WorldWideScience

Sample records for avian sarcoma viruses

  1. Sensitivity to. gamma. rays of avian sarcoma and murine leukemia viruses. [/sup 60/Co, uv

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, K. (Osaka Univ., Japan); Niwa, O.; Yutsudo, M.; Sugiyama, H.; Tahara, S.; Sugahara, T.

    1980-09-01

    The direct inactivation of avian and murine oncoviruses by ..gamma.. rays was examined using /sup 60/Co as a ..gamma..-ray source. The inactivation of murine leukemia virus (M-MuLV) followed single-hit kinetics while the subgroup D Schmidt-Ruppin strain of avian sarcoma virus (SR-RSV D) showed multihit inactivation kinetics with an extrapolation number of 5. The two viruses showed similar uv-inactivation kinetics. The genomic RNA of the SR-RSV D strain was degraded by ..gamma.. irradiation faster than its infectivity, but viral clones isolated from the foci formed after ..gamma.. irradiation had a complete genome. These results suggest that SR-RSV D has a strong repair function, possibly connected with reverse transcriptase activity.

  2. Development of avian sarcoma and leukosis virus-based vector-packaging cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Stoker, A.W.; Bissell, M.J. (Univ. of California, Berkeley (USA))

    1988-03-01

    The authors have constructed an avian leukosis virus derivative with a 5{prime} deletion extending from within the tRNA primer binding site to a SacI site in the leader region. The aim was to remove cis-acting replicative and/or encapsidation sequences and to use this derivative, RAV-1{Psi}{sup {minus}}, to develop vector-packaging cell lines. They show that RAV-1{Psi}{sup {minus}} can be stably expressed in the quail cell line QT6 and chicken embryo fibroblasts and that it is completely replication deficient in both cell types. Moreover, they have demonstrated that QT6-derived lines expressing RAV-1{Psi}{sup {minus}} can efficiently package four structurally different replication-defective v-src expression vectors into infectious virus, with very low or undetectable helper virus release. These RAV-{Psi}{sup {minus}}-expressing cell lines comprise the first prototype avian sarcoma and leukosis virus-based vector-packaging system. The construction of our vectors has also shown us that a sequence present within gag, thought to facilitate virus packaging, is not necessary for efficient vector expression and high virus production. They show that quantitation and characterization of replication-defective viruses can be achieved with a sensitive immunocytochemical procedure, presenting an alternative to internal selectable vector markers.

  3. Cell-specific targeting of lentiviral vectors mediated by fusion proteins derived from Sindbis virus, vesicular stomatitis virus, or avian sarcoma/leukosis virus

    Directory of Open Access Journals (Sweden)

    Marino Michael P

    2010-01-01

    Full Text Available Abstract Background The ability to efficiently and selectively target gene delivery vectors to specific cell types in vitro and in vivo remains one of the formidable challenges in gene therapy. We pursued two different strategies to target lentiviral vector delivery to specific cell types. In one of the strategies, vector particles bearing a membrane-bound stem cell factor sequence plus a separate fusion protein based either on Sindbis virus strain TR339 glycoproteins or the vesicular stomatitis virus G glycoprotein were used to selectively transduce cells expressing the corresponding stem cell factor receptor (c-kit. An alternative approach involved soluble avian sarcoma/leukosis virus receptors fused to cell-specific ligands including stem cell factor and erythropoietin for targeting lentiviral vectors pseudotyped with avian sarcoma/leukosis virus envelope proteins to cells that express the corresponding receptors. Results The titers of unconcentrated vector particles bearing Sindbis virus strain TR339 or vesicular stomatitis virus G fusion proteins plus stem cell factor in the context of c-kit expressing cells were up to 3.2 × 105 transducing units per ml while vector particles lacking the stem cell factor ligand displayed titers that were approximately 80 fold lower. On cells that lacked the c-kit receptor, the titers of stem cell factor-containing vectors were approximately 40 times lower compared to c-kit-expressing cells. Lentiviral vectors pseudotyped with avian sarcoma/leukosis virus subgroup A or B envelope proteins and bearing bi-functional bridge proteins encoding erythropoietin or stem cell factor fused to the soluble extracellular domains of the avian sarcoma/leukosis virus subgroup A or B receptors resulted in efficient transduction of erythropoietin receptor or c-kit-expressing cells. Transduction of erythropoietin receptor-expressing cells mediated by bi-functional bridge proteins was found to be dependent on the dose, the

  4. An avian leukosis virus subgroup J isolate with a Rous sarcoma virus-like 5'-LTR shows enhanced replication capability.

    Science.gov (United States)

    Gao, Yanni; Guan, Xiaolu; Liu, Yongzhen; Li, Xiaofei; Yun, Bingling; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Wang, Xiaomei; Gao, Yulong

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5'-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5'-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5'-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5'-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro.

  5. Intronic deletions of tva receptor gene decrease the susceptibility to infection by subgroup A avian sarcoma and leukosis virus subgroup A

    Science.gov (United States)

    The group of avian sarcoma and leukosis virus (ASLV) in chickens contains six highly related subgroups, A to E and J. Four genetic loci, tva, tvb, tvc and tvj, encode for corresponding receptors that determine the susceptibility to the ASLV subgroups. The prevalence of ASLV in hosts may have imposed...

  6. The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH.

    Science.gov (United States)

    Earp, Laurie J; Delos, Sue E; Netter, Robert C; Bates, Paul; White, Judith M

    2003-03-01

    We previously showed that the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus subtype A (ASLV-A) binds to liposomes at neutral pH following incubation with its receptor, Tva, at >or=22 degrees C. We also provided evidence that ASLV-C fuses with cells at neutral pH. These findings suggested that receptor binding at neutral pH and >or=22 degrees C is sufficient to activate Env for fusion. A recent study suggested that two steps are necessary to activate avian retroviral Envs: receptor binding at neutral pH, followed by exposure to low pH (W. Mothes et al., Cell 103:679-689, 2000). Therefore, we evaluated the requirements for intact ASLV-A particles to bind to target bilayers and fuse with cells. We found that ASLV-A particles bind stably to liposomes in a receptor- and temperature-dependent manner at neutral pH. Using ASLV-A particles biosynthetically labeled with pyrene, we found that ASLV-A mixes its lipid envelope with cells within 5 to 10 min at 37 degrees C. Lipid mixing was neither inhibited nor enhanced by incubation at low pH. Lipid mixing of ASLV-A was inhibited by a peptide designed to prevent six-helix bundle formation in EnvA; the same peptide inhibits virus infection and EnvA-mediated cell-cell fusion (at both neutral and low pHs). Bafilomycin and dominant-negative dynamin inhibited lipid mixing of Sindbis virus (which requires low pH for fusion), but not of ASLV-A, with host cells. Finally, we found that, although EnvA-induced cell-cell fusion is enhanced at low pH, a mutant EnvA that is severely compromised in its ability to support infection still induced massive syncytia at low pH. Our results indicate that receptor binding at neutral pH is sufficient to activate EnvA, such that ASLV-A particles bind hydrophobically to and merge their membranes with target cells. Possible roles for low pH at subsequent stages of viral entry are discussed.

  7. Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate.

    Science.gov (United States)

    Netter, Robert C; Amberg, Sean M; Balliet, John W; Biscone, Mark J; Vermeulen, Arwen; Earp, Laurie J; White, Judith M; Bates, Paul

    2004-12-01

    Fusion proteins of enveloped viruses categorized as class I are typified by two distinct heptad repeat domains within the transmembrane subunit. These repeats are important structural elements that assemble into the six-helix bundles characteristic of the fusion-activated envelope trimer. Peptides derived from these domains can be potent and specific inhibitors of membrane fusion and virus infection. To facilitate our understanding of retroviral entry, peptides corresponding to the two heptad repeat domains of the avian sarcoma and leukosis virus subgroup A (ASLV-A) TM subunit of the envelope protein were characterized. Two peptides corresponding to the C-terminal heptad repeat (HR2), offset from one another by three residues, were effective inhibitors of infection, while two overlapping peptides derived from the N-terminal heptad repeat (HR1) were not. Analysis of envelope mutants containing substitutions within the HR1 domain revealed that a single amino acid change, L62A, significantly reduced sensitivity to peptide inhibition. Virus bound to cells at 4 degrees C became sensitive to peptide within the first 5 min of elevating the temperature to 37 degrees C and lost sensitivity to peptide after 15 to 30 min, consistent with a transient intermediate in which the peptide binding site is exposed. In cell-cell fusion experiments, peptide inhibitor sensitivity occurred prior to a fusion-enhancing low-pH pulse. Soluble receptor for ASLV-A induces a lipophilic character in the envelope which can be measured by stable liposome binding, and this activation was found to be unaffected by inhibitory HR2 peptide. Finally, receptor-triggered conformational changes in the TM subunit were also found to be unaffected by inhibitory peptide. These changes are marked by a dramatic shift in mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, from a subunit of 37 kDa to a complex of about 80 kDa. Biotinylated HR2 peptide bound specifically to the 80-kDa complex

  8. Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in DNA of uninfected vertebrates.

    Science.gov (United States)

    Spector, D H; Varmus, H E; Bishop, J M

    1978-09-01

    We have detected nucleotide sequences related to the transforming gene of avian sarcoma vius (ASV) in the DNA of uninfected vertebrates. Purified radioactive DNA (cDNAsarc) complementary to most of all of the gene (src) required for transformation of fibroblasts by ASV was annealed with DNA from a variety of normal species. Under conditions that facilitate pairing of partially matched nucleotide sequences (1.5 M NaCl, 59 degrees), cDNAsarc formed duplexes with chicken, human, calf, mouse, and salmon DNA but not with DNA from sea urchin, Drosophila, or Escherichia coli. The kinetics of duplex formation indicated that cDNAsarc was reacting with nucleotide sequences present in a single copy or at most a few copies per cell. In contrast to the preceding findings, nucleotide sequences complementary to the remainder of the ASV genome were observed only in chicken DNA. Thermal denaturation studies of the duplexes formed with cDNAsarc indicated a high degree of conservation of the nucleotide sequences related to src in vertebrate DNAs; the reductions in melting temperature suggested about 3--4% mismatching of cDNAsarc with chicken DNA and 8--10% mismatching of cDNAsarc with the other vertebrate DNAs.

  9. The hr1 and fusion peptide regions of the subgroup B avian sarcoma and leukosis virus envelope glycoprotein influence low pH-dependent membrane fusion.

    Directory of Open Access Journals (Sweden)

    Angeline Rose Babel

    Full Text Available The avian sarcoma and leukosis virus (ASLV envelope glycoprotein (Env is activated to trigger fusion by a two-step mechanism involving receptor-priming and low pH fusion activation. In order to identify regions of ASLV Env that can regulate this process, a genetic selection method was used to identify subgroup B (ASLV-B virus-infected cells resistant to low pH-triggered fusion when incubated with cells expressing the cognate TVB receptor. The subgroup B viral Env (envB genes were then isolated from these cells and characterized by DNA sequencing. This led to identification of two frequent EnvB alterations which allowed TVB receptor-binding but altered the pH-threshold of membrane fusion activation: a 13 amino acid deletion in the host range 1 (hr1 region of the surface (SU EnvB subunit, and the A32V amino acid change within the fusion peptide of the transmembrane (TM EnvB subunit. These data indicate that these two regions of EnvB can influence the pH threshold of fusion activation.

  10. Low pH is required for avian sarcoma and leukosis virus Env-dependent viral penetration into the cytosol and not for viral uncoating.

    Science.gov (United States)

    Barnard, Richard J O; Narayan, Shakti; Dornadula, Geethanjali; Miller, Michael D; Young, John A T

    2004-10-01

    A novel entry mechanism has been proposed for the avian sarcoma and leukosis virus (ASLV), whereby interaction with specific cell surface receptors activates or primes the viral envelope glycoprotein (Env), rendering it sensitive to subsequent low-pH-dependent fusion triggering in acidic intracellular organelles. However, ASLV fusion seems to proceed to a lipid mixing stage at neutral pH, leading to the suggestion that low pH might instead be required for a later stage of viral entry such as uncoating (L. J. Earp, S. E. Delos, R. C. Netter, P. Bates, and J. M. White. J. Virol. 77:3058-3066, 2003). To address this possibility, hybrid virus particles were generated with the core of human immunodeficiency virus type 1 (HIV-1), a known pH-independent virus, and with subgroups A or B ASLV Env proteins. Infection of cells by these pseudotyped virions was blocked by lysosomotropic agents, as judged by inhibition of HIV-1 DNA synthesis. Furthermore, by using HIV-1 cores that contain a Vpr-beta-lactamase fusion protein (Vpr-BlaM) to monitor viral penetration into the cytosol, we demonstrated that virions bearing ASLV Env, but not HIV-1 Env, enter the cytosol in a low-pH-dependent manner. This effect was independent of the presence of the cytoplasmic tail of ASLV Env. These studies provide strong support for the model, indicating that low pH is required for ASLV Env-dependent viral penetration into the cytosol and not for viral uncoating.

  11. A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.

    Science.gov (United States)

    Ballandras, Allison; Moreau, Karen; Robert, Xavier; Confort, Marie-Pierre; Merceron, Romain; Haser, Richard; Ronfort, Corinne; Gouet, Patrice

    2011-01-01

    Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA.

  12. Avian influenza virus

    Science.gov (United States)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  13. Avian influenza virus and Newcastle disease virus

    Science.gov (United States)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  14. Avian Influenza A Virus Infections in Humans

    Science.gov (United States)

    ... their saliva, mucous and feces. Human infections with bird flu viruses can happen when enough virus gets into ... Virus (CVV) for a Highly Pathogenic Avian Influenza (Bird Flu) Virus ” for more information on this process. ...

  15. Molecular characterization of Indonesia avian influenza virus

    Directory of Open Access Journals (Sweden)

    N.L.P.I. Dharmayanti

    2005-06-01

    Full Text Available Avian influenza outbreaks in poultry have been reported in Java island since August 2003. A total of 14 isolates of avian influenza virus has been isolated from October 2003 to October 2004. The viruses have been identified as HPAI H5N1 subtype. All of them were characterized further at genetic level and also for their pathogenicity. Phylogenetic analysis showed all of the avian influenza virus isolates were closely related to avian influenza virus from China (A/Duck/China/E319-2/03(H5N1. Molecular basis of pathogenicity in HA cleavage site indicated that the isolates of avian influenza virus have multiple basic amino acid (B-X-B-R indicating that all of the isolates representing virulent avian influenza virus (highly pathogenic avian influenza virus.

  16. Evolution of Avian Tumor Viruses

    Science.gov (United States)

    Virus-induced neoplastic diseases of poultry, namely Marek’s disease (MD), induced by a herpesvirus, and the avian leukosis and reticuloendotheliosis induced by retroviruses, can cause significant economic losses from tumor mortality as well as poor performance. Successful control of MD is and has ...

  17. Molecular patterns of avian influenza A viruses

    Institute of Scientific and Technical Information of China (English)

    KOU Zheng; LEI FuMin; WANG ShengYue; ZHOU YanHong; LI TianXian

    2008-01-01

    Avian influenza A viruses could get across the species barrier and be fatal to humans. Highly patho-genic avian influenza H5N1 virus was an example. The mechanism of interspecies transmission is not clear as yet. In this research, the protein sequences of 237 influenza A viruses with different subtypes were transformed into pseudo-signals. The energy features were extracted by the method of wavelet packet decomposition and used for virus classification by the method of hierarchical clustering. The clustering results showed that five patterns existed in avian influenza A viruses, which associated with the phenotype of interspecies transmission, and that avian viruses with patterns C and E could across species barrier and those with patterns A, B and D might not have the abilities. The results could be used to construct an early warning system to predict the transmissibility of avian influenza A viruses to humans.

  18. Importance of Basic Residues in Binding of Rous Sarcoma Virus Nucleocapsid to the RNA Packaging Signal

    OpenAIRE

    Lee, Eun-Gyung; Alidina, Annie; May, Cynthia; Linial, Maxine L.

    2003-01-01

    In the context of the Rous sarcoma virus Gag polyprotein, only the nucleocapsid (NC) domain is required to mediate the specificity of genomic RNA packaging. We have previously showed that the Saccharomyces cerevisiae three-hybrid system provides a rapid genetic assay to analyze the RNA and protein components of the avian retroviral RNA-Gag interactions necessary for specific encapsidation. In this study, using both site-directed mutagenesis and in vivo random screening in the yeast three-hybr...

  19. Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J.

    Science.gov (United States)

    Plachý, Jiří; Reinišová, Markéta; Kučerová, Dana; Šenigl, Filip; Stepanets, Volodymyr; Hron, Tomáš; Trejbalová, Kateřina; Elleder, Daniel; Hejnar, Jiří

    2017-02-01

    The J subgroup of avian leukosis virus (ALV-J) infects domestic chickens, jungle fowl, and turkeys. This virus enters the host cell through a receptor encoded by the tvj locus and identified as Na(+)/H(+) exchanger 1. The resistance to avian leukosis virus subgroup J in a great majority of galliform species has been explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of Na(+)/H(+) exchanger 1. Because there are concerns of transspecies virus transmission, we studied natural polymorphisms and susceptibility/resistance in wild galliforms and found the presence of tryptophan 38 in four species of New World quails. The embryo fibroblasts of New World quails are susceptible to infection with avian leukosis virus subgroup J, and the cloned Na(+)/H(+) exchanger 1 confers susceptibility on the otherwise resistant host. New World quails are also susceptible to new avian leukosis virus subgroup J variants but resistant to subgroups A and B and weakly susceptible to subgroups C and D of avian sarcoma/leukosis virus due to obvious defects of the respective receptors. Our results suggest that the avian leukosis virus subgroup J could be transmitted to New World quails and establish a natural reservoir of circulating virus with a potential for further evolution.

  20. Cell killing by avian leukosis viruses.

    OpenAIRE

    Weller, S K; Temin, H M

    1981-01-01

    Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with c...

  1. Molecular characteristics and pathogenicity of an avian leukosis virus isolated from avian neurofibrosarcoma.

    Science.gov (United States)

    Ochi, Akihiro; Ochiai, Kenji; Nakamura, Sayuri; Kobara, Akiko; Sunden, Yuji; Umemura, Takashi

    2012-03-01

    Peripheral nerve sheath tumors (PNSTs) are rare in chickens and their etiology remains to be elucidated. In this study, a naturally occurring PNST in a Japanese native fowl (Gallus gallus domesticus) was pathologically examined and the strain of avian leukosis virus (ALV) isolated from the neoplasm was characterized by molecular biological analysis. The fowl presented with a firm subcutaneous mass in the neck. The mass, connected to the adjacent spinal cord (C9-14), was microscopically composed of highly cellular tissue of spindle cells arranged in interlacing bundles, streams, and palisading patterns with Verocay bodies and less cellular tissue with abundant collagen. Immunohistochemically, neoplastic cells were divided into two types: perineurial cells positive for vimentin, glucose transporter 1 (GLUT1), and claudin1; and Schwann cells positive for vimentin, occasionally positive for S-100 alpha/beta but negative for GLUT1. Based on these findings, a diagnosis of neurofibrosarcoma was made. The complete nucleotide sequence of an ALV strain, CTS_5371, isolated from the neoplasm was determined and phylogenetic analysis indicated that the strain was a novel recombinant virus from avian leukosis/sarcoma viruses previously reported. Additionally, experimental infection revealed that CTS_5371 induced the proliferation of Schwann cells and perineurial cells. These results suggest that this ALV strain has the ability to induce PNSTs in chickens.

  2. Prevention and Treatment of Avian Influenza A Viruses in People

    Science.gov (United States)

    ... their saliva, mucous and feces. Human infections with bird flu viruses can happen when enough virus gets into ... Virus (CVV) for a Highly Pathogenic Avian Influenza (Bird Flu) Virus ” for more information on this process. ...

  3. Analysis of Avian Hepatitis E Virus from Chickens, China

    OpenAIRE

    Zhao, Qin; Zhou, En Min; Dong, Shi Wei; Qiu, Hong Kai; Zhang, Lu; Hu, Shou Bin; Zhao, Fei Fei; Jiang, Shi Jin; Sun, Ya Ni

    2010-01-01

    Avian hepatitis E virus (HEV) has been identified in chickens; however, only 4 complete or near-complete genomic sequences have been reported. We found that the near-complete genomic sequence of avian HEV in chickens from China shared the highest identity (98.3%) with avian HEV from Europe and belonged to avian HEV genotype 3.

  4. Analysis of avian hepatitis E virus from chickens, China.

    Science.gov (United States)

    Zhao, Qin; Zhou, En Min; Dong, Shi Wei; Qiu, Hong Kai; Zhang, Lu; Hu, Shou Bin; Zhao, Fei Fei; Jiang, Shi Jin; Sun, Ya Ni

    2010-09-01

    Avian hepatitis E virus (HEV) has been identified in chickens; however, only 4 complete or near-complete genomic sequences have been reported. We found that the near-complete genomic sequence of avian HEV in chickens from China shared the highest identity (98.3%) with avian HEV from Europe and belonged to avian HEV genotype 3.

  5. Protection of chickens against avian hepatitis E virus (avian HEV) infection by immunization with recombinant avian HEV capsid protein.

    Science.gov (United States)

    Guo, H; Zhou, E M; Sun, Z F; Meng, X J

    2007-04-12

    Avian hepatitis E virus (avian HEV) is an emerging virus associated with hepatitis-splenomegaly syndrome in chickens in North America. Avian HEV is genetically and antigenically related to human HEV, the causative agent of hepatitis E in humans. In the lack of a practical animal model, avian HEV infection in chickens has been used as a model to study human HEV replication and pathogenesis. A 32 kDa recombinant ORF2 capsid protein of avian HEV expressed in Escherichia coli was found having similar antigenic structure as that of human HEV containing major neutralizing epitopes. To determine if the capsid protein of avian HEV can be used as a vaccine, 20 chickens were immunized with purified avian HEV recombinant protein with aluminum as adjuvant and another 20 chickens were mock immunized with KLH precipitated in aluminum as controls. Both groups of chickens were subsequently challenged with avian HEV. All the tested mock-immunized control chickens developed typical avian HEV infection characterized by viremia, fecal virus shedding and seroconversion to avian HEV antibodies. Gross hepatic lesions were also found in portion of these chickens. In contrast, none of the tested chickens immunized with avian HEV capsid protein had detectable viremia, fecal virus shedding or observable gross hepatitis lesions. The results from this study suggested that immunization of chickens with avian HEV recombinant ORF2 capsid protein with aluminum as adjuvant can induce protective immunity against avian HEV infection. Chickens are a useful small animal model to study anti-HEV immunity and pathogenesis.

  6. The Helper Activities of Different Avian Viruses for Propagation of Recombinant Avian Adeno-Associated Virus

    Institute of Scientific and Technical Information of China (English)

    WANG An-ping; SUN Huai-chang; WANG Jian-ye; WANG Yong-juan; YUAN Wei-feng

    2007-01-01

    To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV-mediated transgene expression could be enhanced by super infection with the helper viruses.

  7. Putative Novel Genotype of Avian Hepatitis E Virus, Hungary, 2010

    OpenAIRE

    Bányai, Krisztián; Tóth, Ádám György; Ivanics, Éva; Glávits, Róbert; Szentpáli-Gavallér, Katalin; Dán, Ádám

    2012-01-01

    To explore the genetic diversity of avian hepatitis E virus strains, we characterized the near-complete genome of a strain detected in 2010 in Hungary, uncovering moderate genome sequence similarity with reference strains. Public health implications related to consumption of eggs or meat contaminated by avian hepatitis E virus, or to poultry handling, require thorough investigation.

  8. Putative novel genotype of avian hepatitis E virus, Hungary, 2010.

    Science.gov (United States)

    Bányai, Krisztián; Tóth, Ádám György; Ivanics, Éva; Glávits, Róbert; Szentpáli-Gavallér, Katalin; Dán, Ádám

    2012-08-01

    To explore the genetic diversity of avian hepatitis E virus strains, we characterized the near-complete genome of a strain detected in 2010 in Hungary, uncovering moderate genome sequence similarity with reference strains. Public health implications related to consumption of eggs or meat contaminated by avian hepatitis E virus, or to poultry handling, require thorough investigation.

  9. Avian Influenza Viruses in Water Birds, Africa 1

    OpenAIRE

    Gaidet, Nicolas; Dodman, Tim; Caron, Alexandre; Balança, Gilles; Desvaux, Stephanie; Goutard, Flavie; Cattoli, Giovanni; Lamarque, François; Hagemeijer, Ward; Monicat, François

    2007-01-01

    We report the first large-scale surveillance of avian influenza viruses in water birds conducted in Africa. This study shows evidence of avian influenza viruses in wild birds, both Eurasian and Afro-tropical species, in several major wetlands of Africa.

  10. Ribonucleoprotein of avian infectious bronchitis virus.

    Science.gov (United States)

    Davies, H A; Dourmashkin, R R; Macnaughton, M R

    1981-03-01

    The ribonucleoprotein (RNP) of avian infectious bronchitis virus (IBV) was examined by electron microscopy after shadowing with carbon/platinum. Linear RNP strands up to 6.7 microns in length, from three IVB strains, were sensitive to both pancreatic RNase and to proteases. These strands were obtained from spontaneously disrupted complete particles but not from disrupted incomplete particles that lacked RNP. They were also released from Nonidet P40-disrupted particles and could be isolated on sucrose density gradients at a density of 1.27 g/ml. In some cases, helical RNP complexes associated with virus particles were observed that were similar to RNPs of human coronavirus strain 229E and mouse hepatitis virus strain 3.

  11. Seroprevalence of avian hepatitis E virus and avian leucosis virus subgroup J in chicken flocks with hepatitis syndrome, China

    OpenAIRE

    Sun, Yani; Du, Taofeng; Liu, Baoyuan; Syed, Shahid Faraz; Chen, Yiyang; Li, Huixia; Wang, Xinjie; Zhang, Gaiping; Zhou, En-Min; Zhao, Qin

    2016-01-01

    Background From 2014 to 2015 in China, many broiler breeder and layer hen flocks exhibited a decrease in egg production and some chickens developed hepatitis syndrome including hepatomegaly, hepatic necrosis and hemorrhage. Avian hepatitis E virus (HEV) and avian leucosis virus subgroup J (ALV-J) both cause decreasing in egg production, hepatomegaly and hepatic hemorrhage in broiler breeder and layer hens. In the study, the seroprevalence of avian HEV and ALV-J in these flocks emerging the di...

  12. Deteksi Antibodi Serum Terhadap Virus Avian influenza pada Ayam Buras

    Directory of Open Access Journals (Sweden)

    Darmawi Darmawi

    2012-04-01

    Full Text Available Detection on Serum Antibodies of Native Chickens to Avian influenza Virus ABSTRACT.  An important approach of controlling against Avian Influenza should be determined to detect the antibody titres of bird flu caused by Influenza virus H5N1 in Indonesia. The aim of the present study was to detect the antibodies to Avian Influenza in serum of native chickens. This study utilized 123 serum samples collected from the axilaris vein (left or right of native chickens. Antibody titres were examined using Hemaglutination Inhibition (HI. The result showed that indication of natural infection by Avian Influenza (H5N1 in native chickens, as shown that out of 123 serum samples, 16 (13,01% were tested positive by HI, while only 10 (8,13% were tested protective to Avian influenza infection. Based on the results we obtained, a conclusion that natural infection by Avian influenza virus stimulated variety level of formation antibody titres in native chickens.

  13. Avian influenza virus and free-ranging wild birds

    Science.gov (United States)

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  14. Infection of Avian Pox Virus in Oriental Turtle-Doves

    Directory of Open Access Journals (Sweden)

    Kyung-Yeon Eo1, Young-Hoan Kim2, Kwang-Hyun Cho3, Jong-Sik Jang4, Tae-Hwan Kim5, Dongmi Kwak5 and Oh-Deog Kwon5*

    2011-10-01

    Full Text Available Three Oriental Turtle-doves (Streptopelia orientalis exhibiting lethargy, dyspnea, poor physical condition, and poor flight endurance, were rescued and referred to the Animal Health Center, Seoul Zoo, Korea. The doves had wart-like lesions on the legs and head. All of them died the following day after arrival, with the exception of one that survived for 6 days. Diphtheritic membranes on the tongue and oral mucosa were apparent at necropsy. Avian pox virus infection was suspected based on the proliferative skin lesions and oral diphtheritic lesions. Infection of the avian pox virus was confirmed by PCR using primers specific to the 4b core protein gene of avian pox virus. All cases were diagnosed with avian pox virus infection. This is believed to be the first description on natural infection of avian pox in Oriental Turtle-doves in Korea.

  15. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus....

  16. Avian Influenza: Mixed Infections and Missing Viruses

    Directory of Open Access Journals (Sweden)

    David E. Wentworth

    2013-08-01

    Full Text Available A high prevalence and diversity of avian influenza (AI viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture.

  17. Avian influenza: mixed infections and missing viruses.

    Science.gov (United States)

    Lindsay, LeAnn L; Kelly, Terra R; Plancarte, Magdalena; Schobel, Seth; Lin, Xudong; Dugan, Vivien G; Wentworth, David E; Boyce, Walter M

    2013-08-05

    A high prevalence and diversity of avian influenza (AI) viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA) gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes) were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture.

  18. Identification of lymphoproliferative disease virus in wild turkeys (Meleagris gallopavo) in the United States

    Science.gov (United States)

    Viral-associated lymphoproliferative neoplasia in domestic poultry is caused by infection with a herpesvirus (Marek’s disease virus) or three species of retroviruses [Reticuloendotheliosis virus (REV), Avian leukosis/sarcoma virus, lymphoproliferative disease virus (LPDV)]. Previously, retroviral n...

  19. Aerosolized avian influenza virus by laboratory manipulations

    Directory of Open Access Journals (Sweden)

    Li Zhiping

    2012-08-01

    Full Text Available Abstract Background Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Results Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Conclusions Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  20. Protecting poultry workers from exposure to avian influenza viruses.

    Science.gov (United States)

    MacMahon, Kathleen L; Delaney, Lisa J; Kullman, Greg; Gibbins, John D; Decker, John; Kiefer, Max J

    2008-01-01

    Emerging zoonotic diseases are of increasing regional and global importance. Preventing occupational exposure to zoonotic diseases protects workers as well as their families, communities, and the public health. Workers can be protected from zoonotic diseases most effectively by preventing and controlling diseases in animals, reducing workplace exposures, and educating workers. Certain avian influenza viruses are potential zoonotic disease agents that may be transmitted from infected birds to humans. Poultry workers are at risk of becoming infected with these viruses if they are exposed to infected birds or virus-contaminated materials or environments. Critical components of worker protection include educating employers and training poultry workers about occupational exposure to avian influenza viruses. Other recommendations for protecting poultry workers include the use of good hygiene and work practices, personal protective clothing and equipment, vaccination for seasonal influenza viruses, antiviral medication, and medical surveillance. Current recommendations for protecting poultry workers from exposure to avian influenza viruses are summarized in this article.

  1. The challenges of avian influenza virus: mechanism, epidemiology and control

    Institute of Scientific and Technical Information of China (English)

    George F. GAO; Pang-Chui SHAW

    2009-01-01

    @@ Early 2009, eight human infection cases of H5N1 highly pathogenic avian influenza (HPAI) virus, with 5 death cases, were reported in China. This again made the world alert on a possible pandemic worldwide, probably caused by avian-origin influenza virus. Again H5N1 is in the spotlight of the world, not only for the scientists but also for the ordinary people. How much do we know about this virus? Where will this virus go and where did it come? Can we avoid a possible pandemic of influenza? Will the human beings conquer this devastating agent? Obviously we can list more questions than we know the answers.

  2. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    Science.gov (United States)

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  3. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  4. Detecting emerging transmissibility of avian influenza virus in human households.

    Directory of Open Access Journals (Sweden)

    Michiel van Boven

    2007-07-01

    Full Text Available Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i the animal reservoir, (ii humans who were infected by animals (primary human-to-human transmission, or (iii humans who were infected by humans (secondary human-to-human transmission. Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.

  5. Active surveillance for avian influenza virus, Egypt, 2010-2012.

    Science.gov (United States)

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Gomaa, Mokhtar M; Maatouq, Asmaa M; Shehata, Mahmoud M; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A; McKenzie, Pamela P; Webster, Robert G; Webby, Richard J; Ali, Mohamed A

    2014-04-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed.

  6. Iatrogenic colorectal Kaposi sarcoma complicating a refractory ulcerative colitis in a human immunodeficiency negative-virus patient.

    Science.gov (United States)

    Hamzaoui, Lamine; Kilani, Houda; Bouassida, Mahdi; Mahmoudi, Moufida; Chalbi, Emna; Siai, Karima; Ezzine, Heykel; Touinsi, Hassen; Azzouz, Mohamed M'saddak; Sassi, Sadok

    2013-01-01

    Kaposi sarcoma is a mesenchymal tumor associated to a human herpes virus-8. It often occurs in human immunodeficiency virus-positive subjects. Colorectal localization is rare. We report the case of a colorectal Kaposi sarcoma complicating a refractory ulcerative colitis treated with surgery after the failure of immunomodulator therapy in a human immunodeficiency virus-negative heterosexual man.

  7. When viruses were not in style: parallels in the histories of chicken sarcoma viruses and bacteriophages.

    Science.gov (United States)

    Sankaran, Neeraja

    2014-12-01

    The discovery that cancer may be caused by viruses occurred in the early twentieth century, a time when the very concept of viruses as we understand it today was in a considerable state of flux. Although certain features were agreed upon, viruses, more commonly referred to as 'filterable viruses' were not considered much different from other microbes such as bacteria except for their extremely small size, which rendered them ultramicroscopic and filterable. For a long time, in fact, viruses were defined rather by what they were not and what they could not do, rather than any known properties that set them apart from other microbes. Consequently when Peyton Rous suggested in 1912 that the causative agent of a transmissible sarcoma tumor of chickens was a virus, the medical research community was reluctant to accept his assessment on the grounds that cancer was not infectious and was caused by a physiological change within the cells. This difference in the bacteriological and physiological styles of thinking appears to have been prevalent in the wider research community, for when in 1917 Felix d'Herelle suggested that a transmissible lysis in bacteria, which he called bacteriophagy, was caused by a virus, his ideas were also opposed on similar grounds. It was not until the 1950s when when André Lwoff explained the phenomenon of lysogeny through his prophage hypothesis that the viral identities of the sarcoma-inducing agent and the bacteriophages were accepted. This paper examines the trajectories of the curiously parallel histories of the cancer viruses and highlights the similarities and differences between the ways in which prevailing ideas about the nature of viruses, heredity and infection drove researchers from disparate disciplines and geographic locations to develop their ideas and achieve some consensus about the nature of cancer viruses and bacteriophages.

  8. Research update: Avian Disease and Oncology Laboratory avian tumor viruses

    Science.gov (United States)

    Genomics and Immunogenetics Use of genomics to identify QTL, genes, and proteins associated with resistance to Marek’s disease. Marek’s disease (MD), a lymphoproliferative disease caused by the highly oncogenic herpesvirus Marek's disease virus (MDV), continues to be a major disease concern to the p...

  9. Migratory birds reinforce local circulation of avian influenza viruses

    NARCIS (Netherlands)

    Verhagen, J.H.G.; Van Dijk, J.G.B.; Vuong, O.; Lexmond, P.; Klaassen, M.R.J.; Fouchier, R.A.M

    2014-01-01

    Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largel

  10. Migratory birds reinforce local circulation of avian influenza viruses

    NARCIS (Netherlands)

    J.H. Verhagen (Josanne); J.G.B. Dijk (Jacintha); O. Vuong (Spronken); T.M. Bestebroer (Theo); P. Lexmond (Pascal); M. Klaassen (Marcel); R.A.M. Fouchier (Ron)

    2014-01-01

    textabstractMigratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds

  11. Avian Influenza A (H7N9) Virus

    Science.gov (United States)

    ... this? Submit Button Past Newsletters Avian Influenza A (H7N9) Virus Language: English Español Recommend on Facebook ... Fourth Epidemic — China, September 2015–August 2016." H7N9 Outbreak Characterization H7N9 infections in people and poultry ...

  12. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  13. First characterization of avian influenza viruses from Greenland 2014

    DEFF Research Database (Denmark)

    Hartby, Christina Marie; Krog, Jesper Schak; Ravn Merkel, Flemming;

    2016-01-01

    In late February 2014, unusually high numbers of wild birds, thick-billed murre (Uria lomvia), were found dead at the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examinations in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2...

  14. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    E. de Wit (Emmie); Y. Kawaoka (Yoshihiro); M.D. de Jong (Menno); R.A.M. Fouchier (Ron)

    2008-01-01

    textabstractIn recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death.

  15. Avian hepatitis E virus in chickens, Taiwan, 2013.

    Science.gov (United States)

    Hsu, Ingrid W-Y; Tsai, Hsiang-Jung

    2014-01-01

    A previously unidentified strain of avian hepatitis E virus (aHEV) is now endemic among chickens in Taiwan. Analysis showed that the virus is 81.5%-86.5% similar to other aHEVs. In Taiwan, aHEV infection has been reported in chickens without aHEV exposure, suggesting transmission from asymptomatic cases or repeated introduction through an unknown common source(s).

  16. Detection of evolutionarily distinct avian influenza a viruses in antarctica.

    Science.gov (United States)

    Hurt, Aeron C; Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G; González-Acuña, Daniel

    2014-05-06

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. IMPORTANCE Avian influenza viruses (AIVs) are typically maintained and spread by migratory birds, resulting in the existence of distinctly different viruses around the world. However, AIVs have not previously been detected in Antarctica. In this study, we

  17. Avian hepatitis E virus, vaccines and methods of protecting against avian hepatitis-splenomegaly syndrome and mammalian hepatitis E

    OpenAIRE

    2009-01-01

    The present invention relates to a novel isolated avian hepatitis E virus having a nucleotide sequence set forth in SEQ ID NO:1 or its complementary strand. The invention further concerns immunogenic compositions comprising this new virus or recombinant products such as the nucleic acid and vaccines that protect an avian or mammalian species from viral infection or hepatitis-splenomegaly syndrome caused by the hepatitis E virus. Also included in the scope of the invention is a method for prop...

  18. Determination and analysis of the complete genomic sequence of avian hepatitis E virus (avian HEV) and attempts to infect rhesus monkeys with avian HEV.

    Science.gov (United States)

    Huang, F F; Sun, Z F; Emerson, S U; Purcell, R H; Shivaprasad, H L; Pierson, F W; Toth, T E; Meng, X J

    2004-06-01

    Avian hepatitis E virus (avian HEV), recently identified from a chicken with hepatitis-splenomegaly syndrome in the United States, is genetically and antigenically related to human and swine HEVs. In this study, sequencing of the genome was completed and an attempt was made to infect rhesus monkeys with avian HEV. The full-length genome of avian HEV, excluding the poly(A) tail, is 6654 bp in length, which is about 600 bp shorter than that of human and swine HEVs. Similar to human and swine HEV genomes, the avian HEV genome consists of a short 5' non-coding region (NCR) followed by three partially overlapping open reading frames (ORFs) and a 3'NCR. Avian HEV shares about 50 % nucleotide sequence identity over the complete genome, 48-51 % identity in ORF1, 46-48 % identity in ORF2 and only 29-34 % identity in ORF3 with human and swine HEV strains. Significant genetic variations such as deletions and insertions, particularly in ORF1 of avian HEV, were observed. However, motifs in the putative functional domains of ORF1, such as the helicase and methyltransferase, were relatively conserved between avian HEV and mammalian HEVs, supporting the conclusion that avian HEV is a member of the genus Hepevirus. Phylogenetic analysis revealed that avian HEV represents a branch distinct from human and swine HEVs. Swine HEV infects non-human primates and possibly humans and thus may be zoonotic. An attempt was made to determine whether avian HEV also infects across species by experimentally inoculating two rhesus monkeys with avian HEV. Evidence of virus infection was not observed in the inoculated monkeys as there was no seroconversion, viraemia, faecal virus shedding or serum liver enzyme elevation. The results from this study confirmed that avian HEV is related to, but distinct from, human and swine HEVs; however, unlike swine HEV, avian HEV is probably not transmissible to non-human primates.

  19. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    Science.gov (United States)

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  20. Avian influenza A viruses: from zoonosis to pandemic.

    Science.gov (United States)

    Richard, Mathilde; de Graaf, Miranda; Herfst, Sander

    2014-05-01

    Zoonotic influenza A viruses originating from the animal reservoir pose a threat for humans, as they have the ability to trigger pandemics upon adaptation to and invasion of an immunologically naive population. Of particular concern are the H5N1 viruses that continue to circulate in poultry in numerous countries in Europe, Asia and Africa, and the recently emerged H7N9 viruses in China, due to their relatively high number of human fatalities and pandemic potential. To start a pandemic, zoonotic influenza A viruses should not only acquire the ability to attach to, enter and replicate in the critical target cells in the respiratory tract of the new host, but also efficiently spread between humans by aerosol or respiratory droplet transmission. Here, we discuss the latest advances on the genetic and phenotypic determinants required for avian influenza A viruses to adapt to and transmit between mammals.

  1. Screening for Recombinant Avian Leukosis Viruses in Cell Cultures Inoculated with Various Subgroups of Virus

    Science.gov (United States)

    Chicken embryo fibroblasts (CEFs) prepared from ADOL SPF embryos were co-infected with different concentration ratios of subgroups A, J and E avian leukosis virus (ALV). Inoculated cultures were screened for recombination among the ALV strains. Potential recombinant viruses were purified by limiting...

  2. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma.

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    Full Text Available Virotherapy using oncolytic vaccinia virus (VACV strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.

  3. Antigenic properties of avian hepatitis E virus capsid protein.

    Science.gov (United States)

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail.

  4. Response of white leghorn chickens to infection with avian leukosis virus subgroup J and infectious bursal disease virus.

    Science.gov (United States)

    Williams, Susan M; Sellers, Holly S

    2012-03-01

    The effects of viral-induced immunosuppression on the infectious status (viremia and antibody) and shedding of avian leukosis virus (ALV) were studied. Experimental white leghorn chickens were inoculated with ALV subgroup J (ALV-J) and infectious bursal disease virus (IBDV) at day of hatch with the ALV-J ADOL prototype strain Hcl, the Lukert strain of IBDV, or both. Appropriate groups were exposed a second time with the Lukert strain at 2 wk of age. Serum samples were collected at 2 and 4 wk of age for IBDV antibody detection. Samples for ALV-J viremia, antibody detection, and cloacal shedding were collected at 4, 10, 18, and 30 wk of age. The experiment was terminated at 30 wk of age, and birds were necropsied and examined grossly for tumor development. Neoplasias detected included hemangiomas, bile duct carcinoma, and anaplastic sarcoma of the nerve. Control birds and IBDV-infected birds were negative for ALV-J-induced viremia, antibodies, and cloacal shedding throughout experiment. By 10 wk, ALV-J-infected groups began to develop antibodies to ALV-J. However, at 18 wk the incidence of virus isolation increased in both groups, with a simultaneous decrease in antibody levels. At 30 wk, 97% of birds in the ALV-J group were virus positive and 41% were antibody positive. In the ALV-J/IDBV group, 96% of the birds were virus positive at 30 wk, and 27% had antibodies to ALV-J. In this study, infection with a mild classic strain of IBDV did not influence ALV-J infection or antibody production.

  5. Avian Hepatitis E Virus Infection in Organic Layers.

    Science.gov (United States)

    Crespo, Rocio; Opriessnig, Tanja; Uzal, Francisco; Gerber, Priscilla F

    2015-09-01

    Between 2012 and 2014, 141 chickens from 10 organic layer flocks with a history of severe drop in egg production (up to 40%) and slight increased mortality (up to 1% per week) were submitted to the Avian Health and Food Safety Laboratory (Puyallup, WA). At necropsy, the most common finding was pinpoint white foci on the liver and regressed ova without any other remarkable lesions. Histologically, there was multifocal mild-to-severe acute necrotizing hepatitis present. No significant bacteria were recovered from liver samples, and tests for mycotoxins were negative. Twenty-six serum samples from four affected flocks tested were positive for avian hepatitis E virus (HEV) immunoglobulin Y antibodies. Avian HEV RNA was detected in 10 livers of chickens from two different affected flocks. The avian HEV was characterized by sequencing and determined to belong to genotype 2. The diagnosis of a clinical manifest HEV was based solely on the demonstration of specific viral RNA and the absence of other causative agents in samples from flocks, as the clinical sings and pathologic lesions were atypical.

  6. Human immunodeficiency virus negative Kaposi sarcoma and lymphoproliferative disorders

    NARCIS (Netherlands)

    Fossati, S; Boneschi, [No Value; Ferrucci, S; Brambilla, L

    1999-01-01

    BACKGROUND. The concomitant occurrence of more than one primary neoplasm in the same individual has led researchers to seek possible common etiopathogenetic factors. Kaposi sarcoma (KS) is a multicentric neoplasm of vascular origin and perhaps viral etiology. Four forms of KS are known: classic or M

  7. Diffferential innate responses of chickens and ducks to low pathogenic avian influenza virus

    NARCIS (Netherlands)

    Cornelissen, J.B.W.J.; Post, J.; Peeters, B.P.H.; Vervelde, L.; Rebel, J.M.J.

    2012-01-01

    Ducks and chickens are hosts of avian influenza virus, each with distinctive responses to infection. To understand these differences, we characterized the innate immune response to low pathogenicity avian influenza virus H7N1 infection in chickens and ducks. Viral RNA was detected in the lungs of ch

  8. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    NARCIS (Netherlands)

    Hagenaars, T J; Fischer, E A J; Jansen, C A; Rebel, J M J; Spekreijse, D; Vervelde, L; Backer, J A; de Jong, M C M; Koets, A P

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β

  9. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α,

  10. Human Infection with Avian Influenza A(H7N9) Virus - China

    Science.gov (United States)

    ... Biorisk reduction Human infection with avian influenza A(H7N9) virus – China Disease outbreak news 18 January 2017 ... laboratory-confirmed human infection with avian influenza A(H7N9) virus and on 12 January 2017, the Health ...

  11. Pathogenesis of avian influenza A (H5N1) viruses in pigs

    Science.gov (United States)

    Background. Genetic reassortment of avian influenza H5N1 viruses with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are o...

  12. Infection of children with avian-human reassortant influenza virus from pigs in Europe

    NARCIS (Netherlands)

    E.C.J. Claas (Eric); Y. Kawaoka (Yoshihiro); J.C. de Jong (Jan); N. Masurel (Nic); R.G. Webster (Robert)

    1994-01-01

    textabstractPigs have been proposed to act as the intermediate hosts in the generation of pandemic human influenza strains by reassortment of genes from avian and human influenza virus strains. The circulation of avian-like H1N1 influenza viruses in European pigs since 1979 and the detection of huma

  13. Zoonosis Update on H9N2 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Abdul Ahad*, Masood Rabbani, Altaf Mahmood1, Zulfiqar Hussan Kuthu2, Arfan Ahmad and Muhammad Mahmudur Rahman3

    2013-07-01

    Full Text Available Influenza A viruses infect various mammals like human, horse, pig and birds as well. A total of 16 hemagglutinin (HA and 9 neuraminidase (NA subtypes have been identified. Most of the combinations are found in birds and relatively few have been isolated from mammals. Although there is no report of human to human transmission till to date, several cases of H5N1, H7N7 and H9N2 identified in humans since 1997 raised serious concern for health and veterinary profession. This review paper will focus H9N2 avian influenza virus (AIV with special emphasis on zoonosis. The virus H9N2 though not highly pathogenic like H5N1 but can be virulent through antigenic drift and shift.

  14. Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012.

    Science.gov (United States)

    Jonduo, Marinjho; Wong, Sook-San; Kapo, Nime; Ominipi, Paskalis; Abdad, Mohammad; Siba, Peter; McKenzie, Pamela; Webby, Richard; Horwood, Paul

    2013-01-01

    We investigated the circulation of avian influenza viruses in poultry populations throughout Papua New Guinea to assess the risk to the poultry industry and human health. Oropharyngeal swabs, cloacal swabs and serum were collected from 537 poultry from 14 provinces of Papua New Guinea over an 11-month period (June 2011 through April 2012). Virological and serological investigations were undertaken to determine the prevalence of avian influenza viruses. Neither influenza A viruses nor antibodies were detected in any of the samples. This study demonstrated that avian influenza viruses were not circulating at detectable levels in poultry populations in Papua New Guinea during the sampling period. However, avian influenza remains a significant risk to Papua New Guinea due to the close proximity of countries having previously reported highly pathogenic avian influenza viruses and the low biosecurity precautions associated with the rearing of most poultry populations in the country.

  15. Heterogeneity and Seroprevalence of a Newly Identified Avian Hepatitis E Virus from Chickens in the United States

    OpenAIRE

    Huang, F. F.; Haqshenas, G.; Shivaprasad, H L; Guenette, D. K.; Woolcock, P. R.; Larsen, C. T.; Pierson, F.W.; F Elvinger; Toth, T. E.; Meng, X. J.

    2002-01-01

    We recently identified and characterized a novel virus, designated avian hepatitis E virus (avian HEV), from chickens with hepatitis-splenomegaly syndrome (HS syndrome) in the United States. Avian HEV is genetically related to but distinct from human and swine HEVs. To determine the extent of genetic variation and the seroprevalence of avian HEV infection in chicken flocks, we genetically identified and characterized 11 additional avian HEV isolates from chickens with HS syndrome and assessed...

  16. Subtype Identification of Avian Influenza Virus on DNA Microarray

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-rong; YU Kang-zhen; DENG Guo-hua; SHI Rui; LIU Li-ling; QIAO Chuan-ling; BAO Hong-mei; KONG Xian-gang; CHEN Hua-lan

    2005-01-01

    We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-1abeled fluorescent cDNAs,which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.

  17. [Detection and description of avian hepatitis E virus isolated in China--a review].

    Science.gov (United States)

    Zhao, Qin; Sun, Yani; Zhou, Enmin

    2012-03-04

    Avian hepatitis E virus (HEV), a member of Hepeviridae family, is genetically and antigenically related with human and swine HEV in the family. Since its discovery, avian HEV infection has been investigated in many countries from serology and molecular epidemiology studies. At present, five complete or near complete genomes of avian HEV isolates were reported in GenBank and were divided into three genotypes. The complete genome of avian HEV contains 3 ORFs of which ORF2 gene encodes capsid protein containing the primary epitopes of viral particles and is target gene for serodiagnostic antigen and vaccine candidate. Because avian HEV infection has significant impact on the poultry industry and potential zoonotic transmission, the researches on avian HEV have been given much attention. We here give a broad review of the research update on the aetiology, pathogenesis and the antigenicity of capsid protein of avian HEV based on identification of Chinese avian HEV isolate.

  18. Transcriptomics of host-virus interactions: immune responses to avian influenza virus in chicken

    NARCIS (Netherlands)

    Reemers, S.S.N.

    2010-01-01

    Upon entry of the respiratory tract avian influenza virus (AIV) triggers early immune responses in the host that are aimed to prevent or in case of already established infection control this infection. Although much research is performed to elucidate the course of events that follow after AIV infect

  19. In vitro proteolytic cleavage of Gazdar murine sarcoma virus p65gag.

    OpenAIRE

    Maxwell, S.; Arlinghaus, R B

    1981-01-01

    Moloney murine leukemia virus, disrupted in concentrations of 0.1 to 0.5% Nonidet P-40, catalyzed the cleavage of p65, the gag gene polyprotein of the Gazdar strain of murine sarcoma virus, into polypeptides with sizes and antigenic determinants of murine leukemia virus-specified p30, p15, pp12, and p10. Cleavage performed in the presence of 0.15% Nonidet P-40 in water yielded polypeptides of approximately 40,000 (P40) and 25,000 (P25) Mr. In vitro cleavage performed in a buffered solution co...

  20. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Science.gov (United States)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  1. Detection of avian nephritis virus in Australian chicken flocks.

    Science.gov (United States)

    Hewson, Kylie A; O'Rourke, Denise; Noormohammadi, Amir H

    2010-09-01

    Avian nephritis virus (ANV) is thought to infect poultry flocks worldwide, but no confirmed case has been reported in Australia. The first such case is described in this study. Cases of young chickens with clinical signs of dehydration and diarrhea were submitted to our laboratory and histopathology detected interstitial nephritis. Vaccine strains of infectious bronchitis virus were detected in some of these cases but were not considered to be the causative agent. A total of seven fresh submissions from broiler chicken flocks were collected at 8-11 days of age. Degenerate PCR primers were designed based on published ANV polymerase gene sequences and used to analyze historic cases as well as the fresh submissions. Six of the seven fresh submissions, and one historic case, were positive for ANV with nucleotide sequencing confirming these results. These results establish ANV as an infectious pathogen circulating in Australian poultry.

  2. China makes an impressive breakthrough in avian influenza virus research - Discovering the "heart" of avian infl uenza virus.

    Science.gov (United States)

    Li, Y G; Wu, J F; Li, X

    2009-02-01

    The successive appearance of strains of epizootic avian influenza A virus with the subtype H5N1 in China has attracted considerable concern from the public and Chinese authorities. According to the latest WHO estimates as of February 2, 2009, the number of H5N1 virus deaths in China totaled 25, second only to Indonesia and Viet Nam (http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_02_02/en/index.html). The H5N1 virus is highly contagious among birds and is fatal when transmitted to humans, though the means by which this occurs is still unknown. Owing to the possible variation of the H5N1 prototype virus, together with the fact that it has the propensity to exchange genes with influenza viruses from other species, humans have no natural immunity to the virus. Despite years of efforts, the exact pathogenesis of H5N1 transmission to humans is still not completely clear, nor is potential human-tohuman transmission as could lead to an epidemic or even worldwide pandemic (Enserink M. Science. 2009; 323:324). Unfortunately, current antiviral treatment and therapeutic measures cannot effectively overcome this virulent virus that causes highly pathogenic avian influenza (HPAI). Researchers from around the world are working to study the virology of influenza viruses, including their methods of infiltration, replication, and transcription, to elucidate the mechanisms of unremitting viral infection in terms of aspects such as the virus, host, and environment. These researchers are also working to identify potential molecular targets related to H5N1 for anti-influenza drug intervention. A recent H5N1-related study from China provides encouraging information. According to the People's Daily (Renmin Ribao), a newspaper out of Beijing, professor Liu Yingfang, academician Rao Zihe, and fellow researchers from more than 6 research centers, including the Institute of Biophysics Chinese Academy of Sciences, Nankai University, and Tsinghua University, have

  3. The Biology of Kaposi's Sarcoma-Associated Herpesvirus and the Infection of Human Immunodeficiency Virus

    Institute of Scientific and Technical Information of China (English)

    Di QIN; Chun LU

    2008-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV),also known as human herpesvirus 8 (HHV-8),is discovered in 1994 from Kaposi's sarcoma (KS) lesion of an acquired immunodeficiency syndrome (AIDS)patient.In addition to its association with KS,KSHV has also been implicated as the causative agent of two other AIDS-associated malignancies:primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD).KSHV is a complex DNA virus that not only has the ability to promote cellular growth and survival for tumor development,but also can provoke deregulated angiogenesis,inflammation,and modulate the patient's immune system in favor of tumor growth.As KSHV is a necessary but not sufficient etiological factor for KS,human immunodeficiency virus (HIV) is a very important cofactor.Here we review the basic information about the biology of KSHV,development of pathogenesis and interaction between KSHV and HIV.

  4. Influenza viruses and the evolution of avian influenza virus H5N1.

    Science.gov (United States)

    Skeik, Nedaa; Jabr, Fadi I

    2008-05-01

    Although small in size and simple in structure, influenza viruses are sophisticated organisms with highly mutagenic genomes and wide antigenic diversity. They are species-specific organisms. Mutation and reassortment have resulted in newer viruses such as H5N1, with new resistance against anti-viral medications, and this might lead to the emergence of a fully transmissible strain, as occurred in the 1957 and 1968 pandemics. Influenza viruses are no longer just a cause of self-limited upper respiratory tract infections; the H5N1 avian influenza virus can cause severe human infection with a mortality rate exceeding 50%. The case death rate of H5N1 avian influenza infection is 20 times higher than that of the 1918 infection (50% versus 2.5%), which killed 675000 people in the USA and almost 40 million people worldwide. While the clock is still ticking towards what seems to be inevitable pandemic influenza, on April 17, 2007 the U.S. Food and Drug Administration (FDA) approved the first vaccine against the avian influenza virus H5N1 for humans at high risk. However, more research is needed to develop a more effective and affordable vaccine that can be given at lower doses.

  5. [Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8)].

    Science.gov (United States)

    Katano, Harutaka

    2010-12-01

    Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV or human herpesvirus 8, HHV-8) are members of gamma-herpes virus family. Both viruses infect to B cells and cause malignancies such as lymphoma. Since EBV and HHV-8 are so-called 'oncovirus', their oncogenecities have been focused in the researches on EBV and KSHV for a long time. EBV was discovered in 1964, whereas KSHV was identified in 1994. However, KSHV was analyzed rapidly in these fifteen years. One of the recent progresses in the research on EBV and KSHV is that virus-encoded small RNAs were identified in their genomes and characterized. EBV is the first human virus in whose genome microRNA was identified. The oncogenecity of EBV and KSHV remains unclear. Here, I discuss the pathogenesis by EBV and KSHV with special reference to recent progress in this field.

  6. Methods to detect avian inlfuenza virus for food safety surveillance

    Institute of Scientific and Technical Information of China (English)

    SHI Ping; Shu Geng; LI Ting-ting; LI Yu-shui; FENG Ting; WU Hua-nan

    2015-01-01

    Avian inlfuenza (AI), caused by the inlfuenza A virus, has been a global concern for public health. AI outbreaks not only impact the poultry production, but also give rise to a risk in food safety caused by viral contamination of poultry products in the food supply chain. Distinctions in AI outbreak between strains H5N1 and H7N9 indicate that early detection of the AI virus in poultry is crucial for the effective warning and control of AI to ensure food safety. Therefore, the establishment of a poultry surveilance system for food safety by early detection is urgent and critical. In this article, methods to detect AI virus, including current methods recommended by the World Health Organization (WHO) and the World Organisation for Animal Health (Ofifce International des Epizooties, OIE) and novel techniques not commonly used or commercialized are reviewed and evaluated for feasibility of use in the poultry surveillance system. Conventional methods usualy applied for the purpose of AI diagnosis face some practical chalenges to establishing a comprehensive poultry surveilance program in the poultry supply chain. Diverse development of new technologies can meet the speciifc requirements of AI virus detec-tion in various stages or scenarios throughout the poultry supply chain where onsite, rapid and ultrasensitive methods are emphasized. Systematic approaches or integrated methods ought to be employed according to the application scenarios at every stage of the poultry supply chain to prevent AI outbreaks.

  7. An optimized polymerase chain reaction assay to identify avian virus vaccine contamination with Chicken anemia virus.

    Science.gov (United States)

    Amer, Haitham M; Elzahed, Hanan M; Elabiare, Elham A; Badawy, Ahmed A; Yousef, Ausama A

    2011-01-01

    The use of embryonating chicken eggs in preparation of avian virus vaccines is the principle cause for contamination with Chicken anemia virus (CAV). Identification of CAV in contaminated vaccines relies on the expensive, tedious, and time-consuming practice of virus isolation in lymphoblastoid cell lines. The experience of the last 2 decades indicates that polymerase chain reaction is extending to replace most of the classic methods for detection of infectious agents. In the present report, a simple, rapid, and accurate polymerase chain reaction method for detection of CAV in poultry vaccines is described. Oligonucleotide primers homologous to highly conserved sequences of the VP1 gene were used to amplify a fragment of 676 bp. The developed assay was specific for detecting CAV from different sources, with no cross reactivity with many avian viruses. No inter- and intra-assay variations were observed. The analytical sensitivity of the test was high enough to detect 5 TCID(50) (50% tissue culture infective dose) of the virus per reaction; however, different factors related to the vaccine matrix showed considerable effects on the detection limit. In conclusion, this method may represent a suitable alternative to virus isolation for identification of CAV contamination of poultry virus vaccines.

  8. Phylogenetics and pathogenesis of early avian influenza viruses (H5N2), Nigeria

    Science.gov (United States)

    Prior to the first officially recognized outbreaks of highly pathogenic avian influenza (HPAI) in poultry in Nigeria, in February 2006, an effort based at the poultry diagnostic clinic of the University of Ibadan Veterinary Teaching Hospital, was underway to isolate avian influenza viruses from sick...

  9. Comparative susceptibility of waterfowl and gulls to highly pathogenic avian influenza H5N1 virus

    Science.gov (United States)

    Wild avian species in the Orders Anseriformes (ducks, geese, swans) and Charadriiformes (gulls, terns, shorebirds) have traditionally been considered the natural reservoirs for avian influenza viruses (AIV) and morbidity or mortality is rarely associated with AIV infection in these hosts. However, ...

  10. Risk Perceptions for Avian Influenza Virus Infection among Poultry Workers, China

    OpenAIRE

    Yu, Qi; Liu, Linqing; Pu, Juan; Zhao, Jingyi; Sun, Yipeng; Shen, Guangnian; Wei, Haitao; Zhu, Junjie; Zheng, Ruifeng; Xiong, Dongyan; Liu, Xiaodong; Liu, Jinhua

    2013-01-01

    To determine risk for avian influenza virus infection, we conducted serologic surveillance for H5 and H9 subtypes among poultry workers in Beijing, China, 2009–2010, and assessed workers’ understanding of avian influenza. We found that poultry workers had considerable risk for infection with H9 subtypes. Increasing their knowledge could prevent future infections.

  11. Pandemic potential of avian influenza A (H7N9) viruses.

    Science.gov (United States)

    Watanabe, Tokiko; Watanabe, Shinji; Maher, Eileen A; Neumann, Gabriele; Kawaoka, Yoshihiro

    2014-11-01

    Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of 16 May 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. In this review, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential.

  12. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    Science.gov (United States)

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  13. Practical aspects of vaccination of poultry against avian influenza virus.

    Science.gov (United States)

    Spackman, Erica; Pantin-Jackwood, Mary J

    2014-12-01

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic AIV has become endemic in several regions of the world. Vaccination for low pathogenicity AIV is also becoming routine in regions where there is a high level of field challenge. In contrast, some countries will not use vaccination at all and some will only use it on an emergency basis during eradication efforts (i.e. stamping-out). There are pros and cons to each approach and, since every outbreak situation is different, no one method will work equally well in all situations. Numerous practical aspects must be considered when developing an AIV control program with vaccination as a component, such as: (1) the goals of vaccination must be defined; (2) the population to be vaccinated must be clearly identified; (3) there must be a plan to obtain and administer good quality vaccine in a timely manner and to achieve adequate coverage with the available resources; (4) risk factors for vaccine failure should be mitigated as much as possible; and, most importantly, (5) biosecurity must be maintained as much as possible, if not enhanced, during the vaccination period.

  14. Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species.

    Directory of Open Access Journals (Sweden)

    Henning Petersen

    Full Text Available Transmission of avian influenza viruses (AIV between different avian species may require genome mutations that allow efficient virus replication in a new species and could increase virulence. To study the role of domestic poultry in the evolution of AIV we compared replication of low pathogenic (LP AIV of subtypes H9N2, H7N7 and H6N8 in tracheal organ cultures (TOC and primary embryo fibroblast cultures of chicken, turkey, Pekin duck and homing pigeon. Virus strain-dependent and avian species-related differences between LPAIV were observed in growth kinetics and induction of ciliostasis in TOC. In particular, our data demonstrate high susceptibility to LPAIV of turkey TOC contrasted with low susceptibility of homing pigeon TOC. Serial virus passages in the cells of heterologous host species resulted in adaptive mutations in the AIV genome, especially in the receptor-binding site and protease cleavage site of the hemagglutinin. Our data highlight differences in susceptibility of different birds to AIV viruses and emphasizes potential role of poultry in the emergence of new virus variants.

  15. Avian Influenza Virus A (H5N1), Detected through Routine Surveillance, in Child, Bangladesh

    Science.gov (United States)

    Alamgir, A.S.M.; Sultana, Rebecca; Islam, M. Saiful; Rahman, Mustafizur; Fry, Alicia M.; Shu, Bo; Lindstrom, Stephen; Nahar, Kamrun; Goswami, Doli; Haider, M. Sabbir; Nahar, Sharifun; Butler, Ebonee; Hancock, Kathy; Donis, Ruben O.; Davis, Charles T.; Zaman, Rashid Uz; Luby, Stephen P.; Uyeki, Timothy M.; Rahman, Mahmudur

    2009-01-01

    We identified avian influenza virus A (H5N1) infection in a child in Bangladesh in 2008 by routine influenza surveillance. The virus was of the same clade and phylogenetic subgroup as that circulating among poultry during the period. This case illustrates the value of routine surveillance for detection of novel influenza virus. PMID:19751601

  16. Inhibition of avian tumor viruses by vector-based RNA interference

    Science.gov (United States)

    RNA interference (RNAi) has been shown to reduce the replication of certain animal viruses both in cell culture and in live animals. We developed RNAi-based anti-viral strategies against two important chicken pathogens: avian leukosis virus (ALV) and Marek’s Disease virus MDV). Entry plasmids conta...

  17. Highly pathogenic avian influenza virus and generation of novel reassortants, United States, 2014-2015

    Science.gov (United States)

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North Americ...

  18. Gene expression responses to highly pathogenic avian influenza H5N1 virus infections in ducks

    Science.gov (United States)

    Differences in host response to infection with avian influenza (AI) viruses were investigated by identifying genes differentially expressed in tissues of infected ducks. Clear differences in pathogenicity were observed among ducks inoculated with five H5N1 HPAI viruses. Virus titers in tissues cor...

  19. Inactivation of avian influenza virus in chicken litter as a potential method to decontaminate poultry houses

    Science.gov (United States)

    Full cleaning and disinfection of a poultry house after an avian influenza virus (AIV) outbreak is expensive and labor intensive. An alternative to full house cleaning and disinfection is to inactivate the virus with high temperatures within the house. Litter in the house normally has a high virus...

  20. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    Science.gov (United States)

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  1. The challenges of avian influenza virus:mechanism,epidemiology and control

    Institute of Scientific and Technical Information of China (English)

    George; F.GAO; Pang-Chui; SHAW

    2009-01-01

    Early 2009, eight human infection cases of H5N1 highly pathogenic avian influenza (HPAI) virus, with 5 death cases, were reported in China. This again made the world alert on a possible pandemic worldwide, probably caused by

  2. Migratory birds reinforce local circulation of avian influenza viruses.

    Science.gov (United States)

    Verhagen, Josanne H; van Dijk, Jacintha G B; Vuong, Oanh; Bestebroer, Theo; Lexmond, Pascal; Klaassen, Marcel; Fouchier, Ron A M

    2014-01-01

    Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos) - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i) H3 virus kinship, (ii) temporal patterns in H3 virus prevalence and shedding and (iii) H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife.

  3. Migratory birds reinforce local circulation of avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Josanne H Verhagen

    Full Text Available Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i H3 virus kinship, (ii temporal patterns in H3 virus prevalence and shedding and (iii H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife.

  4. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma

    DEFF Research Database (Denmark)

    Jensen, Kristian K; Manfra, Denise J; Grisotto, Marcos G;

    2005-01-01

    Kaposi's sarcoma (KS)-associated herpesvirus or human herpes virus 8 is considered the etiological agent of KS, a highly vascularized neoplasm that is the most common tumor affecting HIV/AIDS patients. The KS-associated herpesvirus/human herpes virus 8 open reading frame 74 encodes a constitutively...

  5. Avian infectious bronchitis virus in Brazil: a highly complex virus meets a highly susceptible host population

    Directory of Open Access Journals (Sweden)

    PE Brandão

    2010-06-01

    Full Text Available Infectious bronchitis (IB is a highly aggressive disease for poultry in terms of symptoms and economic losses, and the control of this disease is difficult if flocks are not protected against type-specific challenges by the Avian infectious bronchitis virus (IBV. This article summarizes data presented by the author at the Workshop on Infectious Bronchitis 2009 on IB and IBV, including future developments on the field.

  6. [Cross-species Transmission of Avian Leukosis Virus Subgroup J].

    Science.gov (United States)

    Shen, Yanwei; He, Menglian; Zhang, Ji; Zhao, Manda; Wang, Guihua; Cheng, Ziqiang

    2016-01-01

    Avian leukosis virus subgroup J (ALV-J) is an avian retrovirus that can induce myelocytomas. A high-frequency mutation in gene envelope endows ALV-J with the potential for cross-species transmission. We wished to ascertain if the ALV-J can spread across species under selection pressure in susceptible and resistant hosts. First, we inoculated (in turn) two susceptible host birds (specific pathogen-free (SPF) chickens and turkeys). Then, we inoculated three resistant hosts (pheasants, quails and ducks) to detect the viral shedding, pathologic changes, and genetic evolution of different isolates. We found that pheasants and quails were infected under the selective pressure that accumulates stepwise in different hosts, and that ducks were not infected. Infection rates for SPF chickens and turkeys were 100% (16/16), whereas those for pheasants and quails were 37.5% (6/16) and 11.1% (3/27). Infected hosts showed immune tolerance, and inflammation and tissue damage could be seen in the liver, spleen, kidneys and cardiovascular system. Non-synonymous mutation and synonymous ratio (NS/S) analyses revealed the NS/S in hypervariable region (hr) 2 of pheasants and quails was 2.5. That finding suggested that mutation of isolates in pheasants and quails was induced by selective pressure from the resistant host, and that the hr2 region is a critical domain in cross-species transmission of ALV-J. Sequencing showed that ALV-J isolates from turkeys, pheasants and quails had moved away from the original virus, and were closer to the ALV-J prototype strain HPRS-103. However, the HPRS-103 strain cannot infect pheasants and quails, so further studies are needed.

  7. It is not just AIV: From avian to swine-origin influenza virus

    Institute of Scientific and Technical Information of China (English)

    GAO George F; SUN YePing

    2010-01-01

    @@ In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States.The virus spreads worldwide by human-to-human transmission.Within a few weeks, it reached a pandemic level.The virus is a novel reassorment virus.It contains gene fragments of influenza virus of swine, avian and human emerged from a triple reassortant virus circulating in North American swine.The source triple-reassortant itself comprised genes derived from avian (PB2 and PA), human H3N2 (PB1) and classical swine (HA, NP and NS) lineages.In contrast, the NA and M gene segments have their origin in the Eurasian avian-like swine H1N1 lineage (Figure 1).

  8. Evidence of infection with H4 and H11 avian influenza viruses among Lebanese chicken growers.

    Directory of Open Access Journals (Sweden)

    Ghazi Kayali

    Full Text Available Human infections with H5, H7, and H9 avian influenza viruses are well documented. Exposure to poultry is the most important risk factor for humans becoming infected with these viruses. Data on human infection with other low pathogenicity avian influenza viruses is sparse but suggests that such infections may occur. Lebanon is a Mediterranean country lying under two major migratory birds flyways and is home to many wild and domestic bird species. Previous reports from this country demonstrated that low pathogenicity avian influenza viruses are in circulation but highly pathogenic H5N1 viruses were not reported. In order to study the extent of human infection with avian influenza viruses in Lebanon, we carried out a seroprevalence cross-sectional study into which 200 poultry-exposed individuals and 50 non-exposed controls were enrolled. We obtained their sera and tested it for the presence of antibodies against avian influenza viruses types H4 through H16 and used a questionnaire to collect exposure data. Our microneutralization assay results suggested that backyard poultry growers may have been previously infected with H4 and H11 avian influenza viruses. We confirmed these results by using a horse red blood cells hemagglutination inhibition assay. Our data also showed that farmers with antibodies against each virus type clustered in a small geographic area suggesting that unrecognized outbreaks among birds may have led to these human infections. In conclusion, this study suggests that occupational exposure to chicken is a risk factor for infection with avian influenza especially among backyard growers and that H4 and H11 influenza viruses may possess the ability to cross the species barrier to infect humans.

  9. Development of an antigen-capture ELISA for the detection of avian leukosis virus p27 antigen.

    Science.gov (United States)

    Yun, Bingling; Li, Delong; Zhu, Haibo; Liu, Wen; Qin, Liting; Liu, Zaisi; Wu, Guan; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei; Gao, Yulong

    2013-02-01

    An antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) employing monoclonal and polyclonal antibodies against p27 was developed for the detection of the avian leukosis virus (ALV). The specificity of the optimized AC-ELISA was evaluated using avian leukosis virus subgroup J (ALV-J), avian leukosis virus subgroup A (ALV-A), avian leukosis virus subgroup B (ALV-B), avian infectious bronchitis virus (IBV), Marek's disease virus (MDV), avian infectious laryngotracheitis virus (ILTV), Fowlpox virus (FPV), infectious bursal disease virus (IBDV), Newcastle disease virus (NDV), avian reovirus (ARV), reticuloendotheliosis virus (REV), avian influenza virus (AIV) and Escherichia coli. The only specimens that yielded a strong signal were ALV-J, ALV-A and ALV-B, indicating that this assay is suitable for the detection of ALV. The limit of detection of this assay was 1.25 ng/ml of rp27 protein and 10(1.79)TCID(50) units of HLJ09MDJ-1 (ALV-J). Moreover, this AC-ELISA can detect ALV in cloacal swabs of chickens experimentally infected as early as 12 days post-infection. The AC-ELISA detected the virus in the albumin and cloacal swabs of naturally infected chickens, and the results were confirmed by PCR, indicating that the AC-ELISA was a suitable method for the detection of ALV. This test is rapid and sensitive and could be convenient for epidemiological studies and eradication programs.

  10. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    Science.gov (United States)

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  11. [Detection of an NA gene molecular marker in H7N9 subtype avian influenza viruses by pyrosequencing].

    Science.gov (United States)

    Zhao, Yong-Gang; Liu, Hua-Lei; Wang, Jing-Jing; Zheng, Dong-Xia; Zhao, Yun-Ling; Ge, Sheng-Qiang; Wang, Zhi-Liang

    2014-07-01

    This study aimed to establish a method for the detection and identification of H7N9 avian influenza viruses based on the NA gene by pyrosequencing. According to the published NA gene sequences of the avian influenza A (H7N9) virus, a 15-nt deletion was found in the NA gene of H7N9 avian influenza viruses. The 15-nt deletion of the NA gene was targeted as the molecular marker for the rapid detection and identification of H7N9 avian influenza viruses by pyrosequencing. Three H7N9 avian influenza virus isolates underwent pyrosequencing using the same assay, and were proven to have the same 15-nt deletion. Pyrosequencing technology based on the NA gene molecular marker can be used to identify H7N9 avian influenza viruses.

  12. Ascorbic acid inhibits replication and infectivity of avian RNA tumor virus

    Energy Technology Data Exchange (ETDEWEB)

    BISSELL, MINA J; HATIE, CARROLL; FARSON, DEBORAH A.; SCHWARZ, RICHARD I.; SOO, WHAI-JEN

    1980-04-01

    Ascorbic acid, at nontoxic concentrations, causes a substantial reduction in the ability of avian tumor viruses to replicate in both primary avian tendon cells and chicken embryo fibroblasts. The virus-infected cultures appear to be less transformed in the presence of ascorbic acid by the criteria of morphology, reduced glucose uptake, and increased collagen synthesis. The vitamin does not act by altering the susceptibility of the cells to initial infection and transformation, but instead appears to interfere with the spread of infection through a reduction in virus replication and virus infectivity. The effect is reversible and requires the continuous presence of the vitamin in the culture medium.

  13. First Characterization of Avian Influenza Viruses from Greenland 2014.

    Science.gov (United States)

    Hartby, Christina Marie; Krog, Jesper Schak; Merkel, Flemming; Holm, Elisabeth; Larsen, Lars Erik; Hjulsager, Charlotte Kristiane

    2016-05-01

    In late February 2014, unusually high numbers of wild thick-billed murres (Uria lomvia) were found dead on the coast of South Greenland. To investigate the cause of death, 45 birds were submitted for laboratory examination in Denmark. Avian influenza viruses (AIVs) with subtypes H11N2 and low pathogenic H5N1 were detected in some of the birds. Characterization of the viruses by full genome sequencing revealed that all the gene segments belonged to the North American lineage of AIVs. The seemingly sparse and mixed subtype occurrence of low pathogenic AIVs in these birds, in addition to the emaciated appearance of the birds, suggests that the murre die-off was due to malnutrition as a result of sparse food availability or inclement weather. Here we present the first characterization of AIVs isolated in Greenland, and our results support the idea that wild birds in Greenland may be involved in the movement of AIV between North America and Europe.

  14. Surveillance of avian influenca viruses in farmed poultry in 2009 in Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Cvetkovik Iskra

    2010-05-01

    Full Text Available The aim of the study was to determine the presence and distribution or to confirm the absence of avian influenca viruses in farmed poultry in the poultry production systems 1 and 2 from the eight statistical regions in R. Macedonia. Total number of 1215 cloacal swabs from poultry were sampled. Each sample was processed and analysed by both molecular (RRT-PCR and classical virology methods (virus isolation and identification. All samples gave negative result for presence of avian influenza viruses. Commercial poultry production systems have biosecurity measures preventing the entry of pathogens i.e avian influenza viruses, therefore resulting with no circulation of these viruses in the sampled farmed poultry flocks.

  15. Association between malaria exposure and Kaposi's sarcoma-associated herpes virus seropositivity in Uganda

    Science.gov (United States)

    Nalwoga, Angela; Cose, Stephen; Wakeham, Katie; Miley, Wendell; Ndibazza, Juliet; Drakeley, Christopher; Elliott, Alison; Whitby, Denise; Newton, Robert

    2015-01-01

    Objective Unlike other herpes viruses, Kaposi's sarcoma-associated herpes virus (KSHV) is not ubiquitous worldwide and is most prevalent in sub-Saharan Africa. The reasons for this are unclear. As part of a wider investigation of factors that facilitate transmission in Uganda, a high prevalence country, we examined the association between antimalaria antibodies and seropositivity against KSHV. Methods Antibodies against P. falciparum merozoite surface protein (PfMSP)-1, P. falciparum apical membrane antigen (PfAMA)-1 and KSHV antigens (ORF73 and K8.1) were measured in samples from 1164 mothers and 1227 children. Results Kaposi's sarcoma-associated herpes virus seroprevalence was 69% among mothers and 15% children. Among mothers, KSHV seroprevalence increased with malaria antibody titres: from 60% to 82% and from 54% to 77%, comparing those with the lowest and highest titres for PfMSP-1 and PfAMA-1, respectively (P < 0.0001). Among children, only antibodies to PfAMA-1 were significantly associated with KSHV seropositivity, (P < 0.0001). In both mothers and children, anti-ORF73 antibodies were more strongly associated with malaria antibodies than anti-K8.1 antibodies. Conclusion The association between malaria exposure and KSHV seropositivity suggests that malaria is a cofactor for KSHV infection or reactivation. PMID:25611008

  16. Further genetic localization of the transforming sequences of the p21 v-ras gene of Harvey murine sarcoma virus

    DEFF Research Database (Denmark)

    Willumsen, B M; Ellis, R W; Scolnick, E M

    1984-01-01

    The sequences encoding the 21-kilodalton transforming protein (p21 ras) of Harvey murine sarcoma virus have previously been localized genetically to a 1.3-kilobase segment of the viral DNA (E. H. Chang, R. W. Ellis, E. M. Scolnick, and D. R. Lowy, Science 210:1249-1251, 1980). Within this segment...... of this open reading frame. By constructing a mutant of Harvey murine sarcoma virus DNA from which the first two ATG codons of this open reading frame have been deleted, we now show by transfection of the mutant viral DNA into NIH 3T3 cells that only the third ATG codon is necessary and sufficient...

  17. Immunodominant epitopes mapped by synthetic peptides on the capsid protein of avian hepatitis E virus are non-protective.

    Science.gov (United States)

    Guo, Hailong; Zhou, E M; Sun, Z F; Meng, X J

    2008-03-01

    Avian hepatitis E virus (avian HEV) was recently discovered in chickens with hepatitis-splenomegaly syndrome in the United States. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, and immunodominant antigenic epitopes on avian HEV ORF2 protein were identified in the predicted antigenic domains by synthetic peptides. However, whether these epitopes are protective against avian HEV infection has not been investigated. In this study, groups of chickens were immunized with keyhole limpet hemocyanin (KLH)-conjugated peptides and recombinant avian HEV ORF2 antigen followed by challenge with avian HEV virus to assess the protective capacity of these peptides containing the epitopes. While avian HEV ORF2 protein showed complete protection against infection, viremia and fecal virus shedding were found in all peptide-immunized chickens. Using purified IgY from normal, anti-peptide, and anti-avian HEV ORF2 chicken sera, an in-vitro neutralization and in-vivo monitoring assay was performed to further evaluate the neutralizing ability of anti-peptide IgY. Results showed that none of the anti-peptide IgY can neutralize avian HEV in vitro, as viremia, fecal virus shedding, and seroconversion appeared similarly in chickens inoculated with avian HEV mixed with anti-peptide IgY and chickens inoculated with avian HEV mixed with normal IgY. As expected, chickens inoculated with the avian HEV and anti-avian HEV ORF2 IgY mixture did not show detectable avian HEV infection. Taken together, the results of this study demonstrated that immunodominant epitopes on avian HEV ORF2 protein identified by synthetic peptides are non-protective, suggesting protective neutralizing epitope on avian HEV ORF2 may not be linear as is human HEV.

  18. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring

    Directory of Open Access Journals (Sweden)

    I Davidson

    2009-09-01

    Full Text Available The large amounts of feathers produced by the poultry industry, that is considered as a waste was explored for possible uses in various industries, such as meals for animals, biofuels, biodegradable plastic materials, combating water pollution and more. That review mentions these uses, but concentrate on the utilization of feathers for the diagnosis of viral infections and for monitoring vaccine viruses in chickens after vaccination. The viral diseases in which diagnosis using nucleic acids extracted from the feather shafts was described are, Marek's disease virus, circoviruses, chicken anemia virus, fowlpox virus, avian retroviruses, avian influenza virus and infectious laryngotracheitis virus. In two cases, of Marek's disease virus and of infectious laryngotracheitis virus, the differentiation of vaccine and wild-type viruses from feather shafts was made possible, thus allowing for monitoring the vaccination efficacy. The present review demonstrates also the stability of DNA viruses in feather shafts, and the possible evaluation of environmental dissemination of pathogens. When viruses are transmitted vertically, like in the cases of the retrovirus REV, a teratogenic effect on the development of feathers of the day-old newly hatched chick might occur in the case of avian influenza and the chicken anemia virus, which might indicate on a viral infection.

  19. Tracking the Evolution of Polymerase Genes of Influenza A Viruses during Interspecies Transmission between Avian and Swine Hosts

    Science.gov (United States)

    Karnbunchob, Nipawit; Omori, Ryosuke; Tessmer, Heidi L.; Ito, Kimihito

    2016-01-01

    Human influenza pandemics have historically been caused by reassortant influenza A viruses using genes from human and avian viruses. This genetic reassortment between human and avian viruses has been known to occur in swine during viral circulation, as swine are capable of circulating both avian and human viruses. Therefore, avian-to-swine transmission of viruses plays an important role in the emergence of new pandemic strains. The amino acids at several positions on PB2, PB1, and PA are known to determine the host range of influenza A viruses. In this paper, we track viral transmission between avian and swine to investigate the evolution on polymerase genes associated with their hosts. We traced viral transmissions between avian and swine hosts by using nucleotide sequences of avian viruses and swine viruses registered in the NCBI GenBank. Using BLAST and the reciprocal best hits technique, we found 32, 33, and 30 pairs of avian and swine nucleotide sequences that may be associated with avian-to-swine transmissions for PB2, PB1, and PA genes, respectively. Then, we examined the amino acid substitutions involved in these sporadic transmissions. On average, avian-to-swine transmission pairs had 5.47, 3.73, and 5.13 amino acid substitutions on PB2, PB1, and PA, respectively. However, amino acid substitutions were distributed over the positions, and few positions showed common substitutions in the multiple transmission events. Statistical tests on the number of repeated amino acid substitutions suggested that no specific positions on PB2 and PA may be required for avian viruses to infect swine. We also found that avian viruses that transmitted to swine tend to process I478V substitutions on PB2 before interspecies transmission events. Furthermore, most mutations occurred after the interspecies transmissions, possibly due to selective viral adaptation to swine. PMID:28082971

  20. When animal viruses attack: SARS and avian influenza.

    Science.gov (United States)

    Lee, Paul J; Krilov, Leonard R

    2005-01-01

    SARS and avian influenza have many common features. They both arose in Asia and originated from animal viruses. They both have the potential to become pandemics because human beings lack antibodies to the animal-derived antigens present on the viral surface and rapid dissemination can occur from the relative ease and availability of high speed and far-reaching transportation methods. Pediatricians, in particular, should remain alert about the possibility of pandemic illnesses in their patients. Annual rates of influenza in children may be 1.5 to 3 times those in the adult population, and infection rates during a community epidemic may exceed 40% in preschool-aged children and 30% in school-aged children. Infected children also play a central role in disseminating influenza, as they are the major point of entry for the virus into the household, from which adults spread disease into the community. Of course, children younger than 24 months also are at high risk for complications from influenza. A 1999 Centers for Disease Control and Prevention projection of an influenza pandemic in the US paints a grim picture: 89,000 to 207,000 deaths, 314,000 to 734,000 hospitalizations, 18 million to 42 million outpatient visits, and 20 million to 47 million additional illnesses, at a cost to society of at least dollars 71.3 billion to dollars 166.5 billion. High-risk patients (15% of the population) would account for approximately 84% of all deaths. Although SARS has been kind to the pediatric population so far, there are no guarantees that future outbreaks would be as sparing. To aid readers in remaining up-to-date with SARS and avian influenza, some useful websites are listed in the Sidebar. Two masters of suspense, Alfred Hitchcock and Stephen King, may have been closer to the truth than they ever would have believed. Both birds and a super flu could bring about the end of civilization as we know it. But all is not lost--to paraphrase Thomas Jefferson, the price of health is

  1. Genomic Signatures for Avian H7N9 Viruses Adapting to Humans.

    Directory of Open Access Journals (Sweden)

    Guang-Wu Chen

    Full Text Available An avian influenza A H7N9 virus emerged in March 2013 and caused a remarkable number of human fatalities. Genome variability in these viruses may provide insights into host adaptability. We scanned over 140 genomes of the H7N9 viruses isolated from humans and identified 104 positions that exhibited seven or more amino acid substitutions. Approximately half of these substitutions were identified in the influenza ribonucleoprotein (RNP complex. Although PB2 627K of the avian virus promotes replication in humans, 45 of the 147 investigated PB2 sequences retained the E signature at this position, which is an avian characteristic. We discovered 10 PB2 substitutions that covaried with K627E. An RNP activity assay showed that Q591K, D701N, and M535L restored the polymerase activity in human cells when 627K transformed to an avian-like E. Genomic analysis of the human-isolated avian influenza virus is crucial in assessing genome variability, because relationships between position-specific variations can be observed and explored. In this study, we observed alternative positions that can potentially compensate for PB2 627K, a well-known marker for cross-species infection. An RNP assay suggested Q591K, D701N, and M535L as potential markers for an H7N9 virus capable of infecting humans.

  2. Molecular-genetic analysis of field isolates of Avian Leucosis Viruses in the Russian Federation

    Science.gov (United States)

    Commercial poultry farms in 14 regions of Russian Federation were monitored for avian leukosis virus (ALV) infection using virus isolation tests and serology. Results indicated the presence of two subgroups of ALV in farms located in 11 of 14 regions. Analysis of the genomes of 12 field isolates of...

  3. Genetic versus antigenic differences among highly pathogenic H5N1 avian influenza A viruses

    NARCIS (Netherlands)

    Peeters, Ben; Reemers, Sylvia; Dortmans, Jos; Vries, de Erik; Jong, de Mart; Zande, van de Saskia; Rottier, Peter J.M.; Haan, de Cornelis A.M.

    2017-01-01

    Highly pathogenic H5N1 avian influenza A viruses display a remarkable genetic and antigenic diversity. We examined to what extent genetic distances between several H5N1 viruses from different clades correlate with antigenic differences and vaccine performance. H5-specific antisera were generated, an

  4. Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus.

    Science.gov (United States)

    Marvil, P; Knowles, N J; Mockett, A P; Britton, P; Brown, T D; Cavanagh, D

    1999-03-01

    The complete RNA genome of avian encephalomyelitis virus (AEV) has been molecularly cloned and sequenced. This revealed AEV to be a member of the Picornaviridae and consequently it is the first avian picornavirus for which the genome has been sequenced. Excluding the poly(A) tail the genome comprises 7032 nucleotides, which is shorter than that of any mammalian picornavirus sequenced to date. An open reading frame commencing at nucleotide 495 and terminating at position 6896 (6402 nucleotides) potentially encodes a polyprotein of 2134 amino acids. The polyprotein sequence has 39% overall amino acid identity with hepatitis A virus (HAV; genus Hepatovirus), compared to 19 to 21% for viruses from the other five picornavirus genera. Eleven cleavage products were predicted. The highest identity (49%) with HAV was in the P1 region, encoding the capsid proteins. The 5' and 3' untranslated regions (UTRs) comprise 494 and 136 nucleotides, respectively. The 5' UTR is the shortest of any picornavirus sequenced to date and, unlike HAV, it does not contain a long polypyrimidine tract.

  5. The Epidemiology of Sarcoma

    Directory of Open Access Journals (Sweden)

    Burningham Zachary

    2012-10-01

    Full Text Available Abstract Sarcomas account for over 20% of all pediatric solid malignant cancers and less than 1% of all adult solid malignant cancers. The vast majority of diagnosed sarcomas will be soft tissue sarcomas, while malignant bone tumors make up just over 10% of sarcomas. The risks for sarcoma are not well-understood. We evaluated the existing literature on the epidemiology and etiology of sarcoma. Risks for sarcoma development can be divided into environmental exposures, genetic susceptibility, and an interaction between the two. HIV-positive individuals are at an increased risk for Kaposi’s sarcoma, even though HHV8 is the causative virus. Radiation exposure from radiotherapy has been strongly associated with secondary sarcoma development in certain cancer patients. In fact, the risk of malignant bone tumors increases as the cumulative dose of radiation to the bone increases (p for trend

  6. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh.

    Science.gov (United States)

    Gerloff, Nancy A; Khan, Salah Uddin; Balish, Amanda; Shanta, Ireen S; Simpson, Natosha; Berman, Lashondra; Haider, Najmul; Poh, Mee Kian; Islam, Ausraful; Gurley, Emily; Hasnat, Md Abdul; Dey, T; Shu, Bo; Emery, Shannon; Lindstrom, Stephen; Haque, Ainul; Klimov, Alexander; Villanueva, Julie; Rahman, Mahmudur; Azziz-Baumgartner, Eduardo; Ziaur Rahman, Md; Luby, Stephen P; Zeidner, Nord; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2014-02-01

    In Bangladesh, little is known about the genomic composition and antigenicity of highly pathogenic avian influenza A(H5N1) viruses, their geographic distribution, temporal patterns, or gene flow within the avian host population. Forty highly pathogenic avian influenza A(H5N1) viruses isolated from humans and poultry in Bangladesh between 2008 and 2012 were analyzed by full genome sequencing and antigenic characterization. The analysis included viruses collected from avian hosts and environmental sampling in live bird markets, backyard poultry flocks, outbreak investigations in wild birds or poultry and from three human cases. Phylogenetic analysis indicated that the ancestors of these viruses reassorted (1) with other gene lineages of the same clade, (2) between different clades and (3) with low pathogenicity avian influenza A virus subtypes. Bayesian estimates of the time of most recent common ancestry, combined with geographic information, provided evidence of probable routes and timelines of virus spread into and out of Bangladesh.

  7. The FACT complex promotes avian leukosis virus DNA integration.

    Science.gov (United States)

    Winans, Shelby; Larue, Ross C; Abraham, Carly M; Shkriabai, Nikolozi; Skopp, Amelie; Winkler, Duane; Kvaratskhelia, Mamuka; Beemon, Karen L

    2017-01-25

    All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. Here, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-LTR circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.

  8. Avian Influenza A(H5N1) Virus in Egypt.

    Science.gov (United States)

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  9. Identification and characterization of H2N3 avian influenza virus from backyard poultry and comparison with novel H2N3 swine influenza virus.

    Science.gov (United States)

    Killian, Mary Lea; Zhang, Yan; Panigrahy, Brundaban; Trampel, Darrell; Yoon, Kyoung-Jin

    2011-12-01

    In early 2007, H2N3 influenza virus was isolated from a duck and a chicken in two separate poultry flocks in Ohio. Since the same subtype influenza virus with hemagglutinin (H) and neuraminidase (N) genes of avian lineage was also identified in a swine herd in Missouri in 2006, the objective of this study was to characterize and compare the genetic, antigenic, and biologic properties of the avian and swine isolates. Avian isolates were low pathogenic by in vivo chicken pathogenicity testing. Sequencing and phylogenetic analyses revealed that all genes of the avian isolates were comprised of avian lineages, whereas the swine isolates contained contemporary swine internal gene segments, demonstrating that the avian H2N3 viruses were not directly derived from the swine virus. Sequence comparisons for the H and N genes demonstrated that the avian isolates were similar but not identical to the swine isolates. Accordingly, the avian and swine isolates were also antigenically related as determined by hemagglutination-inhibition (HI) and virus neutralization assays, suggesting that both avian and swine isolates originated from the same group of H2N3 avian influenza viruses. Although serological surveys using the HI assay on poultry flocks and swine herds in Ohio did not reveal further spread of H2 virus from the index flocks, surveillance is important to ensure the virus is not reintroduced to domestic swine or poultry. Contemporary H2N3 avian influenza viruses appear to be easily adaptable to unnatural hosts such as poultry and swine, raising concern regarding the potential for interspecies transmission of avian viruses to humans.

  10. El virus influenza y la gripe aviar Influenza virus and avian flu

    Directory of Open Access Journals (Sweden)

    Libia Herrero-Uribe

    2008-03-01

    Full Text Available En este artículo se presenta una revisión del virus influenza,su biología,sus mecanismos de variación antigénica,las pandemias que ha producido y la prevención mediante las vacunas y medicamentos antivirales.Se analizan las razones por las cuales aparece el virus H5N1 que produce la fiebre aviar en humanos,la patogénesis de este virus y las estrategias para su prevención.Se informa sobre el plan de preparación para la pandemia en los niveles nacional e internacional.This article presents a review of Influenza virus,its biology,its mechanism of antigenic variation and its prevention by vaccination and the use of antivirals.The pandemics produced by this virus through history are presented.The appearance of the avian flu virus H5N1 is analyzed and its pathogenesis and strategies of prevention are discussed.National and international information about pandemic preparedness is presented.

  11. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yongxiu Yao

    2014-03-01

    Full Text Available With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs, avirulent Marek’s disease virus-2 (36 miRNAs, herpesvirus of turkeys (28 miRNAs, infectious laryngotracheitis virus (10 miRNAs, duck enteritis virus (33 miRNAs and avian leukosis virus (2 miRNAs. Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  12. The Influence of Ecological Factors on the Transmission and Stability of Avian Influenza Virus in the Environment

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2014-09-01

    Full Text Available Ecology is a science studying the correlation among organisms and some environmental factors. Ecological factors play an important role to transmit Avian Influenza (AI virus and influence its stability in the environment. Avian Influenza virus is classified as type A virus and belong to Orthomyxoviridae family. The virus can infect various vertebrates, mainly birds and mammals, including human. Avian Influenza virus transmission can occur through bird migration. The bird migration patterns usually occur in the large continent covers a long distance area within a certain periode hence transmit the virus from infected birds to other birds and spread to the environment. The biotic (normal flora microbes and abiotic (physical and chemical factors play important role in transmitting the virus to susceptible avian species and influence its stability in the environment. Disinfectant can inactivate the AI virus in the environment but its effectivity is influenced by the concentration, contact time, pH, temperature and organic matter.

  13. Respiratory immune responses in the chicken; Towards development of mucosal avian influenza virus vaccines

    OpenAIRE

    de Geus, E.D.

    2012-01-01

    Several important poultry pathogens, including avian influenza virus (AIV), enter the host through the mucosae of the respiratory tract (RT) and subsequently disseminate towards other organs in the body. Therefore, animal health significantly depends on the control of infection in the lung tissue by the RT immune system. There is limited knowledge of the lung-associated immune system in poultry, which might be a consequence of the unique and complex anatomy and function of the avian lung. The...

  14. Genome characterisation of the newly discovered avian influenza A H5N7 virus subtype combination

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, K.J.;

    2007-01-01

    In Denmark, in 2003, a previously unknown subtype combination of avian influenza A virus, H5N7 (A/Mallard/Denmark/64650/03), was isolated from a flock of 12,000 mallards. The H5N7 subtype combination might be a reassortant between recent European avian influenza A H5, H7, and a third subtype....../Duck/Hong Kong/3096/99 (H6N2) and A/WDk/ST/1737/2000 (H6N8), respectively. All genes of the H5N7 strain were of avian origin, and no further evidence of pathogenicity to humans has been found....

  15. Egg whites from eggs of chickens infected experimentally with avian hepatitis E virus contain infectious virus, but evidence of complete vertical transmission is lacking.

    Science.gov (United States)

    Guo, H; Zhou, E M; Sun, Z F; Meng, X-J

    2007-05-01

    Avian hepatitis E virus (HEV) is genetically and antigenically related to human HEV. Vertical transmission of HEV has been reported in humans, but not in other animals. In this study, we showed that avian HEV could be detected in chicken egg-white samples. Subsequently, avian HEV in egg white was found to be infectious, as evidenced by the appearance of viraemia, faecal virus shedding and seroconversion in chickens inoculated with avian HEV-positive egg white, but not in chickens inoculated with HEV-negative egg white. To further assess the possibility of vertical transmission of avian HEV, batches of embryonated eggs from infected hens were hatched, and hatched chicks were monitored for evidence of avian HEV infection. However, no virus was detected in samples collected from the hatched chicks throughout this study, suggesting that avian HEV could not complete the vertical transmission cycle. The possible implications of our findings are also discussed.

  16. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus

    DEFF Research Database (Denmark)

    Willumsen, B M; Norris, K; Papageorge, A G

    1984-01-01

    Previous studies of premature chain termination mutants and in frame deletion mutants of the p21 ras transforming protein encoded by the transforming gene of Harvey murine sarcoma virus (Ha-MuSV) have suggested that the C terminus is required for cellular transformation, lipid binding, and membrane...

  17. Human herpes virus-8 DNA in bronchoalveolar lavage samples from patients with AIDS-associated pulmonary Kaposi's sarcoma

    DEFF Research Database (Denmark)

    Benfield, T L; Dodt, K K; Lundgren, Jens Dilling

    1997-01-01

    Kaposi's sarcoma (KS) is the most frequent AIDS-associated neoplasm, and often disseminates to visceral organs, including the lungs. An ante-mortem diagnosis of pulmonary KS is difficult. Recently, DNA sequences resembling a new human herpes virus (HHV-8), have been identified in various forms...

  18. The variable codons of H5N1 avian influenza A virus haemagglutinin genes

    Institute of Scientific and Technical Information of China (English)

    Mark; J.GIBBS; Robert; W.MURPHY

    2008-01-01

    We investigated the selection pressures on the haemagglutinin genes of H5N1 avian influenza viruses using fixed effects likelihood models. We found evidence of positive selection in the sequences from isolates from 1997 to 2007, except viruses from 2000. The haemagglutinin sequences of viruses from southeast Asia, Hong Kong and mainland China were the most polymorphic and had similar nonsyn-onymous profiles. Some sites were positively selected in viruses from most regions and a few of these sites displayed different amino acid patterns. Selection appeared to produce different outcomes in vi-ruses from Europe, Africa and Russia and from different host types. One position was found to be positively selected for human isolates only. Although the functions of some positively selected posi-tions are unknown, our analysis provided evidence of different temporal, spatial and host adaptations for H5N1 avian influenza viruses.

  19. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America

    Science.gov (United States)

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A.; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L.; Pharr, G. Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts including avian, swine, equine, canine, and sea mammals. These H3 viruses are both antigenically and genetically diverse. Here we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other, and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about 4 units, and each unit corresponds to a 2log2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable. PMID:27309078

  20. Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses

    DEFF Research Database (Denmark)

    Maines, Taronna R; Chen, Li-Mei; Van Hoeven, Neal;

    2011-01-01

    Although H5N1 influenza viruses have been responsible for hundreds of human infections, these avian influenza viruses have not fully adapted to the human host. The lack of sustained transmission in humans may be due, in part, to their avian-like receptor preference. Here, we have introduced...

  1. An emerging avian influenza A virus H5N7 is a genetic reassortant of highly pathogenic genes

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt;

    2006-01-01

    We full genome characterised the newly discovered avian influenza virus H5N7 subtype combination isolated from a stock of Danish game ducks to investigate the composition of the genome and possible features of high pathogenicity. It was found that the haemagglutinin and the acidic polymerase genes...... low pathogenic avian influenza A viruses. (c) 2006 Elsevier Ltd. All rights reserved....

  2. Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: public health risk implications.

    Science.gov (United States)

    Stincarelli, Maria; Arvia, Rosaria; De Marco, Maria Alessandra; Clausi, Valeria; Corcioli, Fabiana; Cotti, Claudia; Delogu, Mauro; Donatelli, Isabella; Azzi, Alberta; Giannecchini, Simone

    2013-08-01

    Exploring the reassortment ability of the 2009 pandemic H1N1 (A/H1N1pdm09) influenza virus with other circulating human or avian influenza viruses is the main concern related to the generation of more virulent or new variants having implications for public health. After different coinfection experiments in human A549 cells, by using the A/H1N1pdm09 virus plus one of human seasonal influenza viruses of H1N1 and H3N2 subtype or one of H11, H10, H9, H7 and H1 avian influenza viruses, several reassortant viruses were obtained. Among these, the HA of H1N1 was the main segment of human seasonal influenza virus reassorted in the A/H1N1pdm09 virus backbone. Conversely, HA and each of the three polymerase segments, alone or in combination, of the avian influenza viruses mainly reassorted in the A/H1N1pdm09 virus backbone. Of note, A/H1N1pdm09 viruses that reassorted with HA of H1N1 seasonal human or H11N6 avian viruses or carried different combination of avian origin polymerase segments, exerted a higher replication effectiveness than that of the parental viruses. These results confirm that reassortment of the A/H1N1pdm09 with circulating low pathogenic avian influenza viruses should not be misjudged in the prediction of the next pandemic.

  3. [Isolation and identification of avian leukosis virus-B from layer chickens infected with avian leukosis virus-J].

    Science.gov (United States)

    Liu, Gong-Zhen; Zhang, Hong-Hai; Liu, Qing; Qiu, Bo; Wang, Feng; Wang, Xiao-Wei; Chen, Hong-Bo; Cheng, Zi-Qiang

    2009-11-01

    Two strains of Avian leukosis virus subgroup B (ALV-B) were isolated for the first time in China Hy-line White on the cultured DF-1 cells which were inoculated tissue samples from by an ELISA assay, a histopathology examination and a PCR-based diagnosis. The results from the ELISA assay indicated that the positive rate of serum antibodies to ALV-B and ALV-J virus were 16.3% (15/92) and 13% (12/92), respectively. The histopathological examination indicated that two types of tumor cells existed at same focus in liver and spleen, which mainly were myelocytoma cells and lymphosarcoma cells. The PCR-based diagnosis were performed as follows: the cellular DNA was extracted from the inoculated DF-1 cells; the specific fragments of 1100 bp and 924 bp were obtained by a PCR system with the diagnostic primers of ALV-B and ALV-J; and the PCR results for ALV-A, MDV and REV were all negative. Then, the amplified fragments of the two ALV-B stains were partially sequenced and shown an identity of 92.8%,94.7% with the prototype strain of ALV-B (RSV Schmidt-ruppin B). The identities of two ALV-J strains with the prototype strain HPRS-103 at 96.9%, 91.5%; The identities of two ALV-J strains with the American prototype strain at 85.9%, 81.5%. Our study had shown that ALV-B was isolated for the first time from the ALV-J infected commercial layer flocks in China. It also indicated that the chance of genetic recombination among various subgroups of ALV was increased.

  4. Clinical characteristics of human infection with a novel avian-origin influenza A(H10N8) virus

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Wan Jianguo; Qian Kejian; Liu Xiaoqing; Xiao Zuke; Sun Jian; Zeng Zhenguo

    2014-01-01

    Background Novel influenza A viruses of avian-origin may be the precursors of pandemic strains.This descriptive study aims to introduce a novel avian-origin influenza A (H10N8) virus which can infect humans and cause severe diseases.Methods Collecting clinical data of three cases of human infection with a novel reassortment avian influenza A (H10N8)virus in Nanchang,Jiangxi Province,China.Results Three cases of human infection with a new reassortment avian influenza A(H10N8) virus were described,of which two were fatal cases,and one was severe case.These cases presented with severe pneumonia that progressed to acute respiratory distress syndrome (ARDS) and intractable respiratory failure.Conclusion This novel reassortment avian influenza A (H10N8) virus in China resulted in fatal human infections,and should be added to concerns in clinical practice.

  5. The pandemic potential of avian influenza A(H7N9) virus: a review.

    Science.gov (United States)

    Tanner, W D; Toth, D J A; Gundlapalli, A V

    2015-12-01

    In March 2013 the first cases of human avian influenza A(H7N9) were reported to the World Health Organization. Since that time, over 650 cases have been reported. Infections are associated with considerable morbidity and mortality, particularly within certain demographic groups. This rapid increase in cases over a brief time period is alarming and has raised concerns about the pandemic potential of the H7N9 virus. Three major factors influence the pandemic potential of an influenza virus: (1) its ability to cause human disease, (2) the immunity of the population to the virus, and (3) the transmission potential of the virus. This paper reviews what is currently known about each of these factors with respect to avian influenza A(H7N9). Currently, sustained human-to-human transmission of H7N9 has not been reported; however, population immunity to the virus is considered very low, and the virus has significant ability to cause human disease. Several statistical and geographical modelling studies have estimated and predicted the spread of the H7N9 virus in humans and avian species, and some have identified potential risk factors associated with disease transmission. Additionally, assessment tools have been developed to evaluate the pandemic potential of H7N9 and other influenza viruses. These tools could also hypothetically be used to monitor changes in the pandemic potential of a particular virus over time.

  6. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    Science.gov (United States)

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  7. Gene detection, virus isolation, and sequence analysis of avian leukosis viruses in Taiwan country chickens.

    Science.gov (United States)

    Chang, Shu-Wei; Hsu, Meng-Fang; Wang, Ching-Ho

    2013-06-01

    Avian leukosis virus (ALV) infection in Taiwan Country chickens (TCCs) was investigated by using gene detection, virus isolation, and sequence analysis. The blood samples of 61 TCC flocks at market ages from a slaughter house were screened for exogenous ALVs using polymerase chain reaction to investigate the ALV infection status. The buffy coats from three breeder and four commercial chicken flocks were cocultured with DF-1 cells to isolate the virus. The full proviral DNA genomes of two ALV isolates were sequenced, analyzed, and compared with reference ALV strains. The gene detection results showed that 60 and 43 of the 61 flocks were infected with subgroup A of ALV (ALV-A) and subgroup J of ALV (ALV-J), respectively. Virus isolation results showed that five ALV-As and two ALV-Js were isolated from those seven TCC flocks. The full sequences of the isolates showed that isolate TW-3577 possessed a myeloblastosis-associated virus 1 gp85 coding region and an ALV-J 3'-untranslated region (3'UTR) and was similar to ordinary ALV-A. However, TW-3593 was unique. The 3'UTR of this isolate displayed high identity to endogenous counterpart sequence and its gp85 was different from all subgroups. This unique ALV is common in Taiwan.

  8. In ovo and in vitro susceptibility of American alligators (Alligator mississippiensis) to avian influenza virus infection.

    Science.gov (United States)

    Temple, Bradley L; Finger, John W; Jones, Cheryl A; Gabbard, Jon D; Jelesijevic, Tomislav; Uhl, Elizabeth W; Hogan, Robert J; Glenn, Travis C; Tompkins, S Mark

    2015-01-01

    Avian influenza has emerged as one of the most ubiquitous viruses within our biosphere. Wild aquatic birds are believed to be the primary reservoir of all influenza viruses; however, the spillover of H5N1 highly pathogenic avian influenza (HPAI) and the recent swine-origin pandemic H1N1 viruses have sparked increased interest in identifying and understanding which and how many species can be infected. Moreover, novel influenza virus sequences were recently isolated from New World bats. Crocodilians have a slow rate of molecular evolution and are the sister group to birds; thus they are a logical reptilian group to explore susceptibility to influenza virus infection and they provide a link between birds and mammals. A primary American alligator (Alligator mississippiensis) cell line, and embryos, were infected with four, low pathogenic avian influenza (LPAI) strains to assess susceptibility to infection. Embryonated alligator eggs supported virus replication, as evidenced by the influenza virus M gene and infectious virus detected in allantoic fluid and by virus antigen staining in embryo tissues. Primary alligator cells were also inoculated with the LPAI viruses and showed susceptibility based upon antigen staining; however, the requirement for trypsin to support replication in cell culture limited replication. To assess influenza virus replication in culture, primary alligator cells were inoculated with H1N1 human influenza or H5N1 HPAI viruses that replicate independent of trypsin. Both viruses replicated efficiently in culture, even at the 30 C temperature preferred by the alligator cells. This research demonstrates the ability of wild-type influenza viruses to infect and replicate within two crocodilian substrates and suggests the need for further research to assess crocodilians as a species potentially susceptible to influenza virus infection.

  9. Identification of two neutralization epitopes on the capsid protein of avian hepatitis E virus.

    Science.gov (United States)

    Zhou, E-M; Guo, H; Huang, F F; Sun, Z F; Meng, X J

    2008-02-01

    Avian hepatitis E virus (avian HEV) is genetically and antigenically related to human HEV, the causative agent of hepatitis E. To identify the neutralizing epitopes on the capsid (ORF2) protein of avian HEV, four mAbs (7B2, 1E11, 10A2 and 5G10) against recombinant avian HEV ORF2 protein were generated. mAbs 7B2, 1E11 and 10A2 blocked each other for binding to avian HEV ORF2 protein in a competitive ELISA, whereas 5G10 did not block the other mAbs, suggesting that 7B2, 1E11 and 10A2 recognize the same or overlapping epitopes and 5G10 recognizes a different one. The epitopes recognized by 7B2, 1E11 and 10A2, and by 5G10 were mapped by Western blotting between aa 513 and 570, and between aa 476 and 513, respectively. mAbs 1E11, 10A2 and 5G10 were shown to bind to avian HEV particles in vitro, although only 5G10 reacted to viral antigens in transfected LMH cells. To assess the neutralizing activities of the mAbs, avian HEV was incubated in vitro with each mAb before inoculation into specific-pathogen-free chickens. Both viraemia and faecal virus shedding were delayed in chickens inoculated with the mixtures of avian HEV and 1E11, 10A2 or 5G10, suggesting that these three mAbs partially neutralize avian HEV.

  10. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens

    Science.gov (United States)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known about the interaction between these two viruses when simultaneously co-infecting the same host, especially in areas of the world where both viruses are...

  11. Role of endogenous avian leukosis virus and serotype 2 Marek’s disease virus in enhancement of spontaneous lymphoid-leukosis-like tumors in chickens

    Science.gov (United States)

    The influence of endogenous subgroup E avian Leukosis virus (ALV-E) and strain SB-1 of serotype 2 Marek’s disease virus (MDV) on the enhancement of spontaneous lymphoid leukosis (LL)-like tumors was studied in chickens of Avian Disease and Oncology Laboratory (ADOL) line named 0.TVB*S1, or RFS. This...

  12. Spontaenous Avian Leukosis Virus-like lymphomas in specific-pathogen-free chickens inoculated with serotype 2 Marek’s disease virus

    Science.gov (United States)

    Chickens of Avian Disease and Oncology Laboratory (ADOL) line alv6, known to develop spontaneous avian leukosis virus (ALV)-like lymphomas at two years of age or older, were inoculated either in-ovo, or at 1 day of age with strain SB-1 of serotype 2 Marek’s disease virus (MDV). Inoculated and uninoc...

  13. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens

    OpenAIRE

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R. S.; Pierson, F. William; Huang, Yao-Wei; Dryman, Barbara A.; Meng, Xiang-Jin

    2010-01-01

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculat...

  14. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses.

    Science.gov (United States)

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-08-03

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance.

  15. Regional prevalence and transmission route of Kaposi's sarcoma-associated herpes virus in Zhejiang, China

    Institute of Scientific and Technical Information of China (English)

    JU Hong-zhen; ZHU Biao; WANG Ying-jie; SHENG Zi-ke; SHENG Ji-fang

    2012-01-01

    Background The infection of Kaposi's sarcoma-associated herpes virus (KSHV) is most likely the cause of clinical Kaposi's sarcoma,primary effusion lymphoma,and multi-center Castleman's disease.KSHV infection has very limited epidemiological survey data in China,and its definite mode of transmission remains controversial.This study aimed to determine the infection status and the main transmission route of KSHV in Chinese population.Methods An enzyme-linked immunosorbent assay (ELISA) utilizing KSHV ORF65 recombinant protein was employed to analyze the antibody response to KSHV ORF65 in sera from 122 healthy physical examination people,107intravenous drug users,135 non-intravenous drug users,211 hepatitis B (HBV) patients infected via blood transmission,107 kidney transplant recipients,and 72 female sex workers in Zhejiang Province in Southeast China.Results KSHV infection occurred relatively common (13.1%) in healthy population in Zhejiang,China.Infection rate was 16.7% in female sex workers,but significantly elevated in intravenous drug addicts (58.9%),blood-transmitted HBV patients (28.0%) and kidney transplant patients (41.1%).Conclusion Blood borne transmission of KSHV is probably the main route of infection in Zhejiang Province.

  16. The hemagglutinin structure of an avian H1N1 influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang; Zhang, Qian; Wu, Caiming; Zhang, Rongfu; Cai, Qixu; Song, Wenjun; Yuen, Kwok-Yung; (U. Hong Kong); (Inter. Inst. Infect. Imm.); (Xiamen)

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptor binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.

  17. Analysis of epitopes in the capsid protein of avian hepatitis E virus by using monoclonal antibodies.

    Science.gov (United States)

    Dong, Shiwei; Zhao, Qin; Lu, Mingzhe; Sun, Peiming; Qiu, Hongkai; Zhang, Lu; Lv, Junhua; Zhou, En-Min

    2011-02-01

    Avian hepatitis E virus (HEV) is related genetically and antigenically to human and swine HEVs and capsid protein of avian HEV shares approximately 48-49% amino acid sequence identities with those of human and swine HEVs. Six monoclonal antibodies (MAbs) were produced and used to locate different epitopes in the ORF2 region of aa 339-570 of avian HEV Chinese isolate. The results showed that five epitopes were located in the aa 339-414 region and one in the aa 510-515 region. Two epitopes located in aa 339-355 and aa 384-414 regions are the immunodominant epitopes on the surface of the avian HEV particles as demonstrated by immune capture of viral particles and immunohistochemical detection of the ORF2 antigens with two MAbs.

  18. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar

    Directory of Open Access Journals (Sweden)

    Laure Guerrini

    2014-05-01

    Full Text Available While the spatial pattern of the highly pathogenic avian influenza H5N1 virus has been studied throughout Southeast Asia, little is known on the spatial risk factors for avian influenza in Africa. In the present paper, we combined serological data from poultry and remotely sensed environmental factors in the Lake Alaotra region of Madagascar to explore for any association between avian influenza and landscape variables. Serological data from cross-sectional surveys carried out on poultry in 2008 and 2009 were examined together with a Landsat 7 satellite image analysed using supervised classification. The dominant landscape features in a 1-km buffer around farmhouses and distance to the closest water body were extracted. A total of 1,038 individual bird blood samples emanating from 241 flocks were analysed, and the association between avian influenza seroprevalence and these landcape variables was quantified using logistic regression models. No evidence of the presence of H5 or H7 avian influenza subtypes was found, suggesting that only low pathogenic avian influenza (LPAI circulated. Three predominant land cover classes were identified around the poultry farms: grassland savannah, rice paddy fields and wetlands. A significant negative relationship was found between LPAI seroprevalence and distance to the closest body of water. We also found that LPAI seroprevalence was higher in farms characterised by predominant wetlands or rice landscapes than in those surrounded by dry savannah. Results from this study suggest that if highly pathogenic avian influenza H5N1 virus were introduced in Madagascar, the environmental conditions that prevail in Lake Alaotra region may allow the virus to spread and persist.

  19. Properties of a ribonucleoprotein particle isolated from Nonidet P-40-treated Rous sarcoma virus.

    Science.gov (United States)

    Davis, N L; Rueckert, R R

    1972-11-01

    A ribonucleoprotein particle containing about 20% ribonucleic acid (RNA), and containing little if any phospholipid or glucosamine, was recovered in high yield after treatment of Schmidt-Ruppin strain of Rous sarcoma virus and B77 virus with the nonionic detergent Nonidet P-40. This structure, which probably derives from the internal ribonucleoprotein filament described in electron microscopy studies, contained 80 to 90% of the viral 60 to 70S RNA and only about 10% of the protein present in intact virions. It sedimented in glycerol density gradients at approximately 130S and had a buoyant density in sucrose of about 1.34 g/ml. Studies with (32)P-labeled virus indicated that the ribonucleoprotein particle contained approximately 30 4S RNA molecules per 10(7) daltons of high-molecular-weight viral RNA. Intact virions contained about 70 4S RNA molecules per 10(7) daltons of high-molecular-weight RNA. Electrophoretic studies in dodecyl sulfate-containing polyacrylamide gels showed that the ribonucleoprotein particle contained only 5 of the 11 polypeptides found in the virion; of these the major component was a polypeptide weighing 14,000 daltons.

  20. In vitro proteolytic cleavage of Gazdar murine sarcoma virus p65gag.

    Science.gov (United States)

    Maxwell, S; Arlinghaus, R B

    1981-09-01

    Moloney murine leukemia virus, disrupted in concentrations of 0.1 to 0.5% Nonidet P-40, catalyzed the cleavage of p65, the gag gene polyprotein of the Gazdar strain of murine sarcoma virus, into polypeptides with sizes and antigenic determinants of murine leukemia virus-specified p30, p15, pp12, and p10. Cleavage performed in the presence of 0.15% Nonidet P-40 in water yielded polypeptides of approximately 40,000 (P40) and 25,000 (P25) Mr. In vitro cleavage performed in a buffered solution containing dithiothreitol in addition to 0.1% Nonidet P-40 allowed the efficient processing of P40 to p30 and a band migrating with p10. Immunoprecipitation with monospecific sera indicated that P40 contained p30 and p10, whereas P25 contained p15 and pp12 determinants. P40 and P25 are similar in size and antigenic properties to Pr40gag and Pr25gag observed in infected cells (Naso et al, J. Virol. 32:187-198, 1979).

  1. Glycan-functionalized graphene-FETs toward selective detection of human-infectious avian influenza virus

    Science.gov (United States)

    Ono, Takao; Oe, Takeshi; Kanai, Yasushi; Ikuta, Takashi; Ohno, Yasuhide; Maehashi, Kenzo; Inoue, Koichi; Watanabe, Yohei; Nakakita, Shin-ichi; Suzuki, Yasuo; Kawahara, Toshio; Matsumoto, Kazuhiko

    2017-03-01

    There are global concerns about threat of pandemic caused by the human-infectious avian influenza virus. To prevent the oncoming pandemic, it is crucial to analyze the viral affinity to human-type or avian-type sialoglycans with high sensitivity at high speed. Graphene-FET (G-FET) realizes such high-sensitive electrical detection of the targets, owing to graphene’s high carrier mobility. In the present study, G-FET was functionalized using sialoglycans and employed for the selective detection of lectins from Sambucus sieboldiana and Maackia amurensis as alternatives of the human and avian influenza viruses. Glycan-functionalized G-FET selectively monitored the sialoglycan-specific binding reactions at subnanomolar sensitivity.

  2. Development of an endogenous virus-free line of chickens susceptible to all subgroups of avian leukosis virus

    Science.gov (United States)

    Primary chicken embryo fibroblasts (CEF) from special specific pathogen free chicken lines are normally used for detection of contamination with avian leukosis viruses (ALV). The suitability and efficiency of such tests mostly depend on the susceptibility of CEF to varied subgroups of ALV. The ideal...

  3. H7N9 avian influenza A virus and the perpetual challenge of potential human pandemicity.

    Science.gov (United States)

    Morens, David M; Taubenberger, Jeffery K; Fauci, Anthony S

    2013-07-09

    ABSTRACT The ongoing H7N9 influenza epizootic in China once again presents us questions about the origin of pandemics and how to recognize them in early stages of development. Over the past ~135 years, H7 influenza viruses have neither caused pandemics nor been recognized as having undergone human adaptation. Yet several unusual properties of these viruses, including their poultry epizootic potential, mammalian adaptation, and atypical clinical syndromes in rarely infected humans, suggest that they may be different from other avian influenza viruses, thus questioning any assurance that the likelihood of human adaptation is low. At the same time, the H7N9 epizootic provides an opportunity to learn more about the mammalian/human adaptational capabilities of avian influenza viruses and challenges us to integrate virologic and public health research and surveillance at the animal-human interface.

  4. The changing nature of avian influenza A virus (H5N1).

    Science.gov (United States)

    Watanabe, Yohei; Ibrahim, Madiha S; Suzuki, Yasuo; Ikuta, Kazuyoshi

    2012-01-01

    Highly pathogenic avian influenza A virus subtype H5N1 has been endemic in some bird species since its emergence in 1996 and its ecology, genetics and antigenic properties have continued to evolve. This has allowed diverse virus strains to emerge in endemic areas with altered receptor specificity, including a new H5 sublineage with enhanced binding affinity to the human-type receptor. The pandemic potential of H5N1 viruses is alarming and may be increasing. We review here the complex dynamics and changing nature of the H5N1 virus that may contribute to the emergence of pandemic strains.

  5. Genetic Reassortment Among the Influenza Viruses (Avian Influenza, Human Influenza and Swine Influenza in Pigs

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2012-12-01

    Full Text Available Influenza A virus is a hazardous virus and harm to respiratory tract. The virus infect birds, pigs, horses, dogs, mammals and humans. Pigs are important hosts in ecology of the influenza virus because they have two receptors, namely NeuAc 2,3Gal and NeuAc 2,6Gal which make the pigs are sensitive to infection of influenza virus from birds and humans and genetic reassortment can be occurred. Classical swine influenza H1N1 viruses had been circulated in pigs in North America and other countries for 80 years. In 1998, triple reassortant H3N2 swine influenza viruses that contains genes of human influenza A virus (H3N2, swine influenza virus (H1N1 and avian influenza are reported as cause an outbreaks in pigs in North America. Furthermore, the circulation of triple reassortant H3N2 swine influenza virus resulting reassortant H1N1 swine influenza and reassortant H1N2 swine influenza viruses cause infection in humans. Humans who were infected by triple reassortant swine influenza A virus (H1N1 usually made direct contact with pigs. Although without any clinical symptoms, pigs that are infected by triple reassortant swine influenza A (H1N1 can transmit infection to the humans around them. In June 2009, WHO declared that pandemic influenza of reassortant H1N1 influenza A virus (novel H1N1 has reached phase 6. In Indonesia until 2009, there were 1005 people were infected by H1N1 influenza A and 5 of them died. Novel H1N1 and H5N1 viruses have been circulated in humans and pigs in Indonesia. H5N1 reassortant and H1N1 viruses or the seasonal flu may could arise because of genetic reassortment between avian influenza and humans influenza viruses that infect pigs together.

  6. Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus

    Science.gov (United States)

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus primarily causing myeloid leukosis (ML) in broilers. Although ALV is well under control in a few countries including the U.S.A., poultry industry in many parts of the world continues suffering from serious economic loss due to sporad...

  7. Diversity in Avian Leukosis Virus Isolates From Single Outbreak of Myelocytomatosis in Commercial Layers

    Science.gov (United States)

    In 1997, three white leghorn flocks were diagnosed with the first reported case of myelocytomatosis in commercial and field layer flocks. Moreover, the first naturally occurring recombinant avian leukosis virus (ALV) termed AF 115-4 (ALV-B/J) containing the envelope of ALV-B and long terminal repeat...

  8. Two special topics on the avian influenza virus and on epigenetics,have drawn much attention

    Institute of Scientific and Technical Information of China (English)

    HU YongLin

    2010-01-01

    @@ Several excellent well-organized reviews and research papers on two special topics, "The challenges of avian influenza virus: mechanism, epidemiology, and control" and "Molecular epigenetics: dawn of a new era of biomedical research", published in the 2009 edition of Science in China Series C: Life Sciences, have drawn much attention.

  9. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam.

    Science.gov (United States)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D; Jeeninga, Rienk E; Rogier van Doorn, H; Farrar, Jeremy; Wertheim, Heiman F L

    2013-10-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern Vietnam.

  10. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    Science.gov (United States)

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  11. The pause on avian H5N1 influenza virus transmission research should be ended

    NARCIS (Netherlands)

    R.A.M. Fouchier (Ron); A. García-Sastre (Adolfo); Y. Kawaoka (Yoshihiro)

    2012-01-01

    textabstractA voluntary 60-day pause on avian H5N1 influenza virus transmission research was announced in January 2012 by the international community of influenza scientists engaged in this work to provide time to explain the benefits of such work and the risk mitigation measures in place. Subsequen

  12. Surveillance for avian influenza viruses in wild birds in Denmark and Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona;

    Avian influenza (AI) is a disease of major threat to poultry production. Surveillance of AI in wild birds contributes to the control of AI. In Denmark (DK) and Greenland (GL), extensive surveillance of AI viruses in the wild bird population has been conducted. The surveillance aimed at detecting...

  13. H5N1 avian influenza virus: human cases reported in southern China.

    NARCIS (Netherlands)

    Crofts, J.; Paget, J.; Karcher, F.

    2003-01-01

    Two cases of confirmed influenza due to the avian influenza A H5N1 virus were reported last week in Hong Kong (1). The cases occurred in a Hong Kong family who had recently visited Fujian province in southern China. The daughter, aged 8 years, died following a respiratory illness. The cause of her d

  14. Genetic Analysis of Avian Influenza Virus from Wild Birds and Mallards Reared for Shooting in Denmark

    DEFF Research Database (Denmark)

    Handberg, Kurt; Therkildsen, O. R.; Jørgensen, Poul Henrik

    2010-01-01

    Denmark forms a geographical bottleneck along the migration route of many water birds breeding from northeastern Canada to north Siberia that gather to winter in Europe and Africa. Potentially, the concentration of such large numbers of water birds enhances the risk of avian influenza virus (AIV...

  15. Efficacy of an autophagy-targeted DNA vaccine against avian leukosis virus subgroup J

    Science.gov (United States)

    Infection with the avian leukosis virus subgroup J (ALV-J) can lead to neoplastic disease in chickens, inflicting significant economic losses to the poultry industry. Recent reports have identified inhibitory effects of ALV-J on autophagy, a process involving in innate and adaptive immunity. Inspire...

  16. Risk for Avian Influenza Virus Exposure at Human–Wildlife Interface

    OpenAIRE

    Siembieda, J; Johnson, CK; Boyce, W; Sandrock, C; Cardona, C.

    2008-01-01

    To assess risk for human exposure to avian influenza viruses (AIV), we sampled California wild birds and marine mammals during October 2005-August 2007and estimated human-wildlife contact. Waterfowl hunters were 8 times more likely to have contact with AIV-infected wildlife than were persons with casual or occupational exposures (p

  17. Respiratory immune responses in the chicken; Towards development of mucosal avian influenza virus vaccines

    NARCIS (Netherlands)

    de Geus, E.D.

    2012-01-01

    Several important poultry pathogens, including avian influenza virus (AIV), enter the host through the mucosae of the respiratory tract (RT) and subsequently disseminate towards other organs in the body. Therefore, animal health significantly depends on the control of infection in the lung tissue by

  18. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus

    Science.gov (United States)

    Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...

  19. Serological prevalence, genetic identification, and characterization of the first strains of avian hepatitis E virus from chickens in Korea.

    Science.gov (United States)

    Kwon, Hyuk Moo; Sung, Haan Woo; Meng, Xiang-Jin

    2012-10-01

    Avian hepatitis E virus (avian HEV) is associated with hepatitis-splenomegaly (HS) syndrome or big liver and spleen disease in chickens. At least three genotypes of avian HEV have been identified from chickens worldwide. A total of 297 serum samples collected from chickens in 35 flocks in Korea were tested for avian HEV antibody with an enzyme-linked immunosorbent assay. The results showed that approximately 57 % of chicken flocks and 28 % of chickens from Korea were positive for antibodies to avian HEV. Thirteen pooled fecal samples from chickens were tested for avian HEV RNA by RT-PCR, and three fecal samples were positive. The partial helicase and capsid genes of the Korean avian HEV isolates were determined, and sequence analyses revealed that the Korean avian HEV isolates were clustered together and closely related to the genotype 1 avian HEV from Australia. The complete genomic sequence of a Korean avian HEV strain HH-F9 from a broiler breeder was determined, and shown to be 6,653 nt in length, excluding the poly (A) tail, which is 1 nt shorter than the prototype avian HEV from chicken with HS syndrome in the United States. Compared to the full-length sequences of other 5 known avian HEV strains worldwide, the Korean avian HEV shared approximately 83-97 % nucleotide sequence identity. The finding that Korean avian HEV belongs to genotype 1 avian HEV which was previously identified only from chickens in Australia has significant implication in understanding the global epidemiology of avian HEV.

  20. Serological Evidence of Inter-Species Transmission of H9N2 Avian Influenza Virus in Poultry, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Hadipour

    2011-02-01

    Full Text Available Ducks and in-contact backyard chickens on 20 smallholder backyard farms in 4 districts of Shiraz, Southwest of Iran, were monitored for antibodies against H9N2 avian influenza virus using hemagglutinationinhibition (HI test. A total of 200 unvaccinated ducks and backyard chickens were sampled. The mean H I titers and seroprevalence in ducks and backyard chickens were 8.3, 5.7 and 78.4, 62.9%, respectively. Results of this study revealed that the Scavenging ducks are the natural reservoir of avian influenza viruses and play an important role in the epidemiology of H9N2 avian influenza virus infection.

  1. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    Science.gov (United States)

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  2. ZOONOTIC POTENTIAL OF HIGHLY PATHOGENIC AVIAN H7N3 INFLUENZA VIRUSES FROM PAKISTAN

    Science.gov (United States)

    Aamir, Uzma B.; Naeem, Khalid; Ahmed, Zaheer; Obert, Caroline A; Franks, John; Krauss, Scott; Seiler, Patrick; Webster, Robert G.

    2009-01-01

    H5 and H7 avian influenza viruses can become highly pathogenic in chickens after interspecies transmission. These viruses have transmitted directly to humans from birds in Eurasia and Africa (H5N1), the Netherlands (H7N7), and Canada (H7N3). Here we report antigenic, sequence, and phylogenetic analyses of H7N3 viruses isolated from chickens in Pakistan from 1995 to 2002. We compared the pathogenic and zoonotic potential of the Pakistani viruses in avian and mammalian hosts. In chickens, all of the isolates showed high pathogenicity with poor transmissibility to contact birds. Viral shedding from the trachea and cloaca was equivalent, but cloacal shedding occurred longer; dissemination of virus into the tissues was widespread. In contrast, the viruses replicated poorly in 6-week-old mallard ducks. In mammalian hosts, of the two Pakistani H7N3/02 viruses that caused weight loss, one also caused 40% mortality in mice without prior adaptation, and preliminary experiments in ferrets showed significant virus multiplication in the lungs, intestine, and conjunctiva. We conclude that the H7N3/02 isolates from Pakistan show limited antigenic drift and have evolved slowly during their 8-year circulation in chickens; however, these viruses have the potential to infect mammals. PMID:19535120

  3. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    Directory of Open Access Journals (Sweden)

    Ding Yuan Oh

    2014-01-01

    Full Text Available Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013, the adamantanes and the neuraminidase inhibitors (NAIs. During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1 viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future.

  4. Development and application of an indirect ELISA for detection of antibodies against avian hepatitis E virus.

    Science.gov (United States)

    Zhao, Qin; Sun, Yani; Zhao, Jinan; Hu, Shoubin; Zhao, Feifei; Chen, Fuyong; Clavijo, Alfonso; Zhou, En-Min; Xiao, Yihong

    2013-01-01

    An indirect enzyme-linked immunosorbent assay (iELISA) that could detect immunoglobulin G antibodies against avian hepatitis E virus (HEV) was developed. This assay employs a truncated C-terminal 268-amino acid recombinant ORF2 protein from an avian HEV genotype 3 strain isolated in China (CaHEV) as the coating antigen. The antigen concentration and serum dilution were optimized using a checkerboard titration. A cut-off value of 0.368 at OD(450nm) was determined by testing 120 positive and 200 negative chicken sera for avian HEV antibodies using the two-graph receiver operating characteristic (TG-ROC) analysis. This iELISA has a sensitivity of 96.1% and a specificity of 95.8%. The overall agreement between the iELISA and a corresponding Western blot was 97%. The iELISA was used to evaluate the seroprevalence of avian HEV in poultry farms in the Shandong province. The avian HEV seropositive rate of 35.9% was determined by testing 1871 serum samples that were collected from 10 chicken flocks ranged from 10 to 60 weeks of age. The iELISA that was developed in this study can be used for detection of immunoglobulin G antibodies against avian HEV.

  5. Evolution of highly pathogenic avian H5N1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Catherine A [Los Alamos National Laboratory; Green, Margaret A [Los Alamos National Laboratory

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging

  6. Little evidence of subclinical avian influenza virus infections among rural villagers in Cambodia.

    Directory of Open Access Journals (Sweden)

    Gregory C Gray

    Full Text Available In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI. Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI virus infection and withdrew from the study. Ninety-seven ILI cases (22.1% were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0% had detectable antibody titers (≥ 1:10 against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6, 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1, 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up against an avian-like A/Hong Kong/1073/1999(H9N2, 6 (1 detected at both 12- and 24-month follow-up against an avian-like A/Duck/Memphis/546/74(H11N9, and 2 against an avian-like A/Duck/Alberta/60/76(H12N5. With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  7. Little Evidence of Subclinical Avian Influenza Virus Infections among Rural Villagers in Cambodia

    Science.gov (United States)

    Gray, Gregory C.; Krueger, Whitney S.; Chum, Channimol; Putnam, Shannon D.; Wierzba, Thomas F.; Heil, Gary L.; Anderson, Benjamin D.; Yasuda, Chadwick Y.; Williams, Maya; Kasper, Matthew R.; Saphonn, Vonthanak; Blair, Patrick J.

    2014-01-01

    In 2008, 800 adults living within rural Kampong Cham Province, Cambodia were enrolled in a prospective cohort study of zoonotic influenza transmission. After enrollment, participants were contacted weekly for 24 months to identify acute influenza-like illnesses (ILI). Follow-up sera were collected at 12 and 24 months. A transmission substudy was also conducted among the family contacts of cohort members reporting ILI who were influenza A positive. Samples were assessed using serological or molecular techniques looking for evidence of infection with human and avian influenza viruses. Over 24 months, 438 ILI investigations among 284 cohort members were conducted. One cohort member was hospitalized with a H5N1 highly pathogenic avian influenza (HPAI) virus infection and withdrew from the study. Ninety-seven ILI cases (22.1%) were identified as influenza A virus infections by real-time RT-PCR; none yielded evidence for AIV. During the 2 years of follow-up, 21 participants (3.0%) had detectable antibody titers (≥1∶10) against the studied AIVs: 1 against an avian-like A/Migratory duck/Hong Kong/MPS180/2003(H4N6), 3 against an avian-like A/Teal/Hong Kong/w312/97(H6N1), 9 (3 of which had detectible antibody titers at both 12- and 24-month follow-up) against an avian-like A/Hong Kong/1073/1999(H9N2), 6 (1 detected at both 12- and 24-month follow-up) against an avian-like A/Duck/Memphis/546/74(H11N9), and 2 against an avian-like A/Duck/Alberta/60/76(H12N5). With the exception of the one hospitalized cohort member with H5N1 infection, no other symptomatic avian influenza infections were detected among the cohort. Serological evidence for subclinical infections was sparse with only one subject showing a 4-fold rise in microneutralization titer over time against AvH12N5. In summary, despite conducting this closely monitored cohort study in a region enzootic for H5N1 HPAI, we were unable to detect subclinical avian influenza infections, suggesting either that these

  8. Subgroup J avian leukosis virus induced histiocytic sarcomatosis occurs only in persistently viremic, but not immunotolerized meat-type chickens

    Science.gov (United States)

    Histiocytic proliferative lesions are sporadically reported in mammalian and avian species but the etiology and pathogenesis is not clear in most cases. However, in meat-type chickens, subgroup J avian leukosis virus (ALV J)-induced histiocytic sarcomatosis (HS) has been reported at a low incidence...

  9. Avian Influenza in Birds

    Science.gov (United States)

    ... this? Submit Button Past Newsletters Avian Influenza in Birds Language: English Español Recommend on Facebook Tweet ... illness. Top of Page Avian Influenza in Wild Birds Avian influenza A viruses have been isolated from ...

  10. Immunity to Avian Leukosis Virus: Where Are We Now and What Should We Do?

    Science.gov (United States)

    Feng, Min; Zhang, Xiquan

    2016-01-01

    Avian leukosis virus (ALV) is an avian oncogenic retrovirus causing enormous economic losses in the global poultry industry. Although ALV-related research has lasted for more than a century, there are no vaccines to protect chickens from ALV infection. The interaction between chickens and ALV remains not fully understood especially with regard to the host immunity. The current review provides an overview of our current knowledge of innate and adaptive immunity induced by ALV infection. More importantly, we have pointed out the unknown area involved in ALV-related studies, which is worthy of our serious exploring in future. PMID:28066434

  11. The Development of Pathogenicity of Avian Influenza Virus Isolated from Indonesia

    Directory of Open Access Journals (Sweden)

    Michael Haryadi Wibowo

    2015-11-01

    Full Text Available Highly pathogenic avian infl uenza outbreak in Indonesia has been reported in various poultry due toH5N1 subtype. The presence of multiple basic amino acids within the cleavage site of HA glycoprotein hasbeen identifi ed to be associated with the pathogenicity of avian infl uenza virus. The study was retrospectivestudy which was designed to characterize the cleavage site and fusion site region of haemagglutinin gene ofAIV isolated from various poultry in 2003 to 2013. Isolation, Identifi cation and propagation were carried outto collect viral stock. For virus detection, reverse transcriptase PCR (RT-PCR method on H5 and N1 genefragment was performed. All of RT-PCR HA gene positive products were sequenced for further nucleotideanalysis and to determine the nucleotide composition at the targeted fragment. The results are all AIV isolateswere identifi ed as H5N1 subtype. The sequence analyses revealed some motives of basic amino acid motivethat were classifi ed as highly pathogenic avian infl uenza virus. Further analyses on fusion domain of all AIVisolated during the period 2003 to 2013 showed conserved amino acid.Keywords: avian infl uenza, haemagglutinin, cleavage site, basic amino acid, fusion site

  12. Interspecies transmission and host restriction of avian H5N1 influenza virus

    Institute of Scientific and Technical Information of China (English)

    LIU Di; LIU XiaoLing; YAN JingHua; LIU Wen-Jun; GAO George Fu

    2009-01-01

    Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infec-tions in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of in-terspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different spe-cies, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.

  13. New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt;

    2005-01-01

    7, was identified. The HA gene showed great. sequence similarity to the highly pathogenic avian influenza A virus (HPAIV) A/Chicken/ftaly/312/97 (H5N2); however, the cleavage site sequence between HA1 and HA2 had a motif typical for low pathogenic avian influenza viruses (LPAIV). The full-length NA......During the past years increasing incidences of influenza A zoonosis have made it of uppermost importance to possess methods for rapid and precise identification and characterisation of influenza A Viruses. We present here a convenient one-step RT-PCR method that will amplify full......-length haemagglutinin (HA) and neuraminidase (NA) directly from clinical samples and from all known subtypes of influenza A. We applied the method on samples collected in September 2003 from a Danish flock of mallards with general health problems and by this a previously undescribed influenza A subtype combination, H5N...

  14. Interspecies transmission and host restriction of avian H5N1 influenza virus

    Institute of Scientific and Technical Information of China (English)

    GAO; George; Fu

    2009-01-01

    Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.

  15. Structural Basis for the Development of Avian Virus Capsids That Display Influenza Virus Proteins and Induce Protective Immunity

    OpenAIRE

    Pascual, Elena; Mata, Carlos P.; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L.; Castón, José R.

    2014-01-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ∼70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an am...

  16. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome.

    Directory of Open Access Journals (Sweden)

    Xiangmin Zhang

    Full Text Available Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF and Madin-Darby canine kidney (MDCK cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

  17. Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Carney, Paul J.; Mishin, Vasiliy P.; Guo, Zhu; Chang, Jessie C.; Wentworth, David E.; Gubareva, Larisa V.; Stevens, James; Schultz-Cherry, S.

    2016-04-06

    ABSTRACT

    During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential.

    IMPORTANCEThe H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment.

  18. Identification of B-cell epitopes in the capsid protein of avian hepatitis E virus (avian HEV) that are common to human and swine HEVs or unique to avian HEV.

    Science.gov (United States)

    Guo, H; Zhou, E-M; Sun, Z F; Meng, X-J; Halbur, P G

    2006-01-01

    Avian hepatitis E virus (avian HEV) was recently discovered in chickens from the USA that had hepatitis-splenomegaly (HS) syndrome. The complete genomic sequence of avian HEV shares about 50 % nucleotide sequence identity with those of human and swine HEVs. The open reading frame 2 (ORF2) protein of avian HEV has been shown to cross-react with human and swine HEV ORF2 proteins, but the B-cell epitopes in the avian HEV ORF2 protein have not been identified. Nine synthetic peptides from the predicted four antigenic domains of the avian HEV ORF2 protein were synthesized and corresponding rabbit anti-peptide antisera were generated. Using recombinant ORF2 proteins, convalescent pig and chicken antisera, peptides and anti-peptide rabbit sera, at least one epitope at the C terminus of domain II (possibly between aa 477-492) that is unique to avian HEV, one epitope in domain I (aa 389-410) that is common to avian, human and swine HEVs, and one or more epitopes in domain IV (aa 583-600) that are shared between avian and human HEVs were identified. Despite the sequence difference in ORF2 proteins between avian and mammalian HEVs and similar ORF2 sequence between human and swine HEV ORF2 proteins, rabbit antiserum against peptide 6 (aa 389-399) recognized only human HEV ORF2 protein, suggesting complexity of the ORF2 antigenicity. The identification of these B-cell epitopes in avian HEV ORF2 protein may be useful for vaccine design and may lead to future development of immunoassays for differential diagnosis of avian, swine and human HEV infections.

  19. Environmental and demographic determinants of avian influenza viruses in waterfowl across the contiguous United States.

    Directory of Open Access Journals (Sweden)

    Matthew L Farnsworth

    Full Text Available Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic

  20. Wind-mediated spread of low-pathogenic avian influenza virus into the environment during outabreaks at commercial poultry farms

    NARCIS (Netherlands)

    M. Jonges (Marcel); Van Leuken, J. (Jeroen); I.M. Wouters (Inge M); G. Koch (Guus); A. Meijer (Adam); M.P.G. Koopmans D.V.M. (Marion)

    2015-01-01

    textabstractAvian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airbo

  1. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Science.gov (United States)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  2. Wind-mediated spread of low-pathogenic avian influenza virus into the environment during outabreaks at commercial poultry farms

    NARCIS (Netherlands)

    Jonges, Marcel; Leuken, Van Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poult

  3. Genomic sequences of human infection of avian-origin influenza A(H7N9) virus in Zhejiang province

    Institute of Scientific and Technical Information of China (English)

    陈寅

    2013-01-01

    Objective To analyze the etiology and genomic sequences of human infection of avian-origin influenza A (H7N9) virus from Zhejiang province.Methods Viral RNA was extracted from patients of suspected H7N9

  4. DNA microarrays immobilized on unmodified plastics in a microfluidic biochip for rapid typing of Avian Influenza Virus

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Dufva, Martin;

    2011-01-01

    , a portable cyclic olefin copolymer (COC) microarray device containing eight individually addressable microfluidic channels was developed for fast identification of Avian Influenza Virus (AIV) by DNA hybridization. This plastic biochip offers benefits of low fabrication cost and parallel processing...

  5. Heterogeneity and seroprevalence of a newly identified avian hepatitis e virus from chickens in the United States.

    Science.gov (United States)

    Huang, F F; Haqshenas, G; Shivaprasad, H L; Guenette, D K; Woolcock, P R; Larsen, C T; Pierson, F W; Elvinger, F; Toth, T E; Meng, X J

    2002-11-01

    We recently identified and characterized a novel virus, designated avian hepatitis E virus (avian HEV), from chickens with hepatitis-splenomegaly syndrome (HS syndrome) in the United States. Avian HEV is genetically related to but distinct from human and swine HEVs. To determine the extent of genetic variation and the seroprevalence of avian HEV infection in chicken flocks, we genetically identified and characterized 11 additional avian HEV isolates from chickens with HS syndrome and assessed the prevalence of avian HEV antibodies from a total of 1,276 chickens of different ages and breeds from 76 different flocks in five states (California, Colorado, Connecticut, Virginia, and Wisconsin). An enzyme-linked immunosorbent assay using a truncated recombinant avian HEV ORF2 antigen was developed and used to determine avian HEV seroprevalence. About 71% of chicken flocks and 30% of chickens tested in the study were positive for antibodies to avian HEV. About 17% of chickens younger than 18 weeks were seropositive, whereas about 36% of adult chickens were seropositive. By using a reverse transcription-PCR (RT-PCR) assay, we tested 21 bile samples from chickens with HS syndrome in California, Connecticut, New York, and Wisconsin for the presence of avian HEV RNA. Of the 21 bile samples, 12 were positive for 30- to 35-nm HEV-like virus particles by electron microscopy (EM). A total of 11 of the 12 EM-positive bile samples and 6 of the 9 EM-negative bile samples were positive for avian HEV RNA by RT-PCR. The sequences of a 372-bp region within the helicase gene of 11 avian HEV isolates were determined. Sequence analyses revealed that the 11 field isolates of avian HEV had 78 to 100% nucleotide sequence identities to each other, 79 to 88% identities to the prototype avian HEV, 76 to 80% identities to chicken big liver and spleen disease virus, and 56 to 61% identities to other known strains of human and swine HEV. The data from this study indicated that, like swine and human

  6. Absence of missense mutations in activated c-myc genes in avian leukosis virus-induced B-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, M.; Hayward, W.S.

    1988-06-01

    The authors determined the nucleotide sequences of two independent DNA clones which contained the activated c-myc genes from avian leukosis virus-induced B-cell lymphomas. Neither of these c-myce genes contained missense mutations. This strongly supports the notion that the c-myc photo-oncogene in avian leukosis virus-induced B-cell lymphomas can be oncogenically activated by altered expression of the gene without a change in the primary structure of the gene product.

  7. Further observations on serotype 2 Marek's disease virus-induced enhancement of spontaneous avian leukosis virus-like bursal lymphomas in ALVA6 transgenic chickens

    Science.gov (United States)

    Breeders of the 2009 generation of Avian Disease and Oncology Laboratory transgenic chicken line ALVA6, known to be resistant to infection with subgroups A and E avian leukosis virus (ALV), were vaccinated at hatch with a trivalent Marek's disease (MD) vaccine containing serotypes 1, 2, and 3 Marek'...

  8. Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens.

    Science.gov (United States)

    Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R S; Pierson, F William; Huang, Yao-Wei; Dryman, Barbara A; Meng, Xiang-Jin

    2011-01-27

    A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies.

  9. Transmission of avian influenza A viruses among species in an artificial barnyard.

    Directory of Open Access Journals (Sweden)

    Jenna E Achenbach

    Full Text Available Waterfowl and shorebirds harbor and shed all hemagglutinin and neuraminidase subtypes of influenza A viruses and interact in nature with a broad range of other avian and mammalian species to which they might transmit such viruses. Estimating the efficiency and importance of such cross-species transmission using epidemiological approaches is difficult. We therefore addressed this question by studying transmission of low pathogenic H5 and H7 viruses from infected ducks to other common animals in a quasi-natural laboratory environment designed to mimic a common barnyard. Mallards (Anas platyrhynchos recently infected with H5N2 or H7N3 viruses were introduced into a room housing other mallards plus chickens, blackbirds, rats and pigeons, and transmission was assessed by monitoring virus shedding (ducks or seroconversion (other species over the following 4 weeks. Additional animals of each species were directly inoculated with virus to characterize the effect of a known exposure. In both barnyard experiments, virus accumulated to high titers in the shared water pool. The H5N2 virus was transmitted from infected ducks to other ducks and chickens in the room either directly or through environmental contamination, but not to rats or blackbirds. Ducks infected with the H7N2 virus transmitted directly or indirectly to all other species present. Chickens and blackbirds directly inoculated with these viruses shed significant amounts of virus and seroconverted; rats and pigeons developed antiviral antibodies, but, except for one pigeon, failed to shed virus.

  10. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    OpenAIRE

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this ...

  11. Biological features of novel avian influenza A (H7N9) virus.

    Science.gov (United States)

    Zhou, Jianfang; Wang, Dayan; Gao, Rongbao; Zhao, Baihui; Song, Jingdong; Qi, Xian; Zhang, Yanjun; Shi, Yonglin; Yang, Lei; Zhu, Wenfei; Bai, Tian; Qin, Kun; Lan, Yu; Zou, Shumei; Guo, Junfeng; Dong, Jie; Dong, Libo; Zhang, Ye; Wei, Hejiang; Li, Xiaodan; Lu, Jian; Liu, Liqi; Zhao, Xiang; Li, Xiyan; Huang, Weijuan; Wen, Leying; Bo, Hong; Xin, Li; Chen, Yongkun; Xu, Cuilin; Pei, Yuquan; Yang, Yue; Zhang, Xiaodong; Wang, Shiwen; Feng, Zijian; Han, Jun; Yang, Weizhong; Gao, George F; Wu, Guizhen; Li, Dexin; Wang, Yu; Shu, Yuelong

    2013-07-25

    Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (α2,3-linked sialic acid) and human-type (α2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8 and IFN-α were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.

  12. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    Science.gov (United States)

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions.

  13. Occurrence of avian Plasmodium and West Nile virus in culex species in Wisconsin

    Science.gov (United States)

    Hughes, T.; Irwin, P.; Hofmeister, E.; Paskewitz, S.M.

    2010-01-01

    The occurrence of multiple pathogens in mosquitoes and birds could affect the dynamics of disease transmission. We collected adult Culex pipiens and Cx. restuans (Cx. pipiens/restuans hereafter) from sites in Wisconsin and tested them for West Nile virus (WNV) and for avian malaria (Plasmodium). Gravid Cx. pipiens/restuans were tested for WNV using a commercial immunoassay, the RAMP?? WNV test, and positive results were verified by reverse transcriptasepolymerase chain reaction. There were 2 WNV-positive pools of Cx. pipiens/restuans in 2006 and 1 in 2007. Using a bias-corrected maximum likelihood estimation, the WNV infection rate for Cx. pipiens/restuans was 5.48/1,000 mosquitoes in 2006 and 1.08/1,000 mosquitoes in 2007. Gravid Cx. pipiens or Cx. restuans were tested individually for avian Plasmodium by a restriction enzymebased assay. Twelve mosquitoes were positive for avian Plasmodium (10.0), 2 were positive for Haemoproteus, and 3 were positive for Leucocytozoon. There were 4 mixed infections, with mosquitoes positive for >1 of the hemosporidian parasites. This work documents a high rate of hemosporidian infection in Culex spp. and illustrates the potential for co-infections with other arboviruses in bird-feeding mosquitoes and their avian hosts. In addition, hemosporidian infection rates may be a useful tool for investigating the ecological dynamics of Culex/avian interactions. ?? 2010 by The American Mosquito Control Association, Inc.

  14. Genetic susceptibility to and presence of endogenous avian leukosis viruses impose no significant impact on survival days of chickens challenged with very virulent plus Marek's disease virus

    Science.gov (United States)

    Chicks of distinct genotypes at the tumor virus B locus (TVB) in combination with presence or absence of endogenous avian leukosis virus ev21 gene in their genomes were examined for survival day patterns after challenge with very virulent plus Marek’s disease virus (vv+MDV) in three consecutive tria...

  15. Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus

    NARCIS (Netherlands)

    J.H.C.M. Kreijtz (Joost); G. de Mutsert (Gerrie); C.A. van Baalen (Carel); R.A.M. Fouchier (Ron); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    2008-01-01

    textabstractSince the number of human cases of infection with avian H5N1 influenza viruses is ever increasing, a pandemic outbreak caused by these viruses is feared. Therefore, in addition to virus-specific antibodies, there is considerable interest in immune correlates of protection against these v

  16. Simian sarcoma virus-encoded gag-related protein: in vitro cleavage by Friend leukemia virus-associated proteolytic activity.

    Science.gov (United States)

    Hafenrichter, R; Thiel, H J

    1985-05-01

    The simian sarcoma virus (SSV) encodes a gag-related 65,000-Da protein (SSV p65) which is not processed in SSV nonproducer cells (SSV-NP cells) (H.-J. Thiel, T. J. Matthews, E. M. Broughton, K. J. Weinhold, D. P. Bolognesi, T. Graf, and H. Beug (1981a), Virology 114, 124-131). In order to cleave SSV p65, retroviral particles containing this antigen were incubated with extracts from the heterologous helper virus Friend leukemia virus (FLV). Superinfection of SSV-NP cells by FLV has been previously shown to result in processing of SSV p65 in vivo (H.-J. Thiel, F. Weiland, R. Hafenrichter, T. J. Matthews, and K. J. Weinhold (1982), Virology 123, 229-234). In vitro cleavage was most efficient in the presence of a nonionic detergent (greater than 0.1% Nonidet-P40) and a reducing agent (greater than 5 mM dithiothreitol) at a pH of 7.0. The products, termed SSV p55 (p15, p12, p30), SSV p30, SSV p25 (p15, p12), and SSV p10, were characterized by (1) molecular weight, (2) kinetics experiments, (3) incorporation of different radiolabeled amino acids, and (4) comparison with SSAV structural proteins. Kinetics experiments with two amino acids ([3H]leucine, [35S]cysteine) revealed that initial processing of SSV p65 produced SSV p55 and SSV p10, with subsequent processing of SSV p55 occurring thereafter. In contrast to the Moloney system, the major intermediate p40 (p30, p10) could not be clearly demonstrated. A direct comparison of SSAV p10 and the cleavage product SSV p10 by SDS-PAGE suggests that SSAV pr65gag and SSV p65 differ slightly by molecular weight.

  17. Evidence of widespread infection of avian hepatitis E virus (avian HEV) in chickens from Spain.

    Science.gov (United States)

    Peralta, Bibiana; Biarnés, Mar; Ordóñez, Germán; Porta, Ramón; Martín, Marga; Mateu, Enric; Pina, Sonia; Meng, Xiang-Jin

    2009-05-28

    In the present work, 262 serum samples and 29 faeces pools from chickens coming from 29 healthy flocks were analysed by RT-PCR for detection of avian HEV and by ELISA using an aHEV derived antigen for detection of anti-HEV IgG. Additionally, other 300 randomly selected serum samples were also analysed by RT-PCR. Seven serum samples were positive to RNA detection. Sequence analysis of both the helicase and the capsid genes revealed that the Spanish isolates were clustered together and close related to those strains from the United States isolated from farms with HSS. On the serology study, 26/29 flocks had at least one positive animal (89.7%) and chickens older than 40 weeks were found to have higher seropositivities compared to the rest of age groups. Within positive farms, the proportion of positive animals ranged from 20% to 80%. This is the first report of aHEV sequences in chickens from Europe. Further studies are needed to elucidate the clinical significance of avian HEV infections in Europe.

  18. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the up......Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...

  19. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    Science.gov (United States)

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus.

  20. GROWTH REGULATION IN ROUS SARCOMA VIRUS INFECTED CHICKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    Energy Technology Data Exchange (ETDEWEB)

    Parry, G.; Bartholomew, J.A.; Blssell, M.J.

    1980-07-01

    We report here a study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in this process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. The two principal findings were (1) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts seems to have two distinct regulatory compartments (using the terminology of Brooks et al. we refer to these as 'Q' and 'A' states). When rendered stationary at 41.5 C by serum deprivation, normal cells enter a Q state, but cells infected with the ts-mutant occupy an A state. (2) Whereas normal cells can occupy either state depending on culture conditions, the ts-infected cells, at 41.5 C, do not seem to enter Q even though a known src gene product, a kinase, is reported to be inactive at this temperature. We discuss the possibility that viral factors other than the active src protein kinase influence growth control in infected cultures.

  1. The structure and function of the rous sarcoma virus RNA stability element.

    Science.gov (United States)

    Withers, Johanna B; Beemon, Karen L

    2011-11-01

    For simple retroviruses, such as the Rous sarcoma virus (RSV), post-transcriptional control elements regulate viral RNA splicing, export, stability, and packaging into virions. These RNA sequences interact with cellular host proteins to regulate and facilitate productive viral infections. One such element, known as the RSV stability element (RSE), is required for maintaining stability of the full-length unspliced RNA. This viral RNA serves as the mRNA for the Gag and Pol proteins and also as the genome packaged in progeny virions. When the RSE is deleted from the viral RNA, the unspliced RNA becomes unstable and is degraded in a Upf1-dependent manner. Current evidence suggests that the RSE inhibits recognition of the viral gag termination codon by the nonsense-mediated mRNA decay (NMD) pathway. We believe that the RSE acts as an insulator to NMD, thereby preventing at least one of the required functional steps that target an mRNA for degradation. Here, we discuss the history of the RSE and the current model of how the RSE is interacting with cellular NMD factors.

  2. Surveillance of avian influenza viruses in migratory birds in Egypt, 2003-09.

    Science.gov (United States)

    Soliman, Atef; Saad, Magdi; Elassal, Emad; Amir, Ehab; Plathonoff, Chantal; Bahgat, Verina; El-Badry, Maha; Ahmed, Lu'ay S; Fouda, Mostafa; Gamaleldin, Mohammed; Mohamed, Nahed Abd-Elal; Salyer, Stephanie; Cornelius, Claire; Barthel, Robert

    2012-07-01

    Migratory (particularly aquatic) birds are the major natural reservoirs for type A influenza viruses. However, their role in transmitting highly pathogenic avian influenza (HPAI) viruses is unclear. Egypt is a "funnel" zone of wild bird migration pathways from Central Asia and Europe to Eastern and Central Africa ending in South Africa. We sought to detect and isolate avian influenza viruses in migratory birds in Egypt. During September 2003-February 2009, the US Naval Medical Research Unit Number 3, Cairo, Egypt, in collaboration with the Egyptian Ministry of Environment, obtained cloacal swabs from 7,894 migratory birds captured or shot by hunters in different geographic areas in Egypt. Samples were processed by real-time reverse transcriptase PCR for detection of the influenza A matrix gene. Positive samples were processed for virus isolation in specific-pathogen-free embryonated eggs and isolates were subtyped by PCR and partial sequencing. Ninety-five species of birds were collected. Predominant species were Green-Winged Teal (Anas carolinensis; 32.0%, n=2,528), Northern Shoveler (Anas clypeata; 21.4%, n=1,686), and Northern Pintail (Anas acuta; 11.1%, n=877). Of the 7,894 samples, 745 (9.4%) were positive for the influenza A matrix gene (mainly from the above predominant species). Thirteen of the 745 (1.7%) were H5-positive by PCR (11 were low-pathogenic avian influenza and two were HPAI H5N1). The prevalences of influenza A was among regions were 10-15%, except in Middle Egypt (4%). Thirty-nine influenza isolates were obtained from PCR-positive samples. Seventeen subtypes of avian influenza viruses (including H5N1 and H7N7) were classified from 39 isolates using PCR and partial sequencing. Only one HPAI H5N1 was isolated in February 2006, from a wild resident Great Egret (Ardea alba). No major die-offs or sick migratory birds were detected during the study. We identified avian influenza virus subtypes not previously reported in Egypt. The HPAI H5N1 isolated

  3. Avian hepatitis B viruses: Molecular and cellular biology, phylogenesis, and host tropism

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The human hepatitis B virus (HBV) and the duck hepatitis B virus (DHBV) share several fundamental features.Both viruses have a partially double-stranded DNA genome that is replicated via a RNA intermediate and the coding open reading frames (ORFs) overlap extensively.In addition, the genomic and structural organization,as well as replication and biological characteristics, are very similar in both viruses. Most of the key features of hepadnaviral infection were first discovered in the DHBV model system and subsequently confirmed for HBV.There are, however, several differences between human HBV and DHBV. This review will focus on the molecular and cellular biology, evolution, and host adaptation of the avian hepatitis B viruses with particular emphasis on DHBV as a model system.

  4. Avian influenza a virus in wild birds in highly urbanized areas.

    Directory of Open Access Journals (Sweden)

    Josanne H Verhagen

    Full Text Available Avian influenza virus (AIV surveillance studies in wild birds are usually conducted in rural areas and nature reserves. Less is known of avian influenza virus prevalence in wild birds located in densely populated urban areas, while these birds are more likely to be in close contact with humans. Influenza virus prevalence was investigated in 6059 wild birds sampled in cities in the Netherlands between 2006 and 2009, and compared with parallel AIV surveillance data from low urbanized areas in the Netherlands. Viral prevalence varied with the level of urbanization, with highest prevalence in low urbanized areas. Within cities virus was detected in 0.5% of birds, while seroprevalence exceeded 50%. Ring recoveries of urban wild birds sampled for virus detection demonstrated that most birds were sighted within the same city, while few were sighted in other cities or migrated up to 2659 km away from the sample location in the Netherlands. Here we show that urban birds were infected with AIVs and that urban birds were not separated completely from populations of long-distance migrants. The latter suggests that wild birds in cities may play a role in the introduction of AIVs into cities. Thus, urban bird populations should not be excluded as a human-animal interface for influenza viruses.

  5. Avian H11 influenza virus isolated from domestic poultry in a Colombian live animal market

    Science.gov (United States)

    Jiménez-Bluhm, Pedro; Karlsson, Erik A; Ciuoderis, Karl A; Cortez, Valerie; Marvin, Shauna A; Hamilton-West, Christopher; Schultz-Cherry, Stacey; Osorio, Jorge E

    2016-01-01

    Live animal markets (LAMs) are an essential source of food and trade in Latin American countries; however, they can also serve as ‘hotbeds' for the emergence and potential spillover of avian influenza viruses (AIV). Despite extensive knowledge of AIV in Asian LAMs, little is known about the prevalence South American LAMs. To fill this gap in knowledge, active surveillance was carried out at the major LAM in Medellin, Colombia between February and September 2015. During this period, overall prevalence in the market was 2.67% and a North American origin H11N2 AIV most similar to a virus isolated from Chilean shorebirds asymptomatically spread through multiple bird species in the market resulting in 17.0% positivity at peak of infection. Phenotypically, the H11 viruses displayed no known molecular markers associated with increased virulence in birds or mammals, had α2,3-sialic acid binding preference, and caused minimal replication in vitro and little morbidity in vivo. However, the Colombian H11N2 virus replicated and transmitted effectively in chickens explaining the spread throughout the market. Genetic similarity to H11 viruses isolated from North and South American shorebirds suggest that the LAM occurrence may have resulted from a wild bird to domestic poultry spillover event. The ability to spread in domestic poultry as well as potential for human infection by H11 viruses highlight the need for enhanced AIV surveillance in South America in both avian species and humans. PMID:27924808

  6. Estimation of transmission parameters of H5N1 avian influenza virus in chickens.

    Directory of Open Access Journals (Sweden)

    Annemarie Bouma

    2009-01-01

    Full Text Available Despite considerable research efforts, little is yet known about key epidemiological parameters of H5N1 highly pathogenic influenza viruses in their avian hosts. Here we show how these parameters can be estimated using a limited number of birds in experimental transmission studies. Our quantitative estimates, based on Bayesian methods of inference, reveal that (i the period of latency of H5N1 influenza virus in unvaccinated chickens is short (mean: 0.24 days; 95% credible interval: 0.099-0.48 days; (ii the infectious period of H5N1 virus in unvaccinated chickens is approximately 2 days (mean: 2.1 days; 95%CI: 1.8-2.3 days; (iii the reproduction number of H5N1 virus in unvaccinated chickens need not be high (mean: 1.6; 95%CI: 0.90-2.5, although the virus is expected to spread rapidly because it has a short generation interval in unvaccinated chickens (mean: 1.3 days; 95%CI: 1.0-1.5 days; and (iv vaccination with genetically and antigenically distant H5N2 vaccines can effectively halt transmission. Simulations based on the estimated parameters indicate that herd immunity may be obtained if at least 80% of chickens in a flock are vaccinated. We discuss the implications for the control of H5N1 avian influenza virus in areas where it is endemic.

  7. Avian H11 influenza virus isolated from domestic poultry in a Colombian live animal market.

    Science.gov (United States)

    Jiménez-Bluhm, Pedro; Karlsson, Erik A; Ciuoderis, Karl A; Cortez, Valerie; Marvin, Shauna A; Hamilton-West, Christopher; Schultz-Cherry, Stacey; Osorio, Jorge E

    2016-12-07

    Live animal markets (LAMs) are an essential source of food and trade in Latin American countries; however, they can also serve as 'hotbeds' for the emergence and potential spillover of avian influenza viruses (AIV). Despite extensive knowledge of AIV in Asian LAMs, little is known about the prevalence South American LAMs. To fill this gap in knowledge, active surveillance was carried out at the major LAM in Medellin, Colombia between February and September 2015. During this period, overall prevalence in the market was 2.67% and a North American origin H11N2 AIV most similar to a virus isolated from Chilean shorebirds asymptomatically spread through multiple bird species in the market resulting in 17.0% positivity at peak of infection. Phenotypically, the H11 viruses displayed no known molecular markers associated with increased virulence in birds or mammals, had α2,3-sialic acid binding preference, and caused minimal replication in vitro and little morbidity in vivo. However, the Colombian H11N2 virus replicated and transmitted effectively in chickens explaining the spread throughout the market. Genetic similarity to H11 viruses isolated from North and South American shorebirds suggest that the LAM occurrence may have resulted from a wild bird to domestic poultry spillover event. The ability to spread in domestic poultry as well as potential for human infection by H11 viruses highlight the need for enhanced AIV surveillance in South America in both avian species and humans.

  8. Preparation of Anti-Idiotypic Antibody against Avian Influenza Virus Subtype H9

    Institute of Scientific and Technical Information of China (English)

    Baoquan Li; Jun Peng; Zhongxiang Niu; Xunhe Yin; Faxiao Liu

    2005-01-01

    To generate monoclonal anti-idiotypic antibodies (mAb2) against avian influenza virus subtype H9 (H9 AIV),BALB/c mice were immunized with purified chicken anti-H9-AIV IgG and the splenocytes of immunized mice were fused with myeloma cells NS-1. Hybridoma cells were screened by indirect enzyme-linked immunosorbent assays with both chicken and rabbit anti-H9-AIV IgG as coating antigens. One hybridoma cell clone secreting monoclonal antibody against idiotypes shared by both chicken and rabbit anti-H9-AIV IgG was established. Experiments demonstrated the mAb2 was able to inhibit the binding of hemagglutinin to anti-H9-AIV IgG and to induce chickens to generate hemagglutination inhibition antibodies, indicating this anti-species-sharing-idiotypic antibody bore the internal image of hemagglutinin on avian influenza virus. Cellular & Molecular Immunology. 2005;2(2):155-157.

  9. Preparation of Anti-Idiotypic Antibody against Avian Influenza Virus Subtype H9

    Institute of Scientific and Technical Information of China (English)

    BaoquanLi; JunPeng; ZhongxiangNiu; XunheYin; FaxiaoLiu

    2005-01-01

    To generate monoclonal anti-idiotypic antibodies (mAb2) against avian influenza virus subtype H9 (H9 AIV), BALB/c mice were immunized with purified chicken anti-H9-AIV IgG and the splenocytes of immunized mice were fused with myeloma cells NS-1. Hybridoma cells were screened by indirect enzyme-linked immunosorbent assays with both chicken and rabbit anti-H9-AIV IgG as coating antigens. One hybridoma cell clone secreting monoclonal antibody against idiotypes shared by both chicken and rabbit anti-H9-AIV IgG was established. Experiments demonstrated the mAb2 was able to inhibit the binding of hemagglutinin to anti-H9-AIV IgG and to induce chickens to generate hemagglutination inhibition antibodies, indicating this anti-species-sharing-idiotypic antibody bore the internal image of hemagglutinin on avian influenza virus. Cellular & Molecular Immunology. 2005;2(2):155-157.

  10. 禽流感病原学研究进展%Etiology Research Progress of Avian Influenza Virus

    Institute of Scientific and Technical Information of China (English)

    田伟; 仇铮; 姜丽萍; 丛秋实

    2014-01-01

    禽流感(avian influenza, AI)是由A型禽流感病毒(avian influenza virus, AIV)引起的一种禽类的感染疾病综合征。本文通过对禽流感病毒的结构和分子生物学特征等的描述,为H5N1禽流感病毒致病机理的认识及临床诊断提供帮助。%Avian influenza is an infection disease syndrome caused by type A in fluenza virus. According to the study of structure and molecular biology of the H5N1 avian influenza virus in ducks, its pathogenic mechanism and clinical diagrosis were studied.

  11. Distribution of sialic acid receptors and influenza A viruses of avian and swine origin and in experimentally infected pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Larsen, Lars Erik; Viuff, Birgitte M.

    2011-01-01

    Background: Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SAalpha- 2,3)) and swine/human (SA-alpha-2,6) influenza viruses...... in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. Methods: This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA) I......, and II, and Sambucus Nigra (SNA). Furthermore, the predilection sites of swine influenza virus (SIV) subtypes H1N1 and H1N2 as well as avian influenza virus (AIV) subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods. Results: SIV...

  12. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    Science.gov (United States)

    Arai, Yasuha; Kawashita, Norihito; Daidoji, Tomo; Ibrahim, Madiha S; El-Gendy, Emad M; Takagi, Tatsuya; Takahashi, Kazuo; Suzuki, Yasuo; Ikuta, Kazuyoshi; Nakaya, Takaaki; Shioda, Tatsuo; Watanabe, Yohei

    2016-04-01

    A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  13. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Science.gov (United States)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  14. Generation and infectivity titration of an infectious stock of avian hepatitis E virus (HEV) in chickens and cross-species infection of turkeys with avian HEV.

    Science.gov (United States)

    Sun, Z F; Larsen, C T; Huang, F F; Billam, P; Pierson, F W; Toth, T E; Meng, X J

    2004-06-01

    Avian hepatitis E virus (HEV), a novel virus identified from chickens with hepatitis-splenomegaly syndrome in the United States, is genetically and antigenically related to human HEV. In order to further characterize avian HEV, an infectious viral stock with a known infectious titer must be generated, as HEV cannot be propagated in vitro. Bile and feces collected from specific-pathogen-free (SPF) chickens experimentally infected with avian HEV were used to prepare an avian HEV infectious stock as a 10% suspension of positive fecal and bile samples in phosphate-buffered saline. The infectivity titer of this infectious stock was determined by inoculating 1-week-old SPF chickens intravenously with 200 microl of each of serial 10-fold dilutions (10(-2) to 10(-6)) of the avian HEV stock (two chickens were inoculated with each dilution). All chickens inoculated with the 10(-2) to 10(-4) dilutions of the infectious stock and one of the two chickens inoculated with the 10(-5) dilution, but neither of the chickens inoculated with the 10(-6) dilution, became seropositive for anti-avian HEV antibody at 4 weeks postinoculation (wpi). Two serologically negative contact control chickens housed together with chickens inoculated with the 10(-2) dilution also seroconverted at 8 wpi. Viremia and shedding of virus in feces were variable in chickens inoculated with the 10(-2) to 10(-5) dilutions but were not detectable in those inoculated with the 10(-6) dilution. The infectivity titer of the infectious avian HEV stock was determined to be 5 x 10(5) 50% chicken infectious doses (CID(50)) per ml. Eight 1-week-old turkeys were intravenously inoculated with 10(5) CID(50) of avian HEV, and another group of nine turkeys were not inoculated and were used as controls. The inoculated turkeys seroconverted at 4 to 8 wpi. In the inoculated turkeys, viremia was detected at 2 to 6 wpi and shedding of virus in feces was detected at 4 to 7 wpi. A serologically negative contact control turkey housed

  15. Avian influenza A viruses: From zoonosis to pandemic

    NARCIS (Netherlands)

    M. Richard (Mathilde); M.T. de Graaf (Marieke); S. Herfst (Sander)

    2014-01-01

    textabstractZoonotic influenza A viruses originating from the animal reservoir pose a threat for humans, as they have the ability to trigger pandemics upon adaptation to and invasion of an immunologically naive population. Of particular concern are the H5N1 viruses that continue to circulate in poul

  16. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    Science.gov (United States)

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  17. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards.

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Stallknecht, David E; Swayne, David E

    2016-11-01

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses.

  18. First finding of subgroup-E avian leukosis virus from wild ducks in China.

    Science.gov (United States)

    Hao, Ruijun; Han, Chunyan; Liu, Lanlan; Zeng, Xiangwei

    2014-10-10

    To analyze the status of avian leukosis virus subgroup E (ALV-E) in wild ducks in China, we collected 276 wild ducks, including 12 species, from four provinces of China. The PCR detection for ALV-E identified four samples as positive samples and the detection rate was 1.45%. The env sequences of ALV-E were cloned and sequenced. In gp85, genes of the four ALV-E strains showed a high homology (98.1-99.5%) with ev-1, ev-3, and SD0501 and more than 90% homology with other subgroup-A and subgroup-B avian leukosis viruses. However, they showed a slightly lower identity with subgroup-J (NX0101 and HPRS103), from 47.5 to 48.1%. Simultaneously, a further comparison with ALV-E representative isolates indicated that the amino acid substitutions of the four wild duck strains were distributed throughout the gp85. In total, these results suggested that the subgroup-E avian leukosis virus has been found in wild ducks in China.

  19. Novel antiviral activity of neuraminidase inhibitors against an avian influenza a virus

    Directory of Open Access Journals (Sweden)

    Ohuchi Masanobu

    2011-08-01

    Full Text Available Abstract Background Neuraminidase (NA inhibitors used for influenza therapy are believed to prevent the release of progeny virus from the surface of an infected cell. In this study, we found that NA inhibitors have a novel antiviral function against an avian influenza virus. Results Madin-Darby canine kidney cells, commonly used for the isolation and propagation of the influenza virus, were infected with an avian influenza viral strain A/chicken/German/N/49(H10N7 (H10/chicken or a human influenza viral strain A/Osaka/981/98(H3N2 (H3/Osaka virus. Cells were incubated in a medium without or with a NA inhibitor, oseltamivir carboxylate (GS4071, from 1 to 13 h post infection (p.i.. Infected cells were washed 12 h p.i. to remove GS4071, incubated for 1 h without GS4071, and assayed for virus production. Incubation with GS4071 decreased the production of infectious viruses. When H10/chicken virus-infected cells were incubated with GS4071 from 12 to 13 h p.i. (i.e., 1 h before the virus production assay, the inhibitory effect was clearly observed, however, the same was not evident for H3/Osaka virus-infected cells. Furthermore, viral protein synthesis in infected cells was not affected by GS4071. Using a scanning electron microscope, many single spherical buds were observed on the surface of H3/Osaka virus-infected cells incubated without GS4071, whereas many aggregated particles were observed on the surface of cells incubated with GS4071. However, many long tubular virus-like structures, with no aggregated particles, were observed on the surface of H10/chicken virus-infected cells incubated with GS4071. The same results were obtained when another NA inhibitor, zanamivir, was used. Conclusions These results indicate that NA inhibitors interfered with virus particle formation in the H10/chicken virus-infected cells, in which the inhibitor caused the formation of long tubular virus-like structures instead of spherical virus particles.

  20. Pandemic and Avian Influenza A Viruses in Humans: Epidemiology, Virology, Clinical Characteristics, and Treatment Strategy.

    Science.gov (United States)

    Li, Hui; Cao, Bin

    2017-03-01

    The intermittent outbreak of pandemic influenza and emergence of novel avian influenza A virus is worldwide threat. Although most patients present with mild symptoms, some deteriorate to severe pneumonia and even death. Great progress in the understanding of the mechanism of disease pathogenesis and a series of vaccines has been promoted worldwide; however, incidence, morbidity, and mortality remains high. To step up vigilance and improve pandemic preparedness, this article elucidates the virology, epidemiology, pathogenesis, clinical characteristics, and treatment of human infections by influenza A viruses, with an emphasis on the influenza A(H1N1)pdm09, H5N1, and H7N9 subtypes.

  1. Prevalence of antibodies to type A influenza virus in wild avian species using two serologic assays

    Science.gov (United States)

    Brown, Justin D.; Luttrell, M. Page; Berghaus, Roy D.; Kistler, Whitney; Keeler, Shamus P.; Howey, Andrea; Wilcox, Benjamin; Hall, Jeffrey; Niles, Larry; Dey, Amanda; Knutsen, Gregory; Fritz, Kristen; Stallknecht, David E.

    2010-01-01

    Serologic testing to detect antibodies to avian influenza (AI) virus has been an underused tool for the study of these viruses in wild bird populations, which traditionally has relied on virus isolation and reverse transcriptase-polymerase chain reaction (RT-PCR). In a preliminary study, a recently developed commercial blocking enzyme-linked immunosorbent assay (bELISA) had sensitivity and specificity estimates of 82% and 100%, respectively, for detection of antibodies to AI virus in multiple wild bird species after experimental infection. To further evaluate the efficacy of this commercial bELISA and the agar gel immunodiffusion (AGID) test for AI virus antibody detection in wild birds, we tested 2,249 serum samples collected from 62 wild bird species, representing 10 taxonomic orders. Overall, the bELISA detected 25.4% positive samples, whereas the AGID test detected 14.8%. At the species level, the bELISA detected as many or more positive serum samples than the AGID in all 62 avian species. The majority of positive samples, detected by both assays, were from species that use aquatic habitats, with the highest prevalence from species in the orders Anseriformes and Charadriiformes. Conversely, antibodies to AI virus were rarely detected in the terrestrial species. The serologic data yielded by both assays are consistent with the known epidemiology of AI virus in wild birds and published reports of host range based on virus isolation and RT-PCR. The results of this research are also consistent with the aforementioned study, which evaluated the performance of the bELISA and AGID test on experimental samples. Collectively, the data from these two studies indicate that the bELISA is a more sensitive serologic assay than the AGID test for detecting prior exposure to AI virus in wild birds. Based on these results, the bELISA is a reliable species-independent assay with potentially valuable applications for wild bird AI surveillance.

  2. Estimating Risks of Inapparent Avian Exposure for Human Infection: Avian Influenza Virus A (H7N9) in Zhejiang Province, China

    Science.gov (United States)

    Ge, Erjia; Zhang, Renjie; Li, Dengkui; Wei, Xiaolin; Wang, Xiaomeng; Lai, Poh-Chin

    2017-01-01

    Inapparent avian exposure was suspected for the sporadic infection of avian influenza A(H7N9) occurring in China. This type of exposure is usually unnoticed and difficult to model and measure. Infected poultry with avian influenza H7N9 virus typically remains asymptomatic, which may facilitate infection through inapparent poultry/bird exposure, especially in a country with widespread practice of backyard poultry. The present study proposed a novel approach that integrated ecological and case-control methods to quantify the risk of inapparent avian exposure on human H7N9 infection. Significant associations of the infection with chicken and goose densities, but not with duck density, were identified after adjusting for spatial clustering effects of the H7N9 cases across multiple geographic scales of neighborhood, community, district and city levels. These exposure risks varied geographically in association with proximity to rivers and lakes that were also proxies for inapparent exposure to avian-related environment. Males, elderly people, and farmers were high-risk subgroups for the virus infection. These findings enable health officials to target educational programs and awareness training in specific locations to reduce the risks of inapparent exposure. PMID:28054599

  3. Construction and characterization of infectious cDNA clones of a chicken strain of hepatitis E virus (HEV), avian HEV.

    Science.gov (United States)

    Huang, F F; Pierson, F W; Toth, T E; Meng, X J

    2005-09-01

    Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important human pathogen. Increasing evidence indicates that hepatitis E is a zoonosis. Avian HEV was recently discovered in chickens with hepatitis-splenomegaly syndrome in the USA. Like swine HEV from pigs, avian HEV is also genetically and antigenically related to human HEV. The objective of this study was to construct and characterize an infectious cDNA clone of avian HEV for future studies of HEV replication and pathogenesis. Three full-length cDNA clones of avian HEV, pT7-aHEV-5, pT7G-aHEV-10 and pT7G-aHEV-6, were constructed and their infectivity was tested by in vitro transfection of leghorn male hepatoma (LMH) chicken liver cells and by direct intrahepatic inoculation of specific-pathogen-free (SPF) chickens with capped RNA transcripts from the three clones. The results showed that the capped RNA transcripts from each of the three clones were replication competent when transfected into LMH cells as demonstrated by detection of viral antigens with avian HEV-specific antibodies. SPF chickens intrahepatically inoculated with the capped RNA transcripts from each of the three clones developed active avian HEV infections as evidenced by seroconversion to avian HEV antibodies, viraemia and faecal virus shedding. The infectivity was further confirmed by successful infection of naïve chickens with the viruses recovered from chickens inoculated with the RNA transcripts. The results indicated that all three cDNA clones of avian HEV are infectious both in vitro and in vivo. The availability of these infectious clones for a chicken strain of HEV now affords an opportunity to study the mechanisms of HEV cross-species infection and tissue tropism by constructing chimeric viruses among human, swine and avian HEVs.

  4. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Directory of Open Access Journals (Sweden)

    Abdel-Ghany Ahmad E

    2010-04-01

    Full Text Available Abstract Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE. Reverse transcriptase polymerase chain reaction (RT-PCR and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas.

  5. Novel avian influenza A (H7N9 virus induces impaired interferon responses in human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Veera Arilahti

    Full Text Available In March 2013 a new avian influenza A(H7N9 virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs. We observed that in H7N9 virus-infected cells, interferon (IFN responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced "cytokine storm" seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.

  6. Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jan A van Gils

    Full Text Available It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell naturally infected with low-pathogenic avian influenza (LPAI A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.

  7. Study on the Pathogenicity of Chinese Strains of Subgroup J Avian Leukosis Viruses

    Institute of Scientific and Technical Information of China (English)

    DU Yan; CUI Zhi-zhong

    2002-01-01

    The pathogenicity of 4 Chinese strains of subgroup J avian leukosis viruses (ALV-J), SD9901,SD9902, YZ9901 and YZ9902, was studied. The results showed that only SD9902 among the 4 strains induced mortality from myeloid leukosis (ML). In the 12 meat-type chickens inoculated with SD9902 at 1-day-old, 9died between 22 days and 38 days after inoculation. No death or ML was found in chickens inoculated with the other 3 strains during the period of 6 months. These results suggested the SD9902 strain of ALV-J was an acute transforming virus, but SD9901, YZ9901 and YZ9902 were non-transforming viruses. All 4 Chinese strains did not induce any tumors in egg-type SPF chickens during 7 months after hatching when viruses were injected into 11-day-old embryos.

  8. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette.

    Science.gov (United States)

    Madu, Ikenna G; Chu, Victor C; Lee, Hwajin; Regan, Andrew D; Bauman, Beverley E; Whittaker, Gary R

    2007-03-01

    The avian coronavirus infectious bronchitis virus (IBV) strain Beaudette is an embryo-adapted virus that has extended species tropism in cell culture. In order to understand the acquired tropism of the Beaudette strain, we compared the S protein sequences of several IBV strains. The Beaudette strain was found to contain a putative heparan sulfate (HS)-binding site, indicating that the Beaudette virus may use HS as a selective receptor. To ascertain the requirements of cell-surface HS for Beaudette infectivity, we assayed for infectivity in the presence of soluble heparin as a competitor and determined infectivity in mutant cell lines with no HS or glycosaminoglycan expression. Our results indicate that HS plays a role as an attachment factor for IBV, working in concert with other factors like sialic acid to mediate virus binding to cells, and may explain in part the extended tropism of IBV Beaudette.

  9. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells.

    Science.gov (United States)

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 - ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.

  10. West Nile virus antibodies in avian species of Georgia, USA: 2000-2004.

    Science.gov (United States)

    Gibbs, Samantha E J; Allison, Andrew B; Yabsley, Michael J; Mead, Daniel G; Wilcox, Benjamin R; Stallknecht, David E

    2006-01-01

    West Nile virus (WNV) was first isolated in the state of Georgia in the summer of 2001. As amplifying hosts of WNV, avian species play an important role in the distribution and epidemiology of the virus. The objective of this study was to identify avian species that are locally involved as potential amplifying hosts of WNV and can serve as indicators of WNV transmission over the physiographic and land use variation present in the southeastern United States. Avian serum samples (n=14,077) from 83 species of birds captured throughout Georgia during the summers of 2000-2004 were tested by a plaque reduction neutralization test for antibodies to WNV and St. Louis encephalitis virus. Over the 5-year period, WNV-neutralizing antibodies were detected in 869 (6.2%) samples. The WNV seroprevalence increased significantly throughout the study and was species dependent. The highest antibody prevalence rates were detected in rock pigeons (Columba livia), northern cardinals (Cardinalis cardinalis), common ground doves (Columbina passerina), grey catbirds (Deumetella carolinensis), and northern mockingbirds (Mimus polyglottos). Northern cardinals, in addition to having high geometric mean antibody titers and seroprevalence rates, were commonly found in all land use types and physiographic regions. Rock pigeons, common ground doves, grey catbirds, and northern mockingbirds, although also having high seroprevalence rates and high antibody titers against WNV, were more restricted in their distribution and therefore may be of more utility when attempting to assess exposure rates in specific habitat types. Of all species tested, northern cardinals represent the best potential avian indicator species for widespread serologic-based studies of WNV throughout Georgia due to their extensive range, ease of capture, and high antibody rates and titers. Due to the large geographic area covered by this species, their utility as a WNV sentinel species may include most of the eastern United

  11. Characterization of antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian hepatitis E virus.

    Science.gov (United States)

    Zhao, Qin; Sun, Ya-ni; Hu, Shou-bin; Wang, Xin-jie; Xiao, Yi-hong; Hsu, Walter H; Xiao, Shu-qi; Wang, Cheng-bao; Mu, Yang; Hiscox, Julian A; Zhou, En-Min

    2013-12-27

    Avian hepatitis E virus (HEV) is an emerging virus associated with the big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens and subclinical infections by the virus are also common. The complete genome of avian HEV contains three open-reading frames (ORFs) in which ORF2 protein is part of virus particles and thus contains primary epitopes. Antigenic epitopes of avian HEV ORF2 protein have been described but those associated with the ORF3 have not. To analyze the antigenic domains and epitopes in the ORF3 protein of a Chinese isolate of avian HEV (CaHEV), we generated a series of antigens comprised of the complete ORF3 and also five truncated overlapping ORF3 peptides. The antibodies used in this study were mouse antisera and monoclonal antibodies against ORF3, positive chicken sera from Specific Pathogen Free chickens experimentally infected with CaHEV and clinical chicken sera. Using these antigens and antibodies, we identified three antigenic domains at amino acids (aa) 1-28, 55-74 and 75-88 in which aa 75-88 was a dominant domain. The dominant domain contained at least two major epitopes since field chickens infected with avian HEV produced antibodies against the domain and epitopes. These results provide useful information for future development of immunoassays for the diagnosis of avian HEV infection.

  12. Avian influenza virus (H5N1; effects of physico-chemical factors on its survival

    Directory of Open Access Journals (Sweden)

    Hameed Sajid

    2009-03-01

    Full Text Available Abstract Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI H5N1 (local strain virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 108.3 ELD50/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon®-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda agents. Harvested amnio-allantoic fluid (AAF from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg was subjected to haemagglutination (HA and haemagglutination inhibition (HI tests. H5N1 virus lost infectivity after 30 min at 56°C, after 1 day at 28°C but remained viable for more than 100 days at 4°C. Acidic pH (1, 3 and basic pH (11, 13 were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h, 7 and 9 (more than 24 h. UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy®, detergent (surf excel® and alkali (caustic soda destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV outbreak.

  13. Use of molecularly cloned avian leukosis virus to study antigenic variation following infection of meat-type chickens

    Science.gov (United States)

    A molecularly cloned strain of subgroup J avian leukosis virus (ALV-J) termed R5-4 was used to study antigenic variation following infection of meat-type chickens. Chickens were inoculated with R5-4 virus at either 8 days of embryonation or at 1 week of age. Each chicken was housed in a separate is...

  14. Subgroup J Avian Leukosis Virus Neutralizing Antibody Escape Variants Contribute to Viral Persistence in Meat-Type Chickens

    Science.gov (United States)

    We have previously demonstrated a high incidence of chickens with persistent viremia even in the presence of neutralizing antibodies (NAb) against the inoculated parental virus (V+A+) in commercial meat-type chickens inoculated at hatch with Subgroup J avian leukosis virus (ALV J) field isolates. I...

  15. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China.

    NARCIS (Netherlands)

    Zhang, Y.; Mao, H.; Yan, J.; Zhang, L.; Sun, Y.; Wang, X.; Chen, Y.; Lu, Y.; Chen, E.; Lv, H.; Gong, L.; Li, Z.; Gao, J.; Xu, C.; Feng, Y.; Ge, Q.; Xu, B.; Xu, F.; Yang, Z.; Zhao, C.; Han, J.; Koch, G.; Li, H.; Shu, Y.L.; Chen, Z.

    2014-01-01

    In 2013, the novel reassortant avian-origin influenza A (H7N9) virus was reported in China. Through enhanced surveillance, infection by the H7N9 virus in humans was first identified in Zhejiang Province. Real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was used to confirm the infec

  16. Marked endotheliotropism of highly pathogenic avian influenza virus H5N1 following intestinal inoculation in cats

    NARCIS (Netherlands)

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Leijten, Lonneke M E; Watson, Simon; Palser, Anne; Kellam, Paul; Eissens, Anko C; Frijlink, Hendrik W; Osterhaus, Albert D M E; Kuiken, Thijs; Frijlink, Henderik

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 can infect mammals via the intestine; this is unusual since influenza viruses typically infect mammals via the respiratory tract. The dissemination of HPAIV H5N1 following intestinal entry and associated pathogenesis are largely unknown. To assess

  17. Marked endotheliotropism of highly pathogenic avian influenza virus H5N1 following intestinal inoculation in cats

    NARCIS (Netherlands)

    L.A. Reperant (Leslie); M.W.G. van de Bildt (Marco); G. van Amerongen (Geert); L.M.E. Leijten (Lonneke); S. Watson (Sarah)

    2012-01-01

    textabstractHighly pathogenic avian influenza virus (HPAIV) H5N1 can infect mammals via the intestine; this is unusual since influenza viruses typically infect mammals via the respiratory tract. The dissemination of HPAIV H5N1 following intestinal entry and associated pathogenesis are largely unknow

  18. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James;

    2012-01-01

    Acquisition of a2-6 sialoside receptor specificity by a2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding a2-6 sialosides, we identified four variant viruses with amino acid...

  19. Rapid sample preparation for detection and identification of avian influenza virus from chicken faecal samples using magnetic bead microsystem

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram; Bu, Minqiang; Handberg, Kurt;

    2010-01-01

    Avian influenza virus (AIV) is an infectious agent of birds and mammals. AIV is causing huge economic loss and can be a threat to human health. Reverse transcriptase polymerase chain reaction (RT-PCR) has been used as a method for the detection and identification of AIV virus. Although RT...

  20. Sequence analysis for the complete proviral genome of avian leukosis virus subgroup J associated with haemangiomas, leiomyosarcomas and myelomas in layer flocks.

    Science.gov (United States)

    Qu, Yue; Sun, Honglei; Sun, Meiyu; Li, Delong; Qin, Liting; Gao, Yulong; Wang, Xiaomei; Liu, Sidang

    2012-09-01

    Avian leukosis virus subgroup J (ALV-J) can cause a variety of neoplasms, including mainly myeloid leukosis (myelocytomatosis) and nephromas. Other tumours, such as histiocytic sarcoma (HS), haemangiosarcoma and mesothelioma, may also develop. In a previous article we described a case in which myeloid leukosis, haemangiomas and leiomyosarcomas appeared simultaneously in a commercial layer flock with infection by ALV-J. The present research was completed to understand the molecular characteristics of the ALV-J strain that induced clinical myeloid leukosis, haemangiomas and leiomyosarcomas. Two strains of ALV-J (SDAU1001 and SDAU1002) were isolated and identified, and their full-length sequences were analysed. The complete genome nucleotide sequences of these two isolates were different in length, 7652 nt and 7636 nt, respectively. They shared 98.9% identity with each other, and 93.4% to 97.8% nucleotide identity to the reference ALV-J isolates. A 19-nucleotide repeat sequence was identified in the primer binding site (PBS) leader region of isolate SDAU1001. A base substitution mutation (base 15 C-T) in this insertion was identified. However, the identical insertion at the same site was not found in SDAU1002. The gag and pol genes of the two viruses were more conserved than the env gene. One key deletion in the E element was a common feature of SDAU1001 and SDAU1002. SDAU1001 and SDAU1002, possibly recombinants of ALV-J and another avian retrovirus, may share the same ancestor. Co-infection by SDAU1001 and SDAU1002 isolates is a possible explanation why myeloid leukosis, haemangiomas, and leiomyosarcomas appeared simultaneously in the same commercial layer flock.

  1. Identification and characterization of avian hepatitis E virus genotype 2 from chickens with hepatitis-splenomegaly syndrome in Korea.

    Science.gov (United States)

    Moon, Hyun-Woo; Lee, Byung-Woo; Sung, Haan Woo; Yoon, Byung-Il; Kwon, Hyuk Moo

    2016-10-01

    A new avian hepatitis E virus (HEV) GI-B was identified in broiler breeders with hematomas, liver rupture, and splenomegaly, along with excessive abdominal fat, in Korea. Previously, genotype 1 had been identified in avian HEV strains in Korea. Complete sequence analyses revealed that the new avian HEV clustered in genotype 2, which has been identified in the USA and Spain; the GI-B isolate was closely related to the USA prototype avian HEV isolated from a chicken with hepatitis-splenomegaly syndrome. Although some HEV genotypes show a geographical distribution pattern, the discovery of genotype 2 in addition to genotype 1 in Korea suggests that the geographical grouping might be reconsidered. These findings have important implications for understanding the global epidemiology and spread of avian HEV.

  2. Detection of Markers of Increased Virulence Non Structural protein (NS I Avian Influenza Virus H5N1 from Indonesia=DETEKSI PENANDA PENINGKATAN VIRULENSI NON STRUKTURAL PROTEIN (NS1 VIRUS AVIAN INFLUENZA H5N1 ASAL INDONESIA

    Directory of Open Access Journals (Sweden)

    Arief Mulyono

    2015-03-01

    Full Text Available ENGLISHAbstractNS1 protein is a multifunction protein that plays key role of pathogenesis and virulence of avians influenza virus H5N1. The amino acid substitution at the position P42S, D92E, F103I, M106I and 5 amino acid deletion at the position 80 to 84 in NS1 protein reported increasing virulence of avians influenza virus H5N1. Several studies showed avians influenza virus H5N1 in Indonesia has dynamic changed. This study aimed to analyze the markers of virulence of NS1 protein sequences of all H5N1 virus isolates from Indonesia. The source of NS1 protein sequence data gene obtained from GeneBank and Gisaid. Data were analyzed using Bioedit software. The Results showed the isolates from Indonesia had substitutions P42S and 5 amino acids deletions at positions 80-84 resulting in the potential for increased virulence of the virus. However, amino acid substitution at the position D92E, F103L and M106I substitution were not found.INDONESIANAbstrakProtein NS1 adalah protein multifungsi yang memainkan peran kunci dalam patogenesis dan virulensi virus avian influenza H5N1. Substitusi asam amino P42S, D92E, F103I, M106I, dan delesi 5 asam amino di posisi 80 - 84 dilaporkan meningkatkan virulensi virus avian influenza H5N1. Beberapa penelitian menunjukkan bahwa virus avian influenza di Indonesia mengalami perubahan dinamis. Studi ini akan menganalisis motif asam amino yang menjadi penanda peningkatan virulensi pada sekuen protein NS1 virus avian influenza H5N1 asal Indonesia. Data sekuen asam amino protein NS1 diperoleh dari database GeneBank dan Gisaid. Analisis data menggunakan Bioedit software. Hasil analisis menunjukkan subtitusi asam amino dari prolin ke serin di posisi 42 (P42S dan delesi 5 asam amino di posisi 80 – 84 telah ditemukan pada virus avian influenza asal Indonesia, akan tetapi tidak ditemukan substitusi asam amino aspartat ke glutamat diposisi no 92 (D92E dan tidak ada yang mengalami 2 substitusi asam amino sekaligus diposisi 103

  3. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    Science.gov (United States)

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  4. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Nancy A Gerloff

    Full Text Available Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50 were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the

  5. Updated values for molecular diagnosis for highly pathogenic avian influenza virus.

    Science.gov (United States)

    Sakurai, Akira; Shibasaki, Futoshi

    2012-08-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 strain pose a pandemic threat. H5N1 strain virus is extremely lethal and contagious for poultry. Even though mortality is 59% in infected humans, these viruses do not spread efficiently between humans. In 1997, an outbreak of H5N1 strain with human cases occurred in Hong Kong. This event highlighted the need for rapid identification and subtyping of influenza A viruses (IAV), not only to facilitate surveillance of the pandemic potential of avian IAV, but also to improve the control and treatment of infected patients. Molecular diagnosis has played a key role in the detection and typing of IAV in recent years, spurred by rapid advances in technologies for detection and characterization of viral RNAs and proteins. Such technologies, which include immunochromatography, quantitative real-time PCR, super high-speed real-time PCR, and isothermal DNA amplification, are expected to contribute to faster and easier diagnosis and typing of IAV.

  6. Isolation and identification of J-Avian Leukosis virus and gp85 gene cloning and expression%禽白血病J亚型病毒分离鉴定及其gp85基因克隆表达

    Institute of Scientific and Technical Information of China (English)

    李广兴; 杨婷; 潘龙; 任晓峰; 王秀荣

    2013-01-01

    禽白血病(Avian leukosis)是由禽白血病病毒(Avian leukosis virus,ALV)和禽肉瘤病毒(Avain sacroma viurs,ASV)群中病毒引起禽类多种肿瘤性疾病统称.文章从临床疑似病鸡中经临床症状观察、病理学检查和分子生物学鉴定等方法分离出一株ALV J亚型病毒.从感染鸡病料提取前病毒DNA,根据NCBI发表ALV基因序列设计引物,扩增该病毒gp85基因,扩增出924 bp目的条带,利用pET-30a载体构建原核表达质粒,鉴定正确后转化入Rosetta中进行诱导表达,表达40 ku蛋白以包涵体形式存在,有良好免疫原性,为ALV进一步研究提供实验材料.%Avian Leukosis is caused by groups of avian leukemia virus (ALV) and avian sarcoma virus (ASV),which may lead to a variety of neoplastic diseases of fowls collectively.In this study,the ALV J subgroup virus was isolated and characterized regarding of clinic symptoms,pathological lesions and molecular biology techniques.Then,the proviral DNA of ALV-J virus was extracted from the diseased chicken materials.According to ALV-J virus gene sequences published in GenBank,specific primers were designed to clone the gp85 gene.The results showed that of the gp85 gene of 924 bp was amplified successfully.This gene was inserted into pET-30a vector resulting in a prokaryotic expression plasma pET-30a-gp85.After transformation of pET-30a-gp85 into E.coli Rosseta and induced expression,the molecular weight of recombinant gp85 protein 40 ku was expressed in the form of inclusion body.Western-blot indicated that the expressed protein has good immunogenicity.

  7. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus.

    Science.gov (United States)

    Nador, R G; Cesarman, E; Chadburn, A; Dawson, D B; Ansari, M Q; Sald, J; Knowles, D M

    1996-07-15

    We recently discovered the Kaposi's sarcoma-associated herpes virus (KSHV/HHV-8) in an uncommon and unusual subset of AIDS-related lymphomas that grow mainly in the body cavities as lymphomatous effusions without an identifiable contiguous tumor mass. The consistent presence of KSHV and certain other distinctive features of these body cavity-based lymphomas suggest that they represent a distinct entity. We tested this hypothesis by investigating 19 malignant lymphomatous effusions occurring in the absence of a contiguous tumor mass for their clinical, morphologic, immunophenotypic, viral, and molecular characteristics, KSHV was present in 15 of 19 lymphomas. All four KSHV-negative lymphomatous effusions exhibited Burkitt or Burkitt-like morphology and c-myc gene rearrangements and, therefore, appeared to be Burkitt-type lymphomas occurring in the body cavities. In contrast, all 15 KSHV-positive lymphomatous effusions exhibited a distinctive morphology bridging large-cell immunoblastic lymphoma and anaplastic large-cell lymphoma, and all 12 cases studied lacked c-myc gene rearrangements. In addition, these lymphomas occurred in men (15/15), frequently but not exclusively in association with HIV infection (13/15), in which homosexuality was a risk factor (13/13), presented initially as a lymphomatous effusion (14/15), remained localized to the body cavity of origin (13/15), expressed CD45 (15/15) and one or more activation-associated antigens (9/10) in the frequent absence of B-cell-associated antigens (11/15), exhibited clonal immunoglobulin gene rearrangements (13/13), contained Epstein-Barr virus (14/15), and lacked bcl-2, bcl-6, ras and p53 gene alterations (13/15). These findings strongly suggest that the KSHV-positive malignant lymphomatous effusions represent a distinct clinicopathologic and biologic entity and should be distinguished from other malignant lymphomas occurring in the body cavities. Therefore, we recommend that these malignant lymphomas be

  8. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Robert A.; Datta, Siddhartha A.K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M. (NCI); (Cornell); (CM); (NIST)

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  9. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan

    Science.gov (United States)

    MORIGUCHI, Sachiko; ONUMA, Manabu; GOKA, Koichi

    2016-01-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333

  10. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan.

    Science.gov (United States)

    Moriguchi, Sachiko; Onuma, Manabu; Goka, Koichi

    2016-08-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species.

  11. Sequence analysis and comparison of avian hepatitis E viruses from Australia and Europe indicate the existence of different genotypes.

    Science.gov (United States)

    Bilic, Ivana; Jaskulska, Barbara; Basic, Ana; Morrow, Chris J; Hess, Michael

    2009-04-01

    Avian hepevirus infections were detected in chickens suffering from big liver and spleen disease or hepatitis-splenomegaly syndrome in Australia, the USA and Europe. Available data indicate their genetic relationship to mammalian hepatitis E virus (HEV). In the present study, the near-complete genomic sequences of an Australian and a European isolate of avian hepatitis E virus (avian HEV) are reported for the first time. Furthermore, the phylogenetic relationship to other avian HEVs is determined. Sequence analyses of these isolates identified major genetic differences among avian HEVs. Most of them are located within the open reading frame (ORF)1 region, although only a few lie within conserved motifs of predicted domains. Non-silent mutations in the ORF2 region suggest the presence of potentially different epitopes among avian HEV isolates. Finally, phylogenetic analysis confirmed the distant relationship to mammalian HEV and additionally suggested that the avian HEVs can be separated into three different genotypes: 1 (Australia), 2 (USA) and 3 (Europe), indicating a geographical distribution pattern.

  12. Development and characterization of monoclonal antibodies to subgroup A avian leukosis virus.

    Science.gov (United States)

    Qiu, Y; Li, X; Fu, L; Cui, Z; Li, W; Wu, Z; Sun, S

    2014-03-01

    Avian leukosis virus subgroup A (ALV-A) is a retrovirus which infects egg-type chickens and is the main pathogen of lymphoid leukosis (LL) and myeloid leukosis (ML). In order to greatly enhance the diagnosis and treatment of clinical avian leukemia, two monoclonal antibodies (MAbs) to ALV-A were developed by fusion between SP2/0 and spleen cells from mice immunized with expressed ALV-A env-gp85 protein. Using immunofluorescence assay (IFA), two MAbs reacted with ALV-A, but not with subgroups B and J of ALV. Western blot tests showed that molecular weight of ALV-A envelope glycoprotein recognized by MAbs was about 53 kD. Isotyping test revealed that two MAbs (A5C1 and A4C8) were IgG1 isotypes. These MAbs can be used for diagnosis and epidemiology of ALV-A.

  13. Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl

    Science.gov (United States)

    Dusek, Robert J.; Hall, Jeffrey S.; Nashold, Sean W.; TeSlaa, Joshua L.; Ip, Hon S.

    2011-01-01

    The utility of using Nobuto paper strips for the detection of avian influenza antibodies was examined in mallards (Anas platyrhynchos) experimentally infected with low pathogenic avian influenza viruses. Blood was collected 2 wk after infection and was preserved either as serum or whole blood absorbed onto Nobuto strips. Analysis of samples using a commercially available blocking enzyme-linked immunosorbent assay revealed comparable results (≥96% sensitivity for all methods) between sera stored at -30 C and the Nobuto strip preservation method even when the Nobuto strips were stored up to 3 mo at room temperature (RT). Significant differences were detected in the ratio of sample absorbance to negative control absorbance for Nobuto strips stored at RT compared with sera stored at -30 C, although these differences did not affect the ability of the test to reliably detect positive and negative samples. Nobuto strips are a convenient and sensitive alternative to the collection of serum samples when maintaining appropriate storage temperatures is difficult.

  14. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    Science.gov (United States)

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  15. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus

    NARCIS (Netherlands)

    Peeters, Ben; Tonnis, Wouter F; Murugappan, Senthil; Rottier, Peter; Koch, Guus; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2014-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is, howe

  16. Inactivation of avian influenza virus, newcastle disease virus and goose parvovirus using solution of nano-sized scallop shell powder.

    Science.gov (United States)

    Thammakarn, Chanathip; Satoh, Keisuke; Suguro, Atsushi; Hakim, Hakimullah; Ruenphet, Sakchai; Takehara, Kazuaki

    2014-09-01

    Scallop shell powder produced by calcination process - the average diameter of the powder particles being 20 µm (SSP) - was further ground into nano-sized particles, with average diameter of 500 nm, here designated CaO-Nano. Solution of CaO-Nano could inactivate avian influenza virus within 5 sec, whereas the solution of SSP could not even after 1 hr incubation. CaO-Nano solution could also inactivate Newcastle disease virus and goose parvovirus within 5 sec and 30 sec, respectively. The virus-inactivating capacity (neutralizing index: NI>3) of the solution was not reduced by the presence of 20% fetal bovine serum. CaO-Nano solution seems to be a good candidate of materials for enhancement of biosecurity in farms.

  17. Antibodies to H5 subtype avian influenza virus and Japanese encephalitis virus in northern pintails (Anas acuta) sampled in Japan

    Science.gov (United States)

    Ramey, Andy M.; Spackman, Erica; Yeh, Jung-Yong; Fujita, Go; Konishi, Kan; Reed, John A.; Wilcox, Benjamin R.; Brown, Justin D.; Stallknecht, David E.

    2013-01-01

    Blood samples from 105 northern pintails (Anas acuta) captured on Hokkaido, Japan were tested for antibodies to avian influenza virus (AIV), Japanese encephalitis virus (JEV), and West Nile virus (WNV) to assess possible involvement of this species in the spread of economically important and potentially zoonotic pathogens. Antibodies to AIV were detected in 64 of 105 samples (61%). Of the 64 positives, 95% and 81% inhibited agglutination of two different H5 AIV antigens (H5N1 and H5N9), respectively. Antibodies to JEV and WNV were detected in five (5%) and none of the samples, respectively. Results provide evidence for prior exposure of migrating northern pintails to H5 AIV which couldhave implications for viral shedding and disease occurrence. Results also provide evidence for limited involvement of this species in the transmission and spread of flaviviruses during spring migration.

  18. Duplex PCR assay for the detection of avian adeno virus and chicken anemia virus prevalent in Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal Aqib

    2011-09-01

    Full Text Available Abstract Avian Adeno viruses and Chicken Anemia Viruses cause serious economic losses to the poultry industry of Pakistan each year. Timely and efficient diagnosis of the viruses is needed in order to practice prevention and control strategies. In the first part of this study, we investigated broilers, breeder and Layer stocks for morbidity and mortality rates due to AAV and CAV infections and any co-infections by examining signs and symptoms typical of their infestation or post mortem examination. In the second part of the study, we developed a duplex PCR assay for the detection of AAV and CAV which is capable to simultaneously detect both the viral types prevalent in Pakistan with high sensitivity and 100% specificity.

  19. Synergistic Effect of S224P and N383D Substitutions in the PA of H5N1 Avian Influenza Virus Contributes to Mammalian Adaptation.

    Science.gov (United States)

    Song, Jiasheng; Xu, Jing; Shi, Jianzhong; Li, Yanbing; Chen, Hualan

    2015-05-22

    The adaptation of H5N1 avian influenza viruses to human poses a great threat to public health. Previous studies indicate the adaptive mutations in viral polymerase of avian influenza viruses are major contributors in overcoming the host species barrier, with the majority of mammalian adaptive mutations occurring in the PB2 protein. However, the adaptive mutations in the PA protein of the H5N1 avian influenza virus are less defined and poorly understood. In this study, we identified the synergistic effect of the PA/224P + 383D of H5N1 avian influenza viruses and its ability to enhance the pathogenicity and viral replication in a mammalian mouse model. Interestingly, the signature of PA/224P + 383D mainly exists in mammalian isolates of the H5N1 influenza virus and pdmH1N1 influenza virus, providing a potential pathway for the natural adaptation to mammals which imply the effects of natural adaptation to mammals. Notably, the mutation of PA/383D, which is highly conserved in avian influenza viruses, increases the polymerase activity in both avian and human cells, and may have roles in maintaining the avian influenza virus in their avian reservoirs, and jumping species to infect humans.

  20. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A(H5N1) viruses in ferrets

    Science.gov (United States)

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A (H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, num...

  1. Development of a blocking ELISA for detection of antibodies against avian hepatitis E virus.

    Science.gov (United States)

    Liu, Baoyuan; Zhao, Qin; Sun, Yani; Wang, Xinjie; Zhao, Jinan; Du, Taofeng; Wang, Chengbao; Xiao, Shuqi; Mu, Yang; Zhang, Gaiping; Luo, Jianxun; Hsu, Walter H; Zhou, En-Min

    2014-08-01

    A blocking enzyme-linked immunosorbent assay (bELISA) was developed for the detection of immunoglobulin G antibodies against avian hepatitis E virus (HEV). In the bELISA, the coating antigen was a truncated protein containing C-terminal 268-amino acid region of ORF2 from an avian HEV strain isolated in China (CaHEV) and blocking antibody was a monoclonal antibody (mAb) 1H5 recognizing the epitope within amino acids 384-414 in the C-terminal 268-amino acid region. The concentration of blocking mAb 1H5 was determined as that yielded an OD450nm value of 1.0 for binding to the coating antigen and the antigen concentration and serum dilution were optimized using a checkerboard titration. A cut-off value of 20.7% at the mean percent inhibition plus 3 standard deviations was determined by testing 265 negative sera. The bELISA had a sensitivity of 98.3% by testing 116 positive sera from chickens infected experimentally with CaHEV and had no cross-reaction with other anti-avian virus antibodies. The compliance rates of the bELISA with indirect ELISA and Western blot were 83.7% and 93.3%, respectively, by testing 300 field chicken sera. These results suggested that the bELISA developed in this study can be used for detection of antibodies against avian HEV and showed high reproducibility compared with indirect ELISA and Western blot methods.

  2. Isolation and characterization of virus of highly pathogenic avian influenza H5 subtype of chicken from outbreaks in Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Wiyono

    2004-03-01

    Full Text Available A study on the isolation and characterization of Highly Pathogenic Avian Influenza of chicken from outbreaks in Indonesia was conducted at Indonesian Research Institute for Veterinary Science. Outbreaks of avian disease had been reported in Indonesia since August 2003 affecting commercial layer, broiler, quail, and ostrich and also native chicken with showing clinical signs such as cyanosis of wattle and comb, nasal discharges and hypersalivation, subcutaneous ptechiae on foot and leg, diarre and sudden high mortality. The aim of this study is to isolate and characterize the causal agent of the disease. Samples of serum, feather follicle, tracheal swab, as well as organs of proventriculus, intestine, caecal tonsil, trachea and lungs were collected from infected animals. Serum samples were tested haemaglutination/haemaglutination inhibition to Newcastle Disease and Egg Drop Syndrome viruses. Isolation of virus of the causal agent of the outbreak was conducted from samples of feather follicle, tracheal swab, and organs using 11 days old specific pathogen free (SPF embryonated eggs. The isolated viruses were then characterised by agar gel precipitation test using swine influenza reference antisera, by haemaglutination inhibition using H1 to H15 reference antisera, and by electron microscope examination. The pathogenicity of the viruses was confirmed by intravenous pathogenicity index test and its culture in Chicken Embryo Fibroblast primary cell culture without addition of trypsin. The study revealed that the causative agent of the outbreaks of avian disease in Indonesia was avian influenza H5 subtype virus based upon serological tests, virus isolation and characterization using swine influenza reference antisera, and electron microscope examination. While subtyping of the viruses using H1 to H15 reference antisera suggested that the virus is very likely to be an avian influenza H5N1 subtype virus. The pathogenicity test confirmed that the viruses

  3. Avian influenza virus ecology in Iceland shorebirds: intercontinental reassortment and movement.

    Science.gov (United States)

    Hall, Jeffrey S; Hallgrimsson, Gunnar Thor; Suwannanarn, Kamol; Sreevatsen, Srinand; Ip, Hon S; Magnusdottir, Ellen; TeSlaa, Joshua L; Nashold, Sean W; Dusek, Robert J

    2014-12-01

    Shorebirds are a primary reservoir of avian influenza viruses (AIV). We conducted surveillance studies in Iceland shorebird populations for 3 years, documenting high serological evidence of AIV exposure in shorebirds, primarily in Ruddy Turnstones (Arenaria interpres; seroprevalence=75%). However, little evidence of virus infection was found in these shorebird populations and only two turnstone AIVs (H2N7; H5N1) were able to be phylogenetically examined. These analyses showed that viruses from Iceland shorebirds were primarily derived from Eurasian lineage viruses, yet the H2 hemagglutinin gene segment was from a North American lineage previously detected in a gull from Iceland the previous year. The H5N1 virus was determined to be low pathogenic, however the PB2 gene was closely related to the PB2 from highly pathogenic H5N1 isolates from China. Multiple lines of evidence suggest that the turnstones were infected with at least one of these AIV while in Iceland and confirm Iceland as an important location where AIV from different continents interact and reassort, creating new virus genomes. Mounting data warrant continued surveillance for AIV in wild birds in the North Atlantic, including Canada, Greenland, and the northeast USA to determine the risks of new AI viruses and their intercontinental movement in this region.

  4. Avian influenza virus ecology in Iceland shorebirds: intercontinental reassortment and movement

    Science.gov (United States)

    Hall, Jeffrey S.; Hallgrimsson, Gunnar Thor; Suwannanarn, Kamol; Sreevatsen, Srinand; Ip, Hon S.; TeSlaa, Joshua L.; Nashold, Sean W.; Dusek, Robert J.

    2014-01-01

    Shorebirds are a primary reservoir of avian influenza viruses (AIV). We conducted surveillance studies in Iceland shorebird populations for 3 years, documenting high serological evidence of AIV exposure in shorebirds, primarily in Ruddy Turnstones (Arenaria interpres; seroprevalence = 75%). However, little evidence of virus infection was found in these shorebird populations and only two turnstone AIVs (H2N7; H5N1) were able to be phylogenetically examined. These analyses showed that viruses from Iceland shorebirds were primarily derived from Eurasian lineage viruses, yet the H2 hemagglutinin gene segment was from a North American lineage previously detected in a gull from Iceland the previous year. The H5N1 virus was determined to be low pathogenic, however the PB2 gene was closely related to the PB2 from highly pathogenic H5N1 isolates from China. Multiple lines of evidence suggest that the turnstones were infected with at least one of these AIV while in Iceland and confirm Iceland as an important location where AIV from different continents interact and reassort, creating new virus genomes. Mounting data warrant continued surveillance for AIV in wild birds in the North Atlantic, including Canada, Greenland, and the northeast USA to determine the risks of new AI viruses and their intercontinental movement in this region.

  5. The antigenic property of the H5N1 avian influenza viruses isolated in central China

    Directory of Open Access Journals (Sweden)

    Zou Wei

    2012-08-01

    Full Text Available Abstract Background Three influenza pandemics outbroke in the last century accompanied the viral antigen shift and drift, resulting in the change of antigenic property and the low cross protective ability of the existed antibody to the newly emerged pandemic virus, and eventually the death of millions of people. The antigenic characterizations of the viruses isolated in central China in 2004 and 2006–2007 were investigated in the present study. Results Hemagglutinin inhibition assay and neutralization assay displayed differential antigenic characteristics of the viruses isolated in central China in two periods (2004 and 2006–2007. HA genes of the viruses mainly located in two branches in phylogeny analysis. 53 mutations of the deduced amino acids of the HA genes were divided into 4 patterns. Mutations in pattern 2 and 3 showed the main difference between viruses isolated in 2004 and 2006–2007. Meanwhile, most amino acids in pattern 2 and 3 located in the globular head of the HA protein, and some of the mutations evenly distributed at the epitope sites. Conclusions The study demonstrated that a major antigenic drift had occurred in the viruses isolated in central China. And monitoring the antigenic property should be the priority in preventing the potential pandemic of H5N1 avian influenza virus.

  6. Emergence of Enteric Viruses in Production Chickens Is a Concern for Avian Health

    Directory of Open Access Journals (Sweden)

    Elena Mettifogo

    2014-01-01

    Full Text Available Several viruses have been identified in recent years in the intestinal contents of chickens and turkeys with enteric problems, which have been observed in commercial farms worldwide, including Brazil. Molecular detection of these viruses in Brazil can transform to a big threat for poultry production due to risk for intestinal integrity. This disease is characterized by severely delayed growth, low uniformity, lethargy, watery diarrhea, delayed feed consumption, and a decreased conversion rate. Chicken astrovirus (CAstV, rotavirus, reovirus, chicken parvovirus (ChPV, fowl adenovirus of subgroup I (FAdV-1, and avian nephritis virus (ANV were investigated using the conventional polymerase chain reaction (PCR and the reverse transcription polymerase chain reaction (RT-PCR. In addition, the infectious bronchitis virus (IBV, which may play a role in enteric disease, was included. The viruses most frequently detected, either alone or in concomitance with other viruses, were IBV, ANV, rotavirus, and CAstV followed by parvovirus, reovirus, and adenovirus. This study demonstrates the diversity of viruses in Brazilian chicken flocks presenting enteric problems characterized by diarrhea, growth retard, loss weight, and mortality, which reflects the multicausal etiology of this disease.

  7. Seroepizootiological investigations of animals from Obedska bara locality for presence of Avian influenza virus

    Directory of Open Access Journals (Sweden)

    Đuričić Bosiljka

    2010-01-01

    Full Text Available The disease caused by Influenza viruses has been well known for a very long time. In the recent period there has been noted an occurrence of pandemics caused by Influenza viruses type A with a high rate of mortality. The ongoing pandemic caused by avian influenza virus serotype H9N9 began in Hong Kong in 1992, and another pandemic caused by serotype H5N1 began in China (Hong Kong in 1999. The world wide spreading of these viruses occurred due to migratory birds. Avian influenza was confirmed in Serbia in 2007. The goal of this study was to examine whether the avian influenza viruses type A circulate in the region of the Obedska bara marsh, which is a famous resort for many birds in Serbia, as well as many birds migrating from Europe to Africa and vice versa. The samples of blood sera of many animal species (123 samples from fowl, 64 samples from donkeys, 40 samples from horses were tested by serologic reaction of inhibition of haemmaglutination (IHA for the presence of antibodies to influenza A subtypes H5N1, H5N2, H5N3, H7N1 and H7N2. Also, the samples of blood sera of experimental chicken exposed to wild life in Obedska bara (sentinel species were tested. Antibodies to subtypes H5N1, H5N2, H5N3, H7N1 and H7N2 were found in chicken from Dec, Boljevci, Petrovcic and Kupinovo villages but no antibodies were found in blood sera from hams from Dobanovci, Jakovo, Becmen and Surcin villages. From 23 samples from ducks antibodies were detected in 3 samples, and from 22 geese blood sera antibodies were found in 4 samples. From a total of 40 horse blood sera tested one was tested positive, and from 64 donkey sera 17 were positive for the presence of antibodies for avian influenza type A. In blood sera of experimental chicken antibodies were found by subtype H5N1 with corrections with H5N2 and H7N1.

  8. Identification of two novel multiple recombinant avian leukosis viruses in two different lines of layer chicken.

    Science.gov (United States)

    Cai, Liming; Shen, Yanwei; Wang, Guihua; Guo, Huijun; Liu, Jianzhu; Cheng, Ziqiang

    2013-10-01

    Avian leukosis virus (ALV) is the most common oncogenetic retrovirus that emerges spontaneously as a result of recombination between exogenous viruses, exogenous viruses and endogenous viruses, and exogenous viruses and non-homologous cellular genes. In the present study, two natural recombinant avian leukosis viruses (rALVs) (LC110515-5 and LC110803-5) carrying a subgroup C gp85 gene, a subgroup E gp37 gene, and a subgroup J 3'UTR and 3'LTR were isolated from two different lines of layer flocks, Black-bone silky fowl (BSF) and commercial layer chicken, that suffered from myeloid leukosis. Although tumours were not observed in rALV-infected individual chickens, other non-neoplastic inflammatory lesions were evident. The two rALVs were cultured on DF-1 cells and identified by PCR, immunofluorescence assay and gene sequencing. The gp85 nucleotide sequence in the two isolates displayed a high identity (>95 %) with that of the gp85 gene in ALV-C, but the identity was less than 90 % with ALV-A/B/D/E and only 51 % with ALV-J. Phylogenetic analysis of the nucleotide and amino acid sequences confirmed that the two isolates were recombinant between ALV-C, ALV-E and ALV-J. Subgroup C ALV is rarely found in field cases. This report is the first to provide evidence that ALV-C has recombined with ALV-E and ALV-J in two different chicken lines. The source and characteristics of the two rALVs and ALV-C need to be further investigated.

  9. Use of FTA sampling cards for molecular detection of avian influenza virus in wild birds.

    Science.gov (United States)

    Keeler, Shamus P; Ferro, Pamela J; Brown, Justin D; Fang, Xingwang; El-Attrache, John; Poulson, Rebecca; Jackwood, Mark W; Stallknecht, David E

    2012-03-01

    Current avian influenza (AI) virus surveillance programs involving wild birds rely on sample collection methods that require refrigeration or low temperature freezing to maintain sample integrity for virus isolation and/or reverse-transcriptase (RT) PCR. Maintaining the cold chain is critical for the success of these diagnostic assays but is not always possible under field conditions. The aim of this study was to test the utility of Finders Technology Associates (FTA) cards for reliable detection of AI virus from cloacal and oropharyngeal swabs of wild birds. The minimum detectable titer was determined, and the effect of room temperature storage was evaluated experimentally using multiple egg-propagated stock viruses (n = 6). Using real time RT-PCR, we compared results from paired cloacal swab and samples collected on FTA cards from both experimentally infected mallards (Anasplatyrhynchos) and hunter-harvested waterfowl sampled along the Texas Gulf Coast. Based on the laboratory trials, the average minimal detectable viral titer was determined to be 1 x 10(4.7) median embryo infectious dose (EID50)/ml (range: 1 x 10(4.3) to 1 x 10(5.4) EID50/ml), and viral RNA was consistently detectable on the FTA cards for a minimum of 20 days and up to 30 days for most subtypes at room temperature (23 C) storage. Real-time RT-PCR of samples collected using the FTA cards showed fair to good agreement in live birds when compared with both real-time RT-PCR and virus isolation of swabs. AI virus detection rates in samples from several wild bird species were higher when samples were collected using the FTA cards compared with cloacal swabs. These results suggest that FTA cards can be used as an alternative sample collection method when traditional surveillance methods are not possible, especially in avian populations that have historically received limited testing or situations in which field conditions limit the ability to properly store or ship swab samples.

  10. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail.

    Science.gov (United States)

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail.

  11. Human nucleotide sequences related to the transforming gene of a murine sarcoma virus: studies with cloned viral and cellular DNAs.

    Science.gov (United States)

    Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Kisselev, L L

    1982-01-01

    A recombinant plasmid, pI26, has been constructed by cloning into pBR322 a transforming gene of murine sarcoma virus (a Moloney strain, clone 124, MSV) synthesized by detergent-treated virions. From this plasmid a XbaI-HindIII fragment has been isolated which contains only mos-specific sequences. This mos-specific probe has been used for screening a human gene library cloned in bacteriophage lambda Charon 4A. Of these, 19 clones have been isolated containing mos-related sequences. By physical mapping and molecular hybridization it has been shown that these sequences are neighboured by DNA regions related to Moloney murine leukemia virus. Recombinant phages have also been found containing human inserts related to MLV, not to the mos gene. The possible existence of murine-like endogenous retroviruses in the normal human genome, including that of a sarcoma type, is discussed. By Northern blotting, expression of the cellular c-mos gene has been detected in mouse liver treated with a hepatocarcinogen. The general significance of the suggested model for evaluating the relationship between chemical carcinogenesis and oncogene expression is discussed.

  12. Prevalence of Antibodies to H9N2 Avian Influenza Virus in Backyard Chickens around Maharlou Lake in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Hadipour*, Gholamhossein Habibi and Amir Vosoughi

    2011-06-01

    Full Text Available Backyard chickens play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 500 backyard chickens from villages around Maharlou lake in Iran, using the hemagglutination-inhibition (HI test. The studied backyard chickens had not been previously vaccinated and showed no clinical signs of disease. The overall HI titer and seroprevalence against H9N2 were 7.73 and 81.6%, respectively.

  13. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    Science.gov (United States)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  14. Natural Infection with Avian Hepatitis E Virus and Marek's Disease Virus in Brown Layer Chickens in China.

    Science.gov (United States)

    Yang, Shuqing; Wang, Liyuan; Sun, Shuhong

    2016-09-01

    In the present study, avian hepatitis E virus (HEV) and serotype-1 strains of Marek's disease virus (MDV-1) were detected from a flock of 27-wk-old brown layer hens in China, accompanied by an average daily mortality of 0.44%. Postmortem examination of 25 sick hens and five apparently healthy hens selected randomly from the flock showed significant pathologic changes consistent with hepatitis-splenomegaly syndrome (HSS), including hepatomegaly, peritoneal fluid, and hepatic subcapsular hemorrhages. Microscopic examination of these livers showed multifocal necrotizing hepatitis and mild lymphocytic infiltration. These liver samples were investigated for HEV by reverse-transcription PCR. The overall detection rate of HEV RNA in samples of sick chickens was about 56% (14/25), while in samples from apparently healthy hens, it was 80% (4/5). Sequencing analysis of three 242-base-pair fragments of the helicase gene revealed 95.5% to 97.9% nucleotide identity compared with published avian HEV genotype 3, whereas identities demonstrated only 77.3% to 86.0% similarity when compared with genotypes 1, 2, and 4. Unexpectedly, the MDV meq gene was detected in livers from both apparently healthy chickens (2/5) and sick chickens (12/25) by PCR analysis. The meq gene (396 base pairs) was determined to belong to MDV-1 by further sequencing. The co-infection rate of avian HEV and MDV in this flock was 30% (9/30). This is the first report of dual infection of a nonenvelope RNA virus (HEV) with a herpesvirus (MDV) in chickens in China.

  15. Seroprevalence survey of H9N2 avian influenza virus in backyard chickens around the Caspian Sea in Iran

    Directory of Open Access Journals (Sweden)

    MM Hadipour

    2010-03-01

    Full Text Available Since 1998, an epidemic of avian influenza occurred in the Iranian poultry industry. The identified agent presented low pathogenicity, and was subtyped as an H9N2 avian influenza virus. Backyard chickens can play an important role in the epidemiology of H9N2 avian influenza virus infection. Close contact of backyard chickens with migratory birds, especially with aquatic birds, as well as neighboring poultry farms, may pose the risk of transmitting avian influenza virus, but little is known about the disease status of backyard poultry. A H9N2 avian influenza virus seroprevalence survey was carried out in 700 backyard chickens from villages around the Caspian Sea, Northern Iran, using the hemagglutination-inhibition (HI test. The studied backyard chickens had not been previously vaccinated and showed no clinical signs of disease. The mean antibody titers found were 6.8, 7.5, 5.9, 7.2, 5.7, 6.4, 6.2 and the seroprevalence was 76.2%, 79.5%, 68.18%, 78.27%, 65%, 72.31% and 71.4% as found in seven villages. Overall HI titer and seroprevalence against H9N2 were 6.52 and 72.98%, respectively.

  16. Molecular detection of avian pox virus from nodular skin and mucosal fibrinonecrotic lesions of Iranian backyard poultry.

    Science.gov (United States)

    Gholami-Ahangaran, Majid; Zia-Jahromi, Noosha; Namjoo, Abdolrasul

    2014-02-01

    In recent years, some outbreaks of skin lesions suspected to be avian pox were observed in the backyard poultry in different parts of western areas in Iran. Consequently, 328 backyard poultries with suspected signs of avian pox virus infection were sampled. All birds showed nodular lesions on unfeathered head skin and/or fibronecrotic lesions on mucus membrane of the oral cavity and upper respiratory tract. For histopathological analysis, the sections of tissue samples from cutaneous lesions of examined birds were stained with H&E method. For PCR, after DNA extraction a 578-bp fragment of avian pox virus from 4b core protein gene was amplified. Results showed 217 and 265 out of 328 (66.1 and 80.7%, respectively) samples were positive for avian pox virus on histopathological and PCR examination, respectively. In this study, the samples that had intracytoplasmic inclusion bodies on pathologic examination were PCR positive. This study revealed that PCR is a valuable tool for identification of an avian pox virus and that the frequency of pox infection in backyard poultry in western areas of Iran is high.

  17. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  18. Assembly and immunological properties of a bivalent virus-like particle (VLP) for avian influenza and Newcastle disease.

    Science.gov (United States)

    Shen, Huifang; Xue, Chunyi; Lv, Lishan; Wang, Wei; Liu, Qiliang; Liu, Kang; Chen, Xianxian; Zheng, Jing; Li, Xiaoming; Cao, Yongchang

    2013-12-26

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are both important pathogens in poultry worldwide. The protection of poultry from avian influenza and Newcastle disease can be achieved through vaccination. We embarked on the development of a bivalent vaccine that would allow for a single immunization against both avian influenza and Newcastle disease. We constructed a chimeric virus-like particle (VLP) that is composed of the M1 protein and HA protein of avian influenza virus and a chimeric protein containing the cytoplasmic and transmembrane domains of AIV neuraminidase protein (NA) and the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein (NA/HN). The single immunization of chickens with the chimeric VLP vaccine induced both AIV H5- and NDV-specific antibodies. The HI titers and specific antibodies elicited by the chimeric VLPs were statistically similar to those elicited in animals vaccinated with the corresponding commercial monovalent vaccines. Chickens vaccinated with chimeric VLP vaccine and then challenged with the Newcastle disease F48E9 virus displayed complete protection. Overall, the chimeric VLP vaccine elicits strong immunity and can protect against Newcastle disease virus challenge.

  19. Immune Efficacy of a Recombinant Fowlpox Virus Co-Ex-pressing HA and NA Genes of Avian Influenza Virus in SPF Chickens

    Institute of Scientific and Technical Information of China (English)

    QIAO Chuan-ling; JIANG Yong-ping; YU Kang-zhen; TIAN Guo-bin; CHEN Hua-lan

    2004-01-01

    A recombinant fowlpox virus co-expressing Haemagglutinin(HA)and Neuraminidase(NA)named as rFPV-HA-NA was produced by HA and NA gene of A/Goose/Guangdong/3/96(H5N1)isolate of avian influenza virus recombined into the genome of fowlpox virus. In this study,to evaluate its ability of protecting chickens against challenge with a lethal dose of highly pathogenic isolates of avian influenza virus,eight-week-old specificpathogenic-free(SPF)chickens were vaccinated with recombinant virus or the wildtypefowlpox virus by wing-web puncture. After challenge 4 weeks with 10 LD50 highly pathogenic avian influenza virus H5N1 and H7N1 isolate,all chickens vaccinated with recombinant virus were protected,while the chickens vaccinated with the wildtype fowlpox virus or unvaccinated controls experienced 100% mortality respectively following challenge. This complete protection was accompanied by the high levels of specific antibody response to the respectivecomponents of the recombinant virus.

  20. Development of loop-mediated isothermal amplification for rapid detection of avian leukosis virus subgroup A.

    Science.gov (United States)

    Wang, Yongqiang; Kang, Zhonghui; Gao, Yulong; Qin, Liting; Chen, Lei; Wang, Qi; Li, Jiukuan; Gao, Honglei; Qi, Xiaole; Lin, Huan; Wang, Xiaomei

    2011-04-01

    This study aimed to establish a loop-mediated isothermal amplification (LAMP) method for distinguishing avian leukosis virus (ALV) subgroup A from other subgroups of the virus. On the basis of the results of sequence comparison and the sequence characteristics of ALV subgroups, a LAMP method was designed to target the gp85 segment for detection of ALV-A. Under optimal reaction conditions, ALV-A LAMP produced neither cross-reactions with other major subgroups (including subgroups J, B, C, and E) nor nonspecific reactions with other common avian infectious diseases. A sensitivity test showed that this method can detect 20 copies of proviral nucleic acid sequence within 45 min, which is 100 times more sensitive than the conventional polymerase chain reaction (PCR). This method can detect subgroup A virus rapidly and the results can be assessed based on color changes. The whole reaction process can be performed without opening the lid of the reaction tube, which reduces the possibility of contamination greatly and simplifies the detection process, indicating the considerable potential of this method for in situ application in the future.

  1. Development and application of real-time PCR for detection of subgroup J avian leukosis virus.

    Science.gov (United States)

    Qin, Liting; Gao, Yulong; Ni, Wei; Sun, Meiyu; Wang, Yongqiang; Yin, Chunhong; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei

    2013-01-01

    Subgroup J avian leukosis virus (ALV-J) is an avian retrovirus that causes severe economic losses in the poultry industry. The early identification and removal of virus-shedding birds are important to reduce the spread of congenital and contact infections. In this study, a TaqMan-based real-time PCR method for the rapid detection and quantification of ALV-J with proviral DNA was developed. This method exhibited a high specificity for ALV-J. Moreover, the detection limit was as low as 10 viral DNA copies. The coefficients of variation (CVs) of both interassay and intra-assay reproducibility were less than 1%. The growth curves of ALV-J in DF-1 cells were measured by real-time PCR, yielding a trend line similar to those determined by 50% tissue culture infective dose (TCID(50)) and p27 antigen detection. Tissue samples suspected of ALV infection were evaluated using real-time PCR, virus isolation, and routine PCR, and the positivity rates were 60.1%, 41.6% and 44.5%, respectively. Our data indicated that the real-time PCR method provides a sensitive, specific, and reproducible diagnostic tool for the identification and quantification of ALV-J for clinical diagnosis and in laboratory research.

  2. Avian leukosis virus subgroup A and B infection in wild birds of Northeast China.

    Science.gov (United States)

    Li, Delong; Qin, Liting; Gao, Honglei; Yang, Bo; Liu, Wansi; Qi, Xiaole; Wang, Yongqiang; Zeng, Xiangwei; Liu, Sidang; Wang, Xiaomei; Gao, Yulong

    2013-05-03

    To analyze the status of wild birds infected with avian leukosis virus (ALV) in China, we collected 300 wild birds from various areas. Virus isolation and PCR showed that wild birds were infected by ALV-A and ALV-B. Two ALV-A and 4 ALV-B env sequences were obtained by PCR using primers designed to detect ALV-A and -B respectively. Our results showed that the gp85 genes of the 2 ALV-A strains have the highest homology with RAV-1, 99.8%, and more than 92% homology with other American strains. However, the gp85 genes of the two ALV-A strains showed slightly lower homology with Chinese strains (87.2-92.6%). Additionally, the 4 ALV-B strains have high homology with the prototype strain (RAV-2), from 99.1 to 99.4%, but they have slightly lower identity with Schmidt-Ruppin B and Prague subgroup B, from 93.3 to 98.4%. The 4 ALV-B strains showed the lowest identity with SDAU09C2 and SDAU09E3 (90%). In total, these results suggested that avian leukosis virus has infected wild birds in China.

  3. Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs

    Directory of Open Access Journals (Sweden)

    Meng Qing-Wen

    2011-12-01

    Full Text Available Abstract Background Avian leukosis virus (ALV is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi is considered an effective antiviral strategy. Results In this study, the avian leukosis virus subgroup J (ALV-J proviral genome, including the gag genes, were treated as targets for RNAi. Four pairs of miRNA sequences were designed and synthesized that targeted different regions of the gag gene. The screened target (i.e., the gag genes was shown to effectively suppress the replication of ALV-J by 19.0-77.3%. To avoid the generation of escape variants during virus infection, expression vectors of multi-target miRNAs were constructed using the multi-target serial strategy (against different regions of the gag, pol, and env genes. Multi-target miRNAs were shown to play a synergistic role in the inhibition of ALV-J replication, with an inhibition efficiency of viral replication ranging from 85.0-91.2%. Conclusion The strategy of multi-target miRNAs might be an effective method for inhibiting ALV replication and the acquisition of resistant mutations.

  4. The Protection Efficacity of DNA Vaccine Encoding Hemagglutinin of H5 Subtype Avian Influenza Virus

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong-ping; YU Kang-zhen; DENG Guo-hua; TIAN Guo-bin; QIAO Chuan-ling; CHEN Hua-lan

    2004-01-01

    The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.

  5. Avian nephritis virus (ANV) on Brazilian chickens farms: circulating genotypes and intra-genotypic diversity.

    Science.gov (United States)

    Espinoza, Luis Luna; Beserra, Laila A R; Soares, Rodrigo M; Gregori, Fabio

    2016-12-01

    Avian nephritis virus (ANV), which belongs to the family Astroviridae, is associated with different clinical manifestations (including enteric disorders). Despite being frequently found in the avian industry worldwide, information regarding genetic features of these viruses in Brazil is scarce. Therefore, sixty fecal sample pools (5-6 birds of the same flock), representing 60 poultry farms from six Brazilian States, were screened using an astrovirus-specific hemi-nested-PCR assay targeting the conserved ORF1b gene, followed by nucleotide sequencing of amplified products. PCR and phylogenetic analysis confirmed the detection of 21 positive samples to ANV (35 %). In order to investigate the genetic diversity represented by these viruses, amplification, cloning and phylogenetic analysis of the deduced amino acid sequence of ORF2 gene were attempted. Eight samples were successfully cloned (generating 32 clones in total) and sequenced. Based on phylogenetic analysis of ORF2, sequences defined in this study were classified into three genotypes: genotype 5, which has already been described in birds, and two other novel genotypes, tentatively named genotype 8 and 9, all of which occurred in single or mixed infections. Moreover, high intra-genotypic diversity and co-circulation of distinct strains in a same host population were observed. This study revealed the presence of new strains of ANV in Brazilian poultry and their circulation in commercial chicken flocks.

  6. Genetic identification of avian hepatitis E virus (HEV) from healthy chicken flocks and characterization of the capsid gene of 14 avian HEV isolates from chickens with hepatitis-splenomegaly syndrome in different geographical regions of the United States.

    Science.gov (United States)

    Sun, Z F; Larsen, C T; Dunlop, A; Huang, F F; Pierson, F W; Toth, T E; Meng, X-J

    2004-03-01

    Avian hepatitis E virus (HEV), a novel virus identified from chickens with hepatitis-splenomegaly (HS) syndrome, is genetically and antigenically related to human HEV. Recently, it was found that avian HEV antibody is also prevalent in healthy chickens. A prospective study was done on a known seropositive but healthy chicken farm to identify avian HEV isolates from healthy chickens. Fourteen chickens were randomly selected, tagged and monitored under natural conditions for 19 weeks. All 14 chickens were seronegative at the beginning of the study at 12 weeks of age. By 21 weeks of age, all 14 chickens had seroconverted to avian HEV antibody. None of the chickens had any sign of HS syndrome. Partial helicase gene and capsid gene sequences of avian HEV isolates recovered from a healthy chicken were determined and found to share 75-97 % nucleotide sequence identity with the corresponding regions of avian HEV isolates from chickens with HS syndrome. Thus far, only one strain of avian HEV from a chicken with HS syndrome has been genetically characterized for its capsid gene, therefore the capsid gene region of an additional 14 isolates from chickens with HS syndrome were also characterized. The capsid genes of avian HEV isolates from chickens with HS syndrome were found to be heterogeneic, sharing 76-100 % nucleotide sequence identity with each other. This study indicates that avian HEV is enzootic in chicken flocks and spreads subclinically among chickens in the United States and that the virus is heterogeneic.

  7. Contact variables for exposure to avian influenza H5N1 virus at the human-animal interface.

    Science.gov (United States)

    Rabinowitz, P; Perdue, M; Mumford, E

    2010-06-01

    Although the highly pathogenic avian influenza H5N1 virus continues to cause infections in both avian and human populations, the specific zoonotic risk factors remain poorly understood. This review summarizes available evidence regarding types of contact associated with transmission of H5N1 virus at the human-animal interface. A systematic search of the published literature revealed five analytical studies and 15 case reports describing avian influenza transmission from animals to humans for further review. Risk factors identified in analytical studies were compared, and World Health Organization-confirmed cases, identified in case reports, were classified according to type of contact reported using a standardized algorithm. Although cases were primarily associated with direct contact with sick/unexpectedly dead birds, some cases reported only indirect contact with birds or contaminated environments or contact with apparently healthy birds. Specific types of contacts or activities leading to exposure could not be determined from data available in the publications reviewed. These results support previous reports that direct contact with sick birds is not the only means of human exposure to avian influenza H5N1 virus. To target public health measures and disease awareness messaging for reducing the risk of zoonotic infection with avian influenza H5N1 virus, the specific types of contacts and activities leading to transmission need to be further understood. The role of environmental virus persistence, shedding of virus by asymptomatic poultry and disease pathophysiology in different avian species relative to human zoonotic risk, as well as specific modes of zoonotic transmission, should be determined.

  8. Characterization of H3N6 avian influenza virus isolated from a wild white pelican in Zambia.

    Science.gov (United States)

    Simulundu, Edgar; Mweene, Aaron S; Tomabechi, Daisuke; Hang'ombe, Bernard M; Ishii, Akihiro; Suzuki, Yuka; Nakamura, Ichiro; Sawa, Hirofumi; Sugimoto, Chihiro; Ito, Kimihito; Kida, Hiroshi; Saiwana, Lewis; Takada, Ayato

    2009-01-01

    We characterized an influenza virus isolated from a great white pelican in Zambia. Phylogenetic analysis showed that all of its gene segments belonged to the Eurasian lineage and that they appear to have evolved in distinct geographical regions in Europe, Asia, and Africa, suggesting reassortment of virus genes maintained in wild aquatic birds whose flyways overlap across these continents. It is notable that this virus might possess some genes of the same origin as those of highly pathogenic H7 and H5 viruses isolated in Eurasia. The present study underscores the need for continued monitoring of avian influenza viruses in Eurasia and Africa.

  9. Putative human and avian risk factors for avian influenza virus infections in backyard poultry in Egypt.

    Science.gov (United States)

    Sheta, Basma M; Fuller, Trevon L; Larison, Brenda; Njabo, Kevin Y; Ahmed, Ahmed Samy; Harrigan, Ryan; Chasar, Anthony; Abdel Aziz, Soad; Khidr, Abdel-Aziz A; Elbokl, Mohamed M; Habbak, Lotfy Z; Smith, Thomas B

    2014-01-10

    Highly pathogenic influenza A virus subtype H5N1 causes significant poultry mortality in the six countries where it is endemic and can also infect humans. Egypt has reported the third highest number of poultry outbreaks (n=1084) globally. The objective of this cross-sectional study was to identify putative risk factors for H5N1 infections in backyard poultry in 16 villages in Damietta, El Gharbia, Fayoum, and Menofia governorates from 2010-2012. Cloacal and tracheal swabs and serum samples from domestic (n=1242) and wild birds (n=807) were tested for H5N1 via RT-PCR and hemagglutination inhibition, respectively. We measured poultry rearing practices with questionnaires (n=306 households) and contact rates among domestic and wild bird species with scan sampling. Domestic birds (chickens, ducks, and geese, n=51) in three governorates tested positive for H5N1 by PCR or serology. A regression model identified a significant correlation between H5N1 in poultry and the practice of disposing of dead poultry and poultry feces in the garbage (F=15.7, p<0.0001). In addition, contact between domestic and wild birds was more frequent in villages where we detected H5N1 in backyard flocks (F=29.5, p<0.0001).

  10. Complete genome sequence of a J subgroup avian leukosis virus isolated from local commercial broilers.

    Science.gov (United States)

    Li, Hongxin; Xue, Chunyi; Ji, Jun; Chang, Shuang; Shang, Huiqin; Zhang, Lingjun; Ma, Jingyun; Bi, Yingzuo; Xie, Qingmei

    2012-11-01

    Subgroup J avian leukosis virus (ALV-J) isolate GDKP1202 was isolated from a 50-day-old local yellow commercial broiler in the Guangdong province of China in 2012. Here we report the complete genomic sequence of the GDKP1202 isolate, which caused high mortality, serious growth suppression, thymic atrophy, and liver enlargement in commercial broilers. A novel potential binding site (5'-GGCACCTCC-3') for c-myb was identified in the GDKP1202 genome. These findings will provide additional insights into the molecular characteristics in the genomes and pathogenicity of ALV-J.

  11. Identification of one peptide which inhibited infectivity of avian infectious bronchitis virus in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Purified avian infectious bronchitis virus (IBV) was used to screen a random phage display peptide library. After the fourth panning, 10 positive phages were sequenced and characterized. The phages specifically inhibited IBV infectivity in HeLa cells and blocked IBV haemagglutination. One linear peptide "GSH HRH VHS PFV" from the positive phages with the highest neutralization titer was synthesized and this peptide inhibited IBV infection in HeLa as well. The results may contribute to development of antiviral therapeutics for IBV and studying the determinants for viral and cell interaction.

  12. Efficient Sensing of Avian Influenza Viruses by Porcine Plasmacytoid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Artur Summerfield

    2011-03-01

    Full Text Available H5N1 influenza A virus (IAV infections in human remain rare events but have been associated with severe disease and a higher mortality rate compared to infections with seasonal strains. An excessive release of pro-inflammatory cytokine together with a greater virus dissemination potential have been proposed to explain the high virulence observed in human and other mammalian and avian species. Among the cells involved in the cytokine storm, plasmacytoid dendritic cells (pDC could play an important role considering their unique capacity to secrete massive amounts of type I interferon (IFN. Considering the role of IFN as a major component of antiviral responses as well as in priming inflammatory responses, we aimed to characterize the induction of IFN-α release upon infection with IAV originating from various avian and mammalian species in a comparative way. In our porcine pDC model, we showed that the viral components triggering IFN responses related to the ability to hemagglutinate, although virosomes devoid of viral RNA were non-stimulatory. Heat-treatment at 65 °C but not chemical inactivation destroyed the ability of IAV to stimulate pDC. All IAV tested induced IFN-α but at different levels and showed different dose-dependencies. H5 and H7 subtypes, in particular H5N1, stimulated pDC at lower doses when compared to mammalian IAV. At high viral doses, IFN-α levels reached by some mammalian IAV surpassed those induced by avian isolates. Although sialic acid-dependent entry was demonstrated, the α-2,3 or α-2,6 binding specificity alone did not explain the differences observed. Furthermore, we were unable to identify a clear role of the hemagglutinin, as the IFN-a doses-response profiles did not clearly differ when viruses with all genes of identical avian origin but different HA were compared. This was found with IAV bearing an HA derived from either a low, a high pathogenic H5N1, or a human H3. Stimulation of pDC was associated with p

  13. Surveillance for Avian Influenza Viruses in Wild Birds in Denmark and Greenland, 2007–10

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona;

    2012-01-01

    In Denmark and Greenland, extensive surveillance of avian influenza (AI) viruses in wild bird populations has been conducted from 2007 through 2010. In Denmark, the surveillance consisted of passive surveillance of wild birds found dead or sick across Denmark and active surveillance of apparently...... were birds that were found dead. In Greenland, samples were collected mainly from fecal droppings in breeding areas. Samples from 3555 live and apparently healthy wild birds were tested. All swab samples were tested by pan-influenza reverse transcriptase–PCR (RT-PCR), and the positive samples were...

  14. Detection of American lineage low pathogenic avian influenza viruses in Uria lomvia in Greenland

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Hartby, Christina Marie; Krog, Jesper Schak

    of Denmark. Five birds were randomly selected for diagnostic investigation and samples were taken from the cadavers (pooled oropharyngeal swabs, cloacal swabs, lung/trachea/heart tissues and liver/spleen/kidney tissues, and separate preparation of stomach from a single bird). Avian influenza virus (AIV...... screened for AIV in oropharyngeal and cloacal swab specimens from each bird by RT-PCR. American lineage H11N2 AIV was detected in both oropharyngeal and cloacal swabs from one bird, and American lineage low pathogenic AIV with subtype H5N1 was detected in the cloacal swab from another bird. The sparse...

  15. Systemic distribution of different low pathogenic avian influenza (LPAI viruses in chicken

    Directory of Open Access Journals (Sweden)

    Post Jacob

    2013-01-01

    Full Text Available Abstract Background Since we were able to isolate viable virus from brain and lung of H7N1 low pathogenic avian influenza virus (LPAIV infected chickens, we here examined the distribution of different LPAIV strains in chickens by measuring the viral AI RNA load in multiple organs. Subtypes of H5 (H5N1, H5N2, H7 (H7N1, H7N7 and H9 (H9N2, of chicken (H5N2, H7N1, H7N7, H9N2, or mallard (H5N1 origin were tested. The actual presence of viable virus was evaluated with virus isolation in organs of H7N7 inoculated chickens. Findings Viral RNA was found by PCR in lung, brain, intestine, peripheral blood mononuclear cells, heart, liver, kidney and spleen from chickens infected with chicken isolated LPAIV H5N2, H7N1, H7N7 or H9N2. H7N7 virus could be isolated from lung, ileum, heart, liver, kidney and spleen, but not from brain, which was in agreement with the data from the PCR. Infection with mallard isolated H5N1 LPAIV resulted in viral RNA detection in lung and peripheral blood mononuclear cells only. Conclusion We speculate that chicken isolated LPAI viruses are spreading systemically in chicken, independently of the strain.

  16. Field Investigation on the Prevalence of Avian Influenza Virus Infection in Some Localities in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdullah N. Alkhalaf

    2010-07-01

    Full Text Available The objective of this study was to find out prevalence and types of avian influenza virus (AIV among broilers, native chickens, ducks and pigeons in Saudi Arabia. Field investigation was carried out in four localities including Al-Qassim, Hail, Al-Jouf and Northern Border regions. Serum sample, tracheal and cloacal swabs were collected from broilers (n=1561, layers (n=988, ducks (n=329 and pigeons (n=450 from these localities and tested for three different avian influenza viruses (H9, H5 and H3 using Enzyme linked immunosorbent (ELISA test, hamagglutination inhibition (HI test and polymerase chain reaction (PCR. All tested samples were negative for H5 and H3 viruses. In contrast, all positive results were found to be for H9 AI virus using PCR, ELISA and HI test. Chicken sera tested by ELISA for AIV revealed the highest positive samples in Northern Border regions (45.71%, followed by Al-Jouf (29.65%, Al-Qassim (23.98% and Hial (20.94% with non-significant difference (χ2=5.983; P=0.112. HI test carried out on duck sera revealed 35.90% prevalence of antibodies against AIV. PCR amplification resulted in 34.28 and 21.36% positive samples in ducks and chickens, respectively. The highest (45.71% PCR positive chicken samples were from Northern Border regions, followed by Al-Jouf (24.13%, Al-Qassim (19.30% and Hail (16.69% with significant difference (χ2=7.620; P=0.055. All tested pigeons samples were negative for the three virus serotypes included in the study.

  17. Evidence of genotypes 1 and 3 of avian hepatitis E virus in wild birds.

    Science.gov (United States)

    Zhang, Xinquan; Bilic, Ivana; Troxler, Salome; Hess, Michael

    2017-01-15

    Although the presence of four genotypes of avian hepatitis E virus (HEV) in chickens has been demonstrated, its natural host range is still barely known. In this study, swab samples from 626 wild birds originating from 62 bird species were investigated for HEV detection by molecular methods. The aim was to explore the cross-species infection of avian HEV and to compare the genetic diversity between strains infecting chicken and wild birds. In total, 8 positive samples from 4 different bird species (song thrush, little owl, feral pigeon and common buzzard) were identified and further confirmed by partial sequencing of ORF3. Based on a 237bp fragment of the capsid gene retrieved from 5 samples, phylogenetic analysis revealed the presence of avian HEV genotypes 1 and 3 in wild birds. The wild bird isolates shared 82.7-84.8% and 85.7-100% nucleotide sequence identity, respectively, to chicken isolates from the corresponding genotype. For two of the genotype 1 samples (14-2901 and 14-2906), from feral pigeons, genotype assignment could be also confirmed by phylogenetic analysis based on partial nucleotide sequence of the helicase gene. For the first time, the appearance of genotype 1 in Europe was detected, which together with close genetic relationship between HEVs present in chickens and wild birds indicates cross-species transmission.

  18. Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl

    Science.gov (United States)

    Dusek, R.J.; Hall, J.S.; Nashold, S.W.; Teslaa, J.L.; Ip, H.S.

    2011-01-01

    The utility of using Nobuto paper strips for the detection of avian influenza antibodies was examined in mallards (Anas platyrhynchos) experimentally infected with low pathogenic avian influenza viruses. Blood was collected 2 wk after infection and was preserved either as serum or whole blood absorbed onto Nobuto strips. Analysis of samples using a commercially available blocking enzyme-linked immunosorbent assay revealed comparable results (???96% sensitivity for all methods) between sera stored at -30 C and the Nobuto strip preservation method even when the Nobuto strips were stored up to 3 mo at room temperature (RT). Significant differences were detected in the ratio of sample absorbance to negative control absorbance for Nobuto strips stored at RT compared with sera stored at -30 C, although these differences did not affect the ability of the test to reliably detect positive and negative samples. Nobuto strips are a convenient and sensitive alternative to the collection of serum samples when maintaining appropriate storage temperatures is difficult. ?? 2011 American Association of Avian Pathologists.

  19. Serosurveillance study on transmission of H5N1 virus during a 2006 avian influenza epidemic.

    Science.gov (United States)

    Ceyhan, M; Yildirim, I; Ferraris, O; Bouscambert-Duchamp, M; Frobert, E; Uyar, N; Tezer, H; Oner, A F; Buzgan, T; Torunoglu, M A; Ozkan, B; Yilmaz, R; Kurtoglu, M G; Laleli, Y; Badur, S; Lina, B

    2010-09-01

    In 2006 an outbreak of avian influenza A(H5N1) in Turkey caused 12 human infections, including four deaths. We conducted a serological survey to determine the extent of subclinical infection caused by the outbreak. Single serum samples were collected from five individuals with avian influenza whose nasopharyngeal swabs tested positive for H5 RNA by polymerase chain reaction, 28 family contacts of the cases, 95 poultry cullers, 75 individuals known to have had contact with diseased chickens and 81 individuals living in the region with no known contact with infected chickens and/or patients. Paired serum samples were collected from 97 healthcare workers. All sera were tested for the presence of neutralizing antibodies by enzyme-linked immunoassay, haemagglutination inhibition and microneutralization assays. Only one serum sample, from a parent of an avian influenza patient, tested positive for H5N1 by microneutralization assay. This survey shows that there was minimal subclinical H5N1 infection among contacts of human cases and infected poultry in Turkey in 2006. Further, the low rate of subclinical infection following contact with diseased poultry gave further support to the reported low infectivity of the virus.

  20. Nucleic acid-based detection of influenza A virus subtypes H7 and N9 with a special emphasis on the avian H7N9 virus.

    Science.gov (United States)

    Kalthoff, D; Bogs, J; Harder, T; Grund, C; Pohlmann, A; Beer, M; Hoffmann, B

    2014-03-13

    In 2013, a novel influenza A virus of subtype H7N9 was transmitted from avian sources to humans in China, causing severe illness and substantial mortality. Rapid and sensitive diagnostic approaches are the basis of epidemiological studies and of utmost importance for the detection of infected humans and animals. We developed various quantitative reverse transcriptase PCR (RT-qPCR) assays for (i) the generic detection of the haemagglutinin (HA) gene of H7 viruses or the neuraminidase (NA) gene of N9 viruses, and (ii) the specific detection of HA and NA of the novel avian H7N9/2013 virus. The sensitivity of the newly developed assays was compared with previously published PCRs, and the specificity of all RT-qPCRs was examined using a panel of 42 different H7 and 16 different N9 isolates. Furthermore, we analysed the performance of the RT-qPCR assays with dilution series and diagnostic samples obtained from animal experiments. Our study provides a comprehensive set of RT-qPCR assays for the reliable detection of the novel avian H7N9 virus, with high sensitivity and improved and tailored specificity values compared with published assays. Finally, we also present data about the robustness of a duplex assay for the simultaneous detection of HA and NA of the avian influenza H7N9/2013 virus.

  1. Antecedent avian immunity limits tangential transmission of West Nile virus to humans.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kwan

    Full Text Available BACKGROUND: West Nile virus (WNV is a mosquito-borne flavivirus maintained and amplified among birds and tangentially transmitted to humans and horses which may develop terminal neuroinvasive disease. Outbreaks typically have a three-year pattern of silent introduction, rapid amplification and subsidence, followed by intermittent recrudescence. Our hypothesis that amplification to outbreak levels is contingent upon antecedent seroprevalence within maintenance host populations was tested by tracking WNV transmission in Los Angeles, California from 2003 through 2011. METHODS: Prevalence of antibodies against WNV was monitored weekly in House Finches and House Sparrows. Tangential or spillover transmission was measured by seroconversions in sentinel chickens and by the number of West Nile neuroinvasive disease (WNND cases reported to the Los Angeles County Department of Public Health. RESULTS: Elevated seroprevalence in these avian populations was associated with the subsidence of outbreaks and in the antecedent dampening of amplification during succeeding years. Dilution of seroprevalence by recruitment resulted in the progressive loss of herd immunity following the 2004 outbreak, leading to recrudescence during 2008 and 2011. WNV appeared to be a significant cause of death in these avian species, because the survivorship of antibody positive birds significantly exceeded that of antibody negative birds. Cross-correlation analysis showed that seroprevalence was negatively correlated prior to the onset of human cases and then positively correlated, peaking at 4-6 weeks after the onset of tangential transmission. Antecedent seroprevalence during winter (Jan - Mar was negatively correlated with the number of WNND cases during the succeeding summer (Jul-Sep. CONCLUSIONS: Herd immunity levels within after hatching year avian maintenance host populations <10% during the antecedent late winter and spring period were followed on three occasions by

  2. Evidence of Avian Leukosis Virus Subgroup E and Endogenous Avian Virus in Marek’s Disease Vaccines Derived from Chicken Embryo Fibroblasts

    Directory of Open Access Journals (Sweden)

    N.R. Dhanutha

    2012-12-01

    Full Text Available The aim of this study was to detect and characterize the endogenous ALVs in cell associated MD vaccine. Chicken embryo fibroblast cell associated Marek’s disease vaccine was tested for possible contamination with Avian Leukosis Viruses (ALVs. Initially the vaccine cell lysate was tested for presence of group specific antigen (p27 of ALVs by ELISA and found positive for GSA. Subsequently total DNA and RNA was isolated from vaccine CEFs and analyzed by PCR and RT-PCR using primers specific for ALV subgroups A-E and J. Subgroup specific PCR and RT-PCR revealed that the CEFs were positive for ALV-E and negative for all other exogenous ALV subgroups (ALV-A, B, C, D and J. Envelope gp85 gene sequence alignment and phylogenetic analysis further confirmed that the ALV sequences found in CEFs of MD vaccine were belongs to endogenous ALV-E. Further this sequence has high homology with endogenous loci ev-1, ev-3 and ev-6. Amplification of genomic DNA with endogenous virus locus specific primers revealed that the CEFs of MD vaccine possess ev-1 and ev-6 and negative for ev-3, ev-9 and ev-21. In conclusion, the data in this study clearly demonstrated that the cell associated commercial MD vaccine tested was contaminated with an endogenous subgroup E and also possess ev-loci such as ev1 and ev-6.

  3. The Avian Encephalomyelitis Virus (AEV 5’ Untranslated Region Contains an IRES with Similarity to the Hepatitis C Virus IRES

    Directory of Open Access Journals (Sweden)

    M Bakhshesh

    2005-10-01

    Full Text Available Cap-independent internal initiation of protein synthesis has been shown to occur on a number of viral and cellular mRNAs. Initiation of protein synthesis is directed by an internal ribosome entry site (IRES element within the 5’ untranslated region (UTR of the mRNA. Avian encephalomyelitis virus (AEV belongs to the picornavirus family and shares protein sequence similarity with hepatitis A virus (HAV. Because of this, it was assigned to the hepatovirus genus. We have demonstrated that the 494 nucleotide 5’ UTR of this virus genome contains an internal ribosome entry site (IRES element. However, in contrast to the HAV IRES, the AEV IRES functions efficiently in the presence of cleaved eIF4G, suggesting functional differences exist. Furthermore, comparison of the AEV IRES sequence with that of the hepatitis C virus (HCV IRES revealed areas of striking similarity, especially in the region of the ribosome binding site. The AEV IRES is thus very similar to the recently described IRES from the picornavirus porcine teschovirus; this IRES also shows similarity to the HCV IRES. These results suggest that these viruses may have exchanged sequences during evolution.

  4. Phylogenetic and pathogenic analyses of avian influenza A H5N1 viruses isolated from poultry in Vietnam.

    Directory of Open Access Journals (Sweden)

    Dongming Zhao

    Full Text Available Despite great efforts to control the infection of poultry with H5N1 viruses, these pathogens continue to evolve and spread in nature, threatening public health. Elucidating the characteristics of H5N1 avian influenza virus will benefit disease control and pandemic preparation. Here, we sequenced the genomes of 15 H5N1 avian influenza viruses isolated in Vietnam in 2006 and 2007 and performed phylogenetic analyses to compare these sequences with those of other viruses available in the public databases. Molecular characterization of the H5N1 viruses revealed that seven genetically distinct clades of H5N1 viruses have appeared in Vietnam. Clade 2.3.4 viruses existed in Vietnam as early as 2005. Fifteen viruses isolated during 2006 and 2007 belonged to clade 1 and clade 2.3.4, and were divided into five genotypes. Reassortants between the clade 1 and clade 2.3.4 viruses were detected in both North and South Vietnam. We also assessed the replication and pathogenicity of these viruses in mice and found that these isolates replicated efficiently and exhibited distinct virulence in mice. Our results provide important information regarding the diversity of H5N1 viruses in nature.

  5. Dinamika Seroprevalensi Virus Avian Influenza H5 pada Itik di Pasar Unggas Beringkit dan Galiran

    Directory of Open Access Journals (Sweden)

    I Gusti Ngurah Narendra Putra

    2013-11-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE Live Bird Market (LBM has a high potential for spreading Avian Influenza Virus (AIV between fowls or from fowl to human. Up to now, a dinamic of avian flue incidents at many LBMs in Bali has not been reported. This research aimed to reveal a dynamic of seroprevalences of avian influenza in ducks at Beringkit (Badung and Galiran (Kelungkung LBMs. A total of 35 duck blood samples was collected from each of LBMs. Sampling was conducted monthly from March to August, 2012 . AIV antibody of duck serum was measured using Rapid Hemagglutination Inhibition (Rapid HI test. Seroprevalence differences were analyzes with Chi-square (?2 Nonparametric statistical test. The results showed that seroprevalences of AIV H5 in ducks at Beringkit and Galiran LBMs were very high, ranged from 68.6% to 100% and 65.7% to 97.1% respectively. A Dynamic of AIV H5 seroprevalences in ducks at Beringkit and Galiran LBM had a similar pattern, except in July 2012. This indicates that VAI H5 has been circulating for a long time and has been to be an endemic virus infection in ducks at LBMs in Bali. It can be suggested that an Avian Influenza Virus monitoring should be done continuously over a long period. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; text-align:justify; line-height:150%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  6. Prospective study of avian influenza virus infections among rural Thai villagers.

    Directory of Open Access Journals (Sweden)

    Whitney S Krueger

    Full Text Available BACKGROUND: In 2008, 800 rural Thai adults living within Kamphaeng Phet Province were enrolled in a prospective cohort study of zoonotic influenza transmission. Serological analyses of enrollment sera suggested this cohort had experienced subclinical avian influenza virus (AIV infections with H9N2 and H5N1 viruses. METHODS: After enrollment, participants were contacted weekly for 24 mos for acute influenza-like illnesses (ILI. Cohort members confirmed to have influenza A infections were enrolled with their household contacts in a family transmission study involving paired sera and respiratory swab collections. Cohort members also provided sera at 12 and 24 months after enrollment. Serologic and real-time RT-PCR assays were performed against avian, swine, and human influenza viruses. RESULTS: Over the 2 yrs of follow-up, 81 ILI investigations in the cohort were conducted; 31 (38% were identified as influenza A infections by qRT-PCR. Eighty-three household contacts were enrolled; 12 (14% reported ILIs, and 11 (92% of those were identified as influenza infections. A number of subjects were found to have slightly elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2 virus: 21 subjects (2.7% at 12-months and 40 subjects (5.1% at 24-months. Among these, two largely asymptomatic acute infections with H9N2 virus were detected by >4-fold increases in annual serologic titers (final titers 1:80. While controlling for age and influenza vaccine receipt, moderate poultry exposure was significantly associated with elevated H9N2 titers (adjusted OR = 2.3; 95% CI, 1.04-5.2 at the 24-month encounter. One subject had an elevated titer (1:20 against H5N1 during follow-up. CONCLUSIONS: From 2008-10, evidence for AIV infections was sparse among this rural population. Subclinical H9N2 AIV infections likely occurred, but serological results were confounded by antibody cross-reactions. There is a critical need for improved serological diagnostics to more

  7. Antibodies against avian-like A (H1N1) swine influenza virus among swine farm residents in eastern China.

    Science.gov (United States)

    Yin, Xiuchen; Yin, Xin; Rao, Baizhong; Xie, Chunfang; Zhang, Pengchao; Qi, Xian; Wei, Ping; Liu, Huili

    2014-04-01

    In 2007, the avian-like H1N1 virus (A/swine/Zhejiang/1/07) was first isolated in pigs in China. Recently, it was reported that a 3-year-old boy was infected with avian-like A (H1N1) swine influenza virus (SIV) in Jiangsu Province, China. To investigate the prevalence of avian-like A (H1N1) SIV infection among swine farm residents in eastern China, an active influenza surveillance program was conducted on swine farms in this region from May 21, 2010 through April 22, 2012. A total of 1,162 participants were enrolled, including 1,136 persons from 48 pig farms, as well as 26 pig farm veterinarians. A total of 10.7% and 7.8% swine farm residents were positive for antibodies against avian-like A (H1N1) SIV by HI and NT assay, respectively, using 40 as the cut-off antibody titer. Meanwhile, all the serum samples collected from a control of healthy city residents were negative against avian-like A (H1N1) SIV. As the difference in numbers of antibody positive samples between the swine farm residents and health city residents controls was statistically significant (P = 0.002), these data suggest that occupational exposure to pigs may increase swine farm residents' and veterinarians' risk of avian-like A (H1N1) SIV infection in eastern China. This study provides the first data on avian-like A (H1N1) SIV infections in humans in China; the potential for avian-like A (H1N1) SIV entering the human population should also be taken into consideration.

  8. Avian influenza virus (H11N9 in migratory shorebirds wintering in the Amazon Region, Brazil.

    Directory of Open Access Journals (Sweden)

    Jansen de Araujo

    Full Text Available Aquatic birds are the natural reservoir for avian influenza viruses (AIV. Habitats in Brazil provide stopover and wintering sites for water birds that migrate between North and South America. The current study was conducted to elucidate the possibility of the transport of influenza A viruses by birds that migrate annually between the Northern and Southern Hemispheres. In total, 556 orotracheal/cloacal swab samples were collected for influenza A virus screening using real-time RT-PCR (rRT-PCR. The influenza A virus-positive samples were subjected to viral isolation. Four samples were positive for the influenza A matrix gene by rRT-PCR. From these samples, three viruses were isolated, sequenced and characterized. All positive samples originated from a single bird species, the ruddy turnstone (Arenaria interpres, that was caught in the Amazon region at Caeté Bay, Northeast Pará, at Ilha de Canelas. To our knowledge, this is the first isolation of H11N9 in the ruddy turnstone in South America.

  9. Avian influenza H5N1 virus infections in vaccinated commercial and backyard poultry in Egypt.

    Science.gov (United States)

    Hafez, M H; Arafa, A; Abdelwhab, E M; Selim, A; Khoulosy, S G; Hassan, M K; Aly, M M

    2010-08-01

    In this paper, we describe results from a high-pathogenic H5N1 avian influenza virus (AIV) surveillance program in previously H5-vaccinated commercial and family-backyard poultry flocks that was conducted from 2007 to 2008 by the Egyptian National Laboratory for Veterinary Quality Control on Poultry Production. The real-time reverse transcription PCR assay was used to detect the influenza A virus matrix gene and detection of the H5 and N1 subtypes was accomplished using a commercially available kit real-time reverse transcription PCR assay. The virus was detected in 35/3,610 (0.97%) and 27/8,682 (0.31%) of examined commercial poultry farms and 246/816 (30%) and 89/1,723 (5.2%) of backyard flocks in 2007 and 2008, respectively. Positive flocks were identified throughout the year, with the highest frequencies occurring during the winter months. Anti-H5 serum antibody titers in selected commercial poultry ranged from poultry in Egypt to combat H5N1 AIV, continuous circulation of the virus in vaccinated commercial and backyard poultry was reported and the efficacy of the vaccination using a challenge model with the current circulating field virus should be revised.

  10. Isolation and Metagenomic Identification of Avian Leukosis Virus Associated with Mortality in Broiler Chicken

    Science.gov (United States)

    2016-01-01

    Avian leukosis virus (ALV) belongs to the family Retroviridae and causes considerable economic losses to the poultry industry. Following an outbreak associated with high mortality in a broiler flock in northern part of Malaysia, kidney tissues from affected chickens were submitted for virus isolation and identification in chicken embryonated egg and MDCK cells. Evidence of virus growth was indicated by haemorrhage and embryo mortality in egg culture. While viral growth in cell culture was evidenced by the development of cytopathic effects. The isolated virus was purified by sucrose gradient and identified using negative staining transmission electron microscopy. Further confirmation was achieved through next-generation sequencing and nucleotide sequence homology search. Analysis of the viral sequences using the NCBI BLAST tool revealed 99-100% sequence homology with exogenous ALV viral envelope protein. Phylogenetic analysis based on partial envelope sequences showed the Malaysian isolate clustered with Taiwanese and Japanese ALV strains, which were closer to ALV subgroup J, ALV subgroup E, and recombinant A/E isolates. Based on these findings, ALV was concluded to be associated with the present outbreak. It was recommended that further studies should be conducted on the molecular epidemiology and pathogenicity of the identified virus isolate. PMID:27597865

  11. Isolation and Metagenomic Identification of Avian Leukosis Virus Associated with Mortality in Broiler Chicken

    Directory of Open Access Journals (Sweden)

    Faruku Bande

    2016-01-01

    Full Text Available Avian leukosis virus (ALV belongs to the family Retroviridae and causes considerable economic losses to the poultry industry. Following an outbreak associated with high mortality in a broiler flock in northern part of Malaysia, kidney tissues from affected chickens were submitted for virus isolation and identification in chicken embryonated egg and MDCK cells. Evidence of virus growth was indicated by haemorrhage and embryo mortality in egg culture. While viral growth in cell culture was evidenced by the development of cytopathic effects. The isolated virus was purified by sucrose gradient and identified using negative staining transmission electron microscopy. Further confirmation was achieved through next-generation sequencing and nucleotide sequence homology search. Analysis of the viral sequences using the NCBI BLAST tool revealed 99-100% sequence homology with exogenous ALV viral envelope protein. Phylogenetic analysis based on partial envelope sequences showed the Malaysian isolate clustered with Taiwanese and Japanese ALV strains, which were closer to ALV subgroup J, ALV subgroup E, and recombinant A/E isolates. Based on these findings, ALV was concluded to be associated with the present outbreak. It was recommended that further studies should be conducted on the molecular epidemiology and pathogenicity of the identified virus isolate.

  12. North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses

    Science.gov (United States)

    Dusek, Robert J.; Hallgrimsson, Gunnar T.; Ip, Hon S.; Jónsson, Jón E.; Sreevatsan, Srinand; Nashold, Sean W.; TeSlaa, Joshua L.; Enomoto, Shinichiro; Halpin, Rebecca A.; Lin, Xudong; Federova, Nadia; Stockwell, Timothy B.; Dugan, Vivien G.; Wentworth, David E.; Hall, Jeffrey S.

    2014-01-01

    Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.

  13. PRODUKSI KOLOSTRUM ANTIVIRUS AVIAN INFLUENZA DALAM RANGKA PENGENDALIAN INFEKSI VIRUS FLU BURUNG

    Directory of Open Access Journals (Sweden)

    A. Esfandari

    2008-08-01

    Full Text Available This experiment was conducted to study the prospect of bovine colostrum utilization to produce specific antibody as passive immunotherapy against avian influenza. Pregnant Frisian Holstein cows were injected with commercial killed Avian Influenza (AI vaccine given double doses subcutaneously three times every two weeks. Prior to vaccination, the cows were given immunomodulator 0.1 mg.kg-1 BW administered orally for three days. The animals then were injected by inactive H5N1 antigent without adjuvant intravenously to meet the dose of 104 HAU. Blood samples were collected to detect anti AI antibody using Enzyme Linked Jmmunosorbent Assay technique. Colostral samples were analysed to detect antibody against AI using Haemagglutination Inhibition technique. IgG stabilities were tested against enzyme, pH, and spray dried prosessing with inlet dan outlet temperature of 1400C and 520C.repectively. The colostral lgG efficacy on neutralizing H5N1 virus activity was determined in vitro (by using Serum Neutralization Test and protective titer measurement and in ovo (challenge test by using Embryonic Chicken Egg. The result indicated that serum antibody against H5N1 was detected one week after the second vaccination. Titer of colostral antibody against H5N1 was high (28 . Biological activity of colostral IgG remain stable at pH 5-7 and after spraying-drying prosessing, but decreased after treatment by trypsin and pepsin enzymes. The neutralization test showed that the fresh and spray dried colostral IgG against H5N1 were able to neutralize 107 EID50 AI virus H5N1 with neutralization index of 1.1 and 1.0, respectively. In conclusion, pregnant Frisian Holstein cows injected with commercial killed Avian Influenza (AI vaccine were able to produce colostral lgG against AI H5Nl

  14. The Genomic Contributions of Avian H1N1 Influenza A Viruses to the Evolution of Mammalian Strains.

    Science.gov (United States)

    Koçer, Zeynep A; Carter, Robert; Wu, Gang; Zhang, Jinghui; Webster, Robert G

    2015-01-01

    Among the influenza A viruses (IAVs) in wild aquatic birds, only H1, H2, and H3 subtypes have caused epidemics in humans. H1N1 viruses of avian origin have also caused 3 of 5 pandemics. To understand the reappearance of H1N1 in the context of pandemic emergence, we investigated whether avian H1N1 IAVs have contributed to the evolution of human, swine, and 2009 pandemic H1N1 IAVs. On the basis of phylogenetic analysis, we concluded that the polymerase gene segments (especially PB2 and PA) circulating in North American avian H1N1 IAVs have been reintroduced to swine multiple times, resulting in different lineages that led to the emergence of the 2009 pandemic H1N1 IAVs. Moreover, the similar topologies of hemagglutinin and nucleoprotein and neuraminidase and matrix gene segments suggest that each surface glycoprotein coevolved with an internal gene segment within the H1N1 subtype. The genotype of avian H1N1 IAVs of Charadriiformes origin isolated in 2009 differs from that of avian H1N1 IAVs of Anseriformes origin. When the antigenic sites in the hemagglutinin of all 31 North American avian H1N1 IAVs were considered, 60%-80% of the amino acids at the antigenic sites were identical to those in 1918 and/or 2009 pandemic H1N1 viruses. Thus, although the pathogenicity of avian H1N1 IAVs could not be inferred from the phylogeny due to the small dataset, the evolutionary process within the H1N1 IAV subtype suggests that the circulation of H1N1 IAVs in wild birds poses a continuous threat for future influenza pandemics in humans.

  15. Development of a novel immuno-PCR for detection of avian leukosis virus.

    Science.gov (United States)

    Xie, Quan; Zhang, Jianjun; Shao, Hongxia; Wan, Zhimin; Tian, Xiaoyan; Yang, Jialiang; Pang, Mayun; Qian, Kun; Gao, Wei; Wang, Chengming; Qin, Aijian; Ye, Jianqiang

    2016-10-01

    Avian leukosis virus (ALV) is an important pathogen for various neoplasms, including lymphoid, myeloid, and erythroid neoplasms, and it causes significant economic loss in the poultry industry. Several efficient methods for the detection of ALV have been reported. However, these previously developed approaches are based on either PCR or immunoassays. Here, we used a proximity ligation technique and combined PCR with the immunoassay to develop a novel immuno-PCR (Im-PCR) approach for the detection of ALV. Our data showed that the Im-PCR had high specificity and sensitivity to ALV. The Im-PCR method selectively reacted to ALV but not to the other avian viruses tested. The limit of detection of Im-PCR could reach 0.5 TCID50. Moreover, the results of Im-PCR were in agreement with results from commercial ELISA when the clinical cloaca samples were used for ALV detection. The present results demonstrate that the novel Im-PCR method can be efficiently applied to detect ALV in a clinical setting. Our data also highlight that Im-PCR may have promising applications in the diagnosis of pathogens.

  16. Epitope mapping of a monoclonal antibody against the Gp85 of avian leukosis virus subgroup J.

    Science.gov (United States)

    Sun, Miao; Yu, Duo; Mo, Hongfei; Cao, Hong; Chen, Chen; Chen, Fuyong

    2012-06-01

    Avian leukosis virus subgroup J poses a great threat to the poultry industry in China. To reduce the economic losses, a quick method for detection of ALV-J antigen is required for diagnosis and identification of the congenitally transmitting hens. In this study, we report the production and evaluation of one monoclonal antibody (MAb) suitable for achieving these goals. The gp85 gene of avian leukosis virus subgroup J CAUHM01 China isolates was subcloned into the expression vectors pGEX-6p-1 and pET28a and successfully expressed in E. coli. After immunizing BALB/c mice with recombinant His-Jgp85 protein, splenic cells from immunized mice were fused with SP2/0 myeloma cells to produce hybridomas. We isolated and characterized one ALV-J gp85-specific MAb by determining its titer, affinity and IgG subclass. In addition, we performed epitope mapping and determined the epitope for the MAb 1E3 to be 81-92 aa of ALV-J gp85 protein (LPWDPQELDILG). Bioinformatics analysis and IFA studies revealed that this epitope is conserved among all ALV-J isolates and that this antibody could serve as a useful reagent for ALV-J detection and diagnosis.

  17. Epitope mapping of neutralizing monoclonal antibody in avian influenza A H5N1 virus hemagglutinin.

    Science.gov (United States)

    Ohkura, Takashi; Kikuchi, Yuji; Kono, Naoko; Itamura, Shigeyuki; Komase, Katsuhiro; Momose, Fumitaka; Morikawa, Yuko

    2012-02-03

    The global spread of highly pathogenic avian influenza A H5N1 viruses raises concerns about more widespread infection in the human population. Pre-pandemic vaccine for H5N1 clade 1 influenza viruses has been produced from the A/Viet Nam/1194/2004 strain (VN1194), but recent prevalent avian H5N1 viruses have been categorized into the clade 2 strains, which are antigenically distinct from the pre-pandemic vaccine. To understand the antigenicity of H5N1 hemagglutinin (HA), we produced a neutralizing monoclonal antibody (mAb12-1G6) using the pre-pandemic vaccine. Analysis with chimeric and point mutant HAs revealed that mAb12-1G6 bound to the loop (amino acid positions 140-145) corresponding to an antigenic site A in the H3 HA. mAb12-1G6 failed to bind to the mutant VN1194 HA when only 3 residues were substituted with the corresponding residues of the clade 2.1.3.2 A/Indonesia/5/05 strain (amino acid substitutions at positions Q142L, K144S, and S145P), suggesting that these amino acids are critical for binding of mAb12-1G6. Escape mutants of VN1194 selected with mAb12-1G6 carried a S145P mutation. Interestingly, mAb12-1G6 cross-neutralized clade 1 and clade 2.2.1 but not clade 2.1.3.2 or clade 2.3.4 of the H5N1 virus. We discuss the cross-reactivity, based on the amino acid sequence of the epitope.

  18. Genetic structure of avian influenza viruses from ducks of the Atlantic flyway of North America.

    Directory of Open Access Journals (Sweden)

    Yanyan Huang

    Full Text Available Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008-2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006-2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively, and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively. Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways.

  19. Development and evaluation of an immunochromatographic strip for rapid detection of capsid protein antigen p27 of avian leukosis virus.

    Science.gov (United States)

    Qian, Kun; Liang, You-zhi; Yin, Li-ping; Shao, Hong-xia; Ye, Jian-qiang; Qin, Ai-jian

    2015-09-01

    A rapid immunochromatographic strip for detecting capsid protein antigen p27 of avian leukosis virus was successfully developed based on two high-affinity monoclonal antibodies. The test strip could detect not only 600pg purified recombinant p27 protein but also quantified avian leukosis virus as low as 70 TCID50, which has comparative sensitivity to the commercial enzyme-linked immunosorbent assay (ELISA) kit. For the evaluation of this test strip, 1100 samples consisting of cloacal swabs, meconium collected from the earliest stool of one day old chicken and virus isolates were assessed both by the strip and by the commercial ELISA kit. The agreement between these two tests was 93.91%, 93.42% and 100%, respectively. The sensitivity and specificity of the strip were also calculated by using the ELISA kit as the standard. This immunochromatographic strip provides advantages of rapid and simple detection of capsid protein antigen p27 of avian leukosis virus, which could be applied as an on-site testing assay and used for control and eradication programs of avian leukosis disease.

  20. Complete Genome Sequence of an American Avian Leukosis Virus Subgroup J Isolate That Causes Hemangiomas and Myeloid Leukosis

    OpenAIRE

    Malhotra, Sanandan; Justice, James; De Lee, Nathan; Li, Yingying; Zavala, Guillermo; Ruano, Miguel; Morgan, Robin; Beemon, Karen

    2015-01-01

    We report the complete genome sequence of avian leukosis virus subgroup J (ALV-J) isolate PDRC-59831, which causes myeloid leukosis and hemangiomas in chickens. This is an American ALV-J isolate, which was found in a 38-week-old broiler breeder chicken on a farm in Georgia in 2007.

  1. GADD45ß, an anti-tumor gene, inhibits avian leukosis virus subgroup J replication in chickens

    Science.gov (United States)

    Avian leukosis virus subgroup J (ALV-J) is a retrovirus that induces neoplasia, hepatomegaly, immunosuppression and poor performance in chickens. The tumorigenic and pathogenic mechanisms of ALV-J remain a hot topic. To explore anti-tumor genes that confer genetic resistance to ALV-J infection in ch...

  2. Rapid detection of avian influenza virus in chicken fecal samples by immunomagnetic capture reverse transcriptase–polymerase chain reaction assay

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram; Handberg, Kurt; Jørgensen, Poul Henrik;

    2011-01-01

    Avian influenza virus (AIV) causes great economic losses for the poultry industry worldwide and threatens the human population with a pandemic. The conventional detection method for AIV involves sample preparation of viral RNA extraction and purification from raw sample such as bird droppings. In...

  3. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    DEFF Research Database (Denmark)

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven

    2009-01-01

    Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) ...

  4. Highly pathogenic avian influenza A (H5N1) virus in wildlife: diagnostics, epidemiology and molecular characteristics

    NARCIS (Netherlands)

    Keawcharoen, J.

    2010-01-01

    Since 2003, highly pathogenic avian influenza virus subtype H5N1 outbreaks have been reported in Southeast Asia causing high mortality in poultry and have also been found to cross the species barrier infecting human and other mammalian species. Thailand is one of the countries severely affected by t

  5. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR

    Science.gov (United States)

    Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R), reverse-transcriptase (RT), PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard tec...

  6. Historical Prevalence and Distribution of Avian Influenza Virus A(H7N9) among Wild Birds

    Centers for Disease Control (CDC) Podcasts

    2013-12-19

    Dr. Mike Miller reads an abridged version of the Emerging Infectious Diseases’ dispatch, Historical Prevalence and Distribution of Avian Influenza Virus A(H7N9) among Wild Birds.  Created: 12/19/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/24/2013.

  7. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    Science.gov (United States)

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  8. Cloning and Expression of Highly Pathogenic Avian Influenza Virus Full-Length Nonstructural Gene in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    M. B. Abubakar

    2011-01-01

    Full Text Available Avian influenza (AI is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1 was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1 avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1.

  9. Induction of respiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines

    NARCIS (Netherlands)

    Geus, de E.D.; Rebel, J.M.J.; Vervelde, L.

    2012-01-01

    The risk and the size of an outbreak of avian influenza virus (AIV) could be restricted by vaccination of poultry. A vaccine used for rapid intervention during an AIV outbreak should be safe, highly effective after a single administration and suitable for mass application. In the case of AIV, aeroso

  10. Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species

    Directory of Open Access Journals (Sweden)

    Costa Taiana

    2012-04-01

    Full Text Available Abstract This study assessed the presence of sialic acid α-2,3 and α-2,6 linked glycan receptors in seven avian species. The respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant, ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin II and Sambucus nigra agglutinin, which show affinity for α-2,3 and α-2,6 receptors, respectively. Additionally, the pattern of virus attachment (PVA was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a human-origin seasonal H1N1 virus. There was a great variation of receptor distribution among the tissues and avian species studied. Both α-2,3 and α-2,6 receptors were present in the respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts and in mallards the α-2,6 receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general, in agreement with the PVA. The differential expression and distribution of α-2,3 and α-2,6 receptors among various avian species might reflect a potentially decisive factor in the emergence of new viral strains.

  11. Avian Influenza A(H7N9) Virus Infection in 2 Travelers Returning from China to Canada, January 20151

    Science.gov (United States)

    Chambers, Catharine; Gustafson, Reka; Purych, Dale B.; Tang, Patrick; Bastien, Nathalie; Krajden, Mel; Li, Yan

    2016-01-01

    In January 2015, British Columbia, Canada, reported avian influenza A(H7N9) virus infection in 2 travelers returning from China who sought outpatient care for typical influenza-like illness. There was no further spread, but serosurvey findings showed broad population susceptibility to H7N9 virus. Travel history and timely notification are critical to emerging pathogen detection and response. PMID:26689320

  12. Full-genome analysis of avian influenza A(H5N1) virus from a human, North America, 2013.

    Science.gov (United States)

    Pabbaraju, Kanti; Tellier, Raymond; Wong, Sallene; Li, Yan; Bastien, Nathalie; Tang, Julian W; Drews, Steven J; Jang, Yunho; Davis, C Todd; Fonseca, Kevin; Tipples, Graham A

    2014-05-01

    Full-genome analysis was conducted on the first isolate of a highly pathogenic avian influenza A(H5N1) virus from a human in North America. The virus has a hemagglutinin gene of clade 2.3.2.1c and is a reassortant with an H9N2 subtype lineage polymerase basic 2 gene. No mutations conferring resistance to adamantanes or neuraminidase inhibitors were found.

  13. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Directory of Open Access Journals (Sweden)

    Encheng Sun

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1 of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24 were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV, Newcastle Disease Virus (NDV, Duck Plague Virus (DPV and Goose Parvovirus (GPV antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and

  14. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus).

    Science.gov (United States)

    Dimitrov, Kiril M; Ramey, Andrew M; Qiu, Xueting; Bahl, Justin; Afonso, Claudio L

    2016-04-01

    Newcastle disease is caused by virulent forms of avian paramyxovirus of serotype 1 (APMV-1) and has global economic importance. The disease reached panzootic proportions within two decades after first being identified in 1926 in the United Kingdom and Indonesia and still remains endemic in many countries across the world. Here we review information on the host, temporal, and geographic distribution of APMV-1 genetic diversity based on the evolutionary systematics of the complete coding region of the fusion gene. Strains of APMV-1 are phylogenetically separated into two classes (class I and class II) and further classified into genotypes based on genetic differences. Class I viruses are genetically less diverse, generally present in wild waterfowl, and are of low virulence. Class II viruses are genetically and phenotypically more diverse, frequently isolated from poultry with occasional spillovers into wild birds, and exhibit a wider range of virulence. Waterfowl, cormorants, and pigeons are natural reservoirs of all APMV-1 pathotypes, except viscerotropic velogenic viruses for which natural reservoirs have not been identified. Genotypes I and II within class II include isolates of high and low virulence, the latter often being used as vaccines. Viruses of genotypes III and IX that emerged decades ago are now isolated rarely, but may be found in domestic and wild birds in China. Containing only virulent viruses and responsible for the majority of recent outbreaks in poultry and wild birds, viruses from genotypes V, VI, and VII, are highly mobile and have been isolated on different continents. Conversely, virulent viruses of genotypes XI (Madagascar), XIII (mainly Southwest Asia), XVI (North America) and XIV, XVII and XVIII (Africa) appear to have a more limited geographic distribution and have been isolated predominantly from poultry.

  15. Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus)

    Science.gov (United States)

    Dimitrov, Kiril M.; Ramey, Andy M.; Qiu, Xueting; Bahl, Justin; Afonso, Claudio L.

    2016-01-01

    Newcastle disease is caused by virulent forms of avian paramyxovirus of serotype 1 (APMV-1) and has global economic importance. The disease reached panzootic proportions within two decades after first being identified in 1926 in the United Kingdom and Indonesia and still remains endemic in many countries across the world. Here we review information on the host, temporal, and geographic distribution of APMV-1 genetic diversity based on the evolutionary systematics of the complete coding region of the fusion gene. Strains of APMV-1 are phylogenetically separated into two classes (class I and class II) and further classified into genotypes based on genetic differences. Class I viruses are genetically less diverse, generally present in wild waterfowl, and are of low virulence. Class II viruses are genetically and phenotypically more diverse, frequently isolated from poultry with occasional spillovers into wild birds, and exhibit a wider range of virulence. Waterfowl, cormorants, and pigeons are natural reservoirs of all APMV-1 pathotypes, except viscerotropic velogenic viruses for which natural reservoirs have not been identified. Genotypes I and II within class II include isolates of high and low virulence, the latter often being used as vaccines. Viruses of genotypes III and IX that emerged decades ago are now isolated rarely, but may be found in domestic and wild birds in China. Containing only virulent viruses and responsible for the majority of recent outbreaks in poultry and wild birds, viruses from genotypes V, VI, and VII, are highly mobile and have been isolated on different continents. Conversely, virulent viruses of genotypes XI (Madagascar), XIII (mainly Southwest Asia), XVI (North America) and XIV, XVII and XVIII (Africa) appear to have a more limited geographic distribution and have been isolated predominantly from poultry.

  16. Human herpes virus-8 DNA in bronchoalveolar lavage samples from patients with AIDS-associated pulmonary Kaposi's sarcoma

    DEFF Research Database (Denmark)

    Benfield, T L; Dodt, K K; Lundgren, Jens Dilling

    1997-01-01

    Kaposi's sarcoma (KS) is the most frequent AIDS-associated neoplasm, and often disseminates to visceral organs, including the lungs. An ante-mortem diagnosis of pulmonary KS is difficult. Recently, DNA sequences resembling a new human herpes virus (HHV-8), have been identified in various forms...... of KS. We hypothesized that these sequences are present in samples obtained by bronchoalveolar lavage (BAL) in patients with pulmonary KS. Utilizing a nested polymerase chain reaction (PCR), 7/12 BAL cell samples from HIV-infected patients with endobronchial KS were positive for HHV-8 DNA. In contrast......, only 2/39 samples from HIV-infected patients without evidence of KS were positive (p = 0.007). Detection of HHV-8 in BAL cells of patients with pulmonary KS was highly specific (95%), with a sensitivity of 58% and a positive predictive value of 78%. In conclusion, HHV-8 is associated with pulmonary KS...

  17. Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets.

    Science.gov (United States)

    Ku, Keun Bon; Park, Eun Hye; Yum, Jung; Kim, Heui Man; Kang, Young Myong; Kim, Jeong Cheol; Kim, Ji An; Kim, Hyun Soo; Seo, Sang Heui

    2014-02-01

    Previous studies have shown that the H7N9 avian influenza virus cannot be transmitted efficiently between ferrets via respiratory droplets. Here, we studied the infectivity of the H7N9 avian influenza virus in chickens and its transmissibility from infected to naïve chickens and ferrets. The H7N9 virus (A/Anhui/1/2013) replicated poorly in chickens and could not be transmitted efficiently from infected chickens to naïve chickens and ferrets. H7N9 virus was shed from chicken tracheae for only 2 days after infection and from chicken cloacae for only 1 day after infection, while the H9N2 avian influenza virus, which is endemic in chickens in many Asian countries, was shed from tracheae and cloacae for 8 days after infection. Taken together, our results suggest that chickens may be a poor agent of transmission for the H7N9 virus to other chickens and to mammals, including humans.

  18. Development of a reverse transcription loop-mediated isothermal amplification assay for the rapid diagnosis of avian influenza A (H7N9) virus infection.

    Science.gov (United States)

    Nakauchi, Mina; Takayama, Ikuyo; Takahashi, Hitoshi; Tashiro, Masato; Kageyama, Tsutomu

    2014-08-01

    A genetic diagnosis system for detecting avian influenza A (H7N9) virus infection using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) technology was developed. The RT-LAMP assay showed no cross-reactivity with seasonal influenza A (H3N2 and H1N1pdm09) or influenza B viruses circulating in humans or with avian influenza A (H5N1) viruses. The sensitivity of the RT-LAMP assay was 42.47 copies/reaction. Considering the high specificity and sensitivity of the assay for detecting the avian influenza A (H7N9) virus and that the reaction was completed within 30 min, the RT-LAMP assay developed in this study is a promising rapid diagnostic tool for avian influenza A (H7N9) virus infection.

  19. [Cloning and expression of gp37 gene of avian leukosis virus subgroup J].

    Science.gov (United States)

    Wang, Xiao-Wei; Liu, Qing; Xu, Qing-Qing; Cai, Li-Ming; Wang, Zhen-Zhen; Wang, Gui-Hua; Cheng, Zi-Qiang

    2012-03-01

    The transmembrane protein (TM) encoded by gp37 gene plays a critical role when virus fusion with cell membrane occurs. Several highly conserved regions in TM are important targets for antivirus studies. Studies on structure and function of TM will provide basic information for anti-retrovirus, especially for avian leukosis virus. In the study, gp37 gene was amplified by PCR from the Chinese strain ALV-J-WS0701. The gp37 gene was cloned into pMD18-T vector, and was sequenced. Then, pFast-BacHTb-gp37 vector was constructed and expressed by baculovirus expression vector system. The expression product of gp37 gene was analyzed by indirect immunofluorescence assay and Western blot. The results showed that positive green fluorescence was present in sf9 cells infected with recombinant virus and a protein band with a molecular weight of 21kD was present in Western blot. It is concluded that gp37 gene was expressed in sf9 cells infected with recombinant virus successfully.

  20. Ecological routes of avian influenza virus transmission to a common mesopredator: an experimental evaluation of alternatives.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Root

    Full Text Available Wild raccoons have been shown to be naturally exposed to avian influenza viruses (AIV. However, the mechanisms associated with these natural exposures are not well-understood.We experimentally tested three alternative routes (water, eggs, and scavenged waterfowl carcasses of AIV transmission that may explain how raccoons in the wild are exposed to AIV. Raccoons were exposed to 1 water and 2 eggs spiked with an AIV (H4N6, as well as 3 mallard carcasses experimentally inoculated with the same virus. Three of four raccoons exposed to the high dose water treatment yielded apparent nasal shedding of >10(2.0 PCR EID50 equivalent/mL. Little to no shedding was observed from the fecal route. The only animals yielding evidence of serologic activity during the study period were three animals associated with the high dose water treatment.Overall, our results indicate that virus-laden water could provide a natural exposure route of AIV for raccoons and possibly other mammals associated with aquatic environments. However, this association appears to be related to AIV concentration in the water, which would constitute an infective dose. In addition, strong evidence of infection was only detected in three of four animals exposed to a high dose (e.g., 10(5.0 EID50/mL of AIV in water. As such, water-borne transmission to raccoons may require repeated exposures to water with high concentrations of virus.

  1. Antibodies to avian influenza viruses in Canada geese (Branta canadensis): a potential surveillance tool?

    Science.gov (United States)

    Kistler, Whitney M; Stallknecht, David E; Deliberto, Thomas J; Swafford, Seth; Pedersen, Kerri; Van Why, Kyle; Wolf, Paul C; Hill, Jerry A; Bruning, Darren L; Cumbee, James C; Mickley, Randall M; Betsill, Carl W; Randall, Adam R; Berghaus, Roy D; Yabsley, Michael J

    2012-10-01

    Traditionally, the epidemiology of avian influenza viruses (AIVs) in wild birds has been defined by detection of virus or viral RNA through virus isolation or reverse-transcription polymerase chain reaction. Our goals were to estimate AIV antibody prevalence in Canada geese (Branta canadensis) and measure effects of age and location on these estimates. We collected 3,205 samples from nine states during June and July 2008 and 2009: Georgia, Massachusetts, Minnesota, Mississippi, New Jersey, North Carolina, Pennsylvania, Washington, and West Virginia. Serum samples were tested for AIV antibodies with the use of a commercial blocking enzyme-linked immunosorbent assay. Overall, 483 (15%) Canada geese had detectable antibodies to AIV. Significantly higher prevalences were detected in geese collected from northeastern and upper midwestern states compared with southeastern states. This trend is consistent with results from virus isolation studies reporting AIV prevalence in North American dabbling ducks. Within Pennsylvania, significantly higher antibody prevalences were detected in goose flocks sampled in urban locations compared to flocks sampled in rural areas. Antibody prevalence was significantly higher in after-hatch-year geese compared to hatch-year geese. No significant differences in prevalence were detected from 10 locations sampled during both years. Results indicate that Canada geese are frequently exposed to AIVs and, with resident populations, may potentially be useful as sentinels to confirm regional AIV transmission within wild bird populations.

  2. The use of FTA® filter papers for diagnosis of avian influenza virus.

    Science.gov (United States)

    Abdelwhab, E M; Lüschow, Dörte; Harder, Timm C; Hafez, Hafez M

    2011-06-01

    Avian influenza viruses (AIVs) infect a wide range of host species including domestic poultry and wild birds; also, AIVs may infect humans in whom some highly pathogenic viruses (HPAIV) may cause acute fatal disease. Accurate laboratory diagnosis of AIV infections requires time-consuming and logistically complex precautionary measures for shipment of specimens or viruses to avoid biohazard exposure. The feasibility was investigated of the Flinders Technology Associates filter paper (FTA® card) for infectivity of AIVs and to preserve viral RNA for detection by RT-qPCR, sequencing and by DNA microarray assay. The infectivity of AIV subtype H6N2 and HPAIV subtype H5N1 was inactivated completely within one hour after adsorption to the FTA card at room temperature. FTA-adsorbed viral RNA remained stable for five months. Swab samples obtained from chickens infected experimentally with H5N1 virus and spotted directly onto the FTA® cards allowed a sensitive and straightforward diagnosis by RT-qPCR. FTA® cards were also suitable for examination of field samples, although AIV RNA was detected with reduced sensitivity in comparison to direct examination of swab fluids. The use of FTA® cards will facilitate safe transport of samples for molecular diagnosis of AIV avoiding the need for an uninterrupted cold storage.

  3. Chicken interferon alpha pretreatment reduces virus replication of pandemic H1N1 and H5N9 avian influenza viruses in lung cell cultures from different avian species

    Directory of Open Access Journals (Sweden)

    Yang Hanchun

    2011-09-01

    Full Text Available Abstract Background Type I interferons, including interferon alpha (IFN-α, represent one of the first lines of innate immune defense against influenza virus infection. Following natural infection of chickens with avian influenza virus (AIV, transcription of IFN-α is quickly up regulated along with multiple other immune-related genes. Chicken IFN-α up regulates a number of important anti-viral response genes and has been demonstrated to be an important cytokine to establish anti-viral immunity. However, the mechanisms by which interferon inhibit virus replication in avian species remains unknown as does the biological activity of chicken interferon in other avian species. Methods In these studies, we assessed the protective potential of exogenous chicken IFN-α applied to chicken, duck, and turkey primary lung cell cultures prior to infection with the pandemic H1N1 virus (A/turkey/Virginia/SEP-4/2009 and an established avian H5N9 virus (A/turkey/Wisconsin/1968. Growth kinetics and induction of select immune response genes, including IFN-α and myxovirus-resistance gene I (Mx, as well as proinflammatory cytokines (IL-1β and IL-6, were measured in response to chicken IFN-α and viral infection over time. Results Results demonstrate that pretreatment with chicken IFN-α before AIV infection significantly reduced virus replication in both chicken-and turkey-origin lung cells and to a lesser degree the duck-origin cells. Virus growth was reduced by approximately 200-fold in chicken and turkey cells and 30-fold in duck cells after 48 hours of incubation. Interferon treatment also significantly decreased the interferon and proinflammatory response during viral infection. In general, infection with the H1N1 virus resulted in an attenuated interferon and proinflammatory response in these cell lines, compared to the H5N9 virus. Conclusions Taken together, these studies show that chicken IFN-α reduces virus replication, lower host innate immune

  4. Isolation and pathotyping of H9N2 avian influenza viruses in Indian poultry.

    Science.gov (United States)

    Nagarajan, S; Rajukumar, K; Tosh, C; Ramaswamy, V; Purohit, K; Saxena, G; Behera, P; Pattnaik, B; Pradhan, H K; Dubey, S C

    2009-01-01

    A total of 1246 faecal and tissue samples collected/received from 119 farms located in various states of India were processed for isolation of avian influenza viruses (AIV) during 2003-2004 as part of a program to monitor AIV infection in Indian poultry population. Avian influenza virus was isolated for the first time in India from poultry farms with history of drop in egg production, respiratory illness and increased mortality in Haryana state. A total of 29 H9N2 AIV isolates were obtained from the states of Punjab, Haryana, Uttar Pradesh, Gujarat, and Orissa and Union Territory Delhi. Subtyping was done by HI, RT-PCR and neuraminidase inhibition assay. Pathotyping of six representative isolates by intravenous pathogenicity index (0.0/3.0) in 6-8 weeks old chicken, trypsin dependency in cell culture and HA cleavage site analysis (335RSSR*GLF341) confirmed that these isolates are low pathogenic. Nucleotide sequence analysis of the HA gene showed that the Indian isolates are very closely related (95.0-99.6%) and shared a homology of 92-96% with H9N2 isolates from Germany and Asian regions other than that of mainland China. Deduced amino acid sequences showed the presence of L226 (234 in H9 numbering) which indicates a preference to binding of alpha (2-6) sialic acid receptors. Two of the six isolates had 7 glycosylation sites in the HA1 cleaved protein and the remaining four had 5 sites. Phylogenetic analysis showed that they share a common ancestor Qa/HK/G1/97 isolate which had contributed internal genes of H5N1 virus circulating in Vietnam. Further characterization of Indian H9N2 isolates is required to understand their nature and evolution.

  5. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection.

    Science.gov (United States)

    Wu, Donglin; Zou, Shumei; Bai, Tian; Li, Jing; Zhao, Xiang; Yang, Lei; Liu, Hongmin; Li, Xiaodan; Yang, Xianda; Xin, Li; Xu, Shuang; Zou, Xiaohui; Li, Xiyan; Wang, Ao; Guo, Junfeng; Sun, Bingxin; Huang, Weijuan; Zhang, Ye; Li, Xiang; Gao, Rongbao; Shen, Bo; Chen, Tao; Dong, Jie; Wei, Hejiang; Wang, Shiwen; Li, Qun; Li, Dexin; Wu, Guizhen; Feng, Zijian; Gao, George F; Wang, Yu; Wang, Dayan; Fan, Ming; Shu, Yuelong

    2015-01-15

    Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-October 6, 2013) and September 25, 2013 (95% CI May 28, 2013-January 4, 2014), suggesting that the most likely source of virus introduction was the first batch of poultry purchased in August 2013. The reassortment event that led to the human virus may have occurred between January 2, 2014 (95% CI November 8, 2013-February 12, 2014) and February 12, 2014 (95% CI January 19, 2014-February 18, 2014). Our findings demonstrate that poultry farms could be a source of reassortment between H7N9 virus and H9N2 virus as well as human infection, which emphasizes the importance to public health of active avian influenza surveillance at poultry farms.

  6. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  7. Complete genome sequence of a natural reassortant H9N2 avian influenza virus found in bean goose (Anser fabalis): direct evidence for virus exchange between Korea and China via wild birds.

    Science.gov (United States)

    Lee, Dong-Hun; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Kwon, Jung-Hoon; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2014-08-01

    In 2011, we isolated a natural recombinant H9N2 avian influenza virus from fecal droppings of bean goose (Anser fabalis) in Korea. Phylogenetic analyses showed that the A/bean goose/Korea/220/2011(H9N2) isolate is a reassortant of Eurasian and North American lineages of avian influenza virus. In addition, the complete genome sequence, including all 8 gene segments, was associated with Chinese H9N2 viruses isolated from wild birds in the Hunan East Dongting Lake National Nature Reserve. These data provide direct evidence for the exchange of avian influenza viruses between Korea and China via wild birds.

  8. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs.

    Directory of Open Access Journals (Sweden)

    Annebel De Vleeschauwer

    Full Text Available Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal to compare the pathogenesis of a low pathogenic (LP H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.

  9. Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt

    Directory of Open Access Journals (Sweden)

    El-Zoghby Elham F

    2012-11-01

    Full Text Available Abstract Background Uninterrupted transmission of highly pathogenic avian influenza virus (HPAIV H5N1 of clade 2.2.1 in Egypt since 2006 resulted in establishment of two main genetic clusters. The 2.2.1/C group where all recent human and majority of backyard origin viruses clustered together, meanwhile the majority of viruses derived from vaccinated poultry in commercial farms grouped in 2.2.1.1 clade. Findings In the present investigation, an HPAIV H5N1 was isolated from twenty weeks old layers chickens that were vaccinated with a homologous H5N1 vaccine at 1, 7 and 16 weeks old. At twenty weeks of age, birds showed cyanosis of comb and wattle, decrease in egg production and up to 27% mortality. Examined serum samples showed low antibody titer in HI test (Log2 3.2± 4.2. The hemagglutinin (HA and neuraminidase (NA genes of the isolated virus were closely related to viruses in 2.2.1/C group isolated from poultry in live bird market (LBM and backyards or from infected people. Conspicuous mutations in the HA and NA genes including a deletion within the receptor binding domain in the HA globular head region were observed. Conclusions Despite repeated vaccination of layer chickens using a homologous H5N1 vaccine, infection with HPAIV H5N1 resulted in significant morbidity and mortality. In endemic countries like Egypt, rigorous control measures including enforcement of biosecurity, culling of infected birds and constant update of vaccine virus strains are highly required to prevent circulation of HPAIV H5N1 between backyard birds, commercial poultry, LBM and humans.

  10. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1 in experimentally infected chickens

    Directory of Open Access Journals (Sweden)

    Chaves Aida J

    2011-10-01

    Full Text Available Abstract In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV into the central nervous system (CNS of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF, nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  11. Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections▿ †

    Science.gov (United States)

    Brown, Joseph N.; Palermo, Robert E.; Baskin, Carole R.; Gritsenko, Marina; Sabourin, Patrick J.; Long, James P.; Sabourin, Carol L.; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M.; Jacobs, Jon M.; Smith, Richard D.; Katze, Michael G.

    2010-01-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a “core” response to viral infection from a “high” response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process. PMID:20844032

  12. Macaque proteome response to highly pathogenic avian influenza and 1918 reassortant influenza virus infections.

    Science.gov (United States)

    Brown, Joseph N; Palermo, Robert E; Baskin, Carole R; Gritsenko, Marina; Sabourin, Patrick J; Long, James P; Sabourin, Carol L; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M; Jacobs, Jon M; Smith, Richard D; Katze, Michael G

    2010-11-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a "core" response to viral infection from a "high" response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process.

  13. Systemic Virus distribution and host responses in brain and intestine of chickens infected with low pathogenic and high pathogenic avian influenza virus

    NARCIS (Netherlands)

    Post, J.; Burt, D.W.; Cornelissen, J.B.W.J.; Broks, V.C.M.; Zoelen, van D.; Peeters, B.P.H.; Rebel, J.M.J.

    2012-01-01

    Background: Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic ( HP), based on virulence in chickens. Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host r

  14. Biologic characterization of chicken-derived H6N2 low pathogenic avian influenza viruses in chickens and ducks.

    Science.gov (United States)

    Jackwood, Mark W; Suarez, David L; Hilt, Deborah; Pantin-Jackwood, Mary J; Spackman, Erica; Woolcock, Peter; Cardona, Carol

    2010-03-01

    Low pathogenic avian influenza H6N2 viruses were biologically characterized by infecting chickens and ducks in order to compare adaptation of these viruses in these species. We examined the clinical signs, virus shedding, and immune response to infection in 4-wk-old white leghorn chickens and in 2-wk-old Pekin ducks. Five H6N2 viruses isolated between 2000 and 2004 from chickens in California, and one H6N2 virus isolated from chickens in New York in 1998, were given intrachoanally at a dose of 1 x 10(6) 50% embryo infectious dose per bird. Oral-pharyngeal and cloacal swabs were taken at 2, 4, and 7 days postinoculation (PI) and tested by real-time reverse-transcriptase polymerase chain reaction for presence of virus. Serum was collected at 7, 14, and 21 days PI and examined for avian influenza virus antibodies by commercial enzyme-linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) testing. Virus shedding for all of the viruses was detected in the oral-pharyngeal swabs from chickens at 2 and 4 days PI, but only three of the five viruses were detected at 7 days PI. Only two viruses were detected in the cloacal swabs from the chickens. Virus shedding for four of the five viruses was detected in the oral-pharyngeal cavity of the ducks, and fecal shedding was detected for three of the viruses (including the virus not shed by the oral-pharyngeal route) in ducks at 4 and 7 days PI. All other fecal swabs from the ducks were negative. Fewer ducks shed virus compared to chickens. Both the chickens and the ducks developed antibodies, as evidenced by HI and ELISA titers. The data indicate that the H6N2 viruses can infect both chickens and ducks, but based on the number of birds shedding virus and on histopathology, the viruses appear to be more adapted to chickens. Virus shedding, which could go unnoticed in the absence of clinical signs in commercial chickens, can lead to transmission of the virus among poultry. However, the viruses isolated in 2004 did

  15. Protective dose of a recombinant Newcastle disease LaSota-avian influenza virus H5 vaccine against H5N2 highly pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus in broilers with high maternal antibody levels.

    Science.gov (United States)

    Sarfati-Mizrahi, David; Lozano-Dubernard, Bernardo; Soto-Priante, Ernesto; Castro-Peralta, Felipa; Flores-Castro, Ricardo; Loza-Rubio, Elizabeth; Gay-Gutiérrez, Manuel

    2010-03-01

    The protective dose of a live recombinant LaSota Newcastle disease virus (NDV)-avian influenza H5 vaccine (rNDV-LS/AI-H5) was determined in broiler chickens with high levels of maternal antibodies against NDV and avian influenza virus (AIV). At hatch the geometric mean titers (GMT) of the chickens' maternal antibodies were 2(5.1) and 2(10.3) for NDV and AIV, respectively. At the time of vaccination the GMT was 2(3.1) for NDV and 2(7.9) for AIV. The chickens were vaccinated with one drop (0.03 ml) in the eye at 10 days of age as is typical under field conditions. The test chickens received 10(4.8), 10(5.8), 10(6.8), or 10(7.8) mean chicken embryo infective doses (CEID50) of the rNDV-LS/AI-H5 vaccine. Control chickens were either nonvaccinated, or vaccinated with 10(5.8) or 10(6.8) CEID50 of a commercial live LaSota NDV vaccine. Birds were challenged with either the Mexican highly pathogenic avian influenza virus (HPAIV) strain A/Chicken/Queretaro/14588-19/95 (H5N2) or a Mexican velogenic viscerotropic (VV) NDV strain. One hundred percent of the chickens vaccinated with the rNDV-LS/AI-H5 vaccine were protected against HPAIV and VVNDV when a challenge dose of 10(6.8) EID50 or higher was administered by eye drop. Birds vaccinated with the LaSota NDV vaccine were protected against VVNDV, but not against HPAIV.

  16. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Science.gov (United States)

    Halbherr, Stefan J; Brostoff, Terza; Tippenhauer, Merve; Locher, Samira; Berger Rentsch, Marianne; Zimmer, Gert

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  17. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  18. Isolation of recombinant phage antibodies targeting the hemagglutinin cleavage site of highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Jinhua Dong

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS in the hemagglutinin protein (HA. Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.

  19. Avian leukosis virus subgroup J triggers caspase-1-mediated inflammatory response in chick livers.

    Science.gov (United States)

    Liu, Xue-lan; Shan, Wen-jie; Jia, Li-juan; Yang, Xu; Zhang, Jin-jing; Wu, Ya-rong; Xu, Fa-zhi; Li, Jin-nian

    2016-04-02

    Many pathogens trigger caspase-1-mediated innate immune responses. Avian leukosis virus subgroup J (ALV-J) causes serious immunosuppression and diverse tumors in chicks. The caspase-1 inflammasome mechanism of response to ALV-J invading remains unclear. Here we investigated the expression of caspase-1, the inflammasome adaptor NLRP3, IL-1β and IL-18 in response to ALV-J infection in the liver of chick. We found caspase-1 mRNA expression was elevated at 5 dpi and peaked at 7 dpi in ALV-J infected animals. Corresponding to this, the expressions of NLRP3 and proinflammatory cytokines IL-1β and IL-18 were significantly increased at 5 or 7 dpi. In addition, caspase-1 protein expression and inflammatory cell infiltration were induced after virus infection. These results indicated that ALV-J infection could trigger the caspase-1- mediated inflammatory response in chicks. Thus, an understanding of the inflammatory responses can provide a better insight into the pathogenicity of ALV-J and a possible anti-virus target for ALV-J infection.

  20. Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis

    Institute of Scientific and Technical Information of China (English)

    LIANG GuiZhao; LIAO ChunYang; WU ShiRong; LI GenRong; HE Liu; GAO JianKun; Gan MengYu; LI DeJing; CHEN GuoPing; WANG GuiXue; LONG Sha; CHEN ZeCong; JING JuHua; ZHENG XiaoLin; ZENG Hui; ZHANG QiaoXia; ZHANG MengJun; YANG Qi; TIAN FeiFei; TONG JianBo; WANG JiaoNa; LIU YongHong; YANG ShanBin; LI Bo; QIU LiangJia; CAI ShaoXi; ZHAO Na; YANG Yan; SU XiaLi; SONG Jian; CHEN MeiXia; ZHANG XueJiao; SUN JiaYing; MEI Hu; LI JingWei; CHEN GuoHua; CHEN Gang; DENG Jie; PENG ChuanYou; ZHU WanPing; XU LuoNan; WU YuQuan; LIAO LiMin; LI Zhi; ZHOU Yuan; LI Jun; LU DaJun; SU QinLiang; HUANG ZhengHu; ZHOU Ping; LI ZhiLiang; YANG Li; ZHOU Peng; YANG ShengXi; SHU Mao

    2008-01-01

    Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples.Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA).The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%.Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively.External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model.The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA.

  1. Potential geographic distribution of the novel avian-origin influenza A (H7N9 virus.

    Directory of Open Access Journals (Sweden)

    Gengping Zhu

    Full Text Available In late March 2013, a new avian-origin influenza virus emerged in eastern China. This H7N9 subtype virus has since infected 240 people and killed 60, and has awakened global concern as a potential pandemic threat. Ecological niche modeling has seen increasing applications as a useful tool in mapping geographic potential and risk of disease transmission.We developed two datasets based on seasonal variation in Normalized Difference Vegetation Index (NDVI from the MODIS sensor to characterize environmental dimensions of H7N9 virus. One-third of well-documented cases was used to test robustness of models calibrated based on the remaining two-thirds, and model significance was tested using partial ROC approaches. A final niche model was calibrated using all records available.Central-eastern China appears to represent an area of high risk for H7N9 spread, but suitable areas were distributed more spottily in the north and only along the coast in the south; highly suitable areas also were identified in western Taiwan. Areas identified as presenting high risk for H7N9 spread tend to present consistent NDVI values through the year, whereas unsuitable areas show greater seasonal variation.

  2. Recognition for avian influenza virus proteins based on support vector machine and linear discriminant analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA). The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%. Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively. External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model. The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA.

  3. Limited Antigenic Diversity in Contemporary H7 Avian-Origin Influenza A Viruses from North America.

    Science.gov (United States)

    Xu, Yifei; Bailey, Elizabeth; Spackman, Erica; Li, Tao; Wang, Hui; Long, Li-Ping; Baroch, John A; Cunningham, Fred L; Lin, Xiaoxu; Jarman, Richard G; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-02-09

    Subtype H7 avian-origin influenza A viruses (AIVs) have caused at least 500 confirmed human infections since 2003 and culling of >75 million birds in recent years. Here we antigenically and genetically characterized 93 AIV isolates from North America (85 from migratory waterfowl [1976-2010], 7 from domestic poultry [1971-2012], and 1 from a seal [1980]). The hemagglutinin gene of these H7 viruses are separated from those from Eurasia. Gradual accumulation of nucleotide and amino acid substitutions was observed in the hemagglutinin of H7 AIVs from waterfowl and domestic poultry. Genotype characterization suggested that H7 AIVs in wild birds form diverse and transient internal gene constellations. Serologic analyses showed that the 93 isolates cross-reacted with each other to different extents. Antigenic cartography showed that the average antigenic distance among them was 1.14 units (standard deviation [SD], 0.57 unit) and that antigenic diversity among the H7 isolates we tested was limited. Our results suggest that the continuous genetic evolution has not led to significant antigenic diversity for H7 AIVs from North America. These findings add to our understanding of the natural history of IAVs and will inform public health decision-making regarding the threat these viruses pose to humans and poultry.

  4. DNA barcoding techniques for avian influenza virus surveillance in migratory bird habitats.

    Science.gov (United States)

    Lee, Dong-Hun; Lee, Hyun-Jeong; Lee, Youn-Jeong; Kang, Hyun-Mi; Jeong, Ok-Mi; Kim, Min-Chul; Kwon, Ji-Sun; Kwon, Jun-Hun; Kim, Chang-Bae; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2010-04-01

    Avian influenza virus (AIV) circulates among free-ranging, wild birds. We optimized and validated a DNA barcoding technique for AIV isolation and host-species identification using fecal samples from wild birds. DNA barcoding was optimized using tissue and fecal samples from known bird species, and the method was shown to distinguish 26 bird species. Subsequently, fecal samples (n=743) collected from wild waterfowl habitats confirmed the findings from the laboratory tests. All identified AIV-positive hosts (n=35) were members of the order Anseriformes. We successfully applied the DNA barcoding technique to AIV surveillance and examined AIV epidemiology and host ecology in these wild waterfowl populations. This methodology may be useful in the design of AIV surveillance strategies.

  5. Avian influenza virus antibodies in Pacific Coast Red Knots (Calidris canutus rufa)

    Science.gov (United States)

    Johnson, James A.; DeCicco, Lucas H.; Ruthrauff, Daniel R.; Krauss, Scott; Hall, Jeffrey S.

    2014-01-01

    Prevalence of avian influenza virus (AIV) antibodies in the western Atlantic subspecies of Red Knot (Calidris canutus rufa) is among the highest for any shorebird. To assess whether the frequency of detection of AIV antibodies is high for the species in general or restricted only to C. c. rufa, we sampled the northeastern Pacific Coast subspecies of Red Knot (Calidris canutus roselaari) breeding in northwestern Alaska. Antibodies were detected in 90% of adults and none of the chicks sampled. Viral shedding was not detected in adults or chicks. These results suggest a predisposition of Red Knots to AIV infection. High antibody titers to subtypes H3 and H4 were detected, whereas low to intermediate antibody levels were found for subtypes H10 and H11. These four subtypes have previously been detected in shorebirds at Delaware Bay (at the border of New Jersey and Delaware) and in waterfowl along the Pacific Coast of North America.

  6. Diagnosis and sequence analysis of avian leukosis virus subgroup J isolated from Chinese Partridge Shank chickens.

    Science.gov (United States)

    Dong, Xuan; Zhao, Peng; Li, Weihua; Chang, Shuang; Li, Jianliang; Li, Yang; Ju, Sidi; Sun, Peng; Meng, Fanfeng; Liu, Juan; Cui, Zhizhong

    2015-04-01

    The diagnosis of avian leukosis virus subgroup J (ALV-J) infection in Chinese Partridge Shank chickens was confirmed by necropsy, histopathological examinations, antibody tests, viral isolation, immunofluorescence assays, and sequence analysis. Myelocytoma, myeloma, and fibrosarcoma were simultaneously found in Partridge Shank flock with ALV-J infection. Sequence analysis of the env genes of ALV-J demonstrated that both gp85 and gp37 were highly homologous among the three strains from local chickens of those among ALV-J strains isolated from white meat-type chickens. The phylogenetic trees indicated that the three strains isolated in this study were closely related to reference strains isolated in so-called Chinese yellow chickens and some strains isolated from white meat-type chickens, both from the USA and China. The observed ALV-J infection was the first report on Partridge Shank chickens, and myelocytoma, myeloma, and fibrosarcoma were found at the same time in this batch of local chickens.

  7. COP9 signalosome subunit 6 binds and inhibits avian leukosis virus integrase.

    Science.gov (United States)

    Wang, Zhanxin; Xu, Aotian; Hou, Xinhui; Chen, Fuyong; Cao, Weisheng; Yu, Jieshi; Liao, Ming; Tang, Jun

    2014-10-24

    The retroviral integrase plays an essential role in the integration of reverse-transcribed retroviral cDNA into the host cell genome, and serves as an important target for anti-viral therapeutics. In this study, we identified the COP9 signalosome subunit 6 (CSN6) as a novel avian leukosis virus (ALV) integrase binding protein. Co-immunoprecipitation and GST pull-down assays showed that CSN6 bound to ALV integrase likely through direct interaction of CSN6 to the catalytic core of the integrase. We further demonstrated CSN6 inhibited integrase activity in vitro; knockdown of CSN6 in DF-1 promoted ALV production. These results indicated that CSN6 may be a negative regulator of ALV replication by binding to and inhibiting integrase. Our findings provided the insight into the integrase-based host defense system and may have implications in the development of integrase-based anti-viral strategies.

  8. Avian pox virus infection in a common barn owl (Tyto alba in southern Brazil

    Directory of Open Access Journals (Sweden)

    Gilberto D. Vargas

    2011-07-01

    Full Text Available A young common barn owl (Tyto alba was referred to the Núcleo de Reabilitação da Fauna Silvestre (Nurfs, Federal University of Pelotas (UFPel, after been found in a barn of a brick factory in the urban area of Pelotas, Rio Grande do Sul, Brazil. The bird was apathic, weak and with crusty lesions in the featherless areas (eyes, beak, legs, and died soon after arrival at Nurfs. Necropsy and histopathological examination of the lesions were carried out. The hyperplasia and hypertrophy of the cutaneous lesions, several eosinophilic intracyto-plasmic inclusion bodies in epithelial cells (Bollinger bodies, as well as particles characteristic of poxvirus, observed by electronic microscopy, confirmed the infection by avian poxvirus, what highlights the importance of Tyto alba as carrier of the virus in the wild.

  9. Efficacy of scallop shell powders and slaked lime for inactivating avian influenza virus under harsh conditions.

    Science.gov (United States)

    Thammakarn, Chanathip; Tsujimura, Misato; Satoh, Keisuke; Hasegawa, Tomomi; Tamura, Miho; Kawamura, Akinobu; Ishida, Yuki; Suguro, Atsushi; Hakim, Hakimullah; Ruenphet, Sakchai; Takehara, Kazuaki

    2015-10-01

    The efficacy and stability of scallop shell powder (SSP) were investigated, in terms of its capacity to inactivate avian influenza virus (AIV), and compared with slaked lime (SL). An environmental simulation was conducted by emulating sunlight and wet-dry conditions. The powders were collected at consecutive 2-week intervals under sunlight and upon every resuspension. These materials were tested by mixing them with AIV and incubating the mixture for 3 min or 20 h, followed by AIV titration. At the same time, a pH buffering test was conducted by neutralization with Tris-HCl. The results revealed that SSP and SL have high alkalinity and excellent ability to inactivate AIV. In a simulated harsh environment, SSP and SL retained a satisfactory ability to inactivate AIV within 20 h throughout the experimental procedure. However, SSP was able to inactivate AIV during a short contact period (3 min), even under harsh conditions, and it was more resistant than SL to neutralization.

  10. Identification of viral epitopes recognized by the immune system following vaccination and challenge with the H7N9 avian influenza virus from China

    Science.gov (United States)

    In March of 2013, the first cases of H7N9 influenza were reported in humans in China, and shortly thereafter the virus was confirmed from poultry in live bird markets. Since that time the virus has persisted in both human and avian populations. The genetic composition of these H7N9 influenza virus...

  11. Genetic evolution analysis of matrix protein 2 gene of avian influenza H5N1 viruses from boundary of Yunnan province

    Institute of Scientific and Technical Information of China (English)

    肖雪

    2013-01-01

    Objective To elucidate the variation in characterizations and genetic evolution of the matrix protein 2 or ion channel protein (M2) genes of avian influenza subtype H5N1 viruses in the boundary region of Yunnan province

  12. Avian Flu

    Energy Technology Data Exchange (ETDEWEB)

    Eckburg, Paul

    2006-11-06

    Since 2003, a severe form of H5N1 avian influenza has rapidly spread throughout Asia and Europe, infecting over 200 humans in 10 countries. The spread of H5N1 virus from person-to-person has been rare, thus preventing the emergence of a widespread pandemic. However, this ongoing epidemic continues to pose an important public health threat. Avian flu and its pandemic potential in humans will be discussed.

  13. Susceptibility of human and avian influenza viruses to human and chicken saliva.

    Science.gov (United States)

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Auewarakul, Prasert; Wiriyarat, Witthawat

    2014-05-01

    Oral cavity can be an entry site of influenza virus and saliva is known to contain innate soluble anti-influenza factors. Influenza strains were shown to vary in their susceptibility to those antiviral factors. Whether the susceptibility to the saliva antiviral factors plays any role in the host species specificity of influenza viruses is not known. In this study, the antiviral activity of human and chicken saliva against human and the H5N1 avian influenza viruses were investigated by hemagglutination inhibition (HI) and neutralization (NT) assays. In comparison to human influenza viruses, H5N1 isolates showed reduced susceptibility to human saliva as measured by HI and NT assays. Interestingly, an H5N1 isolate that bind to both α2,3- and α2,6-linked sialic acid showed much higher HI titers with human saliva, suggesting that the susceptibility profile was linked to the receptor-binding preference and the presence of α2,6-linked sialic in human saliva. On the other hand, the H5N1 isolates showed increased HI titers but reduced NT titers to chicken saliva as compared to human influenza isolates. The human salivary antiviral components were characterized by testing the sensitivity to heat, receptor destroying enzyme (RDE), CaCl₂/EDTA dependence, and inhibition by mannan, and shown to be α- and γ-inhibitors. These data suggest that the H5N1 HPAI influenza virus had distinctive susceptibility patterns to human and chicken saliva, which may play some roles in its infectivity and transmissibility in these hosts.

  14. Characterization of H7N2 Avian Influenza Virus in Wild Birds and Pikas in Qinghai-Tibet Plateau Area.

    Science.gov (United States)

    Su, Shuo; Xing, Gang; Wang, Junhua; Li, Zengkui; Gu, Jinyan; Yan, Liping; Lei, Jing; Ji, Senlin; Hu, Boli; Gray, Gregory C; Yan, Yan; Zhou, Jiyong

    2016-08-24

    Qinghai Lake is a major migrating bird breeding site that has experienced several recent highly pathogenic avian influenza virus (HPAIV) epizootics. From 2006 to 2009 we studied Qinghai's wild birds and pikas for evidence of AIV infections. We sampled 941 healthy wild animals and isolated seventeen H7N2 viruses (eight from pikas and nine from wild birds). The H7N2 viruses were phylogenetically closely related to each other and to viruses isolated in Hong Kong in the 1970s. We determined the pathogenicity of the H7N2 viruses by infecting chickens and mice. Our results suggest that pikas might play an important role in the ecology of AIVs, acting as intermediate hosts in which viruses become more adapted to mammals. Our findings of AI infection in pikas are consistent with previous observations and raise the possibility that pikas might play a previously unrecognized role in the ecology of AIVs peridomestic aquatic environments.

  15. Antibodies against lytic and latent Kaposi's sarcoma-associated herpes virus antigens and lymphoma in the European EpiLymph case–control study

    Science.gov (United States)

    Benavente, Y; Mbisa, G; Labo, N; Casabonne, D; Becker, N; Maynadie, M; Foretova, L; Cocco, P L; Nieters, A; Staines, A; Bofetta, P; Brennan, P; Whitby, D; de Sanjosé, S

    2011-01-01

    Background: Kaposi's sarcoma-associated herpes virus is associated with primary effusion lymphoma and multicentric Castleman's disease. Methods: Seropositivity to lytic and latent Kaposi's sarcoma herpes virus (KSHV) antigens were examined in 2083 lymphomas and 2013 controls from six European countries. Results: Antibodies against KSHV latent and lytic antigens were detectable in 4.5% and 3.4% of controls, respectively, and 3.6% of cases (P>0.05). The KSHV seropositivity was associated with splenic marginal zone lymphoma (SMZL) (odds ratio (OR)=4.11, 95% confidence interval (CI)=1.57–10.83) and multiple myeloma (OR=0.31, 95% CI=0.11–0.85). Conclusion: The KSHV is unlikely to contribute importantly to lymphomagenesis among immunocompetent subjects. However, the observed association with SMZL may underline a chronic antigen mechanism in its aetiology. PMID:21952625

  16. Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil.

    Directory of Open Access Journals (Sweden)

    Renata Hurtado

    Full Text Available Migratory aquatic birds play an important role in the maintenance and spread of avian influenza viruses (AIV. Many species of aquatic migratory birds tend to use similar migration routes, also known as flyways, which serve as important circuits for the dissemination of AIV. In recent years there has been extensive surveillance of the virus in aquatic birds in the Northern Hemisphere; however in contrast only a few studies have been attempted to detect AIV in wild birds in South America. There are major flyways connecting South America to Central and North America, whereas avian migration routes between South America and the remaining continents are uncommon. As a result, it has been hypothesized that South American AIV strains would be most closely related to the strains from North America than to those from other regions in the world. We characterized the full genome of three AIV subtype H11N9 isolates obtained from ruddy turnstones (Arenaria interpres on the Amazon coast of Brazil. For all gene segments, all three strains consistently clustered together within evolutionary lineages of AIV that had been previously described from aquatic birds in North America. In particular, the H11N9 isolates were remarkably closely related to AIV strains from shorebirds sampled at the Delaware Bay region, on the Northeastern coast of the USA, more than 5000 km away from where the isolates were retrieved. Additionally, there was also evidence of genetic similarity to AIV strains from ducks and teals from interior USA and Canada. These findings corroborate that migratory flyways of aquatic birds play an important role in determining the genetic structure of AIV in the Western hemisphere, with a strong epidemiological connectivity between North and South America.

  17. Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China.

    Science.gov (United States)

    Gao, Yulong; Yun, Bingling; Qin, Liting; Pan, Wei; Qu, Yue; Liu, Zaisi; Wang, Yongqiang; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei

    2012-03-01

    Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-type chickens in 1988. No field cases of ALV-J infection or tumors in layer chickens were observed worldwide until 2004. However, layer flocks in China have experienced outbreaks of this virus in recent years. The molecular epidemiology of ALV-J strains isolated from layer flocks was investigated. The env genes of 77.8% (21/27) of the ALV-J layer isolates with a high degree of genetic variation were significantly different from the env genes of the prototype strain of ALV-J (HPRS-103) and American and Chinese strains from meat-type chickens (designated ALV-J broiler isolates). A total of 205 nucleotides were deleted from the 3' untranslated region of 89.5% (17/19) of the ALV-J layer isolates. Approximately 94.7% (16/17) of the layer isolates contained a complete E element of 146 to 149 residues. The U3 sequences of 84.2% (16/19) of the ALV-J layer isolates displayed less than 92.5% sequence homology to those of the ALV-J broiler isolates, although the transcriptional regulatory elements that are typical of avian retroviruses were highly conserved. Several unique nucleotide substitutions in the env gene, the U3 region, and the E element of most of the ALV-J layer isolates were detected. These results suggested that the env gene, E element, and U3 region in the ALV-J layer isolates have evolved rapidly and were significantly different from those of the ALV-J broiler isolates. These findings will contribute to a better understanding of the pathogenic mechanism of layer tumor diseases induced by ALV-J.

  18. Haemangiomas, leiomyosarcoma and myeloma caused by subgroup J avian leukosis virus in a commercial layer flock.

    Science.gov (United States)

    Sun, Honglei; Qin, Mei; Xiao, Yihong; Yang, Feng; Ni, Wei; Liu, Sidang

    2010-12-01

    An outbreak of simultaneously occurring haemangiomas, leiomyosarcoma and myeloma was observed in a commercial layer flock in China. The sick chickens were extremely thin and dehydrated. Scattered haemangiomas were found on the claws, breast and wings. At necropsy, haemangiomas and some other nodular tumours were also found in the internal organs. In addition, diffuse enlargement of the liver and spleen appeared in some birds. Histopathologically, haemangiomas were typically cavernous haemangiomas and haemangioendothelioma. In the diffusely swollen liver and spleen, multifocal or widespread marrow tumour cells filled with ball-like acidophilic particles in cytosol were observed, which are the characteristic pathological changes of avian myelocytomatosis. The nodular tumour cells formed by muscle bundles were of variable size, irregular shape, poorly differentiated and malaligned. Immunohistochemistry for vimentin, cytokeratin, actin (smooth muscle) and actin (sarcomeric) and Masson's staining confirmed the different cell lineage of the nodular tumour, thus leading to the diagnosis of leiomyosarcoma. The seroprevalence of avian leukosis subgroup J (ALV-J) antibodies was 13.46% (7/52), while ALV-A/B and reticuloendotheliosis virus (REV) antibodies were not detectable. The DF-1 cells inoculated by virus extracted from liver samples from 24 infected chickens were cultured and the group-specific antigen (GSA) was identified by ELISA. All samples were positive for ALV, which was further identified as ALV-J by immunofluorescence assay (IFA). PCR analysis revealed that three isolates of ALV-J proviral sequence were close to the HPRS-103 prototype strain and other Chinese field strains isolated in recent years, while one isolate (DP01) had a lower homology with them. This is the first report that ALV-J infection caused the simultaneous occurrence of haemangiomas, leiomyosarcoma and myeloma in a commercial layer flock.

  19. Development and application of an RT-PCR test for detecting avian nephritis virus.

    Science.gov (United States)

    Todd, D; Trudgett, J; McNeilly, F; McBride, N; Donnelly, B; Smyth, V J; Jewhurst, H L; Adair, B M

    2010-06-01

    The development of a reverse transcriptase-polymerase chain reaction (RT-PCR) test for detecting avian nephritis virus (ANV) is described. Primers, which amplified a fragment of 182 base pairs (bp), were located in the conserved 3' untranslated region (UTR) of the genome. The limit of detection of the test was estimated to be approximately 18 viral copies using a 10-fold dilution series of in vitro transcribed RNA. Positive signals were produced with representative ANV samples, some of which were not detected by previously described RT-PCR tests for detecting ANV, but other avian astroviruses including chicken astrovirus isolates and duck hepatitis virus types 2 and 3 tested negative. When applied to gut content samples from UK, German and US broiler flocks with enteritis/growth problems, ANVs were detected by RT-PCR in 82/82 (100%) samples. ANVs were also detected in 80/96 (83%) pooled gut content samples from longitudinal surveys of four broiler flocks displaying below-average performance. Whereas all samples collected on day 0 from the surveys were negative for ANV, all samples collected at days 4/5, 7, 10, 14, 21 and 28 tested positive. Sequence determinations performed with amplicons produced with 14 field samples confirmed the ANV specificity of the test, while comparative and phylogenetic analyses based on 109-nucleotide 3'-UTR sequences demonstrated that the majority of ANVs investigated were more closely related to the serotype 2 ANV (accession number AB 046864) than to the serotype 1 ANV (accession number NC 003790).

  20. Avian influenza virus monitoring in wintering waterbirds in Iran, 2003-2007

    Directory of Open Access Journals (Sweden)

    Cattoli Giovanni

    2010-02-01

    Full Text Available Abstract Background Virological, molecular and serological studies were carried out to determine the status of infections with avian influenza viruses (AIV in different species of wild waterbirds in Iran during 2003-2007. Samples were collected from 1146 birds representing 45 different species with the majority of samples originating from ducks, coots and shorebirds. Samples originated from 6 different provinces representative for the 15 most important wintering sites of migratory waterbirds in Iran. Results Overall, AIV were detected in approximately 3.4% of the samples. However, prevalence was higher (up to 8.3% at selected locations and for certain species. No highly pathogenic avian influenza, including H5N1 was detected. A total of 35 AIVs were detected from cloacal or oropharyngeal swab samples. These positive samples originated mainly from Mallards and Common Teals. Of 711 serum samples tested for AIV antibodies, 345 (48.5% were positive by using a nucleoprotein-specific competitive ELISA (NP-C-ELISA. Ducks including Mallard, Common Teal, Common Pochard, Northern Shoveler and Eurasian Wigeon revealed the highest antibody prevalence ranging from 44 to 75%. Conclusion Results of these investigations provide important information about the prevalence of LPAIV in wild birds in Iran, especially wetlands around the Caspian Sea which represent an important wintering site for migratory water birds. Mallard and Common Teal exhibited the highest number of positives in virological and serological investigations: 43% and 26% virological positive cases and 24% and 46% serological positive reactions, respectively. These two species may play an important role in the ecology and perpetuation of influenza viruses in this region. In addition, it could be shown that both oropharyngeal and cloacal swab samples contribute to the detection of positive birds, and neither should be neglected.

  1. Ewing sarcoma

    Science.gov (United States)

    Bone cancer - Ewing sarcoma; Ewing family of tumors; Primitive neuroectodermal tumors (PNET); Bone neoplasm - Ewing sarcoma ... this tissue to help determine how aggressive the cancer is and what treatment may be best.

  2. The passage of cells can improve the detection rate of avian leukosis virus to facilitate the elimination of avian leukosis in chickens.

    Science.gov (United States)

    Wang, Xiuzhen; Wang, Bo; Zhang, Peipei; Cheng, Hegang; Sun, Shuhong

    2013-12-01

    Avian leukosis (AL) is one of the most harmful diseases to the poultry industry in China. The detection of the avian leukosis virus (ALV) p27 antigen plays a decisive role in the elimination of avian leukosis. To explore the influence of passaging cells on the detection rate of the ALV p27 antigen, 21 aseptic anticoagulated blood samples were collected from 21 chickens for which the cloacal swabs were positive for the p27 antigen to inoculate two sets of cell culture plates containing DF1 cells. The cells were cultured for 4 d, one set was passaged, and the other set was not. After the DF1 cells had been cultured for 9 d, the ALV p27 antigen in the supernatants of the two sets was detected by ELISA. The results showed that the p27 antigen-positive rate for the passaged cells was 71.43% (15/21), higher than that of the cells that were directly cultured, which was 42.86%. There was a strong correlation, as high as 0.928, with respect to the S/P value of the p27 antigen in the supernatant between the two sets. In conclusion, there was a strong correlation between the results for the passaged and unpassaged cells, and the passage of cells greatly improved the detection of the p27 antigen.

  3. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses.

    Directory of Open Access Journals (Sweden)

    Xuyong Li

    2014-11-01

    Full Text Available H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific "internal-gene-combination" predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as "vehicles" to deliver different subtypes of influenza viruses from avian species to humans.

  4. Nosocomial transmission of avian influenza A (H7N9) virus in China: epidemiological investigation

    Science.gov (United States)

    Fang, Chun-Fu; Ma, Mai-Juan; Zhan, Bing-Dong; Lai, Shi-Ming; Hu, Yi; Yang, Xiao-Xian; Li, Jing; Zhou, Jing-Jing; Zhang, Jian-Min; Wang, Shuang-Qing; Hu, Xiao-Long; Li, Yin-Jun; Wang, Xiao-Xiao; Cheng, Wei; Yao, Hong-Wu; Li, Xin-Lou; Yi, Huai-Ming; Xu, Wei-Dong; Jiang, Jia-Fu; Gray, Gregory C; Fang, Li-Qun; Chen, En-Fu

    2015-01-01

    Study question Can avian influenza A (H7N9) virus be transmitted between unrelated individuals in a hospital setting? Methods An epidemiological investigation looked at two patients who shared a hospital ward in February 2015, in Quzhou, Zhejiang Province, China. Samples from the patients, close contacts, and local environments were examined by real time reverse transcriptase (rRT) polymerase chain reaction (PCR) and viral culture. Haemagglutination inhibition and microneutralisation assays were used to detect specific antibodies to the viruses. Primary outcomes were clinical data, infection source tracing, phylogenetic tree analysis, and serological results. Study answer and limitations A 49 year old man (index patient) became ill seven days after visiting a live poultry market. A 57 year old man (second patient), with a history of chronic obstructive pulmonary disease, developed influenza-like symptoms after sharing the same hospital ward as the index patient for five days. The second patient had not visited any poultry markets nor had any contact with poultry or birds within 15 days before the onset of illness. H7N9 virus was identified in the two patients, who both later died. Genome sequences of the virus isolated from both patients were nearly identical, and genetically similar to the virus isolated from the live poultry market. No specific antibodies were detected among 38 close contacts. Transmission between the patients remains unclear, owing to the lack of samples collected from their shared hospital ward. Although several environmental swabs were positive for H7N9 by rRT-PCR, no virus was cultured. Owing to delayed diagnosis and frequent hospital transfers, no serum samples were collected from the patients, and antibodies to H7N9 viruses could not be tested. What this study adds Nosocomial H7N9 transmission might be possible between two unrelated individuals. Surveillance on patients with influenza-like illness in hospitals as well as chickens in live

  5. Systematic pathogenesis and replication of avian hepatitis E virus in specific-pathogen-free adult chickens.

    Science.gov (United States)

    Billam, P; Huang, F F; Sun, Z F; Pierson, F W; Duncan, R B; Elvinger, F; Guenette, D K; Toth, T E; Meng, X J

    2005-03-01

    Hepatitis E virus (HEV) is an important human pathogen. Due to the lack of a cell culture system and a practical animal model for HEV, little is known about its pathogenesis and replication. The discovery of a strain of HEV in chickens, designated avian HEV, prompted us to evaluate chickens as a model for the study of HEV. Eighty-five 60-week-old specific-pathogen-free chickens were randomly divided into three groups. Group 1 chickens (n=28) were each inoculated with 5 x 10(4.5) 50% chicken infectious doses of avian HEV by the oronasal route, group 2 chickens (n=29) were each inoculated with the same dose by the intravenous (i.v.) route, and group 3 chickens (n=28) were not inoculated and were used as controls. Two chickens from each group were necropsied at 1, 3, 5, 7, 10, 13, 16, 20, 24, 28, 35, and 42 days postinoculation (dpi), and the remaining chickens were necropsied at 56 dpi. Serum, fecal, and various tissue samples, including liver and spleen samples, were collected at each necropsy for pathological and virological testing. By 21 dpi, all oronasally and i.v. inoculated chickens had seroconverted. Fecal virus shedding was detected variably from 1 to 20 dpi for the i.v. group and from 10 to 56 dpi for the oronasal group. Avian HEV RNA was detected in serum, bile, and liver samples from both i.v. and oronasally inoculated chickens. Gross liver lesions, characterized by subcapsular hemorrhages or enlargement of the right intermediate lobe, were observed in 7 of 28 oronasally and 7 of 29 i.v. inoculated chickens. Microscopic liver lesions were mainly lymphocytic periphlebitis and phlebitis. The lesion scores were higher for oronasal (P=0.0008) and i.v. (P=0.0029) group birds than for control birds. Slight elevations of the plasma liver enzyme lactate dehydrogenase were observed in infected chickens. The results indicated that chickens are a useful model for studying HEV replication and pathogenesis. This is the first report of HEV transmission via its natural

  6. The Cancer-Associated Virus Landscape in HIV Patients with Oral Hairy Leukoplakia, Kaposi's Sarcoma, and Non-Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Peter D. Burbelo

    2012-01-01

    Full Text Available Although HIV-positive patients are at higher risk for developing a variety of infection-related cancers, the prevalence of infections with the seven known cancer-associated viruses has not been studied. Luciferase immunoprecipitation systems were used to evaluate antiviral antibodies in four 23-person groups: healthy blood donors and HIV-infected patients with oral hairy leukoplakia (OLP, Kaposi's sarcoma (KS, or non-Hodgkin lymphoma (NHL. Antibody profiling revealed that all HIV-positive individuals were strongly seropositive for anti-gp41 and antireverse transcriptase antibodies. However, anti-p24 HIV antibody levels were highly variable and some OLP and KS patients demonstrated weak or negative responses. Profiling two EBV antigens revealed no statistical difference in antibody levels among the three HIV-infected groups. A high frequency of KSHV infection was detected in HIV patients including 100% of KS, 78% of OLP, and 57% of NHL patients. Most HIV-infected subjects (84% showed anti-HBV core antibodies, but only a few showed antibodies against HCV. MCV seropositivity was also common (94% in the HIV-infected individuals and KS patients showed statistically higher antibody levels compared to the OLP and NHL patients. Overall, 68% of the HIV-infected patients showed seropositivity with at least four cancer-associated viruses. Antibody profiles against these and other infectious agents could be useful for enhancing the clinical management of HIV patients.

  7. Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2

    Directory of Open Access Journals (Sweden)

    Rajik Mohamed

    2009-06-01

    Full Text Available Abstract Background Avian influenza viruses (AIV cause high morbidity and mortality among the poultry worldwide. Their highly mutative nature often results in the emergence of drug resistant strains, which have the potential of causing a pandemic. The virus has two immunologically important glycoproteins, hemagglutinin (HA, neuraminidase (NA, and one ion channel protein M2 which are the most important targets for drug discovery, on its surface. In order to identify a peptide-based virus inhibitor against any of these surface proteins, a disulfide constrained heptapeptide phage display library was biopanned against purified AIV sub-type H9N2 virus particles. Results After four rounds of panning, four different fusion phages were identified. Among the four, the phage displaying the peptide NDFRSKT possessed good anti-viral properties in vitro and in ovo. Further, this peptide inhibited the hemagglutination activity of the viruses but showed very little and no effect on neuraminidase and hemolytic activities respectively. The phage-antibody competition assay proved that the peptide competed with anti-influenza H9N2 antibodies for the binding sites. Based on yeast two-hybrid assay, we observed that the peptide inhibited the viral replication by interacting with the HA protein and this observation was further confirmed by co-immunoprecipitation. Conclusion Our findings show that we have successfully identified a novel antiviral peptide against avian influenza virus H9N2 which act by binding with the hemagglutination protein of the virus. The broad spectrum activity of the peptide molecule against various subtypes of the avian and human influenza viruses and its comparative efficiency against currently available anti-influenza drugs are yet to be explored.

  8. Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus.

    Science.gov (United States)

    van Dijk, Jacintha G B; Hoye, Bethany J; Verhagen, Josanne H; Nolet, Bart A; Fouchier, Ron A M; Klaassen, Marcel

    2014-01-01

    Similar to other infectious diseases, the prevalence of low pathogenic avian influenza viruses (LPAIV) has been seen to exhibit marked seasonal variation. However, mechanisms driving this variation in wild birds have yet to be tested. We investigated the validity of three previously suggested drivers for the seasonal dynamics in LPAIV infections in wild birds: (i) host density, (ii) immunologically naïve young and (iii) increased susceptibility in migrants. To address these questions, we sampled a key LPAIV host species, the mallard Anas platyrhynchos, on a small spatial scale, comprehensively throughout a complete annual cycle, measuring both current and past infection (i.e. viral and seroprevalence, respectively). We demonstrate a minor peak in LPAIV prevalence in summer, a dominant peak in autumn, during which half of the sampled population was infected, and no infections in spring. Seroprevalence of antibodies to a conserved gene segment of avian influenza virus (AIV) peaked in winter and again in spring. The summer peak of LPAIV prevalence coincided with the entrance of unfledged naïve young in the population. Moreover, juveniles were more likely to be infected, shed higher quantities of virus and were less likely to have detectable antibodies to AIV than adult birds. The arrival of migratory birds, as identified by stable hydrogen isotope analysis, appeared to drive the autumn peak in LPAIV infection, with both temporal coincidence and higher infection prevalence in migrants. Remarkably, seroprevalence in migrants was substantially lower than viral prevalence throughout autumn migration, further indicating that each wave of migrants amplified local AIV circulation. Finally, while host abundance increased throughout autumn, it peaked in winter, showing no direct correspondence with either of the LPAIV infection peaks. At an epidemiologically relevant spatial scale, we provide strong evidence for the role of migratory birds as key drivers for seasonal

  9. Molecular Characterization of Avian-like H1N1 Swine Influenza A Viruses Isolated in Eastern China, 2011

    Institute of Scientific and Technical Information of China (English)

    Xian Qi; Yuning Pan; Yuanfang Qin; Rongqiang Zu; Fengyang Tang; Minghao Zhou; Hua Wang; Yongchun Song

    2012-01-01

    Currently,three predominant subtypes of influenza virus are prevalent in pig populations worldwide:H1N1,H3N2,and H1N2.European avian-like H1N1 viruses,which were initially detected in European pig populations in 1979,have been circulating in pigs in eastern China since 2007.In this study,six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China.Based on whole genome sequencing,molecular characteristics of two isolates were determined.Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations,especially similar to those found in China.Four potential glycosylation sites were observed at positions 13,26,198,277 in the HA1 proteins of the two isolates.Due to the presence of a stop codon at codon 12,the isolates contained truncated PB1-F2 proteins.In this study,the isolates contained 591Q,627E and 701N in the polymerase subunit PB2,which had been shown to be determinants of virulence and host adaptation.The isolates also had a D rather than E at position 92 of the NS1,a marker of mammalian adaptation.Both isolates contained the GPKV motif at the PDZ ligand domain of the 3' end of the NS1,a characteristic marker of the European avian-like swine viruses since about 1999,which is distinct from those of avian,human and classical swine viruses.The M2 proteins of the isolates have the mutation (S31N),a characteristic marker of the European avian-like swine viruses since about 1987,which may confer resistance to amantadine and rimantadine antivirals.Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs,and raise more concerns about the occurrence of cross-species transmission events.

  10. Characterization of avian influenza virus isolates submitted to the National Centre for Foreign Animal Disease between 1997 and 2001.

    Science.gov (United States)

    Pasick, J; Weingartl, H; Clavijo, A; Riva, J; Kehler, H; Handel, K; Watkins, E; Hills, K

    2003-01-01

    The National Centre for Foreign Animal Disease (NCFAD) in Winnipeg, Manitoba, is the Canadian Food Inspection Agency's (CFIA) newest high biocontainment laboratory. One of the functions of the NCFAD is to serve as a national reference laboratory for avian influenza. Between 1997 and 2001, 15 avian influenza virus isolates were characterized. These isolates originated from domestic poultry, imported caged birds held in quarantine, and wild birds. Diagnostic specimens were submitted to the NCFAD by CFIA field veterinarians, provincial veterinary diagnostic laboratories, and veterinary colleges. Characterization of isolates included the determination of H and N subtypes: H1, H6, H7, and H10 subtypes were isolated from domestic poultry; H3, H4, and three H13 viruses were isolated from water fowl, and six H3 viruses were isolated from caged birds being held in import quarantine. Selected isolates were characterized with respect to their pathogenic potential by intravenous inoculation of 4-to-6-wk-old chickens. A molecular-based protocol was used to assess the pathogenicity of one H7 isolate. During this period, work was also carried out toward validating our molecular pathotyping protocol for avian influenza viruses with H5 and H7 hemagglutinin subtypes.

  11. Environmental sampling for avian influenza virus A (H5N1) in live-bird markets, Indonesia.

    Science.gov (United States)

    Indriani, Risa; Samaan, Gina; Gultom, Anita; Loth, Leo; Irianti, Sri; Indryani, Sri; Adjid, Rma; Dharmayanti, Ni Luh Putu Indi; Weaver, John; Mumford, Elizabeth; Lokuge, Kamalini; Kelly, Paul M; Darminto

    2010-12-01

    To identify environmental sites commonly contaminated by avian influenza virus A (H5N1) in live-bird markets in Indonesia, we investigated 83 markets in 3 provinces in Indonesia. At each market, samples were collected from up to 27 poultry-related sites to assess the extent of contamination. Samples were tested by using real-time reverse transcription-PCR and virus isolation. A questionnaire was used to ascertain types of birds in the market, general infrastructure, and work practices. Thirty-nine (47%) markets showed contamination with avian influenza virus in ≥ 1 of the sites sampled. Risk factors were slaughtering birds in the market and being located in West Java province. Protective factors included daily removal of waste and zoning that segregated poultry-related work flow areas. These results can aid in the design of evidence-based programs concerning environmental sanitation, food safety, and surveillance to reduce the risk for avian influenza virus A (H5N1) transmission in live-bird markets.

  12. The first lack of evidence of H7N9 avian influenza virus infections among pigs in Eastern China.

    Science.gov (United States)

    Zhao, Fu-Rong; Zhou, Dong-Hui; Lin, Tong; Shao, Jun-Jun; Wei, Ping; Zhang, Yong-Guang; Chang, Hui-Yun

    2015-03-01

    In this study, we sought to examine whether evidence existed suggesting that pigs were being infected with the novel H7N9 avian influenza virus. From November 2012 to November 2013, blood was drawn from 1560 pigs from 100 large farms in 4 provinces of eastern China. Many of these pigs were in close proximity to wild birds or poultry. Swine sera were studied using hemagglutinin inhibition (HI) assays and enzyme-linked immunosorbent assays (ELISAs) against the H7 antigen derived from the emergent H7N9 avian influenza virus (AIV). Only 29 of the 1560 samples had HI titers of 1:20 when using the H7N9 AIV antigens, and none of the 29 (H7N9 AIV) HI-positive samples were positive when using ELISA, indicating that no samples were positive for H7N9. The negative results were also verified using a novel competitive HA-ELISA. As pigs have been shown to be infected with other avian influenza viruses and as the prevalence of novel influenza A viruses (e.g., H7N9 AIV) may be increasing among poultry in China, similar seroepidemiological studies of pigs should be periodically conducted in the future.

  13. gga-miR-375 plays a key role in tumorigenesis post subgroup J avian leukosis virus infection.

    Science.gov (United States)

    Li, Hongxin; Shang, Huiqing; Shu, Dingming; Zhang, Huanmin; Ji, Jun; Sun, Baoli; Li, Hongmei; Xie, Qingmei

    2014-01-01

    Avian leukosis is a neoplastic disease caused in part by subgroup J avian leukosis virus J (ALV-J). Micro ribonucleic acids (miRNAs) play pivotal oncogenic and tumour-suppressor roles in tumour development and progression. However, little is known about the potential role of miRNAs in avian leukosis tumours. We have found a novel tumour-suppressor miRNA, gga-miR-375, associated with avian leukosis tumorigenesis by miRNA microarray in a previous report. We have also previously studied the biological function of gga-miR-375; Overexpression of gga-miR-375 significantly inhibited DF-1 cell proliferation, and significantly reduced the expression of yes-associated protein 1 (YAP1) by repressing the activity of a luciferase reporter carrying the 3'-untranslated region of YAP1. This indicates that gga-miR-375 is frequently downregulated in avian leukosis by inhibiting cell proliferation through YAP1 oncogene targeting. Overexpression of gga-miR-375 markedly promoted serum starvation induced apoptosis, and there may be the reason why the tumour cycle is so long in the infected chickens. In vivo assays, gga-miR-375 was significantly downregulated in chicken livers 20 days after infection with ALV-J, and YAP1 was significantly upregulated 20 days after ALV-J infection (Pleukosis tumorigenesis.

  14. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    Directory of Open Access Journals (Sweden)

    Marcel Jonges

    Full Text Available Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4 genome copies/m(3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  15. Molecular evolution of H5N1 highly pathogenic avian influenza viruses in Bangladesh between 2007 and 2012.

    Science.gov (United States)

    Haque, M E; Giasuddin, M; Chowdhury, E H; Islam, M R

    2014-01-01

    In Bangladesh, highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first detected in February 2007. Since then the virus has become entrenched in poultry farms of Bangladesh. There have so far been seven human cases of H5N1 HPAI infection in Bangladesh with one death. The objective of the present study was to investigate the molecular evolution of H5N1 HPAI viruses during 2007 to 2012. Partial or complete nucleotide sequences of all eight gene segments of two chicken isolates, five gene segments of a duck isolate and the haemagglutinin gene segment of 18 isolates from Bangladesh were established in the present study and subjected to molecular analysis. In addition, full-length sequences of different gene segments of other Bangladeshi H5N1 isolates available in GenBank were included in the analysis. The analysis revealed that the first introduction of clade 2.2 virus in Bangladesh in 2007 was followed by the introduction of clade 2.3.2.1 and 2.3.4 viruses in 2011. However, only clade 2.3.2.1 viruses could be isolated in 2012, indicating progressive replacement of clade 2.2 and 2.3.4 viruses. There has been an event of segment re-assortment between H5N1 and H9N2 viruses in Bangladesh, where H5N1 virus acquired the PB1 gene from a H9N2 virus. Point mutations have accumulated in Bangladeshi isolates over the last 5 years with potential modification of receptor binding site and antigenic sites. Extensive and continuous molecular epidemiological studies are necessary to monitor the evolution of circulating avian influenza viruses in Bangladesh.

  16. Generation and evaluation of avian leukosis virus subgroup J envelope glycoprotein recombinant pseudovirions.

    Science.gov (United States)

    Zhang, Zhenjie; Cui, Lina; Wang, Liang; Yang, Zhikun; Cui, Zhizhong; Chang, Weishan

    2014-06-01

    Retroviral and lentiviral vector pseudotypes (based on human immunodeficiency virus type 1, HIV-1) have been used for stable and safe gene transfer because of their broad host ranges and high mechanical strength. In the present study, a recombinant avian leukosis virus subgroup J (ALV-J) polypeptide pseudotyped with lentivirus membrane glycoproteins gp85 and gp37, HIV/env-ALV, was generated, characterized in vitro and evaluated for its ability to infect natural host cells. We optimized the newly developed micro-neutralization (MN) assay using recombinant pseudovirion HIV/env-ALV expressing enhanced green fluorescent protein and well-characterized sera from chickens with confirmed ALV-J disease or virus-free controls. HIV/env-ALV could infect CEF and DF-1 but not pk15, 293FT, MDCK or VERO E6 cells, therefore demonstrating a cellular tropism similar to the wild-type ALV-J. The MN assay indicated that the IC50 values of positive sera offered a considerable advantage in both speed and accuracy. These results suggest that this pseudotyped lentivirus is a good model for studying the functions of ALV-J env and that the MN assay is a reliable serological method for assessing antibody levels in investigating the actual status of the current ALV-J epidemic. These recombinant pseudovirions may prove to be useful for studying ALV-J biology in lower biosafety level laboratory environments, and also for the detection and quantification of neutralizing antibodies to ALV-J in a manner akin to ELISA assays, but that would also be applicable to other viruses.

  17. Chinese and global distribution of H9 subtype avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Wenming Jiang

    Full Text Available H9 subtype avian influenza viruses (AIVs are of significance in poultry and public health, but epidemiological studies about the viruses are scarce. In this study, phylogenetic relationships of the viruses were analyzed based on 1233 previously reported sequences and 745 novel sequences of the viral hemagglutinin gene. The novel sequences were obtained through large-scale surveys conducted in 2008-2011 in China. The results revealed distinct distributions of H9 subtype AIVs in different hosts, sites and regions in China and in the world: (1 the dominant lineage of H9 subtype AIVs in China in recent years is lineage h9.4.2.5 represented by A/chicken/Guangxi/55/2005; (2 the newly emerging lineage h9.4.2.6, represented by A/chicken/Guangdong/FZH/2011, has also become prevalent in China; (3 lineages h9.3.3, h9.4.1 and h9.4.2, represented by A/duck/Hokkaido/26/99, A/quail/Hong Kong/G1/97 and A/chicken/Hong Kong/G9/97, respectively, have become globally dominant in recent years; (4 lineages h9.4.1 and h9.4.2 are likely of more risk to public health than others; (5 different lineages have different transmission features and host tropisms. This study also provided novel experimental data which indicated that the Leu-234 (H9 numbering motif in the viral hemagglutinin gene is an important but not unique determinant in receptor-binding preference. This report provides a detailed and updated panoramic view of the epidemiological distributions of H9 subtype AIVs globally and in China, and sheds new insights for the prevention of infection in poultry and preparedness for a potential pandemic caused by the viruses.

  18. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus

    Directory of Open Access Journals (Sweden)

    Harbison Carole E

    2007-02-01

    Full Text Available Abstract Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS, and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV. Feline aminopeptidase N (fAPN serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV, canine coronavirus, transmissible gastroenteritis virus (TGEV, and human coronavirus 229E (HCoV-229E. A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41, but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 ( Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.

  19. Radiological description about the globally first case of human infected avian influenza virus (H10N8 induced pneumonia

    Directory of Open Access Journals (Sweden)

    Jian He

    2016-03-01

    Full Text Available Human infected avian influenza (H10N8 is an acute infectious respiratory tract infection caused by JX346-H10N8. The reported case in this paper is the globally first case report about radiological description of human infected avian influenza (H10N8 virus related pneumonia. The patient showed an epidemiological history of contacts to living poultries and the incubation period lasted for 4 days. The condition was clinically characterized by fever, cough, chest distress and obvious hypoxia. CT scan demonstrated the lungs with large flake of hyper-intense consolidation, confined patch of ground glass opacity, dilated bronchi, predominantly dorsal thickening of the interlobular septum, and other types of lesions related to interstitial pulmonary edema. Meanwhile, accompanying interlobar effusion, infrapulmonary effusion and pleural effusion were demonstrated in a small quantity by CT scan. Human infected avian influenza (H10N8 related pneumonia should be differentiated from pneumonia induced by human infected avian influenza viruses H5N1 and H7N9. No characteristic key points for radiological differentiation have been found. And its definitive diagnosis should be based on the etiological examination.

  20. Avian influenza virus wild bird surveillance in the Azov and Black Sea regions of Ukraine (2010-2011).

    Science.gov (United States)

    Muzyka, Denys; Pantin-Jackwood, Mary; Spackman, Erica; Stegniy, Borys; Rula, Oleksandr; Shutchenko, Pavlo

    2012-12-01

    The Azov and Black Sea basins are part of the transcontinental wild bird migration routes from Northern Asia and Europe to the Mediterranean, Africa, and Southwest Asia. These regions constitute an area of transit, stops during migration, and nesting for many different bird species. From September 2010 to September 2011, a wild bird surveillance study was conducted in these regions to identify avian influenza viruses. Biological samples consisting of cloacal and tracheal swabs and fecal samples were collected from wild birds of different ecological groups, including waterfowl and sea- and land-based birds, in places of mass bird accumulations in Sivash Bay and the Utlyuksky and Molochniy estuaries. The sampling covered the following wild bird biological cycles: autumn migration, wintering, spring migration, nesting, and postnesting seasons. A total of 3634 samples were collected from 66 different species of birds. During the autumn migration, 19 hemagglutinating viruses were isolated, 14 of which were identified as low pathogenicity avian influenza (LPAI) virus subtypes H1N?, H3N8, H5N2, H7N?, H8N4, H10N7, and H11N8. From the wintering samples, 45 hemagglutinating viruses were isolated, 36 of which were identified as LPAI virus subtypes H1N1, H1N? H1N2, H4N?, H6N1, H7N3, H7N6, H7N7, H8N2, H9N2, H10N7, H10N4, H11N2, H12N2, and H15N7. Only three viruses were isolated during the spring migration, nesting, and postnesting seasons (serotypes H6, H13, and H16). The HA and NA genes were sequenced from the isolated H5 and N1 viruses, and the phylogenetic analysis revealed possible ecological connections between the Azov and Black Sea regions and Europe. The LPAI viruses were isolated mostly from mallard ducks, but also from shellducks, shovelers, teals, and white-fronted geese. The rest of the 14 hemagglutinating viruses isolated were identified as different serotypes of avian paramyxoviruses (APMV-1, APMV-4, APMV-6, and APMV-7). This information furthers our understanding

  1. Screening of Feral Pigeon (Colomba livia, Mallard (Anas platyrhynchos and Graylag Goose (Anser anser Populations for Campylobacter spp., Salmonella spp., Avian Influenza Virus and Avian Paramyxovirus

    Directory of Open Access Journals (Sweden)

    Nesse LL

    2005-12-01

    Full Text Available A total of 119 fresh faecal samples were collected from graylag geese migrating northwards in April. Also, cloacal swabs were taken from 100 carcasses of graylag geese shot during the hunting season in August. In addition, samples were taken from 200 feral pigeons and five mallards. The cultivation of bacteria detected Campylobacter jejuni jejuni in six of the pigeons, and in one of the mallards. Salmonella diarizona 14:k:z53 was detected in one graylag goose, while all pigeons and mallards were negative for salmonellae. No avian paramyxovirus was found in any of the samples tested. One mallard, from an Oslo river, was influenza A virus positive, confirmed by RT-PCR and by inoculation of embryonated eggs. The isolate termed A/Duck/Norway/1/03 was found to be of H3N8 type based on sequence analyses of the hemagglutinin and neuraminidase segments, and serological tests. This is the first time an avian influenza virus has been isolated in Norway. The study demonstrates that the wild bird species examined may constitute a reservoir for important bird pathogens and zoonotic agents in Norway.

  2. Global alert to avian influenza virus infection: from H5N1 to H7N9.

    Science.gov (United States)

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-07-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as 'antigenic shift' or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks.

  3. Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Science.gov (United States)

    Chen, Yen-Ju; Tsai, Wan-Hua; Chen, Yu-Lian; Ko, Ying-Chieh; Chou, Sheng-Ping; Chen, Jen-Yang; Lin, Su-Fang

    2011-03-10

    Epstein-Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  4. Epstein-Barr virus (EBV Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Directory of Open Access Journals (Sweden)

    Yen-Ju Chen

    Full Text Available Epstein-Barr virus (EBV Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV, to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1 an ideal environment for virus reactivation if EBV or KSHV coexists and (2 a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.

  5. Isolation of Highly Pathogenic Avian Influenza H5N1 Virus from Saker Falcons (Falco cherrug in the Middle East

    Directory of Open Access Journals (Sweden)

    Henju Marjuki

    2009-01-01

    Full Text Available There is accumulating evidence that birds of prey are susceptible to fatal infection with highly pathogenic avian influenza (HPAI virus. We studied the antigenic, molecular, phylogenetic, and pathogenic properties of 2 HPAI H5N1 viruses isolated from dead falcons in Saudi Arabia and Kuwait in 2005 and 2007, respectively. Phylogenetic and antigenic analyses grouped both isolates in clade 2.2 (Qinghai-like viruses. However, the viruses appeared to have spread westward via different flyways. It remains unknown how these viruses spread so rapidly from Qinghai after the 2005 outbreak and how they were introduced into falcons in these two countries. The H5N1 outbreaks in the Middle East are believed by some to be mediated by wild migratory birds. However, sporting falcons may be at additional risk from the illegal import of live quail to feed them.

  6. Microwave or autoclave treatments destroy the infectivity of infectious bronchitis virus and avian pneumovirus but allow detection by reverse transcriptase-polymerase chain reaction.

    Science.gov (United States)

    Elhafi, G; Naylor, C J; Savage, C E; Jones, R C

    2004-06-01

    A method is described for enabling safe transit of denatured virus samples for polymerase chain reaction (PCR) identification without the risk of unwanted viable viruses. Cotton swabs dipped in avian infectious bronchitis virus (IBV) or avian pneumovirus (APV) were allowed to dry. Newcastle disease virus and avian influenza viruses were used as controls. Autoclaving and microwave treatment for as little as 20 sec destroyed the infectivity of all four viruses. However, both IBV and APV could be detected by reverse transcriptase (RT)-PCR after autoclaving and as long as 5 min microwave treatment (Newcastle disease virus and avian influenza viruses were not tested). Double microwave treatment of IBV and APV with an interval of 2 to 7 days between was tested. After the second treatment, RT-PCR products were readily detected in all samples. Swabs from the tracheas and cloacas of chicks infected with IBV shown to contain infectious virus were microwaved. Swabs from both sources were positive by RT-PCR. Microwave treatment appears to be a satisfactory method of inactivating virus while preserving nucleic acid for PCR identification.

  7. Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013.

    Science.gov (United States)

    Wang, D; Yang, L; Gao, R; Zhang, X; Tan, Y; Wu, A; Zhu, W; Zhou, J; Zou, S; Li, Xiyan; Sun, Y; Zhang, Y; Liu, Y; Liu, T; Xiong, Y; Xu, J; Chen, L; Weng, Y; Qi, X; Guo, J; Li, Xiaodan; Dong, J; Huang, W; Zhang, Y; Dong, L; Zhao, X; Liu, L; Lu, J; Lan, Y; Wei, H; Xin, L; Chen, Y; Xu, C; Chen, T; Zhu, Y; Jiang, T; Feng, Z; Yang, W; Wang, Y; Zhu, H; Guan, Y; Gao, G F; Li, D; Han, J; Wang, S; Wu, G; Shu, Y

    2014-06-26

    A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.

  8. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin

    Science.gov (United States)

    Nao, Naganori; Yamagishi, Junya; Miyamoto, Hiroko; Igarashi, Manabu; Manzoor, Rashid; Ohnuma, Aiko; Tsuda, Yoshimi; Furuyama, Wakako; Shigeno, Asako; Kajihara, Masahiro; Kishida, Noriko; Yoshida, Reiko

    2017-01-01

    ABSTRACT Highly pathogenic avian influenza viruses with H5 and H7 hemagglutinin (HA) subtypes evolve from low-pathogenic precursors through the acquisition of multiple basic amino acid residues at the HA cleavage site. Although this mechanism has been observed to occur naturally only in these HA subtypes, little is known about the genetic basis for the acquisition of the polybasic HA cleavage site. Here we show that consecutive adenine residues and a stem-loop structure, which are frequently found in the viral RNA region encoding amino acids around the cleavage site of low-pathogenic H5 and H7 viruses isolated from waterfowl reservoirs, are important for nucleotide insertions into this RNA region. A reporter assay to detect nontemplated nucleotide insertions and deep-sequencing analysis of viral RNAs revealed that an increased number of adenine residues and enlarged stem-loop structure in the RNA region accelerated the multiple adenine and/or guanine insertions required to create codons for basic amino acids. Interestingly, nucleotide insertions associated with the HA cleavage site motif were not observed principally in the viral RNA of other subtypes tested (H1, H2, H3, and H4). Our findings suggest that the RNA editing-like activity is the key mechanism for nucleotide insertions, providing a clue as to why the acquisition of the polybasic HA cleavage site is restricted to the particular HA subtypes. PMID:28196963

  9. Chicken anemia virus and avian gyrovirus 2 as contaminants in poultry vaccines.

    Science.gov (United States)

    Varela, Ana Paula Muterle; Dos Santos, Helton Fernandes; Cibulski, Samuel Paulo; Scheffer, Camila Mengue; Schmidt, Candice; Sales Lima, Francisco Esmaile; Silva, Alessandra D'Avila; Esteves, Paulo Augusto; Franco, Ana Cláudia; Roehe, Paulo Michel

    2014-11-01

    This study focuses on the detection of chicken anemia virus (CAV) and avian gyrovirus 2 (AGV2) genomes in commercially available poultry vaccines. A duplex quantitative real-time PCR (dqPCR), capable of identifying genomes of both viruses in a single assay, was employed to determine the viral loads of these agents in commercially available vaccines. Thirty five vaccines from eight manufacturers (32 prepared with live and 3 with inactivated microorganisms) were examined. Genomes of CAV were detected as contaminants in 6/32 live vaccines and in 1/3 inactivated vaccines. The CAV genome loads ranged from 6.4 to 173.4 per 50 ng of vaccine DNA (equivalent to 0.07 to 0.69 genome copies per dose of vaccine). Likewise, AGV2 genomes were detected in 9/32 live vaccines, with viral loads ranging from 93 to 156,187 per 50 ng of vaccine DNA (equivalent to 0.28-9176 genome copies per dose of vaccine). These findings provide evidence for the possibility of contamination of poultry vaccines with CAV and AGV2 and they also emphasize the need of searching for these agents in vaccines in order to ensure the absence of such potential contaminants.

  10. Cardiac pathology and molecular epidemiology by avian leukosis viruses in Japan.

    Directory of Open Access Journals (Sweden)

    Sayuri Nakamura

    Full Text Available Epidemiological studies suggest that retroviruses, including human immunodeficiency virus type 1, are associated with cardiomyopathy and myocarditis, but a causal relationship remains to be established. We encountered unusual cardiomyocyte hypertrophy and mitosis in Japanese native fowls infected with subgroup A of the avian leukosis viruses (ALVs-A, which belong to the genus Alpharetrovirus of the family Retroviridae and mainly induce lymphoid neoplasm in chickens. The affected hearts were evaluated by histopathology and immunohistochemistry, viral isolation, viral genome sequencing and experimental infection. There was non-suppurative myocarditis in eighteen fowls and seven of them had abnormal cardiomyocytes, which were distributed predominantly in the left ventricular wall and showed hypertrophic cytoplasm and atypical large nuclei. Nuclear chains and mitosis were frequently noted in these cardiomyocytes and immunohistochemistry for proliferating cell nuclear antigen supported the enhancement of mitotic activity. ALVs were isolated from all affected cases and phylogenic analysis of envSU genes showed that the isolates were mainly classified into two different clusters, suggesting viral genome diversity. In ovo experimental infection with two of the isolates was demonstrated to cause myocarditis and cardiomyocyte hypertrophy similar to those in the naturally occurring lesions and cardiac hamartoma (rhabdomyoma in a shorter period of time (at 70 days of age than expected. These results indicate that ALVs cause myocarditis as well as cardiomyocyte abnormality in chickens, implying a pathogenetic mechanism different from insertional mutagenesis and the existence of retrovirus-induced heart disorder.

  11. Antigenic Cartography of H9 Avian Influenza Virus and Its Application to Vaccine Selection.

    Science.gov (United States)

    Wang, Yue; Davidson, Irit; Fouchier, Ron; Spackman, Erica

    2016-05-01

    Vaccination is frequently used as a control method for the H9 subtype of low pathogenicity avian influenza virus (AIV), which is widespread in Asia and the Middle East. One of the most important factors for selecting an effective vaccine strain is the antigenic match between the hemagglutinin protein of the vaccine and the strain circulating in the field. To demonstrate the antigenic relationships among H9 AIVs, with a focus on Israeli H9 isolates, antigenic cartography was used to develop a map of H9 AIVs. Based on their antigenic diversity, three isolates from Israel were selected for vaccination-challenge studies: 1) the current vaccine virus, A/chicken/Israel/215/2007 H9N2 (Ck/215); 2) A/chicken/Israel/1163/2011 H9N2 (Ck/1163); and 3) A/ostrich/Israel/1436/2003 (Os/1436). A 50% infective dose (ID50) model was used to determine the effect of the vaccines on susceptibility to infection by using a standardized dose of vaccine. Sera collected immediately prior to challenge showed that Ck/215 was the most immunogenic, followed by Ck/1163 and Os/1436. A significant difference in ID50 was only observed with Ck/215 homologous challenge, where the ID50 was increased by 2 log 10 per bird. The ID50 for Ck/1163 was the same, regardless of vaccine, including sham vaccination. The ID50 for Os/1436 was above the maximum possible dose and therefore could not be established.

  12. Inhibition of avian leukosis virus subgroup J replication by miRNA targeted against env.

    Science.gov (United States)

    Wang, Wei; Zhang, Zai-Ping; Tian, Jin; Xiao, Zhi-Guang; Meng, Qing-Wen

    2013-08-01

    No effective vaccine has been developed against the subgroup J avian leukosis virus (ALV-J). The genetic diversity of ALV-J might be related to the env gene, therefore, we selected conserved sequences of the env gene and designed interference sequence. In this study, microRNAs (miRNAs) were designed and synthesized, corresponding to conserved regions of the env gene. These miRNAs were cloned into the linearized eukaryotic expression vector. The recombinant plasmids were transfected into DF-1 cells. After transfection, the cells were inoculated with ALV-J. In reporter assays, the transfection efficiency is 80% by indirect immunofluorescence (IFA). Expression of the virus envelope glycoprotein was measured by IFA and western blotting assays. The relative expression of env gene was determined using quantitative PCR. Our results show that the mi-env 231 and mi-env 1384 could effectively suppress the replication of ALV-J with an efficiency of 68.7-75.2%. These data suggest that the miRNAs targeting the env can inhibit replication of ALV-J efficiently. This finding provides evidence that miRNAs could be used as a potential tool against ALV infection.

  13. [Identification of a new subgroup of avian leukosis virus isolated from Chinese indigenous chicken breeds].

    Science.gov (United States)

    Wang, Xin; Zhao, Peng; Cui, Zhi-Zhong

    2012-11-01

    In order to clarify Avian leukosis virus (ALV) characteristics from Chinese native chicken breeds, three ALV JS11C1, JS11C2 and JS11C3 were isolated from Chinese native breed "luhua" by inoculation of DF1 cell culture and detection of p27 antigen. Using PCR amplification of env gene, the amplified gp85 genes were analyzed and compared to all six chicken ALV subgroups reported. The gp85 genes of these three viruses were 1 005bp in length and encoded 335 amino acids, and the gp37 genes were 609bp and encoded 203 amino acids. The homology of gp85 among these three isolated strains was 91.9%-97.0%. Comparing to 18 stains of subgroup A, B, C, D, E published in GenBank, the homology was only in the range of 77.7%-84.6%, significantly lower than the gp85 homology observed within the common chicken subgroups A (88.2%-98.5%), B (91.6%-98.8%), and E (97.9%-99.4%). The gp85 homology compared with subgroup J was only 34.2%-36.5%. These results suggested that three isolated strains from Chinese native breed "luhua" belong to a new subgroup different from all six known subgroups from Chickens, and thus designated as subgroup K.

  14. Detection and molecular characterization of J subgroup avian leukosis virus in wild ducks in China.

    Directory of Open Access Journals (Sweden)

    Xiangwei Zeng

    Full Text Available To assess the status of avian leukosis virus subgroup J (ALV-J in wild ducks in China, we examined samples from 528 wild ducks, representing 17 species, which were collected in China over the past 3 years. Virus isolation and PCR showed that 7 ALV-J strains were isolated from wild ducks. The env genes and the 3'UTRs from these isolates were cloned and sequenced. The env genes of all 7 wild duck isolates were significantly different from those in the prototype strain HPRS-103, American strains, broiler ALV-J isolates and Chinese local chicken isolates, but showed close homology with those found in some layer chicken ALV-J isolates and belonged to the same group. The 3'UTRs of 7 ALV-J wild ducks isolates showed close homology with the prototype strain HPRS-103 and no obvious deletion was found in the 3'UTR except for a 1 bp deletion in the E element that introduced a binding site for c-Ets-1. Our study demonstrated the presence of ALV-J in wild ducks and investigated the molecular characterization of ALV-J in wild ducks isolates.

  15. Differential expression of microRNAs in avian leukosis virus subgroup J-induced tumors.

    Science.gov (United States)

    Wang, Qi; Gao, Yulong; Ji, Xiaolin; Qi, Xiaole; Qin, Liting; Gao, Honglei; Wang, Yongqiang; Wang, Xiaomei

    2013-02-22

    Avian leukosis virus subgroup J (ALV-J) has become pandemic and induced serious clinical outbreaks in chickens in China. In particular, ALV-J induced various clinical tumors in infected chickens, which caused enormous economic losses to poultry. In this study, an infectious clone from an epidemic ALV-J Chinese isolate designated HLJ09SH01 was constructed and rescued. The rescued virus (named rHLJ09SH01) was inoculated into specific-pathogen-free (SPF) layer chickens, and infected chickens were observed for 238 days to explore the oncogenicity of rHLJ09SH01. As a result, 57.9% of rHLJ09SH01-infected chickens produced tumors. Accumulating evidence shows that microRNAs (miRNAs) have a close relationship with tumorigenesis. To gain more insight into the tumorigenesis of ALV-J, a miRNA microarray was performed as part of an investigation of changes in host miRNA expression in a liver tumor from ALV-J infected chickens. The results showed that four miRNAs were significantly differentially expressed; these data were verified using real-time PCR. Bioinformatics analysis showed the differentially expressed miRNAs to be involved in some tumorigenesis-related signaling pathways, such as the MAPK signaling pathway and the Wnt signaling pathway, which may represent a possible signaling pathway that was involved in the ALV-J-induced tumorigenesis.

  16. Cardiac pathology and molecular epidemiology by avian leukosis viruses in Japan.

    Science.gov (United States)

    Nakamura, Sayuri; Ochiai, Kenji; Ochi, Akihiro; Yabushita, Hiroki; Abe, Asumi; Kishi, Sayaka; Sunden, Yuji; Umemura, Takashi

    2014-01-01

    Epidemiological studies suggest that retroviruses, including human immunodeficiency virus type 1, are associated with cardiomyopathy and myocarditis, but a causal relationship remains to be established. We encountered unusual cardiomyocyte hypertrophy and mitosis in Japanese native fowls infected with subgroup A of the avian leukosis viruses (ALVs-A), which belong to the genus Alpharetrovirus of the family Retroviridae and mainly induce lymphoid neoplasm in chickens. The affected hearts were evaluated by histopathology and immunohistochemistry, viral isolation, viral genome sequencing and experimental infection. There was non-suppurative myocarditis in eighteen fowls and seven of them had abnormal cardiomyocytes, which were distributed predominantly in the left ventricular wall and showed hypertrophic cytoplasm and atypical large nuclei. Nuclear chains and mitosis were frequently noted in these cardiomyocytes and immunohistochemistry for proliferating cell nuclear antigen supported the enhancement of mitotic activity. ALVs were isolated from all affected cases and phylogenic analysis of envSU genes showed that the isolates were mainly classified into two different clusters, suggesting viral genome diversity. In ovo experimental infection with two of the isolates was demonstrated to cause myocarditis and cardiomyocyte hypertrophy similar to those in the naturally occurring lesions and cardiac hamartoma (rhabdomyoma) in a shorter period of time (at 70 days of age) than expected. These results indicate that ALVs cause myocarditis as well as cardiomyocyte abnormality in chickens, implying a pathogenetic mechanism different from insertional mutagenesis and the existence of retrovirus-induced heart disorder.

  17. Efficient method to optimize antibodies using avian leukosis virus display and eukaryotic cells.

    Science.gov (United States)

    Yu, Changming; Pike, Gennett M; Rinkoski, Tommy A; Correia, Cristina; Kaufmann, Scott H; Federspiel, Mark J

    2015-08-11

    Antibody-based therapeutics have now had success in the clinic. The affinity and specificity of the antibody for the target ligand determines the specificity of therapeutic delivery and off-target side effects. The discovery and optimization of high-affinity antibodies to important therapeutic targets could be significantly improved by the availability of a robust, eukaryotic display technology comparable to phage display that would overcome the protein translation limitations of microorganisms. The use of eukaryotic cells would improve the diversity of the displayed antibodies that can be screened and optimized as well as more seamlessly transition into a large-scale mammalian expression system for clinical production. In this study, we demonstrate that the replication and polypeptide display characteristics of a eukaryotic retrovirus, avian leukosis virus (ALV), offers a robust, eukaryotic version of bacteriophage display. The binding affinity of a model single-chain Fv antibody was optimized by using ALV display, improving affinity >2,000-fold, from micromolar to picomolar levels. We believe ALV display provides an extension to antibody display on microorganisms and offers virus and cell display platforms in a eukaryotic expression system. ALV display should enable an improvement in the diversity of properly processed and functional antibody variants that can be screened and affinity-optimized to improve promising antibody candidates.

  18. Surveillance for Avian Influenza Virus in Wild Birds in Poland, 2008-2015.

    Science.gov (United States)

    Świętoń, Edyta; Wyrostek, Krzysztof; Jóźwiak, Michał; Olszewska-Tomczyk, Monika; Domańska-Blicharz, Katarzyna; Meissner, Włodzimierz; Włodarczyk, Radosław; Minias, Piotr; Janiszewski, Tomasz; Minta, Zenon; Śmietanka, Krzysztof

    2017-01-17

    We tested wild birds in Poland during 2008-2015 for avian influenza virus (AIV). We took 10,312 swabs and feces samples from 6,314 live birds representing 12 orders and 84 bird species, mostly from orders Anseriformes and Charadriiformes, for testing and characterization by various PCR methods. From PCR-positive samples, we attempted to isolate and subtype the virus. The RNA of AIV was detected in 1.8% (95% confidence interval, 1.5%-2.1%) of birds represented by 48 Mallards ( Anas platyrhynchos ), 11 Mute Swans ( Cygnus olor ), 48 Common Teal ( Anas crecca ), three Black-headed Gulls (Chroicocephalus ridibundus), one Common Coot ( Fulica atra ), one Garganey (Spatula querquedula), and one unidentified bird species. Overall, the prevalence of AIV detection in Mallards and Mute Swans (the most frequently sampled species) was 2.0% (95% confidence interval [CI], 1.4%-2.5%) and 0.5% (95% CI, 0.2%-0.8%), respectively; the difference was statistically significant (P=0.000). Hemagglutinin subtypes from H1 to H13 were identified, including H5 and H7 low pathogenic AIV subtypes. Mallards and Common Teals harbored the greatest diversity of subtypes. We observed seasonality of viral detection in Mallards, with higher AIV prevalence in late summer and autumn than in winter and spring. In addition, two peaks in AIV prevalence in summer (August) and autumn (November) were demonstrated for Mallards. The prevalence of AIV in Mute Swans did not show any statistically significant seasonal patterns.

  19. Molecular Analysis of Hemagglutinin Gene of a Goose Origin Highly Pathogenic Avian Influenza Virus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The hemagglutinin (HA) of avian influenza virus (AIV) plays a key role in determining the pathogenicity, cell receptor-binding property and host range of the virus. A goose origin AIV A/Goose/Guangdong/1/96(H5N1) (GD/96) was confirmed as a highly pathogenic AIV (HPAIV) by the tests of intravenous pathogenic index (IVPI) and the assay of plaque formation. The sequence results of the HA gene cDNA of the isolate reveal that there is an insertion of 6 basic amino acids ( R-R-R-K-K-R-) in the cleavage site between the HA1 and HA2, which is the characterization of the H5 subtype HPAIV. When compared with the lethal A/Hongkong/156/97 (H5N1) (HK/97), there is a homology of 98% at the nucleotide level and 98. 2% at the amino acid level. Furthermore, no difference of nucleotides related to all of the 6 potential glycosylation sites, the 2 receptor-binding sites and the basic amino acid insert within the HA existed between GD/96 and HK/97. These results imply that the GD/96 and HK/97 have a closely related common ancestor and share the same biological properties decided by the HA.

  20. A SPR aptasensor for detection of avian influenza virus H5N1.

    Science.gov (United States)

    Bai, Hua; Wang, Ronghui; Hargis, Billy; Lu, Huaguang; Li, Yanbin

    2012-01-01

    Rapid and specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR) biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI). After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R(2) = 0.99) to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal (H5N1) was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h.

  1. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1

    Directory of Open Access Journals (Sweden)

    Huaguang Lu

    2012-09-01

    Full Text Available Rapid and specific detection of avian influenza virus (AIV is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI. After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R2 = 0.99 to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal ( < 4% of H5N1 was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h.

  2. Experimental infection of turkeys with avian pneumovirus and either Newcastle disease virus or Escherichia coli.

    Science.gov (United States)

    Turpin, Elizabeth A; Perkins, Laura E L; Swayne, David E

    2002-01-01

    Avian pneumoviruses (APVs) are RNA viruses responsible for upper respiratory disease in poultry. Experimental infections are typically less severe than those observed in field cases. Previous studies with APV and Escherichia coli suggest this discrepancy is due to secondary agents. Field observations indicate APV infections are more severe with concurrent infection by Newcastle disease virus (NDV). In the current study, we examined the role of lentogenic NDV in the APV disease process. Two-week-old commercial turkey poults were infected with the Colorado strain of APV. Three days later, these poults received an additional inoculation of either NDV or E. coli. Dual infection of APV with either NDV or E. coli resulted in increased morbidity rates, with poults receiving APV/NDV having the highest morbidity rates and displaying lesions of swollen infraorbital sinuses. These lesions were not present in the single APV, NDV, or E coli groups. These results demonstrate that coinfection with APV and NDV can result in clinical signs and lesions similar to those in field outbreaks of APV.

  3. A recombinant avian leukosis virus subgroup j for directly monitoring viral infection and the selection of neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available Avian leukosis virus subgroup J (ALV-J has induced serious clinical outbreaks and has become a serious infectious disease of chickens in China. We describe here the creation of a recombinant ALV-J tagged with the enhanced green fluorescent protein (named rHPRS-103EGFP. We successfully utilize the rHPRS-103EGFP to visualize viral infection and for development of a simplified serum-neutralization test.

  4. A recombinant avian leukosis virus subgroup j for directly monitoring viral infection and the selection of neutralizing antibodies.

    Science.gov (United States)

    Wang, Qi; Li, Xiaofei; Ji, Xiaolin; Wang, Jingfei; Shen, Nan; Gao, Yulong; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Zhang, Shide; Wang, Xiaomei

    2014-01-01

    Avian leukosis virus subgroup J (ALV-J) has induced serious clinical outbreaks and has become a serious infectious disease of chickens in China. We describe here the creation of a recombinant ALV-J tagged with the enhanced green fluorescent protein (named rHPRS-103EGFP). We successfully utilize the rHPRS-103EGFP to visualize viral infection and for development of a simplified serum-neutralization test.

  5. Novel avian-origin influenza A (H7N9) virus attachment to the respiratory tract of five animal models

    NARCIS (Netherlands)

    J.Y. Siegers (Jurre); K.R. Short (Kirsty); L.M.E. Leijten (Lonneke); M.T. de Graaf (Marieke); M.I. Spronken (Monique); E.J.A. Schrauwen (Eefje); N. Marshall (Nicolle); A.C. Lowen (Anice); G. Gabriel (Gülsah); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs); D.A.J. van Riel (Debby)

    2014-01-01

    textabstractWe determined the pattern of attachment of the avian-origin H7N9 influenza viruses A/Anhui/1/2013 and A/Shanghai/1/2013 to the respiratory tract in ferrets, macaques, mice, pigs, and guinea pigs and compared it to that in humans. The H7N9 attachment pattern in macaques, mice, and to a le

  6. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    Directory of Open Access Journals (Sweden)

    Huaiying Xu

    2015-02-01

    Full Text Available Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA and matrix (M genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  7. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik;

    2013-01-01

    BACKGROUND: The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically...... and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. METHODS: Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation...... with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. RESULTS: The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene...

  8. Prior infection of pigs with swine influenza viruses is a barrier to infection with avian influenza viruses.

    Science.gov (United States)

    De Vleeschauwer, Annebel; Van Reeth, Kristien

    2010-12-15

    Although pigs are susceptible to avian influenza viruses (AIV) of different subtypes, the incidence of AIV infections in the field appears to be low. Swine H1N1, H3N2 and H1N2 influenza viruses (SIV) are enzootic worldwide and most pigs have antibodies to 1 or more SIV subtypes. This study aimed to examine whether infection-immunity to H1N1 or H3N2 SIV may (1) protect pigs against subsequent infections with AIV of various haemagglutinin and/or neuraminidase subtypes and/or (2) interfere with the serological diagnosis of AIV infection by haemagglutination inhibition (HI) or virus neutralization (VN) tests. Pigs were inoculated intranasally with an H1N1 or H3N2 SIV or left uninoculated. Four or 6 weeks later all pigs were challenged intranasally with 1 of 3 AIV subtypes (H4N6, H5N2 or H7N1). Fifteen out of 17 challenge control pigs shed the respective AIV for 4-6 days post-inoculation and 16 developed HI and VN antibodies. In contrast, 28 of the 29 SIV-immune pigs did not have detectable AIV shedding. Only 12 SIV-immune pigs developed HI antibodies to the AIV used for challenge and 14 had VN antibodies. Antibody titres to the AIV were low in both control and SIV-immune pigs. Our data show that prior infection of pigs with SIV is a barrier to infection with AIV of unrelated subtypes. Serological screening in regions where SIV is enzootic is only useful when the AIV strain for which the pigs need to be tested is known.

  9. Identification of a novel B-cell epitope specific for avian leukosis virus subgroup J gp85 protein.

    Science.gov (United States)

    Li, Xiaofei; Zhu, Haibo; Wang, Qi; Sun, Jiashan; Gao, Yanni; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-04-01

    Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has caused severe economic losses in China. Gp85 protein is the main envelope protein and the most variable structural protein of ALV-J. It is also involved in virus neutralization. In this study, a specific monoclonal antibody, 4A3, was produced against the ALV-J gp85 protein. Immunofluorescence assays showed that 4A3 could react with different strains of ALV-J, including the British prototype isolate HPRS103, the American strains, an early Chinese broiler isolate, and layer isolates. A linear epitope on the gp85 protein was identified using a series of partially overlapping fragments spanning the gp85-encoding gene and subjecting them to western blot analysis. The results indicated that (134)AEAELRDFI(142) was the minimal linear epitope that could be recognized by mAb 4A3. Enzyme-linked immunosorbent assay (ELISA) revealed that chicken anti-ALV-J sera and mouse anti-ALV-J gp85 sera could also recognize the minimal linear epitope. Alignment analysis of amino acid sequences indicated that the epitope was highly conserved among 34 ALV-J strains. Furthermore, the epitope was not conserved among subgroup A and B of avian leukosis virus (ALV). Taken together, the mAb and the identified epitope may provide valuable tools for the development of new diagnostic methods for ALV-J.

  10. Inactivated vaccine with adjuvants consisting of pattern recognition receptor agonists confers protection against avian influenza viruses in chickens.

    Science.gov (United States)

    Tang, Yinghua; Lu, Jihu; Wu, Peipei; Liu, Zhenxing; Tian, Zhen; Zha, Guofei; Chen, Hui; Wang, Qiaochu; Wang, Qiaoxiu; Hou, Fengxiang; Kang, Sang-Moo; Hou, Jibo

    2014-08-01

    Use of adjuvant containing pathogen pattern recognition receptor agonists is one of the effective strategies to enhance the efficacy of licensed vaccines. In this study, we investigated the efficacy of avian influenza vaccines containing an adjuvant (CVCVA5) which was composed of polyriboinosinic polyribocytidylic, resiquimod, imiquimod, muramyl dipeptide and levomisole. Avian influenza vaccines adjuvanted with CVCVA5 were found to induce significantly higher titers of hemagglutiniton inhibition antibodies (P≤0.01) than those of commercial vaccines at 2-, 3- and 4-week post vaccination in both specific pathogen free (SPF) chickens and field application. Furthermore, virus shedding was reduced in SPF chickens immunized with H9-CVCVA5 vaccine after H9 subtype heterologous virus challenge. The ratios of both CD3(+)CD4(+) and CD3(+)CD8(+) lymphocytes were slowly elevated in chickens immunized with H9-CVCVA5 vaccine. Lymphocytes adoptive transfer study indicates that CD8(+) T lymphocyte subpopulation might have contributed to improved protection against heterologous virus challenge. Results of this study suggest that the adjuvant CVCVA5 was capable of enhancing the potency of existing avian influenza vaccines by increasing humoral and cellular immune response.

  11. Structural view and substrate specificity of papain-like protease from avian infectious bronchitis virus.

    Science.gov (United States)

    Kong, Lingying; Shaw, Neil; Yan, Lingming; Lou, Zhiyong; Rao, Zihe

    2015-03-13

    Papain-like protease (PLpro) of coronaviruses (CoVs) carries out proteolytic maturation of non-structural proteins that play a role in replication of the virus and performs deubiquitination of host cell factors to scuttle antiviral responses. Avian infectious bronchitis virus (IBV), the causative agent of bronchitis in chicken that results in huge economic losses every year in the poultry industry globally, encodes a PLpro. The substrate specificities of this PLpro are not clearly understood. Here, we show that IBV PLpro can degrade Lys(48)- and Lys(63)-linked polyubiquitin chains to monoubiquitin but not linear polyubiquitin. To explain the substrate specificities, we have solved the crystal structure of PLpro from IBV at 2.15-Å resolution. The overall structure is reminiscent of the structure of severe acute respiratory syndrome CoV PLpro. However, unlike the severe acute respiratory syndrome CoV PLpro that lacks blocking loop (BL) 1 of deubiquitinating enzymes, the IBV PLpro has a short BL1-like loop. Access to a conserved catalytic triad consisting of Cys(101), His(264), and Asp(275) is regulated by the flexible BL2. A model of ubiquitin-bound IBV CoV PLpro brings out key differences in substrate binding sites of PLpros. In particular, P3 and P4 subsites as well as residues interacting with the β-barrel of ubiquitin are different, suggesting different catalytic efficiencies and substrate specificities. We show that IBV PLpro cleaves peptide substrates KKAG-7-amino-4-methylcoumarin and LRGG-7-amino-4-methylcoumarin with different catalytic efficiencies. These results demonstrate that substrate specificities of IBV PLpro are different from other PLpros and that IBV PLpro might target different ubiquitinated host factors to aid the propagation of the virus.

  12. Is avian influenza virus A(H5N1) a real threat to human health?

    Science.gov (United States)

    Amendola, A; Ranghiero, A; Zanetti, A; Pariani, E

    2011-09-01

    The A(H5N1) influenza remains a disease of birds with a significant species barrier: in the presence of some tens million cases of infection in poultry--with a wide geographical spread--, only a few hundreds cases have occurred in humans. To date, human cases have been reported in 15 countries--mainly in Asia--and all were related to the onset of outbreaks in poultry. A peak of H5N1 human cases was recorded in 2006, then decreasing in subsequent years. Despite this trend, the H5N1 virus still represents a possible threat to human health, considering that more than half of human cases of H5N1 have been fatal. Moreover, despite the drop in the number of cases, the risk of a novel pandemic cannot be excluded, since H5N1 continues to circulate in poultry in countries with elevated human population density and where monitoring systems are not fully appropriate. In addition, there is a major global concern about the potential occurrence of a reassortment between the 2009 pandemic H1N1 and the highly pathogenic H5N1 influenza viruses following a co-infection in a susceptible host. Therefore, the implementation of appropriate surveillance and containment measures is crucial in order to minimize such risk. In conclusion, H5N1 avian influenza is still a rare disease in humans but its clinical severe outcome requires a careful monitoring of the virus's ability to evolve and to trigger a new pandemic.

  13. Epidemiological surveillance of low pathogenic avian influenza virus (LPAIV from poultry in Guangxi Province, Southern China.

    Directory of Open Access Journals (Sweden)

    Yi Peng

    Full Text Available Low pathogenic avian influenza virus (LPAIV usually causes mild disease or asymptomatic infection in poultry. However, some LPAIV strains can be transmitted to humans and cause severe infection. Genetic rearrangement and recombination of even low pathogenic influenza may generate a novel virus with increased virulence, posing a substantial risk to public health. Southern China is regarded as the world "influenza epicenter", due to a rash of outbreaks of influenza in recent years. In this study, we conducted an epidemiological survey of LPAIV at different live bird markets (LBMs in Guangxi province, Southern China. From January 2009 to December 2011, we collected 3,121 cotton swab samples of larynx, trachea and cloaca from the poultry at LBMs in Guangxi. Virus isolation, hemagglutination inhibition (HI assay, and RT-PCR were used to detect and subtype LPAIV in the collected samples. Of the 3,121 samples, 336 samples (10.8% were LPAIV positive, including 54 (1.7% in chicken and 282 (9.1% in duck. The identified LPAIV were H3N1, H3N2, H6N1, H6N2, H6N5, H6N6, H6N8, and H9N2, which are combinations of seven HA subtypes (H1, H3, H4, H6, H9, H10 and H11 and five NA subtypes (N1, N2, N5, N6 and N8. The H3 and H9 subtypes are predominant in the identified LPAIVs. Among the 336 cases, 29 types of mixed infection of different HA subtypes were identified in 87 of the cases (25.9%. The mixed infections may provide opportunities for genetic recombination. Our results suggest that the LPAIV epidemiology in poultry in the Guangxi province in southern China is complicated and highlights the need for further epidemiological and genetic studies of LPAIV in this area.

  14. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009-2011 in the West Bengal State, India

    Directory of Open Access Journals (Sweden)

    Pawar Shailesh D

    2012-08-01

    Full Text Available Abstract Introduction More than 70 outbreaks of the highly pathogenic avian influenza (HPAI H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009–2011 in the State of West Bengal. Methods A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum] were from domestic ducks and poultry. All tracheal, cloacal and environmental samples were processed for virus isolation. Virus isolates were detected using hemagglutination assay and identified using hemagglutination inhibition (HI and reverse transcriptase polymerase chain reaction (RT-PCR assays. Sequencing and phylogenetic analysis of partial region of the hemagglutinin and neuraminidase genes was done. Intravenous pathogenicity index assays were performed in chickens to assess pathogenicity of AI virus isolates. Serum samples were tested for detection of antibodies against AI viruses using HI assay. Results A total of 57 AI H9N2, 15 AI H4N6 and 15 Newcastle Disease (NDV viruses were isolated from chickens, from both backyard and wet poultry markets; AI H4N6 viruses were isolated from backyard chickens and domestic ducks. Characterization of AI H9N2 and H4N6 viruses revealed that they were of low pathogenicity. Domestic ducks were positive for antibodies against H5 and H7 viruses while chickens were positive for presence of antibodies against AI H9N2 and NDV. Conclusions In the current scenario of HPAI H5N1 outbreaks in West Bengal, this report shows presence of low pathogenic AI H9N2 and H4N6 viruses in chickens and domestic ducks during the period 2009–2011. This is the first report of

  15. Reticuloendotheliosis virus: Detection of immunological relationship to mammalian type C retroviruses. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Charman, H.P.; Gilden, R.V.; Oroszlan, S.

    1979-03-01

    Reticuloendotheliosis virus (REV) p30 shares cross-reactive determinants and a common NH/sub 2/-terminal tripeptide with mammalian type C viral p30's. An interspecies competition radioimmunoassay was developed, using iodinated REV p30 and a broadly reactive antiserum to mammalian virus p30's. The avian leukosis-sarcoma viruses and mammalian non-type C retroviruses did not compete in this assay. Previous data indicating that the REV group is not represented completely in normal avian cell DNA lead us to speculate that this may be the first example of interclass transmission, albeit in the remote past, among the Retroviridae.

  16. Detection and Genetic Characteristics of H9N2 Avian Influenza Viruses from Live Poultry Markets in Hunan Province, China.

    Directory of Open Access Journals (Sweden)

    Yiwei Huang

    Full Text Available H9N2 avian influenza viruses (AIVs are highly prevalent and of low pathogenicity in domestic poultry. These viruses show a high genetic compatibility with other subtypes of AIVs and have been involved in the genesis of H5N1, H7N9 and H10N8 viruses causing severe infection in humans. The first case of human infection with H9N2 viruses in Hunan province of China have been confirmed in November 2013 and identified that H9N2 viruses from live poultry markets (LPMs near the patient's house could be the source of infection. However, the prevalence, distribution and genetic characteristics of H9N2 viruses in LPMs all over the province are not clear. We collected and tested 3943 environmental samples from 380 LPMs covering all 122 counties/districts of Hunan province from February to April, 2014. A total of 618 (15.7% samples were H9 subtype positive and 200 (52.6% markets in 98 (80.3% counties/districts were contaminated with H9 subtype AIVs. We sequenced the entire coding sequences of the genomes of eleven H9N2 isolates from environmental samples. Phylogenetic analysis showed that the gene sequences of the H9N2 AIVs exhibited high homology (94.3%-100%. All eleven viruses were in a same branch in the phylogenetic trees and belonged to a same genotype. No gene reassortment had been found. Molecular analysis demonstrated that all the viruses had typical molecular characteristics of contemporary avian H9N2 influenza viruses. Continued surveillance of AIVs in LPMs is warranted for identification of further viral evolution and novel reassortants with pandemic potential.

  17. Human infection with an avian influenza A (H9N2) virus in the middle region of China.

    Science.gov (United States)

    Huang, Yiwei; Li, Xiaodan; Zhang, Hong; Chen, Bozhong; Jiang, Yonglin; Yang, Lei; Zhu, Wenfei; Hu, Shixiong; Zhou, Siyu; Tang, Yunli; Xiang, Xingyu; Li, Fangcai; Li, Wenchao; Gao, Lidong

    2015-10-01

    During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses.

  18. gga-miR-375 plays a key role in tumorigenesis post subgroup J avian leukosis virus infection.

    Directory of Open Access Journals (Sweden)

    Hongxin Li

    Full Text Available Avian leukosis is a neoplastic disease caused in part by subgroup J avian leukosis virus J (ALV-J. Micro ribonucleic acids (miRNAs play pivotal oncogenic and tumour-suppressor roles in tumour development and progression. However, little is known about the potential role of miRNAs in avian leukosis tumours. We have found a novel tumour-suppressor miRNA, gga-miR-375, associated with avian leukosis tumorigenesis by miRNA microarray in a previous report. We have also previously studied the biological function of gga-miR-375; Overexpression of gga-miR-375 significantly inhibited DF-1 cell proliferation, and significantly reduced the expression of yes-associated protein 1 (YAP1 by repressing the activity of a luciferase reporter carrying the 3'-untranslated region of YAP1. This indicates that gga-miR-375 is frequently downregulated in avian leukosis by inhibiting cell proliferation through YAP1 oncogene targeting. Overexpression of gga-miR-375 markedly promoted serum starvation induced apoptosis, and there may be the reason why the tumour cycle is so long in the infected chickens. In vivo assays, gga-miR-375 was significantly downregulated in chicken livers 20 days after infection with ALV-J, and YAP1 was significantly upregulated 20 days after ALV-J infection (P<0.05. We also found that expression of cyclin E, an important regulator of cell cycle progression, was significantly upregulated (P<0.05. Drosophila inhibitor of apoptosis protein 1 (DIAP1, which is related to caspase-dependent apoptosis, was also significantly upregulated after infection. Our data suggests that gga-miR-375 may function as a tumour suppressor thereby regulating cancer cell proliferation and it plays a key role in avian leukosis tumorigenesis.

  19. A role for MALT1 activity in Kaposi's sarcoma-associated herpes virus latency and growth of primary effusion lymphoma.

    Science.gov (United States)

    Bonsignore, L; Passelli, K; Pelzer, C; Perroud, M; Konrad, A; Thurau, M; Stürzl, M; Dai, L; Trillo-Tinoco, J; Del Valle, L; Qin, Z; Thome, M

    2017-03-01

    Primary effusion lymphoma (PEL) is an incurable malignancy that develops in immunodeficient patients as a consequence of latent infection of B-cells with Kaposi's sarcoma-associated herpes virus (KSHV). Malignant growth of KSHV-infected B cells requires the activity of the transcription factor nuclear factor (NF)-κB, which controls maintenance of viral latency and suppression of the viral lytic program. Here we show that the KSHV proteins K13 and K15 promote NF-κB activation via the protease mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1), a key driver of NF-κB activation in lymphocytes. Inhibition of the MALT1 protease activity induced a switch from the latent to the lytic stage of viral infection, and led to reduced growth and survival of PEL cell lines in vitro and in a xenograft model. These results demonstrate a key role for the proteolytic activity of MALT1 in PEL, and provide a rationale for the pharmacological targeting of MALT1 in PEL therapy.

  20. Biological fitness and natural selection of amantadine resistant variants of avian influenza H5N1 viruses.

    Science.gov (United States)

    Abdelwhab, E M; Veits, Jutta; Mettenleiter, Thomas C

    2017-01-15

    Outbreaks caused by the highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry in several countries and posed a significant pandemic threat. In addition to culling of infected poultry and vaccination, amantadine has been applied in poultry in some countries to control the spread of the virus. The prevalence of the amantadine resistance marker at position 31 (Ser31Asn) of the M2 protein increased over time. However, little is known about the biological fitness and selection of H5N1 amantadine resistant strains over their sensitive counterparts. Here, using reverse genetics we investigated the biological impact of Ser31Asn in M2 commonly seen in viruses in clade 2.2.1.1 in farmed poultry in Egypt. Findings of the current study indicated that the resistance to amantadine conferred by Asn31 evolved rapidly after the application of amantadine in commercial poultry. Both the resistant and sensitive strains replicated at similar levels in avian cell culture. Asn31 increased virus entry into the cells and cell-to-cell spread and was genetically stable for several passages in cell culture. Moreover, upon co-infection of cell culture resistant strains dominated sensitive viruses even in the absence of selection by amantadine. Together, rapid emergence, stability and domination of amantadine-resistant variants over sensitive strains limit the efficacy of amantadine in poultry.

  1. Avian influenza virus surveillance in wild birds in Georgia: 2009-2011.

    Directory of Open Access Journals (Sweden)

    Nicola S Lewis

    Full Text Available The Caucasus, at the border of Europe and Asia, is important for migration and over-wintering of wild waterbirds. Three flyways, the Central Asian, East Africa-West Asia, and Mediterranean/Black Sea flyways, converge in the Caucasus region. Thus, the Caucasus region might act as a migratory bridge for influenza virus transmission when birds aggregate in high concentrations in the post-breeding, migrating and overwintering periods. Since August 2009, we have established a surveillance network for influenza viruses in wild birds, using five sample areas geographically spread throughout suitable habitats in both eastern and western Georgia. We took paired tracheal and cloacal swabs and fresh feces samples. We collected 8343 swabs from 76 species belonging to 17 families in 11 orders of birds, of which 84 were real-time RT-PCR positive for avian influenza virus (AIV. No highly pathogenic AIV (HPAIV H5 or H7 viruses were detected. The overall AIV prevalence was 1.6%. We observed peak prevalence in large gulls during the autumn migration (5.3-9.8%, but peak prevalence in Black-headed Gulls in spring (4.2-13%. In ducks, we observed increased AIV prevalence during the autumn post-moult aggregations and migration stop-over period (6.3% but at lower levels to those observed in other more northerly post-moult areas in Eurasia. We observed another prevalence peak in the overwintering period (0.14-5.9%. Serological and virological monitoring of a breeding colony of Armenian Gulls showed that adult birds were seropositive on arrival at the breeding colony, but juveniles remained serologically and virologically negative for AIV throughout their time on the breeding grounds, in contrast to gull AIV data from other geographic regions. We show that close phylogenetic relatives of viruses isolated in Georgia are sourced from a wide geographic area throughout Western and Central Eurasia, and from areas that are represented by multiple different flyways, likely

  2. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses.

    Science.gov (United States)

    Xiao, Chencheng; Ma, Wenjun; Sun, Na; Huang, Lihong; Li, Yaling; Zeng, Zhaoyong; Wen, Yijun; Zhang, Zaoyue; Li, Huanan; Li, Qian; Yu, Yuandi; Zheng, Yi; Liu, Shukai; Hu, Pingsheng; Zhang, Xu; Ning, Zhangyong; Qi, Wenbao; Liao, Ming

    2016-01-19

    Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts.

  3. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model

    Science.gov (United States)

    Farooqui, Amber; Huang, Linxi; Wu, Suwu; Cai, Yingmu; Su, Min; Lin, Pengzhou; Chen, Weihong; Fang, Xibin; Zhang, Li; Liu, Yisu; Zeng, Tiansheng; Paquette, Stephane G.; Khan, Adnan; Kelvin, Alyson A.

    2015-01-01

    The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes. PMID:26369969

  4. Comparative pathogenesis in specific-pathogen-free chickens of two strains of avian hepatitis E virus recovered from a chicken with Hepatitis-Splenomegaly syndrome and from a clinically healthy chicken, respectively

    OpenAIRE

    Billam, P.; LeRoith, T; Pudupakam, R. S.; Pierson, F.W.; Duncan, R. B.; Meng, X. J.

    2009-01-01

    Avian hepatitis E virus (avian HEV) is the primary causative agent of Hepatitis-Splenomegaly (HS) syndrome in chickens. Recently, a genetically unique strain of avian HEV, designated avian HEV-VA, was recovered from healthy chickens in Virginia. The objective of this study was to experimentally compare the pathogenicity of the prototype strain recovered from a chicken with HS syndrome and the avian HEV-VA strain in specific-pathogen-free chickens. An infectious stock of the avian HEV-VA strai...

  5. Molecular characterization of highly pathogenic H5N1 avian influenza A viruses isolated from raccoon dogs in China.

    Directory of Open Access Journals (Sweden)

    Xian Qi

    Full Text Available BACKGROUND: The highly pathogenic avian influenza H5N1 virus can infect a variety of animals and continually poses a threat to animal and human health. While many genotypes of H5N1 virus can be found in chicken, few are associated with the infection of mammals. Characterization of the genotypes of viral strains in animal populations is important to understand the distribution of different viral strains in various hosts. This also facilitates the surveillance and detection of possible emergence of highly pathogenic strains of specific genotypes from unknown hosts or hosts that have not been previously reported to carry these genotypes. METHODOLOGY/PRINCIPAL FINDINGS: Two H5N1 isolates were obtained from lung samples of two raccoon dogs that had died from respiratory disease in China. Pathogenicity experiments showed that the isolates were highly pathogenic to chicken. To characterize the genotypes of these viruses, their genomic sequences were determined and analyzed. The genetic contents of these isolates are virtually identical and they may come from the same progenitor virus. Phylogenetic analysis indicated that the isolates were genetically closely related to genotype V H5N1 virus, which was first isolated in China in 2003, and were distinct from the dominant virus genotypes (e.g. genotype Z of recent years. The isolates also contain a multibasic amino acid motif at their HA cleavage sites and have an E residue at position 627 of the PB2 protein similar to the previously-identified avian viruses. CONCLUSIONS/SIGNIFICANCE: This is the first report that genotype V H5N1 virus is found to be associated with a mammalian host. Our results strongly suggest that genotype V H5N1 virus has the ability to cross species barriers to infect mammalian animals. These findings further highlight the risk that avian influenza H5N1 virus poses to mammals and humans, which may be infected by specific genotypes that are not known to infect these hosts.

  6. Isolation and characterization of H7N9 avian influenza A virus from humans with respiratory diseases in Zhejiang, China.

    Science.gov (United States)

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Zhang, Lei; Sun, Yi; Wang, Xinying; Chen, Yin; Lu, Yiyu; Chen, Enfu; Lv, Huakun; Gong, Liming; Li, Zhen; Gao, Jian; Xu, Changping; Feng, Yan; Ge, Qiong; Xu, Baoxiang; Xu, Fang; Yang, Zhangnv; Zhao, Guoqiu; Han, Jiankang; Guus, Koch; Li, Hui; Shu, Yuelong; Chen, Zhiping; Xia, Shichang

    2014-08-30

    In 2013, the novel reassortant avian-origin influenza A (H7N9) virus was reported in China. Through enhanced surveillance, infection by the H7N9 virus in humans was first identified in Zhejiang Province. Real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was used to confirm the infection. Embryonated chicken eggs were used for virus isolation from pharyngeal swabs taken from infected human patients. The H7N9 isolates were first identified by the hemagglutination test and electron microscopy, then used for whole genome sequencing. Bioinformatics software was used to construct the phylogenetic tree and for computing the mean rate of evolution of the HA gene in H7Nx and NA in HxN9. Two novel H7N9 avian influenza A viruses (A/Zhejiang/1/2013 and A/Zhejiang/2/2013) were isolated from the positive infection cases. Substitutions were found in both Zhejiang isolates and were identified as human-type viruses. All phylogenetic results indicated that the novel reassortant in H7N9 originated in viruses that infected birds. The sequencing and phylogenetic analysis of the whole genome revealed the mean rate of evolution of the HA gene in H7NX to be 5.74E-3 (95% Highest posterior density: 3.8218E-3 to 7.7873E-3) while the NA gene showed 2.243E-3 (4.378E-4 to 3.79E-3) substitutions per nucleotide site per year. The novel reassortant H7N9 virus was confirmed by molecular methods to have originated in poultry, with the mutations occurring during the spread of the H7N9 virus infection. Live poultry markets played an important role in whole H7N9 circulation.

  7. A comparison of rapid point-of-care tests for the detection of avian influenza A(H7N9) virus, 2013

    NARCIS (Netherlands)

    C. Baas (Chantal); I.G. Barr (Ian); R.A.M. Fouchier (Ron); A. Kelso; A.C. Hurt (Aeron)

    2013-01-01

    textabstractSix antigen detection-based rapid influenza point-of-care tests were compared for their ability to detect avian influenza A(H7N9) virus. The sensitivity of at least four tests, standardised by viral infectivity (TCID50) or RNA copy number, was lower for the influenza A(H7N9) virus than f

  8. Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China

    Science.gov (United States)

    Avian leukosis virus (ALV) causes high mortality associated with tumor formation and decreased fertility, and results in major economic losses in the poultry industry worldwide. Recently, a putative novel ALV subgroup virus named ALV-K was observed in Chinese local chickens. In this study, a novel A...

  9. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    Science.gov (United States)

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  10. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    Science.gov (United States)

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  11. First introduction of highly pathogenic H5NI avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2007-01-01

    Background: Since 2005 highly pathogenic ( HP) avian influenza A H5N1 viruses have spread from Asia to Africa and Europe infecting poultry, humans and wild birds. HP H5N1 virus was isolated in Denmark for the first time in March 2006. A total of 44 wild birds were found positive for the HP H5N1 i...

  12. Genetic dynamic analysis of the H5N1 Avian influenza virus NS1 gene isolated in Bali

    Directory of Open Access Journals (Sweden)

    Arief Mulyono

    2013-05-01

    Full Text Available AbstrakLatar belakang:Virus Avian Influenza H5N1 diperkirakan terus bermutasi, yang berpotensi meningkatkan kapasitas untuk melompati barier spesies, dan dapat menular secara mudah antar manusia. Penelitian ini bertujuan untuk menganalisis dinamika genetik gen NS1 dan mengetahui adanya marka virulensi pada sekuen gen NS1 VAI H5N1 ayam asal Bali.Metode: Metode yang digunakan dalam penelitian ini adalah isolasi RNA, amplifikasi gen NS1 dengan Reverse Transcriptase Polymerase Chain Reaction (RT-PCR, elektroforesis dan sequencing. Data sekuen isolat virus Avian influenza H5N1 asal Bali tersebut selanjutnya dibandingkan dengan multiple aligment dengan isolat asal Indonesia lainnya dari berbagai hospes yang diakses melalui GenBank tahun 2005-2007, dan pembuatan pohon filogenetik.Hasil:Keempat isolat uji mengalami substitusi P42S dan delesi 5 asam amino pada posisi 80-84 yang mengakibatkan potensi peningkatan virulensi virus, namun tidak dijumpai adanya substitusi D92E, F103L dan M106I. Analisis filogenetik menunjukkan keempat isolat uji mempunyai kekerabatan genetik lebih dekat dengan isolat asal kucing dan manusia. Dibandingkan dengan isolat Bali tahun 2005 isolat uji mengalami peningkatan substitusi nukleotida dan asam amino.Kesimpulan:Isolat VAI H5N1 asal Bali mengalami dinamika genetik dan ditemukan marker virulensi pada sekuen gen NS1. (Health Science Indones 2012;2:xx-xxKata kunci: avian influenza, H5N1, NS1Abstract Background:H5N1 Avian Influenza virus is expected to continue to mutate, potentially increasing the capacity to jump the species barrier, and can be easily transmitted between humans. This study aimed to analyze the genetic dynamics of the NS1 gene and to recognize markers of virulence in VAI H5N1 NS1 gene sequences from Balinese poultry.Methods:The method used was isolation of RNA, NS1 gene amplification  by  Reverse  Transcriptase Polymerase Chain Reaction (RT-PCR, electrophoresis and sequencing. Data sequence Avian influenza H5

  13. Taishan Pinus massoniana pollen polysaccharide inhibits subgroup J avian leucosis virus infection by directly blocking virus infection and improving immunity.

    Science.gov (United States)

    Yu, Cuilian; Wei, Kai; Liu, Liping; Yang, Shifa; Hu, Liping; Zhao, Peng; Meng, Xiuyan; Shao, Mingxu; Wang, Chuanwen; Zhu, Lijun; Zhang, Hao; Li, Yang; Zhu, Ruiliang

    2017-03-13

    Subgroup J avian leucosis virus (ALV-J) generally causes neoplastic diseases, immunosuppression and subsequently increases susceptibility to secondary infection in birds. The spread of ALV-J mainly depends on congenital infection and horizontal contact. Although ALV-J infection causes enormous losses yearly in the poultry industry worldwide, effective measures to control ALV-J remain lacking. In this study, we demonstrated that Taishan Pinus massoniana pollen polysaccharide (TPPPS), a natural polysaccharide extracted from Taishan Pinus massoniana pollen, can significantly inhibit ALV-J replication in vitro by blocking viral adsorption to host cells. Electron microscopy and blocking ELISA tests revealed that TPPPS possibly blocks viral adsorption to host cells by interacting with the glycoprotein 85 protein of ALV-J. Furthermore, we artificially established a congenitally ALV-J-infected chicken model to examine the anti-viral effects of TPPPS in vivo. TPPPS significantly inhibited viral shedding and viral loads in immune organs and largely eliminated the immunosuppression caused by congenital ALV-J infection. Additionally, pre-administration of TPPPS obviously reduced the size and delayed the occurrence of tumors induced by acute oncogenic ALV-J infection. This study revealed the prominent effects and feasible mechanisms of TPPPS in inhibiting ALV-J infection, thereby providing a novel prospect to control ALV-J spread.

  14. Recombinant Marek’s Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken

    Directory of Open Access Journals (Sweden)

    Yongzhen Liu

    2016-11-01

    Full Text Available Avian leukosis virus subgroup J (ALV-J is an immunosuppressive virus that causes considerable economic losses to the chicken industry in China. However, there is currently no effective vaccine to prevent ALV-J infection. In order to reduce the losses caused by ALV-J, we constructed two effective ALV-J vaccines by inserting the ALV-J (strain JL093-1 env or gag+env genes into the US2 gene of the Marek’s disease herpesviruses (MDV by transfection of overlapping fosmid DNAs, creating two recombinant MDVs, rMDV/ALV-gag+env and rMDV/ALV-env. Analysis of cultured chicken embryo fibroblasts infected with the rMDVs revealed that Env and Gag were successfully expressed and that there was no difference in growth kinetics in cells infected with rMDVs compared with that of cells infected with the parent MDV. Chickens vaccinated with either rMDV revealed that positive serum antibodies were induced. Both rMDVs also effectively reduced the rate of positive viremia in chicken flocks challenged with ALV-J. The protective effect provided by rMDV/ALV-env inoculation was slightly stronger than that provided by rMDV/ALV-gag+env. This represents the first study where a potential rMDV vaccine, expressing ALV-J antigenic genes, has been shown to be effective in the prevention of ALV-J. Our study also opens new avenues for the control of MDV and ALV-J co-infection.

  15. Recombinant Marek’s Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken

    Science.gov (United States)

    Liu, Yongzhen; Li, Kai; Gao, Yulong; Gao, Li; Zhong, Li; Zhang, Yao; Liu, Changjun; Zhang, Yanping; Wang, Xiaomei

    2016-01-01

    Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus that causes considerable economic losses to the chicken industry in China. However, there is currently no effective vaccine to prevent ALV-J infection. In order to reduce the losses caused by ALV-J, we constructed two effective ALV-J vaccines by inserting the ALV-J (strain JL093-1) env or gag+env genes into the US2 gene of the Marek’s disease herpesviruses (MDV) by transfection of overlapping fosmid DNAs, creating two recombinant MDVs, rMDV/ALV-gag+env and rMDV/ALV-env. Analysis of cultured chicken embryo fibroblasts infected with the rMDVs revealed that Env and Gag were successfully expressed and that there was no difference in growth kinetics in cells infected with rMDVs compared with that of cells infected with the parent MDV. Chickens vaccinated with either rMDV revealed that positive serum antibodies were induced. Both rMDVs also effectively reduced the rate of positive viremia in chicken flocks challenged with ALV-J. The protective effect provided by rMDV/ALV-env inoculation was slightly stronger than that provided by rMDV/ALV-gag+env. This represents the first study where a potential rMDV vaccine, expressing ALV-J antigenic genes, has been shown to be effective in the prevention of ALV-J. Our study also opens new avenues for the control of MDV and ALV-J co-infection. PMID:27827933

  16. Recombinant Marek's Disease Virus as a Vector-Based Vaccine against Avian Leukosis Virus Subgroup J in Chicken.

    Science.gov (United States)

    Liu, Yongzhen; Li, Kai; Gao, Yulong; Gao, Li; Zhong, Li; Zhang, Yao; Liu, Changjun; Zhang, Yanping; Wang, Xiaomei

    2016-11-04

    Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus that causes considerable economic losses to the chicken industry in China. However, there is currently no effective vaccine to prevent ALV-J infection. In order to reduce the losses caused by ALV-J, we constructed two effective ALV-J vaccines by inserting the ALV-J (strain JL093-1) env or gag+env genes into the US2 gene of the Marek's disease herpesviruses (MDV) by transfection of overlapping fosmid DNAs, creating two recombinant MDVs, rMDV/ALV-gag+env and rMDV/ALV-env. Analysis of cultured chicken embryo fibroblasts infected with the rMDVs revealed that Env and Gag were successfully expressed and that there was no difference in growth kinetics in cells infected with rMDVs compared with that of cells infected with the parent MDV. Chickens vaccinated with either rMDV revealed that positive serum antibodies were induced. Both rMDVs also effectively reduced the rate of positive viremia in chicken flocks challenged with ALV-J. The protective effect provided by rMDV/ALV-env inoculation was slightly stronger than that provided by rMDV/ALV-gag+env. This represents the first study where a potential rMDV vaccine, expressing ALV-J antigenic genes, has been shown to be effective in the prevention of ALV-J. Our study also opens new avenues for the control of MDV and ALV-J co-infection.

  17. Highly pathogenic avian influenza virus nucleoprotein interacts with TREX complex adaptor protein Aly/REF.

    Science.gov (United States)

    Balasubramaniam, Vinod R M T; Hong Wai, Tham; Ario Tejo, Bimo; Omar, Abdul Rahman; Syed Hassan, Sharifah

    2013-01-01

    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.

  18. Serological monitoring of eastern wild turkeys for antibodies to Mycoplasma spp. and avian influenza viruses.

    Science.gov (United States)

    Davidson, W R; Yoder, H W; Brugh, M; Nettles, V F

    1988-04-01

    From 1981 through 1986, plasma or serum samples were obtained from 322 wild turkeys (Meleagris gallopavo) from Georgia (n = 111), Kentucky (n = 21), Louisiana (n = 22), North Carolina (n = 118), Tennessee (n = 19), Missouri (n = 24) and Iowa (n = 7). These samples were tested for antibodies to Mycoplasma gallisepticum (MG) and in most instances, M. synoviae (MS), M. meleagridis (MM), and avian influenza (AI) virus. All 322 turkeys were seronegative for MG by the rapid plate agglutination (RPA) test. All of a subsample (n = 147) also were negative (titer less than or equal to 1:40) for MG by the hemagglutination inhibition (HI) test. Five of 253 turkeys (2%) were seropositive (+4 reaction) for MS by the RPA test; however, HI tests for MS on these five turkeys were negative as were attempts to isolate MS from trachea and homogenized lung tissue. Three of 253 turkeys (1%) were seropositive (+1 to +3 reactions) for MM by the RPA test. None of 210 turkeys had antibodies to AI by the agar gel precipitation test. These data suggest that populations of native eastern wild turkeys are not important in the epizootiology of MG, MS, MM, or AI.

  19. Ecology of Avian Influenza Virus in Wild Birds in Tropical Africa.

    Science.gov (United States)

    Gaidet, Nicolas

    2016-05-01

    Several ecologic factors have been proposed to describe the mechanisms whereby host ecology and the environment influence the transmission of avian influenza viruses (AIVs) in wild birds, including bird's foraging behavior, migratory pattern, seasonal congregation, the rate of recruitment of juvenile birds, and abiotic factors. However, these ecologic factors are derived from studies that have been conducted in temperate or boreal regions of the Northern Hemisphere. These factors cannot be directly translated to tropical regions, where differences in host ecology and seasonality may produce different ecologic interactions between wild birds and AIV. An extensive dataset of AIV detection in wildfowl and shorebirds sampled across tropical Africa was used to analyze how the distinctive ecologic features of Afrotropical regions may influence the dynamics of AIV transmission in wild birds. The strong seasonality of rainfall and surface area of wetlands allows testing of how the seasonality of wildfowl ecology (reproduction phenology and congregation) is related to AIV seasonal dynamics. The diversity of the African wildfowl community provides the opportunity to investigate the respective influence of migratory behavior, foraging behavior, and phylogeny on species variation in infection rate. Large aggregation sites of shorebirds in Africa allow testing for the existence of AIV infection hot spots. We found that the processes whereby host ecology influence AIV transmission in wild birds in the Afrotropical context operate through ecologic factors (seasonal drying of wetlands and extended and nonsynchronized breeding periods) that are different than the one described in temperate regions, hence, resulting in different patterns of AIV infection dynamics.

  20. Transfer of maternal antibodies against avian influenza virus in mallards (Anas platyrhynchos.

    Directory of Open Access Journals (Sweden)

    Jacintha G B van Dijk

    Full Text Available Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV in a key AIV host species, the mallard (Anas platyrhynchos. Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i female body condition, (ii female AIV antibody concentration, (iii egg laying order, (iv egg size and (v embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards.

  1. Transfer of maternal antibodies against avian influenza virus in mallards (Anas platyrhynchos).

    Science.gov (United States)

    van Dijk, Jacintha G B; Mateman, A Christa; Klaassen, Marcel

    2014-01-01

    Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV host species, the mallard (Anas platyrhynchos). Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i) female body condition, (ii) female AIV antibody concentration, (iii) egg laying order, (iv) egg size and (v) embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards.

  2. NHE1 gene associated with avian leukosis virus subgroup J infection in chicken.

    Science.gov (United States)

    Chen, Biao; Pan, Weiling; Zhang, Liangyu; Liu, Jing; Ouyang, Hongjia; Nie, Qinghua; Zhang, Xiquan

    2014-10-01

    As a kind of binding protein, the type 1 Na(+)/H(+) exchanger (NHE1) is a receptor for the highly pathogenic Avian leukosis viruses-J subgroup (ALV-J) in chicken. In order to investigate the potential effect of chicken NHE1 gene on leukosis, we compared its expression between ALV-J-affected and -unaffected chicken, screened variations across the whole gene, and then performed association analysis with ALV-J affected/unaffected trait in three un-related chicken populations. We found that the NHE1 gene expressed in four immune tissues including spleen, bursa fabricius, liver, and thymus, and its expression was significantly up-regulated in liver and thymus of ALV-J-affected chickens (with leukosis phenotype) compared to -unaffected ones (ALV-J-negative controls). Thirty-six single nucleotide polymorphisms (SNP) were identified in a 6,105 bp region of the chicken NHE1 gene, giving rise to every 170 bp per SNP. Two SNP of g.4405A>G and g.5886C>G were genotyped with PCR-RFLP method. Results showed that g.4405A>G was significantly associated (P G was significantly associated (P < 0.05) with ALV-J infection in SY. These results indicated that the NHE1 gene was related to ALV-J infection in chicken.

  3. Evaluation of a multi-epitope subunit vaccine against avian leukosis virus subgroup J in chickens.

    Science.gov (United States)

    Xu, Qingqing; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Zhao, Xiaomin

    2015-12-02

    The intricate sequence and antigenic variability of avian leukosis virus subgroup J (ALV-J) have led to unprecedented difficulties in the development of vaccines. Much experimental evidence demonstrates that ALV-J mutants have caused immune evasion and pose a challenge for traditional efforts to develop effective vaccines. To investigate the potential of a multi-epitope vaccination strategy to prevent chickens against ALV-J infections, a recombinant chimeric multi-epitope protein X (rCMEPX) containing both immunodominant B and T epitope concentrated domains selected from the major structural protein of ALV-J using bioinformatics approach was expressed in Escherichia coli Rosetta (DE3). Its immunogenicity and protective efficacy was studied in chickens. The results showed that rCMEPX could elicit neutralizing antibodies and cellular responses, and antibodies induced by rCMEPX could specifically recognize host cell naturally expressed ALV-J proteins, which indicated that the rCMEPX is a good immunogen. Challenge experiments showed 80% chickens that received rCMEPX were well protected against ALV-J challenge. This is the first report of a chimeric multi-epitope protein as a potential immunogen against ALV-J.

  4. A rapid profiling assay for avian leukosis virus subgroup E proviruses in chickens.

    Science.gov (United States)

    Rutherford, Katherine; McLean, Nancy; Benkel, Bernhard F

    2014-03-01

    Endogenous retroviral elements (ERVs) are prolific components of the genomes of complex species, typically occupying more sequence space than do essential, protein-encoding genes. Much of what we know today about the structure and function, as well as the evolution and pathogenic potential, of ERVs was fleshed out over several decades during the last century using the avian leukosis virus subgroup E-related (ALVE) family of endogenous retroviruses of chickens as a model system. A critical enabling factor in the elucidation of ALVE structure and function is the ability to detect and unambiguously identify specific ALVE proviral elements and to develop accurate element profiles for individual chickens under study. Currently, the most common approach for ALVE locus detection involves element-specific PCR assays carried out using primers that target host DNA near the insertion site of the provirus (i.e., the upstream and downstream flanks of the unoccupied site). Here we describe a new approach for proviral detection that exploits restriction enzyme sites in flanking DNA to develop ALVE element profiles more rapidly than with assays currently in use. Moreover, unlike element-specific PCR tests, the "profiling" assay detects novel ALVEs for which insertion sites have not yet been identified as well as previously characterized elements.

  5. Avian hepatitis E virus infection and possible associated clinical disease in broiler breeder flocks in Hungary.

    Science.gov (United States)

    Morrow, Chris J; Samu, Gyozo; Mátrai, Eszter; Klausz, Akos; Wood, Alasdair M; Richter, Susanne; Jaskulska, Barbara; Hess, Michael

    2008-10-01

    In broiler breeder flocks in one broiler integration in Hungary, a new syndrome appeared in January 2005 with initially four successive post-peak flocks experiencing significant decreases in egg production. Clinically birds became depressed and there was a small increase in the mortality rate. Postmortem examinations revealed enlarged livers in up to 19% of birds dying, and enlarged spleens in some. Also observed were birds with either clotted blood or serosanguineous fluid in the abdomen and subcapsular haemorrhages of the liver. Histopathology and polymerase chain reaction excluded tumours and the presence of common tumour-associated viruses. Chronic bacterial infections (especially causing hepatitis, peritonitis and airsacculitis) were common but many enlarged livers had no obvious bacterial involvement. After a 9-month period during which a majority of flocks became affected, no newly affected flocks occurred. Investigations showed that all tested affected flocks were seropositive in the big liver and spleen (BLS) Agar Gel Immunodiffusion test. Subsequent flocks without post-peak egg-production drops were shown to be seronegative in the BLS AGID test, as were all the parent flocks contributing to the affected flocks. Liver samples and cloacal swabs were positive by polymerase chain reaction (aHEV helicase target), and calicivirus-like particles were demonstrated in bile samples from affected birds. These observations are similar to hepatitis-splenomegaly syndrome as described in North America and BLS syndrome as described in Australia. Histopathological features were a non-specific chronic hepatitis similar to those described in BLS and hepatitis-splenomegaly syndrome. Immunohistochemistry using a BLS-specific monoclonal antibody confirmed the presence of avian hepatitis E virus antigen in livers and spleen.

  6. The zoonotic potential of avian influenza viruses isolated from wild waterfowl in Zambia.

    Science.gov (United States)

    Simulundu, Edgar; Nao, Naganori; Yabe, John; Muto, Nilton A; Sithebe, Thami; Sawa, Hirofumi; Manzoor, Rashid; Kajihara, Masahiro; Muramatsu, Mieko; Ishii, Akihiro; Ogawa, Hirohito; Mweene, Aaron S; Takada, Ayato

    2014-10-01

    Whilst remarkable progress in elucidating the mechanisms governing interspecies transmission and pathogenicity of highly pathogenic avian influenza viruses (AIVs) has been made, similar studies focusing on low-pathogenic AIVs isolated from the wild waterfowl reservoir are limited. We previously reported that two AIV strains (subtypes H6N2 and H3N8) isolated from wild waterfowl in Zambia harbored some amino acid residues preferentially associated with human influenza virus proteins (so-called human signatures) and replicated better in the lungs of infected mice and caused more morbidity than a strain lacking such residues. To further substantiate these observations, we infected chickens and mice intranasally with AIV strains of various subtypes (H3N6, H3N8, H4N6, H6N2, H9N1 and H11N9) isolated from wild waterfowl in Zambia. Although some strains induced seroconversion, all of the tested strains replicated poorly and were nonpathogenic for chickens. In contrast, most of the strains having human signatures replicated well in the lungs of mice, and one of these strains caused severe illness in mice and induced lung injury that was characterized by a severe accumulation of polymorphonuclear leukocytes. These results suggest that some strains tested in this study may have the potential to infect mammalian hosts directly without adaptation, which might possibly be associated with the possession of human signature residues. Close monitoring and evaluation of host-associated signatures may help to elucidate the prevalence and emergence of AIVs with potential for causing zoonotic infections.

  7. Antigenicity and transmissibility of a novel clade 2.3.2.1 avian influenza H5N1 virus.

    Science.gov (United States)

    Xu, Lili; Bao, Linlin; Yuan, Jing; Li, Fengdi; Lv, Qi; Deng, Wei; Xu, Yanfeng; Yao, Yanfeng; Yu, Pin; Chen, Honglin; Yuen, Kwok-Yung; Qin, Chuan

    2013-12-01

    A genetic variant of the H5N1 influenza virus, termed subclade 2.3.2.1, was first identified in Bulgaria in 2010 and has subsequently been found in Vietnam and Laos. Several cases of human infections with this virus have been identified. Thus, it is important to understand the antigenic properties and transmissibility of this variant. Our results showed that, although it is phylogenetically closely related to other previously characterized clade 2.3 viruses, this novel 2.3.2.1 variant exhibited distinct antigenic properties and showed little cross-reactivity to sera raised against other H5N1 viruses. Like other H5N1 viruses, this variant bound preferentially to avian-type receptors, but contained substitutions at positions 190 and 158 of the haemagglutinin (HA) protein that have been postulated to facilitate HA binding to human-type receptors and to enhance viral transmissibility among mammals, respectively. However, this virus did not appear to have acquired the capacity for airborne transmission between ferrets. These findings highlight the challenges in selecting vaccine candidates for H5N1 influenza because these viruses continue to evolve rapidly in the field. It is important to note that some variants have obtained mutations that may gain transmissibility between model animals, and close surveillance of H5N1 viruses in poultry is warranted.

  8. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    Science.gov (United States)

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-01-31

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL.

  9. Failure of transmission of low-pathogenic avian influenza virus between Mallards and freshwater snails: an experimental evaluation.

    Science.gov (United States)

    Oesterle, Paul T; Huyvaert, Kathryn P; Orahood, Darcy; Mooers, Nicole; Sullivan, Heather; Franklin, Alan B; Root, J Jeffrey

    2013-10-01

    In aquatic bird populations, the ability of avian influenza (AI) viruses to remain infectious in water for extended periods provides a mechanism that allows viral transmission to occur long after shedding birds have left the area. However, this also exposes other aquatic organisms, including freshwater invertebrates, to AI viruses. Previous researchers found that AI viral RNA can be sequestered in snail tissues. Using an experimental approach, we determined whether freshwater snails (Physa acuta and Physa gyrina) can infect waterfowl with AI viruses by serving as a means of transmission between infected and naïve waterfowl via ingestion. In our first experiment, we exposed 20 Physa spp. snails to an AI virus (H3N8) and inoculated embryonated specific pathogen-free (SPF) chicken eggs with the homogenized snail tissues. Sequestered AI viruses remain infectious in snail tissues; 10% of the exposed snail tissues infected SPF eggs. In a second experiment, we exposed snails to water contaminated with feces of AI virus-inoculated Mallards (Anas platyrhynchos) to evaluate whether ingestion of exposed freshwater snails was an alternate route of AI virus transmission to waterfowl. None of the immunologically naïve Mallards developed an infection, indicating that transmission via ingestion likely did not occur. Our results suggest that this particular trophic interaction may not play an important role in the transmission of AI viruses in aquatic habitats.

  10. A multiplex reverse transcription-polymerase chain reaction assay for Newcastle disease virus and avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Ali, A; Reynolds, D L

    2000-01-01

    Newcastle disease virus (NDV) and avian pneumovirus (APV) cause Newcastle disease and rhinotracheitis respectively, in turkeys. Both of these viruses infect the respiratory system. A one-tube, multiplex, reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of both NDV and Colorado strain of APV (APV-Col) was developed and evaluated. The primers, specific for each virus, were designed from the matrix protein gene of APV-Col and the fusion protein gene of NDV to amplify products of 631 and 309 nucleotides, respectively. The multiplex RT-PCR assay, for detecting both viruses simultaneously, was compared with the single-virus RT-PCR assays for its sensitivity and specificity. The specific primers amplified products of predicted size from each virus in the multiplex as well as the single-virus RT-PCR assays. The multiplex RT-PCR assay was determined to be equivalent to the single-virus RT-PCR assays for detecting both NDV and APV-Col. This multiplex RT-PCR assay proved to be a sensitive method for the simultaneous and rapid detection of NDV and APV-Col. This assay has the potential for clinical diagnostic applications.

  11. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    Science.gov (United States)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  12. Sensitive and direct detection of receptor binding specificity of highly pathogenic avian influenza A virus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Influenza A virus (IAV recognizes two types of N-acetylneuraminic acid (Neu5Ac by galactose (Gal linkages, Neu5Acα2,3Gal and Neu5Acα2,6Gal. Avian IAV preferentially binds to Neu5Acα2,3Gal linkage, while human IAV preferentially binds to Neu5Acα2,6Gal linkage, as a virus receptor. Shift in receptor binding specificity of avian IAV from Neu5Acα2,3Gal linkage to Neu5Acα2,6Gal linkage is generally believed to be a critical factor for its transmission ability among humans. Surveillance of this shift of highly pathogenic H5N1 avian IAV (HPAI is thought to be a very important for prediction and prevention of a catastrophic pandemic of HPAI among humans. In this study, we demonstrated that receptor binding specificity of IAV bound to sialo-glycoconjugates was sensitively detected by quantifying the HA gene with real-time reverse-transcription-PCR. The new assay enabled direct detection of receptor binding specificity of HPAIs in chicken clinical samples including trachea and cloaca swabs in only less than 4 h.

  13. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene.

    Directory of Open Access Journals (Sweden)

    Antoinette J Piaggio

    Full Text Available A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV. We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event, as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.

  14. Intervention strategies to reduce the risk of zoonotic infection with avian influenza viruses: scientific basis, challenges and knowledge gaps.

    Science.gov (United States)

    Sims, Leslie D

    2013-09-01

    A range of measures has been recommended and used for the control and prevention of avian influenza. These measures are based on the assessment of local epidemiological situations, field observations and other scientific information. Other non-technical factors are (or in some cases should be) taken into account when developing and recommending control measures. The precise effects under field conditions of most individual interventions applied to control and prevent avian influenza have not been established or subjected to critical review, often because a number of measures are applied simultaneously without controls. In most cases, the combination of measures used results in control or elimination of the virus although there are some countries where this has not been the case. In others, especially those with low poultry density, it is not clear whether the link between the adoption of a set of measures and the subsequent control of the disease is causative. This article discusses the various measures recommended, with particular emphasis on stamping out and vaccination, examines how these measures assist in preventing zoonotic infections with avian influenza viruses and explores gaps in knowledge regarding their effectiveness.

  15. Advance in Detection Methods of Avian Leukosis Virus Subgroup J%J亚群禽白血病病毒检测方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    杭柏林; 胡建和; 李杰; 刘丽艳; 王宪文; 王丽荣

    2011-01-01

    禽白血病(AL)是目前危害中国养鸡业的肿瘤性、传染性疾病之一.近年来,J亚群禽白血病较为流行.J亚群禽白血病病毒(ALV-J)是引起肉鸡和蛋鸡J亚群禽白血病的病原.主要综述了有关ALV-J的病原学、免疫学和分子生物学检测方法的研究进展.%Avian leukosis was a tumor infection disease harmed to chicken industry of China and prevalent in decade years. Avian leukosis virus subgroup J was the pathogeny of avian leukosis subgroup J of broilers and egg chickens. This paper summarized the advance in detection methods (etiology method, immunology method and molecular biology method) of avian leukosis virus subgroup J.

  16. Kaposi's Sarcoma Associated-Herpes Virus (KSHV Seroprevalence in Pregnant Women in South Africa

    Directory of Open Access Journals (Sweden)

    Malope-Kgokong Babatyi I

    2010-08-01

    Full Text Available Abstract Background Factors previously associated with Kaposi's sarcoma-associated herpesvirus (KSHV transmission in Africa include sexual, familial, and proximity to river water. We measured the seroprevalence of KSHV in relation to HIV, syphilis, and demographic factors among pregnant women attending public antenatal clinics in the Gauteng province of South Africa. Methods We tested for antibodies to KSHV lytic K8.1 and latent Orf73 antigens in 1740 pregnant women attending antenatal clinics who contributed blood to the "National HIV and Syphilis Sero-Prevalence Survey - South Africa, 2001". Information on HIV and syphilis serology, age, education, residential area, gravidity, and parity was anonymously linked to evaluate risk factors for KSHV seropositivity. Clinics were grouped by municipality regions and their proximity to the two main river catchments defined. Results KSHV seropositivity (reactive to either lytic K8.1 and latent Orf73 was nearly twice that of HIV (44.6% vs. 23.1%. HIV and syphilis seropositivity was 12.7% and 14.9% in women without KSHV, and 36.1% and 19.9% respectively in those with KSHV. Women who are KSHV seropositive were 4 times more likely to be HIV positive than those who were KSHV seronegative (AOR 4.1 95%CI: 3.4 - 5.7. Although, women with HIV infection were more likely to be syphilis seropositive (AOR 1.8 95%CI: 1.3 - 2.4, no association between KSHV and syphilis seropositivity was observed. Those with higher levels of education had lower levels of KSHV seropositivity compared to those with lower education levels. KSHV seropositivity showed a heterogeneous pattern of prevalence in some localities. Conclusions The association between KSHV and HIV seropositivity and a lack of common association with syphilis, suggests that KSHV transmission may involve geographical and cultural factors other than sexual transmission.

  17. A combination of serological assays to detect human antibodies to the avian influenza A H7N9 virus.

    Directory of Open Access Journals (Sweden)

    Libo Dong

    Full Text Available Human infection with avian influenza A H7N9 virus was first identified in March 2013 and represents an ongoing threat to public health. There is a need to optimize serological methods for this new influenza virus. Here, we compared the sensitivity and specificity of the hemagglutinin inhibition (HI, microneutralization (MN, and Western blot (WB assays for the detection of human antibodies against avian influenza A (H7N9 virus. HI with horse erythrocytes (hRBCs and a modified MN assay possessed greater sensitivity than turkey erythrocytes and the standard MN assay, respectively. Using these assays, 80% of tested sera from confirmed H7N9 cases developed detectable antibody to H7N9 after 21 days. To balance sensitivity and specificity, we found serum titers of ≥20 (MN or 160 (HI samples were most effective in determining seropositive to H7N9 virus. Single serum with HI titers of 20-80 or MN titer of 10 could be validated by each other or WB assay. Unlike serum collected from adult or elderly populations, the antibody response in children with mild disease was low or undetectable. These combinations of assays will be useful in case diagnosis and serologic investigation of human cases.

  18. Reassortment of Avian Influenza A/H6N6 Viruses from Live Poultry Markets in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Runyu eYuan

    2016-02-01

    Full Text Available Since early 2013, H7N9-subtype avian influenza virus (AIV has caused human infection in eastern China. To evaluate AIV contamination and the public risk of infection, we systematically implemented environmental sampling from live poultry markets in Guangdong Province. Through real-time polymerase chain reaction assays and next-generation sequencing, we generated full nucleotide sequences of all 10 H6N6 AIVs isolated during sampling. Focusing on sequence analyses of hemagglutinin genes of the 10 H6N6 AIVs revealed that the viruses were low pathogenic AIVs with the typical hemagglutinin cleavage site of P-Q-I-E-T-R-G. The hemagglutinin, neuraminidase, and nucleocapsid genes of nine AIVs were of ST2853-like (H6-subtype lineage, ST192-like (N6-subtype lineage, and HN573-like (H6-subtype lineage, respectively; whereas the other five genes were of ST339-like (H6-subtype lineage. However, the polymerase PB2 and nucleocapsid genes of one strain (HZ057 were of GS/GD-like (H5N1-subtype and ST339-like lineages. Phylogenic analysis revealed that all eight genes of the 10 viruses belonged to Eurasian avian lineage. Altogether, the 10 AIVs were reassortants of different genetic groups of exchanges with the same virus subtype, thus illustrating the genetic diversity and complexity of H6N6-subtype AIVs in Guangdong Province.

  19. PB2 Segment Promotes High-pathogenicity Of H5N1 Avian Influenza Viruses In Mice

    Directory of Open Access Journals (Sweden)

    Hailiang eSun

    2015-02-01

    Full Text Available H5N1 influenza viruses with high lethality are a continuing threat to humans and poultry. Recently, H5N1 high-pathogenicity avian influenza virus (HPAIV has been shown to transmit through aerosols between ferrets in lab experiments by acquiring some mutation. This is another deeply aggravated threat of H5N1 HPAIV to humans. To further explore the molecular determinant of H5N1 HPAIV virulence in a mammalian model, we compared the virulence of A/Duck/Guangdong/212/2004 (DK212 and A/Quail/Guangdong/90/2004 (QL90. Though they were genetically similar, they had different pathogenicity in mice, as well as their 16 reassortants. The results indicated that a swap of the PB2 gene could dramatically decrease the virulence of rgDK212 in mice (1896-fold but increase the virulence of rgQL90 in mice (60-fold. Furthermore, the polymerase activity assays showed that swapping PB2 genes between these two viruses significantly changed the activity of polymerase complexes in 293T cells. The mutation Ser715Asn in PB2 sharply attenuated the virulence of rgDK212 in mice (2710-fold. PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice and 715 Ser in PB2 plays an important role in determing high virulence of DK212 in mice.

  20. Avian influenza (H5N1 virus of clade 2.3.2 in domestic poultry in India.

    Directory of Open Access Journals (Sweden)

    Shanmuga Nagarajan

    Full Text Available South Asia has experienced regular outbreaks of H5N1 avian influenza virus since its first detection in India and Pakistan in February, 2006. Till 2009, the outbreaks in this region were due to clade 2.2 H5N1 virus. In 2010, Nepal reported the first outbreak of clade 2.3.2 virus in South Asia. In February 2011, two outbreaks of H5N1 virus were reported in the State of Tripura in India. The antigenic and genetic analyses of seven H5N1 viruses isolated during these outbreaks were carried out. Antigenic analysis confirmed 64 to 256-fold reduction in cross reactivity compared with clade 2.2 viruses. The intravenous pathogenicity index of the isolates ranged from 2.80-2.95 indicating high pathogenicity to chickens. Sequencing of all the eight gene-segments of seven H5N1 viruses isolated in these outbreaks was carried out. The predicted amino acid sequence analysis revealed high pathogenicity to chickens and susceptibility to the antivirals, amantadine and oseltamivir. Phylogenetic analyses indicated that these viruses belong to clade 2.3.2.1 and were distinct to the clade 2.3.2.1 viruses isolated in Nepal. Identification of new clade 2.3.2 H5N1 viruses in South Asia is reminiscent of the introduction of clade 2.2 viruses in this region in 2006/7. It is now important to monitor whether the clade 2.3.2.1 is replacing clade 2.2 in this region or co-circulating with it. Continued co-circulation of various subclades of the H5N1 virus which are more adapted to land based poultry in a highly populated region such as South Asia increases the risk of evolution of pandemic H5N1 strains.