong, Shi

    1998-01-01

    Studies starting in late seventies have shown Mars atmosphere can be used as a feedstock for oxygen production using simple chemical processing systems during early phases of the Mars exploration program. This approach has been recognized as one of the most important in-situ resource utilization (ISRU) concepts for enabling future round trip Mars missions. It was determined a decade ago that separation of oxygen can be accomplished efficiently by permeation through a silver membrane at temperatures well below 1000 K. This process involves adsorption of atomic oxygen on the surface and its subsequent diffusion through a silver lattice via an oxygen concentration gradient. We have determined recently that glow discharge can be used to liberate atomic oxygen from Mars atmosphere and that the oxygen can be collected through a silver permeation membrane. Recently, we demonstrated a substantial increase in energy efficiency of the process by applying a radio frequency discharge in combination with a silver permeation membrane. The experiments were performed using pure carbon dioxide in the pressure range equal to Mars surface conditions. Energy efficiency was defined as the ratio of the energy required to dissociate a unit mass of oxygen from carbon dioxide to the (electrical) energy consumed by the overall system during the dissociation and collection process. The research effort, started at NASA Langley Research Center, continued with this project. Oxygen production apparatus, built and operated under the research grant NAG1-1140 was relocated to the Atomic Beams Laboratory at ODU in July 1996, being since then in fall operation.

  14. Glow rate technique for spectroscopy of complex thermostimulated relaxation processes

    International Nuclear Information System (INIS)

    The glow rate technique (GRT) developed for the analysis of complex trap spectra, is the extension of the known heating rate method to the full glow curve. It is shown that using two glow curves measured at different heating rate constants, a special mean activation energy of simultaneously emptied traps can be obtained as a function of temperature or emitted light sum to a good approximation. Expressions have been derived for the calculation of the mean activation energy function from data measured using a linear, logarithmic or a hyperbolic heating mode. Theoretical expressions for the mean activation energy function have been obtained and discussed for arbitrary trap distribution functions (TDF) in activation energy and frequency factor. The mean activation energy function additional to the glow curve gives direct quantitative information about the activation energies of traps involved in the thermostimulated relaxation. Application of the curve fit analysis to both the glow intensity and mean energy data offers a procedure for the advanced evaluation of parameters of the trap spectrum, which allows estimation of the true TDF as well as verifying the model used. The GRT can be applied down to very low intensities. (author)

  15. AC Glow Discharge Plasma in N2O

    International Nuclear Information System (INIS)

    This paper considers the optical and electrical characterization of AC glow discharge plasma in the abnormal glow mode used for optical emission spectroscopy. The total discharge current and applied voltage are measured using conventional techniques. The electrical characteristics of the planer-cathode glow discharge confirmed that the plasma is operating at abnormal discharge mode characterized by the increases in the operating voltage as the current was raised under given pressure. Optical emission spectroscopy was used to determine the main emission lines of the glow discharge plasma of N2O at pressures between 0.5 and 4.0 Torr. It shows that the discharge emission range is mainly within 300-400 nm. The emission lines correspond to NO, O2, and O2+ are the dominant lines in the glow discharge plasma in the present study. Intensity of the emission lines show linear increase with the discharge current up to 0.4 A followed by saturation at higher currents. No emission lines were observed in this work corresponding to atomic oxygen or nitrogen

  16. Observation of the glow-to-arc transitions

    Science.gov (United States)

    Watanabe, Shigeru; Saito, Shigeki; Takahashi, Kunio; Onzawa, Tadao

    2002-10-01

    Researches of the glow-to-arc transitions have been required for a new development of the welding technology in low current. It is important to clarify the characteristics of plasma in the transitions because there have been few reports investigated the transitions in detail. The glow-to-arc transitions were observed in argon at atmospheric pressure. The Th-W electrodes of 1 mm in a diameter are used. Both of the electrodes are needle-shaped and set in a quartz tube coaxially. Plasma is generated between the electrodes with the gap spacing of 1 mm. A DC power supply has been applying constant voltage of 600 V during the discharge. A high-speed camera is used to record the images of plasma in the transitions with the measurement of voltage and current between the electrodes. As a result, two things were confirmed for the behavior of the glow-to-arc transition. First, plasma extended over the cathode surface in the transition from the glow to the arc. Second, temperature in the tip of the cathode would increase gradually during the glow and decrease during the arc.

  17. Thermoluminescence glow curves and deconvoluted glow peaks of Ge doped flat fibers at ultra-high doses of electron radiation

    International Nuclear Information System (INIS)

    The behavior of Ge doped silica, SiO2 flat fibers (FF) irradiated with 2.5 MeV electron radiation at ultra-high dose (UHD) range, up to 1 MGy, has been investigated. The analyzed glow curves measured by the usage of the WinREMS software revealed that peak height and glow curve maximum temperature are highly dependent on the dose. The shape of the glow curves is constant with increasing dose. The supralinearity of all glow peaks increases to its f(D)max, which occurs around 50 kGy. No saturation occurs at f(D)max and further increases in dose, up to 1 MGy, exhibits a significant decrease in f(D). The glow peaks 2 (230 °C) and 4 (290 °C), deconvoluted by the usage of WinGCF software, are the first-order kinetic peaks and can be used as the main dosimetric peaks for high-dose measurements between 1 and 50 kGy in an industrial environment. - Highlights: • The supralinearity of FF was highly dependent on UHD. • f(D)max occurs around 50 kGy for 6 wt% Ge doped FF. • Peak 2 (230 °C) and peak 4 (290 °C) are the first-order kinetic peaks. • Sensitivity of FF decreases for doses >50 kGy

  18. Evidence of Low Dimensional Chaos in Glow Curves of Thermoluminescence

    CERN Document Server

    Conte, Elio

    2008-01-01

    Electron trapping following exposition to ionising radiations and consequent electron release during variation of temperature in solids represent processes happening at the quantum microphysical level. The interesting feature of the thermally stimulated process, that in fact deserves further investigation, is that the dynamic of electrons release during, variation of the temperature, here examined through the so called thermoluminescent Glow Curve, evidences chaotic and fractal regimes. Phase space reconstruction, Correlation Dimension, largest Lyapunov exponent, Recurrence Quantification Analysis(RQA) and fractal dimension analysis, developed by calculation of Hurst exponent, are performed on three samples. The results unequivocally fix that Glow Curves respond to a chaotic regime. RQA supports such results revealing the inner structure of Glow Curve signals in relation to their properties of recurrence, determinism and intermittency signed from laminarity as well as chaos-chaos and chaos order transitions.

  19. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  20. [The glow discharge as an atomization and ionization source

    International Nuclear Information System (INIS)

    This is to summarize the research progress in this project at the University of Florida over the past 13 months. In keeping with the directions of the Federal Demonstration Project, the report will be brief, presenting an overview of the major findings. We have continued the study of the glow discharge, primarily as an ionization source for elemental analysis. Glow discharge interest continues to grow in the analytical chemistry community as evidenced by the number of special symposia at major conferences, by the new researchers entering the field, and by the introduction of new instrumentation. There is little doubt that glow discharge mass spectrometry, for example, is now a major technique in the elemental analysis of solids

  1. Use of universal functional optimisation for TL glow curve analysis

    International Nuclear Information System (INIS)

    The effective use of any TL instrument requires an efficient software package to be able to fulfil different tasks required by research and practical applications. One of the standard features of the package used at the NPI Prague is the application of the interactive modular system Universal Functional Optimisation (UFO) for glow curve deconvolution. The whole system has been tested on standard glow curves using different models of the TL process (a single peak described by the Podgorsak approximation, first order kinetics and/or general order kinetics). Calculated values of basic TL parameters (E and s) show a good agreement with the results obtained by other authors. The main advantage of the system is in its modularity that enables flexible changes in the TL model and mathematical procedures of the glow curve analysis. (author)

  2. Glow discharge conditioning of the PDX vacuum vessel

    International Nuclear Information System (INIS)

    A glow discharge technique has been developed and applied to the conditioning of the large (38 m3) Poloidal Divertor Experiment (PDX) vacuum vessel. The discharge parameters and working gas (H2) were chosen to maximize C and O removal and minimize metal sputtering. The glow discharge was produced by biasing one or two internal anodes at 400 V to sustain a discharge current of 2 to 4 A per anode. Purified H2 at a pressure of 3 x 10-2 torr was flowed through PDX at approx. 10 t-l/s. The effectiveness of the glow discharge conditioning was monitored by measuring impurity gas (CH4, C2H4, and CO) exhaust rates by mass spectrometry and C and O surface removal rates by in-situ AES and XPS

  3. Realization of SOC behavior in a dc glow discharge plasma

    CERN Document Server

    Nurujjaman, M; Nurujjaman, Md.

    2006-01-01

    Experimental observations consistent with Self Organized Criticality (SOC) have been obtained in the electrostatic floating potential fluctuations of a dc glow discharge plasma. Power spectrum exhibits a power law which is compatible with the requirement for SOC systems. Also the estimated value of the Hurst exponent (self similarity parameter), H being greater than 0.5, along with an algebraic decay of the autocorrelation function, indicate the presence of temporal long-range correlations, as may be expected from SOC dynamics. This type of observations in our opinion has been reported for the first time in a glow discharge system.

  4. On the second kinetic order thermoluminescent glow curves

    International Nuclear Information System (INIS)

    The kinetic parameters of thermoluminescent material such as CaF2-N and CaSO4-Dy with the different grain sizes are investigated in detail using the least square method of fitting. It was found that the activation energy E (or trap depth) and peak temperature Tmax are changed with the elapsed time between the irradiation and read-out for the low temperature glow curve peaks. The similar TL glow curve shapes are obtained for the different CaSO4-Dy grain size. (author). 7 refs., 5 figs., 2 tabs

  5. Camp GLOW (Girls Leading Our World): Handbook for Volunteers.

    Science.gov (United States)

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Camp GLOW (Girls Leading Our World) began in Romania in 1995 as a weeklong leadership camp with the purpose of encouraging young women to become active citizens by building their self-esteem and confidence, increasing their self-awareness, and developing their skills in goal-setting, assertiveness, and career and life planning. Since that first…

  6. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  7. Glow discharge electron impact ionization source for miniature mass spectrometers.

    Science.gov (United States)

    Gao, Liang; Song, Qingyu; Noll, Robert J; Duncan, Jason; Cooks, R Graham; Ouyang, Zheng

    2007-05-01

    A glow discharge electron impact ionization (GDEI) source was developed for operation using air as the support gas. An alternative to the use of thermoemission from a resistively heated filament electron source for miniature mass spectrometers, the GDEI source is shown to have advantages of long lifetime under high-pressure operation and low power consumption. The GDEI source was characterized using our laboratory's handheld mass spectrometer, the Mini 10. The effects of the discharge voltage and pressure were investigated. Design considerations are illustrated with calculations. Performance is demonstrated in a set of experimental tests. The results show that the low power requirements, mechanical ruggedness, and quality of the data produced using the small glow discharge ion source make it well-suited for use with a portable handheld mass spectrometer. PMID:17441220

  8. Taylor discharge cleaning and glow discharge conditioning in Novillo tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, R.; Valencia A, R.; Colunga S, S.; Melendez L, L.; Chavez A, E.; Olayo G, G.; Gaytan G, E.; Cruz C, G.; Flores O, A.

    1993-12-31

    Both Taylor and Glow discharge conditioning techniques in Novillo Tokamak are applied. In each case the results are showed. The effectiveness of each one of these two conditioning techniques was monitored by measuring the gas impurities CH{sub 4}, C{sub 2}H{sub 4}, CO, C and O by means of mass spectrometry. In every case tokamak discharges were carried out after conditioning and the better plasma parameters obtained were used to determine the conditioning quality. A 20 kW, 17.5 kHz power oscillator was used for Taylor discharges. The oscillator energized the OHT, synchronized with a 200-700 G toroidal magnetic field. For the Glow discharges the same power oscillator DC voltage source was used to bias two SS electrodes with a 0-1500 V and 2 A maximum discharge current. (author) 5 refs., 2 figs.

  9. Glow Discharge Induced Hydroxyl Radical Degradation of 2-Naphthylamine

    Science.gov (United States)

    Lu, Quanfang; Yu, Jie; Gao, Jinzhang; Yang, Wu

    2005-06-01

    In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several other active species. Hydroxyl radical directly attacks organic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventually degraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed by using an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC) and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (c0 =30 mg·l-1) is completely converted within 2h at 30°C and 600 V by glow discharge electrolysis, and the degradation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absence of ferrous ions and descended in the presence of them.

  10. Glow Discharge Induced Hydroxyl Radical Degradation of 2-Naphthylamine

    Institute of Scientific and Technical Information of China (English)

    Lu Quanfang; Yu Jie; Gao Jinzhang; Yang Wu

    2005-01-01

    In an aqueous solution, normal electrolysis at high voltages switches over sponta-neously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, andaqueous electron, as well as several other active species. Hydroxyl radical directly attacks or-ganic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventuallydegraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed byusing an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC)and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (c0 =30 mg.1-1) iscompletely converted within 2h at 30℃ and 600 V by glow discharge electrolysis, and the degra-dation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absenceof ferrous ions and descended in the presence of them.

  11. Inception of Snapover and Gas Induced Glow Discharges

    Science.gov (United States)

    Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.

    2000-01-01

    Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.

  12. Effect of glow discharge air plasma on grain crops seed

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  13. The Use of DC Glow Discharges as Undergraduate Educational Tools

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

    2012-10-09

    Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

  14. Analysis of polymers by pulsed RF glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Glow discharge spectroscopy is widely used for elemental analysis and depth profiling of various inorganic materials. Capacitively coupled RF glow discharges allow the analysis of non-conductive materials, and pulsed RF operation allows the analysis of thermally sensitive samples like glasses. However, the glow discharge technique has been rarely used for analysis of organic materials. The instrument recently developed by Tofwerk AG and Horiba Jobin Yvon combines the pulsed RF glow discharge with a fast time-of-flight mass spectrometer and can be used for simultaneous detection of a large number of mass peaks that occur with organic materials. The instrument can also be operated in negative ion mode thus eliminating some of the interferences that normally appear in positive ion mode due to the argon process gas and residual impurities. Furthermore, the negative ion detection mode offers greater sensitivity for halogens. The sputtering process and subsequent plasma reactions produce a unique mass spectrum of molecular fragments for each polymer and this fingerprint mass spectrum can be used for identifying polymers. We generated fingerprint mass spectra for a set of polymers (PTFE, CTFE, PE, PET, PMMA) and we demonstrated depth profiling of polymer multilayers on a silicon and glass substrates. Unlike in SIMS, the depth profiling with GD-MS is very quick, complete depth profiles can be recorded within minutes. The method can also be used to detect inorganic traces in polymers that are frequently present as contaminants or residuals of catalysts used during the fabrication process. Our measurements showed the presence of lead in polyethylene and antimony in PET commercial samples. We also measured zinc in ZnO-doped ethylene-propylene-diene rubbers. The authors acknowledge the financial support from the EC through the GLADNET Marie Curie Research Training Network (MRTN-CT-2006-035459) and the EMDPA project (STREP-NMP n deg 032202).

  15. Investigation and application of hollow anode glow discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdelsalam, F.W.; Helal, A.G. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. Box 13759 Inchas, Cairo (Egypt); Saddeek, Y.B. [Physics Dep., Faculty of Science, AL-Azhar University in Assuitt, Assuitt (Egypt); Abdelrahman, M.M., E-mail: moustafa82003@yahoo.co [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. Box 13759 Inchas, Cairo (Egypt); Soliman, B.A. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.O. Box 13759 Inchas, Cairo (Egypt)

    2010-11-15

    In the present work, a new shape of a glow discharge ion source has been designed, fabricated and constructed at Accelerators and Ion Sources Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Egypt. The discharge and output beam characteristics of the ion source at different operating gas pressures have been measured at the optimum distance between the anode and the cathode (3.5 mm) using hydrogen and nitrogen gases. Furthermore, mixture of different gases was studied, e.g., addition of H{sub 2} gas to N{sub 2} gas with different ratios has been investigated. Finally, as an application of this new ion source, ion beam modification of insulators (glass) which depends on glass structure has been achieved. It has been found that, the transmission of light is decreased by coating the glass surface with Ar ion beam more than coating with plasma of Ar gas at the same pressure and the same exposure time. So we could use this ion source as a coating tool for borate glass surface. The parameters affected the glow discharge ion source efficiency have been examined carefully using a mixture of gases. Using helium gas, the glow discharge is in a turbulent state due to instabilities. An investigated H{sub 2}-N{sub 2} mixture has been used in order to obtain an optimum percentage of the mixture of the two gases to increase the electric field necessary for ionization balance.

  16. Study on the tokamak training technique by glow discharge

    International Nuclear Information System (INIS)

    Methods of vacuum chamber cleaning by glow and powerful discharges ahve been checked on the T-12 installation (the great radius is 36 cm, the small radius is 8 cm). The state of the inner wall surface of the chamber was analyzed by a diagnostic station, and the control of the residual gas spectrum in the installation was performed by omegatron analyzer. The diagnostic station consists of three main assemblies: a high-vacuum chambe of three main assemblies: a high-vacuum chamber in which the sample surface is analyzed, the system of sample transportation into the analyzer chamber and an autonomic system of vacuum pumping. The glow discharge was switched on in the atmosphere of hydrogen, helium, argon. It is found out that the technique of cleaning vacuum volumes by glow discharge is rather effective in comparison with other techniques. It permits to reduce the time of putting the tokamak into operational mode after filling the tokamak with atmosphere. The technique is notable for simplicity and a great safety as well

  17. Role of electronic mechanisms in surface erosion and glow phenomena

    International Nuclear Information System (INIS)

    Experimental studies of desorption induced by electronic transitions (DIET) are described. Such studies are producing an increasingly complete picture of the dynamical pathways through which incident electronic energy is absorbed and rechanneled to produce macroscopic erosion and glow. These mechanistic studies can determine rate constants for erosion and glow processes in model materials and provide valuable guidance in materials selection and development. Extensive experiments with electron, photon, and heavy particle irradiation of alkali halides and other simple model materials have produced evidence showing that: (1) surface erosion, consisting primarily in the ejection or desorption of ground-state neutral atoms, occurs with large efficiencies for all irradiated species; (2) surface glow, resulting from the radiative decay of desorbed atoms, likewise occurs for all irradiating species; (3) the typical mechanism for ground-state neutral desorption is exciton formation, followed by relaxation to a permanent, mobile electronic defect which is the precursor to bond-breaking in the surface or near-surface bulk of the material; and (4) the mechanisms for excited atom formation may include curve crossing in atomic collisions, interactions with surface defect or impurity states, or defect diffusion

  18. Glow discharge optical emission of plutonium and plutonium waste

    International Nuclear Information System (INIS)

    The application of glow discharges to the analysis of nonconducting materials such as glasses and ceramics is of great interest due to the number of advantages afforded by their direct solids capabilities. These types of samples, by their chemical nature, pose difficulties in dissolution for their subsequent analysis by common spectroscopic instrumental methods such as inductively coupled plasma atomic emission (ICP-AES). The ability of the glow discharge to sputter-atomize and excite solid nonconducting materials greatly reduces sample preparation time, cost, and complexity of an analysis. In comparison with x-ray spectroscopies, GD also provides the advantage of a relatively uniform sample atomization rate, resulting in a lowering of matrix effects. In a traditional direct current glow discharge (dc-GD), the material to be analyzed must first be ground and thoroughly mixed with a conductive host matrix and pressed into a solid pellet. Additionally, atmospheric gases which are often trapped in the sample upon pressing can degrade the quality of the plasma and obscure analytical results by reducing sputtering rates and affecting excitation conditions. Internal standardization has been carried out in both atomic absorption and emission dc-GD analyses in order to improve precision and accuracy which are affected by these problems

  19. Radiation response of thermoluminescence glow peaks separated using a glow curve fitting method for red emission from quartz

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki-Woung [Chungcheong Cultural Properties Research Institute, Gongju, Chungcheongnam-Do 314-923 (Korea, Republic of); Department of Physics, Kangwon National University, Chuncheon, Kangwon-Do 200-701 (Korea, Republic of); Yun, Kyong-Ku [Department of Civil Engineering, Kangwon National University, Chuncheon, Kangwon-Do 200-701 (Korea, Republic of); Hong, Duk-Geun [Department of Physics, Kangwon National University, Chuncheon, Kangwon-Do 200-701 (Korea, Republic of)], E-mail: dghong@kangwon.ac.kr

    2009-05-15

    Red thermoluminescence (TL) emission from quartz has attracted considerable attention in the fields of retrospective dosimetry and luminescence dating, due to the high dose saturation level and long-term stability of the TL signal. For two red emission quartz samples of volcanic origin (Yuda sample from Iwate Prefecture and Tazawa sample from Akita Prefecture in Japan), we investigated the radiation dose response of TL glow peaks separated using a glow curve fitting method. The radiation dose response of the separated peaks was examined using a growth curve based on the SAR TL protocol. The 260 deg. C, 290 deg. C and 320 deg. C peaks for the Yuda sample and the 270 deg. C and 320 deg. C peaks for the Tazawa sample showed a supralinear response up to 300 Gy, whereas the 370 deg. C peak for both samples behaved linearly.

  20. Ion diffusion into metals by double glow discharge. A new plasma surface alloying technique

    International Nuclear Information System (INIS)

    The diffusion of ions into a metal by double glow discharge--a new plasma surface alloying technique--is presented. An enhanced discharge caused by double glow cross-interaction is introduced as a special discharge. The conditions and physics of double glow cross-interaction are discussed. The effects of this cross-interaction on plasma surface alloying are also discussed. Experimental results and industrial applications as well as future industrialization and problems of application and promotion are mentioned

  1. Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO3 phosphor

    Science.gov (United States)

    Tiwari, Ratnesh; Chopra, Seema

    2016-05-01

    The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er3+ (1 mol%) doped CaZrO3 phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.

  2. Comparative Spectroscopic Temperature Measurements In Hydrogen Hollow Cathode Glow Discharge

    Science.gov (United States)

    Majstorovic, G. Lj.; Šišovic, N. M.; Konjevic, N.

    2010-07-01

    We report results of optical emission spectroscopy measurements of rotational Trot and translational temperature Ttr of hydrogen molecules. The light source was hollow cathode glow discharge with titanium cathode operated in hydrogen at low pressure. The rotational temperature of excited electronic states of H2 was determined either from relative line intensities of the R branch of the GK ? B band or from the Q branch of the Fulcher-a diagonal band. The population of excited energy levels, determined from relative line intensities, was used to derive ro-vibronic temperature of the ground state of hydrogen molecule.

  3. Profiles of Methane Dimerization with a Glow Discharge Plasma System

    OpenAIRE

    Tanabe, Shuji; Okitsu, Kenji; Matsumoto, Hiroshige

    1999-01-01

    The dimerization of methane in the absence of oxygen has been investigated in order to evaluate a newly-developed glow-discharge plasma reactor operated at atmospheric pressure. A homogeneous circular plasma zone is observed between two electrodes of a rotor and a stator, the former of which is rotating at a high speed to make a larger reaction zone. It was recognized that in a stream of flowing helium that methane is converted to C 2 hydrocarbons at high selectivities which decreased with th...

  4. Glow discharge lamp: A light source for optical emission spectroscopy

    Science.gov (United States)

    Vishwanathan, K. S.; Srinivasan, V.; Nalini, S.; Mahalingam, T. R.

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emission spectrography by standardizing a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii, and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent.

  5. Glow discharge lamp: a light source for optical emission spectroscopy

    International Nuclear Information System (INIS)

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emmission spectrography by standardising a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent. (author). 19 re fs., 13 figs., 2 tabs

  6. Glow discharge assisted oxynitriding process of titanium for medical application

    Science.gov (United States)

    Wierzchoń, Tadeusz; Czarnowska, Elżbieta; Grzonka, Justyna; Sowińska, Agnieszka; Tarnowski, Michał; Kamiński, Janusz; Kulikowski, Krzysztof; Borowski, Tomasz; Kurzydłowski, Krzysztof J.

    2015-04-01

    The plasma oxynitriding process is a prospective method of producing titanium oxides as an integral part of a diffusive nitrided surface layer on titanium implants. This hybrid process, which combines glow discharge assisted nitriding and oxidizing, permits producing TiO2 + Ti2N + αTi(N)-type diffusive surface layers. The oxynitrided surface layers improve the corrosion and wear resistance of the substrate material. Additionally, the nanocrystalline titanium oxide TiO2 (rutile) improves the biological properties of titanium and its alloys when in contact with blood, whereas the TiN + Ti2N + αTi(N) zone eliminates the effect of metalosis.

  7. Reproducing continuous radio blackout using glow discharge plasma

    International Nuclear Information System (INIS)

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 109 to 2.5 × 1011 cm−3. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths

  8. Dual-frequency glow discharges in atmospheric helium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaojiang; Guo, Ying [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Dai, Lu [School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-10-15

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power.

  9. Dual-frequency glow discharges in atmospheric helium

    International Nuclear Information System (INIS)

    In this paper, the dual-frequency (DF) glow discharges in atmospheric helium were experimented by electrical and optical measurements in terms of current voltage characteristics and optical emission intensity. It is shown that the waveforms of applied voltages or discharge currents are the results of low frequency (LF) waveforms added to high frequency (HF) waveforms. The HF mainly influences discharge currents, and the LF mainly influences applied voltages. The gas temperatures of DF discharges are mainly affected by HF power rather than LF power

  10. A review on chemical effects in aqueous solution induced by plasma with glow discharge

    International Nuclear Information System (INIS)

    Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE

  11. Simulation of the influence of thermal quenching on thermoluminescence glow-peaks

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, B.; Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Pagonis, V. [Physics Department, McDaniel College, Westminster, MD 21157 (United States)

    2010-05-15

    The thermal quenching of luminescence efficiency is an effect which is present in many thermoluminescent (TL) materials. It causes a significant decrease of the luminescence signal and disturbs the shape of the glow-peaks. Therefore, in principle, the thermoluminescence kinetics theory cannot describe TL glow-peaks influenced by thermal quenching. In the present work a detailed simulation of the influence of the thermal quenching effect on thermoluminescence glow-peaks is presented. Specifically we study the shift of the quenched glow-peak with heating rate and the effect on the various heating rate methods, the influence on the symmetry factor and the kinetic order of the glow-peak, and the effect of thermal quenching on the initial rise and peak shape methods for evaluating kinetic parameters. Furthermore, the evaluation of the thermal quenching parameters using the quenched glow-peak and the possibility of using the conventional expression describing a single glow-peak to fit the quenched glow peaks are also investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Numerical analysis of thermoluminescence glow curves; Analisis numerico de las cruvas de termoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Ros, J. M.; Delgado, A.

    1989-07-01

    This report presents a method for the numerical analysis of complex thermoluminescence glow curves resolving the individual glow peak components. The method employs first order kinetics analytical expressions and is based In a Marquart-Levenberg minimization procedure. A simplified version of this method for thermoluminescence dosimetry (TLD) is also described and specifically developed to operate whit Lithium Fluoride TLD-100. (Author). 36 refs.

  13. Multiple solutions in the theory of dc glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P G C; Benilov, M S; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2010-04-15

    Multiple steady-state solutions existing in the theory of dc glow discharges are computed for the first time. The simulations are performed in 2D in the framework of the simplest self-consistent model, which accounts for a single ion species and employs the drift-diffusion approximation. Solutions describing up to nine different modes were found in the case where losses of the ions and the electrons due to diffusion to the wall were neglected. One mode is 1D, exists at all values of the discharge current, and represents in essence the well-known solution of von Engel and Steenbeck. The other eight modes are axially symmetric, exist in limited ranges of the discharge current, and are associated with different patterns of current spots on the cathode. The mode with a spot at the centre of the cathode exhibits a well pronounced effect of normal current density. Account of diffusion losses affects the solutions dramatically: the number of solutions is reduced, a mode appears that exists at all discharge currents and comprises the Townsend, subnormal, normal and abnormal discharges. The solutions that exist in limited current ranges describe patterns, and these patterns seem to represent axially symmetric analogues of the 3D patterns observed in dc glow microdischarges in xenon.

  14. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  15. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  16. Glow curve analysis of composite peak 5 in LiF:Mg,Ti (TLD-100) using optical bleaching, thermal annealing and computerised glow curve deconvolution

    International Nuclear Information System (INIS)

    The relative intensity of glow peak 5a in the composite glow peak 5 of LiF:Mg,Ti (TLD-100) is very weak following gamma irradiation, and has been estimated at approximately 0.1 of the intensity of peak 5. Typical glow curve analysis using computerised glow curve deconvolution with unconstrained variation of the peak shape parameters, yields values of the relative intensity of glow peak 5a varying from 0 to 15%. Due to the potential of peak 5a to fulfil the criteria of a quasi-tissue-equivalent nanodosemeter which estimates quality factor, considerable efforts have been invested in ancillary techniques to improve the reliability of the estimation of the intensity of peak 5a. Optical bleaching and thermal annealing techniques were used to obtain single-peak glow curves consisting of peak 4 only and peak 5 only. A multi-stage CGCD protocol was then constructed using these peak shape parameters for peaks 4 and 5, which allows more accurate estimation of the relative intensity of peak 5a. Following 60Co irradiation of ten chips to a dose level of 1 Gy, the technique yields a relative intensity of 0.08±0.008 (1 SD). (author)

  17. GCAFIT-A new tool for glow curve analysis in thermoluminescence nanodosimetry

    International Nuclear Information System (INIS)

    Glow curve analysis is widely used for dosimetric studies and applications. Therefore, a new computer program, GCAFIT, for deconvoluting first-order kinetics thermoluminescence (TL) glow curves and evaluating the activation energy for each glow peak in the glow curve has been developed using the MATLAB technical computing language. A non-linear function describing a single glow peak is fitted to experimental points using the Levenberg-Marquardt least-square method. The developed GCAFIT software was used to analyze the glow curves of TLD-100, TLD-600, and TLD-700 nanodosimeters. The activation energy E obtained by the developed GCAFIT software was compared with that obtained by the peak shape methods of Grossweiner, Lushchik, and Halperin-Braner. The frequency factor S for each glow peak was also calculated. The standard deviations are discussed in each case and compared with those of other investigators. The results show that GCAFIT is capable of accurately analyzing first-order TL glow curves. Unlike other software programs, the developed GCAFIT software does not require activation energy as an input datum; in contrast, activation energy for each glow peak is given in the output data. The resolution of the experimental glow curve influences the results obtained by the GCAFIT software; as the resolution increases, the results obtained by the GCAFIT software become more accurate. The values of activation energy obtained by the developed GCAFIT software a in good agreement with those obtained by the peak shape methods. The agreement with the Halperin-Braner and Lushchik methods is better than with that of Grossweiner. High E and S values for peak 5 were observed; we believe that these values are not real because peak 5 may in fact consist of two or three unresolved peaks. We therefore treated E and S for peak 5 as an effective activation energy, Eeff, and an effective frequency factor, Seff. The temperature value for peak 5 was also treated as an effective quantity

  18. GCAFIT—A new tool for glow curve analysis in thermoluminescence nanodosimetry

    Science.gov (United States)

    Abd El-Hafez, A. I.; Yasin, M. N.; Sadek, A. M.

    2011-05-01

    Glow curve analysis is widely used for dosimetric studies and applications. Therefore, a new computer program, GCAFIT, for deconvoluting first-order kinetics thermoluminescence (TL) glow curves and evaluating the activation energy for each glow peak in the glow curve has been developed using the MATLAB technical computing language. A non-linear function describing a single glow peak is fitted to experimental points using the Levenberg-Marquardt least-square method. The developed GCAFIT software was used to analyze the glow curves of TLD-100, TLD-600, and TLD-700 nanodosimeters. The activation energy E obtained by the developed GCAFIT software was compared with that obtained by the peak shape methods of Grossweiner, Lushchik, and Halperin-Braner. The frequency factor S for each glow peak was also calculated. The standard deviations are discussed in each case and compared with those of other investigators. The results show that GCAFIT is capable of accurately analyzing first-order TL glow curves. Unlike other software programs, the developed GCAFIT software does not require activation energy as an input datum; in contrast, activation energy for each glow peak is given in the output data. The resolution of the experimental glow curve influences the results obtained by the GCAFIT software; as the resolution increases, the results obtained by the GCAFIT software become more accurate. The values of activation energy obtained by the developed GCAFIT software a in good agreement with those obtained by the peak shape methods. The agreement with the Halperin-Braner and Lushchik methods is better than with that of Grossweiner. High E and S values for peak 5 were observed; we believe that these values are not real because peak 5 may in fact consist of two or three unresolved peaks. We therefore treated E and S for peak 5 as an effective activation energy, Eeff, and an effective frequency factor, Seff. The temperature value for peak 5 was also treated as an effective quantity

  19. Intrinsic Noise Induced Coherence Resonance in a Glow discharge Plasma

    CERN Document Server

    Shaw, Pankaj Kumar; Ghosh, S; Janaki, M S; Iyengar, A N S

    2014-01-01

    Experimental evidence of intrinsic noise induced coherence resonance in a glow discharge plasma is being reported. Initially the system is started at a discharge voltage (DV) where it exhibited fixed point dynamics, and then with the subsequent increase in the DV spikes were excited which were few in number and with further increase of DV the number of spikes as well as their regularity increased. The regularity in the interspike interval of the spikes is estimated using normalized variance (NV). Coherence resonance was determined using normalized variance curve and also corroborated by Hurst exponent and power spectrum plots. We show that the regularity of the excitable spikes in the floating potential fluctuation increases with the increase in the DV, upto a particular value of DV. Using a Wiener filter, we separated the noise component which was observed to increase with DV and hence conjectured that noise can be playing an important role in the generation of the coherence resonance. From an anharmonic osc...

  20. Accurate models of collisions in glow discharge simulation

    International Nuclear Information System (INIS)

    Very detailed, self-consistent kinetic glow discharge simulations are used to examine the effect of various models of collisional processes. The effects of allowing anisotropy in elastic electron collisions with neutral atoms instead of using the momentum transfer cross-section, the effects of using an isotropic distribution in inelastic electron-atom collisions, and the effects of including a Coulomb electron-electron collision operator are all described. It is shown that changes in any of the collisional models, especially the second and third described above, can make a profound difference in the simulation results. This confirms that many discharge simulations have great sensitivity to the physical and numerical approximations used. The results reinforce the importance of using a kinetic theory approach with highly realistic models of various collisional processes

  1. High-pressure dc glow discharges in hollow diamond cathodes

    Science.gov (United States)

    Truscott, B. S.; Turner, C.; May, P. W.

    2016-04-01

    We report the generation and characterization of dc helium microdischarges at several times atmospheric pressure in monolithic diamond hollow-cathode devices having cavity diameters on the order of 100 μm. I-V characteristics indicated operation in the glow discharge regime even at nearly 10 atm, while spectroscopic measurements of the N2 C3Πu  →  B3Πg emission returned rotational temperatures always around 420 K, with a pressure-dependent vibrational population distribution. The variation of breakdown voltage with pressure closely followed Paschen’s law, but with offsets in both axes that we tentatively ascribe to strong diffusive loss and a partial thermalization of electron energies under the high pressures considered here.

  2. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model

    Science.gov (United States)

    Duriscoe, Dan M.

    2013-11-01

    Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth's surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.

  3. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    Science.gov (United States)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  4. Note: Rapid reduction of graphene oxide paper by glow discharge plasma

    International Nuclear Information System (INIS)

    This note reports on a novel method for the rapid reduction of graphene oxide (GO) paper using a glow discharge plasma reactor. Glow discharge is produced and sustained between two parallel-plate graphite electrodes at a pressure of 240 mTorr. By exposing GO paper at the junction of negative-glow and Faraday-dark area for 4 min, the oxygen-containing groups can be effectively removed (C/O ratio increases from 2.6 to 7.9), while the material integrality and flexibility are kept well. Electrochemical measurements demonstrate that the as-obtained reduced GO paper can be potentially used for supercapacitor application

  5. Aspects of Metal Surface Glowing Mechanisms with Intensive Electron Beam Bombardment

    Directory of Open Access Journals (Sweden)

    I.V. Barsuk

    2012-06-01

    Full Text Available The paper gives a brief description and analysis of the main physical processes which can have an effect on the glowing nature of metal element surfaces in different electric vacuum devices when they are bombarded by electron beams. It has been found that the electron glowing effects on metal surfaces according to the electron energy can be explained with the help of the transition scattering on plasma waves or just with the classical transition radiation effect. This fact is rather important in terms of classical physics interpretation of the observed glowing effects on metal surface elements and techniques optimization of metal and electron beams diagnostics as well.

  6. Non-local model of hollow cathode and glow discharge - theory calculations and experiment comparison

    OpenAIRE

    Gorin, Vladimir V.

    2009-01-01

    General form of the non-local equation for an ionization source in glow discharge and hollow cathode 3D-simulation is formulated. It is a fundamental equation in a hollow cathode theory, which allows to make up a complete set of field equations for a self-consistent problem in a stationary glow discharge and a hollow cathode. It enables to describe adequately the region of negative glow and the hollow cathode effect. Here you can see first attempts to compare calculation results of electrical...

  7. Thermoluminescence glow curve deconvolution and its statistical analysis using the flexibility of spreadsheet programs

    International Nuclear Information System (INIS)

    Analysing thermoluminescence glow curves involves the solving of a system of non-linear equations. These equations are either differential equations that must be solved numerically or functional approximations for their solution. The current paper presents software with the functions needed for the study of glow curves that is not a stand-alone computer program but an extension of MS Excel. It supplies functions that solve the general one trap model for the thermoluminescence process without the use of approximating functions. Combined with the Solver utility of Excel this gives a very flexible system for the analysis of glow curves. Functions for analysing the statistics of the deconvolution results are included. (authors)

  8. Control of glow discharge parameters using transverse supersonic gas flow - numerical experiment

    International Nuclear Information System (INIS)

    A low pressure glow discharge in a transverse supersonic gas flow was studied by numerical modelling for the case where the flow only partially fills the interelectrode gap. It's shown that by organizing a supersonic gas flow in a limited region of the interelectrode space can be controlled combustion conditions of the glow discharge, and its parameters. It is shown that it is possible to achieve stable combustion glow discharge at low and superlow pressures, when the parameter pL lies on the left branch of the Paschen curve

  9. Note: Rapid reduction of graphene oxide paper by glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Zheng; Qian, Jiajing; Duan, Liangping; Qiu, Kunzan, E-mail: qiukz@zju.edu.cn; Yan, Jianhua; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Han, Zhao Jun [CSIRO Manufacturing Flagship, P.O. Box 218, Bradfield Road, Lindfield, New South Wales 2070 (Australia); Ostrikov, Kostya [CSIRO Manufacturing Flagship, P.O. Box 218, Bradfield Road, Lindfield, New South Wales 2070 (Australia); Institute for Future Environments and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia)

    2015-05-15

    This note reports on a novel method for the rapid reduction of graphene oxide (GO) paper using a glow discharge plasma reactor. Glow discharge is produced and sustained between two parallel-plate graphite electrodes at a pressure of 240 mTorr. By exposing GO paper at the junction of negative-glow and Faraday-dark area for 4 min, the oxygen-containing groups can be effectively removed (C/O ratio increases from 2.6 to 7.9), while the material integrality and flexibility are kept well. Electrochemical measurements demonstrate that the as-obtained reduced GO paper can be potentially used for supercapacitor application.

  10. Potential industrial applications of the one atmosphere uniform glow discharge plasma operating in ambient air

    International Nuclear Information System (INIS)

    The majority of industrial plasma processing is conducted with glow discharges at pressures below 10 Torr. This tends to limit such applications to high value workpieces, as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be generated at 1 atm and in air. The one atmosphere uniform glow discharge plasma (OAUGDP registered ) has these capabilities. As a normal glow discharge, the OAUGDP registered can operate with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum. This paper will survey exploratory investigations at the University of Tennessee's Plasma Sciences Laboratory of seven potential industrial applications of the OAUGDP registered which can be conducted at 1 atm and at room temperature with air as the working gas

  11. A single TiO2-coated side-glowing optical fiber for photocatalytic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    HU Yan; XU Jingjing; YUAN Chunwei; LIN Jian; YIN Zhidong

    2005-01-01

    By means of TiO2-layer-on-SiO2-layer, anatase TiO2 was deposited on novel side- glowing optical fibers, which can provide side UV radiation along the whole fiber length. FE-SEM images show that the double layers adhered well to the side-glowing optical fiber, and the TiO2 coating was homogeneous and smooth. The decomposition reaction of reactive brilliant red dye X-3B on a single TiO2-coated side-glowing optical fiber indicated that the side-scattering UV light intensity was strong enough for photocatalytic oxidation reaction. Therefore, TiO2-coated side-glowing optical fibers open up a new way to use the optical fiber reactor in photocatalytic wastewater treatment.

  12. Microhollow Glow Discharge Instrument for In Situ Lunar Surface Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and Penn State University (PSU) propose to develop a highly sensitive spectrometer based on glow discharge plasma emission for the...

  13. A computerized glow curve analysis (GCA) method for WinREMS thermoluminescent dosimeter data using MATLAB

    International Nuclear Information System (INIS)

    A computerized glow curve analysis (GCA) program for handling of thermoluminescence data originating from WinREMS is presented. The MATLAB program fits the glow peaks using the first-order kinetics model. Tested materials are LiF:Mg,Ti, CaF2:Dy, CaF2:Tm, CaF2:Mn, LiF:Mg,Cu,P, and CaSO4:Dy, with most having an average figure of merit (FOM) of 1.3% or less, with CaSO4:Dy 2.2% or less. Output is a list of fit parameters, peak areas, and graphs for each fit, evaluating each glow curve in 1.5 s or less. - Highlights: → Robust algorithm for performing thermoluminescent dosimeter glow curve analysis. → Written in MATLAB so readily implemented on variety of computers. → Usage of figure of merit demonstrated for six different materials.

  14. Effect of Ne Glow Discharge on Ion Density Control in LHD

    Institute of Scientific and Technical Information of China (English)

    S.Morita; M. Goto; S. Masuzaki; H. Suzuki; K. Tanaka; H. Nozato; Y. Takeiri; J. Miyazawa; LHD esperimental group

    2004-01-01

    Neon glow discharge cleaning was firstly attempted in Large Helical Device (LHD) instead of He glow discharge to remove hydrogen neutrals and to control the ion density, ni. The Ne glow discharge continued for 8 hours overnight after a three-day experiment. At the second night Halpha emission became weaker than the emission usually observed in the He glow discharge. A clear reduction of the hydrogen influx was also observed in neutral beam injection (NBI) discharges with Ne puff, whereas the neon recycling was strongly enhanced with appearance of a flat density profile. As a result, the lowest density limit was further reduced down to 0.2 times10 13 ,cm-3. The use of Ar puff formed a peaked density profile with a high Ti of 7 keV.

  15. CALCULATION OF BIMETAL PLATE BENDING FORCE OF A GLOW DISCHARGE STARTER

    OpenAIRE

    Akimov, V.; Mukha, L.

    2005-01-01

    Calculation techniques of bending power of bimetal plate electrode causing its displacement in the direction of the electrode of glow discharge starter have been represented. Calculation of bimetal electrode displacement has been conducted in correspondence with the chosen scheme.

  16. A new algorithm for identifying abnormal glow curves in thermoluminescence personal dosimetry

    International Nuclear Information System (INIS)

    In this paper an algorithm for the investigation of routine curves in thermoluminescence personnel dosimetry is presented. In rare cases, the luminescence glow curves do not exhibit the expected form. They have an abnormal shape as a result of, for example, external contamination, hardware problems, and poor heat transfer. So, glow curves from a monthly exposure period are compared with regular glow curves. Each curve is divided into four regions of interest (ROIs) and the relationship between the different ROIs are analysed. There are few criteria combining all four ROIs, which are necessary to distinguish between normal and abnormal glow curves. For that, the numerical value and the channel of the curves maximum also need to be considered. In most cases an additional set of criteria permits the identification of the ROI in which the irregularity occurs. (author)

  17. Does exclusion of protest zeros and warm-glow bidders cause selection bias in Contingent Valuation?

    DEFF Research Database (Denmark)

    Grammatikopoulou, Ioanna; Olsen, Søren Bøye; Pouta, Eija

    the true WTP due to protest behavior. We conduct a contingent valuation study to estimate the WTP for conserving a Natura 2000 wetland area in Greece. We find that 54% of the positive bidders exert warm glow motivations while 29% of all responses can be classified as protest zero bids. We employ three...... different models to test for the potential impacts of how these positive warm glow and protest zero bidders are treated. We first exclude the warm glow cases, secondly we include them, and, finally, we correct for selection bias by using the Full Information Maximum Likelihood method for grouped data model....... Our findings show that removal of warm glow positive bidders does not distort the WTP estimate in any significant way. However, using the same approach for protest zero bidders, we find strong evidence of selection bias associated with removal of protest zero responses. Specifically, WTP estimates...

  18. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    Science.gov (United States)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  19. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    OpenAIRE

    T. Frączek; Olejnik, M.; Jasiñski, J.; Skuza, Z.

    2011-01-01

    The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application...

  20. Surface modification of austenitic steel by various glow-discharge nitriding methods

    OpenAIRE

    Tomasz Borowski; Bogusława Adamczyk-Cieślak; Agnieszka Brojanowska; Krzysztof Kulikowski; Tadeusz Wierzchoń

    2015-01-01

    Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method), and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage inc...

  1. Effects of norms, warm-glow and time use on household recycling

    OpenAIRE

    Halvorsen, Bente

    2004-01-01

    Abstract: The aim of this paper is to quantify the relative importance of motivations based on warm-glow, social and moral norms and cost of time used recycling on household recycling efforts. We also test for crowding-out of intrinsic motivations when recycling is perceived as mandatory. We find that the most important variable increasing household recycling efforts is agreeing that recycling is a pleasant activity in itself, which may be interpreted as a warm-glow effect. The...

  2. Kinetic parameters, bleaching and radiation response of thermoluminescence glow peaks separated by deconvolution on Korean calcite

    Science.gov (United States)

    Kim, Ki-Bum; Hong, Duk-Geun

    2014-10-01

    Calcite has been of particular interest in studies of thermoluminescence (TL) because of its geological and archeological importance. Although extensive research on the TL glow curves of calcite has been conducted, most previous works have been based on the TL intensity integrated over a particular temperature range on the glow curve, without any separation of peaks. In this paper, the physical characteristics of the overlapping peaks in the TL glow curves of a calcite sample are investigated. These properties can provide useful information for determining the radiation dose absorbed to the sample in radiation dosimetry and luminescence dating research. The Tm-Tstop method is employed to identify the number of hidden glow peaks, and the kinetic parameters of each separated glow peak, including the thermal activation energy, kinetic order, and frequency factor, are evaluated using a computerized glow curve deconvolution (CGCD) method. The Tm-Tstop method indicates that the glow curve of calcite is the superposition of at least four components (P1 - P4) in the temperature range between room temperature and 450 °C. A bleaching experiment for two separated glow peaks (P3 and P4) using a solar simulator revealed that the bleaching rates of peak P3 show two exponential decays, and after bleaching, the TL intensity of peak P3 is reduced to approximately 4% of the initial value. In contrast, peak P4 is bleached exponentially to approximately 30% of the initial TL intensity and thereafter shows no detectable change in intensity. In addition, in a study of the radiation dose response of the two peaks, both peaks have a similar pattern, exhibiting a linear increment up to the maximum dose investigated, 520 Gy.

  3. DC normal glow discharges in atmospheric pressure atomic and molecular gases

    International Nuclear Information System (INIS)

    DC glow discharges were experimentally investigated in atmospheric pressure helium, argon, hydrogen, nitrogen and air. The discharges were characterized by visualization of the discharges and voltage and current measurements for current of up to several milliamperes. Significant differences are seen in the gas temperature; however all the discharges appear to operate as temperature and pressure scaled versions of low pressure discharges. In the normal glow discharges, features such as negative glow, Faraday dark space and positive column regions are clearly observable. In hydrogen and to a lesser degree in helium and argon standing striations of the positive column were visible in the normal glow regime. Normal glow characteristics such as normal current density at the cathode and constant electric field in the positive column are observed although there are some unexplained effects. The emission spectra for each of the discharges were studied. Also the rotational and vibrational temperature of the discharges were measured by adding trace amounts of N2 to the discharge gas and comparing modeled optical emission spectra of the N2 2nd positive system with spectroscopic measurements from the discharge. The gas temperatures for a 3.5 mA normal glow discharge were around 420 K, 680 K, 750 K, 890 K and 1320 K in helium, argon, hydrogen, nitrogen and air, respectively. Measured vibrational and excitation temperatures indicate non-thermal discharge operation. Mixtures of gases achieved intermediate temperatures.

  4. TL glow curve analysis of UV, beta and gamma induced limestone collected from Amarnath holy cave

    Directory of Open Access Journals (Sweden)

    Vikas Dubey

    2015-01-01

    Full Text Available The paper reports themoluminescence glow curve analysis of UV (ultraviolet, β (beta and γ (gamma induced limestone collected from Amarnath holy cave. The collected natural sample was characterized by X-ray diffraction (XRD technique and crystallite size calculated by Scherer's formula. Surface morphology and particle size was calculated by transmission electron microscopy (TEM study. Effect of annealing temperature on collected lime stone examined by TL glow curve study. The limestone was irradiated by UV radiation (254 nm source and the TL glow curve recorded for different UV exposure time. For beta irradiation Sr90 source was used and is shows intense peak at 256 °C with a shoulder peak at higher temperature range. For gamma radiation Co60 source and TL glow curve recorded for different doses of gamma. The kinetic parameters calculation was performed for different glow curve by computerized glow curve deconvolution (CGCD technique. The chemical composition of natural limestone was analyzed by energy dispersive X-ray spectroscopy (EDXS.

  5. Pulsed RF discharges, glow and filamentary mode at atmospheric pressure in argon

    International Nuclear Information System (INIS)

    The properties of a pulsed radio frequency capacitive discharge are investigated at atmospheric pressure in argon. The discharge can operate in two different modes: a homogeneous glow discharge or turn into filaments. By pulsing the 13.56 MHz generator both the filamentary and the glow modes can be selected depending on the pulse width and period. For a 5 μs pulse width (∼70 RF cycles in the pulse), short pulse periods (less than 100 μs) result in a filamentary discharge while long pulse periods (greater than 1 ms) result in a glow discharge. Optical emission spectroscopy and power measurements were performed to estimate the plasma temperature and density. Water vapour was introduced to the discharge as a source of hydrogen and the Stark broadening of the Balmer Hβ line was measured to allow the plasma density to be estimated as 1015 cm-3 in the filamentary mode. The estimation of the glow mode density was based on power balance and yielded a density of 5 x 1011 cm-3. Emission line ratio measurements coupled with the Saha equation resulted in an estimate of electron temperature of approximatively 1.3 eV for the glow mode and 1.7 eV for the filaments. Using the glow mode at a duty cycle of 10% is effective in decreasing the hydrophobicity of polymer films while keeping the temperature low

  6. Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)

    Science.gov (United States)

    Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.

    2011-04-01

    The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.

  7. Is this an arc or a glow discharge?

    International Nuclear Information System (INIS)

    A well known criterion for distinguishing an arc discharge from a glow discharge is a low voltage drop (10--30 V) and a high current density that varies from a few tens to 106 A/cm2 depending on arc type. The high current density is an attribute of arcs with cathode spots. The authors report here a study of the mechanism of emission in cathode spot arc where they realized a spotless discharge with a low voltage drop (30--50 V) and a high mean current density (104--106 A/cm2). The discharge was initiated between a broad cathode and point anode. The cathode was a smooth tungsten sphere electrode of about 100 μm in diameter. The point anode was made of various materials (Mo, Cu, Cd) with initial radius 1 μm. Before the experiment the cathode was cleaned by heating at 2,000 K at high vacuum (10-8 Torr). The discharge was initiated by self-breakdown when electrodes under the voltage 200--500 V were brought to close proximity with each other. The cathode-anode spacing d at the moment of breakdown was estimated to be < 1 μm. The discharge current was varied within 1--3 A by changing the applied voltage and impedance of coaxial cable generator. The discharge burned during 100--1,000 ns. After the single discharge the cathode and anode were examined with a scanning electron microscope. The cathode surface exposed to the discharge was smooth, i.e. no erosion pits similar to arc craters were found on the cathode surface. The anode was shortened after discharge by 5--50 μm depending on current, material and cone angle. A high current density and low voltage drop implies that this is an arc discharge, while the cold cathode and the absence f cathode spot trace are pertinent to a dense glow discharge. The mechanism of emission involving secondary electron emission is to be discussed

  8. Temporal evolution of the after glow plasma conductivity

    International Nuclear Information System (INIS)

    Due to their exhibited advantages over continuous and RF glows, the pulsed discharges gain more attention in a wide variety of application fields, like film deposition, plasma chemistry, semiconductor processing, etc. For this reason, fast time-resolved experimental methods need to be developed in order to control the main parameters of the high voltage pulsed plasmas. It is well known that electric probes present major advantages over many other diagnostic techniques for studying plasma parameters, but the use of these probes in the high voltage pulsed plasmas encounters enormous difficulties. One of them is the issue of galvanic insulation of the probe during the high voltage pulse. Also, the plasma potential may change rapidly, inducing spurious currents in the probe. Other problems could arise in the afterglow when the probe can exert great influence over the plasma potential by the current that it draws from the plasma. In this paper, we proposed a new method for the determination of the electrical conductivity of the afterglow of the high voltage pulsed discharges, using a low frequency RF plane probe. The application of a small low frequency signal to the plane probe could successfully eliminate all the disadvantages mentioned above. (authors)

  9. Study on the onset of DC diaphragm glow discharge

    International Nuclear Information System (INIS)

    In this paper, the DC diaphragm glow discharge (DGD) occurred around the small hole on quartz tube between two submersed graphite electrodes and the onset of DGD was systematically investigated. It was found that critical voltage (VD) decreased with the increasing conductivity, and then maintained at about 620 V. When the hole diameter increased from 1.0 mm to 2.5 mm, H2O2 formation and AO discoloration in anolyte increased with the increase of the hole diameter. In addition, the effect of electrolyte constituents on H2O2 formation and AO discoloration in anolyte induced by DGD was also studied. The concentration of H2O2 and AO discoloration in anolyte was close in inert electrolyte such as Na2SO4 and Na2HPO4 solution. The concentration of H2O2 and AO discoloration rate in Na2CO3 and NaAc solution was lower than those in Na2SO4 and Na2HPO4 solution, due to their capture ability for ·OH. However, NaCl showed enhancing effect on AO discoloration, although it consumed a certain amount of H2O2. The energy efficiencies of AO discoloration and H2O2 formation were also compared with those of other DGD reactor.

  10. Glow curve analysis by Gauss-Lorentz function

    Directory of Open Access Journals (Sweden)

    Vejnović Zdravko M.

    2013-01-01

    Full Text Available A new method for fitting glow curves, described in a mixed order kinetics model, with Gauss-Lorentz function is shown. Theoretical expressions of the mixed order kinetics model are shown in a new way, so that the values of kinetic parameters can be obtained through the geometric parameters. When the model is described in this way it is possible to calculate precisely the kinetic parameters such as activation energy, pre-exponential factor and the factor a= n0/(h + n0. At the same time, obtained values of geometric parameters of the experimental curve, which is described with the Gauss-Lorentz function, can be used to estimate the kinetic model, in which thermoluminescence relaxation occurs. This gives a possibility of a new application of Gauss-Lorentz function to be used as a criterion for assessing model of relaxation, when it is not known in advance. The accuracy of fitting is studied, for the specific cases of computer simulated thermoluminescent curves with one peak.

  11. Platinum and Iridium Coatings Obtained by Double Glow Plasma Technology

    Institute of Scientific and Technical Information of China (English)

    WU Wangping; CHEN Zhaofeng; CHEN Zhou; CONG Xiangna; QIU Jinlian

    2012-01-01

    Pt and Ir coatings were produced by double glow plasma technology on the surface of Ti alloy substrates.The chemical compositions of the coatings were determined by X-ray diffraction and X-ray photoelectron spectroscopy.The microstructure and morphology of the coatings were observed by scanning electron microscopy.The hardness and elastic modulus of the coatings were estimated by nanoindentation.The measurements of adhesive forces of the coatings were performed with scratch tester.The results indicated that the Pt and Ir coatings displayed the preferred (220) orientation due to the initial nuclei with preferred growth on the surface of the substrates.The interface between the Pt coating and substrate exhibited no evidence of delamination.The Ir coating was composed of irregular columnar grains with many nanovoids at the interface between the coating and substrate.The mean values of hardness for Pt and Ir coatings were 0.9 GPa and 9 GPa,respectively.The elastic modulus of Pt and Ir coatings were 178 GPa and 339 GPa,respectively.The adhesive forces of the Pt and Ir coatings were about 66.4 N and 55 N,respectively.The Pt and Ir coatings adhered well to the Ti alloy substrates.

  12. Glow-Discharge Production of Oxygen from the Martian Atmosphere

    Science.gov (United States)

    Hughes, Caleb; Outlaw, Ronald

    One of the most crucial aspects of any mission to Mars is a continual supply of oxygen for astronaut respiration on site. The most popular approach to this problem favors in-situ oxygen production on Mars, utilizing the CO2 Martian atmosphere. However, this requires a large energy budget. NASA's current plans for Mars include sending a system called MOXIE, which produces oxygen through solid oxide electrolysis at high temperatures. An alternative approach utilizes the 6 Torr Martian atmosphere to provide a continual source of oxygen by breaking down the molecule into CO and O using a glow-discharge. After dissociation, a thin film Agmembrane uniquely permeates the atomic oxygen which then recombines to O2 on the downstream side, where it is subsequently stored. By taking advantage of recent advances in thin film technology to reduce the thickness of the film to many orders of magnitude less than used in the initial study, a corresponding increase in O2 flux can be realized. The Ag thin film requires the support of a porous ceramic substructure. With this system, it is shown that this method produces a viable energy efficient alternative to MOXIE.

  13. Bulk plasma properties in the pulsed glow discharge

    International Nuclear Information System (INIS)

    This work focuses on the spatial and temporal characteristics of a glow discharge plasma operated with power pulses of 5 ms in duration at 25% duty cycle. Interpretation of emission data provides insight into the nature of the plasma at each instant of a typical pulse cycle and at each position in space. Because the bulk plasma properties affect the distribution of excited energy levels of the sputtered atoms, an improved understanding of the plasma affords the ability to select conditions that enhance analytically important emission lines. Optical emission spectroscopy was used to determine the relative populations of excited states for atoms and ions during the initial breakdown, the steady state and the recombining periods of the discharge pulse cycle. The plasma is highly ionizing in nature at the time of breakdown--with lower excited states being overpopulated--before reaching the steady state, or plateau, period, also ionizing in nature. These behaviors arise from a loss of charged particles and photons to the surroundings that shifts the plasma away from Saha and Boltzmann balances during these periods. The post-pulse period typically displays recombining behavior, characterized by population inversion for selected species--except for regions close to the cathode, where electrons and ions are lost by diffusion and are not available for recombination. The sputtered analyte atom emissions closely mimic those of the plasma bath gas, except that their emissions persevere for longer in the recombining after-peak period than do the discharge gas species

  14. Radio frequency glow discharge-induced acidification of fluoropolymers.

    Science.gov (United States)

    Krawczyk, Benjamin M; Baltrusaitis, Jonas; Yoder, Colin M; Vargo, Terrence G; Bowden, Ned B; Kader, Khalid N

    2011-12-01

    Fluoropolymer surfaces are unique in view of the fact that they are quite inert, have low surface energies, and possess high thermal stabilities. Attempts to modify fluoropolymer surfaces have met with difficulties in that it is difficult to control the modification to maintain bulk characteristics of the polymer. In a previously described method, the replacement of a small fraction of surface fluorine by acid groups through radio frequency glow discharge created a surface with unexpected reactivity allowing for attachment of proteins in their active states. The present study demonstrates that 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) reacts with the acid groups on fluoropolymer surfaces in a novel reaction not previously described. This reaction yields an excellent leaving group in which a primary amine on proteins can substitute to form a covalent bond between a protein and these surfaces. In an earlier study, we demonstrated that collagen IV could be deposited on a modified PTFE surface using EDC as a linker. Once collagen IV is attached to the surface, it assembles to form a functional stratum resembling collagen IV in native basement membrane. In this study, we show data suggesting that the fluorine to carbon ratio determines the acidity of the fluoropolymer surfaces and how well collagen IV attaches to and assembles on four different fluoropolymer surfaces. PMID:21887736

  15. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    Science.gov (United States)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  16. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    Science.gov (United States)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  17. Study on Glow Discharge Plasma Used in Polyester Surface Modification

    Science.gov (United States)

    Liu, Wenzheng; Lei, Xiao; Zhao, Qiang

    2016-01-01

    To achieve an atmospheric pressure glow discharge (APGD) in air and modify the surface of polyester thread using plasma, the electric field distribution and discharge characteristics under different conditions were studied. We found that the region with a strong electric field, which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure, provided the initial electron for the entire discharge process. Thus, the discharge voltage was reduced. The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons. Thus, the transient current pulse discharge was reduced significantly, and an APGD in air was achieved. We designed double layer line-line contact electrodes, which can generate the APGD on the surface of a material under treatment directly. A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope (SEM). Two electrode structures - the multi-row line-line and double-helix line-line contact electrodes - were designed. A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes. This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.

  18. GCAFIT-A new tool for glow curve analysis in thermoluminescence nanodosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Hafez, A.I., E-mail: nis_arafa@yahoo.co [National Institute for Standards, Tersa Street, El-Harm, P.O. 136, Code No. 12211, Giza (Egypt); Yasin, M.N. [Fayoum University, Faculty of Science, Physics Department (Egypt); Sadek, A.M. [National Institute for Standards, Tersa Street, El-Harm, P.O. 136, Code No. 12211, Giza (Egypt)

    2011-05-01

    Glow curve analysis is widely used for dosimetric studies and applications. Therefore, a new computer program, GCAFIT, for deconvoluting first-order kinetics thermoluminescence (TL) glow curves and evaluating the activation energy for each glow peak in the glow curve has been developed using the MATLAB technical computing language. A non-linear function describing a single glow peak is fitted to experimental points using the Levenberg-Marquardt least-square method. The developed GCAFIT software was used to analyze the glow curves of TLD-100, TLD-600, and TLD-700 nanodosimeters. The activation energy E obtained by the developed GCAFIT software was compared with that obtained by the peak shape methods of Grossweiner, Lushchik, and Halperin-Braner. The frequency factor S for each glow peak was also calculated. The standard deviations are discussed in each case and compared with those of other investigators. The results show that GCAFIT is capable of accurately analyzing first-order TL glow curves. Unlike other software programs, the developed GCAFIT software does not require activation energy as an input datum; in contrast, activation energy for each glow peak is given in the output data. The resolution of the experimental glow curve influences the results obtained by the GCAFIT software; as the resolution increases, the results obtained by the GCAFIT software become more accurate. The values of activation energy obtained by the developed GCAFIT software a in good agreement with those obtained by the peak shape methods. The agreement with the Halperin-Braner and Lushchik methods is better than with that of Grossweiner. High E and S values for peak 5 were observed; we believe that these values are not real because peak 5 may in fact consist of two or three unresolved peaks. We therefore treated E and S for peak 5 as an effective activation energy, E{sub eff,} and an effective frequency factor, S{sub eff}. The temperature value for peak 5 was also treated as an

  19. The deconvolution of thermoluminescence glow-curves using general expressions derived from the one trap-one recombination (OTOR) level model

    International Nuclear Information System (INIS)

    The new developed thermoluminescence (TL) glow-peak expressions derived from the one trap-one recombination (OTOR) level model were used to analyze the TL glow-curves recorded with linear and exponential heating function profiles under various experimental conditions. The results showed that these expressions can, accurately, analyze the TL glow-curves even with the overlapped glow-peaks. Low values of R=An/Am were reported for glow-peaks in different TL materials. A glow-peak with the possibility of An>Am was also pointed out. - Highlights: • The accuracy of the TL expressions derived from the OTOR model was verified. • EHF and LHF glow-curves were deconvoluted using TL expressions based on OTOR model. • Low values of R=An/Am were reported for some glow-peaks. • A glow-peak with the possibility of An>Am was pointed out

  20. The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge

    OpenAIRE

    De Lucia, Frank C.; Herbst, Eric; Plummer, Grant M.; Blake, Geoffrey A.

    1983-01-01

    A technique for enhancement of positive molecular ion concentrations in a glow discharge is presented. The technique consists of modifying an anomalous glow discharge by the addition of a longitudinal magnetic field of up to 300 G. Enhancements in the ion signal strength, as measured by millimeter and submillimeter wave spectroscopy, are approximately two orders of magnitude. Evidence is presented that the magnetic field increases the length of the ion rich negative glow by restricting inside...

  1. Glow-curve deconvolution of thermoluminescence curves in the simplified OTOR equation using the Hybrid Genetic Algorithm

    International Nuclear Information System (INIS)

    Highlights: • Use of Hybrid Genetic Algorithm in TL analysis. • Deconvolution in simplified OTOR equation. • Glow curve analysis. -- Abstract: A novel method of analyzing thermoluminescence TL glow curves is presented here. This method is based on the recently derived simplified OTOR equation. It employs the Hybrid Genetic Algorithm for the extraction of the TL parameters. This method has been tested against theoretical glow-curve data that were generated using the full iteration method without any prior approximation in the OTOR model, and it has also been tested using the complex glow curve of NaCl

  2. SWIR air glow mapping of the night sky

    Science.gov (United States)

    Myers, Michael M.; Dayton, David C.; Gonglewski, John D.; Fertig, Gregory; Allen, Jeff; Nolasco, Rudolf; Burns, Dennis; Mons, Ishan

    2010-08-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Islands of Kauai and Maui Hawaii.

  3. SWIR Hemispherical Air-Glow Plotting System SHAPS

    Science.gov (United States)

    Gonglewski, John D.; Myers, Michael M.; Dayton, David C.; Fertig, Gregory; Allen, Jeffrey; Nolasco, Rudolph; Maia, Franscisco

    2010-10-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Island of Kauai Hawaii.

  4. Dusty plasma structures in He-Kr DC glow discharge

    International Nuclear Information System (INIS)

    Complete text of publication follows. Ion drift in gas mixtures has certain properties that can be used to generate ion flows with desired characteristics. For example, when the field is strong, ion heating is significant, and there is a large difference in atomic weight between ions and atoms, the ion velocity distribution can be highly anisotropic. Ion distribution anisotropy can cause a substantial change in properties of dust structures in plasmas. Experiments on dusty plasma structures in glow discharge in mixtures of light and heavy gases (helium and argon), (helium and krypton) are performed, and results of numerical simulations of ion and electron drift in the mixture are presented. The model of electron-atom collisions is considered taking into account non-elastic collisions in electron energy balance. On the basis of numerical simulation the characteristics of electron velocity distribution function, the energy characteristics of electron drift in constant electric field in He-Kr discharge were tabulated. Values of drift velocity, average electron energy, Townsend characteristic energy, and average electron energy leading to excitation and ionization of atoms, ratio between energy losses in elastic and nonelastic collisions, Townsend ionization coefficient were obtained. For the experiment conditions calculations of dust particle charging characteristics are also conducted - values of an average dust charge, charge fluctuation, and number of the bounded ions are calculated. These calculations have shown that dust charging in a mix of a 'light' gas with a small additive of a 'heavy' gas and ions has a number of features which lead, in particular, to considerable (up to thousand times) increase of dust kinetic energy - this effect was observed in the experiments.

  5. The role of magnetic energy on plasma localization during the glow discharge under reduced pressure

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2016-06-01

    Full Text Available In this work, we present the first results of our research on the synergy of fields, electric and magnetic, in the initiation and development of glow discharge under reduced pressure. In the two-electrode system under reduced pressure, the breakdown voltage characterizes a minimum energy input of the electric field to initiate and sustain the glow discharge. The glow discharge enhanced by the magnetic field applied just above the surface of the cathode influences the breakdown voltage decreasing its value. The idea of the experiment was to verify whether the contribution of potential energy of the magnetic field applied around the cathode is sufficiently effective to locate the plasma of glow discharge to the grounded cathode, which, in fact, is the part of a vacuum chamber wall (the anode is positively biased in this case. In our studies, we used the grounded magnetron unit with positively biased anode in order to achieve favorable conditions for the deposition of thin films on fibrous substrates such as fabrics for metallization, assuming that locally applied magnetic field can effectively locate plasma. The results of our studies (Paschen curve with the participation of the magnetic field seem to confirm the validity of the research assumption. What is the most spectacular - the glow discharge was initiated between introduced into the chamber anode and the grounded cathode of magnetron ‘assisted’ by the magnetic field (discharge did not include the area of the anode, which is a part of the magnetron construction.

  6. The power supplies for the glow discharge electrodes in Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Thomas, E-mail: thomas.rummel@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Wendelsteinstr. 1, D-17491 Greifswald (Germany); Fuellenbach, Frank [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Wendelsteinstr. 1, D-17491 Greifswald (Germany); Boehm, Guenther; Kaesler, Wolfgang; Burek, Rainer [PPT Puls-Plasmatechnik GmbH, Feldstr. 56, D-44141 Dortmund (Germany); Pingel, Steffen; Spring, Anett; Schacht, Joerg; Woelk, Andreas [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Wendelsteinstr. 1, D-17491 Greifswald (Germany)

    2011-10-15

    The conditioning of the Wendelstein 7-X (W7-X) plasma vessel will be done by glow discharges. Ten electrodes are placed inside of the vessel. Due to the three dimensional geometry the conditions for the ignition and the stabilization of a glow discharge can vary from one electrode to the other electrode. Therefore ten individual power supplies with maximum ratings of 3 kV and 3 A will be used. The ten power supplies are individually controlled by a PLC based control system. This control system is a major part of the overall glow discharge system, because it has to allow the combination of two or more power supplies to groups, which can be controlled in a similar way. The glow discharge is planned to run up to a week in steady state mode. This requires a sophisticated monitoring system of the parameters of the power supplies and the implementation of a proper matrix of reaction after failures. One aim of the Wendelstein 7-X control system is the remote control of all activities from the W7-X main control room. The glow discharge power supply control has to allow such operation and special procedures for exchange of control rights were implemented. The power supply system was developed, manufactured installed and tested in collaboration between IPP and PPT.

  7. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    Science.gov (United States)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  8. The measurement and analysis of electric fields in glow discharge plasmas

    International Nuclear Information System (INIS)

    Interest in glow discharge plasmas has remained high for many decades because of their widespread application as a source of incoherent and coherent light, in plasma processing materials, in pulsed power devices, and in other technologies. Plasma etching of semiconductors and various plasma deposition process emerged as major applications during the 1980s. The technological significance of plasma processing is described in Plasma Processing of Materials. More fundamental work on glow discharges also advanced greatly during the 1980s. For example, substantial progress was made through the use of laser diagnostics to study glow discharges and as a result of the dramatically increased computing power that became available in the 1980s to model glow discharges. Many of the laser diagnostics are described in Radiative Processes in Discharge Plasmas. Kinetic theory models, in particular, became far more sophisticated and realistic during the 1980s. This article is a review of recent work that used optical diagnostics to study electric fields in glow discharge plasmas. Alternative methods for measuring electric electric fields in plasmas include electron beam deflection and electrostatic probes. Optical techniques have important advantages over these methods: They can be used at higher pressures and discharge current densities than electron beam deflection; and they are noninvasive, unlike electrostatic probes. In addition, optical techniques are usually easier to apply in a highly pure system than either of the alternative methods. 46 refs., 23 figs., 1 tab

  9. Anomalous behaviour of thermoluminescence from quartz: A case of glow peaks from a Nigerian quartz

    Energy Technology Data Exchange (ETDEWEB)

    Ogundare, F.O. [Department of Physics, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa) and Physics Department, University of Ibadan, Ibadan (Nigeria)]. E-mail: ogun_dare@yahoo.com; Chithambo, M.L. [Department of Physics, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Oniya, E.O. [Department of Physics and Electronics, Adekunle Ajasin University, Akungba-Akoko, Ondo State (Nigeria)

    2006-05-15

    Anomalous behaviour displayed by a thermoluminescence (TL) glow peak as radiation dose increases in a Nigerian quartz is presented. The glow curves of the phosphor have four clear glow peaks. The peak temperatures of the first three glow peaks were found to be constant with change in radiation dose at 82, 148 and 200 deg. C for the sample readout at a heating rate of 1 deg. Cs{sup -1}. The peak temperature of the fourth peak, which is at around 320 deg. for a sample irradiated to a dose of 63Gy and heated at 1 deg. Cs{sup -1}, displays anomalous behaviour with increase in dose relative to the first three peaks. The temperature at which this peak occurs increases with dose to about 335 deg. C for 177Gy and then decreases thereafter as dose is further increased. The change is explained on the assumption that the peak may be complex consisting of several overlapping first-order glow peaks each with different TL behaviour.

  10. Anomalous behaviour of thermoluminescence from quartz: A case of glow peaks from a Nigerian quartz

    International Nuclear Information System (INIS)

    Anomalous behaviour displayed by a thermoluminescence (TL) glow peak as radiation dose increases in a Nigerian quartz is presented. The glow curves of the phosphor have four clear glow peaks. The peak temperatures of the first three glow peaks were found to be constant with change in radiation dose at 82, 148 and 200 deg. C for the sample readout at a heating rate of 1 deg. Cs-1. The peak temperature of the fourth peak, which is at around 320 deg. for a sample irradiated to a dose of 63Gy and heated at 1 deg. Cs-1, displays anomalous behaviour with increase in dose relative to the first three peaks. The temperature at which this peak occurs increases with dose to about 335 deg. C for 177Gy and then decreases thereafter as dose is further increased. The change is explained on the assumption that the peak may be complex consisting of several overlapping first-order glow peaks each with different TL behaviour

  11. Determination of trap parameters for thermoluminescence glow peaks of red thermoluminescence of quartz from Japan

    Science.gov (United States)

    Song, K. W.; Kim, K. B.; Hong, D. G.

    Red thermoluminescence in quartz has been generally observed in samples from volcanic deposits or archaeological burnt materials. Red thermoluminescence emission quartz has gained attention as a radiation dosimeter for thermoluminescence dating due to the high-dose saturation level and long-term stability of the thermoluminescence signal. The technique for this application can be improved with an understanding of various trap parameters associated with thermoluminescence glow peaks. The repeated initial rise and computerized glow curve deconvolution methods are used to determine the number of thermoluminescence glow peaks and trap parameters for red thermoluminescence from two types of quartz (Tazawa and Yuda samples) from Japan. For both quartz samples, the glow curves were best described as a superposition of seven glow peaks with activation energies of 0.76-1.95 eV and 0.89-1.91 eV for the Tazawa and Yuda samples, respectively. These results provide useful information for the investigation of the intrinsic characteristics of quartz crystals in the research fields relevant to dating and dosimetry.

  12. Apocenter glow in eccentric debris disks: implications for Fomalhaut and $\\epsilon$ Eridani

    CERN Document Server

    Pan, Margaret; Kuchner, Marc J

    2016-01-01

    Debris disks often take the form of eccentric rings with azimuthal asymmetries in surface brightness. Such disks are often described as showing "pericenter glow", an enhancement of the disk brightness in regions nearest the central star. At long wavelengths, however, the disk apocenters should appear brighter than their pericenters: in the long wavelength limit, we find the apocenter/pericenter flux ratio scales as 1+e for disk eccentricity e. We produce new models of this "apocenter glow" to explore its causes and wavelength dependence and study its potential as a probe of dust grain properties. Based on our models, we argue that several far-infrared and (sub)millimeter images of the Fomalhaut and epsilon Eridani debris rings obtained with Herschel, JCMT, SHARC II, ALMA, and ACTA should be reinterpreted as suggestions or examples of apocenter glow. This reinterpretation yields new constraints on the disks' dust grain properties and size distributions.

  13. Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fucheng, E-mail: hdlfc@hbu.cn; He, Yafeng; Dong, Lifang [Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2014-12-15

    Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage, and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns.

  14. Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure

    International Nuclear Information System (INIS)

    Self-organized stationary patterns in dielectric barrier discharges operating in glow regime at atmospheric pressure are investigated by a self-consistent two-dimensional fluid model. The simulation results show that two different modes, namely, the diffuse mode and the static patterned mode, can be formed in different ranges of the driving frequency. The discharge operates in Townsend regime in the diffuse mode, while it operates in a glow regime inside the filaments and in a Townsend regime outside the filaments in the stable pattered mode. The forming process of the stationary filaments can be divided into three stages, namely, destabilizing stage, self-assembling stage, and stable stage. The space charge associated with residual electron density and surface charge is responsible for the formation of these stationary glow patterns

  15. Physics of self-sustained oscillations in the positive glow corona

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Nae [Micro Devices Group, Micro Systems Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd, Mt. 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of)

    2012-07-15

    The physics of self-sustained oscillations in the phenomenon of positive glow corona is presented. The dynamics of charged-particle oscillation under static electric field has been briefly outlined; and, the resulting self-sustained current oscillations in the electrodes have been compared with the measurements from the positive glow corona experiments. The profile of self-sustained electrode current oscillations predicted by the presented theory qualitatively agrees with the experimental measurements. For instance, the experimentally observed saw-tooth shaped electrode current pulses are reproduced by the presented theory. Further, the theory correctly predicts the pulses of radiation accompanying the abrupt rises in the saw-tooth shaped current oscillations, as verified from the various glow corona experiments.

  16. Thermal glow curves from quenched pure and doped potassium chloride single crystal

    International Nuclear Information System (INIS)

    Thermoluminescence property of quenched potassium chloride, pure and doped with PbCl2, has been studied. Quenching from 650degC enhances the glow output by a much larger amount than can be explained on the basis of enhancement of F-centres formation in quenched samples. Moreover, the glow peaks which are associated with divalent impurities and first stage of colouration are amply intensified due to quenching. Electrolytic colouration, which involved quenching, however, diminishes the integrated light output, when the coloured crystal is exposed to X-rays and warmed up. These results have been explained on the basis of the fact that the recombination efficiency of electrons and holes can be changed by various pretreatment of the samples. A new peak in the glow curve of quenched has also been observed. (author)

  17. Computerized glow curve deconvolution of thermoluminescent emission from polyminerals of Jamaica Mexican flower

    Science.gov (United States)

    Favalli, A.; Furetta, C.; Zaragoza, E. Cruz; Reyes, A.

    The aim of this work is to study the main thermoluminescence (TL) characteristics of the inorganic polyminerals extracted from dehydrated Jamaica flower or roselle (Hibiscus sabdariffa L.) belonging to Malvaceae family of Mexican origin. TL emission properties of the polymineral fraction in powder were studied using the initial rise (IR) method. The complex structure and kinetic parameters of the glow curves have been analysed accurately using the computerized glow curve deconvolution (CGCD) assuming an exponential distribution of trapping levels. The extension of the IR method to the case of a continuous and exponential distribution of traps is reported, such as the derivation of the TL glow curve deconvolution functions for continuous trap distribution. CGCD is performed both in the case of frequency factor, s, temperature independent, and in the case with the s function of temperature.

  18. Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, Mexico D.F. 04510 (Mexico); Gonzalez, P.R., E-mail: pedro.gonzalez@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, C.P. 52750, Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 Mexico D.F. (Mexico); Furetta, C. [Touro University Rome, Division of Touro College New York, Circne Gianicolense 15-17, 00153 Rome (Italy)

    2011-10-15

    The influence of heating rate on the thermoluminescence (TL) property of LiF:Mg,Cu,P+PTFE was analyzed. The activation energy and the frequency factor as a function of the heating rate were determined. The kinetic parameters and their dependence on the heating rate were evaluated using the sequential quadratic programming glow curve deconvolution (SQPGCD). The results showed that as the heating rate increases, the peak intensity at the maximum (I{sub M}) decreases and shifts to higher temperature; similar behavior of the kinetics parameters was observed. - Highlights: >Heating rate influence on the thermoluminescence (TL) property of LiF:Mg,Cu,P was analyzed. > The kinetic parameters, activation energy and frequency factor were evaluated using the sequential quadratic programming glow curve deconvolution. > The peak intensity at the maximum (I{sub M}) of the glow curves decreases. > Shifts to higher temperature were observed as the heating rate increased. > Similar behavior of the kinetics parameters was noticed.

  19. Decomposition Characteristics of an Artificial Biogas in a Low-Pressure DC Glow Discharge

    Science.gov (United States)

    Itoh, Yasuhiro; Oshita, Takamasa; Satoh, Kohki; Itoh, Hidenori

    The decomposition characteristics of an artificial biogas, which is a mixture of CH4, CO2 and H2S, using a low pressure DC glow discharge have been investigated. It is found that H2, CO, C2H2, H2O, CS2 and COS are produced from the artificial biogas in the glow discharge. About 65 % of hydrogen atoms in CH4 are converted into H2 at the input energy of 800 J, at which CH4 is completely decomposed, and the decomposition characteristics of the artificial biogas has little dependency on H2S additive. Farther, H2S has a tendency to be decomposed earlier than the other components of the artificial biogas. When the glow discharge is generated in the artificial biogas with H2S, some of carbon atoms are found to deposit on electrodes and the wall of a discharge chamber.

  20. Discharge Characteristics in Atmospheric Pressure Glow Surface Discharge in Helium Gas

    Institute of Scientific and Technical Information of China (English)

    LI Xue-Chen; WANG Long

    2005-01-01

    @@ Atmospheric pressure glow discharge is observed for the first time in a surface discharge generator in flowing helium. Electrical and optical methods are used to measure the characteristics of atmospheric pressure glow discharge for different voltages. The results show that discharge current waveforms are asymmetric for the different polarities of the applied voltage. A continuous discharge profile with a width of several microseconds appears for per half cycle of the applied voltage when the voltage is increased to a certain value. The short-pulsed discharge and the continuous current would result from the Townsend breakdown and glow discharge mechanisms respectively. The properties of surface discharge in stagnant helium are completely different from that in flowing helium.

  1. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    Science.gov (United States)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  2. Deuterium retention in graphite and its removal by inert gas glow discharge

    International Nuclear Information System (INIS)

    The hydrogen isotope retention and its removal by inert gas glow discharge for graphite was investigated by residual gas analysis. The amount of retained hydrogen isotope in graphite during the deuterium glow discharge was about 1.0×1017 cm2, which was one order of magnitude larger than that in 316L stainless steel or tungsten. The removal ratio of hydrogen isotope by helium, neon and argon glow discharge cleaning were 49%, 22% and 6% respectively. These removal ratios were similar to those for the stainless steel, but larger than the tungsten. The removal ratio in graphite can be explained by both the depth distribution of incident deuterium in the materials and the etching depth. (author)

  3. Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens

    DEFF Research Database (Denmark)

    Canulescu, Stela; Molchan, Igor S.; Tauziede, C.;

    2010-01-01

    discharge, where the cross section for electron attachment increases. The formation of negative ions from sputtering of metals and metal oxides is compared with that for positive ions. It is shown that the negative ion signals of F(-) and TaO(2)F(-) are enhanced relative to positive ion signals and can be......A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime of the...... the formation of negative ions in glow discharge time-of-flight mass spectrometry are briefly discussed....

  4. Repetitive nanosecond glow discharge in atmospheric pressure air

    Science.gov (United States)

    Packan, Denis

    Nonequilibrium, weakly ionized plasmas are widely used in the industry, but they are restricted to the domain of continuous discharges at low gas pressure or with specialty gases because of stability and power budget constraints. In this study, repetitively pulsed discharges were investigated as a way to decrease the power budget of atmospheric air plasmas by several orders of magnitude compared to continuous discharges, for an electron density of 1012 cm-3. The principle of the pulsed scheme is to use nanosecond electrical pulses to ionize air diffusely and with high efficiency, and to match the pulse interval with the recombination time of the plasma in order to maintain an elevated average electron density. Maxwellian and non-Maxwellian models of the physical processes in the discharge were examined, and the discharge parameters were chosen to minimize the power. Using a 10 ns, 12 kV, 100 kHz repetitive pulse generator, it was found that a repetitive nanosecond glow discharge could be operated in stable manner in atmospheric pressure air at 2000 K at an electron density of about 10 12 cm-3. Two pulsed discharges, with repetition frequencies of 100 kHz and 30 kHz, are described in this work. The electrode gap is 1 cm and the pulsed voltage is about 5 kV/cm. Electrical and optical methods were developed to measure the electron density in the discharge. The electron density was measured from the electrical conductivity during both the pulse and recombination phases, from the absolute intensity of the N2 Second Positive system during the pulse phase, and from the NO-gamma system during the recombination phase. The average electron density was found to be 1.4 x 1012 cm -3 for the 100 kHz discharge, and 1.8 x 102 cm-3 for the 30 kHz discharge, with peak values of 2 x 1012 cm-3 and 1013 cm-3, respectively. The power budget for the 30 kHz discharge was measured, from the voltage and current during the pulse phase, to be about 10 W/cm3, which represents an improvement of

  5. 110° C thermoluminescence glow peak of quartz – A brief review

    Indian Academy of Sciences (India)

    D K Koul

    2008-12-01

    The 110°C glow peak of quartz, though unstable at room temperature, has worked wonderfully in archaeology and retrospective dosimetry due to its pre-dose sensitization property. Various aspects of the peak, like its nature, defect centres involved, the impact of different stimuli and its application have been extensively studied. The main aims of this review are to (i) summarize briefly the work carried out on the various facets of this TL glow peak during the last four decades and (ii) identify the areas which need further attention in order to have a better understanding of the luminescence characteristics of this TL peak.

  6. PIC/MCC Simulation of Glow Discharge Plasma in Four-Anode Device

    Institute of Scientific and Technical Information of China (English)

    YUAN Zhongcai; SHI Jiaming; XU Bo

    2007-01-01

    Numerical simulations by the code of Object-Oriented PIC (Particle-in-Cell) and the Monte Carlo Collision (MCC) method were carried out in order to obtain an insight into the characteristics of plasmas generated by glow discharges in low pressure helium in a four-anode DC glow discharge device. The results show that, the pressure, the external mirror magnetic field, and the virtual breadth of the annular electrode affect the radial distribution of the plasma density and temperature. The simulations are instructive for further experiments.

  7. Thermoluminescence glow-curve deconvolution functions for mixed order of kinetics and continuous trap distribution

    CERN Document Server

    Kitis, G

    2000-01-01

    New glow-curve deconvolution functions are proposed for mixed order of kinetics and for continuous-trap distribution. The only free parameters of the presented glow-curve deconvolution functions are the maximum peak intensity (I sub m) and the maximum peak temperature (T sub m), which can be estimated experimentally together with the activation energy (E). The other free parameter is the activation energy range (DELTA E) for the case of the continuous-trap distribution or a constant alpha for the case of mixed-order kinetics.

  8. Wavelet based time-frequency and multifractal analysis of the glow discharge plasma instabilities

    CERN Document Server

    Nurujjaman, Md; Iyengar, A N Sekar

    2009-01-01

    Wavelet based ridge patterns and multifractal analysis have been carried out of the anode glow related floating potential fluctuations of a glow discharge plasma. Wavelet based ridge plots and multifractal spectrum were constructed for the fluctuations for different discharge voltages. Presence of the strong and weak chaos has been explained qualitatively from the ridge plots and from the multifractal spectrum different quantities like correlation and fractal dimension, degree of multifractality, etc., have been estimated at different discharge voltages. Wavelet based analysis is very much consistent with nonlinear time series analysis.

  9. Second Order Fluid Glow Discharge Model Sustained by Different Source Terms

    International Nuclear Information System (INIS)

    Behavior of charged particles in a DC low pressure glow discharge is studied. The electric properties of the glow discharge in argon, maintained by a constant source term with uniform electron and ion generation, between two plane electrodes or by secondary electron emission at the cathode, are determined. A fluid model is used to solve self-consistently the first three moments of the Boltzmann equation coupled with the Poisson equation. The stationary spatial distribution of the electron and ion densities, the electric potential, the electric field, and the electron energy, in a two-dimensional (2D) configuration, are presented.

  10. Gas flow effects on the submicrosecond pulsed atmospheric pressure glow discharges

    International Nuclear Information System (INIS)

    The influence of gas flow on the discharge characteristics in the submicrosecond pulsed dielectric barrier discharge at atmospheric pressure was investigated by a one-dimensional self-consistent kinetic model. The convection-transport mechanism of the plasma species caused by a longitudinal gas flow was integrated into flux equation. Two discharge current pulses, the positive one and the negative one, are operated in a normal glow mode and a subnormal glow mode, respectively. It is shown that the gas flow has a significant impact on the discharge characteristics, especially on the positive discharge pulse. The spatial distribution of electrons is affected by the gas flow through the convection transport mechanism.

  11. Thermoluminescence glow curve involving any extent of retrapping or any order of kinetics

    Indian Academy of Sciences (India)

    Jai Prakash

    2013-09-01

    Adirovitch set of equations has been modified to explain the mechanisms involved in thermoluminescence (TL) glow curve. A simple model is proposed which explains the occurrence of TL glow curve involving any extent of retrapping or any order of kinetics. It has been observed that the extents of recombination and simultaneous rewrapping decide the order of kinetics involved. TL decay parameters, order of kinetics and initial concentration of trapped electrons per unit volume are evaluated easily and conveniently. It has been observed that retrapping increases with increasing order of kinetics.

  12. NITROGEN POTENTIAL DURING ION NITRIDING PROCESS IN GLOW-DISCHARGE PLASMA

    OpenAIRE

    Kozlov, A. A.

    2015-01-01

    The paper considers problems on regulation of phase composition of a nitrided layer during gas and ion nitriding process in a glow-discharge. It has been established that  available models for control of nitrided layer structure with the help of nitriding index (nitrogen potential) can not be applied for nitriding process in the glow-discharge. Principal difference of the ion nitriding from the gas one is in the fact that chemically active nitrogen is formed in the discharge zone (cathode lay...

  13. Short-term low-temperature glow discharge nitriding of 316L austenitic steel

    Directory of Open Access Journals (Sweden)

    T. Frączek

    2011-07-01

    Full Text Available The AISI 316L austenitic steel after glow discharge nitriding at temperature of T = 673 K and duration of τ=14,4 ks, for two different variants of specimen arrangement in the glow-discharge chamber was investigated. In order to assess the effectiveness of nitriding process, the surface layers profile analysis examination, surface hardness and hardness profile examination, the analysis of surface layer structures and corrosion resistance tests were performed. It has been found that application of a booster screen effects in a nitrogen diffusion depth increment into the 316L austenitic steel surface, what results in the surface layer thickness escalation.

  14. Overheating Willingness to Pay: Who Gets Warm Glow and What It Means for Valuation

    OpenAIRE

    Interis, Matthew G.; Haab, Timothy C.

    2014-01-01

    In traditional contingent valuation, the researcher seeks the amount a respondent is willing, ceteris paribus, to pay to obtain something. But if a respondent receives a “warm glow†from a yes response, ceteris is not paribus. In estimating willingness to pay (WTP) to reduce environmental impacts from consumption of transportation fuel, we find that respondents who were relatively less environmentally focused in the past receive greater warm-glow benefits from a “yes†response and have ...

  15. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    International Nuclear Information System (INIS)

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter

  16. An Assessment of Using Glow Curve Fitting Procedures for Obtaining Information on Exposure History

    International Nuclear Information System (INIS)

    A detailed analysis has been performed of the usefulness of glow peak area ratios to determine when, during a dosemeter assignment period, an exposure has taken place. Several heating rates, including the fast rates usually used in routine dosimetry, have been used to quantify the impact of heating rate on such analysis. Large differences in glow peak positions and smaller changes in peak widths resulted from different heating rates. The results indicate that curve fitting techniques and determination of peak area ratios to determine exposure history have very limited usefulness at heating rates generally used in routine dosimetry. (author)

  17. Pilot study on the application of computerised glow curve analysis in TL based personal dosimetry services

    International Nuclear Information System (INIS)

    Preliminary results of an inter-laboratory collaborative work on the application of computerised glow curve analysis to TL personal dosimetry are presented. Very simple analysis methods have proved to be useful for the evaluation of glow curves similar to those encountered in the dosimetric control of radiation workers. A first result obtained in the study has been the possibility of simplifying the TL working procedures by eliminating pre-annealing or pre-heating steps employed in conventional systems to avoid low temperature peaks. The presence of these unwanted peaks can be detected by the computerised evaluation methods, discriminating their contribution to the dosimetric TL data. (author)

  18. The thermoluminescence glow curve and the deconvoluted glow peak characteristics of erbium doped silica fiber exposed to 70-130 kVp x-rays.

    Science.gov (United States)

    Alawiah, A; Bauk, S; Marashdeh, M W; Nazura, M Z N; Abdul-Rashid, H A; Yusoff, Z; Gieszczyk, W; Noramaliza, M N; Adikan, F R Mahamd; Mahdiraji, G A; Tamchek, N; Muhd-Yassin, S Z; Mat-Sharif, K A; Zulkifli, M I; Omar, N; Wan Abdullah, W S; Bradley, D A

    2015-10-01

    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF. PMID:26188687

  19. Iridium Coating Deposited by Double Glow Plasma Technique — Effect of Glow Plasma on Structure of Coating at Single Substrate Edge

    International Nuclear Information System (INIS)

    Double glow plasma technique has a high deposition rate for preparing iridium coating. However, the glow plasma can influence the structure of the coating at the single substrate edge. In this study, the iridium coating was prepared by double glow plasma on the surface of single niobium substrate. The microstructure of iridium coating at the substrate edge was observed by scanning electron microscopy. The composition of the coating was confirmed by energy dispersive spectroscopy and X-ray diffraction. There was a boundary between the coating and the substrate edge. The covered area for the iridium coating at the substrate edge became fewer and fewer from the inner area to the outer flange-area. The bamboo sprout-like particles on the surface of the substrate edge were composed of elemental niobium. The substrate edge was composed of the Nb coating and there was a transition zone between the Ir coating and the Nb coating. The interesting phenomenon of the substrate edge could be attributed to the effects of the bias voltages and the plasma cloud in the deposition chamber. The substrate edge effect could be mitigated or eliminated by adding lots of small niobium plates around the substrate in a deposition process. (plasma technology)

  20. Endotoxin removal by radio frequency gas plasma (glow discharge)

    Science.gov (United States)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements

  1. Endotoxin removal by radio frequency gas plasma (glow discharge)

    Science.gov (United States)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements were repeated after employing 3-minute RFGD treatments sequentially for more than 10 cycles to observe removal of deposited matter that correlated with diminished EU titers. The results showed that 5 cycles, for a total exposure time of 15 minutes to low-temperature gas plasma, was sufficient to reduce endotoxin titers to below 0.05 EU/ml, and correlated with concurrent reduction of major endotoxin

  2. Dependence of the transition from Townsend to glow discharge on secondary emission

    NARCIS (Netherlands)

    Raizer, Y.P.; Ebert, U.; Sijacic, D.

    2004-01-01

    In a recent paper Sijacic and Ebert have systematically studied the transition from Townsend to glow discharge, refering to older work from von Engel (1934) up to Raizer (1991), and they stated a strong dependendence on secondary emission gamma from the cathode. We here show that the earlier results

  3. Surface analysis by glow discharge spectrometry: cathode zone and sputtering yield

    International Nuclear Information System (INIS)

    Applications of the glow discharge optical spectroscopy for surface analysis are numerous. Moreover, this method enables to get qualitative and semi-quantitative results which are already significant. However, we should improve our knowledge of the physical parameters involved in the glow discharge lamp mechanisms and learn to handle such phenomena. The problems can be divided into two categories: sputtering of the target under argon ions accelerated in the cathode dark space, and luminous emission of torn away species which reach the negative glow region. Our aim was to take stock of the present theoretical knowledge which can be applied to the specific self-maintained glow discharge plasma. Moreover, we tried to link together (often roughly) the basic discharge parameters, i.e. current intensity I, voltage of the lamp Vg, pressure of the gas p. Specially a comparison between theoretical and experimental results was established concerning the pure target sputtering yields. The contribution of the argon ions striking the cathode is estimated taking into account their energetic distribution. The role of the fast argon neutrals produced by charge exchange with the ions is important; we evaluated their energetic distribution and their contribution to sputtering. The total theoretical sputtering yield is inferred: the comparison with experimental results is presented. The role of the gas temperature is emphasized

  4. Source of high-voltage power supply for ozone generators at glow discharge

    International Nuclear Information System (INIS)

    High-voltage power supply source on quasi-resonance inverter base which works at direct current regime is described. This source forms 20 kV voltage with 0 - 10 mA current regulation. It protects the source from current break-downs and feeds ozone generators at glow discharge

  5. Analysis of TLD-900 glow curves: results on single peak properties

    International Nuclear Information System (INIS)

    In this paper we present fading experimental measurements on CaSO4:Dy (TLD-900) ribbons and computer calculated evaluations of single glow peak characteristics and their time dependence. The same method is also used to identify the time elapsed since an anomalous irradiation superposed to the normal one. (author)

  6. SkyGlowNet: an Internet-Enabled Light at Night Monitoring System

    Science.gov (United States)

    Craine, Erin M.; Craine, Eric R.; Craine, Brian L.; Crawford, David L.

    2013-05-01

    The "Sky Glow Network" (SkyGlowNet) is an internet connected depository of photometric light at night (LAN) data that are collected automatically by static, internet-enabled Sky Brightness Meters (iSBMs). The data are collected nightly at high temporal frequency and can be used to monitor extended areas of sky brightness on hourly, nightly, monthly, seasonal, and annual cycles over long periods of time. The photometry can be used for scientific and community planning purposes, as well as a powerful tool for science, technology, engineering, and mathematics (STEM) educational outreach programs. The effective and efficient use of light in modern society has become an important and contentious issue that urgently requires better technical and societal understanding. It is important to us as astronomers, and will become increasingly relevant as dark sky areas shrink as a result of poorly implemented lighting. We outline the structure of SkyGlowNet, describe the iSBM unit, and discuss how to interact with the SkyGlowNet website. We discuss how these data can help us preserve observing sites in the future.

  7. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    Science.gov (United States)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  8. Thermoluminescence glow curves of Ca2+ and Sr2+ doped LiCl single crystals

    International Nuclear Information System (INIS)

    Effects of Ca2+ and Sr2+ dopants on the thermoluminescence glow curves of LiCl monocrystals have been studied. The crystals containing different amounts of Sr2+ and Ca2+, resp., were irradiated either by 60Co γ-radiation or by 90Sr beta particles

  9. Effect of rf power on the electrical properties of glow-discharge a-Si:H

    OpenAIRE

    TOLUNAY, Hüseyin

    2002-01-01

    Hydrogenated amorphous silicon films were prepared in an rf glow-discharge system by decomposing undiluted silane at various rf power densities. Dark conductivity and photoconductivity of the films have been measured in the temperature range 420K-100K at four different photon fluxes. It was observed that both dark conductivity and photoconductivity increase with increasing rf power density.

  10. Quantitative Analysis on Carbon Migration in Double-Glow Discharge Plasma Surface Alloying Process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-xia; WANG Cong-zeng; ZHANG Wen-quan; SU Xue-kuan

    2004-01-01

    Carbon migration is of great significance in double-glow discharge plasma surface alloying process, but literature of quantitative analysis about carbon migration is relatively scarce. In this paper differential equations of the carbon and metal concentration distribution were established. By means of differential equations carbon migration was described and a numerical solution was acquired. The computational results fit the experiment results quite well.

  11. A study on water treatment induced by plasma with contact glow discharge electrolysis

    International Nuclear Information System (INIS)

    Oxidative degradation of eight kinds of dyes induced by plasma in aqueous solution was investigated with contract glow discharge electrolysis (CGDE). It has been demonstrated that these eight dyes underwent degradation in CGDE, where Fe2+ could be utilised to raise the efficiency of degradation of dyes

  12. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  13. Direct solar-thermal hydrogen production from water using nozzle/skimmer and glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Pyle, W.R.; Hayes, M.H.; Spivak, A.L. [H-Ion Solar Co., Richmond, CA (United States)

    1996-12-31

    An investigation of direct solar-thermal hydrogen and oxygen production from water is described. Nozzle jets and skimmers have been used for separation of the products and suppression of recombination. The dissociation of water vapor and the separation of its products was conducted in plasma-enhanced, non-equilibrium glow discharges.

  14. Enhancement in ion beam current with layered-glows in a constricted dc plasma ion source

    International Nuclear Information System (INIS)

    High current mode has been discovered and investigated in a constricted dc plasma ion source. As discharge currents exceed a certain threshold, voltage to sustain the constricted dc plasma suddenly falls down to almost half of the value. In this sense, constricted dc plasmas can be sustained at much higher current than in conventional mode operation at a fixed discharge voltage. Phenomenally, several discrete layered-glows are created between an anode glow and a cathode glow. The layers are thin and divided by dark spaces where charged particles can be accelerated. In this high current mode, ion beam current density is about 100 times higher than in conventional mode at the same voltage. It is noteworthy that lower gas pressure is desirable to sustain the layered-glow mode, which is also profitable for ion source in terms of differential pumping. Ion current density exceeds 300 mA/cm2 at low discharge power of 175 W where ion density of plasma ball is estimated to be over 3.7x1012 cm-3.

  15. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics

    International Nuclear Information System (INIS)

    Thermoluminescence glow-curve deconvolution (GCD) functions are proposed for first, second and general orders of kinetics. The free parameters of the GCD functions are the maximum peak intensity (Im) and the maximum peak temperature (Tm), which can be obtained experimentally. The activation energy (E) and the order of kinetics (b) in the case of general order kinetics are the additional free parameters. (author)

  16. Thermal quenching in calcite and evaluation of quenching parameters from composite glow curve by a computerized resolved peak technique

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, J.M., E-mail: jitukalita09@gmail.com; Wary, G.

    2015-04-15

    Thermoluminescence (TL) glow curves of X-ray irradiated micro-grain calcite mineral were recorded at various heating rates (2, 4, 6, 8 and 10 K/s) under same linear temperature profile from 300 to 520 K. By using a Computerized Glow Curve Deconvolution technique, all composite glow curves of calcite were analyzed and the glow curves were found to be a combination of three distinct overlapping peaks. Activation energies corresponding to these three peaks were found to be 0.70, 0.60 and 1.30 eV respectively. For each set of computerized resolved peak, variation of peak maximum temperature, FWHM and peak area with heating rate were studied. Entire glow curves were found to be influenced by thermal quenching. Thermal quenching activation energy, W and the pre-exponential unitless constant, C were evaluated from each resolved peak individually. Thermal quenching activation energies for the three peaks were found to be 1.36±0.54, 1.14±0.73 and 1.38±0.40 eV respectively. The significance of determining the individual value of quenching parameters related to each peak for a composite glow curve is reported. - Highlights: • TL of X-ray irradiated calcite mineral was recorded at various heating rates. • Composite glow curves were found to be a combination of three overlapping peaks. • Glow curves were found to be influenced by thermal quenching. • Thermal quenching parameters were evaluated from the composite glow curves.

  17. The thermoluminescence glow curve and the deconvoluted glow peak characteristics of erbium doped silica fiber exposed to 70–130 kVp x-rays

    International Nuclear Information System (INIS)

    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF. - Highlights: • Supralinearity was not observed within the dose range of 0.1–0.7 Gy. • Er doped silica CF showed a sub-linear response. • The peak height and Tmax showed a significant dependency on dose. • The kinetics parameters were highly dependence on dose

  18. Properties of thermoluminescence glow curves from tunneling recombination processes in random distributions of defects

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [Physics Department, McDaniel College, Westminster, MD 21157 (United States)

    2014-09-15

    Localized electronic recombination processes in donor–acceptor pairs of luminescent materials have been recently modeled using a new kinetic model based on tunneling. Within this model, recombination is assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take place within a random distribution of centers. An approximate semi-analytical version of the model has been shown to simulate successfully thermally and optically stimulated luminescence (TL and OSL), linearly modulated OSL (LM-OSL) and isothermal TL processes. This paper presents a detailed analysis of the geometrical properties of the TL glow curves obtained within three different published versions of the model. The dependence of the shape of the TL glow curves on the kinetic parameters of the model is examined by allowing simultaneous random variations of the parameters, within wide ranges of physically reasonable values covering several orders of magnitude. It is found that the TL glow curves can be characterized according to their shape factors μ{sub g}, as commonly done in TL theory of delocalized transitions. The values of the shape factor are found to depend rather weakly on the activation energy E and the frequency factor s, but they have a strong dependence on the parameter ρ′ which characterizes the concentration of acceptors in the model. It is also shown by simulation that both the variable heating rate and initial rise methods are applicable in this type of model and can yield the correct value of the activation energy E. However, the initial rise method of analysis for the semianalytical version of the model fails to yield the correct E value, since it underestimates the low temperature part of the TL glow curves. Two analytical expressions are given for the TL intensity, which can be used on an empirical basis for computerized glow curve deconvolution analysis (CGCD). - Highlights: • Detailed study of TL glow curves in a tunneling model for

  19. Properties of thermoluminescence glow curves from tunneling recombination processes in random distributions of defects

    International Nuclear Information System (INIS)

    Localized electronic recombination processes in donor–acceptor pairs of luminescent materials have been recently modeled using a new kinetic model based on tunneling. Within this model, recombination is assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take place within a random distribution of centers. An approximate semi-analytical version of the model has been shown to simulate successfully thermally and optically stimulated luminescence (TL and OSL), linearly modulated OSL (LM-OSL) and isothermal TL processes. This paper presents a detailed analysis of the geometrical properties of the TL glow curves obtained within three different published versions of the model. The dependence of the shape of the TL glow curves on the kinetic parameters of the model is examined by allowing simultaneous random variations of the parameters, within wide ranges of physically reasonable values covering several orders of magnitude. It is found that the TL glow curves can be characterized according to their shape factors μg, as commonly done in TL theory of delocalized transitions. The values of the shape factor are found to depend rather weakly on the activation energy E and the frequency factor s, but they have a strong dependence on the parameter ρ′ which characterizes the concentration of acceptors in the model. It is also shown by simulation that both the variable heating rate and initial rise methods are applicable in this type of model and can yield the correct value of the activation energy E. However, the initial rise method of analysis for the semianalytical version of the model fails to yield the correct E value, since it underestimates the low temperature part of the TL glow curves. Two analytical expressions are given for the TL intensity, which can be used on an empirical basis for computerized glow curve deconvolution analysis (CGCD). - Highlights: • Detailed study of TL glow curves in a tunneling model for random

  20. Correlation between TL and OSL signals in KMgF3:Ce3+: Bleaching study of individual glow-peaks

    International Nuclear Information System (INIS)

    KMgF3:Ce3+ is an ultra sensitive Thermoluminescence (TL) material with a complex TL and OSL glow-curve structure. The aim of the present work is to attempt a one-to-one correspondence between specific TL glow-peaks and OSL components in KMgF3:Ce3+. The correlation study involves the deconvolution of the TL curves and the estimation of the bleaching decay constants for individual glow-peaks followed by the deconvolution of the LM-OSL curve using the estimated decay constants. It was found that the bleaching of each individual glow-peak takes place in three different rates; namely in a fast, medium and slow rate.

  1. Development of On-Line Direct Current Glow Discharge Source for Analysis of Isotope Ratio of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The present research is focused on the analysis of isotope ratio of the hydrogen by measuring an intensity ratio of hydrogen/deuterium/tritium fluxes. The direct current glow discharge tube may provide a

  2. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai, David,; Lacoste, Deanna,; Laux, C.

    2010-01-01

    International audience In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determi...

  3. Simulation of gas breakdown in high pressure molecular lasers and study role of preionization in glow discharge by percolation theory

    International Nuclear Information System (INIS)

    In this paper, electrical breakdown in gases is simulated and the necessary condition for formation of a high pressure homogenous glow discharge is investigated by the percolation theory. In this simulation, a resistor network is used to simulate the electrical breakdown and then this resistor network is solved by percolation theory. The minimum initial electron density for formation of a glow discharge is calculated. Results are in agreement with published experimental results.

  4. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp

    OpenAIRE

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surfa...

  5. Analysis of the different zones of glow discharge of ethyl alcohol (C2H6O)

    International Nuclear Information System (INIS)

    The aim of this work is to explore the emission spectroscopy of ethyl alcohol in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region C6H5 (483.02 nm), CHO (519.56 nm) and H2 (560.47 nm), in the positive column CO2+ (315.52 y 337.00 nm), O+ (357.48 nm), CH+ (380.61 nm) and CO+ (399.73 nm); in the cathode region we observed O+ (391.19 nm), CHOCHO (428.00 nm), CO+ (471.12 nm) and H2 (656.52 nm). C6H5, CHO y H2 species occurring in all regions analyzed varying the glow discharge emission intensity.

  6. Fading prediction in thermoluminescent materials using computerised glow curve deconvolution (CGCD)

    CERN Document Server

    Furetta, C; Weng, P S

    1999-01-01

    The fading of three different thermoluminescent (TL) materials, CaF sub 2 : Tm (TLD-300), manocrystalline LiF : Mg,Ti (DTG-4) and MgB sub 4 O sub 7 : Dy,Na has been studied at room temperature and at 50 deg. C of storage. The evolution as a function of the elapsed time of the whole glow curve as well as of the individual peaks has been analysed using the Computerised Glow Curve Deconvolution (CGCD) program developed at the NTHU. The analysis allows to predict the loss of the dosimetric information and to make any correction is necessary for using the TL dosimeters in practical applications. Furthermore, it is well demonstrated that using CGCD it is not necessary to anneal the peaks having a rapid fading to avoid, then, any interfering effect on the more stable peaks.

  7. Electrostatic analyzer for electron and ion energy in glow discharge tube

    International Nuclear Information System (INIS)

    The project, the construction and use of an electrostatic energy analyser (Faraday Cup) are described explaining physically its working mechanism. The analyser was used in a glow discharge tube with air and an air-argon mixture. A chapter with the theory of the glow discharge is included. The ion and electron temperatures, the plasma potential and the distribution function for ions and electrons were measured. The electron temperature and plasma potential were also measured using a Langmuir probe and the results show reasonable agreement with the results of the analyser. Good fits of the experimental electron and ion distribution functions were obtained with Maxwellian distributions centered values near the plasma potential. Finally, we discuss the performance of the analyser compared to Langmuir probes. (author)

  8. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    International Nuclear Information System (INIS)

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  9. Glow Discharge Mass Spectrometry Analysis of LX-17 and PBX-9502 High Explosive Samples

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J; Castor, J I; Lane, M A; Overturf, G E

    2002-12-16

    As part of the Campaign 4 effort in A Division we have done an analysis of several high explosives that are used in the current nuclear stockpile. In particular we have looked at samples of LX-17 and PBX-9502. The analysis was done using the glow discharge mass spectrometer that is currently located in B132N and operated by Mark Lane of the Chemistry and Material Science (CMS) Directorate. George Overturf from CMS obtained small samples of high explosive for the measurements. From the analysis we wanted to verify the actual atomic composition of the high explosive, see how that compared with the nominal composition, and understand whether any significant impurities existed in the samples. We present the analysis of several LX-17 and PBX-9502 samples using the glow discharge mass spectrometer to measure both the main constituents of the high explosive as well as any trace materials that may be present.

  10. On the feasibility of inversion methods based on models of urban sky glow

    International Nuclear Information System (INIS)

    Multi-wavelength imaging luminance photometry of sky glow provides a huge amount of information on light pollution. However, the understanding of the measured data involves the combination of different processes and data of radiation transfer, atmospheric physics and atmospheric constitution. State-of-the-art numerical radiation transfer models provide the possibility to define an inverse problem to obtain information on the emission intensity distribution of a city and perhaps the physical properties of the atmosphere. We provide numerical tests on the solvability and feasibility of such procedures. - Highlights: • A method of urban sky glow inversion is introduced based on Monte-Carlo calculations. • Imaging photometry can provide enough information for basic inversions. • The inversion technique can be used to construct maps of light pollution. • The inclusion of multiple scattering in the models plays an important role

  11. The impact of light source spectral power distribution on sky glow

    Science.gov (United States)

    Luginbuhl, Christian B.; Boley, Paul A.; Davis, Donald R.

    2014-05-01

    The effect of light source spectral power distribution on the visual brightness of anthropogenic sky glow is described. Under visual adaptation levels relevant to observing the night sky, namely with dark-adapted (scotopic) vision, blue-rich (“white”) sources produce a dramatically greater sky brightness than yellow-rich sources. High correlated color temperature LEDs and metal halide sources produce a visual brightness up to 8× brighter than low-pressure sodium and 3× brighter than high-pressure sodium when matched lumen-for-lumen and observed nearby. Though the sky brightness arising from blue-rich sources decreases more strongly with distance, the visual sky glow resulting from such sources remains significantly brighter than from yellow sources out to the limits of this study at 300 km.

  12. Double Glow Plasma Hydrogen-free Carburizing on Commercial Purity Titanium

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gaohui; PAN Junde; HE Zhiyong; ZHANG Pingze; GAO Yuan; XU Zhong

    2005-01-01

    A carburized layer with special physical and chemical properties was formed on the surface of commercial purity titanium by a double glow plasma hydrogen-free carburizing technique. High-purity netlike solid graphite was used as a raw material and commercial purity titanium was used as the substrate material. Argon gas was used as the working gas. The carburized layer can be obviously observed under a microscope. X-ray diffraction indicates that TiC phase with higher hardness and dissociate state carbon phase was formed in the carburized layer. The glow discharge spectrum (GDS) analysis shows that the carbon concentration distributes gradiently along the depth of carburized layer. The surface hardness of the substrate increases obviously. The hardness distributes gradiently from the surface to inner of carburized layer. The friction coefficient reduces by more than 1/2, the ratio wear rate decreases by above three orders of magnitude. The wear resistance of the substrate material is improved consumedly.

  13. Glow corona generation and streamer inception at the tip of grounded objects during thunderstorms: revisited

    International Nuclear Information System (INIS)

    The initiation of streamers prior to a lightning strike can be reportedly inhibited by glow corona discharges generated from tall objects. In contrast to previous studies based on a simplified one-dimensional model of glow corona, a two-dimensional evaluation of the corona ion drift from tall objects is used here to analyse this effect quantitatively. Proper estimates for the corona space charge distribution generated during both the charging process of a thundercloud and the descent of the downward stepped leader are thus calculated. It is found that the shielding effect of the corona space charge on the streamer inception is not as severe as previously reported. Estimations of the effective height of the downward leader tip at which streamer inception takes place are presented and discussed for lightning rods and dissipation array systems. (paper)

  14. Analysis of non-conducting powders by glow-discharge atomic emission spectrography

    International Nuclear Information System (INIS)

    An analytical method for control of the impurity levels of non-conducting powders during their preparation (particularly milling processes) is proposed. Impurity concentrations between some hundredths and a few percent as well as admixtures concentrations higher than 10% are determined. The glow discharge emission spectrography is applied after briquetting the samples with an excess of copper powder using a Grimm-type glow discharge lamp and a grating plan spectrograph with photographic detection. Difficulties arise from the band spectra due to non-metallic elements in the sample and from insufficient grain sizes, mixture homogeneity and compactness of the briquettes. The efficiency and detection limits in determination of SiO2 and ZrO2 in Al2O3 and of SiO2 in Bi2Ru2O7 are described. (author)

  15. A reflex glow discharge as a plasma source for broad area electron beam generation

    International Nuclear Information System (INIS)

    The authors demonstrated an electron beam generation scheme in which two glow discharge electron guns are used in a reflex configuration to create a dense and cold plasma in a large volume. The thermal electrons from this plasma, created mainly by electron beam ionization, are subsequently accelerated in the gap between two grids by an externally applied electric field to produce a broad area electron beam. This electron beam current density and energy are independently controlled by the voltage applied to the glow discharge guns and by the electric field sustained between the grids respectively. They present a schematic representation of the electron gun used in the experimental demonstration of the concept reported here

  16. Uniqueness theorem for the non-local ionization source in glow discharge and hollow cathode

    CERN Document Server

    Gorin, Vladimir V

    2012-01-01

    The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.

  17. A PC-based technique for creating 3D plots from monochromatic TL glow curves

    International Nuclear Information System (INIS)

    Recording of thermoluminescence emission spectra of many minerals is beset with the problem of detecting low (TL) emission intensities at high temperatures where the thermal noise is competing. Although very expensive techniques have been described in literature to obtain elegantly isometric plots of temperature, wavelength and TL intensity of weakly emitting minerals, the present work describes a very simple method of creating 3D projections of TL emission from measurements of monochromatic TL glow curves and using a commercially available PC software. A microprocessor-based data acquisition system has been indigenously developed and interfaced to the conventional TL glow-curve recorder. The digitised data are directly fed into an IBM compatible PC-XT and the 3D plots are created using a commercially available software named 'SURFER'. The programme can also generate contour maps. Typical plots are presented for the case of minerals like Scapolite, Spodumene an Kunzite. (author). 4 refs., 6 figs

  18. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Qian; DENG Yong-Feng; LIU Yue; HAN Xian-Wei

    2008-01-01

    A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Torr is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Torr to 100 Torr. It is also shown that in the range of the gas pressure from 1 Torr to 100 Torr with the slower rate of varying gas pressure, higher density of plasma can be obtained.

  19. Self-Organization of a Laminar Structure of a Normal Glow Discharge

    Science.gov (United States)

    Timerkaev, B. A.; Petrova, O. A.; Saifutdinov, A. I.

    2016-03-01

    The behavior of a glow discharge at low pressures is considered. A combined experimental and theoretical method for determining the distributions of electron and ion concentrations in the discharge chamber is proposed. It is shown that the concentrations of charged particles in the negative glow rise not due to the intense ionization by fast electrons from the cathode regions, but instead due to the slowing down of their drift motion. The use of an experimental curve of the potential distribution along a discharge chamber and account of the nonlocal dependence of the Townsend coefficient on the electric field strength have allowed obtaining the distribution of the electric field strength and determining the exact character of variation in the concentration of charged particles along the discharge axis.

  20. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, M.; Kondo, M.; Noda, N. [Hydrogen Isotope Research Center, University of Toyama, Gofuku, Toyama (Japan); Tanaka, M.; Nishimura, K. [National Institute for Fusion Science, Toki-shi, Gifu (Japan)

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  1. SkyGlowNet: Multi-Disciplinary Independent Student Research in Environmental Light at Night Monitoring

    Science.gov (United States)

    Craine, B. L.; Craine, E. R.; Culver, R. B.; DeBenedetti, J. C.; Flurchick, K. M.

    2014-07-01

    SkyGlowNet uses Internet-enabled sky brightness meters (iSBM) to monitor sky brightness over school sites. The data are used professionally and in STEM outreach to study natural and artificial sources of sky brightness, light pollution, energy efficiency, and environmental and health impacts of artificial night lighting. The iSBM units are owned by participating institutions and managed by faculty or students via proprietary Internet links. Student data are embargoed for two semesters to allow students to analyze data and publish results, then they are moved to a common area where students from different institutions can collaborate. The iSBM units can be set to operate automatically each night. Their data include time, sky brightness, weather conditions, and other related parameters. The data stream can be viewed and processed online or downloaded for study. SkyGlowNet is a unique, multi-disciplinary, real science program aiding research for science and non-science students.

  2. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gu-Ling; YANG Si-Ze; WANG Jiu-Li; WU Xing-Fang; FENG Wen-Ran; CHEN Guang-Liang; GU Wei-Chao; NIU Er-Wu; FAN Song-Hua; LIU Chi-Zi

    2006-01-01

    @@ A new method named the magnetic glow-arc plasma source ion implantation (MCA-PSⅡ) is proposed for inner surface modification of tubes. In MGA-PSⅡ, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90mm and length 600mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  3. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Science.gov (United States)

    Zhang, Gu-Ling; Wang, Jiu-Li; Wu, Xing-Fang; Feng, Wen-Ran; Chen, Guang-Liang; Gu, Wei-Chao; Niu, Er-Wu; Fan, Song-Hua; Liu, Chi-Zi; Yang, Si-Ze

    2006-05-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  4. COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES

    International Nuclear Information System (INIS)

    OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 (micro)m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 (micro)m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard

  5. Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

    Indian Academy of Sciences (India)

    Md Nurujjaman; A N Sekar Iyengar

    2006-08-01

    Transition from chaotic to ordered state has been observed during the initial stage of a discharge in a cylindrical DC glow discharge plasma. Initially it shows a chaotic behavior but increasing the discharge voltage changes the characteristics of the discharge glow and shows a period subtraction of order 7 period → 5 period → 3 period → 1 period, i.e. the system goes to single mode through odd cycle subtraction. On further increasing the discharge voltage, the system goes through period doubling, like 1 period → 2 period → 4 period. On further increasing the voltage, the system goes to stable state through two period subtraction, like 4 period → 2 period → stable.

  6. Polarity functions' characterization and the mechanism of starch modification by DC glow discharge plasma.

    Science.gov (United States)

    Khorram, S; Zakerhamidi, M S; Karimzadeh, Z

    2015-01-01

    The wheat starch was investigated, before and after exposure to the argon and oxygen glow discharge plasma, without any added chemical reagents, using a novel media polarity functions method. The mechanisms of modification of starch in plasma discharge irradiation were explained using some methods such as; NMR, IR spectroscopy, Kamlet-Abboud-Taft polarity functions (specific and nonspecific interaction) of modified starch. The starch modification, by plasma treatment, shows valuable changes with plasma gas and relative ionized or active species. Characterizations indicate that argon glow discharge plasma increases crosslink in C-2 site of starch. Also, oxygen plasma discharge irradiation tends to oxidize the OH group in C-6 site of carbonyl group. Furthermore, the reported mechanisms show the highest efficiency, because of the stereo-chemical orientation of active sites of starch and plasma potential of wall in plasma media. PMID:25965458

  7. Classification of mixed-radiation fields using the vector representation of thermoluminescent glow curves

    International Nuclear Information System (INIS)

    A novel and robust technique, vector representation (VR), was developed for classifying the glow curves of thermoluminescent dosimeters (TLDs) exposed to proton, photon, and mixed proton-photon fields produced by two types of TLDs:LiF:Mg,Ti (TLD-100) and CaF2:Tm (TLD-300). Vectors were constructed from glow curve points and classified based on the TL vector inner product with a unit vector and TL vector magnitude. The goal was to perform two-category (proton or mixed/photon) and three-category (proton, photon, or mixed) classification. The method was tested for accuracy using leave-one-out validation (LOOV) with classification based on the smallest Mahalanobis distance. Using the high-temperature peaks of each material, correct classification rates exceeding 92% in all cases were obtained

  8. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  9. The glow duration time influence on the ionization rate detected in the diodes filled with noble gases on mbar pressures

    Directory of Open Access Journals (Sweden)

    Stepanović Olivera M.

    2003-01-01

    Full Text Available The results of the glow current duration time (glowing-time influence on the ionization rate detected in the gas filled diodes are presented. The electrical breakdown was detected as the minimal current impulse. After that diode glow from the minimal glowing-time (10-3 s, up to the maximal 103 s which overlap the time of the stationary regime formation in the gas diode tube. The diodes were with volumes of 300 cm3, but with a diode gap volume of about 1 cm3 and filled with helium, neon, argon or krypton, at the pressures of the order of mbar. The ionization rates were detected as the residual ionization after the glowing was interrupted, using the electrical breakdown time delay measuring method. The influence of the gap distance stationary current values and the relaxation period were also investigated. The result shows that the stationary regime in such a gas diode is established after the glowing time of 1-3 s, although the breakdown formative times were smaller then 1 ms.

  10. Decomposition of polychlorinated biphenyls (PCB's) in a radio-frequency glow discharge plasma

    International Nuclear Information System (INIS)

    A study was made on the decomposition of PCB's in a radio-frequency glow discharge plasma. When PCB's were decomposed in a plasma of oxygen at a few Torr, they were completely decomposed to gaseous products: carbon monoxide, carbon dioxide, water, hydrogen chloride, chlorine, and chlorine dioxide. Hazardous compounds such as phosgene and vinyl chloride were not detected by a GC-MS analysis. (author)

  11. Aligned Carbon Nano tubes Array by DC Glow Plasma Etching for Super capacitor

    International Nuclear Information System (INIS)

    To open the end of carbon nano tubes and make these ends connect with functional carboxyl group, aligned carbon nano tubes (CNTs) arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nano tubes array as electrode materials to build super capacitor, we found that the capacity (32.2 F/g) increased significantly than that of pure carbon nano tubes (6.7 F/g)

  12. Investigation of complexity dynamics of inverse and normal homoclinic bifurcation in a glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Debajyoti, E-mail: debajyoti.saha@saha.ac.in; Kumar Shaw, Pankaj; Janaki, M. S.; Sekar Iyengar, A. N.; Ghosh, Sabuj; Mitra, Vramori, E-mail: vramorimitra@yahoo.com; Michael Wharton, Alpha [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2014-03-15

    Order-chaos-order was observed in the relaxation oscillations of a glow discharge plasma with variation in the discharge voltage. The first transition exhibits an inverse homoclinic bifurcation followed by a homoclinic bifurcation in the second transition. For the two regimes of observations, a detailed analysis of correlation dimension, Lyapunov exponent, and Renyi entropy was carried out to explore the complex dynamics of the system.

  13. Influence of gap width on discharge asymmetry in atmospheric pressure glow dielectric barrier discharges

    International Nuclear Information System (INIS)

    In this letter, a one-dimensional fluid model is used to investigate the mechanism of discharge asymmetry in atmospheric pressure helium glow dielectric barrier discharges (GDBDs). By observing the evolutionary process between the successive peak currents, the effect of the gap width on the discharge asymmetry is thoroughly discussed. It is shown that when the gap width is too large, the very severe nonuniformity of electric field distribution over the gas gap leads to the discharge asymmetry.

  14. Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions.

    Science.gov (United States)

    Czarnowska, E; Morgiel, J; Ossowski, M; Major, R; Sowinska, A; Wierzchon, T

    2011-10-01

    The disadvantages of titanium implants are their low wear resistance and the release of titanium elements into surrounding tissue. These can be eliminated by modifying the surface by surface engineering methods, among them nitriding under glow discharge conditions which allow to produce diffusive surface layers. Their combining with an oxide layer might be valuable for biological events occurring at the bone implant interface. The aim of this study was to enhance the titanium biomaterial performance via combining nitriding and oxidizing treatments in one process under glow discharge conditions. The oxynitrided surface layers were produced at 680 degrees C. The obtained layer was TiO + TiN + Ti2N + alphaTi(N) type and about 4-microm thick and was of diffusive character. This layer significantly increased wear resistance and slightly corrosion resistance compared to that of the reference titanium alloy. The produced titanium oxide was about 400-nm thick and built from fine crystallites. This oxide exhibits bioactivity in SBF (simulated body fluid). Osteoblasts of Saos-2 line incubated on this surface exhibited good adhesion and proliferation and ALP release comparable with cells cultured on the reference titanium alloy and TiN + Ti2N + alphaTi(N) surface layers. A quantitative analysis of blood platelets adhering to this layer revealed their highest amount in comparison to that on both the nitrided surface layer and titanium alloy. The presented study provided a simple and reproducible method of combining oxidizing and nitriding under glow discharge in one process. Experimental data in vitro suggests that titanium alloy oxynitriding under low temperatures at glow discharge conditions improves titanium alloy properties and biocompatibility and tissue healing. Therefore, the layer of TiO + TiN +Ti2N + alphaTi(N) type could be valuable for long-term bone implants. PMID:22400281

  15. Effect of Atmospheric Pressure Glow Discharge Treatment on Polymerization of Acrylic Fabric and Its Printing Behavior

    Directory of Open Access Journals (Sweden)

    D M El-Zeer

    2014-03-01

    Full Text Available Acrylic fibers have been treated by atmospheric pressure glow discharge (APGD plasma in open air to enhance surface antistatic properties. The treated surfaces are investigated by scanning electron microscopy (SEM, Fourier-Transition Infrared Spectroscopy (FTIR and Atomic Force Microscope (AFM. Plasma treatment of acrylic fabric has been found to increase the surface roughness, modify the nature and density of surface functionalities, and drastically improve the wettability and antistatic ability of acrylic fibers.

  16. CORRELATION BETWEEN ELECTRICAL AND VIBRATIONAL PROPERTIES OF CHLORINATED AND HYDROGENATED AMORPHOUS SILICON PREPARED BY GLOW DISCHARGE

    OpenAIRE

    Al Dallal, S.; Chevallier, J.; Kalem, S; Bourneix, J.

    1982-01-01

    Electrical conductivity and infrared transmission measurements have been carried out on chlorinated and hydrogenated amorphous silicon films prepared by glow discharge. Upon increasing the plasma power, we observed a change of transport mechanism, accompanied by an evolution of hydrogen and chlorine related bands. From this correlation between the transport and the infrared data we suggest that the evolution of SiCl2 species with the plasma power is mainly responsible for the change in bandga...

  17. Study on the Dyeing Behaviors of Low Temperature Glow Discharge Treated Wool

    Institute of Scientific and Technical Information of China (English)

    JIN Jun-chao; LU Wang; DAI Jin-jin

    2002-01-01

    Wool tops was modified by low temperature glow discharge (LTGD). The inputted power, the treating time and the pressure or vacuum were found to play an important role. The wool tops were dyed with reactive dye under a constant dyeing temperature after plasma treatment. Then the dyeing behaviors were studied based on the data of uptake, fixation, dyeing rate and fixing rate. The results revealed the possibility of low temperature dyeing and the suitable parameter of LTGD treatment.

  18. Production of nanometric particles in radio frequency glow discharges in mixtures of silane and methane

    OpenAIRE

    Bertrán Serra, Enric; Costa i Balanzat, Josep; Viera Mármol, Gregorio; Zhang, R. Q.

    1996-01-01

    The formation of silicon particles in rf glow discharges has attracted attention due to their effect as a contaminant during film deposition or etching. However, silicon and silicon alloy powders produced by plasma¿enhanced chemical vapor deposition (PECVD) are promising new materials for sintering ceramics, for making nanoscale filters, or for supporting catalytic surfaces. Common characteristics of these powders are their high purity and the easy control of their stoichiometry through the c...

  19. Heat and Radiofrequency Plasma Glow Discharge Pretreatment of a Titanium Alloy Promote Bone Formation and Osseointegration

    OpenAIRE

    MacDonald, Daniel E.; Rapuano, Bruce E.; Vyas, Parth; Lane, Joseph M.; Meyers, Kathleen; Wright, Timothy

    2013-01-01

    Orthopedic and dental implants manifest increased failure rates when inserted into low density bone. We determined whether chemical pretreatments of a titanium alloy implant material stimulated new bone formation to increase osseointegration in vivo in trabecular bone using a rat model. Titanium alloy rods were untreated or pretreated with heat (600°C) or radiofrequency plasma glow discharge (RFGD). The rods were then coated with the extracellular matrix protein fibronectin (1 nM) or left unc...

  20. Glow Worms as a Tourist Attraction in Springbrook National Park: Visitor Attitudes and Economic Issues

    OpenAIRE

    Wilson, Clevo; Tisdell, Clement A.; Merritt, David

    2004-01-01

    Insect-based tourism mainly caters to a niche market, but its popularity has been growing in recent years. Despite its popularity this form of tourism has remained under-researched and in a sense its contribution to the tourism industry has gone mostly unnoticed. This paper reports the results of a study undertaken on one form of popular insect-based tourism, namely glow worms. The study was undertaken in Springbrook National Park (Natural Bridge section) southeast Queensland, which has one o...

  1. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Air Flow

    OpenAIRE

    Shneider, M. N.; Mokrov, M. S.; Milikh, G. M.

    2013-01-01

    We study the dynamic contraction a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to co...

  2. Investigation of Stream Flow Distribution and Its Condensation in Glow Discharge Electron Beam Installation for Evaporation

    International Nuclear Information System (INIS)

    Glow discharge electron guns are widely used for realising different technological operation in the soft vacuum. Its may be successfully applied for reactive evaporation of thin film of oxides and nitrides, which are used for covering of mechanical instruments and for obtaining of dielectric films in microelectronics. In the present work the mathematical model of steam flow distribution and its condensation in the substrate is proposed and realised and its experimental verification provided. (author)

  3. Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge

    Czech Academy of Sciences Publication Activity Database

    Šíra, M.; Trunec, D.; Sťahel, P.; Buršíková, V.; Navrátil, Z.; Buršík, Jiří

    2005-01-01

    Roč. 38, č. 4 (2005), s. 621-627. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GA202/02/0880; GA ČR(CZ) GP202/02/D097 Institutional research plan: CEZ:AV0Z20410507 Keywords : glow discharge * surface * electron microscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  4. Aligned Carbon Nanotubes Array by DC Glow Plasma Etching for Supercapacitor

    OpenAIRE

    Yongfeng Luo; Xi Li; Zhiqiang Gong; Zhongzhi Sheng; Xiaofang Peng; Qunying Mou; Mengdong He; Xianjun Li; Hong Chen

    2013-01-01

    To open the end of carbon nanotubes and make these ends connect with functional carboxyl group, aligned carbon nanotubes (CNTs) arrays was etched by DC glow oxygen-argon plasma. With these open-ended carbon nanotubes array as electrode materials to build supercapacitor, we found that the capacity (32.2 F/g) increased significantly than that of pure carbon nanotubes (6.7 F/g).

  5. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C2). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed

  6. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  7. Development of a glow curve measuring system of TLDs and its applications

    International Nuclear Information System (INIS)

    A glow curve measurement apparatus of TLDs with a constant heating rate and a wide measurable range has been developed to study the characteristics of TLDs and to apply them to synchrotron radiation dosimetry. The heating rates of 0.5, 1, 2, 3, and 5 degC/s are controlled within an accuracy of ± 2 % from room temperature up to 450degC and the TL output corresponding to the photomultiplier current from 0.01 nA to 100 μA can be measured as digital values per every 1 msec through a current digitizer, in which the linearity of the current digitizer is guaranteed with an accuracy less than 0.1 %. The glow curve and the dose response of LiF, Li2B4O7 (Mn), and Li2B4O7 (Cu) TLDs have been measured for 60Co gamma-rays and synchrotron radiations of 10 to 40 keV up to a couple of 103 Gy using the present system. Apparent differences among the glow curves and the dose responses have been observed with respect to the photon energy and the exposure. Consequently, the high performance of the present measuring system has been demonstrated. (author)

  8. Advanced trap spectroscopy using the glow rate technique based on bleaching of color centers

    International Nuclear Information System (INIS)

    The glow rate technique (GRT) is the extension of the known heating rate method to the full glow curve. The GRT like the fractional glow technique (FGT) offers a procedure for evaluation of the mean activation energy as a function of temperature in the case of arbitrary thermostimulated relaxation kinetics represented by trap distribution function. The experimental procedure involves at least two subsequent measurements of thermostimulated recombination kinetics at different heating rates. The extension of the GRT to the direct measurements of thermostimulated bleaching of the radiation-induced color centers is presented. The experimental procedure involves measurements of the decay of radiation-induced absorption spectra of color centers in preliminary irradiated materials during linear heating. Procedure for evaluation of the trap energy and frequency factor spectrum is considered in the paper. Results of the application of GRT for analysis of the parameters of thermostimulated decay of color centers are presented in the case of decay of the radiation-induced defects in LiBaF3 crystals irradiated by X-rays. It is shown that decay of F-type centers occurs in two steps, the activation energy slightly decreasing from 0.660±0.003 eV in the first step (300-370 K) to 0.615±0.003 eV (400-480 K) in the second step

  9. Methane Conversion to C2 Hydrocarbons by Abnormal Glow Discharge at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    Dai Wei; Yu Hui; Chen Qi; Yin Yongxiang; Dai Xiaoyan

    2005-01-01

    Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%,where the coke increases gradually along with the increase of CH4/H2 from 2: 8 to 9: 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2= 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge.A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.

  10. Mechanism behind self-sustained oscillations in direct current glow discharges and dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Nae [Devices R and D Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Mt. 14-1 Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of)

    2013-04-15

    An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by the fluid models, where oscillations are attributed to the positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and the surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in the DC glow discharges. Furthermore, this alternative description provides an elegant explanation to the formation of plasma fireballs in the laboratory plasma. It has been found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with the electric field. The presented mechanism also describes self-sustained oscillations of ions in dusty plasmas, which demonstrates that self-sustained oscillations in dusty plasmas and DC glow discharges involve common physical processes.

  11. Mixed- and general-order kinetics applied to selected thermoluminescence glow curves

    International Nuclear Information System (INIS)

    Mixed-order (MO) and general-order (GO) kinetics expressions are applied to experimental glow curves of CaSO4Ce, LiNaSO4: Eu, BaF2:Ce and SrF2:Er. The purpose is to compare the activation energies derived from the two models to investigate the correlation between the order of kinetics, b, and the parameter α of the MO model for real systems and to explore the validity of the correlation between b and α derived from the analysis of synthetic glow peaks or experimentally isolated single peak for complex glow curves. The two alternative routes resulted in clean fits with very close values of the sum of squared residuals. The general conclusions are: (1) the activation energies derived from the MO model are slightly higher than the ones derived from the GO model, but the difference appears to be insignificant, (2) the correlation between b and α is not smooth and the scatter in the b values for a given α is within the theoretically expected spread in the b value and (3) the MO expression is capable of evaluating the shape parameters as accurately as the GO expression with the advantage that it has a physical basis contrary to the purely empirical GO model. (authors)

  12. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge

    Indian Academy of Sciences (India)

    Raju Bhai Tyata; Deepak Prasad Subedi; Rajendra Shrestha; Chiow San Wong

    2013-03-01

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 11/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm-3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 $\\$J with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.

  13. Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Yan; Wang De-Zhen; Wang Xiao-Gang

    2007-01-01

    The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum,the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.

  14. Radio frequency atmospheric pressure glow discharge in α and γ modes between two coaxial electrodes

    Science.gov (United States)

    Shang, Wanli; Wang, Dezhen; Zhang, Yuantao

    2008-09-01

    The discharge in pure helium and the influence of small nitrogen impurities at atmospheric pressure are investigated based on a one-dimensional self-consistent fluid model controlled by a dielectric barrier between two coaxial electrodes. The simulation of the radiofrequency (rf) discharge is based on the one-dimensional continuity equations for electrons, ions, metastable atoms, and molecules, with the much simpler current conservation law replacing the Poisson equation for electric field. Through a computational study of rf atmospheric glow discharges over a wide range of current density, this paper presents evidence of at least two glow discharge modes, namely the α mode and the γ mode. The simulation results show the asymmetry of the discharge set exercises great influence on the discharge mechanisms compared to that with parallel-plane electrodes. It is shown that the particle densities are not uniform in the discharge region but increase gradually from the outer to the inner electrode in both modes. The contrasting dynamic behaviors of the two glow modes are studied. Secondary electron emission strongly influences gas ionization in the γ mode yet matters little in the α mode.

  15. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    International Nuclear Information System (INIS)

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H2O, CO, and CH4, and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H2O, CO, and CO2; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  16. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    Science.gov (United States)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  17. The analysis of thermoluminescent glow peaks of CaF2 : Dy (TLD-200) after β-irradiation

    International Nuclear Information System (INIS)

    Variable dose (VD), Tm-Tstop, initial rise (IR), variable heating rate (VHR), peak shape (PS) and computerized glow curve deconvolution (CGCD) methods are used to determine the number of peaks, the order of kinetics (b), the activation energy (Ea) and attempt-to-escape frequency (s) associated with the glow peaks in CaF2 : Dy (TLD-200) after β-irradiation between the dose level 0.1 and 110 Gy. The Tm-Tstop procedure indicates that the glow curve of this crystal consists of at least nine glow peaks. The dose variation experiment indicates that seven of them, namely peaks 1-6 and 8, are of first-order kinetics and peaks 7 and 9 are of general-order kinetics. However, the Tm-Tstop procedure and the CGCD method have indicated that peak 6 has general-order kinetics too. The activation energy found with the IR, VHR, PS and CGCD methods for peak 4 yield very close values. For all other peaks, there is no agreement between the results of all the applied methods. This work also indicates that the post-irradiation annealing and the heating rate have pronounced effects on the evaluated kinetic parameters of all glow peaks

  18. An algorithm for the deconvolution of the optically stimulated luminescence glow curves involving the mutual interactions among the electron traps

    International Nuclear Information System (INIS)

    The most of the algorithms reported on the deconvolution of the OSL/TL glow curve is basically based on the one trap one recombination center (OTOR) model. In the OTOR model, each individual trap is considered to be independent with each other (mutually exclusive with each other), and the total glow curve is produced solely by the summation of the glow peaks generated from the luminescence emitted by the electrons in one individual trap when transferring to other trap(s). Therefore, there could be a major difference between the model and real physical process of the OSL/TL mechanism. Because the electrons being excited to be in the conduction band barely have past recollection of the original traps, it is widely believed that electrons in one trap can be easily transferred to other trap via the conduction band. Particularly in case of the OSL, the effects of mutual interactions among the traps could be more dominant than those in case of the TL. An algorithm, which can be used to numerically analyze the OSL/TL curves with reflecting the mutual interactions among the individual traps via the conduction band, is developed. This algorithm is able to promptly generate the glow curves for a system with numerous electron traps and recombination centers. Thus, the algorithm can be used to effectively deconvolute the glow curve of a given measurement data.

  19. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined. PMID:25184109

  20. Application of computerised glow curve analysis in a TLD based personnel dosimetry service

    International Nuclear Information System (INIS)

    The methods and techniques of computerised Glow Curve Analysis (GCA) have clearly a potential for improvement of the thermoluminescence dosimetry (TLD) performance still to be exploited for practical work. Particularly personal dosimetry, whose results must comply with specific quality criteria, can be benefited from the more accurate handling of the usually complex glow curves, including several peaks with different properties and also different interest for dosimetry, notably their different intensity and thermal stability. Most of the so called standard procedures for TLD were proposed in the 70s aiming to obtain a sufficiently stable response for the usual integration periods, one to three months, in personal or environmental dosimetry. Mostly these procedures consisted in more or less complex annealing procedures applied before or after irradiation but having a common objective: the modification of the natural glow curve structure trying to eliminate the unstable low temperature peaks favouring the presence of high temperature peaks with better long term stability. In these initial stages of the employment of TLD, the physics behind the thermally activated light emissions in the materials employed for dosimetry was not properly understood and so these standard procedures were mainly of phenomenological nature, presenting important differences among laboratories. Since these early times and in parallel with an impressive increase of the practical use of TLD, an important research effort has been developed that have clarified many of the features of the TL physical processes in dosimetric materials, particularly LiF(Mg,Ti) and more recently also LiF(Mg,Cu,P). On the light of the accumulated knowledge, the old standard procedures should be revised and simplified. If achieved, this simplification will be excellent for TLD routine measurements

  1. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2011-11-15

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.

  2. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    International Nuclear Information System (INIS)

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: ► This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. ► A Boltzmann distribution is studied among iron lines of various excitation levels. ► We find an overpopulation of the high-lying energy levels from the normal distribution. ► It is caused through Penning-type collision of iron atom with argon metastable atom.

  3. Oxidative Degradation of o-Chlorophenol with Contact Glow Discharges in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    高锦章; 杨武; 刘永军; 陈平; 纳鹏君; 陆泉芳

    2003-01-01

    Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investi-gated under different pH, voltages and initial concentrations. And the mechanism of the oxidationwas explored. The results suggested that the degradation followed the first order kinetic law;Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence ofFe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates includedo-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids.

  4. Transition from Spark Discharge to Constricted Glow Discharge in Atmospheric Air by Capacitor Coupled Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yutao; REN Chunsheng; XU Zhenfeng; MA Tengcai; QI Bing; WANG Dezhen; WANG Younian

    2007-01-01

    The transition from a spark discharge to a constricted glow discharge in atmospheric air was studied with a capacitor coupled pin-to-water plasma reactor. The reason of the transition is considered to be of various factors, namely the change of the air gap due to the polarization of water molecules by the electric field, the feedback effect of the capacitors, and the ion trapping mechanism. The effects of the frequency of the power supply, inter-electrode gap, and coupled capacitance on the discharge transition were also investigated.

  5. Optical scanning of dusty 3D-structures formed in a glow discharge

    Science.gov (United States)

    Karasev, V. Yu.; Dzlieva, E. S.; Ivanov, A. Yu.; Éĭkhval'D, A. I.; Golubev, M. V.

    2009-06-01

    3D-quasi-crystals formed in strata of a glow discharge are scanned in the optical range with the help of a moving laser knife and high-speed videorecording. The spatial positions of dusty grains are determined. The ordering of structures and the type of arrangement of particles are determined from a comparison of pair correlation functions constructed for the structures under study with correlation functions corresponding to ideal crystalline structures. Several types of unit cells are found through the visual collation of separate parts of structures. As compared to data from the literature on experiments in a high-frequency discharge, the structures under study have a clearly pronounced anisotropy.

  6. Properties of composite Ti(NCO) layers formed on tool steel under glow discharge conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.K. [Ulsan Univ. (Korea, Republic of). Dept. of Metallurgical Engineering; Wierzchon, T.; Sobiecki, J.R. [Department of Materials Science and Engineering, Warsaw University of Technology, Narbutta 85, 02-524, Warsaw (Poland)

    1997-10-01

    Recently, metallo-organic compounds have become the donors of titanium in the PACVD process because a chlorine atmosphere is to be avoided. A Ti(NCO) layer was formed on tool steel by using titanium tetraisopropoxide, hydrogen and nitrogen under glow discharge conditions. This process was combined with the plasma nitriding process to obtain composite Ti(NCO) layers on tool steel. The layers thus obtained had high hardness, good wear and corrosion-resistant properties. Detailed results on the structure and properties of this layer are presented. (orig.) 9 refs.

  7. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    International Nuclear Information System (INIS)

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc

  8. Study of stability of dc glow discharges with the use of Comsol Multiphysics software

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P G C; Benilov, M S; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2011-10-19

    Stability of different axially symmetric modes of current transfer in dc glow discharges is investigated in the framework of the linear stability theory with the use of Comsol Multiphysics software. Conditions of current-controlled microdischarges in xenon are treated as an example. Both real and complex eigenvalues have been detected, meaning that perturbations can vary with time both monotonically and with oscillations. In general, results given by the linear stability theory confirm intuitive concepts developed in the literature and conform to the experiment. On the other hand, suggestions are provided for further experimental and theoretical work.

  9. Optimization Of The RF Glow Discharge Condition For Hardening Of The Metal Surface

    International Nuclear Information System (INIS)

    An experiment on the determination of the optimization RF glow discharge condition has been done by varying physics parameters namely pressure, electrode separations and RF power. On the positive column region where plasma exist, the plasma density and temperature are measured by using Langmuir probe for each conditions of pressure, electrode separation and RF power. The pressure of 0,14 torr, electrode separation 3 cm and RF power 0,64 Watt where the plasma density is (9.01 ± 0,06) 1011 cm and plasma temperature is (3,39 ± 0.13) 105 K, yielded a better condition the for process of increasing the metal surface hardness

  10. Irregular-regular-irregular mixed mode oscillations in a glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sabuj, E-mail: sabuj.ghosh@saha.ac.in; Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Saha, Debajyoti, E-mail: debajyoti.saha@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Iyengar, A. N. Sekar, E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata-700064 (India)

    2015-05-15

    Floating potential fluctuations of a glow discharge plasma are found to exhibit different kinds of mixed mode oscillations. Power spectrum analysis reveals that with change in the nature of the mixed mode oscillation (MMO), there occurs a transfer of power between the different harmonics and subharmonics. The variation in the chaoticity of different types of mmo was observed with the study of Lyapunov exponents. Estimates of correlation dimension and the Hurst exponent suggest that these MMOs are of low dimensional nature with an anti persistent character. Numerical modeling also reflects the experimentally found transitions between the different MMOs.

  11. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    Science.gov (United States)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  12. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  13. A model for unconventional glow discharge nitriding of grade 2 titanium

    OpenAIRE

    T. Frączek; Olejnik, M.

    2013-01-01

    An analysis of the influence of different parameters of the ion nitriding process conducted in a H2 + N2 atmosphere on the properties of the surface layer of Grade 2 titanium was carried out in the study. This allowed a model for ion nitriding of technical titanium to be developed. The equipment used in the experimental work included a JON-600 current glow-discharge furnace. It was found that the process of cathode nitriding with the use of the active screen led to an increase in the concentr...

  14. Seasonal trends and nightly fluctuations of SWIR air-glow irradiance

    Science.gov (United States)

    Dayton, David C.; Allen, Jeffrey; Nolasco, Rudolph; Gonglewski, John D.; Myers, Michael; Fertig, Gregory

    2011-11-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band with wavelength between 0.9 and 1.7 μm. This air glow has been proposed as an illumination source for obtaining imagery in the dark of night. By examining short term nightly fluctuations and long term seasonal trends in the ground level irradiance we hope to determine the source reliability for night time low light surveillance and imaging.

  15. Application of a direct current glow discharge for fast silicon etching

    International Nuclear Information System (INIS)

    A direct current (dc) glow discharge with a silicon cathode is investigated. An etching rate of 170 nm/s is achieved when SF6 is used as a plasma-forming gas with an ion current density of 10 mA/cm2. The possibility to increase this value up to 400 nm/s is shown. It is found, that the treatment uniformity can be regulated effectively by changing the geometry of the discharge positive column. An oxygen gas jacket is used to prevent anode erosion and contamination

  16. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Tao; WANG De-Zhen; WANG Yan-Hui; LIU Cheng-Sen

    2005-01-01

    @@ The radial evolution of atmospheric pressure glow discharge in helium is presented by numerical simulation. The calculations reveal the mechanism of two current peaks per half cycle. The first breakdown occurs firstly in the central region of the electrode, and then spreads to the edge, while the second breakdown ignites at the periphery firstly, and then propagates toward the discharge central region. The simulations indicate that radial electric fields and radial sheath play an important role in the evolution of the second peak. These results agree fundamentally with the experimental observations.

  17. Stabilization of a cold cathode electron beam glow discharge for surface treatment

    International Nuclear Information System (INIS)

    We have demonstrated that the reproducibility of electron beam pulses generated by a high power, cold cathode glow discharge is greatly improved by adding a small continuous keep-alive discharge current. A current of the order of 200 μA was found to limit the shot to shot current variation to within 1.5%. This stabilization in turn reduces by an order of magnitude the fluctuations of the energy density deposited on the target, demonstrating a reliable energy source for surface treatment. copyright 1997 American Institute of Physics

  18. Child–Langmuir law applicability for a cathode sheath description of glow discharge in hydrogen

    Science.gov (United States)

    Lisovskiy, V. A.; Artushenko, K. P.; Yegorenkov, V. D.

    2016-08-01

    The present paper reveals that the Child-Langmuir law version with the constant ion mobility has to be applied for the cathode sheath description of the glow discharge in hydrogen. Using the analytical model we demonstrate that even in a high electric field the constant mobility law version rather than that for the constant ion mean free path has to hold in the case of impeded charge exchange and the dominant effect of polarization forces on the ion motion through the cathode sheath.

  19. Studies of spatial uniformity of glow discharge cleaning plasmas on the RFX-mod device

    Energy Technology Data Exchange (ETDEWEB)

    Canton, A., E-mail: alessandra.canton@igi.cnr.it [Consorzio RFX, Associazione EURATOM/ENEA sulla Fusione, C.so Stati Uniti 4, 35127 Padova (Italy); Dal Bello, S., E-mail: samuele.dalbello@igi.cnr.it [Consorzio RFX, Associazione EURATOM/ENEA sulla Fusione, C.so Stati Uniti 4, 35127 Padova (Italy); Agostini, M.; Carraro, L.; Cavazzana, R. [Consorzio RFX, Associazione EURATOM/ENEA sulla Fusione, C.so Stati Uniti 4, 35127 Padova (Italy); Fiameni, S. [CNR-IENI, Corso Stati Uniti 4, 35127 Padova (Italy); Grando, L.; Rais, B.; Spolaore, M.; Zuin, M. [Consorzio RFX, Associazione EURATOM/ENEA sulla Fusione, C.so Stati Uniti 4, 35127 Padova (Italy)

    2013-07-15

    In RFX-mod different types of Glow Discharge Cleaning (GDC) plasmas are used as wall treatment procedures. An extensive set of diagnostics allowed a characterization of these cold and weakly ionized plasmas in the different operative conditions that are available. A strong toroidal non-uniformity of ion current at the edge, that gives the measure of the effectiveness of the physical sputtering, was measured by different diagnostics. The non-uniformity was mitigated by decreasing the gas pressure but it could not be avoided.

  20. A Novel Technique for Wastewater Treatment by Contact Glow-discharge Electrolysis

    Directory of Open Access Journals (Sweden)

    Jinzhang Gao

    2006-01-01

    Full Text Available The min-review gives a brief introduction to contact glow-discharge electrolysis, a novel technique for wastewater treatment. The literatures concerning the basic principle are cited rather than the all, emphasizing on the degradation of organic pollutants in water. Now, the application is only limited in a small amount of water sample, the larger scale test has not been made. However, as a new method for purification of water, at least, the discussion is beneficial to the treatment of decentralized water or cellar water.

  1. Analysis of green fluorescent protein bioluminescence in vivo and in vitro using a glow discharge

    Science.gov (United States)

    Hernández, L.; Mandujano, L. A.; Cuevas, J.; Reyes, P. G.; Osorio-González, D.

    2015-03-01

    The discovery of fluorescent proteins has been a revolution in cell biology and related sciences because of their many applications, mainly emphasizing their use as cellular markers. The green fluorescent protein (GFP) is one of the most used as it requires no cofactors to generate fluorescence and retains this property into any organism when it is expressed by recombinant DNA techniques, which is a great advantage. In this work, we analyze the emission spectra of recombinant green fluorescent protein in vivo and in vitro exposed to a glow discharge plasma of nitrogen in order to relate electron temperature to fluorescence intensity.

  2. Analysis of dusty plasma in the positive column of glow discharges

    Institute of Scientific and Technical Information of China (English)

    王德真; 吴洪涛

    2002-01-01

    The radial distributions of ions, electrons and dust particles in the positive column of glow discharges are inves-tigated in a triple-pole diffusion model. The dust particles are mainly trapped in the region around the column axiswhere the electrostatic potential is the highest. The presence of the dust particles results in the ion density increasingand the electron density decreasing in the dust-trapped region. The dust-trapped region is wider for a higher dusttemperature or a smaller particulate radius. The ions and electrons in the dust-free region away from the column axisare in ambipolar diffusion.

  3. Prediction of atmospheric pressure glow discharge in dielectric-barrier system

    Science.gov (United States)

    Duan, Xiaoxi; He, Feng; Ouyang, Jiting

    2010-06-01

    A one-dimensional fluid model was used to investigate the breakdown mechanism and discharge mode in dielectric-barrier system. The results show that the dielectric barrier discharge mode depends strongly on the gas property (i.e., the electron multiplication). The atmospheric pressure dielectric barrier glow discharge could only be achieved in a gas (e.g., noble gas) in which the first Townsend ionization coefficient is sufficiently small and the electron multiplication does not rise up rapidly with the electric field, while could not be sustained in the gas (e.g., N2 and O2) in which the electron multiplication is sensitive to the field.

  4. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan; Zhao, Wei [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Li, Jing [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003 (China); Duan, Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an 710119 (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu 610064 (China)

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  5. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation

  6. Accounting protesting and warm glow bidding in Contingent Valuation surveys considering the management of environmental goods

    DEFF Research Database (Denmark)

    Grammatikopoulou, Ioanna; Olsen, Søren Bøye

    2013-01-01

    Based on a Contingent Valuation survey aiming to reveal the willingness to pay (WTP) for conservation of a wetland area in Greece, we show how protest and warm glow motives can be taken into account when modeling WTP. In a sample of more than 300 respondents, we find that 54% of the positive bids...... selection bias by using a sample selection model. In our empirical sample, using the typical approach of removing protesters from the analysis, the value of protecting the wetland is significantly underestimated by as much as 46% unless correcting for selection bias....

  7. Large effects of small pressure changes in the kinetics of low pressure glow discharges

    OpenAIRE

    Tanarro, Isabel; Herrero, Víctor J.

    2011-01-01

    Low pressure glow discharges produce cold plasmas, far from thermal equilibrium. Typical electronic temperatures in this kind of plasmas range between 1 and 10 eV, whereas those of the heavier species (neutrals and ions) remain close to room temperature (< 0.1 eV). Cold plasmas are useful for a large number of scientific studies, like spectroscopy of excited levels or kinetics of highly reactive species (radicals and ions), which play a key role in the gas phase chemistry of co...

  8. Hydrogen in carbon foils made by DC glow discharge in ethylene

    International Nuclear Information System (INIS)

    Thermal desorption has been studied from thin films of carbon prepared by dc glow discharge in ethylene. The only gases released in significant quantities are hydrogen and methane. Both releases can be characterised by a continuum of activation energies but the methane release peaks at a lower temperature than that from hydrogen. The estimated total hydrogen release is compared with the hydrogen content determined by nuclear scattering experiments. Infra red studies suggest that the majority of CH2 and CH3 bonds can be ruptured by annealing at 3000C, a temperature well below the hydrogen and methane release rate maxima. Possible hydrogen bonding modes and desorption mechanisms are discussed. (orig.)

  9. Investigation of the characteristics of thermoluminescence glow curves of natural hydrothermal quartz from Hakkari area in Turkey

    International Nuclear Information System (INIS)

    In this study the dosimetric characteristics of some natural hydrothermal quartz (NHQ) samples collected from Hakkari were investigated by using the thermoluminescence (TL) technique for the purpose of determining whether they are suitable as dosimetric materials or not and calculating the kinetic parameters. The experiments carried out can be outlined as: analyzing TL glow curves of NHQ; determining the annealing conditions; the effects of pre-irradiation annealing procedures on TL sensitivity; the investigation of the characteristics of TL glow curves obtained after annealing the samples; determination of the trap parameters with the computerized glow curve deconvolution (CGCD) method and the peak shape (PS) method. The obtained results showed that the trap depths and the frequency factor values are consistent with the literature. The studied samples have linear dose responses for the absorbed doses ranging between ∼6.689 Gy and ∼301 Gy. In conclusion, the examined quartz samples can be used as dosimetric materials in high dose applications

  10. Analysis of the glow curve of KMgF3:Lu compounds without resorting to the quasi-equilibrium approximation

    International Nuclear Information System (INIS)

    In this article we report an expression for the thermoluminescence light, which is derived from the set of differential equations by assuming negligible retrapping, but without resorting to the quasi-equilibrium approximation. The expression has been employed for analysing the glow curve of KMgF3:Lu fluoroperovskite compounds. - Highlights: • Glow curves of KMgF3:Lu have been analysed without resorting to the QE approx. • The glow curves have been analysed taking into account interactions among traps. • The algorithm used will not become stiff. • The kinetics parameters obtained do not depend on the dose. • The agreement between the two sets of parameters obtained shows that the QE approximation does not hold

  11. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    International Nuclear Information System (INIS)

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm2, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium

  12. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L., E-mail: prevosto@waycom.com.ar; Mancinelli, B.; Chamorro, J. C.; Cejas, E. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428, Buenos Aires (Argentina)

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  13. AGING EFFECTS OF REPEATEDLY GLOW-DISCHARGED POLYETHYLENE - INFLUENCE ON CONTACT-ANGLE, INFRARED-ABSORPTION, ELEMENTAL SURFACE-COMPOSITION, AND SURFACE-TOPOGRAPHY

    NARCIS (Netherlands)

    VANDERMEI, HC; STOKROOS, [No Value; SCHAKENRAAD, JM; BUSSCHER, HJ

    1991-01-01

    Aging effects of repeatedly oxygen glow-discharged polyethylene surfaces were determined by water contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron (XPS) spectroscopy, and surface topography determination. Glow-discharged surfaces were stored at room temperature and in liqu

  14. Study of nonlinear oscillations in a glow discharge plasma using empirical mode decomposition and Hilbert Huang transform

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, A. M.; Sekar Iyengar, A. N.; Janaki, M. S. [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata-700064 (India)

    2013-02-15

    Hilbert Huang transform (HHT) based time series analysis was carried out on nonlinear floating potential fluctuations obtained from hollow cathode glow discharge plasma in the presence of anode glow. HHT was used to obtain contour plots and the presence of nonlinearity was studied. Frequency shift with time, which is a typical nonlinear behaviour, was detected from the contour plots. Various plasma parameters were measured and the concepts of correlation coefficients and the physical contribution of each intrinsic mode function have been discussed. Physically important quantities such as instantaneous energy and their uses in studying physical phenomena such as intermittency and non-stationary data have also been discussed.

  15. Visualizing ignition and combustion of methanol mixtures in a diesel engine; Methanol funmu no glow chakka to nensho no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Inomoto, Y.; Harada, T.; Kusaka, J.; Daisho, Y.; Kihara, R.; Saito, T. [Waseda University, Tokyo (Japan)

    1997-10-01

    A glow-assisted ignition system tends to suffer from poor ignitability and slow flame propagation at low load in a direct-injection diesel engine fueled with methanol. To investigate the ignition process and improve such disadvantages, methanol sprays, their ignition and flames were visualized at high pressures and temperatures using a modified two-stroke engine. The results show that parameters influencing ignition, the location of a glow-plug, swirl level, pressure and temperature are important. In addition, a full kinetics calculation was conducted to predict the delay of methanol mixture ignition by taking into account 39 chemical species and 157 elementary reactions. 3 refs., 9 figs.

  16. Atmospheric Pressure Glow Discharge Plasma and Surface Modification of PET Textile by APGDP

    Science.gov (United States)

    Gu, Biao; Chen, Ru; Xu, Yin; Deng, Xiang; Shi, Qingjun

    2002-11-01

    Comparing with traditional chemistry method, surface modification of Polyethylene terephthalate (PET) fabrics by using of Atmospheric Pressure Glow Discharge Plasma (APGDP) has many advantages, such as low cost, low pollution and low energy consumption. So it has huge application in textile industry due to no requirement for vacuum system. In this paper, the generation and the characteristics of APGDP on a homemade device were investigated experimentally. The volt-ampere characteristic and the Lissajous figure demonstrated that, different from dielectric barrier discharge (DBD), there is no filaments appeared between electrodes. It is a glow discharge in one atmospheric pressure. Furthermore we investigated the surface modification of PET by APGDP. The relationship between PET characteristics (wettability, critical surface tension, timing-effect, dyeablity etc.) and various discharge parameters are discussed. At last, the measurements of ATR-FTIR (Attenuated Total Refraction-Fourier Transform Infarared Spectroscopy) and dyeing properties are demonstrated, and the mechanism of modification is analyzed basically. Key words: APGDP£¬Surface modification , PET

  17. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    International Nuclear Information System (INIS)

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result

  18. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  19. Ti Coating on Magnesium Alloy by Arc-Added Glow Discharge Plasma Penetrating Technique

    Institute of Scientific and Technical Information of China (English)

    CUICai-e; MIAOQiang; PANJun-de; ZHANGPing-ze; ZHANGGao-hui

    2004-01-01

    Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer, penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its' anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.

  20. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Science.gov (United States)

    Li, Ben; He, Feng; Duan, Xiaoxi; Ouyang, Jiting

    2015-12-01

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  1. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Duan, Xiaoxi [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling, the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.

  2. Improvement of titanium alloy for biomedical applications by nitriding and carbonitriding processes under glow discharge conditions.

    Science.gov (United States)

    Czarnowska, E; Wierzchoń, T; Maranda-Niedbała, A; Karczmarewicz, E

    2000-02-01

    Although titanium alloys are used in medicine, they present low wear resistance. In this paper we present the results of studies on surface layers produced by nitriding at three different temperatures, and by carbonitriding under glow discharge conditions in order to improve wear resistance, hardness, and to modulate microstructure and chemical composition of surface layers. A cell culture model using human fibroblasts was chosen to study the effect of such treatments on the cytocompatibility of these materials. The results showed that nitrided and carbonitrided surface layers were cytocompatible. Modulation of surface microstructure by temperature in the nitriding process and chemical composition of surface layers by carbonitriding led to differences in cellular behaviour. Cell proliferation appeared to be slightly reduced from the 6th day of culture on nitrided surfaces produced at 730 degrees C and 1000 degrees C, however after 12 days of culture, the best growth was on surface layers produced at 850 degrees C. The best viability was observed on the carbonitrided layer. The orientation and shape of the cells corresponded to surface topography. Nitriding and carbonitriding under glow discharge conditions may constitute interesting techniques allowing the formation of surface layers on parts with sophisticated shapes. They may also permit modulating surface topography in a way improving the features of titanium alloys for various applications in medicine. PMID:15348050

  3. SWIR sky glow imaging for detection of turbulence in the upper atmosphere

    Science.gov (United States)

    Dayton, David; Nolasco, Rudy; Allen, Jeff; Myers, Mike; Gonglewski, John; Fertig, Gregory; Burns, Dennis; Mons, Ishan

    2010-08-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band between 0.9 and 1.7 μm wave length. This has been demonstrated as an effective illumination source for night time imaging applications. It addition it has been shown that observation of the spatial and temporal variations of the illumination can be used to characterize atmospheric tidal wave actions in the sky glow region. These spatiotemporal variations manifest themselves as traveling wave patterns whose period and velocity are related to the wind velocity at 85 km as well as the turbulence induced by atmospheric vertical instabilities. Ground to space observation systems especially those employing adaptive optics are adversely affected by high altitude turbulence and winds. In this paper we propose the use of sky glow observations to predict and characterize image system degradation due to upper atmosphere turbulence.

  4. High-Energy Radiation from Thunderstorms with ADELE: TGFs, Steps, and Glows

    Science.gov (United States)

    Smith, David M.; Kelley, Nicole; Martinez-McKinney, Forest; Zhang, Zi Yan; Hazelton, Bryna; Grefenstette, Brian; Splitt, Michael; Lazarus, Steven; Ulrich, William; Levine, Steven; Dwyer, Joseph; Schaal, Meagan; Saleh, Ziad; Cramer, Eric; Rassoul, Hamid; Cummer, Steven; Lu, Gaopeng; Shao, Xuan-Min; Ho, Cheng; Blakeslee, Richard

    2011-01-01

    The biggest challenge in the study of high-energy processes in thunderstorms is getting a detector to the vicinity of the electrically active regions of a storm. The Airborne Detector for Energetic Lightning Emissions (ADELE) has been used to detect gamma rays from aircraft above storms and from a storm-chasing van on the ground. In August 2009, ADELE flew above Florida storms in a Gulfstream V jet, detecting the first terrestrial gamma-ray flash (TGF) seen from a plane and continuous glows of high-energy emission above thunderclouds. The presence of these glows suggests that a gradual process of relativistic runaway and feedback may help limit the total amount of charging in thunderstorms, in contrast to the traditional view that only lightning discharges compete with the charging process. The upper limits on TGF emission from intracloud and cloud-to-ground lightning from the ADELE flights demonstrated conclusively that a TGF of the sort seen from space is not associated with most lightning and not necessary to trigger it. In August 2010, observations from a van detected stepped-leader x-ray emission from at least four lightning strikes in ten days of operations. This mode of operation is therefore promising for future observations of the stepping process, although a more varied suite of instrumentation, in particular a flash-distance detector, would be useful. We will report on these results and on future possibilities for ADELE campaigns.

  5. A Study on Helium Glow Discharge Cleaning in the HL- 1M Tokamak

    Institute of Scientific and Technical Information of China (English)

    王志文; 严东海; 王恩耀

    2002-01-01

    Based on the principle of ion-bombarded reemission and sputtering desorption, the Glow Discharge Cleaning with helium (GDC(He)) is an effective method for controlling the recycle of H on the chamber wall, Carbon(C), Oxygen(O) impurity and improving the wall conditioning in HL-1M tokamak. It is characterized by simplicity without magnet and safety, compared with Taylor Discharge Cleaning (TDC), Alternating current glow discharge Cleaning (AC), Electron Cyclotron Resonance-Discharge Cleaning (ECR-DC). Compared with bake-out degassing, the wall has a higher degassing rate during GDC(He) and a lower impurity concentration in vacuum chambers after GDC(He). Cleaning patterns have been developed dominantly for de-oxidization, decarbonization and de-hydrogenization. The cleaning parameters for H recycle on the wall are also presented. This paper mainly describes the GDC system along with its parameters, breakdown voltage, volt-ampere characteristic, the range of operation safe and suitable cleaning patterns in the HL-1M tokamak, finally concluding with some suggestions on HL-2A GDC.

  6. Oxygen gettering properties of boron film produced by diborane DC glow discharge

    International Nuclear Information System (INIS)

    Boron film coated on plasma facing walls has been utilized to reduce the oxygen impurity level by the gettering action. The boron film is also useful to reduce the hydrogen recycling. In this study, the boronization was conducted by a DC glow discharge with a mixture gas of diborane and helium both for a graphite and a stainless steel (SS) liners. After the boronization, the oxygen glow discharge was carried out to evaluate the gettered oxygen amount. The state of the oxygen in the surface was also examined. The gettered oxygen amount in the case of the graphite liner was about twice larger than that in the case of the SS liner. The oxygen was trapped in the depth range from the top surface to 100 nm or from the top surface to 20-30 nm in the case of graphite or SS, respectively. The oxygen was observed to be chemically bonded with the boron. After the oxygen discharge, the helium discharge was conducted to recover the oxygen gettering ability. After the helium discharge, the oxygen discharge was again carried out. The gettered oxygen amount in the case of graphite was comparable with that in the case of SS. (orig.)

  7. Evolution of the Tl glow curve of Zn S:Mn nanocrystalline

    International Nuclear Information System (INIS)

    Full text: In the last two decades, the search for new materials for dosimetry has included semiconductor nano materials because of their luminescent properties. This search has included the study, synthesis, characterization and performance of nano structured semiconductors, which optoelectronic properties determine their applications. In this paper the evolution of the thermoluminescent glow curve of nanocrystalline powder samples (40-70 nm) of zinc sulfide doped with manganese (Zn S:Mn) was analyzed at a dose of 500 Gy using a 60Co source. This material was synthesized by the coprecipitation method and heat treated at 500 degrees C in forming gas atmosphere (80 N2:20H2). Photoluminescence results indicate a direct relationship between the concentration of manganese and the intensity of a peak at λ ≅ 600 nm. By means of numerical deconvolution the behavior of the glow curves obtained at different times after exposure was analyzed. The causing traps of thermoluminescence are to 0.60 ± 0.05 and 1.7 ± 0.4 eV below the conduction band and within the band gap. The fading and a variation in the shape of the brightness curve (evolution) caused by non radiative transitions (rotational and vibrational) within the crystal structure of the material is also reported. (Author)

  8. Development of a sintering methodology through abnormal glow discharge for manufacturing metal matrix composites

    Science.gov (United States)

    Pérez, S.; Pineda, Y.; Sarmiento, A.; López, A.

    2016-02-01

    In this study, a sintering methodology is presented by using abnormal glow discharge to metal matrix composites (MMC), consisting of 316 steel, reinforced with titanium carbide (TiC). The wear behaviour of these compounds was evaluated according to the standard ASTM G 99 in a tribometer pin-on-disk. The effect of the percentage of reinforcement (3, 6, and 9%), with 40 minutes of mixing in the planetary mill is analysed, using compaction pressure of 700MPa and sintering temperature of 1,100°C±5°C, gaseous atmosphere of H2 - N2, and sintering time of 30 minutes. As a result of the research, it shows that the best behaviour against wear is obtained when the MMC contains 6% TiC. Under this parameter the lowest percentage of pores and the lowest coefficient of friction are achieved, ensuring that the incorporation of ceramic particles (TiC) in 316 austenitic steel matrix significantly improves the wear resistance. Also, it is shown that it is possible to sinter such materials using the abnormal glow discharge, being a novel and effective method in which the working temperature is reached in a short time.

  9. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  10. Glow Discharge Plasma Active Control of Separation at Low Pressure Turbine Conditions.

    Science.gov (United States)

    Hultgren, Lennart S.; Ashpis, David E.

    2002-11-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modern low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) free-stream turbulence intensities are set using passive grids. The base flow includes closed separation bubbles and non-reattaching separated flow, and is thoroughly documented using single-wire constant-temperature anemometry and static surface pressure measurements. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the controlled flow are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  11. Molecular basis for the blue bioluminescence of the Australian glow-worm Arachnocampa richardsae (Diptera: Keroplatidae).

    Science.gov (United States)

    Trowell, Stephen C; Dacres, Helen; Dumancic, Mira M; Leitch, Virginia; Rickards, Rodney W

    2016-09-16

    Bioluminescence is the emission of visible light by living organisms. Here we describe the isolation and characterisation of a cDNA encoding a MW ≈ 59,000 Da luciferase from the Australian glow-worm, Arachnocampa richardsae. The enzyme is a member of the acyl-CoA ligase superfamily and produces blue light on addition of D-luciferin. These results are contrary to earlier reports (Lee, J., Photochem Photobiol 24, 279-285 (1976), Viviani, V. R., Hastings, J. W. & Wilson, T., Photochem Photobiol 75, 22-27 (2002)), which suggested glow-worm luciferase has MW ≈ 36,000 Da and is unreactive with beetle luciferin. There are more than 2000 species of firefly, which all produce emissions from D-luciferin in the green to red regions of the electromagnetic spectrum. Although blue-emitting luciferases are known from marine organisms, they belong to different structural families and use a different substrate. The observation of blue emission from a D-luciferin-using enzyme is therefore unprecedented. PMID:27457804

  12. Diffusion strengthening of Ti6Al4V alloy in Ar + O2 glow discharge plasma

    International Nuclear Information System (INIS)

    The effect of particular diffusion treatment in the temperature range 1023 - 1273 K with use of the glow discharge plasma in the atmosphere Ar + O2 on the microstructure, phase composition, microhardness, friction coefficient, wear resistance, surface roughness as well as the resistance against electrochemical corrosion of two commercial two-phase Ti6Al4V titanium alloy has been investigated in the work. As a result of the treatments performed on the specimens the value of the microhardness of the diffusion zone has increased from about 350 VHN 0.05 to about 1000 VHN 0.05 (however, the brittleness of the diffusion zone has increased at the same time), the amount of the β phase has decreased in that area, the resistance of the diffusion treated specimens to electrochemical corrosion in the 0.5 M aqueous solution NaCl is approximately the same as that of the not treated ones, the surface roughness after the treatments is slightly greater than that before the treatments and the tribological properties of duplex treated specimens are better than those of the shot-pinned ones. The positive effect of the glow discharge plasma on the thickness of the diffusion zone rich in interstitial oxygen atoms has been depicted as well. (author)

  13. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus

    2011-12-01

    In the last years, glow discharge optical emission spectrometry (GDOES) gained more and more acceptance in the analysis of functional coatings. GDOES thereby represents an interesting alternative to common depth profiling techniques like AES and SIMS, based on its unique combination of high erosion rates and erosion depths, sensitivity, analysis of nonconductive layers and easy quantification even for light elements such as C, N, O and H. Starting with the fundamentals of GDOES, a short overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings and thin films. Results illustrating the high depth resolution, confirmation of stoichiometry, the detection of light elements in coatings as well as contamination on the surface or interfaces will be demonstrated by measurements of: a multilayer system Cr/Ti on silicon, interface contamination on silicon during deposition of aluminum, Al2O3-nanoparticle containing conversion coatings on zinc for corrosion resistance, Ti3SiC2 MAX-phase coatings by pulsed laser deposition and hydrogen detection in a V/Fe multilayer system. The selected examples illustrate that GDOES can be successfully adopted as an analytical tool in the development of new materials and coatings. A discussion of the results as well as of the limitations of GDOES is presented. © 2011 Elsevier B.V.

  14. Transmission characteristics of microwave in a glow-discharge dusty plasma

    Science.gov (United States)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  15. Cleaning and conditioning of the walls of plasma devices by glow discharges in hydrogen

    International Nuclear Information System (INIS)

    The influence of a number of parameters on the cleaning and preconditioning efficiency of a combined rf and glow (RG) discharge is studied experimentally. The emphasis is laid on problems of oxygen removal from the surface. The important parameters are the wall temperature Tsub(W), the pump speed SP, the current Isub(G)D of the glow discharge and the hydrogen pressure P2. In a device with a ratio SP/S = 0,1 ms-1 (S: inner area), a rapid deoxidation is achieved when T-W >= 2000C. At room temperature, the oxide layer is reduced from a (carbon-free) surface when 1 to 2% of methane is added to the hydrogen: carbon monoxide is formed and evacuated. Admixture of other gases such as He, Ne do not increase the cleaning efficiency. An equation derived from a simplified model describes semi-quantitatively the observed parametric dependances. The tendency for arc spots to occur during the initial phases of the discharge depends on the preconditioning of the wall: a prolonged bake-out at 2000C leads to the non-appearance of arcs in all cases examined. Problems arise when a quadrupole residual gas analyser is used to measure the partial pressure of water in hydrogen. These are analysed and a conditioning technique is described which has proven to be appropriate in our measurements. (orig.)

  16. PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA

    International Nuclear Information System (INIS)

    OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition

  17. Hybrid modeling of a capacitively coupled radio frequency glow discharge in argon: Combined Monte Carlo and fluid model

    NARCIS (Netherlands)

    Bogaerts, A.; Gijbels, R.; W. Goedheer,

    1999-01-01

    A hybrid model has been developed for a capacitively coupled rf glow discharge in argon, employed as a spectroscopic source in the field of analytical chemistry. The cell is a rather small cylinder with a very small rf-powered electrode (only 5 mm in diameter). The typical working conditions applied

  18. Electric Field and Impedance Measurements of Glow Discharges Used for Plasma Etching

    Science.gov (United States)

    Shan, Hongqing

    Non-equilibrium plasmas such as those generated in DC and RF glow discharges are extremely complicated but widely used in industrial applications such as sputtering, plasma etching and deposition. Experimental measurements have been a leading factor in promoting understanding of the physical phenomena in such discharges. A principal aim of this work is to develop relatively simple diagnostic techniques to measure key glow discharge parameters such as electric field, impedance, power dissipation, and electron concentration, that can be applied in an industrial setting. Electric fields in the cathode fall of DC glow discharges in He and mixtures of He/CF_4 have been measured using optical emission of Stark -enhanced forbidden transitions. An experimental technique was developed to derive the local electric field from the forbidden to allowed transition intensity ratio. A Stark mixing model was formulated and calculations made to relate the forbidden-to-allowed intensity ratio to the local electric field. Comparison of experimental measurements with theoretical calculations show good agreement. Discharge impedance and true RF power dissipation have been measured on a commercial plasma etcher as functions of gas pressure and input RF power for both electronegative (SF_6) and electropositive (Ar) gases as well as mixtures of the two. Electronegative and electropositive discharges are found to have quite different impedance magnitudes and phases, which is explained by the effect of ion inertia in electronegative discharges. Using a modified circuit model, the charged particle concentrations are derived from the measured impedance. By mapping the measured impedance into the plane of the settings of the two tuning capacitors in the matching network, real-time monitoring of the discharge impedance is possible. The stray impedance between the powered electrode and the matching network was characterized and found to be mainly capacitive. It was found that the RF power

  19. Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy

    Science.gov (United States)

    Cardenas, A.; Pineda, Y.; Sarmiento Santos, A.; Vera, E.

    2016-02-01

    Composite samples of 316 stainless steel and SiC were produced by powder metallurgy. Starting materials were mixed in different proportions and compacted to 700MPa. Sintering stage was performed by abnormal glow discharge plasma with direct current in an inert atmosphere of argon. The process was conducted at a temperature of 1200°C±5°C with a heating rate of 100°C/min. This work shows, the effectiveness of plasma sintering process to generate the first contacts between particles and to reduce vacancies. This fact is confirmed by comparing green and sintered density of the material. The results of porosity show a decrease after plasma sintering. Wear tests showed the wear mechanisms, noting that at higher SiC contents, the wear resistance decreases due to poor matrix-reinforcement interaction and by the porosity presence which causes matrix-reinforcement sliding.

  20. On the reproducibility of the glow curve of single crystal and commercial LiF

    International Nuclear Information System (INIS)

    Heterogeneous interstitial nucleation was observed as a result of the exposure to high dose rate and repeated irradiations of single crystals of LiF doped with Mg and Ti. A comparison under the same conditions with the irradiation of commercial LiF dosimeters was done. The temperature region for which the observations were made applies to the region where VK centers are mobile. Therefore, the recombination of some defects produced by gamma radiation are primarily actual for the behavior around room temperature. Glow curves were obtained from irradiated LiF. The main disadvantages found are almost the same as those presented for commercial LiF. Also, in both cases we found differences in the thermoluminiscence response after storage was observed. The study was also focused to answering the question of how many times a dosimeter can be re-used after a severe irradiation

  1. Degradation of 2,4-dichlorophenol by using glow discharge electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu Quanfang [Editorial Department of the University Journal, Northwest Normal University, Lanzhou 730070 (China); Yu Jie [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Gao Jinzhang [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)]. E-mail: jzgao@nwnu.edu.cn

    2006-08-25

    Degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous by glow discharge electrolysis (GDE) has been investigated. Ultraviolet (UV) absorption spectra, atomic force microscopy (AFM), high performance liquid chromatography (HPLC) and gas chromatogram-mass spectrum (GC/MS) are used to monitor the degradation process and to identify the major oxidation intermediate products. It has been found that 2,4-DCP undergoes a series of intermediate step, which leads to form a number of intermediate products, mainly isomeric chlorophenols and aliphatic acids. These products are further oxidized, eventually, mineralized into CO{sub 2} and Cl{sup -}. A degradation pathway for 2,4-DCP is proposed on the basis of detection of intermediate compounds.

  2. Oxidative Degradation of 4-chlorophenol in Aqueous Induced by Plasma with Submersed Glow Discharge Electrolysis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC).Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe2+ were examined.The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation.

  3. A novel Y-type reactor for selective excitation of atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Xia, Guan-Guang; Wang, Jin-Yun; Huang, Aimin; Suib, Steven L.; Hayashi, Yuji; Matsumoto, Hiroshige

    2001-02-01

    A novel Y-type atmospheric pressure ac glow discharge plasma reactor has been designed and tested in CO reduction with hydrogen and the reverse water-gas shift reaction. The reactor consists of a Y-type quartz tube with an angle of 120°-180° between the two long arms, two metal rod electrodes serving as high voltage terminals and two pieces of aluminum foil which were wrapped outside of the quartz tubes as a ground electrode. Different combinations of input power applied on this three- electrode system can lead to selective plasmas on one side, two sides, or can also generate a stable arc between the two high voltage terminal electrodes. The ability to selectively activate different species with this type of apparatus can help to minimize side reactions in plasmas to obtain desirable products. The Y-type reactor may provide a novel means to study fundamental problems regarding radical reactions.

  4. Preparation of Al-Cr-Si oxide tritium permeation barrier by double glow plasma technology

    International Nuclear Information System (INIS)

    Al-Cr-Si oxide coatings were prepared on 316L stainless steel by double glow plasma surface alloying technique in order to promote the capability against tritium permeation. Microstructures and compositions of the coatings were studied by scanning electron microscope, transmission electron microscope and X-ray diffraction. Adhesion strength of the oxide coatings was tested by scratch adhesion test and thermal shock test. The results showed that dense and continuous Al2O3 films were formed on the substrate owing to the addition of elements Cr and Si. Besides, the spinel-type composite metal oxide Fe(AlCr)2O4 was formed of Al2O3 and iron/chromic oxide in the outer layer. The coatings prepared at oxygen flow rate of 10 standard cubic centimeter per minute exhibited the best microstructure and mechanical properties with a bonding force of 68 N. No cracks were found in the coatings after thermal shock testing. (authors)

  5. Effect of metastable neon atoms in a positive column of glow discharge with dust particles

    International Nuclear Information System (INIS)

    The diffusion/drift model of the positive column of glow discharge in neon was used for the analysis of the role of neon metastable atoms in the interaction between neon plasma and dust particles. The radial profiles of electrons and metastable atoms were simulated in the typical range of neon pressure and discharge current where dust particles may form dense dust structures changing the plasma properties. The results showed the nonlocal effect of dust particles on the plasma composition. Within the dust structure, the metastable atom concentration was shown to be higher than in the discharge without dust particles at the same discharge parameters; the ratio of concentrations of metastable atoms and electrons may increase with increasing dust particle concentration in a certain range of discharge parameters. The partial contribution of metastable atoms to the ionization was found to be higher than their losses on the surface of dust particles and increased when the gas pressure was increased. (paper)

  6. Observation of dust torus with poloidal rotation in direct current glow discharge plasma

    International Nuclear Information System (INIS)

    Observation of dust cloud rotation in parallel-plate DC glow discharge plasma is reported here. The experiments are carried out at high pressures (∼130 Pa) with a metallic ring placed on the lower electrode (cathode). The dust cloud rotates poloidally in the vertical plane near the cathode surface. This structure is continuous toroidally. Absence of magnetic field rules out the possibility of E × B induced ion flow as the cause of dust rotation. The dust rotational structures exist even with water cooled cathode. Therefore, temperature gradient driven mechanisms, such as thermophoretic force, thermal creep flow, and free convection cannot be causing the observed dust rotation. Langmuir probe measurement reveals the existence of a sharp density gradient near the location of the rotating dust cloud. The gradient in the density, giving rise to a gradient in the ion drag force, has been identified as the principal cause behind the rotation of dust particles

  7. Degradation of Methyl Orange in Water by Contact Glow Discharge Electrolysis

    Institute of Scientific and Technical Information of China (English)

    GONG Jianying; CAI Weimin

    2007-01-01

    The degradation of methyl orange in a neutral phosphate buffer solution was investigated by means of contact glow discharge electrolysis (CGDE).The methyl oranges were degraded and eventually decomposed into inorganic carbon when CGDE was conducted under the applied DC voltage of 480 V and current of ca.80 mA.As the intermediate products,some phenolic compounds were detected as well as carboxylic acids.Experimental results showed that the oxidation process followed the first-order reaction law.Based on the analysis of the ultraviolet (UV) spectra of the solution and the intermediate products from High Pressure Liquid Chromatography-Mass Spectrum (HPLC-MS),the reaction pathway was proposed.The attack of hydroxyl radicals was considered to be a key step to start the whole oxidation process.

  8. Multi-elemental semi-quantitative analyses of suspended particulate matter by glow discharge MS

    International Nuclear Information System (INIS)

    We report the possibilities for multi-elemental analysis of suspended particulate matter (SPM) by glow discharge mass spectrometry (GDMS). To cope with the small sample volume, SPM sample was deposited on the surface of a high purity (7N grade) indium electrode. NIST SRM 1648 Urban Particulate Matter was analyzed to evaluate the method. For 34 elements, GDMS results agreed well with their reference values within a factor of 2 from the major constituents (12.5 wt% of Si) to the trace constituents (down to 0.8 μg/g of Eu), even when using typical relative sensitivity factors (RSF). A total of 53 elements including halogens were analyzed using approximately 10 mg of SPM sample by GDMS with sub-μg/g sensitivity. (author)

  9. Debromination and decomposition of bromoform by contact glow discharge electrolysis in an aqueous solution

    International Nuclear Information System (INIS)

    Bromoform (BF) is a stable and carcinogenic contaminant in water. In this study, efficient debromination and decomposition of BF induced by contact glow discharge electrolysis (CGDE) in a sodium sulfate solution were investigated. Intermediate byproducts were determined by ionic chromatography and gas chromatography, respectively. Experimental results showed that alkaline conditions and additions of organic additives to the solution were favorable for both the removal and the debromination of BF. Oxalic acid, formic acid, dibromomethane and bromate ion were determined as the major intermediate byproducts. Final products were inorganic carbon and bromide ion. Hydrated electrons may be the most likely active species responsible for the initiation of the debromination, and hydroxyl radicals may be the ones for the oxidation of the intermediate byproducts

  10. Investigation and quantification of nonlinearity using surrogate data in a glow discharge plasma

    International Nuclear Information System (INIS)

    Detection of nonlinearity has been carried out in periodic and aperiodic floating potential fluctuations of DC glow discharge plasma by generating surrogate data using iterative amplitude adjusted Fourier transform method. We introduce “delay vector variance” analysis (DVV) for the first time, which allows reliable detection of nonlinearity and provides some easy to interpret diagram conveying information about the nature of the experimental floating potential fluctuations (FPF). The method of false nearest neighbourhood is deployed on the FPF's to find a good embedding so as to be acquainted with the precise knowledge of m, which is desirable for carrying out DVV analysis. The emergence of nonlinearity with increase in discharge voltage has been ensured by taking into consideration the total energy present in different band of frequencies excited due to nonlinear processes. Rejection of null hypothesis has been verified by performing the rank test method that confirms the presence of nonlinearity quantitatively

  11. Investigation and quantification of nonlinearity using surrogate data in a glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Debajyoti, E-mail: debajyoti.saha@saha.ac.in; Shaw, Pankaj Kumar; Ghosh, Sabuj; Janaki, M. S.; Sekar Iyengar, A. N. [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2015-02-15

    Detection of nonlinearity has been carried out in periodic and aperiodic floating potential fluctuations of DC glow discharge plasma by generating surrogate data using iterative amplitude adjusted Fourier transform method. We introduce “delay vector variance” analysis (DVV) for the first time, which allows reliable detection of nonlinearity and provides some easy to interpret diagram conveying information about the nature of the experimental floating potential fluctuations (FPF). The method of false nearest neighbourhood is deployed on the FPF's to find a good embedding so as to be acquainted with the precise knowledge of m, which is desirable for carrying out DVV analysis. The emergence of nonlinearity with increase in discharge voltage has been ensured by taking into consideration the total energy present in different band of frequencies excited due to nonlinear processes. Rejection of null hypothesis has been verified by performing the rank test method that confirms the presence of nonlinearity quantitatively.

  12. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  13. Time dependent argon glow discharge treatment of Al-alloy samples

    Indian Academy of Sciences (India)

    Sunanda J Karandikar; S V Gogawale; A K Dua; K K Kutty

    2001-05-01

    Aluminium alloy ultra-high vacuum system provides a convenient tool to access the UHV region due to short pump down time, its reduced weight, low cost etc. For UHV systems, aluminium and its alloys are preferred materials to stainless steel. A cylindrical discharge chamger of SS 304 with various ports on it, evacuated by turbomoleculer pumping unit is used in the experimental system. A hollow cathode de glow discharge in argon for different time durations is used to treat chemically cleaned ASA 6063 aluminium alloy samples, keeping all other parameters constant. The scanning electron microscope (SEM) is used to examine processed surfaces and to study topographical features. The energy dispersive microanalysis by X-rays (EDX) is used to determine the elemental composition of the samples. The results indicate the physical sputtering taking place in Ar GDC. The etched area increases with discharge time duration. The EDX spectrum shows the inconsistency in weight percentage of various elements of Al-alloy.

  14. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  15. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    International Nuclear Information System (INIS)

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation of positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge

  16. On the mechanism of pattern formation in glow dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-01-15

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, and external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.

  17. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    Science.gov (United States)

    Luo, J.; Li, L. H.; Liu, H. T.; Yu, K. M.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Fu, Ricky K. Y.; Chu, Paul K.

    2014-06-01

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  18. Inactivation of Escherichia Coli Using Remote Low Temperature Glow Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Miao; CHEN Jierong; CHEN Chua

    2008-01-01

    Low-temperature plasma is distinguished as a developing approach for sterilization which can deal with and overcome those problems such as thermal sensitivity and destruction by heat,formation of toxic by-products,higher costs and inefficiency in performances,caused by conventional methods.In this study,an experimental investigation was undertaken to characterize the effects of the operational parameters,such as treating time,discharge power and gas flow rate,of remote glow discharge air plasma.The results show that the inactivation of Escherichia coli can reach above 99.99% in less than 60 seconds and the optimal operational conditions for treating time,discharge power and gas flow rate were:40 s,80 W and 60 cm3/min,respectively.The contribution of UV radiation during plasma germ deactivation is very limited.

  19. Anodization of aluminum and silicon in plasma of a non-self-sustained glow discharge

    International Nuclear Information System (INIS)

    The results of anodization of aluminum and silicon in an oxygen plasma are presented. The plasma was generated by a non-self-sustained glow discharge with a hollow cathode excited by an electron beam at the oxygen pressure of 20 Pa. The density of the current flowing through the anodized specimen did not exceed 1.5 mA/cm2, and its temperature was 200–250°C. Continuous Al2O3 and SiO2 films were formed on the aluminum and silicon surfaces. The growth rate of the oxide layers was 150–200 nm/h for Al2O3 and 400–800 nm/h for SiO2.

  20. On the mechanism of pattern formation in glow dielectric barrier discharge

    International Nuclear Information System (INIS)

    The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, and external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges

  1. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    We present the results from 2D fluid modeling of the key roles controlling the glow dielectric barrier discharge (DBD) structure. A uniform DBD can be sustained at lower frequency when the space charge reaches uniformity due to plasma decay, while the patterned structure appears above a critical frequency when the space charge is nonuniform. The patterns start from the electrode edge where the electric field is significantly distorted, characterized by the patterned seed electrons that always form ahead of the surface charges. The formation of the patterned DBD structure is associated with the lateral inhibition of the local increase of space charges. The distribution of the volume seed electrons plays a key role in the DBD structure while the distribution of surface charge is a result of the formed structure. (physics of gases, plasmas, and electric discharges)

  2. Effects of Parameters on Structure and Mechanical Properties of Glow Discharge Polymer Films

    International Nuclear Information System (INIS)

    The glow discharge polymer (GDP) films were fabricated by plasma polymerization technology at various parameters. The chemical structure of GDP films was characterized by Fourier transform infrared (FT-IR) spectrum. The hardness and modulus of GDP films were measured by nanoindentation. It is found that when work pressure and T2B/H2 flow ratio gradually decrease, SP3(CH3)group decreases, while SP2(CH2)and SP3(CH1,2)group increase in the GDP films. The hardness and modulus of GDP films increase with decreasing pressure and T2B/H2 flow ratio. The hardness and modulus of GDP films are mainly influenced by such factors as SP3(CH3)group, branched chain,double bond content and degree of cross-linking of carbon network in GDP films. (authors)

  3. Glow Discharge AES: Methodological Peculiarities of Pulse Element Analysis and Flash Desorption

    CERN Document Server

    Bregadze, Vasil G; Tsakadze, Ketevan J

    2007-01-01

    Different techniques of Glow Discharge AES are described in this paper. The most important parameters at such investigations are: the power of VHF-field, pressure of the inert gas and concentration of the easily ionizable additive, e.g. NaCl. The influences of these parameters were studied It is proposed a high sensitive flash desorption method, which enables investigation of the water desorption rate from humidified samples of biological origin, namely DNA and chromatin. The ways of minimizing of detection limit are considered as the most important characteristics of an analytical device. The concentration of any measured element is detectable if it correlates to the signal equal to tripled standard deviation of the results of background measurement. Electron temperature of the Helium has been evaluated by absorption rate at two lines of helium \\lambda=353.828nm; \\lambda'=344.759nm that was equal to T_c ~ 15000 K.

  4. Measurements and models of transient and stationary regimes of glow discharge in argon

    International Nuclear Information System (INIS)

    The experimental and theoretical analyses of different regimes of argon DC glow discharge are reported. The experiments were carried out on the argon gas tube with a plane- parallel electrode system made from OFHC (oxygen-free high thermal conductivity) copper. Modelling of the static breakdown voltages was performed by simple fluid model. The applicability of fluid models for modelling of I - U (current-voltage) characteristics at different values of pd (pressure times inter-electrode distance) is tested. The formative time delays are determined from experiment and compared to modeled values obtained by [1D] and [2D] fluid models. The memory curve t-bar d (τ) (the dependence of the mean value of breakdown time delay on the relaxation time) is presented and the main processes responsible for the memory effect were determined by applying the analytical and numerical models

  5. A novel Ir-Zr gradient coating prepared on Mo substrate by double glow plasma

    International Nuclear Information System (INIS)

    Ir-Zr gradient coating was obtained on the Mo substrate by double glow plasma. The structure and composition of the coatings were confirmed by SEM, AFM, XRD and EDS, respectively. The adhesion strength between the coating and the substrate was evaluated by a scratch tester. Compared with preferential growth orientation of (2 2 0) crystal plane of Ir coating, the Ir-Zr coating had a random orientation structure. The RMS roughness value of the Ir-Zr coating is 19.3 nm, which was lower than the roughness value of 45 nm for Ir coating. The Ir-Zr coating with the thickness of 5.0 μm was composed of two distinct layers. The proportion of Ir decreased gradually from the surface of the coating to the coating/substrate interface. The Zr distribution decreased slightly in the coating. The adhesive force of the Ir-Zr coating was 15 N.

  6. Application of Glow Discharge Aes for Investigation of Metal Ions and Water in Biology and Medicine

    CERN Document Server

    Bregadze, Vasil G; Tsakadze, Ketevan J

    2007-01-01

    AES VHF inductively coupled plasmatron may be applied to wide range of studies. It enables rapid microanalysis of various solutions including biological objects and peripheral blood serum. In addition, it may be used for investigation of water desorption from solid bodies and for determination of energetic metal-macromolecule complexes. Study of hydration energy and hydration number by kinetic curves of water glow discharge atomic spectral analysis of hydrogen (GD EAS analysis of hydrogen) desorption from Na-DNA humidified fibers allowed to reveal that structural and conformational changes in activation energy of hydrated water molecules increases by 0.65kcal/Mole of water. The developed method of analysis of elements in solutions containing high concentrations of organic materials allows systematic study of practically healthy persons and reveals risk factors for several diseases. Microelemental content of blood serum fractions showed that amount of not bounded with ceruloplasmin copper was three times more ...

  7. Study on the Precipitates Formed by Double Glow Plasma Surface Alloying with Tungsten-Molybdenum

    Institute of Scientific and Technical Information of China (English)

    Bin ZHAO; Jiansheng WU; Zhonghou LI; Xiaoping LIU; Zhong XU

    2001-01-01

    Due to the slow cooling rate in the alloying furnace, large amount of brittle precipitates appear in the alloyed layers which are formed by the DGPSA (Double Glow Plasma Surface Alloying)with tungsten-molybdenum. It causes the mechanical properties of the samples to be seriously degraded. Qualitative phase analysis reveals that they are mainly composed of theμ-phase, and a small amount of carbide, M6C. In this paper the microstructure and thermodynamic factors of the precipitates are exhaustively investigated. There are two transformation noses in the isothermal transformation (IT) diagram of the precipitates. As a major object of this work, an effective measure is offered to depress the deposition of the precipitates.

  8. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yu [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xie, Kan, E-mail: xiekan@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yu; Ouyang, Jiting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-02-15

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation of positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.

  9. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    Science.gov (United States)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  10. Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Air Flow

    CERN Document Server

    Shneider, M N; Milikh, G M

    2013-01-01

    We study the dynamic contraction a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed.

  11. Dynamic contraction of the positive column of a self-sustained glow discharge in air flow

    International Nuclear Information System (INIS)

    We study the dynamic contraction of a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed

  12. Dynamic contraction of the positive column of a self-sustained glow discharge in air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Mokrov, M. S. [Institute for Problems in Mechanics, RAS, Moscow (Russian Federation); Milikh, G. M. [Department of Astronomy, University of Maryland, College Park, Maryland 20742 (United States)

    2014-03-15

    We study the dynamic contraction of a self-sustained glow discharge in air in a rectangular duct with convective cooling. A two dimensional numerical model of the plasma contraction was developed in a cylindrical frame. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; and equations which account for the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the gas density drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge, where the current flows along the density gradient of the background gas, is discussed.

  13. Inactivation of Escherichia Coli Using Remote Low Temperature Glow Discharge Plasma

    International Nuclear Information System (INIS)

    Low-temperature plasma is distinguished as a developing approach for sterilization which can deal with and overcome those problems such as thermal sensitivity and destruction by heat, formation of toxic by-products, higher costs and inefficiency in performances, caused by conventional methods. In this study, an experimental investigation was undertaken to characterize the effects of the operational parameters, such as treating time, discharge power and gas flow rate, of remote glow discharge air plasma. The results show that the inactivation of Escherichia coli can reach above 99.99% in less than 60 seconds and the optimal operational conditions for treating time, discharge power and gas flow rate were: 40 s, 80 W and 60 cm3/min, respectively. The contribution of UV radiation during plasma germ deactivation is very limited.

  14. Topics under debate - The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements

    International Nuclear Information System (INIS)

    Personal dosimetry is normally a regulated activity whose results must comply with established accuracy requirements. Although these requirements may not be extremely stringent, it is important to note that there are many factors influencing accuracy and therefore influencing results. These include the energy and angular dependence of dose equivalent response, signal reproducibility, stability and fading, along with other influence factors that tend to complicate the correct measurement of the low doses usually encountered in the monitoring of radiation workers. The statistical uncertainty associated with the measurement of dose equivalent in the workplace is dependent upon the reproducibility of the many conditions, and in the case of the readings produced by thermoluminescence (TL) dosemeters the analysis of the rather complex TL signals can be a source of uncertainty. Glow curve analysis may offer a method for reducing uncertainties, but it must be considered whether such an analysis can be accomplished in the context of a large scale worker dosimetry programme. (author)

  15. Effects of oxygen addition to argon glow discharges: A hybrid Monte Carlo-fluid modeling investigation

    International Nuclear Information System (INIS)

    A hybrid model is developed for describing the effects of oxygen addition to argon glow discharges. The species taken into account in the model include Ar atoms in the ground state and the metastable level, O2 gas molecules in the ground state and two metastable levels, O atoms in the ground state and one metastable level, O3 molecules, Ar+, O+, O2+ and O- ions, as well as the electrons. The hybrid model consists of a Monte Carlo model for electrons and fluid models for the other plasma species. In total, 87 different reactions between the various plasma species are taken into account. Calculation results include the species densities and the importance of their production and loss processes, as well as the dissociation degree of oxygen. The effect of different O2 additions on these calculation results, as well as on the sputtering rates, is discussed.

  16. Surface alloying of Cu with Ti by double glow discharge process

    Institute of Scientific and Technical Information of China (English)

    袁庆龙; 池成忠; 苏永安; 徐重; 唐宾

    2004-01-01

    The surface of pure copper alloyed with Ti using double glow discharge process was investigated. The morphology, structure and forming mechanism of the Cu-Ti alloying layer were analyzed. The microhardness and wear resistance of the Cu-Ti alloying layer were measured, and compared with those of pure copper. The results indicate that the surface of copper activated by Ar and Ti ions bombardment is favorable to absorption and diffusion of Ti element. In current experimental temperature, as the Ti content increases, the liquid phase occurs between the deposited layer and diffused layer, which makes the Ti ions and atoms easy to dissolve and the thickness of Cu-Ti alloying layer increase rapidly. After cooling, the structure of the alloying layer is composed of CuTi, Cu4 Ti and Cu(Ti) solid solution. The solid solution strengthening and precipitation strengthening effects of Ti result in high surface hardness and wear resistance.

  17. The Role of Fe(II) in the Contact Glow Discharge Electrolysis

    International Nuclear Information System (INIS)

    In this paper, we use methyl violet as a model organic substrate in wastewater to study the effect of Fe(II) ion on the contact glow discharge electrolysis (CGDE). The decoloration rate and the COD (Chemical Oxygen Demand) value have been examined. It is found that the presence of Fe(II) ion can accelerate obviously the degradation of methyl violet, because it reacts with H2O2 in the CGDE process to yield hydroxyl radical, just acting as a Fenton-like reagent. Moreover, the optimal conditions for decoloring methyl violet were obtained, by means of an orthogonal experiment, to be [Fe2+] =1x 10-3 mol/L, applied voltage of 700 V of and pH = 9.0

  18. Characteristics of Ozone Production by Using Atmospheric Surface Glow Barrier Discharge

    Directory of Open Access Journals (Sweden)

    Mudtorlep NISOA

    2009-06-01

    Full Text Available Ozone is a strong oxidizer that can kill bacteria and other micro-organisms very effectively. In the recent years, ozone has become very important for sterilization of water used in shrimp farming and treatment of wastewater from food industry. However, ozonisers available in the markets are very expensive and have low energy-efficiency. In this work, a highly-efficient and low-cost system that can produce high-concentrations of ozone gas and dissolved ozone in water has been developed. The system consists of a dried air unit, high-voltage rf power supply, ozoniser tubes and venturi injector. The tubes are designed and configured to convert oxygen gas to ozone gas by atmospheric surface glow barrier discharge.

  19. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    OUYANG Ji-Ting; DUAN Xiao-Xi; XU Shao-Wei; HE Feng

    2012-01-01

    We present the results from 2D fluid modeling of the key roles controlling the glow dielectric barrier discharge (DBD) structure. A uniform DBD can be sustained at lower frequency when the space charge reaches uniformity due to plasma decay, while the patterned structure appears above a critical frequency when the space charge is nonuniform. The patterns start from the electrode edge where the electric field is significantly distorted, characterized by the patterned seed electrons that always form ahead of the surface charges. The formation of the patterned DBD structure is associated with the lateral inhibition of the local increase of space charges. The distribution of the volume seed electrons plays a key role in the DBD structure while the distribution of surface charge is a result of the formed structure.%We present the results from 2D fluid modeling of the key roles controlling the glow dielectric barrier discharge (DBD) structure.A uniform DBD can be sustained at lower frequency when the space charge reaches uniformity due to plasma decay,while the patterned structure appears above a critical frequency when the space charge is nonuniform.The patterns start from the electrode edge where the electric field is significantly distorted,characterized by the patterned seed electrons that always form ahead of the surface charges.The formation of the patterned DBD structure is associated with the lateral inhibition of the local increase of space charges.The distribution of the volume seed electrons plays a key role in the DBD structure while the distribution of surface charge is a result of the formed structure.

  20. Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis

    Science.gov (United States)

    Allagui, Anis; Rojas, Andrea Espinel; Bonny, Talal; Elwakil, Ahmed S.; Abdelkareem, Mohammad Ali

    2016-05-01

    In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as "random," and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution at different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.

  1. NITROGEN POTENTIAL DURING ION NITRIDING PROCESS IN GLOW-DISCHARGE PLASMA

    Directory of Open Access Journals (Sweden)

    A. A. Kozlov

    2015-01-01

    Full Text Available The paper considers problems on regulation of phase composition of a nitrided layer during gas and ion nitriding process in a glow-discharge. It has been established that  available models for control of nitrided layer structure with the help of nitriding index (nitrogen potential can not be applied for nitriding process in the glow-discharge. Principal difference of the ion nitriding from the gas one is in the fact that chemically active nitrogen is formed in the discharge zone (cathode layer and its mass-transfer is carried out in the form of an active particle flow (ions, atoms, molecules which directed to the metal surface.Interrelation of chemical discharge activity with such characteristics of nitriding steel as nitrogen solubility in  α-solid solution and  coefficient diffusion during ion nitriding in low-discharge plasma. It has been shown that regulation of the nitride layer structure during ion nitriding is reached due to changes in nitrogen flow density in plasma. While supporting the flow at the level of nitrogen solubility in  one phase or another (α, γ′  it is possible to obtain the nitrided layer consisting only of α-solid solution or γ′-nitride layer and diffusion sub-layer. Moreover a specific range of nitrogen flow density values exists for every steel grade where it is possible to ensure a limiting nitrogen concentration in α-solid solution and the γ′-layer characterized by low diffusion  mobility is not formed on the surface.

  2. Glow discharge optical emission spectroscopy: a complementary technique to analyze thin electrodeposited polyaniline films

    International Nuclear Information System (INIS)

    Glow Discharge Optical Emission Spectroscopy (GDOES) has been developed to perform depth profiles of thick metallic films, in tens of microns range. GDOES spectroscopy can also be used to analyze thin organic polymer films since this technique has a great potential thanks to its high depth resolution, multi-element capability, sensitivity, and adaptability to solids or films and to conducting or non-conducting samples. In particular thin electrodeposited conducting polymer films remain an unexplored field of investigation for GDOES technique. However GDOES was used in this work to analyze electrodeposited polyaniline films, in addition to other techniques such as profilometry, electron microscopy and X-ray diffraction (XRD). More precisely polyaniline thin films were electrodeposited from HCl solutions and the presence of an anilinium chloride excess at the top surface of the polymer film was demonstrated using GDOES and XRD. Rinsing of these films with water led to the removal of this excess and to the partial dedoping of the polymer film due to the porous structure of polymer films. Polyaniline thin films were also electrodeposited from H2SO4 solutions and an anilinium hydrogen sulfate was similarly observed at the top surface of the polymer. This excess was removed by rinsing, contrary to hydrogen sulfate anions incorporated into the polymer film during the electrochemical polymerization that were not completely expulsed from the polyaniline films as proved using GDOES. - Highlights: • Polyaniline films were electrodeposited from HCl and H2SO4 solutions • Polymer films were analyzed by Glow Discharge Optical Emission Spectroscopy (GDOES) • The incorporation of anions in the films was proved using GDOES depth profiles • The crystalline structure of polyaniline films was modified by water rinsing

  3. Numerical simulation and experimental study of the corona and glow regime of a negative pin-to-plate discharge in flowing ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Callebaut, T [Department of Applied Physics, Ghent University, Rozier 44, B-9000 Ghent (Belgium); Kochetov, I [TRINITI, Troitsk, Moscow Region, 142190 (Russian Federation); Akishev, Yu [TRINITI, Troitsk, Moscow Region, 142190 (Russian Federation); Napartovich, A [TRINITI, Troitsk, Moscow Region, 142190 (Russian Federation); Leys, C [Department of Applied Physics, Ghent University, Rozier 44, B-9000 Ghent (Belgium)

    2004-05-01

    In a negative pin-to-plate discharge in ambient air, three different modes can be observed: corona, glow and spark. The experimental results of this paper reveal the effect of the anode geometry on the extent of the glow regime. A quasi-two-dimensional model is applied to reconstruct the experimental current-voltage characteristics of negative corona discharges with curved anode surfaces. For a sufficiently large discharge current, the model yields a discharge structure that is similar to that of a low-pressure glow discharge.

  4. Study on glow discharge effects on catalyst films for growing aligned carbon nanofibers in negative bias-enhanced hot filament chemical vapor deposition system

    International Nuclear Information System (INIS)

    Aligned carbon nanofibers (ACNFs) were grown on silicon substrates coated with NiFe catalyst films by negative bias-enhanced hot filament chemical vapor deposition (CVD). The growth and structure of the aligned carbon nanofibers were investigated by scanning electron microscopy (SEM). The results indicate that the aligned carbon nanofibers could be synthesized after the glow discharge appears when the negative bias is higher than a certain value, while they are bent if the glow discharge does not appear. Furthermore, the diameters of the aligned carbon nanofibers are reduced and their lengths are increased with increasing the negative bias. It is shown that the glow discharge resulting from the negative bias plays an important role in the growth of aligned carbon nanofibers. Here, the effects of the glow discharge on the growth and structure of the aligned carbon nanofibers are discussed

  5. A microcontroller-based system for automated and continuous sky glow measurements with the use of digital single-lens reflex cameras

    Science.gov (United States)

    Solano Lamphar, Hétor Antonio; Kundracik, Frantisek

    2014-02-01

    In recent years, the scientific community has shown an increased interest in sky glow research. This has revealed an increased need for automated technology that enables continuous evaluation of sky glow. As a result, a reliable low-cost platform has been developed and constructed for automating sky glow measurement. The core of the system is embedded software and hardware managed by a microcontroller with ARM architecture. A monolithic photodiode transimpedance amplifier is used to allow linear light measurement. Data from the diode are collected and used to arrange the exposure time of every image captured by the digital single-lens reflex camera. This proposal supports experimenters by providing a low-cost system to analyse sky glow variations overnight without a human interface.

  6. Thermoluminescent kinetics for negligible retrapping: Its application to the analysis of the glow curve of Y2O3: Eu+3

    International Nuclear Information System (INIS)

    In this article a novel algorithm for analysing glow peaks resulting from traps having negligible retrapping is reported. The algorithm features two advantages: (1) an expression for the light intensity has been derived without resorting to the quasi-equilibrium approximation, and (2) no differential equation has to be integrated. The algorithm has been employed for analysing the main glow peak of Y2O3: Eu+3. - Highlights: • A kinetics has been derived without resorting to the quasi-equilibrium approximation (QE). • The expression for the glow curve does not contain derivatives. • Analysis of the main glow peak of the Y2O3:Eu shows that the QE approximation does not always hold

  7. Correlation between TL and OSL signals in KMgF{sub 3}:Ce{sup 3+}: Bleaching study of individual glow-peaks

    Energy Technology Data Exchange (ETDEWEB)

    Dallas, G.I., E-mail: gdallas@ipet.g [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. Athena, 67100 Xanthi (Greece); Nuclear Engineering Laboratory, Democritus University of Thrace, 67100 Xanthi (Greece); Polymeris, G.S. [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. Athena, 67100 Xanthi (Greece); Afouxenidis, D. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. Athena, 67100 Xanthi (Greece); Tsagas, N.F. [Nuclear Engineering Laboratory, Democritus University of Thrace, 67100 Xanthi (Greece); Kitis, G. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2010-03-15

    KMgF{sub 3}:Ce{sup 3+} is an ultra sensitive Thermoluminescence (TL) material with a complex TL and OSL glow-curve structure. The aim of the present work is to attempt a one-to-one correspondence between specific TL glow-peaks and OSL components in KMgF{sub 3}:Ce{sup 3+}. The correlation study involves the deconvolution of the TL curves and the estimation of the bleaching decay constants for individual glow-peaks followed by the deconvolution of the LM-OSL curve using the estimated decay constants. It was found that the bleaching of each individual glow-peak takes place in three different rates; namely in a fast, medium and slow rate.

  8. The development of potential electrode new construction which is cathode for obtaining of nano-second volume discharge glow in the air at atmospheric pressure

    International Nuclear Information System (INIS)

    The present paper is dedicated to investigations of nanosecond pulsed discharge in the air at the atmospheric pressure. The new construction of potential electrode, which is cathode with use of dielectric porcelain and fluoroplastic capping has been developed. The influence factor of capping on the rod with radius of curvature 1 mm on charge glow region size is shown. The mechanism of discharge glow region expansion with formation of running electrons in cathode plasma has been considered

  9. STUDY ON THE TANTALIZING ON THE SURFACE OF TITANIUM ALLOY BY NET-SHAPE CATHODE GLOW DISCHARGING

    Institute of Scientific and Technical Information of China (English)

    F. Chen; H. Zhou; Y.F. Zhang; J.D. Pan

    2005-01-01

    A new net-shape cathode sputtering target which has a simple structure and a high sputtering was put forward. The multiple-structure made of alloying and coating layers of tantalum was achieved on the surface of TC4 (Ti6Al4V) using this method in double glow surface alloying process. The tantalized samples were investigated by SEM, XRD and electrochemical corrosion method .Results show the complicated tissue of pure tantalizing layer and diffusion layer was successfully formed on the surface of TC4 with the method of net-shape cathode glow discharge, which further improved the corrosion-resistance of TC4 and formed good corrosion-resistant alloys.

  10. Effect of a sub and supra-threshold periodic forcing an excitable glow discharge plasma near its bifurcation point

    CERN Document Server

    Nurujjaman, Md

    2010-01-01

    In this paper non-linear dynamics of a periodically forced excitable glow discharge plasma has been studied. The experiments were performed in glow discharge plasma where excitability was achieved for suitable discharge voltage and gas pressure. The plasma was first perturbed by a sub-threshold sawtooth periodic signal, and we obtained small sub-threshold oscillations. These oscillations showed resonance when the frequency of the perturbation was around the characteristic frequency the plasma, and hence may be useful to estimate characteristic of an excitable system. On the other hand, when the perturbation was supra-threshold, system showed frequency entrainments. We obtained harmonic frequency entrainments for perturbation frequency greater than the characteristic frequency of the system and for lesser than the characteristic frequency, system showed only excitable behaviour.

  11. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    International Nuclear Information System (INIS)

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s−1. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases

  12. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    Energy Technology Data Exchange (ETDEWEB)

    Bauk, Sabar, E-mail: sabar@usm.my [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hussin, Siti Fatimah [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Alam, Md. Shah [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Physics Department, Shahjalal University of Science and Technology, Sylhet (Bangladesh)

    2016-01-22

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peak 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.

  13. Analysis of the glow curves obtained from LiF:Mg,Cu,Na,Si TL materials using the general order kinetics model

    International Nuclear Information System (INIS)

    Three-dimensional thermoluminescence (TL) spectra based on temperature, wavelength and intensity for newly developed LiF:Mg,Cu,Na,Si TL material at the Korea Atomic Energy Research Institute were measured and analysed. The glow curves were obtained by integration of luminescence intensity over all wavelengths at each temperature, and various trapping parameters related to the traps were determined by analysing these curves. A computerised glow curve deconvolution method which was based on the general order kinetics model was used for the glow curve analysis. The glow curves of LiF:Mg,Cu,Na,Si TL material were deconvoluted to six isolated glow curves which have peak temperatures at 333, 374, 426, 466, 483 and 516 K. The main glow peak of peak temperature at 466 K had activation energy of 2.06 eV and a kinetic order of 1.05. This TL material was also found to have three recommendation centres, 1.80 eV, 2.88 eV and 3.27 eV by analysis of the TL spectra. (author)

  14. Effects of traces of molecular gases (hydrogen, nitrogen) in glow discharges in noble gases

    Science.gov (United States)

    Steers, E. B. M.; Smid, P.; Hoffmann, V.

    2008-07-01

    The "Grimm" type of low pressure glow discharge source, introduced some forty years ago, has proved to be a versatile analytical source. A flat sample is used as the cathode and placed about 0.2mm away from the end of a hollow tubular anode leading to an obstructed discharge. When the source was first developed, it was used for the direct analysis of solid metallic samples by optical emission spectroscopy (OES), normally with argon as the plasma gas; it was soon found that, using suitable electrical parameters, the cathode material was sputtered uniformly from a circular crater of diameter equal to that of the tubular anode, so that the technique could be used for compositional depth profile analysis (CDPA). Over the years the capability and applications of the technique have steadily increased. The use of rf powered discharges now permits the analysis of non-conducting layers and samples; improved instrumental design now allows CDPA of ever thinner layers (e.g. resolution of layers 5 nm thick in multilayer stacks is possible). For the original bulk material application, pre-sputtering could be used to remove any surface contamination but for CDPA, analysis must start immediately the discharge is ignited, so that any surface contamination can introduce molecular gases into the plasma gas and have significant analytical consequences, especially for very thin layers; in addition, many types of samples now analysed contain molecular gases as components (either as occluded gas, or e.g. as a nitride or oxide), and this gas enters the discharge when the sample is sputtered. It is therefore important to investigate the effect of such foreign gases on the discharge, in particular on the spectral intensities and hence the analytical results. The presentation will concentrate mainly on the effect of hydrogen in argon discharges, in the concentration range 0-2 % v/v but other gas mixtures (e.g. Ar/N_2, Ne/H_2) will be considered for comparison. In general, the introduction of

  15. Grafting of synthetic polyelectrolyte onto polymer surfaces--comparison of glow discharge and 60Co-gamma-irradiation method

    International Nuclear Information System (INIS)

    Water soluble polyelectrolyte synthesized from natural rubber contains sulfamate and carboxylate groups similar to that of heparin. It is observed that synthetic heparinoid polyelectrolyte is capable of inhibiting blood coagulation. In the present study, we attempted to graft the same onto polystyrene and polymethylmethacrylate surfaces using glow discharge technique and 60Co-gamma-irradiation method, and the surfaces were compared with respect to water contact angle and platelet adhesion parameters. Heparinized surfaces are also evaluated for relative comparison

  16. Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge

    OpenAIRE

    Liang Xi; Wang Zhou-jun; Liu Chang-jun

    2009-01-01

    Abstract Highly dispersed colloidal gold (Au) nanoparticles were synthesized at room temperature using glow discharge plasma within only 5 min. The prepared Au colloids were characterized with UV–visible absorption spectra (UV–vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) equipped with an energy dispersion X-ray spectrometer (EDX). UV–vis, XPS and EDX results confirmed that Au3+ ions in HAuCl4 solution could be effectively reduced i...

  17. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    OpenAIRE

    2011-01-01

    Abstract Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rat...

  18. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    OpenAIRE

    Yanallah, K; PONTIGA, F.; Castellanos, A

    2011-01-01

    Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants ...

  19. Highlights and pitfalls of 20 years of application of computerised glow curve analysis to thermoluminescence research and dosimetry.

    Science.gov (United States)

    Horowitz, Y S; Moscovitch, M

    2013-01-01

    The technical and dosimetric aspects of computerised glow curve analysis are described in detail including a review of the current 'state-of-the-achieved' in applications to environmental and personal dosimetry, clinical dosimetry, quality control, characterisation of new materials, continuing characterisation of 'old' materials, heavy charged particle dosimetry, mixed field n-gamma dosimetry, X-ray dosimetry and other aspects of thermoluminescence dosimetry. Fearless emphasis is placed on 'pitfalls' as well as successes. PMID:22987121

  20. Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P G C; Benilov, M S; Cunha, M D; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2009-10-07

    Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current-voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.

  1. Development of radio-frequency-powered helium glow discharge optical emission source associated with sampling by laser ablation

    International Nuclear Information System (INIS)

    A new excitation source for emission spectrometry consisting of an r.f-powered helium glow discharge plasma and a laser-diode pumped Q-switched Nd:YAG laser, was developed. The Nd:YAG laser works dominantly as a sampling source for introduction of sample atoms to the glow discharge plasma, because the laser induced plasma cannot be generated by the laser itself due to its high repetition rate. On the other hand, the helium glow discharge plasma mainly acts as excitation source, because little amounts od sample atoms can be introduced due to the low sputtering rate. This effect arises from the low sputtering yield as well as the low ionization efficiency of helium atom. Besides, the excited species of helium gases has the excitation ability for atomic species requiring large excitation energies as fluorine atom due to their high metastable levels. From these characteristics in this method, the sampling process and the excitation having high excitation energy levels. In this study, fluorine atomic lines requiring large excitation energies were measured. These lines were observed only when the laser was irradiated to the helium plasma. They could be observed neither in the argon plasma nor in the helium plasma without the laser irradiation. Further, the calibration curve for a fluorine atomic line gave a linear relationship in the LiF concentration range of 0.02-5.0 mass%, as shown in Fig 2.

  2. Laser-induced fluorescence monitoring of the gas phase in a glow discharge during reactive sputtering of vanadium

    Science.gov (United States)

    Khvostikov, V. A.; Grazhulene, S. S.; Burmii, Zh. P.; Marchenko, V. A.

    2011-11-01

    Processes in the gas phase of a glow discharge during diode and magnetron reactive sputtering of vanadium in an Ar-O2 atmosphere have been investigated by laser-induced fluorescence (LIF) as a function of the parameters of the glow discharge and the composition of the atmosphere. The intensity of the fluorescence spectra increased by 1.5-2.0 orders of magnitude in the magnetron sputtering process compared with that of diode sputtering. Under continuous sputtering conditions, the dependences of the intensities and relative compositions of the fluorescence spectra on the discharge parameters (discharge voltage and current) have been investigated. In pulsed mode of the glow discharge, the dynamics of changes in the spectra have been studied versus variations in the discharge duration and the lag time for recording the fluorescence signal. The dependence of the spectral line intensities on the partial pressure of oxygen has been found for vanadium and its oxide. The cathode surface at pressures of 0.03-0.04 Pa was shown to convert to the oxidized state.

  3. Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge

    Directory of Open Access Journals (Sweden)

    Liang Xi

    2009-01-01

    Full Text Available Abstract Highly dispersed colloidal gold (Au nanoparticles were synthesized at room temperature using glow discharge plasma within only 5 min. The prepared Au colloids were characterized with UV–visible absorption spectra (UV–vis, X-ray photoelectron spectroscopy (XPS, and transmission electron microscopy (TEM equipped with an energy dispersion X-ray spectrometer (EDX. UV–vis, XPS and EDX results confirmed that Au3+ ions in HAuCl4 solution could be effectively reduced into the metallic state at room temperature with the glow discharge plasma. TEM images showed that Au nanoparticles were highly dispersed. The size of colloidal Au nanoparticles could be easily tuned in the nanometer range by adjusting the initial concentration of HAuCl4 solution. Moreover, the as-synthesized Au colloids (d av = 3.64 nm exhibited good catalytic activity for glucose oxidation. The nucleation and growth of colloidal Au particles under the influence of the plasma was closely related with the high-energy electrons generated by glow discharge plasma.

  4. About TLD-100 glow curve manipulation to achieve dosimetric parameters of I-125 seeds used for brachytherapy

    International Nuclear Information System (INIS)

    Brachytherapy with 125I sources is applied, mainly, to the treatment of prostate, cerebral and ophthalmologic cancers. For experimental measurements, thermoluminescence dosimeters (like TLD-100) are widely used for brachytherapy dosimetry requests. The TLD-100 is a LiF:Mg,Ti crystal and its thermoluminescence response, the glow curve, has some peaks registered during the reading. In order to establish the direct relationship between dose and TL response, the total or partial integration of the glow curve could be used, or simply the size of a peak. If not using the size of this peak, the integration of a temperature interval containing it, is normally used. The aim of this work is to analyze the influence on dosimetric properties whether the main peak is selected to the measurements or the entire integration of the glow curve. A batch of TLD-100 micro-cube, with dimensions 1 mm x 1 mm x 1 mm and a Harshaw 2000 A/B TLD reader were used. For TLD-100 irradiations and positioning, Iodine-125 sources and a Solid Water phantom were used. With the appropriate electronic acquisition devices, connected to the Harshaw 2000 A/B, it was possible to read each signal individually. Both measurements methods presented acceptable regularity in the results. Therefore, for the dosimeters positioned distant from the source, large relatives differences among selected region (55 - 70 %) were observed. (author)

  5. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    Science.gov (United States)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  6. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    International Nuclear Information System (INIS)

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift–diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current–voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current–voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire. (paper)

  7. Performances of helium, neon and argon glow discharges for reduction of fuel hydrogen retention in tungsten, stainless steel and graphite

    International Nuclear Information System (INIS)

    It is quite important to investigate the performance of glow discharge conditionings for controls of in-vessel tritium (T) inventory and hydrogen recycling. For this purpose, first, the deuterium (D) retentions in tungsten (W), graphite (C) and stainless steel (SS) were measured. The retention in W was not small as expected, several times larger than that of SS, although the retention in SS was one order smaller than that of C. Such the large retention in W is owing to the growth of rough surface structure produced by plasma irradiations. For reduction of deuterium retention in W, SS and C, second, inert gas (He, Ne, Ar) glow discharges were conducted under the same condition, and these performances were compared. The removal ratio of deuterium retention was highest in He discharge, and lowest in Ar discharge. These values are well explained by the numerical analyses using SRIM code. The removal ratios for SS and C were significantly large, but quite small for W. This reason is again owing to the rough surface structure in W. For W, thirdly, the hydrogen isotope exchange and the wall baking experiments were conducted. It is found that the wall backing with a temperature higher than 700 K can well reduce the retention, and the hydrogen isotope exchange using deuterium glow discharge is also useful to reduce the tritium retention in the wall. The present results significantly contribute to control the fuel hydrogen retention and to reduce the in-vessel tritium inventory in fusion reactors. (author)

  8. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    International Nuclear Information System (INIS)

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons

  9. Impurities in TdeV with and without conditioning by trimethylboron/helium glow discharge

    International Nuclear Information System (INIS)

    Boronisation by glow discharge with 30% B(CH3)3 in He was applied in the TdeV tokamak. Plasma current and density scans were performed before and after the process; the impurity influxes (visible spectroscopy and mass spectrometry), the plasma contamination (VUV spectroscopy and effective ion charge Zeff) and the radiated power Prad were measured. The density limit was investigated. The lifetime of the conditioning effect was correlated with surface analysis of wall samples. Without boronisation, Zeff, Prad and a large fraction of the particle recycling were determined by oxygen from the residual gas. The density limit was (3.5-4.0)x1019 m-3 and a shrinkage of the plasma radius occurred at low current and high density. With boronisation, oxygen is reduced several fold, and (Zeff-1) and Prad are reduced by ∝60%. Also, plasma shrinkage is eliminated and the density limit is increased to ∝5x1019 m-3. The lifetime of the effect seems to be mostly determined by saturation of the boron layer by oxygen. (orig.)

  10. Optical investigations of high pressure glow discharges based on MSE arrays

    Energy Technology Data Exchange (ETDEWEB)

    Penache, C.; Hohn, O.; Schmidt-Boecking, H. [Frankfurt Univ. (Germany); Spielberger, L. [Deutsche Gesellschaft fuer Technische Zusammenarbeit GmbH (GTZ), Eschborn (Germany); Braeuning-Demian, A.; Penache, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2001-07-01

    The micro-structure-electrode (MSE) arrays are providing a non-thermal high pressure plasma. These arrays consist of a matrix of holes perforated in a thin multilayer made out of two metallic foils separated by a dielectric. The holes diameter and the thickness of the insulator spacer need to be around 100 {mu}m to allow for the MSE operation at pressure ranging from 0.1 to 1 bar and above. In this work single direct current microdischarges and systems of parallel operated holes in argon at 0.2 bar have been optically investigated. The spatial distribution of the emitted light has been monitored by a digital camera connected to an optical microscope. The UV photon emission has been recorded by a position sensitive photon detector allowing for space and time resolved measurements. Its time resolution of about 1 nsec makes possible the investigation of fast processes, e.g. the constriction of the discharge. Due to its typical position resolution of 100 {mu}m, this detector needs to be used in combination with an optical system allowing for the magnification of the discharge area. The optical appearance show a stable, volume filling glow discharge, fact proved also by the typical current-voltage characteristic.

  11. Control of plasma properties in a short direct-current glow discharge with active boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S. F. [Air Force Research Laboratory, WPAFB, Ohio 45433 (United States); Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu [Air Force Research Laboratory, WPAFB, Ohio 45433 (United States); West Virginia University, Morgantown, West Virginia 26506 (United States); Bogdanov, E. A.; Kudryavtsev, A. A. [St. Petersburg State University, St. Petersburg 199034 (Russian Federation); Koepke, M. E. [West Virginia University, Morgantown, West Virginia 26506 (United States); Kurlyandskaya, I. P. [St. Petersburg University of State Fire Service of EMERCOM RF, Murmansk Branch, Murmansk 183040 (Russian Federation)

    2016-02-15

    To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slow electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.

  12. Possible Mechanism of ``Additional'' Production of H^- in a Glow Discharge

    Science.gov (United States)

    Belostotskiy, S.; Economou, D.; Lopaev, D.; Rakhimova, T.

    2006-10-01

    Based on measurements of H^- and H densities a DC glow discharge in H2 (P=0.1-3 Torr) the rate coefficient of H^- production as a function of E/N was determined. To analyze the mechanisms of H^- production, a simple model of H2 vibrational excitation was developed. Estimations of vibrational level densities (v=3-5) obtained from VUV absorption measurements were in reasonable agreement with the calculated data. The analysis revealed that standard mechanisms of H^- production (dissociative attachment to vibrationally excited molecules H2(v) and molecules in Rydberg states H2(Ry)) were not enough to explain the experimental results. In order to describe both the shape (vs E/N) and the magnitude of the measured H^- production rate coefficient, an ``additional'' source of H^-, having a strong resonant electron attachment CS in the range of ˜5-9 eV, should be invoked. Although H2 has no resonances in the 5-9 eV range, water is known to strongly dissociatively attach in this range. Thus, even small amounts (0.1-1%) of water vapor in the apparatus can explain the origin of the ``additional'' H^- production. This result is corroborated by the work of Cadez et. al. in Proc. of XXVII ICPIG, 2005. This work was supported by the RFBR (No.05-02-17649a), Scientific School - 171113.2003.2 and NATO Collaborative Linkage Grant (No.980097).

  13. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    Science.gov (United States)

    Zheng, Peichao; Liu, Keming; Wang, Jinmei; Dai, Yu; Yu, Bin; Zhou, Xianju; Hao, Honggang; Luo, Yuan

    2012-10-01

    The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the hydrophobic character partly recovers after long-term storage in ambient air.

  14. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    Science.gov (United States)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  15. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    International Nuclear Information System (INIS)

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 μm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure

  16. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  17. High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays

    Science.gov (United States)

    Baars-Hibbe, L.; Sichler, P.; Schrader, C.; Lucas, N.; Gericke, K.-H.; Büttgenbach, S.

    2005-02-01

    Micro-structured electrode (MSE) arrays allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. The electrode widths, thicknesses and distances in the micrometre range are realized by means of modern micro-machining and galvanic techniques. The electrode distance, the gap width d, is small enough to generate sufficiently high electric field strengths to ignite gas discharges by applying only moderate radio frequency (RF, 13.56 MHz) voltages (80-390 V in Ne, He, Ar, N2 and air). The non-thermal plasma system is characterized by a special probe measuring the electric parameters. We tested MSE arrays with d = 70, 25 and 15 µm. The MSE driven plasmas show a different behaviour from conventional RF discharge plasmas. Due to the very small electrode gap width we can describe the behaviour of the charged particles in the RF field of our system with the dc Townsend breakdown theory, depending on the pressure range and gas. With decreasing pressure, the gas discharges, especially in Ne and He, are increasingly dominated by field electron emission. With the MSE arrays as plasma sources several applications were developed and successfully tested, e.g. decomposition of waste gases and sterilization of food packaging materials at atmospheric pressure.

  18. Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Liu, D. X., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Nie, Q. Y.; Li, H. P. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Chen, H. L. [Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Kong, M. G., E-mail: liudingxin@gmail.com, E-mail: mglin5g@gmail.com [Center for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi (China); Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2014-05-19

    Array of atmospheric pressure surface discharges confined by a two-dimensional hexagon electrode mesh is studied for its discharge modes and temporal evolution so as to a theoretical underpinning to their growing applications in medicine, aerodynamic control, and environmental remediation. Helium plasma surface-confined by one hexagon-shaped rim electrode is shown to evolve from a Townsend mode to a normal and abnormal glow mode, and its evolution develops from the rim electrodes as six individual microdischarges merging in the middle of the hexagon mesh element. Within one hexagon element, microdischarges remain largely static with the mesh electrode being the instantaneous cathode, but move towards the hexagon center when the electrode is the instantaneous anode. On the entire array electrode surface, plasma ignition is found to beat an unspecific hexagon element and then spreads to ignite surrounding hexagon elements. The spreading of microdischarges is in the form of an expanding circle at a speed of about 3 × 10{sup 4} m/s, and their quenching starts in the location of the initial plasma ignition. Plasma modes influence how input electrical power is used to generate and accelerate electrons and as such the reaction chemistry, whereas plasma dynamics are central to understand and control plasma instabilities. The present study provides an important aspect of plasma physics of the atmospheric surface-confined discharge array and a theoretical underpinning to its future technological innovation.

  19. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    CERN Document Server

    Xu, Shaofeng

    2015-01-01

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are simila...

  20. Carbon and oxygen isotope separation by plasma chemical reactions in carbon monoxide glow discharge

    International Nuclear Information System (INIS)

    The separation of carbon and oxygen isotopes in CO glow discharge has been studied. The isotope enrichment in the products was measured by quadru-pole mass spectrometer. The reaction yield and empirical formula of solid phase products were determined by the gas-volumetric analysis. The stable products obtained in our experiment are CO2 and solid polymers formed on the discharge wall. The polymer consists of both carbon and oxygen and the oxygen/carbon mole ratio in the polymer is 0.35±0.05. Thi isotope enrichment coefficients show a strong negative dependence on discharge current though the relative reaction yields have an opposite tendency. Consequently, the maximum isotope enrichment coefficients for 13C in wall deposit of 2.31 and for 18O in CO2 of 1.37 are obtained when the discharge current and the reaction yields are minimum in our experimental range. The experimental results of isotope enrichment have been compared with theoretical values estimated by an analytical model of literature. The dilution mechanism of the isotope enrichment of stable products is inferred from the isotopic distributions of 13C and 18O in products and theoretical predictions for isotope enrichment. (author)

  1. Measurement of voltage and current in continuous and pulsed rf and dc glow discharges

    International Nuclear Information System (INIS)

    Electrical measurements are an important tool for the characterisation of glow discharges and have proved to be useful for a variety of needs in fundamental studies and as control parameter. Therefore, extensive hardware developments and studies of current-voltage (I-U) characteristics in continuous and pulsed, dc and rf modes have been made [1] and will be presented together with new results. In continuous dc mode, the I-U curves are non-linear and may be characterised by a threshold voltage U0 and saturation current Imax (both cathode material and pressure dependent). On the other hand P-U curves are to a large extent linear and very similar in the continuous rf mode [2]. The ionic part of time resolved I-U curves of rf discharges however shows almost a linear behaviour and the capacitive component is small. This led to the assumption that gas heating is responsible for the non-linearity between I and U in continuous dc discharges. Consistent with this assumption, a dependence of the I-U curves of pulsed discharges on the duty cycle was found. The comparison of the curves with those at low duty cycle (cold) led to a rough estimation of the gas temperature. Further investigation and cooperation with modelling groups is needed and planned to explain these results.

  2. Control of plasma properties in a short direct current glow discharge with active boundaries

    Science.gov (United States)

    Demidov, Vladimir; Adams, Steven; Bogdanov, Yevgeny; Koepke, Mark; Kudryavtsev, Anatoly; Kurlyandskaya, Iya

    2015-11-01

    To demonstrate controlling electron and metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (without positive column) dc glow discharge with a cold cathode. The applied negative voltage can modify trapping the low-energy part of the energetic electrons emitted from the cathode sheath and arising from the atomic and molecular processes in the plasma within the device volume. Those electrons are responsible for heating the slow, thermal electrons, while production of slow electrons (ions) and metastable atoms is mostly due to energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons, while decay rate of metastable atoms and production rates of slow electrons and metastable atoms practically are unchanged. The result is in variation of electron and metastable density ratio and electron temperature with variation of the wall negative voltage. A part of this research was performed, while one of the authors (VID) held a National Research Council Research Associateship Award at AFRL. The work was also partially supported by SPbGU (Grant No. 11.38.658.2013) and ITMO University (Grant No. 713577).

  3. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN2−x. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN2−x. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  4. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  5. Baking and helium glow discharge cleaning of SST-1 tokamak with graphite plasma facing components

    International Nuclear Information System (INIS)

    Graphite plasma facing components (PFCs) were installed inside SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 X 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium (He) glow discharge cleaning (GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nanometers from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.48. In this paper, the results of effect of baking and He-GDC experiments of SST-1 will be presented in detail. (author)

  6. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    Energy Technology Data Exchange (ETDEWEB)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Buenos Aires, Argentina and Instituto de Física del Plasma (INFIP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires - UBA, C1428EHA, Buenos Aires (Argentina)

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  7. SWIR sky-glow cloud correlation with NIR and visible clouds: an urban and rural comparison

    Science.gov (United States)

    Dayton, David C.; Gonglewski, John D.; St. Arnauld, Chad; Mons, Ishon; Burns, Dennis

    2009-09-01

    Between the wavelengths of the visible and the Short Wave Infrared (SWIR), the glow of the sky from chemical radiance and absorption changes dramatically. Thus too, the structure and appearance of clouds change. By directly and simultaneously examining clouds in an urban and a rural setting, we investigate the correlation between the appearance of clouds present in the SWIR, NIR, and visible. The experimental setup consists of two sensors, one a NIR to SWIR sensitive InGaAs array, and the other a visible CCD, both co-located on an AZ-EL mount, and both co-boresighted so that different viewing angles of the sky are possible. The SWIR sensor is sensitive from 0.9 μm to 1.7 μm. The CCD sensor collects cloud images in the visible region. By making corrections for focal length and pixel size, the visible and SWIR data can be compared. After taking several nights of data in the urban environment of Albuquerque, NM, the entire system was then re-located to a rural location in southern New Mexico.

  8. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat [Department of Physics, Facuty of Science, Chulalongkorn University, Bangkok (Thailand); Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok (Thailand)

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  9. Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis

    Institute of Scientific and Technical Information of China (English)

    Haiming Yang; Baigang An; Shaoyan Wang; Lixiang Li; Wenjie Jin; Lihua Li

    2013-01-01

    Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis.Accompanying the decay of 4-PSA,the amount of total organic carbon (TOC) in water correspondingly decreased,while the sulfonate group of 4-PSA was released as sulfate ion.Oxalate and formate were obtained as minor by-products.Additionally,phenol,1,4-hydroquinone,hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA.A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics.It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law.The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated.It was found that the presence of Fe ions could increase the degradation rate of 4-PSA,while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour.The disappearance rate of 4-PSA was significantly affected by pH.

  10. An Experiment to Detect Lunar Horizon Glow with the Lunar Orbit Laser Altimeter Laser Ranging Telescope

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Barker, Michael; Mazarico, Erwan; Neumann, Gregory A.; McClanahan, Timothy P.; Sun, Xiaoli

    2016-04-01

    Lunar horizon glow (LHG) was an observation by the Apollo astronauts of a brightening of the horizon around the time of sunrise. The effect has yet to be fully explained or confirmed by instruments on lunar orbiting spacecraft despite several attempts. The Lunar Reconnaissance Orbiter (LRO) spacecraft carries the laser altimeter (LOLA) instrument which has a 2.5 cm aperture telescope for Earth-based laser ranging (LR) mounted and bore-sighted with the high gain antenna (HGA). The LR telescope is connected to LOLA by a fiber-glass cable to one of its 5 detectors. For the LGH experiments the LR telescope is pointed toward the horizon shortly before lunar sunrise with the intent of observing any forward scattering of sunlight due to the presence of dust or particles in the field of view. Initially, the LR telescope is pointed at the dark lunar surface, which provides a measure of the dark count, and moves toward the lunar limb so as to measure the brightness of the sky just above the lunar limb immediately prior to lunar sunrise. At no time does the sun shine directly into the LR telescope, although the LR telescope is pointed as close to the sun as the 1.75-degree field of view permits. Experiments show that the LHG signal seen by the astronauts can be detected with a four-second integration of the noise counts.

  11. Etching of UO2 in NF3 RF plasma glow discharge

    International Nuclear Information System (INIS)

    A series of single effect, RF plasma, glow discharge experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. In the experiments, the plasma absorbed power was varied from 25 to 210 W and the pressure from ∼10 to 40 Pa. The results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 100 W with initial etch rates ranging from 0.2 to 7.4 μm/min. A primary etch mechanism is proposed in which F atoms created in the plasma diffuse to the UO2 surface and react to form successive intermediates of uranium fluorides and/or oxyfluorides with reactions continuing to form volatile UF6 which desorbs into the gas phase to be pumped away. Ions created in the plasma are too low in concentration to be the primary etch mechanism, yet they can deliver enough energy to enhance the reaction process. UO2 etching is a self-limiting process due to the formation of non-volatile uranium oxyfluorides and fluorides which form over the UO2 surface, slowing or completely blocking the reaction to UF6

  12. Surface Treatment of Polyethylene Terephthalate Film Using Atmospheric Pressure Glow Discharge in Air

    Institute of Scientific and Technical Information of China (English)

    方志; 邱毓昌; 王辉

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted.The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19°, respectively.

  13. Application of Glow Discharge Plasma to Alter Surface Properties of Materials

    Science.gov (United States)

    Trigwell, Steve; Buhler, Charles R.; Calle, Carlos I.

    2005-01-01

    Some polymer materials that are considered important for spaceport operations are rendered noncompliant when subjected to the Kennedy Space Center (KSC) Standard electrostatic testing. These materials operate in stringent environmental conditions, such as high humidity. Treating materials that fail electrostatic testing and altering their surface properties so that they become compliant would result in considerable cost savings. Significant improvement in electrostatic dissipation of Saf-T-Vu PVC after treatment with air Atmospheric Plasma Glow Discharge (APGD) was observed and the material now passed the KSC electrostatic test. The O:C ratio on the surface, as monitored by X-ray Photoelectron Spectroscopy, increased from 0.165 tO 0.275 indicating enhanced oxidation, and surface contact angle measurements decreased from 107.5 to 72.6 showing increased hydrophilicity that accounted for the increased conductivity. Monitoring of the aging showed that the materials hydrophobic recovery resulted in it failing the electrostatic test 30 hours after treatment. This was probably due to the out-diffusion of the added Zn, Ba, and Cd salt stabilizers detected on the surface and/or diffusion of low molecular weight oligomers. On going work includes improving the long term hydrophilicity by optimizing the APGD process with different gas mixtures. Treatment of other spaceport materials is also presented.

  14. Uniformity of a dielectric barrier glow discharge: experiments and two-dimensional modeling

    International Nuclear Information System (INIS)

    The experimental and calculated results of uniformity in a glow dielectric barrier discharge (DBD) under sub-atmospheric pressures are reported. Driven by a square-wave power source, the discharge in a parallel-electrode DBD system shows uniform or various lateral structures under different conditions. There exists a critical frequency below which the DBD is uniform for almost all the applied voltages. Above the critical frequency, a non-uniform (patterned) discharge is observed and the patterned structures change with frequency and voltage. A two-dimensional fluid modeling is performed on this DBD system which shows similar results in agreement with the experiments. The simulations reveal that the distribution of the space electron density at the beginning of each voltage pulse plays an important role in achieving the uniformity. Uniform space charge results in a uniform DBD. The patterned DBD always evolves from the initial uniform state to the eventual non-uniform one. During this process, the space electrons form a patterned distribution ahead of the surface charges and lead to non-uniform discharge channels.

  15. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    International Nuclear Information System (INIS)

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode

  16. Electric field development in γ-mode radiofrequency atmospheric pressure glow discharge in helium

    Science.gov (United States)

    Navrátil, Zdeněk; Josepson, Raavo; Cvetanović, Nikola; Obradović, Bratislav; Dvořák, Pavel

    2016-06-01

    Time development of electric field strength during radio-frequency sheath formation was measured using Stark polarization spectroscopy in a helium γ-mode radio-frequency (RF, 13.56 MHz) atmospheric pressure glow discharge at high current density (3 A cm-2). A method of time-correlated single photon counting was applied to record the temporal development of spectral profile of He I 492.2 nm line with a sub-nanosecond temporal resolution. By fitting the measured profile of the line with a combination of pseudo-Voigt profiles for forbidden (2 1P-4 1F) and allowed (2 1P-4 1D) helium lines, instantaneous electric fields up to 32 kV cm-1 were measured in the RF sheath. The measured electric field is in agreement with the spatially averaged value of 40 kV cm-1 estimated from homogeneous charge density RF sheath model. The observed rectangular waveform of the electric field time development is attributed to increased sheath conductivity by the strong electron avalanches occurring in the γ-mode sheath at high current densities.

  17. Photocatalytic Degradation of Methylene Blue with Side-glowing Optical Fiber Deliverying Visible Light

    Institute of Scientific and Technical Information of China (English)

    储金宇; 仲蕾

    2012-01-01

    The side-glowing optical fibers (SOFs) were chosen as the conducting medium of endogenous light; and 20 mg·L-1 methylene blue was chosen as the target to be degraded. The SOF is made up of quartz core with a silicon cladding, which can emit light through side surface more uniformly and transmit light for longer distance to avoid attenuation of light by liquid medium. The filament lamp was chosen as visible light source. Different reaction conditions, such as the presence of optical fiber or not, the quantity of SOF, light irradiation intensity were tested by measuring the methylene blue degradation of methylene blue. The results show that suitable reaction conditions were 1.167 g·L-1 Ag + /TiO 2 with 7% (by mass) of Ag + doped in TiO 2 , and 500 roots of SOF (30 cm length in solution). The photocatalytic degradation efficiency under 300W lamp irradiation for 8h was about 97%. And the photocatalytic degradation efficiency of methylene blue degradation was proportional to SOF quantity, light irradiation intensity and catalytic dosage within a certain range. Compared with general UV and visible light SOFs could save a huge amount of energy and cost, in the potential applications in dealing with organic pollutants on a large scale.

  18. Analysis of impurities with inhomogeneous distribution in multicrystalline solar cell silicon by glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Highlights: • The bulk distribution of trace elements in solar cell silicon is studied by GDMS. • Direct current operation mode is effective for analysis of ultra-trace elements. • The analyses show high accuracy and reproducibility. • Inhomogeneous precipitates distribution in the bulk hinders their investigation. -- Abstract: Multicrystalline silicon for solar cells presents material inhomogeneities related to the presence of extended defects such as grain boundaries or dislocations. These defects are possible sources for nucleation of precipitates, which generally show a highly inhomogeneous distribution in the crystal structure. The use of direct current (dc), continuous operation glow discharge mass spectrometry (GDMS) as an analytical technique to study these distributions is presented in this article, with focus on ultra-trace elements such as Fe and Cu. In order to evaluate the impact of the analytical parameters, a doping element (B) is also analyzed, since it generally shows a more homogeneous distribution in the crystal structure. The results suggest that, for commonly used mc-Si for solar cells, due to the size of the precipitates and the high degree of inhomogeneity in the bulk, single precipitates cannot be detected during common bulk analysis by dc GDMS

  19. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    International Nuclear Information System (INIS)

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (Te) and electron number density (ne) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10−17 − 10−18 m−3 where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier

  20. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Science.gov (United States)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing

    2016-03-01

    The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no "void" defect was observed.

  1. The effect of hydrogen dilution on glow discharge a-SiGe:H alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, M.; Ferreira, I.; Geerts, M.J.; Metselaar, J.W. (Technische Hogeschool Delft (Netherlands). Electrical Materials Lab.)

    1991-01-01

    Amorphous SiGe:H alloy is the key material for highly efficient and stable a-Si-based tandem solar cells. We have studied the effect of H{sub 2} dilution (0%glow discharge a-Si{sub 1-x}Ge{sub x}:H alloys with x varying from 0 to 0.55. The dependence of composition, deposition rate, IR absorption spectra and optical properties on hydrogen dilution are reported and analyzed. The CPM method was used to obtain sub-band-gap absorption spectra. The a-SiGe:H alloys show high photosensitivity, a low Urbach energy (<60 meV) and a low density of states in the gap (<3x10{sup 16} cm{sup 3}) for as low as 1.3 eV band gap material. Hydrogen dilution was found to improve the photoelectrical properties; it minimizes the silicon dihydride bonding and lowers the incorporation of Ge into the film. (orig.).

  2. Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects

    Science.gov (United States)

    Gupta, Susanta K. Sen

    2015-12-01

    Contact glow discharge electrolysis (CGDE) also termed plasma electrolysis is a novel electrolysis where a stable sheath of light emitting plasma develops around an electrode immersed well inside a relatively high-conductivity liquid electrolyte during normal electrolysis (NE) at several hundred volts. The phenomenon may develop in dc-, pulsed dc-, ac- as well as RF-driven electrolyses. The chemical effects of CGDE are remarkably non-faradaic in respect to the nature of the products as well as their yields. The article traces comprehensively the progress made in studies of CGDE in aqueous and non-aqueous solutions since 1844 and reviews the developments in the understanding of its origin, light emission, plasma state and non-faradaic effects leading to the elucidation of detailed mechanism of the origin of CGDE on the basis of the onset of hydrodynamic instabilities in local vaporization of the solvent near the working electrode during NE, and that of highly non-faradaic effects of CGDE based on a model of two reaction zones located within the electrode plasma and at the plasma-liquid interface producing solvent derived radicals at high local concentrations. Keeping in view the recent surge of interest in varied applications of CGDE, the article is appended with highlights of these applications across synthetic chemistry, waste water treatment, electrosurgical devices, nanoparticle fabrications, surface engineering and micro-machining.

  3. Rotational motion of dusty structures in glow discharge in longitudinal magnetic field

    International Nuclear Information System (INIS)

    The investigation of dust structure formed in glow discharge in an external longitudinal magnetic field with induction up to 400 G applied is presented in this work. The dust structure starts to rotate in the magnetic field. The angular-velocity magnitude is one to two orders larger than one in other discharge types. Its dependence on the magnetic field is nonmonotonic. The rotation direction inverses with an increase of the magnetic induction value up to a certain magnitude B0. In close range of induction around B0 and under certain conditions the rotation of the upper and lower parts of the structure in the opposite direction is observed. Rotation is caused by the ion-drag force. The inversion of rotation direction relates with the change of plasma flows in the area of their formation in stratum with the magnetic field applied. The effect of ion flows was investigated in two additional experiments on the observation of structure rotation onset and on gravity-driven probing of stratum. The angular-velocity unhomogeniety allowed us to investigate shearing and to observe melting of the dust crystal. The correlation functions approach showed the occurrence of structure transformation and its phase transition of the meltinglike type in the magnetic field

  4. TL glow ratios at different temperature intervals of integration in thermoluminescence method. Comparison of Japanese standard (MHLW notified) method with CEN standard methods

    International Nuclear Information System (INIS)

    The effect of the integration temperature intervals of TL intensities on the TL glow ratio was examined in comparison of the notified method of the Ministry of Health, Labour and Welfare (MHLW method) with EN1788. Two kinds of un-irradiated geological standard rock and three kinds of spices (black pepper, turmeric, and oregano) irradiated at 0.3 kGy or 1.0 kGy were subjected to TL analysis. Although the TL glow ratio exceeded 0.1 in the andesite according to the calculation of the MHLW notified method (integration interval; 70-490degC), the maximum of the first glow were observed at 300degC or more, attributed the influence of the natural radioactivity and distinguished from food irradiation. When the integration interval was set to 166-227degC according to EN1788, the TL glow ratios became remarkably smaller than 0.1, and the evaluation of the un-irradiated sample became more clear. For spices, the TL glow ratios by the MHLW notified method fell below 0.1 in un-irradiated samples and exceeded 0.1 in irradiated ones. Moreover, Glow1 maximum temperatures of the irradiated samples were observed at the range of 168-196degC, and those of un-irradiated samples were 258degC or more. Therefore, all samples were correctly judged by the criteria of the MHLW method. However, based on the temperature range of integration defined by EN1788, the TL glow ratio of un-irradiated samples remarkably became small compared with that of the MHLW method, and the discrimination of the irradiated sample from non-irradiation sample became clearer. (author)

  5. Enhanced tissue integration of implantable electrodes for sensing, and stimulation, via radio frequency glow discharge

    Science.gov (United States)

    O'Connor, Laurie M.

    Biopotential electrodes are conductive materials that convert electronic currents to or from ionic currents for sensing, and stimulating specific tissue sites for medical applications. Implanted electrodes become "walled off" by the foreign body tissue reactions producing poorly attached scar capsules dominated by surrounding dense collagenous lamellae and source fibroblasts which are electrically resistive. The conductive interstitial fluid that is typical between an electrode and the resistive capsule allows spurious current paths. The insulating layer increases the distance between the electrode and the target sites and poor attachment often results in electrode migration within the host tissue. This investigation tested the hypothesis that surface-energy modulation of electrodes, via Radio Frequency Glow Discharge Treatment (RFGDT), can improve the performance of tissue-implantable electrodes by reducing the foreign body tissue reaction and enhancing interfacial bonding between the tissue and electrode material. Previously published findings were reproduced in a pilot study of explanted reference grade medical-grade methyl silicone (PDMS) and commercially pure titanium (cpTi) materials and their tissue capsules from 30-day subcutaneous exposures in Balb/C mice. The low-critical surface tension PDMS produced thick, dense, poorly attached scar capsules while the higher-surface-energy commercially pure titanium (cpTi) produced more cellular and strongly attached tissue layers difficult to delaminate from the biomaterial. For the main body of work, cpTi, capacitor-grade Tantalum (Ta), and synthetic heart valve-quality Pyrolytic Carbon (PyC) were evaluated, representative of potential high-surface-energy implant electrode materials. Their surface characteristics were determined as-manufactured and after Radio Frequency Glow Discharge Treatment (RFGDT) by Critical Surface Tension (CST) measurement, Scanning Electron Microscopy (SEM), Energy Dispersive X

  6. Glow discharge mass spectrometry study of chemical impurities diffusion in zirconium oxide layers

    International Nuclear Information System (INIS)

    In the Pressurised Water Reactors (PWR) the primary cooling system is water at 350 deg C and 16 Mpa. In these extreme conditions the corrosion of the out-of-pile components of the reactor and in particular of the Zircaloy cladding containing the nuclear fuel pellets is accelerated. The formation of a growing oxide layer is observed on the elements of the nuclear reactor core. When the thickness of the oxide layer reaches a critical value, problems like structural malfunction and material failure can occur. At this stage the danger of the release of radioactivity in the coolant becomes effective. In this work a glow discharge mass spectrometer is used to study the diffusion of impurities like lithium, zinc and boron in oxide layers growing on Zircaloy samples. After a brief description of the different technique used the preparation and analysis of Zircaloy samples on which oxide layers of different thickness have been produced will be described. The analysis of these samples will allow the determination and evaluation the depth profiles of the impurities absorbed by the oxide. The analysis of the shape of the crater produced during the mass spectrometric analysis will give additional informations on the quality of the results obtained. The technique developed will finally be applied to the study of samples produced during reactor operation under real irradiation conditions. The results obtained show a lithium intake in the oxide layer and confirm the beneficial effect on the corrosion produced by boron. The influence of zinc on the corrosion behaviour of Zircaloy has not been established. The technique developed has also shown interesting capabilities concerning the analysis of irradiated samples. (author)

  7. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  8. H2/Ar direct current glow discharge mass spectrometry at constant voltage and pressure

    International Nuclear Information System (INIS)

    The addition of hydrogen to a direct current (dc) - argon glow discharge (GD) coupled to a time of flight mass spectrometer has been studied using a fixed voltage between the electrodes and a fixed discharge pressure. Hydrogen contents investigated were 0.5%, 1% and 10% v/v in the argon discharge and the samples under study consisted of a copper-base, a nickel-base and an iron-base homogeneous materials. Also, the in-depth profile analysis of a tin plate was investigated. Results have shown that hydrogen addition gives rise to significant changes in the slope of the linear relationship between the electrical current and the discharge voltage. Clearly, the electrical resistance of the discharge at the typical operation voltages in the interval 600-1000 V increases with hydrogen added to pure argon. A decrease of the sputtering rates was observed the higher the hydrogen concentrations. Besides, the 'reduced sputtering rates', i.e. the sputtering rates divided by the corresponding electrical current, were also lower for the H2/Ar discharges than for pure argon. However, the analytical ion signals observed using discharge voltages higher than 900 V turned out to be higher in a 0.5% H2/Ar discharge than in pure argon for the copper and nickel materials. Besides, for the three samples investigated the ion yields were from 1.5 up to 3 times higher in 0.5% H2/Ar discharges as compared to the pure argon. Finally, the effect of 0.5% H2 addition to the Ar discharge on the in-depth profile of a tin plate has also been investigated. As compared to the use of a pure Ar GD, higher sensitivity for major and minor components of the coating were observed without loss of the relative depth resolution achieved

  9. Partial constriction in a glow discharge in argon with nitrogen admixture

    International Nuclear Information System (INIS)

    The constriction of the positive column of a glow discharge in argon with nitrogen admixture (0.02–1%) was studied. The discharge was maintained in a tube of 2.8 cm inner diameter and 75 cm length at intermediate pressures (several tens of Torrs), at which the discharge constriction goes by a jump and the hysteresis effect is well pronounced. It was observed that the constriction begins near one of the electrodes and then the constricted region boundary propagates toward the other electrode. The reverse transition occurs in a similar way. The transition time in Ar : N2 mixtures appears to be essentially longer (up to 1 s) than that in pure argon. By varying the power supply voltage in the course of the transition, the boundary between the diffuse and constricted forms of the discharge could be stopped at some position between the electrodes. Such a partially constricted discharge (PCD) is stable and can exist for a long time. A PCD at various locations of the boundary can be formed, different locations being realized at different discharge voltages but at the same discharge current. This corresponds to a vertical segment in the voltage–current characteristic curve. It was found that this segment lies inside the hysteresis loop and connects two branches of the conventional I–V characteristic measured without affecting the discharge during the diffuse-to-constricted or reverse transitions. Plasma parameters in the diffuse and constricted positive columns are estimated and ionization mechanisms are analyzed. The possible reasons for the low velocity of the constriction front in Ar : N2 mixtures and the mechanisms of the stabilization of the PCD are also discussed. (paper)

  10. Etching of UO{sub 2} in NF{sub 3} RF Plasma Glow Discharge

    Energy Technology Data Exchange (ETDEWEB)

    John M. Veilleux

    1999-08-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO{sub 2} were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO{sub 2} from stainless steel substrates. Experiments were conducted using NF{sub 3} gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO{sub 2} samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO{sub 2} in the samples had a relatively low density of 4.8 gm/cm{sub 3}. Counting of the depleted UO{sub 2} on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, {sup 234}Th and {sup 234}Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about {+-} 2%. Results demonstrated that UO{sub 2} can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO{sub 2} in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 {micro}m/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO{sub 2} etching was also noted below 50 W in which etching increased up to a maximum pressure, {approximately}23 Pa, then decreased with further increases in pressure.

  11. Etching of UO2 in NF3 RF Plasma Glow Discharge

    International Nuclear Information System (INIS)

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO2 in the samples had a relatively low density of 4.8 gm/cm3. Counting of the depleted UO2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234Th and 234Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 microm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, approximately23 Pa, then decreased with further increases in pressure

  12. Analysis of small bubbles entrapped in glass by glow discharge time of flight mass spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. The gases appearing during the glass manufacturing process give rise to small bubbles which can seriously alter, especially in high quality glass, the function and usage of the commercial product, reducing the mechanical strength or producing optical inhomogeneities. The chemical composition of bubbles is extremely important to identify the damage sources and thus to understand and control their formation. The gaseous content of bubbles can be analyzed using techniques like mass spectrometry (MS) and laser Raman spectroscopy. However, mass spectrometry is the method that provides more information in shorter time. Up to now most experiments with MS have been carried out with electron impact for ionization and detection by quadrupole or magnetic sector mass spectrometers. Due to the presence of elements such as nitrogen, oxygen and carbon dioxide in the atmosphere a closed system incorporating a very small volume (for a fast evacuation of the entire line) and a mass spectrometer with fast scan capability (such as the time of flight (TOF) mass spectrometer) should be desirable. In this communication a new analytical method has been developed to analyze the composition of gases entrapped in glasses. The experimental setup consists basically of a glass breaker (a stainless steel bellows valve) on-line connected to a glow discharge for ionization and a TOF mass spectrometer for detection. The optimized system provides detection limits in the order of nL for molecular nitrogen, oxygen and carbon dioxide. The proposed method has been successfully tested for the analysis of gaseous content of bubbles (with diameters below 0.5 mm) entrapped in industrial glasses. The authors acknowledge to Gobierno del Principado de Asturias through PCTI 2006-2009 (project ref. PC07-013) and FP6 Contract STREP-NMP, N deg 032202 for the financial support.

  13. The influence of resonance radiation transport on the contraction of a glow discharge in argon

    Science.gov (United States)

    Golubovskii, Yu B.; Maiorov, V. A.

    2015-04-01

    The role of resonance radiation transport in the contraction of a positive column in an argon glow discharge is studied numerically. The theory is based on the self-consistent solution of the ambipolar diffusion equation for electrons, the diffusion equation for metastable atoms and the Biberman-Holstein equation for resonance atoms. To calculate the ionization and excitation rates, the Boltzmann equation is solved in a local approximation taking into account elastic, inelastic and electron-electron collisions. A solution method for a boundary problem is developed which allows one to obtain a hysteresis of the parameters during a continuous transition from a diffuse mode to a contracted mode through an unstable branch. At small currents there is a diffuse discharge where the role of radiation transport is inessential because the radial distributions of electrons and excited atoms are close to the fundamental modes of the corresponding equations. Under these conditions, the traditional approximation of ‘effective lifetime’ is accurate enough. For a contracted discharge, this approximation is not applicable because the higher diffusion and radiation modes play a notable role and a more strict description of radiation transport is required. It is shown that, when radiation transport is taken into account, the width of a filament in a contracted discharge significantly exceeds that obtained in the traditional ‘effective lifetime’ approximation. The critical current, when the discharge abruptly turns into a contracted mode, is shifted towards higher current values. The results obtained in this paper can also relate to a discharge in other inert gases.

  14. Role of cathode identity in liquid chromatography particle beam glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    A detailed evaluation of the role of cathode identity on the analytical and spectral characteristics of various organic, organometallic and metal analytes using liquid chromatography-particle beam/glow discharge mass spectrometry (LC-PB/GDMS) has been carried out. A d.c. discharge, operating with argon as the support gas, was used throughout this work. In this study, Cu which has a relatively high sputtering rate, Ni which has moderate sputtering rate and Ta which has very low sputtering rate, are taken as cathode materials to study the ionization, fragmentation, and analytical characteristics of organic (caffeine, epigallocatechin gallate, peptide as representative compounds), organometallic (selenomethionine, triethyl lead chloride as representative compounds) and metal (Fe, La, Cs and Pb) species. A range of discharge gas pressures (26.6-106.4 Pa) and currents (0.2-1.5 mA) were investigated with the test cathodes to determine their influence on the spectral composition and overall analytical response for the various test species. Calibration plots were obtained for all of the species for each of the three cathodes to determine the respective limits of detection. Relative detection limits in the range of 0.02 to 15 ng mL-1 (0.002-1.5 ng, absolute) for the test species were found to be in the order of Cu > Ni > Ta; which follows the order of the sputtering characteristics of the respective cathodes. These studies rendered information about the respective discharge parameters' role in choosing the most appropriate cathode identity in PB-GDMS for application in the areas of organic, organometallic and inorganic species analysis

  15. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    Science.gov (United States)

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; Fitzsimmons, Paul; Carlson, Lane; Farrell, Mike; Nikroo, Abbas; Watson, Brian J.

    2016-02-01

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, a method to imprint a periodic micropattern of oxygen on the surface of GDP was developed and used to fabricate a flat sample for empirical testing. Photo exposure using collimated blue light was used to generate micropatterns of surface oxygen on the GDP material. The periodic oxygen micropattern was confirmed by secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy. A SIMS depth profile showed the atomic percent of oxygen ranged from 8 at. % near the surface to 1 at. % at a depth of 2 μm in a sample exposed for 4 min. The molecular interactions formed between the GDP and oxygen molecules were characterized using Fourier transform infrared resonance (FTIR), which showed the formation of hydroxyl (O-H) and carbonyl (C=O) bonds. The FTIR enabled the oxygen mass uptake as a function of photo exposure time to be quantified (resolved to typically 0.05 at. % oxygen). This experimental protocol was then applied to produce a GDP flat part with a periodic 75 μm wavelength micropattern of photo exposed (oxygen rich) and masked (oxygen deficient) regions. The micropatterned GDP ablators developed in this work are being used to assess the effect of surface oxygen on disruptive perturbations during the inertial confinement fusion implosion process.

  16. Effect of solution temperature on methylene blue degradation in glow corona discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, L.O.B.; Cadorin, B.M.; Goncalves de Souza, I.; Debacher, N.A. [Federal Univ. of Santa Catarina, Florianopolis, Santa Catarina (Brazil). Dept. of Chemistry

    2010-07-01

    Non-thermal plasma (NTP) is an emerging technology for water cleaning that can be used in several environmental and industrial processes. Electrical discharges above or below the water surface cause chemical activation of a system through the production of strong oxidant species in solution that can be used to break down and remove toxic organic contaminants such as dyes, phenols or aromatic ammines that are present in the aqueous phase. This study investigated the effect of bath solution temperature on methylene blue (MB) degradation in a point-to-plate glow corona discharge (GCD) reactor. MB is used to mediate electron transfer in microbial fuel cells. The activation energy involved in the dye degradation was estimated in order to better understand the chemical processes taking place in the liquid phase triggered by the NTP discharge. The plasma channels were created in the nitrogen gas phase above the solution surface. The bath solution temperature varied between 4 to 47 degrees C. The dye removal percentage increased as the bath temperature increased except at 47 degrees C, when a decrease in the MB removal was observed. The formation of hydrogen peroxide (H{sub 2}O{sub 2}) increased as the bath temperature decreased. The maximum H{sub 2}O{sub 2} concentration was observed at 4 degrees C. This effect may be related to the viscosity and diffusion coefficients of water and dye/H{sub 2}O{sub 2} molecules. This paper also presented the activation energy of the GCD process as determined by the Arrhenius equation. 11 refs., 1 tab., 6 figs.

  17. Heat and Radiofrequency Plasma Glow Discharge Pretreatment of a Titanium Alloy: Eveidence for Enhanced Osteoinductive Properties

    Science.gov (United States)

    Rapuano, Bruce E.; Singh, Herman; Boskey, Adele L.; Doty, Stephen B.; MacDonald, Daniel E.

    2013-01-01

    It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone-implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium-phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium-phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X-ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium-and phosphorus-containing particles on untreated and treated disks that were more numerous on fibronectin-coated disks. These particles were observed earliest (1 week) on RFGD-pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin-coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. PMID:23494951

  18. Glow discharge assisted low - temperature nitriding of knives used in wood processing

    Directory of Open Access Journals (Sweden)

    A. Sokołowska

    2009-12-01

    Full Text Available Purpose: The plasma assisted surface treatment processes may be conducted at lowered temperatures thanks to shallow ion implantation influencing the driving force of diffusion. The low-temperature d.c. glow discharge assisted nitriding (LTN method allows the process to be applied to steel grades irrespective of their tempering temperature but does not promote the formation of thick nitrided layers. The LTN process seems to be most suitable for improving the mechanical properties of cutting tools. The aim of this study was to elaborate the optimised LTN method of steel cutting tools treatment and its application for production ecological and cheap knives for wood processing industry.Design/methodology/approach: The nitriding of low-alloy steel knives was conducted at temperatures of 320°C-350°C under a pressure of 4hPa. The microstructure and chemical composition of the nitrided layer was determined using XRD and XPS methods and the cutting properties of nitrided knives were investigated in wood processing industry.Findings: The LTN process enables to control very precisely the microhardness distribution profile which decides on the cutting properties of a knife. The optimal process parameters were determined, they depended on the kind of tools application.Practical implications: The LTN treated knives have been used in industry as planar knives and cutting heads for processing wet and dry, hard and soft wood. They appear to be competitive to traditional tools, ecological and cheap.Originality/value: The elaborated low-temperature nitriding of low-alloy steel knives is an original process. The nitrided knives are a new sort of tools for wood processing.

  19. Electrochemical impedance spectroscopy predicted from Dc glow discharge plasma nitrided commercially pure titanium for dental implant applications

    International Nuclear Information System (INIS)

    Titanium and its alloys biomaterials have become relatively popular for surgical implants. Plasma nitriding are commonly used for orthopaedic and dental implants which are subjected to articulation, corrosion and wear, to increase the surface hardness, corrosion resistance and reduce the generation of wear debris. This paper aims to demonstrate the electrochemical behavior of plasma nitrided cp ti, A Commercially pure titanium cp was surface modified using Dc glow discharge plasma nitriding in order to study its microstructural changes in the modified surfaces that can improve the corrosion resistance of titanium. Dc glow discharge plasma nitriding was performed for different period of time (namely 5, 10, 15, 20,25 and 30 hours). The glow discharge was occurred by applying 650 V between the two parallel electrodes under 3 mbar nitrogen gas pressure. To characterize the nature of the modified layers produced and to correlate with the corrosion behavior of these medical materials, Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) was employed on the modified surface. The effect of sputtering process that can accrue during the nitriding process on the surface roughness was studied using Atomic Force Micros (AFM). EIS studies in Buffer Phosphate Solution (BPS) have been carried out in order to understand the corrosion and passivation kinetics after plasma nitriding. The results shows that as the nitriding time processed the N+ concentration increases comparing to the metal and alloy matrix elements. The AFM results show that the nitriding process leads to reduce the surface roughness. The electrochemical impedance tests were carried out at open circuit potential before and after polarization. All the plasma nitride specimens show electrical impedance spectra a purely capacitive behavior characteristic of thin films. (Author)

  20. Pseudoinefficacy: Negative feelings from children who cannot be helped reduce warm glow for children who can be helped

    Directory of Open Access Journals (Sweden)

    Daniel eVästfjäll

    2015-05-01

    Full Text Available In a great many situations where we are asked to aid persons whose lives are endangered, we are not able to help everyone. What are the emotional and motivational consequences of not helping all? In a series of experiments, we demonstrate that negative affect arising from children that could not be helped decreases the warm glow of positive feeling associated with aiding the children who can be helped. This demotivation from the children outside of our reach may be a form of pseudoinefficacy that is nonrational. We should not be deterred from helping whomever we can because there are others we are not able to help.

  1. Determination of gamma dose and thermal neutron fluence in BNCT beams from the TLD-700 glow curve shape

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G., E-mail: grazia.gambarini@mi.infn.i [Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Bartesaghi, G. [Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Agosteo, S.; Vanossi, E. [Politecnico di Milano, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Carrara, M.; Borroni, M. [Fondazione IRCCS, Istituto Nazionale dei Tumori, Medical Physics Unit, via Venezian 1, 20133 Milano (Italy)

    2010-03-15

    The measurement of both gamma dose and thermal neutron fluence in a BNCT gamma-neutron mixed-field can be achieved by means of a single thermoluminescence dosimeter (TLD-700), exploiting the shape of the glow-curve (GC). The method is based on simple algorithms containing parameters obtained from the TLD-700 GC and requires the gamma calibration GC (for gamma dose measurement) or the thermal neutron calibration GC (for neutron fluence measurement) and moreover the GC of a TLD-600 exposed to a BNCT field, uncalibrated. Some results are reported, showing the potentiality of the method.

  2. Annealing kinetics of a-Si:H deposited by concentric-electrode rf glow discharge at room temperature

    OpenAIRE

    Conde, J. P.; Chan, K. K.; Blum, J.M.; Arienzo, M.; Monteiro, P. A.; Ferreira, J. A.; Chu, V.; Wyrsch, Nicolas

    2008-01-01

    The irreversible isothermal annealing of the as-deposited defects of hydrogenated amorphous silicon, a-Si:H, deposited at room temperature by concentric-electrode radio-frequency glow discharge is studied using dark and photoconductivity, space-charge limited current, and time-of-flight. The photoconductivity increases as a power law of the annealing time with exponent 0.8. The density of states at the Fermi level, measured by space-charge limited current, is inversely proportional to the ann...

  3. Argon gas concentration effects on nanostructured molybdenum nitride layer growth using 100 Hz pulsed dc glow discharge

    Science.gov (United States)

    Ikhlaq, U.; Ahmad, R.; Saleem, S.; Shah, M. S.; Umm-i-Kalsoom; Khan, N.; Khalid, N.

    2012-08-01

    The effect of argon concentration (10%-40%) on the surface properties of molybdenum is studied in nitrogen-argon mixture using 100 Hz pulsed dc glow discharge. The analysis is carried out by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vickers microhardness tester to investigate surface properties of the nitrided samples. XRD results exhibit the formation of molybdenum nitrides. Crystallite size analysis and SEM morphology confirm the growth of nanostructured molybdenum nitride layers. Moreover, significant increase in surface hardness (by a factor of about two times) is found when the sample is treated for 30% argon in nitrogen-argon mixed plasma.

  4. A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding

    OpenAIRE

    Fabiana Cristina Nascimento; Carlos Eugênio Foerster; Silvio Luiz Rutz da Silva; Carlos Mauricio Lepienski; Carlos José de Mesquita Siqueira; Clodomiro Alves Junior

    2009-01-01

    Mechanical and tribological properties os AISI 304 and AISI 316 stainless steels submited to glow discharge ion nitriding are reported.The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ´-Fe4N and - Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses o...

  5. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  6. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  7. Frailty index of deficit accumulation and falls: data from the Global Longitudinal Study of Osteoporosis in Women (GLOW) Hamilton cohort

    OpenAIRE

    Li, Guowei; Ioannidis, George; Pickard, Laura; Kennedy, Courtney; Papaioannou, Alexandra; Thabane, Lehana; Jonathan D. Adachi

    2014-01-01

    Background To investigate the association between frailty index (FI) of deficit accumulation and risk of falls, fractures, death and overnight hospitalizations in women aged 55 years and older. Methods The data were from the Global Longitudinal Study of Osteoporosis in Women (GLOW) Hamilton Cohort. In this 3-year longitudinal, observational cohort study, women (N = 3,985) aged ≥55 years were enrolled between May 2008 and March 2009 in Hamilton, Canada. A FI including co-morbidities, activitie...

  8. Quantitative determination of major and minor elements in alloys by emission spectroscopy using Grimm glow discharge lamps

    International Nuclear Information System (INIS)

    A rapid and simple analytical method for the determination of major, minor and trace elements in alloys, using the Grimm glow discharge lamp as spectroscopic excitation source is studied. Alloys of copper, aluminium, stainless and carbon steel, including the determination of the elements: Cu, Fe, Al, Ni, Cr, Mn, Nb, Si, Mo, Ti, V, Zn, Mg and Co are analyzed. Some parameters as optimal entrance slit position, pre-burning time and integration time of the analytical signal, current, argon pressure, tension pulse and applied power are studied. (M.J.C.)

  9. Development of an atmospheric-pressure homogeneous and cold Ar/O2 plasma source operating in glow discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure Ar/O2 glow discharge is generated in a parallel bare metal plate reactor with a radio-frequency power supply by introducing a dielectric strip in the inlet of the gas flow. The role of the dielectric strip is discussed experimentally. The allowable oxygen-to-argon ratio reaches 1.0 vol % and the generated Ar/O2 plasma discharge is characterized by a low gas temperature and good spatial homogeneity, implying its feasible application as a type of material treatment for a large-area surface, as illustrated experimentally by the ashing of carbon black.

  10. Fragment L of Comet Shoemaker-Levy 9 slams into Jupiter near the still glowing remnant of the older

    Science.gov (United States)

    2002-01-01

    Fragment L of Comet Shoemaker-Levy 9 slams into Jupiter near the still glowing remnant of the older K impact. In the upper left frame, only the K site is visible. The images were taken starting (top left) at 22:11 UT on July 19 (5:11 p.m. Chicago time). Subsequent images were taken at 22:20, 22:27, 22:39, 22:44 and 22:59 UT. These near infrared images were taken with the South Pole Infrared Explorer (SPIREX), a 24 inch telescope at the south pole. SPIREX team members are Mark Hereld, Hien Nguyen, Bernard Rauscher, and Scott Severson.

  11. Dynamics of Metal Etching and Oxidation in Fluorocarbon/oxygen RF Glow Discharges

    Science.gov (United States)

    Martz, Joseph Christopher

    A variety of in situ diagnostics have been used to determine the dynamic behavior of both the etching and oxidation reactions of tantalum and plutonium in RF glow discharges (plasmas). Numerous aspects of the concerted, heterogeneous reactions involved have been studied with quadrupole mass spectroscopy, emission spectroscopy (actinometry), and fluoroptic thermometry. In addition, direct in situ measurement of reaction rates has been performed with a quartz-crystal microbalance. The chemistry of the CF_4/O _2 discharge and its use in etching both tantalum and plutonium has been studied. Major products from the reaction of CF_4 with O _2 within the plasma include CO _2, CO, COF_2, F _2, and F. Chemical mechanisms are suggested to account for the formation of these products. Measurement of Ta etch rates in CF_4 /O_2 and C_2 F_6/O_2 plasmas as functions of reactor pressure, applied power, temperature, and system residence time reveal numerous chemical effects. The large heat of reaction in the Ta/F etching system, in conjunction with the moderate activation energy and thermally isolated nature of the plasma environment, leads to significant autothermic effects. Fluorocarbon polymer deposition at pressures above 400 mtorr leads to a quenching of the etch reaction in CF_4 /O_2 plasmas. Similarly, the etch behavior of Ta in C_2F _6/O_2 discharges at all pressures mirrors that of Ta in CF_4 /O_2 plasmas at pressures above 400 mtorr. Plutonium etching has also been demonstrated in CF_4/O_2 plasmas. Plutonium oxides etch at rates 5 to 10 times faster than pure Pu metal. The reaction of Pu in the discharge proceeds at least 200 times faster than the reaction of Pu with purely thermal sources of F atoms such as O _2F_2. Such results suggest significant enhancement of the Pu/F reaction by the plasma environment. Lastly, oxidation of Ta in O_2 discharges has been studied as a potential means of low-temperature Ta_2O _5 thin film fabrication. Plasma oxidation proceeds readily at

  12. Calibration of double focusing Glow Discharge Mass Spectrometry instruments with pin-shaped synthetic standards

    International Nuclear Information System (INIS)

    Calibration of two commercially available glow discharge double focusing mass spectrometers, the VG 9000 and Element GD, is described using synthetic pin standards pressed from solution doped copper and zinc matrices. A special pressing die was developed for this purpose and optimal results were obtained with the highest possible pressures, i.e., 95 kN·cm−2. This calibration approach permits the determination of trace element mass fractions down to μg·kg−1 with small uncertainties and additionally provides traceability of the GD-MS results in the most direct manner to the SI (International System of Units). Results were validated by concurrent measurements of a number of compact copper and zinc certified reference materials. The impact of the sample pin cross-section (circular or square) was investigated with the use of a new pin-sample holder system for the Element GD. The pin-sample holder was designed by the manufacturer for pin-samples having circular cross-section; however, samples with square pin cross-section were also shown to provide acceptable results. Relative Sensitivity Factors for some 50 analytes in copper (VG 9000, Element GD) and zinc matrices (VG 9000) are presented. The field of applicability of GD-MS may be considerably extended via analysis of pin geometry samples based on their ease of preparation, especially with respect to the accuracy and traceability of the results and the enhanced number of analytes which can be reliably calibrated using such samples. - Highlights: ► GD-MS instruments were calibrated with synthetic pin standards of copper and zinc. ► This provides accurate determination of trace element mass fractions down to ppb. ► Measurement results obtain small uncertainties and are traceable to the SI. ► The standard preparation pressure of ≥ 95 kN·cm−2 is needed for accurate results. ► New/more accurate RSFs for some 50 analytes in each matrix were determined.

  13. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials.

    Science.gov (United States)

    Aronsson, B O; Lausmaa, J; Kasemo, B

    1997-04-01

    Glow discharge plasma treatment is a frequently used method for cleaning, preparation, and modification of biomaterial and implant surfaces. The merits of such treatments are, however, strongly dependent on the process parameters. In the present work the possibilities, limitations, and risks of plasma treatment for surface preparation of metallic materials are investigated experimentally using titanium as a model system, and also discussed in more general terms. Samples were treated by different low-pressure direct current plasmas and analyzed using Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), atomic force microscopy, scanning electron microscopy, and light microscopy. The plasma system is a home-built, ultra-high vacuum-compatible system that allows sample introduction via a load-lock, and precise control of pressure, gas composition and flow rate, etc. This system allows uniform treatment of cylindrical and screw-shaped samples. With appropriate plasma parameters, argon plasma remove all chemical traces from former treatments (adsorbed contaminants and other impurities, and native oxide layers), in effect producing cleaner and more well-controlled surfaces than with conventional preparation methods. Removal (sputtering) rates up to 30 nm/min are possible. However, when inappropriate plasma parameters are used, the result may be increased contamination and formation of unintentional or undesired surface layers (e.g., carbides and nitrides). Plasma-cleaned surfaces provide a clean and reproducible starting condition for further plasma treatments to form well-controlled surface layers. Oxidation in pure O2 (thermally or in oxygen plasmas) results in uniform and stoichiometric TiO2 surface oxide layers of reproducible composition and thicknesses in the range 0.5-150 nm, as revealed by AES and XPS analyses. Titanium nitride layers were prepared by using N2 plasmas. While mild plasma treatments leave the surface microstructure unaffected

  14. Glow discharge mass spectrometric analysis of nickel-based heat-resisting alloys

    International Nuclear Information System (INIS)

    GD-MS analysis of nickel-based heat-resisting alloys has been performed using a VG 9000 glow discharge (GD) mass spectrometer. Concentrations of not only alloying elements (Al, Si, Ti, V, Cr, Mn, Fe, Co, Cu, Y, Nb, Mo and W) but also trace elements (B, C, Mg, P, S, Zn, Ga, As, Zr, Cd, Sn, Sb, Te, Pb and Bi) were successfully determined in disk shaped samples. The examination of spectral interference confirmed the following. The influence of manganese argide (55Mn40Ar+) on the ion beam intensity of 95Mo+ was negligible because manganese content of the alloys is usually less than 1 mass%. Mass spectra of 31P+ and 32S+ may be affected by the spectral interference of 62Ni2+ and 64Ni2+, respectively, due to the matrix element. However, these ion species were sufficiently separated at the mass resolution 5000 (m/Δm, at 5% peak height) used in this study. Relative sensitivity factors (RSFs) were determined by analyzing standard reference materials: JAERI CRMs, a NIST SRM, a BS CRM, BCS CRMs and the alloys prepared in our Institute. The average RSF-values obtained for Ni=1 were 0.436 for Al, 0.826 for Si, 0.281 for Ti, 0.375 for V, 1.480 for Cr, 1.122 for Mn, 0.754 for Fe, 0.653 for Co, 3.321 for Cu, 0.303 for Y, 0.436 for Nb, 0.862 for Mo, 0.935 for Ta and 1.052 for W. The analytical accuracy (σd) obtained was comparable to that of FP-XRF analysis, except for chromium and iron determinations. Relative standard deviations (RSDs) of five replicate measurements were within about 2.5%, except for phosphorus (P; 0.003 mass%, RSD; 3.31%) and sulfur (S; 0.005 mass%, RSD; 3.08%). GD-MS analytical values for ODS MA6000 alloy were obtained using a RSF correction program, and the values were in good agreement with those obtained by FP-XRF and by chemical analysis (author)

  15. The thermoluminescence characteristics and the glow curves of Thulium doped silica fiber exposed to 10 MV photon and 21 MeV electron radiation

    International Nuclear Information System (INIS)

    The thermoluminescence (TL) glow curves and kinetics parameters of Thulium (Tm) doped silica cylindrical fibers (CF) are presented. A linear accelerator (LINAC) was used to deliver high-energy radiation of 21 MeV electrons and 10 MV photons. The CFs were irradiated in the dose range of 0.2–10 Gy. The experimental glow curve data was reconstructed by using WinREMS. The WinGCF software was used for the kinetic parameters evaluation. The TL sensitivity of Tm-doped silica CF is about 2 times higher as compared to pure silica CF. Tm-doped silica CF seems to be more sensitive to 21 MeV electrons than to 10 MV photons. Surprisingly, no supralinearity was displayed and a sub-linear response of Tm-doped silica CF was observed within the analyzed dose range for both 21 MeV electrons and 10 MV photons. The Tm-doped silica CF glow curve consists of 5 individual glow peaks. The Ea of peak 4 and peak 5 was highly dependent on dose when irradiated with photons. We also noticed that the electron radiation (21 MeV) caused a shift of glow peak by 7–13 °C to the higher temperature region compared with photons radiation (10 MV). Our Tm-doped fibers seem to give high TL response after 21 MeV electrons, which gives around 2 times higher peak integral as compared with 10 MV photon radiation. We concluded that peak 4 is the first-order kinetic peak and can be used as the main dosimetric peak of Tm-doped silica CF. - Highlights: • A sub-linear response of Tm doped silica CF was measured at dose range of 0.2–10 Gy. • The TL sensitivity of Tm doped silica CF is 2 times higher as compared to pure silica CF. • Tm-doped silica CF glow curve consists of 5 individual glow peaks. • The glow peak area and peak height of Tm-doped silica CF are highly dependent on dose. • The kinetics parameters are highly dependent on dose

  16. Sampling modulation technique in radio-frequency helium glow discharge emission source by use of pulsed laser ablation.

    Science.gov (United States)

    Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-05-01

    An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed. PMID:15034707

  17. Influence of dopants on the glow curve structure and energy dependence of LiF:Mg,Cu,Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Z., E-mail: zknez@irb.h [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Ranogajec-Komor, M.; Miljanic, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Lee, J.I.; Kim, J.L. [Korea Atomic Energy Research Institute, P.O. Box 105 Yuseong, Daejon 305-600 (Korea, Republic of); Music, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2011-03-15

    LiF thermoluminescent material doped with Mg, Cu and Si recently developed by the Korea Atomic Energy Research Institute (KAERI) has shown very good dosimetric properties. Since the thermoluminescence in LiF was found to be dependent on the proper combination of dopants, the investigation of the concentration and type of dopants is very important in developing and characterisation of new TL materials. The aim of this work was to determine the influence of type and concentration of activators on the glow curve structure, sensitivity, reproducibility and on the photon energy response of LiF:Mg,Cu,Si detectors. The energy response was studied in air and on the ISO water phantom in the range of mean photon energies between 33 keV and 164 keV. The morphology and local chemical composition of LiF:Mg,Cu,Si detectors were examined using high resolution scanning electron microscopy (FE-SEM). The results show that type and concentration of activators influence the glow curve and sensitivity. Different dopant concentrations did not show influence on the photon energy response. The sensitivity of LiF:Mg,Cu,Si detector with dopant concentration of Mg = 0.35 mol%, Cu = 0.025 mol% and Si = 0.9 mol% was very high (up to 65 times higher than that of TLD-100). The photon energy response of LiF:Mg,Cu,Si detectors containing all three dopants in various concentrations is in accordance with the IAEA recommendations for individual monitoring.

  18. Performance and Emission Characteristics on Glow Plug Hot Surface Ignition C.I. Engine Using Methanol as Fuel With Additive

    Directory of Open Access Journals (Sweden)

    B.OMPRAKASH

    2015-07-01

    Full Text Available The concept of using alcohol fuels as alternative to diesel fuel in diesel engine is recent one. The scarcity of transportation petroleum fuels due to the fast depletion of the petroleum deposits and frequent rise in their costs in the international market have spurred many efforts to find alternatives. Alcohols were quickly recognized as prime candidates to displace or replace high octane petroleum fuels. Innovative thinking led to find varies techniques by which alcohol can be used as fuel in diesel engine. Amongst the fuel alternative proposed, the most favourest ones are methanol and ethanol. The specific tendency of alcohols to ignite easily from a hot surface makes it suitable to ignite in a diesel engine by different methods. The advantage of this property of alcohols enables to design and construct a new type of engine called surface ignition engine. Methanol and ethanol are very susceptible to surface ignition, this method is very suitable for these fuels. The hot surfaces which, can be used in surface ignition engine are electrically heated glow plug with hot surface. Hence present research work carries the experimental investigation on glow plug hot surface ignition engine, by adding different additives with methanol and ethanol as fuels, with an objective to find the best one performance, emission and compression parameters.

  19. A Comparative Study between the Filamentary and Glow Modes of DBD Plasma in the Treatment of Wool Fibers

    Directory of Open Access Journals (Sweden)

    Doaa. M. El-Zeer

    2014-03-01

    Full Text Available In the present research it has been studied the effect of the DBD plasma on the treatment and modification of the surface a printing properities of the wool. Two types of DBD plasma have been investigated namely; the filamentary mode FDBD plasma and the glow mode GDBD plasma to reach the best condition of the treatment. Two discharge cells have been constructed one of them is for the generation of Atmospheric pressure glow discharge APGD and the other is for the generation of filamentary dielectric barrier discharge FDBD plasma. These two cells have the same dimensions except for the type of the dielectric barrier. In the APGD cell the dielectric barrier is a commercial porous fiber while in the FDBD cell the barrier is a Pyrex glass. It has been found that changing the type of the dielectric barriers acquires the discharge different properties. The efficiencies of these two types of discharge in the treatment of the textiles has been examined by treating the wool fabric with these two types of DBD plasma at different conditions of the current and treatment time. The induced changes in wool properties, such as whiteness index, wettability, tensile strength, elongation %, surface morphology, printability and fastness properties, have been investigated. The surface characterization was performed using FTIR and SEM imaging. It has been discovered that GDBD plasma is more efficient than FDBD because of not only its homogeneity but also the high concentration of nitrogen excited species that are the responsible for the surface activation of the textile.

  20. The microstructure and optical properties of crystallized hydrogenated silicon films prepared by very high frequency glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Wang Desheng; Yang Zhibo; Li Fei [Department of Physics, Lanzhou University, Lanzhou, 73000 (China); He Deyan, E-mail: hedy@lzu.edu.cn [Department of Physics, Lanzhou University, Lanzhou, 73000 (China)

    2011-08-01

    A series of nc-Si:H films with different crystalline volume fractions have been deposited by very high frequency glow discharge in a plasma with a silane concentration [SiH{sub 4}]/([SiH{sub 4}] + [H{sub 2}]) varying from 2% to 10%. The nc-Si:H films have been characterized by Raman spectroscopy, XRD diffraction, and UV-vis-near infrared spectrophotometer. The deposition rate increases nearly linear with increasing the silane concentration while the crystalline volume fraction decrease from 58% to 12%. The refractive index and the absorption of the samples were obtained through a modified four-layer-medium transmission model based on the envelope method. It was found that the refractive indices and absorption coefficient increase with increasing silane concentration. Compared to the films deposited using conventional RF-PECVD with excitation frequency of 13.56 MHz, the samples prepared by very high frequency glow discharge have higher absorption coefficients, which is due to its better compactness and lower defect density.

  1. Electrical and optical properties of amorphous silicon carbide, silicon nitride and germanium carbide prepared by the glow discharge technique

    International Nuclear Information System (INIS)

    Amorphous specimens of silicon carbide, silicon nitride and germanium carbide have been prepared by decomposition of suitable gaseous mixtures in a r.f. glow discharge. Substrates were held at a temperature Tsub(d) between 400 and 800 K during deposition. In all three of the above materials the results of optical absorption and of d.c. conductivity measurements show a systematic variation with Tsub(d) and with the volume ratio of the gases used. Electron microprobe results on silicon carbide specimens indicate that a wide range of film compositions can be prepared. The optical gap has a pronounced maximum at the composition Sisub(0.32)Csub(0.68) where it is 2.8 eV for a sample deposited at Tsub(d) = 500 K, but shifts to lower energies with increasing Tsub(d). The conductivity above about 400 K has a single activation energy approximately equal to half the optical gap and extended state conduction predominates if the silicon content exceeds 32%. If the latter is reduced, hopping transport takes over and it is suggested that the excess carbon in the network tends to bond in three-fold graphic coordination. Absence of any obvious feature in the electronic properties at the stoichiometric composition SiC implies that there is little tendency towards compound formation in the glow discharge films. The present results are discussed in relation to measurements on specimens prepared by different methods. (author)

  2. Lithium-fluoride flashover ion source cleaned with a glow discharge and irradiated with vacuum-ultraviolet radiation

    International Nuclear Information System (INIS)

    We have studied methods of varying the ion species generated by a lithium-fluoride overcoated anode in a 0.5-MV magnetically insulated ion diode. We found that cleaning the anode surface with a 13.6-MHz rf glow discharge or illuminating the anode with a pulsed soft x-ray, vacuum-ultraviolet (XUV) radiation source just before the accelerator pulse significantly altered the ion species of the ion beam produced by the diode. The glow-discharge plasma removed adsorbates (carbon, hydrogen, and oxygen) from the surface of the LiF flashover source. The ions seen were lithium and hydrogen. Unfortunately, the diode impedance with a lithium-fluoride anode was high and the ion efficiency was low; however, XUV irradiation of the surface dramatically lowered the impedance by desorbing neutrals from the ion source via photon-stimulated desorption. Current densities of ten times the Child--Langmuir space-charge limit were achieved under XUV irradiation. In particular, ion currents increased by over a factor of 3 when 12 mJ/cm2 of XUV radiation was used. However, with XUV irradiation the largest fraction of ions were fluorine, oxygen, carbon, and hydrogen, not lithium

  3. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  4. Etching of uranium dioxide in nitrogen trifluoride RF plasma glow discharge

    Science.gov (United States)

    Veilleux, John Mark

    1999-10-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 mum/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ˜23 Pa, then decreased with further increases in pressure. A computer simulation, CHEMKIN, was applied to predict the NF3 plasma species in the experiments. The code was validated first by comparing its predictions of the NF3 plasma species with mass spectroscopy etching experiments of silicon. The code predictions were within +/-5% of the measured species concentrations. The F atom radicals were identified as the primary etchant species, diffusing from the bulk plasma to the UO2 surface and reacting to form a volatile UF6, which desorbed into the gas phase to be pumped away. Ions created in the plasma were too low in concentration to have a major effect on etching, but can enhance the etch rate by removing non-volatile reaction products blocking the reaction of F with UO2. The composition of these non-volatile products were determined based on thermodynamic analysis and the electronic structure of uranium. Analysis identified possible non-volatile products as the uranium fluorides, UF2-5, and certain uranium oxyfluorides UO2F, UO2F2, UOF3, and UOF 4 which form over the

  5. Influence of Operating Parameters on Surface Properties of RF Glow Discharge Oxygen Plasma Treated TiO2/PET Film for Biomedical Application

    Science.gov (United States)

    Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...

  6. Comprehensive speciation analysis by liquid chromatography-particle beam mass spectrometry (LC/PB-MS) employing electron impact and glow discharge ionization sources

    International Nuclear Information System (INIS)

    The particle beam mass spectrometer (PB-MS) equipped with glow discharge/electron impact ionization sources serves as an analytical tool for the comprehensive speciation analysis of solution-phase samples, providing elemental and molecular species information in a single separation. Application of PB/GDMS towards the comprehensive speciation analysis and characterization of botanical products is being highlighted

  7. Application of a personal computer for analysis and data reduction of TLD-300 glow curves for dosimetry in mixed neutron and photons fields

    International Nuclear Information System (INIS)

    TLD-300 material can be used to measure simultaneously neutron and photon absorbed dose with one small detector. It is applied for clinical dosimetry for d(14)+Be neutrons to measure whole dose distributions of complex treatment technique. In this application many glow curves are measured and should be stored for documentation. Therefore it is desirable to reduce the number of data which must be stored for one glow curve. The TLD-300 glow curves can be approximated by a sum of 8 Gauss functions, so that the whole glow curve can be reconstructed from 24 numerical values. Moreover by a appropriate fitting procedure it is found that the positions and widths of the Gauss functions needed are almost the same for all detectors. They seem to be independent of dose and beam quality. Only the parameters of the two Gauss functions at the lowest heating temperature, amplitude and even position and width, depend on time elapsed between irradiation and read-out of the detector

  8. Final Report DE-FG02-00ER54583: 'Physics of Atmospheric Pressure Glow Discharges' and 'Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas'

    International Nuclear Information System (INIS)

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  9. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge; Puesta a punto del diagnstico de fluorescencia inducida por laser. Medidas de densidad de Cr en Glow discharg de Neon

    Energy Technology Data Exchange (ETDEWEB)

    Tafalla, D.; Cal, E. de la; Tabares, F. L.

    1994-07-01

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, the density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength, bandwidth and energy profile and Rayleigh scattering in N2 was used for the optical system calibration. An absolute density of Cr atoms of n {approx} 5x10 cm was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal us. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma. (Author) 19 refs.

  10. Influence of Parameters of the Glow Discharge on Change of Structure and the Isotope Composition of the Cathode Materials

    Science.gov (United States)

    Savvatimova, I. B.; Gavritenkov, D. V.

    Results of examinations of changes in structure, element, and isotope composition of cathodes after the glow discharge exposure in hydrogen, deuterium, argon, and xenon are submitted. The voltage of the discharge was less than 1000 V and the current was 5-150 mA. Samples before and after ions bombardment in the glow discharge were explored by the methods of mass spectrometry: the secondary ions (SIMS), the secondary ions with additional ionization of neutral sprayed particles (SNMS), spark (SMS), and thermo-ionization (TIMS), and also methods of energy dispersion X-ray spectral analysis (EDX). The alpha-, beta-, gamma- emission, and gamma- spectrometry for radioactive uranium specimens were also carried out before and after experiments in the glow discharge. Changes in structure, isotope, and element composition of the cathode samples depend on current density, integrated ions flow (fluence of ions), kind of irradiating ions and other experimental conditions. Attempts are made to estimate qualitatively and quantitatively the role of each of the parameters on intensity of the observed changes in cathode composition. It is shown that the maximum changes in structure, chemical and isotope composition of the cathode material occur in "hot points," such as craters from microexplosions, phase segregations, blisters and other new formations. Various methods of the analysis revealed that the basic elements Mg, O, Si, Al, and Ca with quantities up to per cents and more were prevailing in these zones and not found out before experiment. The greatest changes of the isotope relations were observed for iron, calcium, silicon, chromium after experiments with pulsing current. EDX method finds out the elements missing in the samples before experiment such as cadmium, strontium, tin. The isotopes with mass number 59 (Co 100%), 55 (Mn 100%), 45 (Sc 100%) are also not found in initial samples and background measurement by TIMS method. Results of changes in the element and isotope

  11. Analysis of the LiF:Mg,Cu,Si TL and the LiF:Mg,Cu,PTL Glow Curves by Using General Approximation Plus Model

    International Nuclear Information System (INIS)

    In this paper, we used computerized glow curve deconvolution (CGCD) software with several models for the simulation of a TL glow curve which was used for analysis. By using the general approximation plus model, parameters values of the glow curve were analyzed and compared with the other models parameters (general approximation, mixed order kinetics, general order kinetics). The LiF:Mg,Cu,Si and the LiF:Mg,Cu,P material were used for the glow curve analysis. And we based on figure of merits (FOM) which was the goodness of the fitting that was monitored through the value between analysis model and TLD materials. The ideal value of FOM is 0 which represents a perfect fit. The main glow peak makes the most effect of radiation dose assessment of TLD materials. The main peak of the LiF:Mg,Cu,Si materials has a intensity rate 80.76% of the whole TL glow intensity, and that of LiF:Mg,Cu,P materials has a intensity rate 68.07% of the whole TL glow intensity. The activation energy of LiF:Mg,Cu,Si was analyzed as 2.39 eV by result of the general approximation plus(GAP) model. In the case of mixed order kinetics (MOK), the activation energy was analyzed as 2.29 eV. The activation energy was analyzed as 2.38 eV by the general order kinetics (GOK) model. In the case of LiF:Mg,Cu,P TLD, the activation energy was analyzed as 2.39 eV by result of the GAP model. In the case of MOK, the activation energy was analyzed as 2.55 eV. The activation energy was analyzed as 2.51 eV by the GOK model. The R value means different ratio of retrapping.recombination. The R value of LiF:Mg,Cu,Si TLD main peak analyzed as 1.12 x 10-6 and α value analyzed as 1.0 x 10-3. The R of LiF:Mg,Cu,P TLD analyzed as 7.91 x 10-4, the α value means different ratio of initial thermally trapped electron density.initial trapped electron density (include thermally disconnected trap electrons density). The α value was analyzed as 9.17 x 10-1 which was the difference from LiF:Mg,Cu,Si TLD. The deep trap electron

  12. Reproducibility of LiF:Mg, Cup thermoluminescent dosimeter on kilo voltage and megavoltage photon beam using different preheat rate:A glow curve study

    International Nuclear Information System (INIS)

    Full-text: Post-irradiation annealing or preheat of the LiF based TLD prior readout is commonly practiced for routine dosimetry to eliminate low temperature glow peaks. The aim of this study is to determine the effect of different preheating rate technique prior readout on the reproducibility and glow curve structure of LiF:Mg, Cu, P or TLD-1OOH exposed to low (109kVp) energy and high energy (6MV) photon beam. TLD chips were read after 24 hours of irradiation with three different preheat techniques; no preheat, low preheat rate (100 degree Celsius/ 10 minutes) and high preheat rate (135 degree Celsius/ 10 seconds) and reproducibility of TL signals were assessed in term of Standard Deviation (SD) and glow curve peaks. The high preheat rate technique was the most reproducible method for low energy photon with 1.05 % of mean reproducibility followed by low preheat rate (1.16 %) and no-preheat (1.33 %) techniques. The high preheat rate techniques was also the most reproducible method for high energy photon with 0.767 % of mean reproducibility as compared to low preheat rate (1.281 %). However the high preheat technique record highest TL signal lost with 10.35 % and 6.04 % for 24 and 72 hours of delayed TLD readout with respectively compared to 9.27 % and 4.51 % for 24 and 72 hours by low preheat rate. The low preheat was found to be optimal to eliminate low peaks (peak 1 and 2) but enable to remove peak 3 as it was shifted up word to combine with the main peak 4 of TL glow peak. It can be concluded that the reproducibility and structure of glow curve was strongly influenced by preheat technique prior readout. (author)

  13. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge

    International Nuclear Information System (INIS)

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, the density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength, bandwidth and energy profile and Rayleigh scattering in N2 was used for the optical system calibration. An absolute density of Cr atoms of n ∼ 5x10 cm was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal us. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma. (Author) 19 refs

  14. Limitation of peak fitting and peak shape methods for determination of activation energy of thermoluminescence glow peaks

    CERN Document Server

    Sunta, C M; Piters, T M; Watanabe, S

    1999-01-01

    This paper shows the limitation of general order peak fitting and peak shape methods for determining the activation energy of the thermoluminescence glow peaks in the cases in which retrapping probability is much higher than the recombination probability and the traps are filled up to near saturation level. Right values can be obtained when the trap occupancy is reduced by using small doses or by post-irradiation partial bleaching. This limitation in the application of these methods has not been indicated earlier. In view of the unknown nature of kinetics in the experimental samples, it is recommended that these methods of activation energy determination should be applied only at doses well below the saturation dose.

  15. Two-dimensional hybrid model for a glow discharge: comparison with fluid and kinetic (particle) models, reliability and accuracy

    International Nuclear Information System (INIS)

    We developed and tested a two-dimensional Monte Carlo – fluid hybrid numerical code for the DC glow discharge simulations. The model is based on the separation of electrons into two parts, namely, the low energetic (slow) and high energetic (fast) groups. Ions and slow electrons are described within the fluid model using the drift-diffusion approximation for particle fluxes. Electrostatic field is obtained from the solution of Poisson equation. Fast electrons, represented by the appropriate number of super particles emitted from the cathode, are responsible for ionization processes in the discharge volume. Test calculations were carried out for the argon plasma. The vortex current formation in a DC discharge is observed in the case of rectangular geometry

  16. The influence of a transverse magnetic field on a subnormal glow discharge in air

    Indian Academy of Sciences (India)

    D C Jana; S S Pradhan

    2001-01-01

    In subnormal glow discharge under d.c. excitation at different pressure in a varying transverse magnetic field (0 to 30 G) some measurements have been carried out for various initial average tube currents. The voltage across the discharge increases and average tube current and residual current decreases in the magnetic field. With the help of Beckman’s expression [4] for the axial field and the electron density distribution in a transverse magnetic field the observed variation of current and voltage can be satisfactorily explained. The variation of axial electric field with transverse magnetic field can be represented to a fair degree of accuracy by the derived equation. The behaviour of residual current with magnetic field has been observed in these oscillations.

  17. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge

    International Nuclear Information System (INIS)

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, The density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength bandwidth and energy profile and Rayleigh scattering in N2 was used for the optical system calibration. An absolute density of Cr atoms of n= 5x10''9 cm''-3 was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal US. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma

  18. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Castellanos, A.

    2011-02-01

    Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.

  19. Fast electron effect on the spatial temporal distribution of radiation glow of helium nano second discharge through longitudinal tubes

    International Nuclear Information System (INIS)

    Spatial temporal characteristics of the radiation glow and ionic waves of potential gradient (IWPG) of a nanosecond discharge have been investigated through a glass discharge tube of 0.4 cm in diameter and 30 cm long, shielded by a aluminium screen of 2 cm diameter. The negative impulse voltages up to 20 kV and wave front pulse rise time of about 10 ns, are applied to the discharge tube. At gas pressure lower than 0.1 torr, an effective weakening of radiation has been observed near the cathode surface in comparison with the other parts of the discharge column. This can be explained by the mutual effect between the accelerated fast electrons in the front of IWPG, and the reflected electromagnetic waves from the cathode surface. (author). 11 refs., 3 figs

  20. Glow-to-arc transition events in H2-Ar direct current pulsed plasma: Automated measurement of current and voltage

    International Nuclear Information System (INIS)

    The glow-to-arc transition phenomena (arcing) observed in plasma reactors used in materials processing was studied through the arcs characteristic current and voltage waveforms. In order to capture these arcs signals, a LABVIEW based automated instrumentation system (ARCVIEW) was developed, including the integration of an oscilloscope equipped with proper current and voltage probes. The system also allows capturing the process parameters at the arc occurrence moments, which were used to map the arcs events conditions. Experiments in H2-Ar DC pulsed plasma returned signals data from 215 arcs events, which were analyzed through software routines. According to the results, an anti-arcing system should react in the time order of few microseconds to prevent most of the damage caused by the undesired arcing phenomena.

  1. Study of the excitation mechanisms of the second positive system in the negative glow of a N2-Ar discharge

    International Nuclear Information System (INIS)

    In an Ar-N2 discharge, the high excitation transfer from Ar(3P2,0) to N2 produces an overpopulation of the high rotational levels of the bands of the second positive system (SPS), and so the spectra interpretation is not straightforward. This paper presents a fit function for the SPS bands measured in Ar-N2, which allows us to study the excitation process contributions to the N2(C) level. The procedure was tested in the negative glow of a pulsed Ar-N2 discharge at a pressure of 2.5 Torr, for different mixture concentrations. In this discharge, through the fitting, it was possible to calculate the variation of the N2(C) densities produced by different excitation processes as well as the variation of Ar metastable density.

  2. Analysis of the Thermoluminescence Glow Curves of a Brown Microcline - Effects of Optical Bleaching Upon the Trap Distribution

    International Nuclear Information System (INIS)

    Glow peaks of thermoluminescence emitted from a brown microcline (feldspar, a triclinic form of KAlSi3O8) are numerically analysed with a model in which the traps are exponentially distributed. The Brown microcline is irradiated by γ rays for 1 h and then after 40 days bleached with white light. The best-fit trap parameters the width and the characteristic depth of the traps, the rates of recombination and retrapping of the released electrons, and the concentration of thermally disconnected traps are found for two bleaching durations (5 and 30 min). The width of continuous distribution decreases and results in a final disappearance owing to optical bleaching. This leads to the conclusion that the variation in the surroundings of the defects produced by γ ray irradiation are reduced as a result of optical bleaching. (author)

  3. Study of Titanizing the Surface of Copper Substrates by the Double Glow Discharge Plasma Surface Alloying Technique

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuefei; Chen Fei; Lü Junxia; Su Yongan; Xu Zhong

    2005-01-01

    This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120μm and the surface titanium concentration gradually decreases from w (Ti) = 87% to w (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV ~ 800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer.

  4. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    CERN Document Server

    An, X; Rainforth, W M; Chen, L

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 mu m). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 mu m), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). G...

  5. Application of the glow discharge mass spectrometry (GDMS) for the multi-element trace and ultratrace analysis of sputtering targets

    Energy Technology Data Exchange (ETDEWEB)

    Venzago, C. (Degussa AG, Corporate Research Functions, Hanau (Germany)); Weigert, M. (Leybold Materials GmbH, Hanau (Germany))

    1994-10-01

    Glow discharge mass spectrometry using a VG9000 high resolution mass spectrometer has been applied to both the multi-element trace and ultra trace analyses of sputtering target materials, i.e. aluminium-based alloys, cobalt-based alloys, titanium and platinum. Element dependent relative sensitivity factors (RSF) have been determined using reference materials in order to provide the possibility for quantitative analyses. Aluminium-based and cobalt-based alloys have been extensively analysed to demonstrate precision of GDMS analyses. Detection limits in the ng/g and sub-ng/g ranges, i.e. 0.2 ng/g for U and Th have been determined in aluminium-based alloys. Comparative analyses for alloy components in cobalt-based alloys as well as trace concentrations in titanium have been performed. GDMS has been also applied to multi-element depth profile analyses in contaminated and noncontaminated platinum targets. (orig.)

  6. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    Energy Technology Data Exchange (ETDEWEB)

    Raizer, Yu. P.; Mokrov, M. S. [Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow 119526 (Russian Federation)

    2013-10-15

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gas as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.

  7. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    International Nuclear Information System (INIS)

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gas as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time

  8. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Nurujjaman, Md., E-mail: jaman-nonlinear@yahoo.co.in [Department of Physics, National Institute of Technology Sikkim, Ravangla, Sikkim 737139 (India)

    2015-12-15

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroborated by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.

  9. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Pontiga, F [Dpt. Fisica Aplicada II, Universidad de Sevilla (Spain); Castellanos, A [Dpt. Electronica y Electromagnetismo, Universidad de Sevilla (Spain)

    2011-02-09

    Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.

  10. The application of computerised analysis of glow curves to personal dosimetry in LiF:Mg,Cu,P

    International Nuclear Information System (INIS)

    In personnel monitoring services, it is important to omit the high-temperature annealing process so that large numbers of TL detectors can be produced economically. There are two efficient ways of reducing the residual signal of LiF:Mg,Cu,P. One is by increasing the maximum readout temperature and the other is by improving the preparation procedure (increasing the Cu concentration and the sintering temperature) but both reduce the TL sensitivity. In personal dosimetry the real dosimetric signals are separated from the residual signals by computerised analysis of glow curves. The adverse influence of the high residual signals of LiF:Mg,Cu,P TL material has been effectively eliminated and the sensitivity remains stable. A good dosimetric result using only reader measurement without pre-irradiation oven annealing is attained in a dose range of 50-80,000 μGy. (author)

  11. Discharge characteristics of a radio-frequency capacitively coupled Ar/O2 glow discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    In this study, the discharge characteristics of the developed atmospheric pressure homogeneous and cold plasma source in Ar/O2 glow discharge driven by radio-frequency (13.56 MHz) are investigated experimentally by means of electric measurements. The electron density is estimated to be in the order of 1011 cm-3 in the abnormal discharge regime and is reduced by half in amount when the oxygen is mixed into argon plasma at oxygen-to-argon ratio of 0.3 and 0.6 vol.% at the same input power. The estimated electron temperature assumes the value of 1.4 eV in the abnormal discharge regime and the addition of oxygen to the argon plasma at the oxygen-to-argon ratio smaller than 1.0 vol.% does not alter the electron temperature appreciably.

  12. Enhancement of intensities in glow discharge mass spectrometry by using mixtures of argon and helium as plasma gases.

    Science.gov (United States)

    Lange, Britta; Matschat, Ralf; Kipphardt, Heinrich

    2007-12-01

    Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas. PMID:17940753

  13. Pulsed Plasma Thrusters Based Attitude Control for a 2U Cubesat Mission Towards the Observation of the Lunar Horizon Glow

    Science.gov (United States)

    Rodrigo Cordova Alarcon, Jose; Low, Kay Soon; Cho, Mengu; Cihan Örger, Necmi

    2016-07-01

    The discoveries of the Apollo era arouse the interest of scientific community to research the lunar environment and the development of future missions to gather scientific data to corroborate recent theories. Particularly in lunar horizon glow, forward scattering of the sunlight by the electrically charged dust grains above the terminator region requires to be investigated further. For this reason, the data gathered by a lunar mission is valuable to improve our understanding regarding lunar environment. Nowadays, low-cost satellite platforms facilitated the access to space for university institutes and research centers worldwide. In this paper, we propose an Attitude Determination and Control System (ADCS) for a 2U CubeSat to be inserted into lunar orbit as a piggyback from a main mission. Due to the high interest to observe the light scattering by lofted dust particles in the lunar exosphere during lunar sunrise and sunset, a guidance and navigation scheme is also proposed. Through numerical simulations, we demonstrate the ADCS performance by the use of pulsed plasma thrusters (PPT) during pointing maneuvers towards lunar horizon glow. The proposed position of PPT along the satellite body contributes the orbit maintenance and the desaturation of reaction wheels. Because the maneuvers are dependent on the Sun position, a feasibility analysis were performed in orbits with different local sidereal time. Based on these results, the proposed ADCS is found suitable for 2U CubeSats to perform its maneuvers towards the accomplishment of its objectives. Additionally, we demonstrate that the increase of its mission lifetime by maintaining its orbit from PPT thrust is possible.

  14. Thermoluminescence glow curve for UV induced ZrO2:Ti phosphor with variable concentration of dopant and various heating rate

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2014-10-01

    Full Text Available The present paper reports the synthesis and characterization of Ti doped ZrO2 nanophosphors. The effects of variable concentration of titanium on thermoluminescence (TL behaviour are studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for nano phosphors. The starting material used for sample preparation are Zr(NO33 and Ti(NO33 and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ti (0.05–0.5 mol% there is no any phase change found with increase the concentration of Ti. Sample shows cubic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique for optimized concentration of dopant. The good connectivity with grains and the semi-sphere like structure was found by FEGSEM. The functional group analysis was determined by Fourier transform infrared (FTIR spectroscopic techniques. The prepared phosphor examined by thermoluminescence technique. For recording TL glow curve every time 2 mg phosphor was irradiated by UV 254 nm source and fixed the heating rate at 5 °C s−1. Sample shows well resolved peak at 167 °C with a shoulder peak at 376 °C. The higher temperature peak shows the well stability and less fading in prepared phosphor. Also the effect of Ti concentration at fixed UV exposure time was studied. The effect of UV exposure time and dose versus intensity plot was studied. Sample shows linear response with dose and broaden peak with high temperature shows the more stability and less fading in TL glow curve. The linear dose response, high stability and less fading phenomenon shows the sample may be useful for thermoluminescence dosimetry application. Trapping parameters are calculated for every recorded glow curve. The

  15. TL response of single crystal TLD-100 to 70 eV: 5 keV electrons and comparison with TSEE glow curves

    Energy Technology Data Exchange (ETDEWEB)

    Lasky, J.B.; Moran, P.R.

    1976-01-01

    A ''TL effective'' energy-range relationship was found which agrees with the universal curve above 2 keV but becomes nearly constant at about 300/sup 0/A for energies between 1 keV and 100 eV. The glow curve shape obtained from single crystal TLD-100, after irradiation with 70 eV to 30 keV electrons, is essentially the same as that obtained after irradiation with cesium ..gamma..-rays, (i.e. TL emitted from bulk of sample) as long as (1) the dose is well below saturation and (2) irradiations are performed on freshly cleaved crystals or vacuum annealed crystals. This result shows that there is no intrinsic difference between TL traps near the surface and in the bulk. Irradiation with electron energies less than 1 keV results in the TL signal being emitted from the same region from which TSEE electrons are emitted. The usual TSEE glow curve, found by other investigators, is different from the TL glow curve obtained from vacuum annealed crystals. However, if the TL sample is given the same ''standard annealing'' as is customary in TSEE experiments, the TL glow curve obtained after irradiation with low energy electrons is altered and there is then good agreement between this TL glow curve and the TSEE curve found by others. This altered glow curve is a result of hydroxyl ions which diffuse into the sample during annealing. The TL efficiency was comparable to cesium ..gamma..-rays for 30-5 keV electrons, decreased rapidly between 5 and 1 keV and remained constant at about 20% of the efficiency of cesium ..gamma..-rays below 1 keV. Half of this decrease in efficiency can be attributed to the higher LET of low energy electrons. The cause for the remaining decrease is not known but it may have its origin in the same mechanism proposed to account for the large range of low energy electrons.

  16. Improved hydrogen ionization rate in enhanced glow discharge plasma immersion ion implantation by enlarging the interaction path using an insulating tube

    International Nuclear Information System (INIS)

    A small pointed hollow anode and large tabular cathode are used in enhanced glow discharge plasma immersion ion implantation (EGD-PIII). Electrons are repelled from the substrate by the electric field formed by the negative voltage pulses and concentrate in the vicinity of the anode to enhance the self-glow discharge process. To extend the application of EGD-PIII to plasma gases with low ionization rates, an insulating tube is used to increase the interaction path for electrons and neutrals in order to enhance the discharge near the anode. Results obtained from numerical simulation based on the particle-in-cell code, finite element method, and experiments show that this configuration enhances the ionization rate and subsequent ion implant fluence. The process is especially suitable for gases that have low ionization rates such as hydrogen and helium.

  17. Numerical analysis for complex thermoluminiscence glow curves.Application to the study of LiF: Ti, Mg and its in radiation dosimetry

    International Nuclear Information System (INIS)

    A method for the numerical analysis of complex termoluminiscence glow curves based in a modified Marquard Levenberg minimization algorithm is presented. Differents analytical expresions are employed for the individual glow peaks in the cases of first, second and mixed order kinetics, developping aproximated expresions for everyone. These procedures are applied to the caracterization of Lithium Fluoride studying the kinetic order of peaks IV and V. The results obtained permits an interpretation of the complex isothermal decay observed at 1650 C compatible whith first order kinetics process for both peaks. The aplication to thermoluminiscent dosimetry (TLD) is also described. Other numerical methods are specifically developped to operate whith LiF 8TLD-100) in specific dosimetric aplications of TLD, such environ mental monitoring and mailed dosimetry systems for quality assurance in radiotherapy facilities. The reduction in the minimun detectable dose and the increment in the fiability of the meassurements are some of the advantages obtained over conventional evaluation systems. (Author)

  18. Analytical applications of a sector-field GD-MS instrument with a microsecond pulsed glow discharge

    International Nuclear Information System (INIS)

    Complete text of publication follows. Microsecond pulsed glow discharge (PGD) can significantly improve the sample atom excitation and ionisation efficiency of glow discharge analytical techniques, both with optical emission (GD-OES) and mass spectrometry (GD-MS). Very recently, microsecond DC PGD has been applied to a commercial sector-field GD-MS instrument with a fast flow ion source (ELEMENT GD, Thermo Scientific), and both analytical characteristics and ion dynamics have been investigated (M. Voronov et al., J. Anal. Atom. Spectrom., 2009, DOI: 10.1039/B819527G). One of the main advantages of using PGD linked with a high resolution sector-field MS is that the sputtering rate in PGD is lower compared to a continuous DC GD while the sensitivity is still sufficiently high. Therefore, it is possible to use a relatively slow sector-field MS instrument for depth profile analysis of coated samples even in sub-ppm range. Analytical applications of PGD coupled to the commercial sector-field MS instrument will be shown. CuInS2 coatings on glass, a promising material in solar cell industry, are one example where the depth profile analysis with the pulsed GD-MS proved to be a useful tool for characterization of these coatings. Development of this analytical application included the optimisations of the ion signal and the crater shape. The latter is particularly important for the interpretation of the results as the crater effect due to the uneven crater bottom can lead to false conclusions. Comparative measurements of the CuInS2 coatings have been undertaken using an rf pulsed GD-TOF-MS (Tofwerk) prototype instrument at EMPA, Thun. The TOF-MS instrument provides much faster signal acquisition and is therefore more suitable for depth profiling. However, the sensitivity and the spectral interferences are a challenge in this instrument. The authors would like to acknowledge financial support from EC funded Research Training Network GLADNET, contract no. MRTN-CT-2006

  19. Relationship of Weight, Height, and Body Mass Index with Fracture Risk at Different Sites in Postmenopausal Women: The Global Longitudinal study of Osteoporosis in Women (GLOW)

    OpenAIRE

    Compston, Juliet E.; Flahive, Julie; David W.Hosmer; Watts, Nelson B; Siris, Ethel S.; Silverman, Stuart; Saag, Kenneth G; Roux, Christian; Rossini, Maurizio; Pfeilschifter, Johannes; Nieves, Jeri W.; Netelenbos, J Coen; March, Lyn; Lacroix, Andrea Z; Hooven, Frederick H.

    2014-01-01

    Low body mass index (BMI) is a well-established risk factor for fracture in postmenopausal women. Height and obesity have also been associated with increased fracture risk at some sites. We investigated the relationships of weight, BMI, and height with incident clinical fracture in a practice-based cohort of postmenopausal women participating in the Global Longitudinal study of Osteoporosis in Women (GLOW). Data were collected at baseline and 1, 2, and 3 years. For hip, spine, wrist, pelvis, ...

  20. Evaluation of a pulsed glow discharge time-of-flight mass spectrometer as a detector for gas chromatography and the influence of the glow discharge source parameters on the information volume in chemical speciation analysis.

    Science.gov (United States)

    Fliegel, Daniel; Fuhrer, Katrin; Gonin, Marc; Günther, Detlef

    2006-09-01

    The figures of merit of a pulsed glow discharge time-of-flight mass spectrometer (GD-TOFMS) as a detector for gas chromatography (GC) analysis were evaluated. The mass resolution for the GD-TOFMS was determined on FWHM in the high mass range (208Pb+) as high as 5,500. Precision of 400 subsequent analyses was calculated on 63Cu+ to be better than 1% RSD with no significant drift over the time of the analysis. Isotope precision based on the 63Cu+/65Cu+ ratio over 400 analyses was 1.5% RSD. The limits of detection for gaseous analytes (toluene in methanol as solvent) were determined to be as low as several hundred ppb or several hundred pg absolute without using any pre-concentration technique. Furthermore, the different GD source parameters like capillary distance, cathode-anode spacing, and GD source pressure with regards to the accessible elemental, structural, and molecular information were evaluated. It was demonstrated that each of these parameters has severe influence on the ratio of elemental, structural, and parent molecular information in chemical speciation analysis. PMID:16773303

  1. Glow Discharge Emission Spectrometry (GDOES): Theoretical Introduction, General Aspects, and its Applications within the Framework of the Technofusion Programs; Glow Discharge Emission Spectrometry (GDOES): Introduccion Teorica, Aspectos Generales y Aplicabilidad en el Marco del Programa Technofusion

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rojo, A. B.; Gonzalez, M.; Tabares, F. L.

    2013-02-01

    The demand by material research groups for the direct composition analysis of solids is increasing as a solution to the time-consuming problems and errors inherent to classical chemical analysis, where the attack and solubilisation of the starting material is mandatory, often producing the introduction of impurities and component loss of the initial matrix. From the existing solid analysis techniques the present work is focused on the Glow Discharge Emission Spectrometry (GDOES), a fast, simply-executed technique, for which quantitative, high resolution depth profile determination of any element in the periodic table can be performed with a high sensibility and detection limit. The theoretical concepts, the required instrumentation and the basic analytic applications are revised, giving especial attention to the issues related to the analysis of materials for fusion applications. Finally, a comparative study with a more advanced spectroscopic technique (Secondary Ion Mass Spectrometry (SIMS)) is performed and the concomitance of both techniques to correct limitations such as the spatial resolution and the quantification of the analysis, important factors that are required in the chemical analysis of the complex materials used in Fusion, is addressed. (Author) 41 refs.

  2. The effect of frequency on atmospheric pressure glow discharge in a pin-to-plate gap sustained by a resonant power supply

    Science.gov (United States)

    Wang, Yong Sheng; Ding, Wei Dong; Wang, Ya Nan; Wang, Jia Chen; Li, Fang; Fan, Chuan

    2016-06-01

    More and more researchers have been attracted to the research of atmospheric pressure glow discharge (APGD) because of its great prospect in numerous industrial applications. Nevertheless, almost all of the industrial applications are based on achievement of stable, large-volume, and uniform APGD. In a previous study, stable filamentary APGD was obtained by applying a resonant power supply between pin-to-plate electrodes which could limit the peak value of discharge current to supress the glow-to-arc transition through a series-wound resonance principle. The filamentary APGD is centimeter-level in the length but only several millimeters in diameter. Therefore, in order to obtain large-volume and uniform APGD, it is significant to study how to diffuse filamentary APGD in radial direction. With the increasing resonant frequency of alternating current discharge, excited particles (mainly including energetic electrons and trapped ions left from the previous half-cycle discharge) in the electrodes gap increase, which benefits obtaining stable self-sustaining APGD. In this paper, mechanism and law of the influence of resonant frequency on the diffusion of filamentary APGD in ambient air were studied. By comparing the photos of discharge plasma and waveforms of the discharge voltage and current, it is found that the volume of the glow discharge plasma enlarges as the resonant frequency of the power supply increases. It is very significant and anticipating to study how to obtain stable, large-volume, and uniform APGD in ambient air by the resonant power supply.

  3. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    International Nuclear Information System (INIS)

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles. - Highlights: ► The validity of the Boumans equation for pulsed rf and dc glow discharge is shown. ► The influence of the pulsing parameters on the sputter crater is ascertained. ► The dependence of the depth resolution on the pulsing parameters is shown. ► Rf and dc pulsed discharges are found to be similar in terms of sputtering.

  4. A Critical Review of Published Data on the Gas Temperature and the Electron Density in the Electrolyte Cathode Atmospheric Glow Discharges

    Directory of Open Access Journals (Sweden)

    Tamás Cserfalvi

    2012-05-01

    Full Text Available Electrolyte Cathode Discharge (ELCAD spectrometry, a novel sensitive multielement direct analytical method for metal traces in aqueous solutions, was introduced in 1993 as a new sensing principle. Since then several works have tried to develop an operational mechanism for this exotic atmospheric glow plasma technique, however these attempts cannot be combined into a valid model description. In this review we summarize the conceptual and technical problems we found in this upcoming research field of direct sensors. The TG gas temperature and the ne electron density values published up to now for ELCAD are very confusing. These data were evaluated by three conditions. The first is the gas composition of the ELCAD plasma, since TG was determined from the emitted intensity of the N2 and OH bands. Secondly, since the ELCAD is an atmospheric glow discharge, thus, the obtained TG has to be close to the Te electron temperature. This can be used for the mutual validation of the received temperature data. Thirdly, as a consequence of the second condition, the values of TG and ne have to agree with the Engel-Brown approximation of the Saha-equation related to weakly ionized glow discharge plasmas. Application of non-adequate experimental methods and theoretical treatment leads to unreliable descriptions which cannot be used to optimize the detector performance.

  5. Production Of Multi-magnetron Plasma By Using Polyphase Ac Glow Discharge In An Improved Multi-pole Magnetic Field

    Science.gov (United States)

    Matsumoto, Kazunori; Motoki, Kentaro; Miyamoto, Masahiro; Uetani, Yasuhiro

    1998-10-01

    Effects of an improved multi-pole magnetic field on a plasma production generated by a polyphase ac glow discharge with multiple electrodes have been investigated. Conventional configuration of the multi-pole magnetic filed has been modified to suppress plasma losses at both ends of the chamber due to ExB drift motion. The modified multi-pole magnetic field has enabled us to produce a multiple magnetron-plasma at a considerably low pressure less than mTorr. The low temperature plasma has been widely used as the fine processing technology of a dry etching and as the thin film formation technology of a sputtering coating. Large-scale plasmas which can be generated at a low gas-pressure have been desired for more wider dry etching and greater sputter coating. The purpose of this study is to develop a large-scale and low-cost plasma generator by using a polyphase ac power source with the low frequency. In this session, we will present the experimental result as to a multiple magnetron-plasma generated in the modified twenty-four poles magnetic field by using the twenty-four-phase ac power source with the commercial electric power frequency of 60Hz. The ac power is supplied to twenty-four electrodes which are fixed to the water-cooled chamber-wall through sheet insulators so that the electrodes can be cooled indirectly.

  6. Absorption spectroscopic studies of carbon dioxide conversion in a low pressure glow discharge using tunable infrared diode lasers

    International Nuclear Information System (INIS)

    The time and spatial dependence of the chemical conversion of CO2 to CO were studied in a closed glow discharge reactor (p = 50 Pa, I = 2-30 mA) consisting of a small plasma zone and an extended stationary afterglow. Tunable infrared diode laser absorption spectroscopy has been applied to determine the absolute ground state concentrations of CO and CO2. After a certain discharge time an equilibrium of the concentrations of both species could be observed. The spatial dependence of the equilibrium CO concentration in the afterglow was found to be varying less than 10%. The feed gas was converted to CO more predominantly between 43% and 60% with increasing discharge current, forming so-called quasi-equilibrium states of the stable reaction products. The formation time of the stable gas composition also decreased with the current. For currents higher than 10 mA the conversion rate of CO2 to CO was estimated to be 1.2x1013 molecules J-1. Based on the experimental results, a plasma chemical modelling has been established

  7. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    Science.gov (United States)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  8. Corrosion behavior of amorphous/nanocrystalline Al-Cr-Fe film deposited by double glow plasmas technique

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In order to improve the corrosion resistance of AZ31 magnesium alloy,the amorphous/nanocrystal Al-Cr-Fe film has been successfully prepared on AZ31 magnesium alloy by double glow plasma tech-nology.The amorphous/nanocrystalline consists of two different regions,i.e.,an amorphous layer on outmost surface and an underlying lamellar nanocrystalline layer with a grain size of less than 10 nm.The corrosion behavior of amorphous/nanocrystalline Al-Cr-Fe film in 3.5% NaCl solution is investi-gated using an electrochemical polarization measurement.Compared with the AZ31 magnesium alloy,the amorphous/nanocrystalline Al-Cr-Fe film exhibits more positive corrosion potentials and lower corrosion current densities than that of AZ31 magnesium alloy.XPS measurement reveals that the passive film formed on the Al-Cr-Fe film after the anodic polarization tests is strongly enriched in Cr2O3,Fe2O3 and Al2O3 at outer surface of the film and in the inner layer consists of Cr2O3,FeO and Al2O3.

  9. Corrosion behavior of amorphous/nanocrystalline Al-Cr-Fe film deposited by double glow plasmas technique

    Institute of Scientific and Technical Information of China (English)

    XU Jiang; CHEN ZheYuan; TAO Jie; JIANG ShuYun; LIU ZiLi; XU Zhong

    2009-01-01

    In order to improve the corrosion resistance of AZ31 magnesium alloy, the amorphous/nanocrystal AI-Cr-Fe film has been successfully prepared on AZ31 magnesium alloy by double glow plasma tech-nology. The amorphous/nanocrystalline consists of two different regions, I.e., an amorphous layer on outmost surface and an underlying lamellar nanocrystalline layer with a grain size of less than 10 nm.The corrosion behavior of amorphouslnanocrystalline AI-Cr-Fe film in 3.5% NaCl solution is investi-gated using an electrochemical polarization measurement. Compared with the AZ31 magnesium alloy,the amorphous/nanocrystalline Al-Cr-Fe film exhibits more positive corrosion potentials and lower corrosion current densities than that of AZ31 magnesium alloy. XPS measurement reveals that the passive film formed on the AI-Cr-Fe film after the anodic polarization tests is strongly enriched in Cr2O3,Fe2O3 and Al2O3 at outer surface of the film and in the inner layer consists of Cr2O3, FeO and Al2O3.

  10. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    International Nuclear Information System (INIS)

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  11. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  12. Generation of multiple toroidal dust vortices by a non-monotonic density gradient in a direct current glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.; Sharma, D.; Ghosh, J.; Saxena, Y. C. [Institute for Plasma Research, Gandhinagar 382428 (India); Thomas, Edward [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2015-09-15

    Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of the dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.

  13. Conceptual Demonstration of Ambient Desorption-Optical Emission Spectroscopy Using a Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Source.

    Science.gov (United States)

    Marcus, R Kenneth; Paing, Htoo W; Zhang, Lynn X

    2016-06-01

    The concept of ambient desorption-optical emission spectroscopy (AD-OES) is demonstrated using a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as the desorption/excitation source. The LS-APGD has previously been employed for elemental analysis of solution samples and particulates introduced via laser ablation in both the optical emission and mass spectrometries (OES, MS) modes. In addition, the device has been shown to be effective for the analysis of elemental and molecular species operating in an ambient desorption/ionization mass spectrometry (ADI-MS) mode. Proof-of-concept is presented here in the use of the LS-APGD to volatilize three very diverse sample forms (metallic thin films, dry solution residues, and bulk materials), with the liberated material excited within the microplasma and detected via OES, i.e., AD-OES. While the demonstration is principally qualitative at this point, it is believed that the basic approach may find application across a broad spectrum of analytical challenges requiring elemental analysis, including metals, soils, and volume-limited solutions, analogous to what has been seen in the development of the field of ADI-MS for molecular species determinations. PMID:27175512

  14. Properties of dust-plasma structures formed in a glow discharge above the lower wall of the discharge chamber

    Science.gov (United States)

    Dzlieva, E. S.; Ermolenko, M. A.; Karasev, V. Yu.

    2012-07-01

    The properties are studied of dusty plasma structures formed in a glow discharge in a dust trap above the lower wall of the side branch of the discharge tube, near the turn of the discharge channel. The dust structure is three-dimensional with a characteristic size of up to 3 cm and contains about 30000 dust grains. Depending on the experimental conditions, dust-acoustic, dissipative, and charge-gradient instabilities can develop in such a structure. When using highly polydisperse dust grains of arbitrary shape, the effect of selection of dust grains by the plasma with respect to their mean size and shape was discovered. This effect was studied quantitatively in two gases by using the method of gathering and extraction of the dust grains levitating in the trap. The morphology of the dust structures was determined from the pair correlation functions of the horizontal cross sections containing long-range order peaks and elements of a hexagonal lattice. Stratification of a uniform structure accompanied by convective rotation caused by the grain charge gradient was observed. Applications of the dusty plasma created in this type of device are discussed.

  15. Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties

    International Nuclear Information System (INIS)

    Polyethylene terephthalate (PET) films were treated with DC glow discharge plasma followed by graft copolymerization with acrylic acid (AA) and polyethylene glycol (PEG). The obtained PET-PEG was coupled to heparin or insulin molecules. The surfaces were then characterized by contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The surface energies of the modified PET films were estimated using contact angle measurements, and the changes in crystallinity of the plasma-modified PET film surfaces were investigated by X-ray diffraction (XRD) analysis. The blood compatibilities of the surface-modified PETs were examined by in vitro thrombus formation, whole blood clotting time, platelet contact and protein adsorption experiments. The results revealed that the contact angle value decreased and that the interfacial tension between the modified PET films and blood protein was drastically diminished compared to unmodified PET film. The XPS results showed that the PET-AA surface containing carboxylic acid and the immobilized PET surface containing both carboxylic acid and amino groups exhibited a hydrophilic character, and AFM results showed marked morphological changes after grafting of AA, PEG and biomolecule immobilization. Heparin and insulin-coupled PET surfaces exhibited much less platelet adhesion and protein adsorption than the other surface-modified PET film surfaces.

  16. A comparative study of mechanical and tribological properties of AISI-304 and AISI-316 submitted to glow discharge nitriding

    Directory of Open Access Journals (Sweden)

    Fabiana Cristina Nascimento

    2009-06-01

    Full Text Available Mechanical and tribological properties os AISI 304 and AISI 316 stainless steels submited to glow discharge ion nitriding are reported.The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN in both steels. Increasing the temperature, the phases γ´-Fe4N and - Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.

  17. The effect of glow discharge plasma surface modification of polymers on the osteogenic differentiation of committed human mesenchymal stem cells.

    Science.gov (United States)

    Mwale, Fackson; Wang, Hong Tian; Nelea, Valentin; Luo, Li; Antoniou, John; Wertheimer, Michael R

    2006-04-01

    Little is known of the effect of material surfaces on stem cell differentiation. The present study has addressed the hypothesis that the interaction of mesenchymal stem cells (MSCs) with material surfaces modified by glow discharge plasma is a major regulator of osteogenic differentiation. We found that biaxially oriented polypropylene (BOPP) plasma treated in ammonia significantly reduced up-regulation of expression of osteogenic marker genes, such as alkaline phosphatase (ALP), bone sialoprotein (BSP) and osteocalcin (OC). In contrast, ALP expression was up-regulated when cultured on treated Nylon-6 polyamide (Ny-t) but was substantially reduced when cultured on its pristine counterpart (Ny-p) on day 3. On day 7, ALP expression was down-regulated with MSCs cultured on Ny-t although its expression level was up again on day 14. BSP was expressed weakly on day 3, but was up-regulated when cultured on Ny-t and Ny-p. Its expression reached its maximum on day 14 when cultured on a polystyrene control, while it was cyclically up-regulated on Ny-t. Similarly, there was a slight increase in OC expression when MSCs were cultured on Ny-t and Ny-p on day 3, when compared to control. Thus, the nature of the surface can directly influence MSCs differentiation, ultimately affecting the quality of new tissue formation with BOPP-t suppressing osteogenic differentiation. PMID:16313952

  18. Tailoring surface properties of polyethylene separator by low pressure 13.56 MHz RF oxygen plasma glow discharge

    Science.gov (United States)

    Li, Chun; Liang, Chia-Han; Huang, Chun

    2016-01-01

    Low-pressure plasma surface modification in a radio-frequency capacitively coupled glow discharge of oxygen gas was carried out to induce polar functional groups onto polyethylene membrane separator surfaces to enhance its hydrophilicity. The surface changes in surface free energy were monitored by static contact angle measurement. A significant increase in the surface energy of polyethylene membrane separators caused by the oxygen gas plasma modifications was observed. The static water contact angle of the plasma-modified membrane separator significantly decreased with the increase in treatment duration and plasma power. An obvious increase in the surface energy of the membrane separators owing to the oxidative effect of oxygen-gas-plasma modifications was also observed. Optical emission spectroscopy was carried out to analyze the chemical species generated by oxygen gas plasma surface modification. The variations in the surface morphology and chemical structure of the separators were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS showed significantly higher surface concentrations of oxygen functional groups in the oxygen-gas-plasma-modified polymeric separator surfaces than in the unmodified polymeric separator surface. The experimental results show the important role of chemical species in the interaction between oxygen gas plasmas and the separator surface, which can be controlled by surface modification to tailor the hydrophilicity of the separator.

  19. Glow Discharge Emission Spectrometry (GDOES): Theoretical Introduction, General Aspects, and its Applications within the Framework of the Technofusion Programs

    International Nuclear Information System (INIS)

    The demand by material research groups for the direct composition analysis of solids is increasing as a solution to the time-consuming problems and errors inherent to classical chemical analysis, where the attack and solubilisation of the starting material is mandatory, often producing the introduction of impurities and component loss of the initial matrix. From the existing solid analysis techniques the present work is focused on the Glow Discharge Emission Spectrometry (GDOES), a fast, simply-executed technique, for which quantitative, high resolution depth profile determination of any element in the periodic table can be performed with a high sensibility and detection limit. The theoretical concepts, the required instrumentation and the basic analytic applications are revised, giving especial attention to the issues related to the analysis of materials for fusion applications. Finally, a comparative study with a more advanced spectroscopic technique (Secondary Ion Mass Spectrometry (SIMS)) is performed and the concomitance of both techniques to correct limitations such as the spatial resolution and the quantification of the analysis, important factors that are required in the chemical analysis of the complex materials used in Fusion, is addressed. (Author) 41 refs.

  20. Biological response of stainless steel surface modified by N2O/O2 glow discharge plasma

    International Nuclear Information System (INIS)

    Stainless steel wafers were treated with the glow discharge plasma of mixed N2O and O2 at different molar ratios at a certain discharge condition to create desirable biological characteristics to the surfaces. It was found that the molar ratio of N2O to O2 in the mixture at 1:1 used for plasma surface modification caused high apoptotic percentage. Contact angle measurement showed that the surface of stainless steel samples became very hydrophilic after the plasma modification with a value of 15o-30o. The control stainless steel chips without plasma treatment had a contact angle of 40 ± 2o. The data of Electron Spectroscopy for Chemical Analysis (ESCA) indicated that there was a certain amount of oxynitrites formed on the plasma treated surfaces, which was considered to play an important role to cell apoptosis and anti-clot formation in cell culture tests. The ESCA depth profile of up to 250 A from the top surface showed the change of elemental compositions within 40-50 A of the surface by the plasma treatment. The decreased platelet attachment, combined with increased apoptosis in fibroblasts is a distinct combination of biological responses arising from the mixed gas plasma treatment. These initial results suggest it may be of particular use relative to stainless steel stents where decreased platelet attachments are advantageous and induction of apoptosis could limit in-stent restenosis.